
Chapter 1
Continuous Models

Antoine Chaigne and Jean Kergomard

Abstract The aim of this introductory chapter is to summarize the main mechanical
models which describe the physics of musical instruments and of their constitutive
parts. These models derive from the general principles of the mechanics of con-
tinuous media (solids and fluids). In this framework, the phenomena are described
at a scale of the so-called particle, or element, whose dimensions are infinitesimal
in the sense of differential calculus. Particular emphasis is given to the bending of
structures and to the equations of acoustic waves in air, because of their relevance in
musical acoustics. One section is devoted to the excitation mechanisms of musical
instruments. Analogies between vibrations of solids (such as strings) and fluids (in
pipes) are underlined. Elementary considerations on the numerical formulation of
the models are also given. This chapter should be considered as a summary which
contains reference results to help in reading the rest of the book. It focuses on
the origin of the equations and on their underlying assumptions, living aside the
complete demonstrations.

1.1 Strings, Membranes, Bars, Plates, and Shells

1.1.1 Introduction

In this chapter, we present linear models. This means, in particular, that we
limit ourselves to the case of small displacements (geometric linearity) and to
materials whose constitutive stress–strain relations are linear (material linearity).
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4 A. Chaigne and J. Kergomard

Conversely, in Chap. 8, several examples of nonlinearity will be examined. For
the time being, the dissipative phenomena in solids are ignored. Chapter 5 will be
specifically devoted to damping.

We study here the class of elastic solids. If such a solid is deformed under the
effect of a given load, the deformation disappears as the load is gradually removed
until the solid returns to its initial state. For example, if we hit the bar of a vibraphone
with a soft mallet, and if we touch the bar after a few seconds in order to suppress
the sound, we find that the state of the bar is unchanged. However, if a xylophone
wooden bar is hit with a hard mallet, irreversible plastic deformations may appear
locally on the bar. A hard stroke might even break it!

In order to excite the structures used in musical acoustics, it is often necessary
to apply a prestress to some of them. This is, for example, the case of strings
and membranes subjected to a static tension field at rest. A piano (or a guitar)
soundboard is also subjected to a strong prestress due to the tension of the strings
attached to, or passing over, the bridge (see Fig. 1.1) [7, 40]. The prestress works
only if the structure departs from its equilibrium. It is sometimes called geometric
stiffness.

The dynamics of structures which are vibrating parts of musical instruments are
governed by both elasticity and geometric stiffness. If only elasticity is present, we
are in the extreme case of bars and plates. Geometric stiffness dominates in the
case of strings and membranes. In practice, a structure with zero elasticity can never
be found. Systems with geometric stiffness, such as ideal strings and membranes,
where the intrinsic elasticity is ignored, should be considered as theoretical limiting
cases (see Sect. 1.1.2).

The case of shells is more complex and will be considered separately. This book
is limited to the study of thin shallow shells. Such structures are found both in
percussion (cymbals, gongs, etc.) and string instruments (soundboard of bowed
string instruments, for example). The presence of curvature has several important

String

Board

Bridge

Fig. 1.1 (Left) A grand piano soundboard with its bridge (© Pleyel). (Right) Simplified diagram
of the prestress supported by a piano soundboard. The soundboard is initially curved. Under the
influence of string tension, the bridge presses on the soundboard. This transverse force is partially
converted into longitudinal stress in the soundboard
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effects: change of the radiation properties compared to flat plates (see Chap. 13),
increase of the maximum static load supported by the soundboard, easier starting
nonlinear behavior for large amplitude of vibration for shells with free edges such
as gongs (see Chap. 8).

A common feature between membranes, plates, and thin shells follows from
the fact that their models involve only two spatial dimensions. If the vibration
wavelength is large compared to the thickness, it is justified to integrate the stress
along this dimension and neglect the thickness strain. As a consequence, the “3D”
model is reduced to a “2D” one. In addition, to obtain string and bar equations, it is
assumed that these structures are slender, where one dimension (the length) is large
compared to the other two. This leads then to a “1D” model where the integration
of the stress is now made along the two dimensions of a cross-section.

1.1.2 Membranes and Strings

Preamble For a complete demonstration of the membrane equation, the reader can
consult the literature devoted to the mechanics of continuous media (see [51]). The
presentation is limited here to the heterogeneous membrane equation in orthonormal
Cartesian coordinates.

We consider an infinitesimal element of membrane with coordinate vector x and
density �.x/, for which the elastic stiffness is ignored. At equilibrium, the membrane
is located in the plane (ex; ey) and subjected to a tension field. This tension field is
described by a symmetrical tensor of order 2

� D
�
�11 �12

�12 �22

�
; (1.1)

where the �ij are the components of the tensor (see Fig. 1.2). From this tensor, we
can derive the tensional forces acting on a membrane elements:

(
on the surfaces with normal vector oriented along ex W �x D �11ex C �21ey;

on the surfaces with normal vector oriented along ey W �y D �12ex C �22ey;
(1.2)

A tension field is measured in force per unit length, and its unit is thus in N m�1.
Integrating this tension along the perimeter of a given surface gives the total external
force which is necessary to apply at the periphery to balance the internal tension
field.

The off-diagonal tension components have the symmetry property �12 D �21

to ensure equilibrium of the moments on the membrane element (reciprocity
principle). Each component �ij is a function of the coordinate vector x. It is assumed
that the membrane can move freely along ez so that its vertical displacement �.x; y; t/
at time t is governed by the equilibrium between the inertial forces and the restoring
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Fig. 1.2 Tension field
exerted on a membrane
element. ex, ey, and ez are the
unit vectors in Cartesian
coordinates

τ22 τ12 τ21

τ11

dx

dy

ey

ez ex

forces due to the tension field. Gravity is ignored. With the assumptions of small
displacements, the rotations �x and �y of the membrane element on both planes
.ex; ez/ and .ey; ez/ are given by:

8̂̂
<
ˆ̂:

�x � sin �x � tan �x � @�

@x
;

�y � sin �y � tan �y � @�

@y
:

(1.3)

Similarly, for any function G.x; y/ on the membrane, a first-order expansion
yields

8̂̂
<
ˆ̂:

G.x C dx; y/ D G.x; y/ C @G

@x
dx;

G.x; y C dy/ D G.x; y/ C @G

@y
dy :

(1.4)

Balancing the forces applied on each sides of the element, and projecting them on
the vertical axis ez, we obtain the equation of transverse motion of a heterogeneous
membrane:

�.x/h R� D @

@x

�
�11

@�

@x
C �12

@�

@y

�
C @

@y

�
�12

@�

@x
C �22

@�

@y

�
; (1.5)

where h is the thickness. Denoting:

grad� D @�

@x
ex C @�

@y
ey; (1.6)
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we can write this equation in a more compact form:

�.x/h R� D div
�
�:grad�

�
: (1.7)

If the membrane is also subjected to external pressure forces that cannot be
neglected, as for drums and timpani, then the projection of Newton’s second law
along the vertical axis ez leads to the equation with a “source” term:

�.x/h R� D div
�
�:grad�

�
C p.x; y; 0�; t/ � p.x; y; 0C; t/ : (1.8)

In Eq. (1.8), the source term corresponds to a pressure jump across the membrane.
For timpani, this pressure jump is equal to the difference between the sound pressure
in the cavity and the sound pressure in the external air, in the membrane plane z D 0.
More generally, the membrane may be subjected to a distribution of external forces
localized or distributed on its surface. This surface distribution of forces fs.x; y; t/
(with dimension of a pressure) is due, for example, to the action of a timpani mallet
or of a drum stick. In this case, the equation of motion becomes1

�.x/h R� D div
�
�:grad�

�
C p.x; y; 0�; t/ � p.x; y; 0C; t/ C fs.x; y; t/ : (1.9)

1.1.2.1 1D Approximation: Transverse Motion of Strings

The string length of musical instruments are large compared to the radius of the
cross-section, so that it is justified to neglect the deformation in both transverse
dimensions. Rewriting Eq. (1.5) through integration of inertial and tension forces
along ey yields the 1D approximation of the transverse motion equation (along ez)
for a heterogeneous string:

�.x/ R� D @

@x

�
T.x/

@�

@x

�
; (1.10)

where � D �sS is the linear density of the string and T the tension at rest (in N). S
is the cross-sectional area of the string.

If the string is subjected to external forces along its length (linear density
of forces fext.x; t/ in N m�1) the equation of motion, including the source term,
becomes

�.x/ R� D @

@x

�
T.x/

@�

@x

�
C fext.x; t/ : (1.11)

1Equation (1.9), written here in Cartesian coordinates, can be generalized to other coordinate
systems.
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Since we are dealing here with a 1D model, there is no need to consider air pressure
forces here.

Comments

1. Another transverse motion �.x; t/ oriented along ey exists on the string. The equa-
tion of motion for �.x; t/ is analogous to (1.10). In general, both polarizations are
excited.

2. In the absence of coupling terms in the model, � and � are independent of each
other. In stringed musical instruments, however, this coupling does exist: it is
mainly due to motion of the bridge at the end and to the existence of nonlinear
terms for large amplitude motion (see Chap. 8).

3. Strings (and membranes) are also subjected to longitudinal vibrations. Such
vibrations arise because fluctuations in length induce stress fluctuations. As a
consequence, the stress becomes a function of the amplitude (and thus a function
of time). This transverse–longitudinal coupling is usually neglected under the
assumption of small amplitude. Nevertheless, it can be easily observed in piano
strings, for example. This point will be clarified in Chap. 8.

1.1.2.2 Homogeneous Membranes and Strings Under Uniform Tension

For a uniformly stretched membrane made of a homogeneous material, the tension
tensor � becomes isotropic, which can be written as � D �1l, where 1l denotes the
unit tensor. Equation (1.7) becomes

�div .grad�/ D ��� D �h R�; (1.12)

where the Laplacian in Cartesian coordinates is

�� D @2�

@x2
C @2�

@y2
: (1.13)

For timpani and drums, the most easier way to obtain a uniform tension is
to choose a circular geometry for the membrane. In this case, the use of polar
coordinates (r; �) is preferable and Eq. (1.12) is written:

�h R� D �

�
@2�

@r2
C 1

r

@�

@r
C 1

r2

@2�

@�2

�
: (1.14)

Homogeneous String Under Uniform Tension

With a uniform tension T , Eq. (1.11) reduces to:

� R� D T
@2�

@x2
C fext.x; t/ : (1.15)
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This partial differential equation of order 2 can be rewritten in the form of a system
of two equations of order 1 involving force and velocity:

8̂̂
<
ˆ̂:

@f

@t
D T

@v

@x
;

�
@v

@t
D @f

@x
C fext.x; t/ with v D @�

@t
:

(1.16)

The latter formulation is useful in numerical analysis and sound synthesis, where
it is often easier to solve systems of equations of lower order. It also helps in
highlighting formal analogies with electrical transmission lines (see Chap. 4).

1.1.3 Stress and Strain

Before starting to examine the deformation of elastic solids, it is necessary to
briefly recall the concepts of strain and stress that form the basis of continuum
mechanics. For more details the reader may refer to specialized textbooks (see, for
example, [49]).

1.1.3.1 Strain

General Formulation

The concept of strain can be introduced by writing the variation of length of an
elementary vector ds1, whose both ends are subjected to the displacements � and
� C d�, respectively (see Fig. 1.3).

Starting from the general formula giving the length of sides in a triangle, we get
the length of the vector ds2, noting that:

ds2
2 � ds2

1 ' 2 ds1:d� D 2 Œd�1dx1 C d�2dx2 C d�3dx3	; (1.17)

Fig. 1.3 Displacement of a vector in a deformable solid. The length of the vector ds2 is calculated
from the length of sides in triangle T
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where the second-order terms in d�2 are neglected, and where xi (i = {1,2,3}) denote
the coordinates of the initial vector ds1. The displacement �.x/ depends on the
coordinates xi, therefore the differential of each of its components is written:

d�i D
3X

jD1

@�i

@xj
dxj : (1.18)

The subscript j in (1.18) is called summation index (or dummy index), since it
appears in both the partial derivative and differential form. In continuum mechanics,
we use the Einstein convention which consists in ignoring the summation sign
(
P

) when it applies to a dummy index, in order to simplify the notation. In these
conditions, Eq. (1.17) becomes

ds2
2 � ds2

1 ' 2
@�i

@xj
dxjdxi : (1.19)

In addition, one can show the following property of symmetry:

@�i

@xj
D @�j

@xi
: (1.20)

Therefore, each term in (1.19) can be written as follows:

ds2
2 � ds2

1 ' "ijdxjdxi with "ij D 1

2

�
@�i

@xj
C @�j

@xi

�
: (1.21)

The quantities "ij form a set of six distinct components called strain tensor, which
is written ". It is a tensor of rank 2, since it depends on two indices. This tensor is
symmetrical since "ij D "ji. Its six components fully characterize the strain of a
continuous medium in three dimensions.

