
Chapter 10
Flute-Like Instruments

Benoît Fabre

Abstract This chapter deals with a second category of self-sustained oscillations
produced by musical instruments and focuses on flutes with open ends. The
following section presents the self-sustained oscillator as a looped system, focusing
mostly on the jet and on its interaction with the acoustic field in the pipe. An integral
approach, that allows to overpass the limitations of the looped system analysis, is
also introduced. The three main elements that need to be described for modeling
the oscillation in flutes are: (1) the perturbation of the jet by the acoustic field:
the jet receptivity; (2) the evolution of the perturbation convected by the jet: the
jet instability; and (3) the production of acoustical energy by the perturbed flow:
the aeroacoustic sources. Models are proposed for each of these elements and
compared to experiments. The jet-drive model is detailed and shown to be formally
equivalent to the force source term in an aeroacoustic analogy. The main geometrical
parameters that characterize a flute exciter is the ratio of the channel thickness to the
distance between the flue exit and the labium, while the main parameter related to
the instrumentalist is the jet Reynolds number.

10.1 Introduction and General Description

The first attempts to understand flute-like instruments from a physical point of view
are found in the late nineteenth century, see, for example, the work by Helmholtz
[48] and Rayleigh [36]. During the twentieth century, the development of fluid
mechanics and more specifically studies on jet instability and aeroacoustics brought
new insight on the physics of flute-like instruments.

Today’s models allow producing realistic synthetic flute sounds, based on
the physical description of the instrument. This indicates that the main physical
mechanisms are now understood. However, this global understanding does not allow
an accurate interpretation of the influence of some specific parameters, such as those
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of interest for players and instrument makers. This chapter focuses on open end
flutes, excluding stopped pipes, and on quasi-cylindrical pipes. Indeed, the conical
bore of flutes shows a behavior much closer to that of a cylinder than the bores of
double reed instruments such as the oboe or the bassoon.

After a general description of the physics and of the different sound production
mechanisms in flutes, the chapter will develop a general model of flutes (Sect. 10.2).
We then focus on the most difficult parts, namely the description of the jet instability
(Sect. 10.3) and of the aeroacoustic sources (Sect. 10.4). The main elements leading
to a simplified model (Sect. 10.5) aiming at sound synthesis, will be discussed next.

10.1.1 The Air Jet, Driving the Oscillation in Flutes

The three main elements that need to be described for modeling the oscillation in
flutes are

• the perturbation of the jet by the acoustic field: the jet receptivity,
• the evolution of the perturbation convected by the jet: the jet instability,
• the production of acoustical energy by the perturbed flow: the aeroacoustic

sources.

The following section presents the self-sustained oscillator as a looped system,
focusing mostly on the jet and on its interaction with the acoustic field in the pipe.

10.1.1.1 The Jet Instability

Observing the smoke emitted by a cigarette indicates that jets are naturally unstable.
After a few centimeters, the thin smoke jet bends and oscillates, and finally looses
its organized structure, ending as a wide cloud. This kind of (space-time) instability
can be observed as soon as two fluids with different velocities are in contact. For
example, the wind at the surface of the sea induces water waves. The surrounding
air needs to be still in order to observe the evolution of the cigarette smoke described
above: indeed, slight movements of the air around the cigarette or a movement of
the hand holding the cigarette strongly influences the jet motion, demonstrating the
high sensitivity of the smoke jet.

In a flute, the air jet is blown across an open end of the pipe resonator. When
acoustic oscillation occurs within the resonator, the jet instability synchronizes
on the acoustic oscillation, resulting in a “forced” oscillation of the jet. The
hydrodynamic waves traveling on the jet have the same frequency as the acoustic
oscillation. As for the oscillation described in the case of the cigarette smoke, the jet
perturbation grows as it is carried by the flow, being convected downstream. In the
case of a jet oscillation forced by a loudspeaker, Fig. 10.1 shows how the transverse
displacement of the jet increases in the downstream direction.
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Fig. 10.1 Photograph of the jet perturbation forced by loudspeakers placed at few centimeters
apart from the flow, above and under it [Re D 500, 658 Hz, Uj = 7.5 m/s]. The jet is exhausting
from the end of a 1 mm thick channel, seen on the left side of the picture

Two characteristics of the jet motion are important for the flute oscillation:

• the convection velocity of the perturbation, corresponding to the propagation
velocity of the perturbation waves on the jet: to a first approximation, the
convection velocity is equal to half the centerline jet velocity,

• the amplification of the perturbation, corresponding to a characteristic growth
factor of the instability waves along the jet.

Both characteristics depend on frequency, but the amplification strongly depends
on it: the jet instability is stronger in a frequency range depending on both the
jet velocity and jet thickness. The strongest amplification appears for frequencies
around 0:3Uj=h, where Uj is the jet velocity and h is the thickness of the flue channel
from which the jet is flowing.1

10.1.1.2 Acoustic Sources at the Labium of the Flute

Figure 10.2 illustrates the vocabulary used in the case of a recorder. The terminology
changes according to the instrument studied: for instance, the foot of the organ pipe
corresponds to the mouth of the recorder player, while the upper-lip of the mouth
of the organ pipe corresponds to the labium or blowing edge of the recorder! In a
transverse flute, the flue channel is created between the lips of the player.

Transverse perturbations of the jet are induced by the acoustic field. They are
convected from the flue exit to the labium or blowing edge. As a result, the jet
oscillates from one side to the other of the labium (Fig. 10.3). This induces a force
on the labium due to the flow. This force is synchronized with the jet perturbation,
and therefore with the acoustic oscillation. The reacting force of the labium acts as
an acoustic source that sustains the acoustic oscillation, thus compensating for the
various acoustic losses.

1Please note that in this chapter, we will denote the velocity as U, and the volume flow as Q, as it
is of common use in fluid mechanics. This differs from the convention used in the other chapters
of the book.
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Fig. 10.2 Longitudinal sketch of a recorder, showing the terms used in this chapter. The chamfers
at the flue exit can also be seen on this sketch. The opening between the flue exit and the labium is
called the “mouth” in this chapter

Fig. 10.3 The acoustic field
at the flue exit induces a
perturbation of the jet that is
amplified while it is
convected towards the
labium. This results into the
transverse oscillation of the
jet from one side of the
labium to the other

W

h
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propagation
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Fig. 10.4 Self-sustained oscillation in flutes can be described as a feedback loop

10.1.1.3 The Self-Sustained Oscillator as a Looped System

The acoustic field in the pipe resonator is responsible for the initial jet perturbation.
This perturbation is convected and amplified downstream due to the natural jet
instability. The interaction of the perturbed jet with the labium constitutes the
aeroacoustic source that feeds acoustic energy into the pipe. As a response to this
excitation, the acoustic energy in the pipe is associated with the acoustic flow
through the mouth, that results in the jet perturbation at the flue exit. Therefore,
the self-sustained oscillations in the instrument can be described as a feedback loop,
as shown in Fig. 10.4.



10 Flute-Like Instruments 563

This looped description allows to predict the oscillating frequency of the
instrument. Because the pipe accumulates energy only at resonances, the oscillating
frequency is close to a pipe resonance. In the looped description of the system,
stationary oscillations can only occur when the total phase shift around the loop is
2� or any multiple of 2� . When blowing softly in a recorder, one can check that
the time delay associated with the convection of perturbations on the jet is about
half the oscillation period. The phase shift of the pipe response therefore needs to
be the exact complement of one period: that is � , corresponding to another half
period. If we now blow a little harder in the recorder, the jet velocity increases and
the convection velocity of perturbation increases accordingly. The phase shift due
to the convection of perturbations on the jet decreases and therefore the phase shift
of the pipe response needs to increase: the oscillation frequency slightly increases
to match the phase condition. Blowing even harder, the convection delay on the jet
eventually becomes too small compared to the period of the first pipe resonance and
the oscillation jumps to the second pipe resonance, for which the same convection
delay represents a larger phase shift (Fig. 10.5). This is called “overblowing.” For
a given fingering, the player can select the oscillating regime, among the different
pipe resonances, by adjusting the blowing pressure and consequently the convection
jet velocity.

By blowing gently, at very low blowing pressures compared to standard playing,
the player can produce very soft tones at frequencies close to the pipe reso-
nances. This playing technique, called “whistle-tones” or sometimes “eolian tones,”

Jet velocity

Playing frequency

f3

f2

f1

Fig. 10.5 Simplified representation of the playing frequency of a flute as function of jet velocity.
The oscillation takes place at a frequency close to one of the pipe passive resonances f1, f2, or f3.
Regime changes do not occur at the same jet velocity for increasing (gray arrows) and decreasing
(white arrows) jet velocity: a hysteresis appears. Dotted lines indicate whistle-tone oscillations
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corresponds to convection delays on the jet that are larger than one oscillation
period: one and a half or two and a half period may be observed, instead of the half
period observed under standard playing conditions. These oscillations do not easily
appear in recorders because of the short distance between flue exit and labium. They
can appear for standard playing conditions during starting transients on some flutes
and organ pipes, before the jet reaches its stationary velocity.

10.1.2 The Sounds of Flutes

10.1.2.1 The Different Elements of the Sound

Different elements are combined in the sound radiated by flutes. Using a mechanical
air supply allows producing a stationary sound, as for an organ. The sound radiated
by a pipe blown in such a way can be split into a deterministic part, that can be
analyzed in terms of sine wave components, and a stochastic part, generated by
turbulence. Indeed, turbulence produces a broadband noise, that is filtered by the
pipe acoustical response. In Fig. 10.6, the FFT spectrum analysis of the stationary
part of the sound of a small organ pipe shows the harmonics together with the
turbulence noise filtered by the pipe. One can clearly see the shift in frequency
between harmonics and pipe resonances: for example, the sixth resonance of the
pipe lies between the sharp lines of the harmonics 6 and 7.

The transverse position of the labium, relative to the jet central axis, has a
strong influence on the relative amplitudes of the harmonics. In the recorder, even
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Fig. 10.6 FFT analysis of the internal pressure (left) and radiated pressure (right) at a distance of
30 cm in front of the mouth of a small organ pipe (2048 points FFT, Hanning window, averaging
over 25 time slots). At frequencies higher than the fifth harmonic, (around 2.5 kHz), resonances
can be identified by their filtering effect on the noise sound of turbulence, since their frequency
does not coincide any more with the harmonics that correspond to the sharp peaks seen as vertical
lines in the spectra. Radiation induces a relative amplification of the higher frequencies. From [18]
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harmonics reach a minimum value for a transverse position of the labium close
to the jet axis [47]. Measurements on (transverse) flute playing indicate that some
players are working to enhance the amplitude of even harmonics, while some others
are seeking to generate strong odd harmonics.