1.1.3.2 Stress

In the mechanics of rigid bodies, a general load is represented by a set of forces
and moments. In fluid mechanics, it is necessary to also introduce the concept
of pressure. However, these notions are not sufficient to represent the internal
constraints acting in a deformable solid. It is observed first that the contact load
exerted by an infinitesimal element on its neighbors inside the deformable medium
cannot be reduced to a simple set of forces and moments. Secondly, the resulting
forces are not oriented normally to each contact surface, as it is the case for perfect
fluids. It is therefore necessary to introduce the concept of stress reflecting the fact
that, on each elementary surface of contact between two particles, the surface force
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s31s31
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s12
s32

s22
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s33

s13

x2

x3
x1

Fig. 1.4 Stress components exerted on a small elementary cubic volume

density vector is defined by three components. To clarify this, the concept of stress
is illustrated on a small elementary cubic volume, with edges parallel to the axes
(see Fig. 1.4).

The elementary forces applied on each surface dSj .j D f1; 2; 3g/ can be
decomposed into three components dFi .i D f1; 2; 3g/. The surface density of force
is defined as:


ij D dFi

dSj
: (1.22)

The balance of moments leads to the symmetry property:


ij D 
ji : (1.23)

In total, on each side of the elementary volume, we get nine components 
ij which
reduce to six components, due to symmetry. This set, denoted 
 , is the stress tensor
for the continuous medium. It is a symmetric tensor of rank 2, as for the strain
tensor. In vector and tensor notation, we write the resulting force on a surface dS
with normal vector n:

dF D 
:ndS : (1.24)

T D 
:n is the stress vector on the surface. Finally, in the presence of a body
force field f , and taking further the inertial forces into account, the local equilibrium
equation in a given solid element of density � is written:

� R� D div
 C f ; (1.25)

where R� is the local acceleration.
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1.1.4 Constitutive Equations of Materials: Linear Elasticity

In the dynamics of rigid bodies, the motion reduces to a set of translations and
rotations, as a result of the application of forces and moments. In this case, inertial
quantities such as the masses and the moments of inertia of the body make the links
between load and motion. In continuum mechanics, we need a finer description of
the internal properties of the deformable body to interpret static and dynamic strain
and stress. The applied load results in a distribution of stress in the body. In the
example discussed in the following subsection, a tensile force along the axis of
a specimen leads to an almost uniaxial stress. As a result of stress, the structure
will deform more or less according to its internal properties. We call constitutive
equations of materials all properties (elasticity, viscosity, and thermal expansion)
that make the link between stress and strain. We restrict ourselves to the particular
class of linear elastic materials.

1.1.4.1 A One-Dimensional Traction Experiment

Let us perform a simple traction experiment on an homogeneous cylinder with
cross-section S, whose length at rest L0 is significantly larger than

p
S. It is observed

that the relative extension L�L0

L0
� "xx linearly varies with the surface density of force


xx � F
S , as long as it does not exceed the yield strength 
e (see Fig. 1.5).

In addition, it is observed that the experiment is reversible and that the sample
recovers its initial form when the tensile force is removed. As a consequence, we
write


xx D E "xx; (1.26)

Fig. 1.5 Tension experiment.
The force F is applied along
the axis of the cylinder with
initial cross-section S and
length L0. The relative
extension L�L0

L0
� "xx is

measured for increasing and
decreasing values of the stress

xx � F

S . As long as 
xx is
less than the yield strength 
e

(which depends on the
material) the curve

xx D f ."xx/ is linear and
reversible. The slope is the
Young’s modulus E

L S E

F

σxx

εxx

σe

0
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where E (in N/m2) is the Young’s modulus of the material. One important point here
is that the stress is proportional to the strain: we are in the situation of a linear elastic
behavior. This relationship, based on experimental facts, is also called Hooke’s law.

Comment The relation (1.26) does not take the variation of the cross-section in
the body consecutive to elongation (or compression) into account. This can only be
done with the 3D generalization of Hooke’s law (see the next section).

1.1.4.2 Elasticity Tensor

In a deformable body, one stress component 
ij is likely to generate several
components of strain "kl. Assume a linear constitutive law, we can generalize
Eq. (1.26) to:


ij D Aijkl "kl; (1.27)

where Aijkl represents the elasticity tensor of the material, also denoted A. It is a

fourth rank tensor. In theory, this tensor should have 34 D 81 distinct components.
However, if we recall that 
 and " are symmetrical, it reduces to 36, which is
the maximum number of independent components for A. Because of additional

energetic considerations, this number is reduced to 21 in the case of an anisotropic
material [8]. Finally, taking also the symmetry of the material into account allows
to reduce again the number of elasticity components.

Isotropic Material

In an isotropic material, all directions are equivalent. In this particular case, only 12
components Aijkl are non-zero, and they are defined as function of two independent
elasticity coefficients only, � and �, called Lamé parameters [49]. For such a
material, the stress–strain relations are written:

0
BBBBBBB@


xx


yy


zz


zx


yz


xy

1
CCCCCCCA

D

0
BBBBBBB@

� C 2� � � 0 0 0

� � C 2� � 0 0 0

� � � C 2� 0 0 0

0 0 0 2� 0 0

0 0 0 0 2� 0

0 0 0 0 0 2�

1
CCCCCCCA

0
BBBBBBB@

"xx

"yy

"zz

"zx

"yz

"xy

1
CCCCCCCA

; (1.28)

which can be written equivalently using the following compact tensor form:


 D �.tr"/1l C 2�"; (1.29)
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where tr" is nothing but the divergence of the displacement field: div�. We also call
it dilatation. In order to derive the strain tensor from the stress tensor, it is sufficient
to invert Eq. (1.29), which leads to:

" D 1 C �

E

 � �

E
.tr
/1l; (1.30)

with

E D � .3� C 2�/

� C �
et � D �

2.� C �/
: (1.31)

We recognize here the Young’s modulus E and the Poisson’s ratio �. The latter is
a dimensionless coefficient such that �1 < � < 1=2. By inverting the system (1.31),
we obtain the expression of the Lamé parameters as function of E and �:

� D E
�

.1 C �/.1 � 2�/
I � D E

2.1 C �/
: (1.32)

For a uniaxial stress field 
xx applied (see the previous experiment of tension)
to a “3D” specimen, we get from (1.29): "xx D 
xx=E, "yy D ��
xx=E, and "zz D
��
xx=E (see Fig. 1.6).

We can conclude that the Poisson’s ratio gives a measure of the lateral compres-
sion of a specimen along the axes ey and ez under the effect of a traction along ex.
This property is called “Poisson’s effect.”

Orthotropic Material

Unlike isotropic materials, anisotropic materials do not show identical elastic
properties in all directions. Wood, for example, is an orthotropic material, which
is a special case of anisotropy. To be convinced of such a behavior, a simple
experiment can be made which consists in bending a guitar soundboard in Spruce
with the hands. The experienced rigidity is higher when the bending is applied in the
direction of the fibers compared to the case where the bending moment is applied
in a direction perpendicular to them. More generally, for an orthotropic material,
we can distinguish three orthogonal directions: longitudinal (L), radial (R), and
tangential (T) (see Fig. 1.7).

Fig. 1.6 Tension of a 3D bar and lateral compression (Poisson’s effect)
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R

L

T

Fibers direction

Fig. 1.7 Orthotropic material. A sample made from an orthotropic material (such as wood) has
different elastic properties depending on whether the longitudinal direction (L), the radial direction
(R), or the tangential direction (T) is considered

For a system of axes with coordinates (x; y; z) corresponding to these directions,
the strain tensor in such a material is expressed as follows [28]:

0
BBBBBBB@

"xx

"yy

"zz

"zx

"yz

"xy

1
CCCCCCCA

D

0
BBBBBBBB@

1
EL

� �RL
ER

� �TL
ET

0 0 0

� �LR
EL

1
ER

� �TR
ET

0 0 0

� �LT
EL

� �RT
ER

1
ET

0 0 0

0 0 0 1
2GLT

0 0

0 0 0 0 1
2GTR

0

0 0 0 0 0 1
2GRL

1
CCCCCCCCA

0
BBBBBBB@


xx


yy


zz


zx


yz


xy

1
CCCCCCCA

(1.33)

where the Poisson’s ratios �ij correspond to a contraction in direction j consecutive
to an extension applied in direction i. As an example, �LR corresponds to a
contraction in the radial direction consecutive to an extension in the longitudinal
direction.

The symmetry properties of the material lead to the following equalities:

�LR

EL
D �RL

ER
I �LT

EL
D �TL

ET
I �RT

ER
D �TR

ET
: (1.34)

In summary, the elastic properties of an orthotropic material are defined by nine
independent coefficients:

• Three Young’s moduli (or elasticity moduli): EL, ER, andET ,
• Three Poisson’s ratios: �LR, �RT , and �TL,
• Three shear moduli: GLT , GTR, and GRL.

Comment For a guitar soundboard made of Spruce, the ratio EL=ET usually lies
between 10 and 20. The directions of the fibers correspond to those of the strings so
that the board resists to the shear induced by the bridge. Flexibility in the tangential
direction is partially compensated by stiffeners glued on the inferior face of the
board. Using more recent materials, such as carbon fiber and composites, it is
possible to control the elastic properties in all three directions [8]. Today, a number
of soundboards of stringed instruments are made by mixing, in various proportions,
wood and carbon fibers [9]. It will be seen in Chap. 13 that the choice of materials in
instrument making is not only governed by static considerations but also by radiation
criteria, which is fully understandable for musical instruments.
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1.1.5 Bars and Plates

We are now interested in the case of elastic solids without prestress. As previously
done for the membranes, dissipation phenomena are ignored. The bar model can
be applied to elastic solids whose one dimension is of a higher order of magnitude
than the two others (slender solid), and for which a one-dimensional model can thus
be developed. Plates correspond to 2D plane solids where the order of magnitude
of the thickness is lower than the length of the sides. For a bar subjected to
small perturbations it is justified to decouple the different regimes of vibrations:
traction, torsion, and bending [39]. For pedagogical reasons, we will examine these
limiting cases in the order of increasing difficulty. Thus, traction and torsion will
be presented before the bending, although this does not correspond to the relative
significance of these regimes in musical acoustics. In xylophones and other mallet
instruments, for example, bending vibrations are responsible for the essential part of
the sound. Torsional vibrations are also present, but are usually unwanted. Finally,
longitudinal motion is unsignificant.

1.1.5.1 Traction (or Compression) of a Bar

Consider an isotropic elastic bar loaded along its main axis (denoted ex) (see
Fig. 1.8). In this case, the displacement �.x; t/ at each point is axial (or longitudinal).
In musical acoustics, the axial vibrations of piano strings play a major role,
especially during the attack transient [5].

The strain in the bar is "xx D " D @�

@x . The axial stress is 
xx D 
 D E" where E is
the Young’s modulus. For a bar of length L and cross-section S, the elastic potential
energy is given by:

Ep D 1

2

Z L

0

ES

�
@�

@x

�2

dx; (1.35)

and the kinetic energy is

Ec D 1

2

Z L

0

�S

�
@�

@t

�2

dx : (1.36)

x0 L

F0 FL

(x,t)ξ
fL(x,t)

Fig. 1.8 Traction (or compression) of a bar. One-dimensional model
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Application of Hamilton’s principle yields the equation of motion:

�S
@2�

@t2
� @

@x

�
ES

@�

@x

�
D fL.x; t/ (1.37)

where fL.x; t/ is the force per unit length applied to the bar.

Comment. Unless otherwise specified, quantities E, �, and S defined above are
functions of the abscissa x. Thus, the present model allows to treat the case of
heterogeneous bars and/or bars of variable thickness.