When the air supply comes from a player rather than from a mechanical
system, pressure fluctuations modulate the sound production. Vibrato correspond
to a conscious and intentional modulation of the blowing, but fluctuations are
observed, even when the player aims at producing a “stable” tone. Because of these
fluctuations, it is generally not possible to define a stationary part of the tone. This
makes the analysis of the sound production even more difficult!

Starting transients are also quite difficult to analyze. Experiments on transients
are difficult to set up, mostly because it is difficult to get an accurate and
reproducible control of blowing pressure rises. Analysis is also difficult from the
point of view of signal processing, while the most difficult part of the analysis of
starting transients is due to the complex interaction of intricate physical phenomena
[20, 46]. The different sound components, that will become the harmonics in the
steady stationary part of the sound, display changing frequencies and amplitudes
during the attack transient. Figure 10.7 shows the time evolution of the three
first frequency components during an attack transient. In this example, the second
component (with frequency close to twice that of the later fundamental) increases
much faster than the first component.
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Fig. 10.7 Time evolution of the three first frequency component during the attack transient in a
small organ pipe. In this case, the second component is dominating the attack transient. From [38]
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10.1.2.2 Whistle-Tones or Eolian Tones

High frequency components may also appear during the attack transient [8, 20].
The frequency behavior of the so-called mouth-tones [8] shows some similarity with
edge-tones. Therefore, measurements of the amplitude of these sounds (pipe internal
pressure) were made under steady blowing in whistle-tone condition, showing that
the amplitude is a factor 100 higher than that expected for edge-tones. Furthermore,
the amplitude appears to be even higher (approximately by a factor 2) than that
expected for a “normal” pipe-tone, indicating that the saturation mechanisms at
work are different.

These mouth-tones, or eolian tones or whistle-tones, are relying on energy
accumulation at a resonance frequency of the pipe [1]. Flute players know very
well how dangerous they are because of their poor stability.

10.2 A Global Model for the Instrument

10.2.1 General Description

Before developing a physical model of a flute, the limits of the system must be
clearly identified. Recall that the sound is the result of instrument–player interaction.
It is therefore easier to start our description by instruments in which the player has
little influence on the sound: the organ pipe, and to a lesser extend, the recorder.
Both instruments have in common that the geometry of the exciter part does not
change during playing, and is fully determined by the music instrument maker:
jet formation channel and labium position. When the jet is blown through the lips
of the player, the description is more complex because the player adapts his lip
geometry during playing, in a not fully reproducible manner. A good player may
aim at producing very similar sound quality when repeating a musical excerpt, but
never aims at reaching the same lip geometry: the player’s target is the sound, not
the geometry.

Even for instruments with a fixed geometry, today’s models are still very crude.
They offer a good description of the physics of the instrument for a restricted range
of parameters (Reynolds and Strouhal numbers, see next section). These models
are only valid for specific playing techniques and fail to describe some phenomena
observed during transients. Furthermore, they do not allow to include some details
of the instruments such as the chamfers that are cut at the flue exit in recorders, or the
nicking of some organ pipes. Direct flow simulation, solving the equations of fluid
mechanics at each time step and each position in space, is still difficult nowadays
when dealing with the whole instrument [31, 41], but can offer interesting answers
to localized problems, providing information that can help improving simplified
models [7].
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Fig. 10.8 Geometrical
parameters of the exciter part.
Uj is the jet central velocity at
the channel exit, h is the
channel thickness, and W is
the flue exit to labium
distance

Uj

W

h

10.2.2 Important Parameters

Oscillations in a flute can be described as the result of the coupling between a
hydrodynamic mode of a jet and an acoustic mode of a pipe resonator. Different
scaling parameters are useful. Figure 10.8 shows the geometrical parameters
involved in this coupling.

The Reynolds number Re is used to characterize the structure of the jet: it may
vary from a few hundreds (recorder) up to 10,000 in modern transverse flute playing.

500 < Re D Ujh

�
< 10; 000 (10.1)

where Uj is the jet central velocity at the channel exit, h is the corresponding channel
thickness, and � is the kinematic viscosity of air (� D 1:5 � 10�5 m2=s D �=�,
see Sect. 5.5.2 in Chap. 5). The jet instability is characterized by the Strouhal
number, corresponding to the inverse of the dimensionless frequency. Definitions
of the Strouhal number may vary according to different situations and authors, from
!W=Uj, with ! the angular frequency and W the flue exit to labium distance, to
fh=Uj, where f D !=2� .

Theoretical analysis of jet instability generally uses the half-thickness parameter
b of the jet, for instance, in the case of the Bickley velocity profile2 U.y/ D
U0 sech2.y=b/ with y the transversal coordinate [22, 34]. The relation between the
experimental parameter h and the theoretical parameter b is not straightforward.
To a first approximation, it can be deduced from conservation laws between the
channel flow and the jet flow. For example, if the channel flow is approximated by
a Poiseuille flow and the jet flow is assumed to have a Bickley velocity profile with
U0 D Uj, momentum conservation together with central velocity conservation lead
to b D 2h=5 [45].

For standard blowing conditions in flutes, one half hydrodynamic wavelength
�h can be observed on the jet between the flue exit and the labium. The wave
propagation velocity on the jet is approximately equal to half the central jet velocity

2sech x D 1= cosh x
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Uj, and therefore the half wavelength across the mouth width W, between flue exit
and labium W D �h=2 corresponds to:

StrW D fW

Uj
� 0:25 (10.2)

which is a characteristic value in the oscillating range of the instruments
[15, 21, 39, 47].

The properties of the jet instability are determined by the interaction between
both shear layers, on the two sides of the jet. Therefore, the instability is often
studied as function of the Strouhal number based on the transverse dimension of
the jet (b or h, depending on whether the approach is theoretical or experimental):
Strh D fh=Uj. The jet length to jet thickness ratio W=h corresponds to the ratio
between the two Strouhal numbers discussed above. This ratio is an important
parameter for the modeling. “Thick jets” correspond to values of this ratio smaller
than 4 (in the case of transverse flute or shakuhachi, the Japanese flute, playing loud
in the low register), while “thin jets” such as those found in some organ pipes are
characterized by values up to 20 of the thickness ratio W=h of the jet.

Figure 10.9 shows the standard operating range of different instruments in a map
representing the jet thickness W=h as function of the Reynolds number. Instruments
for which the jet is formed between the lips of the player allow to vary the
parameters during playing, and therefore present a wide operating range. In the
case of the organ, it is the variety of pipes in the different stops that allows a wide
operating range.

Models for the jet behavior need to be adapted to the specific operating range. In
the organ, the same blowing system is generally used for all pipes, and the player
can adjust individual blowing conditions of each pipe by varying the opening of
each pipe foot. Together with different geometries of the flue and of the labium, this
yields a wide operating range.

Last, the oscillating amplitude is quantified as the ratio of the acoustic velocity
in the mouth of the pipe to the central jet velocity, or to the mean flow velocity
of the jet. The central jet velocity is generally estimated from pressure values by
applying the Bernoulli equation (see below) between the pressure reservoir and the
atmospheric pressure [21, 39, 46]. The acoustic velocity in the mouth can be deduced
from pressure measurement in the pipe resonator, taking the non-uniformity of the
flow in the mouth [45] into account. For standard blowing conditions, oscillating
amplitudes induce a transverse acoustic perturbation vac of the jet, with an amplitude
Vac of the order of magnitude of one-tenth of the jet velocity:

Vac

Uj
� 10�1: (10.3)
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Fig. 10.9 Operating ranges of the recorder, of the transverse flute, and of the organ pipes in a
map representing the jet thickness W=h as function of the Reynolds number. Transverse flute
allows the player to cover a wide range on a single instrument through lip and blowing pressure
adjustment, while in the case of the organ, the variety of pipes with different geometries determines
the operating range

10.2.3 Localized or Distributed Interaction?

The different elements that take part in the oscillation interact in such a way that it
is difficult to separate them: the acoustic resonance in the pipe cannot be separated
from the radiation at the pipe ends, and the aeroacoustic source acts in the vicinity
of the open end. It may seem artificial to model each element separately: the jet, the
aeroacoustic sources, and the pipe resonator.

10.2.3.1 Models Assuming Localized Interaction (Lumped Models)

This separation came first from the different related scientific fields: flow instability
is generally a topic of fluid mechanical studies, the pipe resonance of complex pipes
is analyzed in acoustical studies, while the sound production by an unsteady flow
interacting with solid boundaries is analyzed in aeroacoustical studies. Different
time and space scales may allow to justify the splitting of the problem into
independent problems, corresponding to different simplifications of the Navier–
Stokes equation.
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Jet descriptions are usually carried out under the assumption of compact flow,
corresponding to small scales compared to the acoustic wavelength: the fluid is
supposed to be incompressible3. In contrast, the description of the pipe acoustics
usually neglects convective effects. Theses assumptions are valid, in the study of
the oscillation mechanisms, only for low frequencies, corresponding to the lowest
harmonics of the sound. This is justified by the fact that the oscillation mechanisms
are controlled by the fundamental frequency of the oscillation, or by the two first
harmonics. However, for the listener hearing the radiated sound, higher frequency
components are very important. The poor radiation efficiency at low frequencies
makes these two points of view compatible: low frequencies are mostly trapped
inside the resonator and taking care of the self-sustained oscillation. This is because
the sound waves at low frequencies are almost totally reflected at the open pipe ends,
with very little radiation. The visco-thermal losses at the walls at the oscillating
frequency are higher than the radiation losses. On the contrary, higher frequency
components have smaller amplitudes inside the pipe, but they are much more
efficiently radiated. Figure 10.6 shows the spectrum of the acoustic pressure inside
the pipe, together with the spectrum of the acoustic pressure radiated at a distance
of about 30 cm from the pipe mouth. Components in the frequency band from 3 to
5 kHz, corresponding to the most sensitive range of hearing, show a higher relative
importance in the radiated sound than in the internal acoustic field.