Denoting F0 and FL the forces applied at both ends x D 0 and x D L (see
Fig. 1.8), the boundary conditions are written:

8̂̂
<̂
ˆ̂̂:

�
ES

@�

@x

�
xD0

D �F0;

�
ES

@�

@x

�
xDL

D FL :

(1.38)

In this book, we will have to consider general boundary conditions (BC) of the
type:

˛ES
@�

@x
C ˇ� D F with .˛; ˇ/ 2 R; (1.39)

These general conditions include the two following simple cases:

@�

@x
D 0 (free BC) I � D 0 (fixed BC) : (1.40)

1.1.5.2 Torsion of a Bar

The bars of keyboard percussion instruments often show a torsional motion around
the main axis, especially when they are struck near the edge. The amplitude of this
motion can be significant if the bar is cut in its central part since, in this case,
the torsional stiffness decreases notably (see below for an accurate definition of
torsional stiffness). The torsional vibrations can be musically annoying, because the
corresponding frequencies are generally not in harmonic correspondence with the
main components of the bending vibrations (see the next section) that mainly
contribute to the sound of the instrument.

Bowed strings (which can be considered as prestressed bars) are also subjected to
a torsional moment induced by the bow. Woodhouse and colleagues have shown that
these vibrations, particularly through their dissipative function, have an important
role in the stability of the motion of the bowed string [23, 56, 57] (see Chap. 11).

To model torsional vibrations, we consider the simple case of a cylinder with a
circular cross-section of radius a (see Fig. 1.9).
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q

a

x

Fig. 1.9 (Left) Torsional motion of a marimba bar. Such a motion, which can be musically very
annoying, often appears when a bar with an undercut is struck near the edge. For such a bar of
complex geometry, the equations that govern the torsional motion can only be solved numerically.
(Right) Torsion of a cylindrical bar with a circular cross-section of radius a. We assume that, under
the effect of a torsional torque, each cross-section of the cylinder of abscissa x rotates with an angle
�.x; t/. The dashed lines show the deformation of the generatrices of the cylinder, consecutive to the
rotation �.x; t/. The cylinder can be viewed as a kind of “spaghetti” bundle where each generatrix
remains straight in the rotation

We note �.x; t/ the angular displacement of a cross-section of abscissa x, dS D
rdrd� a surface element in this section, 
 the modulus of the torsional stress, G the
torsional modulus of the cylinder’s material, and  the angular displacement of a
generatrix initially parallel to the x axis. First, we can write

 D r
@�

@x
: (1.41)

According to the definition of the torsional modulus, we have 
 D G. In this
case, the relation between the moment M.x/ applied to the cross-section S of the
cylinder and the rotation is given by:

M D
Z

S

rdS D

Z
S

Gr2 @�

@x
dS D GJ

@�

@x
; (1.42)

where J D R
S r2dS is the rotational inertia of the section. This quantity has the

dimension of a length to the fourth power. It is equal to J D �a4=2 for a circular
cross section of radius a.

Newton’s second law (or law of conservation of angular momentum) applied to
an element dx of the bar leads to the balance of moments:

I
@2�

@t2
D @M

@x
C me; (1.43)

where I is here the mass moment of inertia with respect to the axis x and per
unit length of the cylinder; me is the density per unit length of the external
momenta applied to the cylinder. Combining (1.43) and (1.42), we obtain the partial
differential equation governing � :

I
@2�

@t2
D @

@x

�
GJ

@�

@x

�
C me; (1.44)
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which, in the case of a uniform cylinder of constant cross-section, reduces to:

I
@2�

@t2
D GJ

@2�

@x2
C me : (1.45)

In the particular case of a homogeneous beam of constant circular cross-section
(and in this case, only!), we also have I D �J. We formally obtain a wave equation
with the same form as for the vibrating string (or for the longitudinal vibrations of
a bar), but notice that the physical phenomena at the origin of these equations are
fully different.

1.1.5.3 Bending of an Isotropic Bar

We now consider the bending of a slender bar in the plane (ex; ey) with the following
assumptions:

1. One dimension (along the main axis) is large compared to the other two.
2. The material is elastic and linear.
3. The cross-sections are symmetrical so that we make no distinction between the

mean fiber (locus of the center of gravity of the cross-sections) and the neutral
fiber (locus of the points which are not subjected to bending stress during the
deformation).

4. The Poisson’s effect (lateral contraction–extension) is ignored.
5. Each point of a cross-section at abscissa x moves vertically in the direction of the

axis ey with amplitude v.x/ small compared to the bar’s thickness.
6. The cross-sections are subjected to a rotation �z around the axis ez so that they

remain straight and perpendicular to the mean fiber during the motion.
7. The rotations are small, so that we can perform a first-order approximation

�z � @v
@x . In addition, we neglect the rotational kinetic energy of the sections.

Within the framework of these Euler–Bernoulli assumptions, a displacement field
is of the form:

ey

ex

ez

Fig. 1.10 (Left) Euler–Bernoulli kinematics. During the motion, the cross-sections remain straight
and perpendicular to the neutral fiber. (Right) Bending motion of a marimba bar. The bending of
such a bar is well described by a model of a bar with variable cross-section
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�x D �y�z � �y
@v

@x
I �y D v I �z D 0; (1.46)

from which we get, from (1.21), the strain tensor:
8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂:

"xx D @�x

@x
D �y

@2v

@x2
;

"xy D "yx D 1

2

�
@�x

@y
C @�y

@x

�
D 0;

"yy D @�y

@y
D 0 :

(1.47)

The hypothesis of isotropic material yields the stress tensor. Here, we write [see
Eq. (1.26)] 
xx D E"xx, since the Poisson’s effect is neglected.

Let us now express the elastic potential energy, also called strain energy, of
the bending bar. For an elementary spring of stiffness k, the elastic energy stored
under the effect of a traction (or compression) of elongation x from equilibrium is
Ep D 1

2
kx2. By analogy, the elementary force dFx applied to an element of length

dx of the bar with cross-section dS is, according to (1.22): dFx D 
xxdS. Therefore,
the elementary elastic potential energy is: dEp D 1

2

xx"xx dx dS. By integrating this

expression on the complete volume of the bar of length L, we get

Ep D 1

2

Z
S

Z L

0

Ey2

�
@2v

@x2

�2

dx dS D 1

2

Z L

0

EIz.x/

�
@2v

@x2

�2

dx (1.48)

where Iz.x/ D R
S y2dS is the principal moment of inertia along the axis 0z of the

cross-section S. The quantity M D EIz
@2v
@x2 is the bending moment and C D @2v

@x2 is
the curvature.

The kinetic energy Ec of the beam of density � is written:

Ec D 1

2

Z
S

Z L

0

� P�2dxdS D 1

2

Z
S

Z L

0

�

"
y2

�
@ Pv
@x

�2

C Pv2

#
dx dS : (1.49)

This energy can be rewritten as:

Ec D 1

2

Z L

0

�Iz
P�2
z dx C 1

2

Z L

0

�S Pv2dx; (1.50)

which shows that the kinetic energy is the sum of both a rotational and a translational
energy. Under the Euler–Bernoulli framework, the rotational inertia is neglected, so
that we get

Ec ' 1

2

Z L

0

�S Pv2dx : (1.51)
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Starting from the energetic quantities, we obtain the equation of motion through
application of Hamilton’s principle. Denoting f .x; t/ the density per unit length
of non-conservative external forces applied to the bar, and ıv a cinematically
acceptable virtual displacement (test function), we get the virtual mechanical work
ıWnc of these forces from the expression:

ıWnc D
Z L

0

f .x; t/ ıv dx : (1.52)

The method consists in deriving the equation of motion and the boundary
conditions that must be verified by the displacement field v.x; t/ to ensure that the
following integral is equal to zero between two arbitrary moments of time t1 and t2
[21, 25]:

Z t2

t1

�
ıEc � ıEp C ıWnc

	
dt D 0 : (1.53)

The variations of both kinetic and potential energy are given by:

ıEc D @Ec

@v
ıv C @Ec

@ Pv ı Pv D � d

dt

�
@Ec

@ Pv
�

ıv D �
Z L

0

�S Rv ıv dx; (1.54)

and

ıEp D @Ep

@v
00

ıv
00 D

�
EIz

@2v

@x2
ıv

0

�L

0

�
�

@

@x

�
EIz

@2v

@x2

�
ıv

�L

0

C
Z L

0

@

@x

�
EIz

@2v

@x2

�
ıv dx;

(1.55)

where v
00 D @2v

@x2 and v
0 D @v

@x .
By inserting (1.55) and (1.54) in (1.53), we derive the bending equation of motion

of the bar, within the simplified framework of Euler–Bernoulli assumptions:

�S Rv C @2

@x2

�
EIz

@2v

@x2

�
D f ; (1.56)

with the boundary conditions:

�
EIz

@2v

@x2
ıv

0

�L

0

D 0 and

�
@

@x

�
EIz

@2v

@x2

�
ıv

�L

0

D 0 : (1.57)

Equation (1.56) is of fourth-order in space. Therefore, four boundary condi-
tions, two conditions at each end, are necessary to properly define the problem.
From (1.57), we see that only four combinations are possible at each end:
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8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂:

Simply supported edge: v D 0 and M D EIz
@2v

@x2
D 0;

Clamped edge :
@v

@x
D 0 and v D 0;

Free edge: T D @

@x

�
EIz

@2v

@x2

�
D 0 and M D EIz

@2v

@x2
D 0;

Guided edge: T D @

@x

�
EIz

@2v

@x2

�
D 0 and

@v

@x
D 0 :

(1.58)

The quantity T D @

@x

�
EIz

@2v

@x2

�
is the shear force.

• In musical acoustics, the Euler–Bernoulli model gives satisfactory results pro-
vided that the ratio between the length and a characteristic dimension of the
cross-section (radius or side length) is greater than or equal to about 10.
For keyboard percussion instruments (xylophone, vibraphone, and marimba),
this model is valid for the lowest bars only. As the length of the bar decreases, it
is necessary to choose a kinematic model accounting for the fact that the cross-
sections do not remain perpendicular to the neutral axis during the motion. It
becomes also necessary to take the rotational inertia of the sections into account
(Timoshenko model) [19]. For a detailed comparison of different models of bars,
the reader can refer to [27].

1.1.5.4 Bending of Thin Elastic Plates

The “thin plate” hypotheses (or Kirchhoff–Love model) generalize for plates the
Euler–Bernoulli assumptions applied to the bars (see Sect. 1.1.5.3). A detailed
presentation of the equation of bending plates is beyond the scope of this book.
We can refer, for example, to the work by Yu [58] or Geradin and Rixen [21].

Here, only the main steps of the modeling are summarized, using the same
approach as for bars in the previous paragraph. The case of orthotropic plates is
selected as an illustration. It is particularly useful in musical acoustics since it can
be applied to wooden plates used in lutherie [13, 55]. The problem is treated in
Cartesian coordinates, and the transverse displacement is denoted w.x; y; t/. We
assume that the coordinates coincide with the symmetry axes of the material and
that ez is the transverse direction. We therefore consider that the displacement field
� in the plate is of the form:

�x D �z
@w

@x
I �y D �z

@w

@y
I �z D w; (1.59)
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from which we get the strain tensor, assumed to be plane:

8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

"xx D @�x

@x
D �z

@2w

@x2
;

"yy D @�y

@y
D �z

@2w

@y2
;

"xy D "yx D 1

2

�
@�x

@y
C @�y

@x

�
D �z

@2w

@x@y
:

(1.60)

The orthotropy of the material leads to the following relations between plane
stress and strain:

0
BBBBB@


xx


yy


xy

1
CCCCCA

D

0
BBBBBBBB@

Ex

1 � �xy�yx

�yxEx

1 � �xy�yx
0

�yxEx

1 � �xy�yx

Ey

1 � �xy�yx
0

0 0 2Gxy

1
CCCCCCCCA

0
BBBBB@

"xx

"yy

"xy

1
CCCCCA

(1.61)

where the coefficients �ij are such that 1 � �ij�ji > 1 [13].
The bending moments are obtained by integration of the elementary moments on

the plate thickness h:

Mx D
Z h=2

�h=2

z
xxdz I My D
Z h=2

�h=2

z
yydz I Mxy D Myx D
Z h=2

�h=2

z
xydz; (1.62)

from which we derive the relations between moments and curvatures:

0
BBBBB@

Mx

My

Mxy

1
CCCCCA

D �

0
BBBBB@

D1 D2=2 0

D2=2 D3 0

0 0 D4=2

1
CCCCCA

0
BBBBBBBBBB@

@2w

@x2

@2w

@y2

@2w

@x@y

1
CCCCCCCCCCA

; (1.63)

where

D1 D Exh3

12.1 � �xy�yx/
I D2 D Ex�yxh3

6.1 � �xy�yx/
D Ey�xyh3

6.1 � �xy�yx/
; (1.64)