10.2.3.2 Distributed Interaction Models

Lumped models with independent blocks are based on the assumption of localized
interactions. The jet is supposed to be perturbed by the acoustic field at the positions
of flow separation at the flue channel exit, and the sound production is supposed to
be localized at the labium. The pipe resonator is then fully described by its acoustic
response to this excitation at the flue exit.

A more rigorous approach can be found in analytical models, as proposed by
Howe [28], Crighton [11], Elder [17], and Bechert [5]. These models describe
the interaction between the flow and the acoustic field using integral formula-
tions. These formulations can be developed for simplified geometries only, such
as an infinitely thin labium, for instance, and leads to awkward mathematical
developments when solving the problem. Solving is only possible under restrictive
assumptions, such as infinitely thin shear layers, linear approximation of pertur-
bations (the saturation of the oscillation is not part of the solution), or in some
cases point vortices. Despite these difficulties, analytical models, together with

3The fluid can be considered as incompressible whenever its density � can be approximated to be
constant. This means that the density variations induced by pressure variations can be neglected.
The equation � D �0 D constant is an equation of state of the fluid, indicating that pressure
changes are related to the acceleration of the fluid (Bernoulli) or to viscous forces, but not to
density changes. As a consequence, one can write div.v/ D 0. Of course, acoustic waves cannot be
written under such an assumption. This assumption can therefore only apply within a region small
compared to the acoustic wavelength, and only for flow velocities Uj that remain small compared
to the velocity c of sound propagation (M D Uj=c � 1).
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numerical simulation, are probably an interesting source of inspiration whenever
lumped models with localized interactions fail to predict the flute’s behavior. This
is the reason why we will present these approaches in the following section.

10.3 A Modeling for the Jet Oscillation

The jet oscillation is described within the framework of fluid mechanics. The basic
description of the flow dynamics is the same as the one used in the context of
acoustics, but fluid dynamics generally focuses on different approximations. We
will first discuss the jet formation at the outlet of the flue channel (in the case of
a recorder) or of the lip channel (in the case of transverse flute, for example). The
unstable behavior of this jet will then be addressed. The sound production associated
with the interaction of the jet with the labium will be described in Sect. 10.4.

10.3.1 Jet Formation

The instrument player produces an overpressure in his mouth. As a result the air
accelerates towards the low pressure area in the channel or between the player’s
lips. To a first approximation, our description will assume that the pressures and
therefore the jet flow are constant, which correspond to stationary conditions.

10.3.1.1 The Flow in the Channel

In a frictionless approximation (inviscid flow), the circulation of the velocity round a
loop is conserved (Kelvin circulation theorem). Since the circulation round a loop is
related to the vorticity field, if the vorticity is zero at an initial instant, it remains zero
for all subsequent times. The flow is then described as irrotational and the velocity
is conservative: it is the gradient of a scalar potential v D grad'. Starting from
Euler’s equation without external forces (1.101), one can write under incompressible
assumption (mass density �0 is constant, divv D 0):

�0
dv
dt

D �grad p: (10.4)

If we now assume a stationary flow, the time derivatives are zero. The pressure
forces push the fluid into the channel in the x direction, and the velocity vx in this
direction is the only component of the flow. The previous equation then writes

�0vx
@vx

@x
D �@p

@x
: (10.5)
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Fig. 10.10 Frictionless flow
at the outlet of a pressure
reservoir: application of
Bernoulli’s equation

p1

v2v1

p2

Patm

The left-hand side of this equation can be written as: 1
2
�0@v

2
x=@x. Integrating the

equation along a path from inside the pressure reservoir to a point outside in the jet
yields a simplified Bernoulli equation (1.104):

1

2
�0.v

2
x2 � v2x1/ D p1 � p2: (10.6)

If the reservoir that accounts for the player’s mouth is large enough, the
integration can be carried out from a point inside the reservoir where the velocity
is negligible to a point outside in the jet, where the pressure is equal to the ambient
atmospheric pressure p2 D Patm (Fig. 10.10). Assuming a potential flow allows
this result to be independent from the path between the two considered points.
A fluid particle is accelerated from the mouth (pressure higher than the atmospheric
pressure, stagnant fluid, potential energy) by the pressure gradient into the flow
channel down to the channel exit (atmospheric pressure and kinetic energy). The jet
velocity Uj at the flue channel exit is

Uj D
s
2�p

�0
: (10.7)

where�p stands for the mouth pressure relative to the atmospheric pressure:�p D
p1 � Patm.

However, this description does involve friction because of the flow separation
at the channel exit. Indeed, in a strictly frictionless potential flow description,
streamlines follow the walls and this would induce an infinite transverse acceleration
of fluid particles at the edges of the channel exit! In an actual flow, the viscosity
becomes important at this point, even if it is very small. Viscosity is responsible for
flow separation and jet formation.

• A viscous flow approach allows describing the development of boundary layers
at the channel walls. Because of viscosity, the tangential velocity is zero at the
walls, and increases within a thin layer up to its nominal frictionless flow value.
This transition layer is called a “boundary layer.” The thickness ı of this layer
grows as the flow travels downstream in the channel. The flow in the axial x
direction therefore shows a transverse velocity profile vx.y/ D U.y/ that changes
as fluid flows downstream. Friction forces due to viscosity depend on the slope
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of the velocity profile �.@U=@y/; where � is the coefficient of viscosity of the
fluid. The net force on a layer of thickness dy results from viscous stresses on
both sides: �.@U=@y/yCdy on one side and ��.@U=@y/y on the other side.

In total, the net viscous force (per unit surface dxdz of the layer of thickness
dy) is �@2U=@y2. The momentum conservation (10.4) should take this force into
consideration. Extending the viscous force in the three directions (when necessary!),
leads to the Navier–Stokes equation for incompressible flows:

�0
dv
dt

D �grad p C �r2v: (10.8)

In the case of a stationary flow, this equation writes

�0.v:grad/.v/ D �grad p C �r2v: (10.9)

Solving this equation in a channel is generally associated to the name of Prandtl.
This is a nonlinear 2D problem. Rather than the mathematical development (see
[3, 42] for reference), we now focus on its physical interpretation.

In the boundary layer along the channel walls, viscosity induces transverse
transfer of momentum on a thickness that grows with time as ı / p

�t, and therefore
also grows with distance x from the channel inlet. For a flow of velocity U, the
boundary layer thickness can be approximated as:

ı.x/ �
r
�x

U
: (10.10)

If the channel is long enough, the two boundary layers from each side of the
channel will join, resulting in the formation of a parabolic velocity profile. For a long
channel of uniform thickness h, the corresponding parabolic flow velocity profile is
known as the Poiseuille velocity profile4

U.y/ D 1

2�

dp

dx
.y2 � h2/: (10.11)

4Acoustic boundary layers discussed in Chap. 5, Sect. 5.4.2.1, are different from those studied
here. In the description of the acoustic boundary layers, the linear mass acceleration �0@v=@t
takes the place of the convection term (left-hand side) in Eq. (10.9). The change between the two
complementary situations is governed by the channel thickness, flow velocity, and the frequency
of the acoustic phenomenon: in a cylindrical pipe, the Stokes number indicates the ratio of
the pipe radius to the acoustic boundary layer thickness. The Stokes number can be seen as
the combination of the Reynolds number (dimensionless flow velocity) and Strouhal number
(dimensionless frequency). For a quasi-steady flow (low Strouhal) and low flow velocity (low
Reynolds), the Stokes number is small and the Poiseuille velocity profile is reached, corresponding
to thin pipes, also called capillaries. For high frequencies and/or wider pipes, the linear term
becomes dominant and the viscous acoustic boundary layer is observed, with constant thickness as
the wave travels downstream. Intermediate situations show a boundary layer that grows in space,
whenever the convective term controls the development of the boundary layer.
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The pressure decreases linearly with the distance x along the channel. Integrating
the previous equation allows calculating the pressure gradient, as a function of the
flow velocity U0 at the channel inlet (constant velocity profile, with infinitely thin
boundary layers):

dp

dx
D �3�U0

1

h2
: (10.12)

Mass conservation between the channel inlet (uniform velocity profile) and the
channel outlet yields the central velocity U.y D 0/ of the Poiseuille profile:

U.0/ D 1:5U0: (10.13)

Before the channel exit, the flow velocity profile is determined by the time during
which viscosity has smoothed the profile: for a short channel, and/or high velocity,
the boundary layers are thin and the flow shows a central core with a flat velocity
profile. On the opposite, a long channel, and/or a slow velocity, allows for the
development of a Poiseuille-like velocity profile. In most actual applications to flute
channels, the estimation of the central velocity using Bernoulli’s equation (10.7)
seems to be reasonable [43]. Not only the channel is relatively short, but also in the
case of recorders, it is usually convergent. The decrease in channel thickness will
delay the boundary layer development.

10.3.1.2 The Jet Flowing Out of the Channel

Because of viscosity, the flow separates from the walls at the channel exit in order
to form a free jet.

If the end of the channel shows sharp edges, the flow separation is triggered at the
edges. Indeed, a fluid particle that would stick to the walls would experience a strong
localized acceleration in time and space. Even if it is low, viscosity will counteract
this acceleration. This is related to the fact that edges represent singularities in a
potential flow.

If the end of the channel is rounded, the flow separation point is more difficult
to predict. Before the separation, the flow spreads into a divergent channel. Mass
conservation indicates that the velocity in the x direction slows down as the channel
gets wider. According to Bernoulli’s description, this results in a rising pressure in
the flow, corresponding to a change of sign of the pressure gradient in the x direction:
while the pressure is decreasing in the straight part of the channel due to friction,
it increases in the divergent part. The pressure in the boundary layer is equal to
the pressure in the core of the flow, hence the fluid particles in the boundary layer
are submitted to two opposite influences: acceleration due to viscous momentum
transfer from the core of the flow to the boundary layer and deceleration due to
the inverse pressure gradient. At some point in the diverging channel the balance
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Fig. 10.11 The flow at the channel inlet has a top-hat velocity profile. As the fluid flows
downstream, boundary layers get thicker because of viscosity. If the channel outlet is rounded, the
flow slows down, resulting in an increase of pressure. The change of sign of the pressure gradient
in the diverging part at the channel exit is responsible for flow separation. Because of viscosity, the
free jet formed drags the surrounding fluid (rounded arrows)

between these two terms changes of sign and triggers the separation of the fluid
particle at the wall, generating a stagnant fluid and/or fluid recirculation (Fig. 10.11).