D3 D Eyh3

12.1 � �xy�yx/
I D4 D Gxyh3

3
: (1.65)
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The equation of motion is again obtained from the Hamilton integral [Eq. (1.53)].
The variation of the kinetic energy resulting from a virtual displacement ıw is
written:

ıEc D �
Z

S
�ph Rw ıw dS : (1.66)

The variation of the potential energy that generalizes the case of bars is

ıEp D
Z

S

h
Mxıw

00

xx C Myıw
00

yy C 2Mxyıw
00

xy

i
dS : (1.67)

Finally, for a surface density of transverse force f .x; y; t/, the virtual mechanical
work is written:

ıWnc D
Z

S
f .x; y; t/ ıw dx : (1.68)

Applying Hamilton’s principle to the set of Eqs. (1.66)–(1.68), we derive the
bending equation of the plate:

�ph
@2w

@t2
D @2Mx

@x2
C @2My

@y2
C 2

@2Mxy

@x@y
C f .x; y; t/ : (1.69)

Equation of Motion of Plates in Terms of Displacement

We eliminate the bending moments from Eqs. (1.63) and (1.69) to get the equation
describing the transverse displacement of the orthotropic plate:

�ph
@2w

@t2
C @2

@x2

�
D1

@2w

@x2
C D2

2

@2w

@y2

�
C @2

@y2

�
D3

@2w

@y2
C D2

2

@2w

@x2

�

C @2

@x@y

�
D4

@2w

@x@y

�
D f .x; y; t/ :

(1.70)

which becomes, in the particular case of a homogeneous plate:

�ph
@2w

@t2
C D1

@4w

@x4
C D3

@4w

@y4
C .D2 C D4/

@4w

@x2@y2
D f .x; y; t/ : (1.71)

For an isotropic plate, we have Ex D Ey D E and �xy D �yx D �, so that the
rigidity constants are written:

D1 D D3 D Eh3

12.1 � �2/
D D I D2 D 2�D;

D4 D �h3

3
D Eh3

6.1 C �/
D 2.1 � �/D :

(1.72)
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In conclusion, we obtain the classical equation of homogeneous and isotropic
thin plates under Kirchhoff–Love assumptions:

�ph
@2w

@t2
C D

�
@4w

@x4
C @4w

@y4
C 2

@4w

@x2@y2

�
D f .x; y; t/ : (1.73)

More generally, we assume the following notation, which is independent of the
coordinate system:

�ph
@2w

@t2
C Dr4w D f ; (1.74)

where r4 represents the bi-Laplacian. The symbol �2 is also used for designating
this operator.

Boundary Conditions

In Sect. 1.1.5.3, Eq. (1.55) has shown that the boundary conditions are the results of
integration by parts carried out to express the variation of elastic potential energy
as a function of the virtual displacement (noted ıv for bars). We proceed here in a
similar manner for the variation of potential energy in plates written in (1.67). Here
the integration is performed on a surface, and thus the results and the number of
possible boundary conditions depend on the geometry of the plate. For rectangular
plates, for example, Leissa lists 21 possible cases for the boundary conditions [36].
For a given edge (at x D x0 for example), the most commonly encountered
conditions are the following:

1. Clamped edge: displacement w D 0 and rotation @w
@x D 0,

2. Simply supported edge: displacement w D 0 and bending moment Mx D 0,
3. Free edge: bending moment Mx D 0 and shear force Tx D @Mx

@x C 2
@Mxy

@y D 0:

The boundary conditions for a free edge are written in Cartesian coordinates:

8̂̂
<̂
ˆ̂̂:

Mx D D1

@2w

@x2
C D2

2

@2w

@y2
D 0;

Tx D @

@x

�
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@2w

@x2
C D2

2

@2w

@y2

�
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@y

�
D4

@2w

@x@y

�
D 0 :

(1.75)

For a corner at the intersection of two free edges, we must add the condition:

Mxy D 0; or
@2w

@x@y
D 0 : (1.76)
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Fig. 1.11 The vibrations of
bells are described by models
of shells. © Australian-
Dream.Fotolia.com

For an isotropic and homogeneous material, the conditions (1.75) become

8̂̂
<̂
ˆ̂̂:

@2w

@x2
C �

@2w

@y2
D 0 and

@3w

@x3
C .2 � �/

@3w

@x@y2
D 0 :

(1.77)

1.1.6 Equation of Shells

A shell is a continuous medium which is completely defined by a surface and a
thickness (see, as an example, the bells on Fig. 1.11). A plate corresponds to the
special case of a shell with a plane surface. In musical acoustics, models of shells
can be applied to a large number of percussion instruments (gongs, cymbals, bells,
etc.) and to soundboards of string instruments. Here, we restrict our study to a brief
presentation of the theory of thin elastic shells (the thin shell theory).2 This theory,
due to Love, is applicable when the thickness of the shell is small compared to other
dimensions [51].

As for the Kirchhoff–Love model previously applied to plates, we assume that the
local displacement field in the cross-sections consists in a translation and a rotation,
so that each cross-section remains plane during the motion (see Figure 1.12).
Translations and rotations differ from one section to another, otherwise, we would

2Here, we do not treat the cylindrical shells theory, which naturally applies to wind instruments,
because it requires significant developments that are beyond the scope of this book. Nevertheless,
we provide valuable references in Chap. 13 which deals with sound–structure interaction.
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Fig. 1.12 Deformation of a thin shell. Each cross-section is subjected to a combination of
translation and rotation

simply get a rigid body global displacement for the shell and, consecutively, no
strain. In what follows, rotational inertia and transverse shear are ignored.

The main difference between strain tensors of plate and shell, respectively, is that,
because of the non-zero curvature, the deformation induced by a transverse load is
not only of the bending type as in the case of bars and plates, but also includes a
membrane-like deformation. This means that a strain normal to the load exists in
the thickness of the shell. The strain tensor is therefore formed by the sum of two
contributions (see in the following Section the example of the spherical cap).

The Love model can be further simplified under the assumption that the shells
are slightly curved, or shallow, and excited along their transverse dimension.
The resulting model is traditionally called “Donnell–Mushtari–Vlasov model” (or
DMV model) and is one of the most often used in shell theory. The fundamental
assumptions of this model are

1. The membrane displacement is neglected in the bending strain.
2. Inertia of the membrane displacement is neglected.

To solve the problem it is convenient to introduce an auxiliary variable called
force function or Airy function. Consequently, the motion equations take the form
of a system of partial differential equations with two unknowns: the transverse
displacement and the force function. For more details, the reader is invited to read
the specialized literature on shells [3, 37, 51].

1.1.6.1 Thin Shallow Spherical Shells

In order to illustrate its general concepts, the main features of the DMV model are
applied to the particular case of thin shallow spherical shells. This example has the
advantage of being simple enough, while showing the influence of the curvature. In
addition, it allows to properly explain the dynamics of cymbals and gongs.
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Fig. 1.13 Geometry of a thin
spherical cap

Presentation

We are interested in a thin spherical cap of constant thickness h small compared to
the radius a of the circle C obtained by projecting the cap on the horizontal plane
(see Fig. 1.13).

We assume that the cap is slightly curved (shallow shell), which is expressed
by the condition a � R, where R is the radius of curvature of the shell. It is
supposed that the Kirchhoff–Love conditions are fulfilled: rigid body displacement
for each cross-section, shear and rotational inertia neglected. Only the case of a
homogeneous and isotropic shell is considered. Because of the rotational symmetry,
we use the polar coordinates (r; �; z) where (r; �) are the coordinates of the
projection of a current point M of the shell on the disk of radius a, and z its vertical
coordinate in the shell thickness, with �h=2 � z � h=2.

Displacement Field

With the Kirchhoff–Love assumptions, the components of the displacement field �

in the shell are written: 8̂̂
<
ˆ̂:

�r D u.r; �/ C zˇr.r; �/;

�� D v.r; �/ C zˇ� .r; �/;

�z D w.r; �/;

(1.78)

where .u; v; w/ are the components of a translation vector and where ˇr and ˇ� are
the elementary rotations of a cross-section of the shell along r and � . First-order
expansions of these rotations are written [51]:
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8̂̂
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ˆ̂:
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� @w

@r
;

ˇ� .r; �/ D v

R
� 1

r

@w

@�
:

(1.79)

Strain Tensor

We obtain the strain tensor by calculating the elongation of a small vector under
an elementary displacement [see Eq. (1.19)]. In the case of thin shallow shells, the
strain tensor can be put on the form:

" D ."/m C z."/f (1.80)

where ."/m is a membrane type tensor that expresses the strains in the thickness
of the shell, and where ."/f is a bending type tensor with components representing
the changes of curvature consecutive to the displacement. These components are
written:

8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂:

."rr/m D @u

@r
C w

r
;

."�� /m D u

r
C 1

r

@v

@�
C w

R
;

."r� /m D ."�r/m D 1

r

@v

@�
C r

@

@r

�v

r

�
;

(1.81)

and

8̂̂
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(1.82)

The other components of the tensor " are equal to zero.

Stress–Strain Relation

For a homogeneous and isotropic material, characterized by its Young’s modulus E
and Poisson’s ratio �, the non-zero components of the stress tensor are written:
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8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂:
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1 � �2
."�� C �"rr/ ;


r� D 
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"r� :

(1.83)

Resulting Forces and Moments

As for bars and plates (see Sect. 1.1.5.4), the resulting forces applied to each
elementary volume of the shell are obtained through integration of the stress vector
over the thickness:

Nr D
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�h=2


rr dz I N� D
Z h=2

�h=2


�� dz I Nr� D N�r D
Z h=2

�h=2


r� dz : (1.84)

Similarly, the resulting moments are obtained by calculating:

Mr D
Z h=2

�h=2


rrz dz I M� D
Z h=2

�h=2


�� z dz I Mr� D M�r D
Z h=2

�h=2


r� z dz :

(1.85)
As a result, we get

8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂:

Nr D Eh

1 � �2
Œ."rr/m C �."�� /m	 ;

N� D Eh

1 � �2
Œ."�� /m C �."rr/m	 ;

Nr� D N�r D Eh

2.1 C �/
."r� /m :

(1.86)

and

8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂:

Mr D Eh3

12.1 � �2/



."rr/f C �."�� /f

�
;

M� D Eh3

12.1 � �2/



."�� /f C �."rr/f

�
;

Mr� D M�r D Eh3

24.1 C �/
."r� /f :

(1.87)

These expressions show that the resulting forces applied by an element of shell on
its neighboring elements are entirely due to membrane deformations. The resulting
moments are the consequence of changes in curvature, as in the case of plates.
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Equations of Motion

The equations of motion for the shell are obtained by writing down the balance of
forces and moments on a shell element, and applying Newton’s second law. After
some calculations, we get

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

Dr4w C Nr C N�

R
C �h

@2w

@t2
D f with D D Eh3

12.1 � �2/
;

@.rNr/

@r
C @Nr�

@�
� N� D 0;

@.rNr� /

@r
C @N�

@�
C Nr� D 0 :

(1.88)

These three spherical shells Eq. (1.88) are expressed in terms of transverse
displacement w and force components Nr, N� , and Nr� . These four unknowns are
not independent since the three force components depend on the coordinates u,
v, and w [see Eq. (1.86)]. The first equation in (1.88) shows that the additional
term .Nr C N� /=R is due to membrane forces and tends to zero when the radius of
curvature tends to infinity: it corresponds to the case of plates (Eq. 1.74). In most
cases, we are primarily interested in the vertical component w of the displacement.
The variables u and v can be eliminated in Eq. (1.88) by introducing a force function
(or Airy function) F such that:

Nr D 1

r

@F

@r
C 1

r2

@2F

@�2
I N� D @2F

@r2
I Nr� D N�r D 1

r2

@F

@�
� 1

r

@F

@r@�
; (1.89)

As a result, we obtain

r2F D Nr C N� : (1.90)

Finally, the system (1.88) is written:

8̂
<̂
ˆ̂:

Dr4w C r2F

R
C �h

@2w

@t2
D f ;

r4F D Eh

R
r2w :

(1.91)

If necessary, the Airy function F can be further eliminated, in order to derive an
equation in terms of w. However, in most cases, and, in particular, in the context of
numerical resolution, it is more appropriate to keep a formulation based on a system
with two unknowns, which offers the advantage to involve differential operators of
lower orders.
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Boundary Conditions

The boundary conditions for the thin shallow shell are obtained from Hamilton’s
principle using the same method as for bars and plates (see Eq. 1.57). This yields
the following possibilities at the periphery of the shell (in r D a):

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

Nr D 0 or u D 0;

Nr� C Mr�

R
D 0 or v D 0;

1

r

@Mr�

@�
D 0 or w D 0;

Mr D 0 or ˇr D 0 :

(1.92)

A shell clamped at its edge, for example, has the following four boundary
conditions:

u D v D w D 0 and ˇr D 0; (1.93)

while the boundary conditions for a spherical shell with free edges are written:

Nr D 0 I Nr� C Mr�

R
D 0 I @Mr�

@�
D 0 I Mr D 0 : (1.94)

1.2 3D Acoustic Waves

The equation of three-dimensional (3D) acoustic waves in a non-dissipative medium
at rest, at low level, forms the basis of each book of acoustics. The knowledge of
the solution allows at least deriving a first approximation of the eigenfrequencies of
wind instruments, known since Bernoulli to be very close to the played frequencies,
or the frequencies of cavity appearing in string and percussion instruments. Further
in this book, we need to partially remove the above-mentioned restrictions, par-
ticularly concerning dissipation. Conversely, we will start by studying cases much
simpler than the 3D problem. We now establish the three-dimensional equation to
set the framework of many following chapters. For more details on this subject, we
refer the reader to some basic textbooks on acoustics [12, 41, 44, 48], but also on
fluid mechanics [6].