In both cases (sharp or rounded edges), flow separation results in a jet that carries
the memory of the channel geometry, and of upstream hydrodynamic conditions.
Like a piano hammer escaping from the launching mechanism and projected against
the string, the jet escapes from the control of the player. Jet characteristics such as
its velocity, shape, and profile influence its behavior, like the instability that is at
work in the heart of the sound production in flutes.

10.3.2 Jet Instability

An air jet flowing in air is intrinsically unstable, in the sense that any small
perturbation is amplified by the jet: the example of cigarette smoke has already
been discussed to illustrate this topic (see Sect. 10.1.1.1). The aim of the following
section is to describe more quantitatively this instability.



576 B. Fabre

10.3.2.1 Assumptions and Basic Phenomena

Assumptions

The first assumption used here is that of an inviscid fluid: as seen below, the
instability of a shear flow is not driven by viscosity.5 The second assumption is that
compressibility can be ignored. This incompressibility assumption can be justified
in the following cases:

• as long as the jet velocity U is kept small compared to the sound speed c,
• as long as the dimensions of the jet and sound production region are small

compared to the acoustic wavelength.

Incompressibility implies a divergent free flow field divv D 0. We will also
assume for the sake of simplicity that the flow is two dimensional (vz D 0).
Incompressibility then writes divv D @vx=@x C @vy=@y D 0. The velocity can then
be written in terms of a stream function  :

vx D @ 

@y
; vy D �@ 

@x
: (10.14)

Decomposition of the Velocity Field

From a general point of view, any vector field can be split into two complementary
parts: a scalar potential ' part and a vector potential A part :

v D grad' C curl A: (10.15)

Of course, the acoustic field is part of the first contribution grad' because it
involves compressibility (r:v D r2'). The second contribution takes into account
the rotational part of the flow:

! D curl v D curl.curl A/:

The following description is based on the evolution of the vorticity !. This evolution
can be studied by calculating the curl of the equation of motion (10.4):

curl
�
�

dv
dt

�
D �curl grad p; therefore

d!

dt
D 0: (10.16)

This shows that in a frictionless flow, vorticity is conserved by the fluid particles:
vorticity is convected at the local fluid velocity. In a two dimensional flow, a point

5Even if viscosity may be responsible for the formation of the sheared flow.
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vortex of circulation� (� D H
C v:d` on any contour C around the vortex) induces a

tangential velocity field with amplitude decreasing away from the vortex. Symmetry
of the flow around a point vortex allows calculating this tangential velocity v	
induced by the vortex at a distance r from the vortex core:

v	 D �

2�r
: (10.17)

This corresponds to the Biot–Savart induction law. The instability of a shear layer
can most efficiently be described starting from the flow induced by vorticity.

Kelvin–Helmholtz Instability Mechanism

Let us start the physical analysis of the jet instability with a simple case: the flow at
the planar interface between two areas of the fluid with different velocities. This is
known as the Kelvin–Helmholtz instability [16, 42]. This flow can be described by
the relative velocity U between the two areas (see Fig. 10.12):

• vx D U=2 if y > 0
• vx D �U=2 if y < 0
• vy D 0:

U/2

U/2

x

y

AAA

B BB C C C

C C C

v

v

a

b

c

Fig. 10.12 The instability mechanism of a perturbed shear layer: (a) a perturbation of the interface
induces local convection that concentrates (b) the vorticity at points C. This concentration amplifies
the initial perturbation, leading to the formation of rolled structures (c)
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The curl of the velocity field, !, is zero everywhere except for y D 0: the
interface is a line of vorticity. The three components of the curl are:

• !x D 0

• !y D 0

• !z D @vy=@x � @vx=@y D �@vx=@y:

As long as the interface remains unperturbed, the velocity field induced by the
vorticity vanishes everywhere. Indeed, the transverse contributions to the velocity
field at one given point of the interface due to the left side are fully compensated by
the contributions on the right side. If we now assume the interface to be perturbed
by a sinusoidal transverse motion, contributions from left and right sides to the local
motion are no longer symmetrical. Figure 10.12 shows how this asymmetry induces
a convection of vorticity of the upper parts (A) of the perturbed interface towards the
right, while the lower parts (B) are convected towards the left. As a result, vorticity
concentrates at the zero decreasing positions (C) of the interface.

This vorticity accumulation induces asymmetrical velocities, that contribute to
the amplification of the initial perturbation, up to the point where waves break
(Fig. 10.13).

10.3.2.2 Instability of an Infinite Jet

Rayleigh’s Theory of an Infinite Jet

A jet can be described as two shear layers interacting with each other. The instability
of an infinite jet has first been analyzed by Rayleigh [36]. The unperturbed jet in the
x direction is given by:

Fig. 10.13 Wavy clouds in Wyoming, USA are induced by different wind velocities in neighbor-
ing layers (photo B.E. Martner, NOAA Environmental Technology Laboratory, Boulder)
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• vx D U.y/
• vy D 0:

where U.y/ is the velocity profile of the jet. It satisfies the boundary conditions
U.1/ D U.�1/ D 0 and we will further assume that the velocity profile has a
single maximum. The curl of the velocity is

• !x D 0

• !y D 0

• !z D �@U.y/=@y D ˝z:

The perturbed flow then writes

• vx D U C v0
x

• vy D v0
y

• !z D ˝z C !0
z.

The vorticity conservation d!=dt D 0 is

@.˝z C !0
z/

@t
C .U C v0

x/
@.˝z C !0

z/

@x
C v0

y

@.˝z C !0
z/

@y
D 0: (10.18)

Because ˝ is the steady unperturbed vorticity, it does not change in time nor in
space and @˝z=@t D 0 and @˝z=@x D 0. For small enough perturbations, a linear
approximation can be used. Products of perturbation terms are then neglected, and
the previous equation becomes

�
@

@t
C U

@

@x

�
!0

z C v0
y

@˝z

@y
D 0 (10.19)

where the last term shows the dependence of the jet on the second derivative of the
velocity profile @2U.y/=@y2. We now look for harmonic and propagative solutions6

exp.j!t/ exp.�j˛x/. Using !0
z D @v0

y=@x � @v0
x=@y, and the incompressibility

condition @v0
x=@xC@v0

y=@y D 0 the previous equation turns into Rayleigh’s equation:

�
U.y/� !

˛

� @2v0
y

@y2
� ˛2v0

y

!
� v0

y

@2U.y/

@y2
D 0: (10.20)

The transverse component of the perturbation v0
y is obtained by solving this

equation. One needs the help of the stream function  0 of the perturbation to
calculate the longitudinal component of the perturbation. The stream function
has the same harmonic propagative form  0.x; y; t/ D 
 0.y/ exp.j!t/ exp.�j˛x/.

6Notice that ! is the time periodicity (angular frequency) of the perturbation, while ! D .0; 0; !z/

is the curl of the velocity.
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All perturbation terms can be calculated from the stream function function ampli-
tude 
 0, solution of:

�
U.y/� !

˛

��@2
 0

@y2
� ˛2
 0

�
� 
 0 @2U.y/

@y2
D 0: (10.21)

Spatial Versus Temporal Analysis

When the jet velocity profile U.y/ is known, a dispersion relation is obtained, linking
the time and space periodicity! and ˛ of the solution, by assuming boundary values

 0.y/ ! 0 far from the jet (y ! ˙1). Depending on the problem studied, two
resolutions can be carried out:

• the space dependence (˛ D ˛r C j˛i) of the perturbation with fixed time
periodicity (! real). Such a perturbation grows with distance as exp.˛ix/ with
a phase velocity associated to the convection of the perturbation cp D !=˛r. A
hydrodynamic wavelength�h D 2�cp=! D 2�=˛r results from this propagation.
This is a spatial analysis.

• the time dependence (! then being complex) that results from a perturbation with
specific real wavenumber ˛r , corresponding to imposed geometry conditions.
The perturbation then grows or vanishes in time, according to the sign of ˛i. This
is a temporal analysis.

The oscillating frequency in flutes is strongly dependent on the acoustic reso-
nances of the pipe. Therefore, a spatial analysis is generally preferred.

Sinuous and Varicose Modes

If the jet velocity profile is symmetrical about y D 0, perturbations on both shear
layers of the jet can be symmetrical or anti-symmetrical, depending on the symmetry
properties of the initial perturbation of the jet. Symmetrical perturbations induce the
so-called varicose oscillations of the jet, associated with a modulation of the jet
thickness (see Fig. 10.14). Anti-symmetrical perturbations correspond to “sinuous”
oscillations of the jet. Solving Rayleigh’s equation (10.21) indicates that sinuous
oscillations have a stronger amplification than varicose oscillations.

Furthermore, jet visualizations in various flute configurations indicate that the
sinuous motion dominates under standard blowing conditions. In some cases,
varicose contribution can be observed, which has an influence on the spectral
content of the sound.



10 Flute-Like Instruments 581

Fig. 10.14 Flow visualization of a jet submitted to an acoustic perturbation: following the initial
jet perturbation, sinuous motion can be dominant (left) or varicose can be dominant (right)
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Fig. 10.15 Spatial amplification on a shear layer for different velocity profiles. (a), (b), and
(c): simple shear layers, after Blake [6]. The amplification corresponds to anti-symmetrical jet
oscillations [sinuous: (c,A)] or symmetrical [varicose: (c,S)]. Note that sinuous oscillations are
better amplified than varicose oscillations

Solutions of the Rayleigh Equation

Depending on the jet velocity profile U.y/, Eq. (10.21) can be solved either
analytically or numerically. In the case of a spatial analysis, Fig. 10.15 shows
the frequency dependence of the spatial growth of perturbations on the jet. The
dimensionless amplification coefficient ˛iı uses the shear layer thickness ı as the
spatial scale of the problem. The dimensionless frequency is the Strouhal number
Strı D !ı=Umax, where Umax is the maximal value in the jet velocity profile.

It can be checked that, in the case of an infinitely thin shear layer such as the
one discussed above (Kelvin–Helmholtz), the amplification increases monotonously
with frequency, as already mentioned by Rayleigh. Such a thin shear layer is purely
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theoretical since viscosity, even if it is very low, spreads the shear layer. All other
velocity profiles with finite shear layer thickness show a maximum of amplification
and then fall down below zero for Strouhal number of the order of unity. As a matter
of fact, the jet does not amplify the perturbation anymore when the hydrodynamic
wavelength �h D 2�cp=! gets smaller than the shear layer thickness ı.

10.3.2.3 Receptivity and Jet Oscillation in a Flute

The Jet Motion

Rayleigh’s theory, presented above, is based on an infinite parallel jet flow assump-
tion. In flutes, the jet is formed at the flue exit and flows through a window where
strong transverse acoustic flows can be experienced, due to the accumulation of
acoustical energy in the pipe resonator. A first step in this direction is to consider a
semi-infinite jet, with negligible transverse displacement at the flue exit.

The transverse displacement �.x; t/ of the jet in the y direction can be calculated
by integration of the transverse velocity from the flue exit to the actual position x.
This transverse velocity is made of two components: the perturbation term v0

y
exponentially growing with the distance from the flue exit, and the air displacement
due to the acoustic velocity vac:

�.x; t/ D
Z t

t�x=U0

�
v0

y.x
0; t0/C vac.x

0; t0/
�

dt0, (10.22)

if x0 D x � .t � t0/U0.
For long enough distances from the flue exit, one can ignore the contribution of

the acoustical displacement. The transverse jet displacement then writes7

�.x; t/ � �
Z t

t�x=U0

@ 0.x0; t0/
@x

dt0: (10.23)

This implies a growth of the amplitude of the jet displacement � with exp.�˛x/

Receptivity: The Jet Initial Perturbation

The sinuous jet motion comes from the anti-symmetrical perturbation by the acous-
tic field. The way the acoustic field produces the initial jet perturbation is called the
receptivity. To a first approximation, we will assume that the initial perturbation is
localized at the flue exit. In an incompressible inviscid flow approximation, this can

7Indeed v0

y D �@ 0.x0; t0/=@x, which may be the reason why some authors make a confusion
between the jet transverse displacement � and the stream function  0 of the perturbation.
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U

Fig. 10.16 The initial jet perturbation by the acoustic field is localized at the flow separation points
where the jet is formed

be justified by the vorticity conservation in the flow. The jet perturbation can be
represented as a modulation of the vorticity in the flow. Because of the vorticity
conservation, such a vorticity modulation can only be injected at the separation
points of the flow, due to local viscous effects. The amplification that occurs
downstream is only a consequence of the jet instability, in terms of redistribution
of the initial vorticity (Fig. 10.16).

Details of the geometry and of the flow in the vicinity of the flow separation
points can strongly affect the receptivity [7]: boundary layer thickness in the channel
just upstream from the flue exit and the geometry of the channel exit are of great
influence. This is in line with the observation of recorder makers who give great
care to the cutting of chamfers at the end the channel, as well as with the transverse
flute players’ claim that small irregularities on the player’s lips strongly affect the
tone quality.

Receptivity: An Empirical Model

A simplified description of the jet oscillation is generally considered for the global
analysis of the oscillation in flutes. The description integrates some of the results
of the analysis presented and, in particular, the exponential spatial growth ˛i of
the perturbation together with the convection of the perturbation. In the case of a
harmonic perturbation, the transverse jet displacement � at a distance x from the
flue exit is written as:

�.x; t/ � �0e
˛ixej!.t�x=cp/: (10.24)
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Even if this description cannot fulfill the initial condition �.0; t/ D 0, it offers
a fairly good approximation of the jet displacement for distances from the flue
exit larger than the channel thickness (x � h), provided that the initial value �0
is correctly chosen. The perturbation being triggered by the acoustic velocity, the
initial jet displacement is expected to be proportional to Vac=Uj and h:

�0 � Vach

Uj
: (10.25)

Experimental data [14] indicate that the receptivity of the jet can be interpreted in
terms of the relative thickness of shear layers in the jet ıj D L=

p
Re, where L is the

flue channel length, and acoustic boundary layers ıac D p
2�=! as follows:

�0 D Vachıj

Ujıac
: (10.26)

This approach allows the dependence of the receptivity on both the frequency and
jet velocity to be introduced. More recent studies by Blanc [7] indicate that the effect
of chamfers found in recorders can be split into two complementary contributions: a
protection effect reducing the effective Vac=Uj due to the standing back of the flow
separation points and an orientation of the perturbative acoustic velocity, locally
following the wall geometry.

The Upper Limit of the Linear Analysis: Jet Roll Up and Vortex Formation

Rayleigh’s description of the evolution of a perturbation on the jet uses a lin-
earization of the equations [see Eq. (10.19)]. From a physical point of view, the
accumulation of the shear layers’ vorticity at the inflexion points in the shear layer
is responsible for the growth of the perturbation. For transverse jet displacement of
the same order of magnitude as the jet thickness, the jet appears to roll up and break
down into discrete vortices.

The flow can then be described as an alternate vortex street, as described by Von
Kármán. In order to be stable, the vortex street needs to follow the correct relation
between the hydrodynamic wavelength �h, the street width b, the circulation � of
vortices, and the convection velocity cVx of the street:

cVx D � �

�h
tanh

�
�b

�h

�
: (10.27)

Experiments show that the amplitude of the transverse jet displacement for which
the linear behavior (exponential growth) turns into a vortex street is close to the jet
thickness. However, this amplitude does not depend on the distance between the
flue exit and the transition point, while this distance depends on the perturbation
amplitude (see Fig. 10.17).
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Fig. 10.17 Visualization of a
jet submitted to a transverse
acoustic field. From bottom to
top, the excitation amplitude
Vac grows from 0.5 to 6.5 %
of the jet velocity Uj. The jet
transverse displacement
grows linearly, up to the point
where the jet breaks down
into a row of alternate
vortices, forming a vortex
street. The formation of the
vortex street occurs closer to
the flue exit when the
excitation amplitude is
increased. From [14]

10.3.3 Turbulent Jet

As the jet velocity increases, its structure becomes chaotic. For values higher than
a threshold, the jet is disorganized and spreads rapidly with distance. This chaotic
behavior is called turbulence. This threshold depends on the geometry of the jet
as well as on the fluid viscosity. It is expressed in terms of the Reynolds number
Re D Ujh=�, where h is the jet channel thickness, and � is the kinematic viscosity of
air. While turbulence always develops sooner or later on the jet (see Fig. 10.18), for
values of the Reynolds number smaller than 2000, the jet remains laminar for a short
distance. For values above 3000, the jet becomes turbulent immediately downstream
the flue exit. Estimations under playing conditions for different recorders indicate
that the Reynolds number varies between 700 and 2000.

In order to produce loud sounds with flutes, the instrument and the blowing
technique must allow to blow hard, that is to blow large air flows. Therefore, in most
of the flutes intended for outdoor playing, one finds high values of the Reynolds
number, sometimes higher than 104. The jet then becomes rapidly turbulent and the
above description of the jet instability becomes inaccurate.

Several aspects are to be considered in this case:

• a strong decrease of the jet velocity with distance,
• a strong spreading of the jet,
• kinetic energy dissipation.
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Fig. 10.18 Jet perturbed by
an acoustic field. The
Reynolds number in the jet
increases from 200 (top) to
500 (middle) up to 3000
(bottom). The jet remains
laminar all along the
observation window for
Re D 200. On the opposite,
turbulence develops rapidly
downstream of the flue exit
for Re D 3000

A consequence of the turbulent structure of the jet is a wideband noise produc-
tion. This is well known in the case of traditional instruments for outdoor music, for
which a loud sound is required. The associated strong wideband noise is a part of the
sounding aesthetics of these instruments. In the case of the modern Boehm flute, the
quest for a “pure” tone in the sounding aesthetics of the instrument at the beginning
of the twentieth century, until 1935, is challenging for the player since he has to
handle a tricky compromise between sound power and tone purity (Fig. 10.19).

10.4 Aeroacoustic Sound Sources

The interaction of the oscillating jet with the labium produces the acoustic energy
that sustains the oscillation in the resonator. The largest jet oscillation takes place
at a position where the resonator shows a strong reaction: the labium is an edge at
an open pipe end, where the acoustic velocity is maximum. Furthermore, a sharp
labium induces a local singularity in the acoustic field. The same jet oscillation in
free field or at less reactive position in the resonator would not produce as much
sound.

Helmholtz was the first to describe the sound production by the end of the
nineteenth century. In the first edition of his book [48], the jet oscillation is described
as injecting fluid in the pipe at each period of the oscillation. Rayleigh argued to
Helmholtz that the labium is at an open end of the pipe, where acoustic pressure
fluctuations pa are small. The mechanical work associated to volume flow injection
Q is therefore weak:

W D
Z

T
paQdt: (10.28)
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Fig. 10.19 Mouth pressure in modern Boehm flute playing as function of the pitch, for three
different dynamics: plus symbol, p; filled circle, mf ; open circle, ff. Estimated values of the
Reynolds number are added on the plot

Conversely, the acoustic velocity is maximum at the open pipe end, therefore
Rayleigh suggests that the acoustic source is a force Fa acting on the acoustic
field. Such a source is more efficient since the work is then proportional to the local
acoustic velocity va:

W D
Z

T
Favadt: (10.29)

However, Rayleigh does not give any clue on the physical origin of this force.
Several mechanisms may contribute to this force, such as the jet oscillation and
the turbulence. Estimations of the acoustical power produced shows an order of
magnitude of 10 mW [20].