Under the above-defined conditions, the acoustic wave equation is the result of
the elimination of two acoustic variables, the velocity v and the density �. Only
the acoustic pressure, which is a scalar quantity, is kept from two conservation
equations and a state equation. For a given physical quantity, the corresponding
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acoustic quantity is defined as the variation of the quantity around an average value,
considered as time invariant. This variation is assumed to be small, which allows to
use linear approximations of phenomena (see the comments in the box below). The
propagation of a sound wave in a fluid mainly depends on the fact that this fluid has
a mass and a compressibility. It can therefore be seen as a combination of masses
and springs, or rather springs with a certain mass, that are modeled in continuum
mechanics as infinitesimal objects, called “particles.” The compressibility of the
fluid makes an acoustic motion different from a regular, incompressible flow, with
a density remaining constant. Some results presented here are summarized and
detailed further in Chap. 5 where the dissipation effects are studied.

Acoustic Quantities and Decibels
The variation of the acoustic quantities is small, but its magnitude can vary
considerably, by a factor 107, from the lowest audible sound to the sound of a
taking off airplane: this is the reason why the decibel scale is used. For a given
acoustic pressure amplitude (i.e., the root-mean-square pressure), p, we define
NdB D 20 log.p=p0/, where p0 is the reference value equal to 2�10�5 Pa. This
value is almost the lowest sound level perceived by the ear at 1000 Hz. For a
musical instrument playing piano, the sound level is approximately 60 dB, or
0:02 Pa, and for a fortissimo play, the sound hardly exceeds 100 dB, or 2 Pa,
which is very far from the atmospheric pressure, equal to 105 Pa. However, it
will be seen in Part III that the pressure at the input of a wind instrument can
reach 170 dB, or 6000 Pa (this value still remains well below the atmospheric
pressure, although it will produce new phenomena which be discussed in
Part III of the book). Finally, to take into account that hearing perceives
frequencies between 1000 and 3000 Hz much better than other frequencies,
a weighted decibel, the dBA [20, 59] has been defined.

1.2.1 State Equation of a Gas

At equilibrium, the gas has a density �0, expressed in kg m�3, a uniform temperature
T , expressed in ıK, and a pressure p0, expressed in N m�2 or Pascals (Pa). If we
consider a volume V equal to nM=�, nM being the mass of the fluid3 in the volume
V , these quantities are linked by a state equation, f .P; V; T/ D 0: As there are only
two independent thermodynamic variables, we can express any variations of the
quantities defining the fluid in terms of two of them.

Thus for the specific heat received by a fluid element dQ D TdS, (where S is
the entropy per unit mass, which is a state function), we can express it in terms
of the variations dP and dV (or dP and d� D ��dV=V). For acoustic motions of

3n is number of moles, and M the molar mass.
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a sufficiently high frequency, it is assumed that motions are isentropic (dQ D 0),
i.e., there is no heat exchange between the fluid elements (dissipation is discussed
in Chap. 5). We derive a proportionality relation between pressure variations and
density variations, which gives the first of the three sought equations. It is written:

dP D c2d�; (1.95)

where c ,
p

.@P=@�/S is a coefficient which will be later identified as the speed of
sound waves. We note that c is simply related to the isentropic compressibility

�S , 1

�

�
@�

@P

�
S

D 1

�c2
: (1.96)

• If we write that pressure P D p0 Cp and density � D �0 C�0 slightly vary around
their equilibrium values,4 p0 and �0, we obtain from (1.95):

p D 1

�0�S
�0 D c2�0: (1.97)

We note also that for constant entropy, as for the density variation, the temperature
variation is proportional to the pressure variation. So if we write T D T0 C � ,
the acoustic temperature � is proportional to the acoustic pressure p. We find the
expression of the corresponding coefficient in Chap. 5, as well as the values of the
compressibility and the speed of sound for a given gas law, including temperature.
We will show that if PV D nRT , or MP D RT�, where R is the constant of an ideal
gas, we have

�T , 1

�

�
@�

@P

�
T

D 1

p0

which leads to �S D 1

�p0

and c2 D �p0

�0

D �
RT0

M
;

(1.98)
where � D Cp=Cv , the ratio of specific heats at constant pressure and volume. This
allows calculating the theoretical value of the speed of sound with respect to the
temperature. Numerical values of the speed of sound, density, and other constants
of air are given in Chap. 5.

1.2.2 Momentum Conservation

Here we write the conservation of momentum, i.e., the Newton’s second law. We use
the Eulerian variables, which are best suited for this study: these are the variables
that an observer sees when he is looking at the fluid evolution from a fixed point
in space, r, instead of following the evolution of a fluid element (Lagrangian
description).

4This difference in notation for pressure and density, although it is apparently illogical, is
convenient for the following of the statement.
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• Considering a given quantity f depending on space and time, its time variation
depends on the infinitesimal motion with velocity v D dr=dt. We write

df D f .r C dr; t C dt/ � f .r; t/

D f .r C dr; t C dt/ � f .r; t C dt/ C f .r; t C dt/ � f .r; t/

D gradf .r; t C dt/:drC Œ@f .r; t/=@t	 dt;

or at the first order

df D gradf .r; t/:drC Œ@f .r; t/=@t	 dt D gradf .r; t/:vdtC Œ@f .r; t/=@t	 dt:
(1.99)

Thus, we can define in general the following operator:

d

dt
D .v:grad/ C @

@t
: (1.100)

• Now we write the Newton’s second law for an infinitesimal volume:

�
dv
dt

D �gradP C �F (1.101)

where F is an external force per unit mass. In one dimension, it is read as follows:
the product of the acceleration by the mass of the fluid element is equal to the
pressure difference at both sides added to an external force. The � sign on the
right-hand side comes from the fact that, at position .x C dx/, a positive pressure
applies a force along the negative x-axis, in contrast to what happens at position x.

Equation (1.101) is the equation of the momentum conservation �v. For a
finite volume D bounded by a surface S, it can be written in the following integral
form:

•
D

�
dv
dt

dD D �
“

S

PdSC
•

D

�FdD: (1.102)

The derivative with respect to time of the momentum in the volume D is equal to
the outflow, which is simply the pressure force applied on the surface, added to
the effect of forces external to the fluid.

• In linear acoustics, we can now linearize Eq. (1.101) to the first order, which is
the Euler equation. For a fluid at rest, the total velocity v is the acoustic velocity,
which is small, i.e., of the first order, and we obtain

�0

@v
@t

D �gradp C �0F: (1.103)



36 A. Chaigne and J. Kergomard

Equation (1.101) implies that the zeroth order of F is zero (because �0 is not
zero): thus, F is of the first order. We obtain here the second vector equation
connecting p, �, and v, this time with a source external to the fluid.5

Bernoulli’s Law
Returning to the non-linearized Euler Equation (1.101), it is seen that if the
force F is irrotational, this is also the case for the velocity, and they both
derive from a potential, written �V and ': F D �gradV and v D grad'. If
the motion is isentropic (i.e., adiabatic and reversible), the pressure P depends
on � only, and we can write

1

�
gradP D 1

�

dP

d�
grad� D grad

Z
1

�

dP

d�
d� D grad

Z
dP

�
:

In addition (v:grad/v D 1
2 gradv2 � .v � rotv/ D 1

2 gradv2, and we obtain
from (1.101):

grad
�

@'

@t
C 1

2
v2 C

Z
dP

�
C V

�
D 0:

We can integrate this equation in space: by calculating the scalar product
of this quantity and v, and noting that the quantity v:grad D v@=@n is
the derivative in the direction of v, i.e., along a streamline. We obtain the
Bernoulli’s law by integrating along such a line:

@'

@t
C 1

2
v2 C

Z
dP

�
C V D function.t/: (1.104)

We can include the right-hand side function in the potential ', which is
defined apart from a space-independent function, and we obtain a right-
hand side equal to zero. The quasi-static version of (1.104), in homogeneous
medium and without external force, will be useful to describe the flow at the
input of a reed instrument. It is written:

P C 1

2
�v2 D constant. (1.105)

Concerning the version obtained in linear acoustics for a homogeneous
medium at rest, it is simply written: p D ��0@'=@t; where ' is the velocity
potential.

5We could also add a source to Eq. (1.97): it would be a heat source, varying in time, which does
not occur in musical instruments.
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1.2.3 Conservation of Mass

We need another equation to link the quantities p, �; and v: it is the conservation of
mass, that we first write in an integral form. The mass entering a domain D bounded
by a surface S per unit of time, to which we possibly add the one produced by a
density of source mass �q, is equal to the increase in fluid mass in the domain per
unit of time:

�
“

S

�v:dS C
•

D

�q.r; t/dD D @

@t

•
D

� dD; (1.106)

if dS is the outgoing normal of the volume. We will see examples of sources q.r; t/,
which are flow sources per unit volume, especially for reed instruments: By using
the divergence theorem, we get

•
D

�
div.�v/ C @�

@t

�
dD D

•
D

�q.r; t/dD:

This expression is valid for any domain D and can therefore be written in a
differential form:

div.�v/ C @�

@t
D �q.r; t/: (1.107)

For the same reasons as those given for F (see Sect. 1.2.2), q is of order 1, and the
linearization gives for a homogeneous medium at rest:

�0divv C @�0

@t
D �0q.r; t/: (1.108)

1.2.4 Acoustic Wave Equation

• In summary, the three linearized equations (1.97), (1.103), and (1.108) (from
here, we omit the subscript 0 for the average density), where only two of them
have an external source, are written:

p D 1

��S
�0 D c2�0;

�divv C @�0

@t
D �q.r; t/;

�
@v
@t

D �gradp C �F:
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• Eliminating the acoustic density �0, we derive two equations for the two most
usual quantities, acoustic pressure and particle velocity:

divv C �S
@p

@t
D q.r; t/ ; (1.109)

gradp C �
@v
@t

D �F: (1.110)

• The mass-spring fluid system is finally characterized by two main parameters,
its density � and its compressibility �S. If we remove the velocity, using a cross
derivation, we obtain the wave equation for the pressure:

�p � 1

c2

@2p

@t2
D �

�
divF � @q

@t

�
(1.111)

where � D r2: The choice of the pressure as the unique acoustic variable is very
common, because, on the one hand, the pressure is a scalar quantity, and, on the
other hand, the pressure is, to a first approximation, the quantity to which the ear
is sensitive. We see that the production of sound is due to the time variation of
the flow q. If the flow is constant, there is no sound.

1.2.5 Simple Solutions: Traveling and Standing Waves

We consider the particular case of a plane wave, where all quantities vary in the x
direction, only. After the change of variables .x; t/ ! .x � ct; x C ct/, the general
solution is of the form:

p D f C.x � ct/ C f �.x C ct/; (1.112)

which is the sum of two traveling waves, an outgoing one and an incoming one, of
any shape. The wave speed is c, the square of which is the inverse of the product of
the two parameters � and �S [see Eq. (1.95)]. Notice that when there is no term in
the right-hand side in the equation, the velocity potential is governed by the same
equation as the pressure (provided that it has been adequately chosen). This is also
the case for the acoustic velocity. Therefore, in one dimension, the general solution
for both the potential and velocity has an expression similar to Eq. (1.112).

For the outgoing wave, we have @f C=@t D �c@f C=@x, and we deduce
p D �cvx. The quantity p=v is the specific acoustic impedance, which, for both
waves, is called the characteristic impedance. It is equal to ZS D �c D p

�=�S,
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while c D 1=
p

��S. The pair of parameters of our fluid-spring system, � and �S, is
equivalent to another pair, which characterizes a plane traveling wave: the speed of
sound c and the specific characteristic impedance, or impedance of the medium, ZS.
We can alternatively use one pair or the other, depending on the context.

• There is another simple general solution of the wave equation, which separates
the space and time variables. If we search for a solution of the form p.r; t/ D
R.r/T.t/, Eq. (1.111) without sources becomes

c2 �R

R
D 1

T

d2T

dt2
: (1.113)

The left-hand side is a function of space only, and the right-hand side a function of
time only. Therefore, each side is a constant, known as the separation constant, that
we denote �!2 if it is negative.6 The function of time depends on two constants, A
and ':

T.t/ D A cos.!t C '/:

For plane waves, we can also find the function of space, and finally write:

p.r; t/ D .a cos kx C b sin kx/ cos.!t C '/;

where a and b are two constants. k D !=c is the wavenumber. It is related to the
spatial period �, i.e., the wavelength, by k D 2�=�. The solution is a standing
wave solution, since all points of the space are vibrating in phase (or in antiphase,
depending on the sign of the spatial solution): the phase is equal to ' or ' C� . They
are clearly distinguishable from traveling waves (1.112), which are not separable
into functions of space and time.

Complex Notation: Fourier and Laplace Transforms
If a quantity varies sinusoidally, for example, p.t/ D A cos.!t C '/, it is very
convenient to associate a complex quantity to it:

pc.t/ D aej!t , where a D Aej' . (1.114)

The interesting quantity is the real part of this complex quantity p.t/ D
<e Œpc.t/	. a is called complex amplitude. This simplifies all linear calcula-
tions, such as addition, scalar multiplication, derivation, and integration. For

(continued)

6Exponentially time-increasing or time-decreasing solutions may also exist if the constant is
positive (but this is rare). The case of complex values is treated in the following section.
Furthermore we can continue this operation by separating the variables of space. This will happen
several times in this book.
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example,

p1.t/ C p2.t/ D <e Œpc1.t/ C pc2.t/	 :

Thus we can use this method for the wave equation (1.111). Most often, the c
subscript is omitted because there is no confusion. The solution with separate
variables p.r; t/ D R.r/T.t/ can also be written using complex quantities.
It can happen that the constant ! is complex, thus the functions R.r/ and
T.t/ are complex (a complete problem must include the boundary conditions,
which are governing the possible values of the separation constant). For this
case there are no standing waves, as it can be easily verified by taking the real
part: the phase varies in space.

Looking for solutions with sinusoidal variation is usual. Therefore we use
a complex formulation, with a time dependence in exp.j!t/. This means that
we look for particular solutions, related to the time variation of the source.

This search for particular sinusoidal solutions should be distinguished from
the search for general solution using a Fourier transform. For the latter, we
will choose the definition:

P.r; !/ D
Z C1

�1
p.r; t/e�j!tdt; with (1.115)

p.r; t/ D 1

2�

Z C1

�1
P.r; !/ej!td!: (1.116)

In these expressions, p.r; t/ is the real physical general solution, which
implies P.r; �!/ D P�.r; !/. Thus, if the pressure at one given point is
p.t/ D a cos.!0t C '/, we have

� P.!/ D .a=2/ Œı.! � !0/ exp.j'/ C ı.! C !0/ exp.�j'/	 ; (1.117)

* where ı is the delta function. Recall that, for any function g.x/, and for any
interval Œa; b	 including the origin, the delta function satisfies

Z b

a
g.x/ı.x/dx D g.0/:

For example, the wave equation (1.111) without sources becomes, in the
Fourier domain, the Helmholtz equation:

�
� C k2

	
P.r; !/ D 0:

For initial values problems, we also use the Laplace transform, where s D

 C j! has a positive real part:

(continued)
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P.r; s/ D
Z C1

0

p.r; t/e�stdt with (1.118)

p.r; t/ D 1

2� j

Z j1C"

�j1C"

P.r; s/estds: (1.119)

As a reminder, the derivation rules for this transform are

If f .t/ ! F.s/, then f 0.t/ ! sF.s/ � f .0/ and f 00.t/ D s2F.s/ � sf .0/ � f 0.0/:

(1.120)

1.3 Energy, Intensity, and Power

In this section, two simple examples are treated in parallel: the vibrating string and
the acoustic waves, in order to emphasize some interesting analogies.

1.3.1 Example of the Vibrating String

We consider an ideal homogeneous vibrating string without external source. In view
of the results presented in Sect. 1.1.2, the equation of motion is written:

�
@2�

@t2
� T

@2�

@x2
D 0 : (1.121)

An energy-based formulation of the problem is obtained by multiplying this
equation by the speed v D @�

@t and integrating the resulting expression over the
entire length of the string. After an integration by parts, we find

Z L

0

�
@2�

@t2
@�

@t
dx C

Z L

0

T
@2�

@x@t

@�

@x
dx C

�
�T

@�

@x

@�

@t

�L

0

D 0 (1.122)

The first two integrals in (1.122) correspond to the time variation of the total energy
E D Ec C Ep of the string, where
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8̂̂
<̂
ˆ̂̂:

Ec D
Z L

0

ec dx where ec D 1

2
�

�
@�

@t

�2

;

Ep D
Z L

0

ep dx where ep D 1

2
T

�
@�

@x

�2

:

(1.123)

In these expressions, ec is the kinetic energy per unit length and ep the elastic
potential energy per unit length. For the total energy per unit length, e D ec C ep,
Eq. (1.122) is simply rewritten as:

Z L

0

@e

@t
dx C

�
�T

@�

@x

@�

@t

�L

0

D 0; (1.124)

which can be alternatively formulated in the form:

Z L

0

�
@e

@t
C @

@x

�
�T

@�

@x

@�

@t

��
dx D 0 : (1.125)

The quantity ˘ D �T @�

@x
@�

@t has the dimension of an instantaneous power at point

M with abscissa x. It is the product of the force f D �T @�

@x by the velocity @�

@t of
the string at point M. For a wave traveling to the right, this power is imparted to the
points situated at the right-hand side of M (see Fig. 1.14).

Finally, the fact that the integral in (1.125) vanishes implies that we can write at
any point:

@e

@t
C @˘

@x
D 0 : (1.126)

Equation (1.126) is a classical example of conservation law. It links the time
variation of a density (here e) to the spatial variation of a flow (here ˘ ). This
equation shows that wave propagation corresponds to a continuous energy transfer
from one point to another in the medium.

–T
∂ξ

∂ξ
∂x

∂t

c

Fig. 1.14 Energy transfer on a string
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1.3.2 Example of Linear Acoustic Waves

In linear acoustics, writing an equation for energy as a corollary of linearized
equations is questionable, since the goal is to calculate quantities of order 2.
However, it can be shown from the non-linearized equations that the following result
is correct. Using (1.109) and (1.110), the quantity div.pv/; can be calculated. Since
div.pv/ D pdiv.v/ C v:gradp, we obtain

div I D � @

@t
ŒE	 C pq C �v:F, (1.127)

where I D pv ; E D 1

2



�sp

2 C �v:v
�

: (1.128)

The quantity E is the total energy per unit volume: it can be shown that Ep D
1
2
�sp2 is the potential energy density, and Ec D 1

2
�v:v the kinetic energy density.

The vector I D pv is the acoustic intensity. It is connected to the power per unit area
by dP D I:ndS, where n is the unit vector in the velocity’s direction.

By integrating on a volume V and using the divergence theorem, Eq. (1.127) can
be interpreted as follows: the power

’
S pv:dS going out the volume V through the

surface S is equal to the total energy decrease in the volume added to the power
supplied by sources. In periodic regime, averaged over a period, the term containing
E vanishes (the average of the time derivative of a periodic quantity is zero), and in
the absence of a source, the average outgoing power is zero. This is due to the fact
that we assume the system to be conservative.

1.3.3 Power and Impedance

1.3.3.1 Instantaneous and Average Acoustic Power: Acoustic Impedance

With the previous definition of the acoustic power, we consider the instantaneous
power through the surface of area S in harmonic regime: P D Sp.t/v.t/ D p.t/u.t/,
where u.t/ D Sv.t/ is the flow rate. We assume that the pressure and velocity
are uniform on this surface, and that pc.t/ D A exp j.!t C '/: With the complex
variables, we define also the acoustic impedance Z D pc=uc and the acoustic
admittance Y D uc=pc; thus and uc D Ypc: We get

u.t/ D <e Œuc.t/	 D <e


YAej!tC'

� D A<e.Y/ cos.!t C '/ � A=m.Y/ sin.!t C '/;

and the instantaneous acoustic power is written as follows:

P D p.t/u.t/ D Pm C 1

2
A2 Œ<e.Y/ cos 2.!t C '/ � =m.Y/ sin 2.!t C '/	 :

(1.129)
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The term Pm D 1
2
A2<e.Y/ is the power averaged over a period. The second term,

of zero mean value, is called “fluctuating power,” as the system restores during a
half-period the energy it has received in the previous half-period.7

In complex notation (see Sect. 1.2.5 ), the calculation of quadratic quantities turns
out to be rather tricky. However, in practice, as previously, we often calculate the
average values of some variables over a period T , only. The general result for two
variables p1 and p2 is

1

T

Z T

0

p1.t/p2.t/dt D 1

2
<e



pc1.t/p�

c2.t/
� D 1

4



pc1.t/p�

c2.t/ C p�
c1.t/pc2.t/

�
;

where � is the conjugate quantity. With these expressions, we can write the most
useful formulas:

Pm D 1

2
<e.pcu�

c / D 1

2
jucj2 <e.Z/ D 1

2
jpcj2 <e.Y/ (1.131)

1.3.3.2 Power Supplied to a Passive System

• The power is either provided to a system, or provided by this system, depending
on the sign of the real part of the impedance (resp. admittance). Consider a simple
example in mechanics: a force f is applied to a passive system, it performs the
mechanical work f:x, where x is the displacement of the system. The generated
power, i.e., the work per unit time, is therefore f:v. This scalar product is equal
to the provided power, which is also the power dissipated in the passive system,
and it is, by definition, positive.

• By convention we define the impedance as the ratio of a quantity providing
energy to a quantity characterizing a passive system (we can see that if we choose
the reaction force of the passive system on the excitation, equal to �f, we would
have a definition leading to a negative real part for the impedance). An example
of such a system is a volume of air excited by a vibrating wall: the definition of
the impedance is the ratio between the force applied by the wall on the air and
the velocity (either of the wall or of air, because these velocities are identical
for a perfectly reflecting wall). The opposite convention would be to use the
force exerted by air on the wall. If the passive system is not dissipative, i.e.,
conservative, the impedance is purely imaginary.

7The average power Pm is also called active power. A “reactive” power is also defined by

Pr D 1

2
=m.pv�/ D � 1

2
jpj2 =m.Y/ D 1

2
jvj2 =m.Z/: (1.130)

We choose arbitrarily its sign, which will be positive or negative depending on whether the system
is dominated by stiffness or mass (we do not go further here, because the chosen quantities are
formal).
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Fig. 1.15 Acoustic pressure
force

S

p
i

F = Spi

• A special case is that of the force of acoustic pressure, because pressure is a scalar
quantity. Let us consider a passive surface S on which the pressure p is applied
(see Fig. 1.15). We choose, by convention, to define the specific impedance as
p=v, where v is the projection of the velocity onto the normal to the surface in the
direction of the force due to the pressure (and the acoustic impedance as p=.Sv/).
We see that this convention is consistent with the previous choice. It is also the
case for the input impedance of a wind instrument: as the resonator is passive, if
a pressure is applied at its input, the input impedance of the resonator is always
defined by choosing the velocity projection along the axis directed towards the
exit of the pipe.

1.3.3.3 Standing Waves

In sinusoidal regime, for the complex quantity corresponding to a standing wave,
we can write: pc D f .r/ exp.j!t C '/, where ' does not depend on the spatial
dimension. Using the Euler equation (1.110), we derive that the velocity is in phase
quadrature with the pressure, since @=@t D j!. Therefore, the impedance is purely
imaginary for the three velocity components, thus the admittance vector Y D v=p
is purely imaginary, and the average acoustic intensity over a period is zero in all
directions. It is noticeable that standing waves do not carry any energy averaged
over a period. It is (almost) the case for the oscillation of the air column of a wind
instrument or, similarly, for the vibration of a string.