10.4.1 The Jet-Drive Model

This model is based on Helmholtz’s description: indeed, he modified his text in
the second edition, taking Rayleigh’s arguments into consideration! Developing
Helmholtz’s idea, the model takes the two flow injections on both sides of the
labium into account. The two sources Qin and Qout, placed a small distance ıd from
each other, have fluctuating parts Q1 and Q2 with opposite phases (Q1 D �Q2).
Therefore, they generate a pressure difference (see Fig. 10.20).
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Fig. 10.20 The jet oscillation can be described as two flow injections on both sides of the labium.
The fluctuating parts of the two volume flows show opposite phases Q1 D �Q2, at a short distance
ıd . In a low frequency approximation, the two sources are separated by a short distance in a small
pipe. It can be represented by an equivalent pressure difference given in Eq. (10.30)

The model is developed in a low frequency approximation. Plane waves prop-
agate in the resonator, which is therefore represented as a 1D transmission line.
Assuming that the source dimensions are small compared to the acoustic wave-
length, the resonator is described as a main pipe and a short thinner pipe since the
open end in the mouthpiece always has a smaller cross-section area than the pipe. In
this 1D representation, the two sources with opposite phases Q1 and Q2 are placed
in the thin short pipe, at a short distance ıd from each other (see Fig. 10.21). They
constitute a dipole confined in the small pipe of cross section Sm, and produce an
alternate motion of the air mass �ıdSm between the two sources.8 The acceleration
of this air mass generates the force acting on the acoustic field. This force can be
written in terms of a pressure difference acting across the mouth of the pipe:

�p D � �

Sm
ıd

d

dt
Q1; (10.30)

that the source maintains between both sides of the labium. Therefore, the source
can be seen as a localized pressure step across the mouth, even if both volume flow
injection points are at a small distance.9

8Please note that the initial model by Helmholtz took only the inner volume flow injection into
account, leaving the outer volume flow injection Qout aside. However, even if the outer volume
flow injection appears to be outside the pipe from a geometrical point of view, it definitely is inside
the instrument from the acoustic point of view, since the limit between inner and outer field is not
clearly defined from the acoustic point of view, that is within the scale of the acoustic wavelength.
9In Chap. 1, sources in a pipe have been discussed, using Eqs. (1.134) and (1.135). The source term
in (1.134) can be written as:

� �

Sm

d

dt
ŒQ1ı.x � x1/C Q2ı.x � x2/� D � �

Sm

d

dt
Q1ıd

d

dx
ı.x � x1/:

The second expression uses the Taylor development at x1, since x2 D x1 � ıd and Q1 D �Q2:

Equation (1.135) gives the equivalent force:

f D �� d

dt
Q1ıd:

this force balances the pressure difference f D Sm.p1 � p2/ D Sm�p, and corresponds to (10.30).



10 Flute-Like Instruments 589

W

Q2 Q1

Qm = Qp
x2 x1

Hx 

Fig. 10.21 Simplified model of a flute. Injection of two volume flows sources is equivalent to a
pressure step, in a l ow frequency approximation. W and H are the flue exit to labium distance and
the pipe height: in a 2D geometry, they are proportional to the areas Sm and S of mouth and pipe,
respectively. The distance between the sources is x1 � x2 D ıd . The flow rates Qm and Qp through
mouth and in the pipe, (that are used in the simplified model in Sect. 10.5.4) are equal since the
pressure difference source does not affect the flow rates

The distance ıd corresponds to the distance between the injection points Q1

and Q2: it corresponds to the distance associated with the potential difference in
a potential theory. It can be calculated from the estimated injection positions, using
conformal mapping for idealized geometries [35] (see also Chap. 7, Sect. 7.6.3.2).

10.4.2 A Discrete Vortex Model

As discussed earlier in this chapter, the jet oscillation results from the perturbation
of the vorticity in the shear layers: the velocity field can be described as a potential
flow on top of which two films of vorticity are added, which are modulated at the
flue exit by the acoustic perturbation. The transverse motion of the jet results from
the progressive concentration of vorticity at specific points, and the jet can therefore
be described as a succession of line vortices shifted between the two shear layers. In
such as description, the sound production can be seen as the work performed on the
acoustic field by the Coriolis force associated with the convection of vortices. The
force per unit volume f generated by a vortex of vorticity ! and moving at the local
fluid velocity v is given by:

f D ��0.! ^ v/: (10.31)

The acoustic power produced per unit volume is the scalar product f:vac; where
vac is the acoustic velocity. In this approach, the velocity field v is split into two
contributions: the potential and the rotational components [see Eq. (10.15)]. The
acoustic velocity then corresponds to the fluctuating part of the potential component
of the field:

vac D grad' � hgrad'i: (10.32)
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Fig. 10.22 The sound production is represented as the work performed on the acoustic field by
the Coriolis force associated with the convection of vortices

where the brackets hxi indicate the time average of x. The acoustic power produced
becomes

Pvortex D 1

T

Z
T

Z
vol

��0.! ^ v/:vacdVdt; (10.33)

where vol is the volume where the source term .! ^ v/:vac is not vanishing
(Fig. 10.22).

Sound production is restricted to areas where the force is parallel to the acoustic
field, which of course corresponds to a condition for accelerating the acoustic
motion. This is why the sound production is dominated by the vortex line the closest
to the labium edge: indeed, the acoustic velocity is maximum around the labium
edge because of the singularity associated with a sharp edge in a potential flow.
Estimation of the sound power in the case of edge-tones [26] as well as in the case
of flutes [15] shows that the sound production can be reasonably estimated taking
only the vortex line closest to the edge into account. This explains why the sound
quality is very sensitive to the shape of the edge of the labium. Vortices carried
further downstream into the pipe have a velocity v parallel to the acoustic velocity
vac so that the source term .! ^ v/:vac vanishes.
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10.4.3 Aeroacoustic Formulation

The modeling of the acoustic source presented in the previous sections is based on
the assumption that the source mechanism is localized in the vicinity of the labium
edge. In a complementary approach, sound production can be described through
an integral description. Several frameworks can be found, called aeroacoustic
analogies: the one that is behind the description using discrete vortex lines presented
above is basically the description used by Howe [28]. The following section presents
the approach by Lighthill (see, for example, [12, 23, 25, 37]).

10.4.3.1 Lighthill’s Analogy

In the analogy of Lighthill, one assumes a spatially limited region of sound
production by the flow. The sound generated propagates to an observer located
outside the source region, in a stagnant uniform fluid of density �0 and sound
velocity c0. The flow at the observer’s position is assumed to be described by the
acoustic approximation.

Lighthill’s analogy is obtained by rewriting the basic equations of flow motion.
It is based on the time derivative of the mass conservation10:

@

@t

�
@�

@t
C @�vi

@xi

	
D 0; (10.34)

and on the divergence of the momentum conservation equation:

@

@xi

�
@�vi

@t
C @�vivj

@xj

	
D � @

@xi

�
@Pij

@xj

	
; (10.35)

where Pij is the stress tensor, due to pressure p and viscous stresses 
ij (Pij D
pıij � 
ij).11

The fluid density � is split into its mean value �0 at the observer’s position and
fluctuating component � D �0 C �0 with @2�=@t2 D @2�0=@t2. Subtracting the two
equations above and subtracting c20@

2�=@x2i on both sides of the equation yields

@2�0

@t2
� c20

@2�0

@x2i
D @2Tij

@xi@xj
; (10.36)

10 The following equations use the so-called Einstein summation convention: when an index
variable appears twice in a single term it implies summation of that term over all the values x; y; z

of this index. For example, @vi
@xi

means @vx
@x C @vy

@y C @vz

@z :

11
ij is defined as [3]:


ij D �

�
@vi

@xj
C @vj

@xi

	
� 2

3
� div v:ıij

As it is, (10.35) is the divergence of the Navier–Stokes equation.
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where Tij is the Lighthill tensor:

Tij D �vivj C .p0 � c20�
0/ıij � 
ij ' �vivj C .p0 � c20�

0/ıij; (10.37)

if p D p0 C p0. This last expression is obtained assuming that the forces induced
by the fluid viscosity are negligible compared to the convection forces: 
ij can
therefore be neglected. This assumption is based on an estimation of the Reynolds
number in flute jets, as a ratio between inertial and viscous forces in the flow. In
this approach, the equations above describing the basic fluid properties of mass and
momentum conservation are subtracted to produce a left-hand term of the equation
corresponding to an acoustic wave equation. All the other terms, pushed on the
right-hand side are acoustic sources.

This can also be written in terms of the pressure fluctuations p0; showing four
source terms:

1

c20

@2p0

@t2
��p0 D @2�vivj

@xi@xj
C @2

@t2

�
p0

c20
� �0

�
C
�
�
@qm

@t
� �

@Fi

@xi

	
: (10.38)

The first source term is a quadrupole, and corresponds to nonlinear convective
terms like vortices and turbulence. The second source term is a monopole and
corresponds to entropy fluctuations. The last two terms are not in Eq. (10.36) but
have already been discussed for stagnant fluid [see Eq. (1.111)]. They have been
added here. The third term is a monopole and corresponds to a mass injection �qm,
while the last term, dipolar, describes the effect of an external force field density �Fi

acting on the fluid.
An integral formulation of this analogy has been proposed by Curle [13], in order

to take the presence of walls with surface S into account, delimiting a volume V .
Sources will be discussed in Chap. 12, but the integral description presented here

already introduces this discussion. The acoustic pressure in a given geometry can
be written using the Green’s function that describes the acoustic response of the
system. This function G.x; tjy; 
/ corresponds to the acoustic pressure at time t and
position x observed for an impulsive source at time 
 and position y. The Green’s
function is solution of [see, for instance, (4.19)]:

@2G

@t2
� c20�G D ı.x � y/ı.t � 
/: (10.39)

Applying this formalism to Lighthill’s source terms yields

p0.x; t/ D
Z t

�1

Z
V

Tij
@2G

@yi@yj
dyd


C
Z t

�1

Z
S
�vi

@G

@

nidSd
 C

Z t

�1

Z
S

@G

@y
.p0ıij C �vivj/njdSd
;

(10.40)
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where V is the volume in which all sources are located, S is the surface bounding
volume V , with ni the outgoing normal. While the last equation is an exact solution
that helps to improve our understanding of the sound production mechanisms,
it can only be applied to the modeling at the expense of severe simplifications,
regarding both the acoustic response of the system (Green’s function) and the flow,
as illustrated in the following paragraphs.

10.4.3.2 Low Frequency Approximation

At frequencies lower than the pipe cutoff frequency, only plane waves propagate
(see Chap. 7) and the Green’s function of a 1D infinite pipe can be used

G.x1; tjy1; 
/ D c

2S
H.t� � 
/; (10.41)

where H.t/ is the Heaviside step function, the index “1” indicates the pipe direction
and t� D t � x1�y1

c is the retarded time, taking the sound propagation from
source to observer into account.12 Using the symmetry properties of the Green’s
function @G=@x1 D �@G=@y1, the derivatives of the Green’s function @G=@y1 D
1=2 sgn.x1 � y1/ı.t� � 
/ and @G=@t D �c=2ı.t� � 
/, and assuming further
that the volume is small compared to the acoustic wavelength � (compact source
assumption, @=@t << c=�), the pressure then writes [12]

p0
1.x1; t/ D � c

2S

Z
S
Œ�vi�t� nidS

� 1

2S
sgn.x1 � y1/

Z
S

p0.y1; t�/n1dS � 1

2S
sgn.x1 � y1/

Z
S

�
�v1vj

�
t� njdS:

(10.42)

The first term describes the mass flow going out of the source volume V , while
the second term describes the pressure forces acting on the surface bounding the
source volume, and the third term corresponds to nonlinear convective contributions
in the flow (turbulence and vortices).