1.4 Sources in Musical Acoustics: Excitation Mechanisms

In the previous sections, a number of differential equations were written to describe
the structures used in musical instruments. To use them, we must know the sources,
which can be introduced either in the differential equation itself, such as for Eq. (1.9)
or Eq. (1.111), or in the boundary and initial conditions. In this section, some type
of sources found in musical acoustics are presented.
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1.4.1 Generalities About Sources and Types of Oscillations

To build a model, we need to consider that one or more physical quantities are
imposed in a region of space and time, and that they are insensitive to the medium
in which they are imposed. These quantities play the role of sources, or generators.
Thus in a linear circuit, it is often assumed that one can impose a voltage (possibly
with an internal impedance, according to Thevenin and Norton’s theorems). All
quantities in the circuit are proportional to the magnitude of this source. The power
supplied to the circuit depends on the circuit, i.e., on the impedance viewed at the
source. Thus a source term not only implies a notion of imposed magnitude, but also
a notion of supplied power.

In musical acoustics, we have to consider sources that produce oscillations and,
in turn, sounds. Different types of oscillations can be encountered:

• The oscillations are linear if the result is proportional to the cause, or, in
case of multiple causes, if the result is a linear combination of these causes
(superposition principle). If a source is sinusoidal, a result proportional to the
cause is also sinusoidal with the same frequency. Otherwise, the oscillations are
nonlinear.

• Oscillations are free after extinction of the sources, and are forced during
application of the sources.

Musical instruments enter into two main categories:

• Instruments with a transient excitation, followed by free oscillations. In this case,
the sound usually lasts longer than the excitation: this is the case for percussion
and string instruments, except for bowed strings. For these instruments, the free
oscillations can be either linear or nonlinear (piano, timpani, cymbals,. . . ). The
excitation is produced by means of an impact (hammer, stick, and mallet), or a
pluck (plectrum and finger).

• Instruments with a continuous excitation, which is often constant or slowly
varying. Oscillations arising from a constant or slowly varying excitation are
necessarily nonlinear, and are called “self-sustained oscillations.” This is the
case for bowed string instruments excited by a continuous bow-string friction
process, and for all wind instruments, where the excitation is the result of jet–
edge interaction (flute-like instruments) or air–structure interaction (vocal folds,
lips, and reed).

Some constitutive parts of an instrument can be regarded as steady-state oscil-
lating sources generating forced oscillations: a string fixed at the bridge of a
soundboard (or soundbox), for example, acts as a source of oscillations for the
board. Such a source generally has a low internal impedance, which means that
the string transmits to the board the force developed at the point of coupling,
almost entirely. Conversely, the soundboard (or soundbox) is an oscillating source
that induces forced oscillations to the surrounding air. This source is generally
of high internal impedance: the board transmits its velocity to the ambient fluid.
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For wind instruments, the air in the pipe plays the same role for the external air
as the soundboard. It can be assumed, especially at low frequencies, that the flow
produced at the holes is not affected by radiation.

For most models expressed in the form of differential equations, such as acoustic
waves, source terms appear in the right-hand side of the conservation equations. In
some cases, however, the sources are included in the boundary conditions, or even in
initial conditions. In a number of cases, both formulations are equivalent. A simple
example is the one of a plucked string released from its initial position at the origin
of time: the problem can be either treated as an initial value problem, or as a problem
with a second member that contains a plucking force (see Chap. 3).

1.4.2 Acoustic Sources

1.4.2.1 Flow Source

Equations (1.109) and (1.110) show two types of acoustic sources, referred to as
sources of type 1 (flow sources) and type 2 (force sources). We will reexamine
these concepts in Chap. 12 devoted to radiation in free space. Let us now illustrate
Eq. (1.109) with the example of a vibrating body that imposes its velocity to the fluid
(at rest). One can imagine the membrane of a small loudspeaker, with displacement
�.t/, acting at a given point a in space. This loudspeaker is assumed to be a point-
source, which means in practice that its dimensions are much smaller than the
wavelength (see the following Sect. 1.5). The speaker is located in an enclosure, to
avoid a short-circuit between both sides of the membrane. In three dimensions, the
speaker can be viewed as a “pulsating” sphere, radiating uniformly in all directions
(see Fig. 1.16 ).

This source, which is well-known in acoustics, is obviously an idealized object,
only conceivable in “thought experiments.” The displacement per unit volume is
�.t/ı.r � a/, where ı is the Dirac delta function (integrating this quantity on any vol-
ume yields �.t/). Consequently, the velocity per unit volume is ı.r � a/@Œ�.t/	=@t,

Fig. 1.16 “Punctual”
speaker, located in an
enclosed space, radiating:
(a) in free space; (b) in a pipe

a b
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and the flow per unit volume is q D Smı.r � a/@ Œ�.t/	 =@t; where Sm is the
membrane area.8

• Let us now turn back to wind instruments, assuming a cylindrical cross-section.
The elementary acoustic solutions are plane waves. We put the little speaker on
the side of the pipe (Fig. 1.16), and we study the case of a sinusoidal excitation
with angular frequency !. A flow us.t/ D Sm @ Œ�.t/	 =@t D Smj!� is produced,
at point x D a. For a pipe of cross-section S, the projection of the velocity vectors
on the x axis yields

us D S Œvx.x C dx/ � vx.x/	 D S


vx.a

C/ � vx.a
�/

�
: (1.132)

It is assumed further that the speaker does not disturb the pressure field, which
remains plane and continuous at the position of the speaker (this question will be
discussed in more details in Chap. 7 with regard to the effects of side holes). The
law of dynamics: dp=dx D �j!�vx (1.110) applies here. Therefore, the pressure
p is continuous at position x D a whereas its derivative is discontinuous. This
gives for the wave equation:

d2p

dx2
C !2

c2
p D � j!�

S
usı.x � a/: (1.133)

(We can verify this result by integrating this equation between a� and aC: it
is the discontinuity of the derivative that brings the Dirac delta function on the
right-hand side).

• If we now return to an arbitrary dependence in time us.t/, we obtain

@2p

@x2
� 1

c2

@2p

@t2
D ��

S

dus.t/

dt
ı.x � a/: (1.134)

This is consistent with what was obtained in three dimensions. The presence
of the cross-section S here is a consequence of the unidimensional character of
the Dirac delta function which is inversely proportional to a length, and not to
a volume. We can imagine a practical illustration by considering the key of an
instrument with side holes that are instantaneously closed. The flow is almost a

8Assuming a given function of time for the displacement, the source term in Eq. (1.111) is
entirely known. A “realistic” simple function is, for example, hH.t/, where h is the amplitude
and H.t/ the unit step function (or Heaviside step function). In practice, this means that the
membrane is suddenly moved, then blocked. In this case, the source term in (1.111) becomes
��hSmı.r � a/@ Œı.t/	 =@t, since ı.t/ is the derivative of H.t/. In the next chapters, a particular
case of elementary source called Green’s function, where the source is written ı.r � a/ı.t � t0/,
will be examined in details. To achieve it in our “thought experiment,” the velocity should be a
step function, and therefore, the displacement should increase indefinitely, which is not realistic!
Another way to obtain this Green’s function is to write the acoustic wave equation in terms of
velocity potential [see Eq. (1.105)]. In this latter case, the source term becomes hSmı.r � a/ı.t/.
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pulse, but as the closure is not instantaneous, the pulse is not perfect. However,
we clearly hear a sound with definite pitch.

Since we impose a displacement, we can also consider a problem without a
source, but rather with imposed boundary conditions.9 Several problems exist with
imposed flow, or rather with flow function us D F.p/ of the pressure, particularly
for reed instruments. At the origin of the transients, this function is linear, and we
can write us D F0 C Ap. Since we are interested in the derivative only, the source
term is written � �

S Apı.x � a/. As the oscillation starts, growing exponentially, the
source must provide energy, and the coefficient A must be negative. Otherwise, it
would not be a source, but a dissipating system.

1.4.2.2 Relation Between Applied Force and Acoustic Force Strength

What happens if the membrane of the speaker, which is now supposed to be free on
both sides, is set perpendicular to the pipe, thus preventing any continuous flow? It
exerts a force f on the fluid, which has to be balanced by the pressure. By projecting
this force on the x-axis, we obtain

f C S


p.a�/ � p.aC/

� D 0 :

With an imposed force, we obtain a source of pressure difference and not the
difference of its derivative. We can write an expression similar to (1.134), by
interchanging the roles of pressure and velocity, i.e., by using the conservation of
mass instead of Euler equation:

@2vx

@x2
� 1

c2

@2vx

@t2
D ��S

S

df .t/

dt
ı.x � a/:

Taking the derivative of both terms with respect to x, and integrating with respect to
time, we get

@2p

@x2
� 1

c2

@2p

@t2
D 1

S
f .t/

d

dx
ı.x � a/: (1.135)

In Chap. 10, it will be shown that the production of sound in flute-like instruments
can be represented by such an aeroacoustical force strength.

9A wave equation or a boundary condition including a source is called heterogeneous. It can
be shown that it is always possible to transform a heterogeneous boundary condition into a
homogeneous one by changing the wave equation.
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F

F

Fig. 1.17 (Left) A piano hammer (© Itemm). (Right) Interaction between an exciter and the
vibrating system. Example of the piano hammer. As a result of the motion of the key pressed
by the pianist, the hammer strikes the string(s) and transmits a force F that depends on time and
impact velocity. According to the principle of action and reaction, the string exerts an equal and
opposite force that leads to push the hammer back after an interaction time of a few milliseconds

1.4.3 Transient Mechanical Excitation

We describe here the transient vibrations of strings and percussion instruments
subjected to impact or friction (plucking). During such transients, the energy of the
exciter is transmitted to the vibrating system during a finite duration. In this time
interval, the interaction between the exciter and the system can be rather complex
and it is generally not possible to ignore the reaction of the structure on the exciter.
In the case of the piano, for example, the impact force is not imposed: it is the result
of the temporal evolution of the strings in contact with the hammer (see Fig. 1.17).

1.4.3.1 Friction and Plucking

Transient excitation by friction, or plucking, occurs in plucked string instruments
such as guitar, lute, harp or harpsichord. In most works, the plucking action is simply
viewed as an initial condition for the displacement of the string (see [45]). This
model provides a first approximation of the spectral content of the free vibration of
the string. However, it does not account for the interaction with the exciter or the
player. This initial stage is essential since it contributes to determine the timbre of
the produced sound. Auditory experiments performed with recorded sounds where
the initial transients are truncated show that the listeners are not able to recognize the
instruments anymore. Some elements to consider for a better physical description
of the plucking are given below.

• The string is moved from its initial position by a force localized on a small portion
of the string, that we can write as F.x; t/ D F.t/ı.x�xo/. As long as the frictional
force exerted by the finger (or plectrum) on the string remains below a given
threshold FM , it stays stuck to the exciter: this corresponds to the stick phase.
The amplitude of F then continues to increase and is balanced by the restoring
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force resulting from the angle formed by the two sides of the string on both sides
of the exciter. During this phase, the motion of the string might contain a torsional
component.

• When the restoring force reaches the threshold FM , then the string slides under
the finger and begins to produce free oscillations. During this slip phase, which
is relatively short compared to the stick phase, the finger (or plectrum) is likely
to introduce a damping which decreases as the relative velocity between exciter
and string at the contact point increases. We will find again such a succession
of stick and slip phases in the mechanics of the bowed string (see Chap. 11). In
the latter case, the essential difference follows from the fact that such transitions
occur repeatedly with a cadence that gradually synchronizes with the oscillation
of the string.

A detailed description of the excitation of a guitar string by the friction of
the finger was done by Pavlidou [43]. More recently, a similar model has been
developed for a plucked harp string [14, 15, 34]. We briefly recall here some
principles of the Pavlidou model. The two transverse polarizations and torsional
waves are taken into account on the string. We also consider the motion of the
bridge at one end. The tension T of the string is assumed to be constant during
the motion. The finger model first includes a muscle, represented by a nonlinear
spring with a spring force S.�/ which is a hyperbolic function of its elongation �

(see Fig. 1.18) written as:

S.�/ D

8̂̂
<̂
ˆ̂̂:


1�


2 � �
for 
2 > � � 0;


1�


2 C �
for � 
2 < � < 0;

(1.136)

where 
1 and 
2 are constants derived from experimental measurements. The
model also includes the upper part of the finger, considered as a lever arm with
a speed imposed by the guitarist, and the nail, circular, in direct contact with
the string. The interaction with the pulp of the finger is not considered here (see
Fig. 1.19).