In the application to sound production in flutes, if the total jet volume flow is
assumed to be constant (see Sect. 10.5.2 for a discussion on this topic), the first
term does not produce any sound. Furthermore, for values of the Reynolds number
less than a few hundreds, the sound produced by turbulence is negligible. The main
source terms then lie in the pressure term and in the vortices.

A similar analysis developed by Powell [34] in the case of edge-tones, i.e., a jet
flowing towards a labium without acoustic resonator, shows that the dominant term
is the unsteady force exerted by the flow on the labium. This force corresponds to

12It is in fact the first term of (4.20) and (4.21), since the infinite pipe does not show any reflection.
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the stagnation pressure of the jet and the amplitude of the oscillating force is (H is
the width of the jet in the transverse direction):

Fa D 1

2
�H

Z
U.y/2dy, (10.43)

which has been confirmed by experiments [40].
Finally, in the case of edge-tones, the source term can be written in terms of a

dipole, such as the one written in Sect. 10.4.1, provided that the potential distance
ıd between source and sink is a function of the jet velocity, or of the hydrodynamic
wavelength �h D 2�cp=! of the perturbations on the jet:

ıd � �h=2: (10.44)

Both approaches, the aeroacoustic and the more acoustically intuitive presented
in Sect. 10.4.1 are in line, provided that the source-sink distance in the jet-drive
model corresponds to half the hydrodynamic wavelength, and therefore depends on
the jet velocity and on the frequency.

10.4.3.3 Increasing the Jet Velocity

The analysis presented above is restricted to relatively low Reynolds numbers
and low frequencies. When the jet velocity is increased, sound production by
turbulence becomes more and more important. Verge [44] presented a study of
sound production by turbulence of a jet impinging on a labium in an infinite pipe,
assuming no synchronized jet oscillations. The two first terms in Eq. (10.42) vanish
and the pressure is written as:

p0.x1; t/ D � 1

2S
sgn.x1 � y1/

Z
S
�v1

2
t� dS; (10.45)

showing that the acoustic power ranges as the fourth power of the jet velocity or of
the Mach number M D U0=c:

Pac / M4: (10.46)

In a sound synthesis by physical modeling, adding to the source terms a
broadband noise that follows this power law improves the realism of the synthesis.
This shows how important the turbulence noise is for the perception of the sound
identity of flutes.
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10.4.3.4 Vortex Shedding at the Labium

In a theoretical analysis of the problem, Howe [28] proposes a model for the sound
production in flutes based on the vortex sound theory. The sound production is due to
the action of the Coriolis force on the acoustic field [see Eq. (10.33)]. In this model,
the sound is generated at each period by a vortex shed at the labium, triggered by the
flow induced by the acoustic resonance in the pipe. This vortex is then convected by
the jet (see Fig. 10.23). In this framework, the sound production in a flute has been
estimated, based on flow visualizations that show the exact phase of the triggering
of this vortex. It appears that, due to the phase relation between the different terms,
the sound production is negative [21]: the vortex does not produce sound as was
assumed by Howe [28] but rather absorbs acoustic energy. Furthermore, the analysis
of the different losses, under standard blowing conditions in a recorder, indicates
that the losses induced by the vortex shedding at the labium is one of the dominant
mechanism that limits the oscillation amplitude.

The vortex sound theory of Howe is also interesting for thick jet configurations.
The vorticity in the jet shear layers is represented as discrete vortices, triggered
by the acoustic perturbation. These vortices are convected at a constant velocity
of approximately half the main flow velocity, with a circulation that grows linearly
with time.13 Notice that the vortices considered here are not those shed at the labium
like in Howe’s model [28], but those formed at the flue exit, corresponding to the
jet shear layers. The model proposed by Meissner for a whistle is built with this
description. It seems to give an accurate prediction of the oscillating frequency

Fig. 10.23 Vortex shedding
at the labium, due to the
separation of the flow induced
by the acoustic field. Dashed
lines indicate streamlines of
the potential flow associated
with the acoustic velocity

13See, for example, the work by Meissner [32] in the case of a whistle and Dequand [15], inspired
by Nelson’s [24, 33] and Holger’s [27] descriptions. A difference between the two models is that
Dequand assumes that the circulation of each vortex grows during one oscillating period only,
while Meissner assumes that the circulation grows without saturation, but only takes the vortices
between the flue exit and the labium into account.
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Fig. 10.24 Dimensionless frequency f=fres of the oscillation in a Helmholtz resonator (fres is the
passive resonance frequency) as function of the dimensionless jet velocity (or inverse Strouhal
number) Str�1 D U=Wf , U is the jet velocity, W is the flue exit to labium distance. For low jet
velocities, the oscillation appears at frequency lower than the resonance frequency. It corresponds
to a constant Strouhal number, indicating that the frequency is proportional to the jet velocity.
After [32]

(Fig. 10.24) but not of the amplitude. This indicates that even if phase terms are
well described in the model, losses are still difficult to estimate.

The oscillating frequency in flutes and organ pipes on the first regime shows a
double slope behavior:

• for low jet velocities and oscillation at frequency lower than the pipe resonance,
the oscillation appears to be at constant Strouhal number, that is at frequency
proportional to the jet velocity.

• For higher jet velocities, the frequency grows much slower, due to the strong
phase rotation with frequency of the acoustic response of the pipe, as shown by
Auvray [2].

The frequency behavior at low jet velocities is responsible for the so-called
mouth-tones observed in some organ pipes [19], during attack transients, or for low
blowing conditions [8]. Notice that these mouth-tones are quite different from edge-
tones, since they rely on the pipe resonance: Auvray showed that they are accurately



10 Flute-Like Instruments 597

predicted using a model considering only the feedback of the pipe, while edge-tones
rely on a direct hydrodynamic feedback [27], because there is no pipe in the edge-
tone configuration.

10.5 A Lumped Model of the Oscillation in a Flute

A simplified description of the self-sustained oscillation in the flute has been
presented in Sect. 10.1.1. This description can now be improved by including the
aspects presented in the previous sections. In order to achieve this, we first need to
describe complementary aspects:

• nonlinear losses at the window;
• jet velocity fluctuations;
• direct hydrodynamic feedback of the sources on the jet.

These three points are developed in the following section to be later integrated in
lumped description of the self-sustained oscillator.

10.5.1 Nonlinear Losses at the Blowing Window

The blowing window is an open end of the pipe. The area of this window is smaller
than the main pipe cross section, resulting in an increased acoustic velocity as
compared to the other pipe end. Under standard blowing conditions, the acoustic
velocity in the blowing window is about one-tenth of the jet velocity. The labium
edge is generally sharp, at least sharper than the other edges in the instrument, and
a nonlinear behavior of the flow induced by the acoustic resonance is expected:
velocities are high enough to trigger flow separation at the edge of the labium, as a
consequence of viscosity. Several models can be used to describe the losses induced
by this flow separation [21]. We will focus on the most simple one, inspired from
[30] (see also Chap. 8, Sect. 8.4.5). If we first assume an inviscid 2D incompressible
flow, the flow can be described as a potential flow (see Fig. 10.25 left) and the fluid
acceleration in the window is associated with a pressure decrease. After the window,
the fluid slows down and the pressure rises to its initial value. Notice that, when
passing close to the labium edge, the fluid is submitted to strong accelerations: a
sharp edge induces a singularity in a potential flow.

If we no longer assume the flow to be inviscid, viscosity induces the flow
separation, resulting in a jet formation (see Fig. 10.25 right). The initial pressure
drop induced by the flow acceleration is no longer compensated: flow separation
can be modeled as a pressure difference between the two sides of the labium:

�psep D pp � pm D �1
2
�

�
vac

˛v

�2
sgn.vac/; (10.47)
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Fig. 10.25 Influence of viscosity on the flow induced by the acoustic resonance : without viscosity
(left), the flow is potential and strong acceleration appear near the tip of the labium. Viscosity
(right) is responsible for the flow separation and jet formation

where ˛v corresponds to the vena contracta14 with values ˛v � 0:6; vac is the
acoustic velocity in the window, oriented towards the inside, while pp and pm are the
pressures on both sides of the window. The pressure difference changes in sign with
the acoustic velocity in the window, and depends on the square of the oscillating
amplitude. It is therefore a dominant mechanism in the amplitude saturation of the
oscillation in steady oscillation [21]. This was first observed and described in terms
of a nonlinear “impedance” by Coltman [9]. It is the reason why the dimensionless
oscillating amplitude does not depend on the frequency [47] (see Fig. 10.26): indeed,
viscous, thermal, and radiation losses are frequency dependent and the oscillating
amplitude would be frequency dependent if they were dominant!

This mechanism is the same as the one discussed in Sect. 10.4.3 of the present
chapter, and also in Chap. 8 (Sect. 8.4.5).

10.5.2 Jet Velocities Fluctuations

All models presented above assume that the jet velocity is constant. The jet flow has
been shown to be induced by the pressure in the player’s mouth, accelerating the

14Inertia of the fluid particles induces flow separation in the direction given by the wall from which
the flow separates. This results in a jet with a smaller width than the actual size of the window,
smaller by a factor ˛v:



10 Flute-Like Instruments 599

4 6 8 10 12 14 16 18 20

100

10−1

10−2

1H 

0c0UjW 

1/StW

Fig. 10.26 The oscillating amplitude in a small organ pipe (square cross section (2 cm � 2 cm),
28 cm length and W D 4mm flue exit to labium distance) is here presented in a dimensionless
form for the four first oscillating regimes, corresponding to the four first pipe resonances: asterisk
symbol, 1st, plus symbol, 2nd, cross symbol, 3rd, open circle, 4th. The amplitude of the fundamental
is made dimensionless as the ratio of the acoustic velocity in the blowing window to the jet velocity,
plotted as function of the dimensionless jet velocity Uj=fW. After [47]

flow into the channel. But, until now, we did not take the pressure fluctuations at the
flue exit into account, due to the pipe resonance, added to the mean (atmospheric)
pressure. Indeed, the flue exit is close to the open end of the pipe, but acoustic
pressure at this position can still be around 60 % of the mode amplitude, depending
on the end correction [10].

For a flue channel of length L, the jet velocity Uj can be estimated using the
unsteady Bernoulli equation:

�lc
dUj

dt
C 1

2
�U2

j D pres � pexit; (10.48)

where pres is the reservoir pressure in the player’s mouth and pexit is the pressure at
the channel exit.

The average jet velocity can be approximated as hUji D p
2pres=� and the total

jet velocity is Uj D hUji C U0
j . Because of the jet velocity fluctuations, the reservoir

pressure can also fluctuate around its average value pres D hpresi C p0
res; and the

jet velocity fluctuations at the fundamental frequency ! of the oscillation can be
written as:

U0
j � p0

res � pexit

�.j!L C hUji/ : (10.49)
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For a short channel, jet velocity fluctuations are in opposite phase with the acous-
tic pressure at the flue exit: the instantaneous velocity increases when the pressure
decreases. The acoustic work performed is therefore negative, and the jet velocity
fluctuations act as losses. Air inertia in the channel becomes important when the
channel is longer, and �j!L becomes more important: jet velocity fluctuations are
reduced and the phase shift relative to the acoustic pressure increases. A simple
description can be used to describe the jet velocity fluctuations, by adding a volume
flow source term Q0

j D SlumU0
j at the end of the resonator. In a more developed

description, the jet velocity fluctuations can be integrated directly in the source
mechanism as proposed by Auvray [2] with interesting influence on the balance
between odd and even harmonics that affect the timbre.

Jet velocity fluctuations can be modulated by the player, adjusting mouth
resonances: the jet velocity fluctuations are responsible for acoustic pressure in the
mouth cavity, and the player has therefore control on the jet fluctuations. According
to players, this is an important element of the control of the tone quality.

Pressure signals recorded in the foot of a small organ pipe and in the pipe, close
to the labium, are presented in Fig. 10.27.
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Fig. 10.27 Pressure signal in the foot .Pf / and close to the labium Pb of a small organ pipe. Strong
pressure fluctuations appear in the foot, induced by the acoustic pressure in the pipe. Please note
that the mean pressure in the foot and the amplitude of the acoustic pressure in the pipe are of the
same order of magnitude. The pressure drop between foot and flue exit shows fluctuations that may
become larger than the mean pressure: the jet velocity fluctuates around its mean value. After [47]
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10.5.3 Direct Hydrodynamic Feedback

Aeroacoustic sources associated with the jet oscillation have been presented as two
volume flow injections with opposite phases. While this source sustains the acoustic
oscillation in the pipe, it also induces a local velocity field, that may contribute
to the jet perturbation. This is a hydrodynamic direct feedback, which controls
the oscillation in edge-tones. For self-sustained oscillation under normal playing
conditions in a flute, this hydrodynamic feedback is negligible during steady-
state oscillation, compared to the feedback from the resonator (about 4 % of the
perturbation coming from the resonator [45]).

10.5.4 The Minimal Oscillator

All the different elements can be lumped to build a simple model for self-sustained
oscillations in a flute, as presented in Fig. 10.4. Basic hypothesis for the model of
the excitation are

• a constant jet velocity Uj, as estimated following Bernoulli (10.7),
• an exponential growth of the jet transverse displacement, independent of fre-

quency,
• a convection velocity of perturbations on the jet, estimated as cp � 0:4Uj,
• a dipole source associated to the jet oscillation at the labium.

The model is then described by the following equations:

• the jet transverse displacement at the labium is written as:

�.W; t/ D h

Uj
vac.t � W=cp/e

˛iW ; (10.50)

where ˛i comes from the resolution of Rayleigh’s equation (10.21).
• the aeroacoustic source at the labium acts as a pressure step:

�pdip D ��ıd

Sm

dQ1

dt
; (10.51)

where Q1 is the part of the jet volume flow passing under the labium:

Q1 D H
Z 1

y0

U.y � �/dy, (10.52)
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where y0 is the transverse position of the labium, relative to the jet and channel
symmetry axis, and H is the jet width. For smooth velocity profiles induced by
viscous spreading of the jet, the volume flow Q1 is a smoothly nonlinear function,
as for instance U0H tanh.2y=h/. The main difference between flute models
and models for simple reed instruments is the delay induced by convection of
perturbations on the jet.

• losses induced by flow separation of the labium:

�psep D �1
2
�
� vac

0:6

�2
sgn.vac/: (10.53)

This nonlinear loss term is very important for the saturation of the oscillating
amplitude, but is not necessary during the starting transient of the oscillation.
Please note that this pressure difference, as the one in (10.51), is a pressure step
between the inside and the outside of the blowing window �p D pp � pm.

• the acoustic response of the pipe is build in the frequency domain, using a low
frequency 1D approximation (see Fig. 10.21). The source is introduced using
mass conservation in the blowing window Qm D Smvac D Qp and adding the
two pressure steps (dipolar source and losses). The acoustic response of the pipe
is then15:

Qm D �ptot

Zm C Zp
; (10.54)

where Zm and Zp are the acoustic impedances of the blowing window (to a
first approximation, this is a mass, equivalent to a length correction) and of the
resonator (input impedance).16

All the different elements are lumped as shown in Fig. 10.28. Time domain
simulation of the equations of the model has been proposed by several authors
(for instance, [14, 44]), allowing sound synthesis by physical modeling. The sound
quality and realism of the synthesis is greatly enhanced by adding a wideband noise
scaling with the jet velocity to the source terms, in order to model the turbulence.
Some other aspects presented in the previous sections can also be integrated in order
to provide a more complex model. This allows to take some important aspects for
instrument makers into account, such as the channel shape and the chamfers at the
flue exit.

15The same development is presented in Eq. (7.63) in Chap. 7, where the flow rate is written as U
instead of Q.
16Please remind that impedances are defined as passive systems, that is with positive real part
(see Sect. 1.3.3.1 in Chap. 1). We therefore have: Qm D �Zmpm and Qp D Zppp:
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Fig. 10.28 Simplified model for self-sustained oscillations in a flute-like instrument. The nonlin-
ear element that initiates the sound production is the saturation of the source at the labium, the
other nonlinear element modeling the flow separation at the labium is essential for saturating the
oscillation at a reasonable amplitude

10.6 Discussion About the Model

Different approaches to describe the elements of a model were presented in the
previous sections. Each approach has its own limitations and ranges of validity,
that would be interesting to point out, together with common ranges and transitions
between models. A summary is presented below with regard to the sources, the
instability and the receptivity.

• The sources can be described, to a first approximation, as a pressure step with an
amplitude depending on the exact position of the flow injection points, or rather
on the equivalent distance between them. Several clues indicate that this position
may vary with the hydrodynamic wavelength on the jet. This wavelength does not
vary much under standard blowing conditions of the instrument, and therefore, a
fixed position of the injection points is fair as a first approximation. This model is
restricted to low values of the Strouhal number, for which the jet does not break
down into discrete vortices, typically Str D Wf=Uj < 0:3 [15]. The amplitude
of the pressure source �p can be deduced from the transverse jet displacement
� at the labium. For displacement larger than the jet thickness, �p is a saturated
function of the displacement �. When the displacement � is smaller or similar to
the jet thickness, the integration of the jet velocity profile is necessary to calculate
the pressure source�p from the jet displacement �. It can be linearized for small
amplitudes.

For small amplitudes of the jet transverse displacement, in the case of a short
distance W from flue exit to labium, for example, the instability does not have
space to develop enough. In such a case, a better candidate is the model of
Dequand [15], following [29, 33], in which the aeroacoustic source is the Coriolis
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force due to the vortices that model the shear layer. This corresponds to “thick”
jets, with values of W=h smaller than 2 [15]. This kind of model can also apply
to thin jets (W=h > 5 typically) with high values of the Strouhal number, where
the jet breaks into discrete vortices [26].

Finally, for turbulent jets and low values of the Strouhal number (or thick
jets), the model by Howe [28] of sound production by vortices shed at the labium
should still be evaluated. Even for values of the Reynolds number smaller than
2500, turbulence can significantly affect the behavior of the instrument, at least
through the broadband noise generated. The first transverse acoustic resonance
of the pipe seems to be strongly coupled to turbulent sources. This affects the
sound quality of instruments with large bores like the bass flute of some organ
pipe stops.

• The instability of the jet can be studied, in the case of laminar jets, through three
different approaches: using a linear theory (Rayleigh), using discrete vortices
to describe each shear layer of the jet, or using an alternate vortex street
(Holger [26]).

The linear model, inspired by Rayleigh, is well adapted to thin jets, with
less than a half hydrodynamic wavelength between flue exit and labium. This
corresponds to low values of the Strouhal number. When this condition is not
fulfilled, a better candidate is Holger’s model, which turns the thin jet into an
alternate vortex street. In the case of very thick jets, the model of Dequand should
be used since it better describes the vorticity in each shear layer. It is interesting
to recall that Holger’s model assumes an initial linear growth of vorticity in the
shear layers before the jet breaks into a vortex street.

For turbulent jets, the work of Bechert [4] is an interesting direction. Turbu-
lence is not fully developed, and the study of the triggering of the turbulence,
including geometrical aspects of the reservoir, would be very interesting.

• Receptivity still remains a very difficult problem. Flute makers and players as
well as experiments [7, 40] on this subject indicate that the geometry of the flue
exit strongly influences the receptivity. The work by Blanc [7] suggests that the
chamfers in a recorder control both a protection effect due to the standing back of
the flow separation points and a relative orientation of the perturbative acoustic
velocity compared to the jet flow. This work should be continued in the future.

• In this chapter, the analysis focused on open pipe flutes. Closed pipe instruments
have special sounding qualities, mostly because of the spectral content of the
sound they produce, dominated by odd harmonics: closed organ pipes, Pan
flutes. . . From the physical point of view, some specificities should be included
in the model. First, these instruments are most often played with a turbulent jet.
Second, the closed end of the pipe induces a recirculation of the air flow. As a
consequence, the jet, submitted to a cross flow, bends towards the outside of the
pipe.
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