During the three phases of the motion, the model is obtained by considering:

1. During the stick phase: (a) the translational motion of the string element
interacting with the exciter, (b) the rotational motion of the fingertip, (c) the
rotational motion of the string element, and (d) the relative velocity between
string and finger.

2. During the slip phase: the friction coefficient � depends on the relative velocity
Vrel between string and nail. Typically, such a function is of the form (see
Fig. 1.20):
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ξ

S

0

Fig. 1.18 Force-elongation diagram of a muscle (from Pavlidou [43])

Articulation

Finger

String

Muscle

Articulation

Fig. 1.19 Finger model (from Pavlidou [43]). This diagram shows the two last phalanges of the
finger. The last one is in direct contact with the string, and its motion is guided by both the
articulation and muscle that connect it to the upper phalanx

� D

8̂̂
<
ˆ̂:

.�V0�s � �dVrel/

Vrel C V0

for Vrel > 0;

.V0�s � �dVrel/

V0 � Vrel
for Vrel < 0 :

(1.137)

In this equation �s is the static friction coefficient, �d the dynamic friction
coefficient, and V0 the initial velocity of the finger impacting the string. A similar
model accounts for the friction of the rosin on a violin bow (see, for example,
[50], and Chap. 11 of this book). For more information on friction models, the
reader can refer to [1].
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Fig. 1.20 Friction model during the slip phase

Fig. 1.21 String–plectrum
interaction force of a
harpsichord note

0 0.02 0.04 0.06

Force (N)

2.0

1.5

1.0

0.5

t(s)

3. During the free oscillations: the motion of the string is completely defined by
three equations (two transverse polarizations and one torsional oscillation) with
initial conditions obtained from the equations of the stick phase.

Giordano and Winans measured the string–plectrum interaction force for a
harpsichord string (see Fig. 1.21). They showed a gradual increase of the force
during the stick phase followed by a rapid decrease during the slip phase [24].
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For plucked strings, there is an average rise time of about 20 ms followed by a
rapid decrease (<1 ms), after which the free oscillation starts. Systematic variations
of interaction parameters show that the sound quality primarily depends on the
following properties:

• The characteristics of the finger-string friction, mostly during the slip phase. This
mainly affects the relaxation phase.

• The elastic properties of the finger muscle.
• The input admittance of the string at the bridge. This admittance affects the

transmission rate of energy from string to soundboard. The reaction force exerted
by the string on the exciter depends on this rate: the player says that he “feels”
his instrument under his finger.

• The initial direction of the finger motion (angle of attack). This parameter affects
the initial polarizations of the string that are coupled at the bridge [32].

Finally, the plucking velocity primarily affects the amplitude of vibration (and
sound), and weakly the timbre, as long as the assumption of linear vibrations of
the string is valid.

1.4.3.2 Elastic Hertzian Impact

Impact excitation concerns the piano and almost all percussion instruments. Musical
experience shows that the sound produced depends, among other things, on the
properties of the exciter: the thickness of the felt varies among the piano hammers,
and timpani mallets show a large variety of rigidity (see Fig. 1.22). The head of
xylophone mallets also differs from each other in terms of weight and stiffness. To
be convinced of the relevance of exciter properties, just look at percussionists in an
orchestra: they change their sticks and mallets several times during a performance.

Fig. 1.22 Examples of
kettledrum mallets. They
differ from each other
through the stiffness of the
felt and the elasticity of the
stick
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Fig. 1.23 Contact between
an elastic sphere and an
infinite rigid plane. The
quantity ı indicates the
compression of the sphere,
which represents its change in
thickness consecutive to the
impact

d

During the impact, an interaction force is generated between the impactor and
the struck structure, as a result of the deformation of both elastic solids in contact.
Historically, the first theory of contact between two semi-infinite elastic solids is
due to Hertz and was published in 1882 [29]. This theory predicts, in particular, the
stress distribution in the contact area. One of the most famous result of this theory
is the expression of the interaction force F:

F D Kı3=2; (1.138)

where ı is the compression or, in other words, the summation of strains on both
surfaces (see Fig. 1.23), and K is a constant which depends on both the curvature
and elastic coefficients of the solids. This constant is given by [33]:

1

K
D 3

4

�
1 � �2

1

E1

C 1 � �2
2

E2

� s
1

R1

C 1

R2

D 3

4

1

Eeq

1p
Req

; (1.139)

where E1 and E2 are the Young’s moduli, �1 and �2 the Poisson’s ratios, R1 and R2

the radii of curvature of the solids at the contact point. The quantities Eeq and Req

are equivalent Young’s modulus and radius, respectively, often used to simplify the
formula.

The formula (1.139) can be applied to the case of a sphere impacting an infinite
rigid plane, as R2 ! 1. If, in addition, E1 	 E2, which means that the impactor is
significantly more rigid than the impacted surface. As a consequence, the coefficient
K becomes

K D 4

3

E2

1 � �2
2

p
R1 in N m�3=2 : (1.140)

In other words, the softer solid imposes the main properties of the impact.

• Hertz’s contact theory remains valid as long as the dimensions of the contact
area remain small compared to both the dimensions of the solids and radii of
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curvature. It does not predict good results for head materials subjected to large
deformations as, for example, rubber (see [16]). Hertz’s theory also ignores the
effects of inertia and elastic waves in the media in contact. However, if the contact
time is small compared to the period of the studied phenomena, this theory
reasonably accounts for experimental observations, which explains its wide use.

Pulse Duration and Maximum Impact Force

Based on Hertz’s law, an estimation for both the pulse duration and maximum of
the impact force can be derived. If V0 is the initial velocity of the impactor on the
solid surface at rest, and denoting mr D m1m2=.m1 C m2/ the reduced mass of the
two solids, the conservation of the total energy of the system (without dissipation)
is written [33]:

1

2
mr

Pı2 C 2

5
Kı5=2 D 1

2
mrV

2
0 : (1.141)

The maximum of the compression is obtained when Pı D 0, which provides

ıMax D
�

5mr

4K

�2=5

V4=5
0 : (1.142)

The duration � of the force impulse is obtained by integrating (1.141):

� D 2

Z ıMax

0

dıs
V2

0 � 4K

5mr
ı5=2

D 2

�
25m2

r

16K2V0

�1=5 Z 1

0

d�p
1 � �5=2

; (1.143)

which yields finally:

� D 3:218

�
m2

r

K2V0

�1=5

: (1.144)

Equation (1.144) shows, in particular, that the pulse duration only weakly
depends on the impact velocity. This result is in agreement with measurements made
on a large number of mallets [11]. From an experimental point of view, the constant
can be derived K from measurements of the maximum impact force and pulse width
using Eqs. (1.138), (1.142), and (1.144). We find

K D 35:4
1

�3

s
m3

r

FMax
: (1.145)
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1.4.3.3 Empirical Generalization of Hertz’s Law

Since Ghosh in 1927 [22], several authors proposed a generalization of Hertz’s law
for piano hammers, on the form:

F D Kıp; (1.146)

where the superscript p is between 2.0 and 4.0 approximately [26]. This expression
has been also used for modeling the impact of timpani mallets [46]. The power
law (1.146) is essentially empirical and is not based on an accurate analysis of
stress and strain, in contrast with Hertz’s law. This expression fairly accounts for
the compression of the felt (a porous material) wrapped around the wooden tip. It
offers the practical advantage to identify experimental force-compression laws with
two parameters only.

1.4.3.4 Impact with Dissipation

In practice, the contact force is not purely elastic. Due to their rheological properties,
hammer and mallet materials are subjected to internal dissipation. Moreover,
impacts can be strong and lead to additional dissipation due to plastic deformation.
We can, for example, easily observe proofs of impacts on wooden xylophone bars.

Viscous Dissipation

N.B. In this section, plastic deformation is ignored.
As a consequence of viscous dissipation, the force-deformation curve F.ı/ shows

a hysteresis loop (see Fig. 1.24). This loop is due to the viscoelasticity of the
material, a “memory effect” which produces a relaxation (decrease) of stress over
time after application of strain. The first attempt to extend Hertz’s law to viscoelastic
media was made by Pao [42]. His theory leads to a modified expression of the form:

F D F0

�
ı3=2 �

Z t

0

�.� � t/ı3=2.�/d�

�
; (1.147)

where �.t � �/ is a relaxation function which can be represented by a sum of
exponentials. This expression was revisited by Stulov [53] for piano hammers:

F D F0

�
ıp � "

�o

Z t

0

exp

�
� � t

�o

�
ıp.�/d�

�
; (1.148)

where " is a dimensionless coefficient that reflects the hysteresis area, i.e., the energy
lost per cycle, and where �o is the relaxation time. In the case of piano hammer felt,
�o is approximately 1–2 ms.
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Fig. 1.24 Force-compression curve for a dissipative mallet with hysteresis loop. Solid line:
experimental curve; dotted line: differential model (1.149)

For piano and percussion instruments, the contact pressure on the felt is applied
relatively slowly, since the impact velocities do not exceed 5 m/s. This allows
writing F 	 �o

dF
dt . Calculating dF

dt from (1.148), we find

Ftot ' F C �o
dF

dt
D K

�
ıp C R

dıp

dt

�
; (1.149)

where K D F0.1 � "/ is the stiffness coefficient and R D �o
1�"

the coefficient of
viscous dissipation. The differential formulation (1.149) has been used in models
of piano and drums [31]. An estimation for the coefficient R can be obtained by
energetic considerations [17]. This differential expression is simpler to use than
the integral formulation (1.148), though it remains valid for medium or low impact
velocities only. Figure 1.24 shows a comparison between an experimental curve and
a differential model of type (1.149) for a timpani mallet.

Plastic Strain

By definition, a plastic solid shows stable residual strains, after cessation of the
excitation. This behavior does not depend explicitly on time (see, for example,
[38]). For an elastic, perfectly plastic solid, strain " is linear (and characterized
by a Young’s modulus E) below the yield stress (or threshold) of plasticity 
s.
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Fig. 1.25 (Left) Behavior law for an elastic perfectly plastic solid. (Right) Behavior law for an
elastoplastic solid

The stress then remains constant as " increases above 
s=E. As the stress then
decreases, another curve is drawn, distinct from the linear part, showing a permanent
deformation "p at 
 D 0 (see Fig. 1.25).

In the case of an elastoplastic solid, the stress continues to increase beyond the
threshold of plasticity 
s, generally in a nonlinear manner with respect to ". Again,
we note the existence of a permanent deformation after cessation of the loading (see
Fig. 1.25).

In the case of contact between two spheres, Johnson showed that the impact
becomes plastic when the average pressure between the two solids is about pm D
1:1
s [30]. From this property, this author deduced that the velocity of contact above
which plastic deformations are likely to occur is about Vl D 0:14 m s�1 for a steel of
medium hardness and Vl < 0.08 m s�1 for aluminum. The important point indicated
by these values is that plasticity is present in most of the common impacts, even at
low speed. For an impact between two solids made of the same material of density
�, with a threshold of plasticity 
s and for which the the relative velocity of impact is
V , the following table, due to Johnson [30], provides a good order of magnitude:

• �V2


s
< 10�6 ! elastic behavior.

• 10�6 <
�V2


s
< 10�3 ! elastoplastic behavior

• 10�3 <
�V2


s
< 10�1 ! perfectly plastic behavior.

One effect of plasticity is that the force-compression curve again shows a
hysteresis loop (see Fig. 1.26).

This curve shows a maximum at point A (of coordinates Fc; ıc). We see that
there is a non-zero residual deformation ıp as the interaction force equals zero,
corresponding to the situation where the two solids move away from each other
(point B on the curve). As a consequence, the energy restored during the decrease
of the force, which corresponds to the area below the curve AB, is less than the
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Fig. 1.26 Force-compression
curve for an impact between
two elastoplastic solids.
From [54]

Elastoplastic
solid

Hertz's law
(elastic solid)

A

B

0

F(N)

Fc

δcδp δ(mm) 

energy stored during the impact, corresponding to the area below the curve OA. The
restitution coefficient is the ratio between these two energies. It is less than unity for
a plastic impact.

Several formulations were proposed to extend Hertz’s law to elastoplastic or
perfectly plastic case. Stronge [52] suggests to model the loading curve OA using
Hertz’s law, and the unloading curve AB with an equation of the form:

F D 4

3
Eeq

q
R�

eq.ı � ıp/3=2: (1.150)

where R�
eq is a curvature radius greater than Req, due to plastic deformation.

Vu-Quoc and Zhang developed a numerical model of impact between two
elastoplastic spheres whose central idea is based on the decomposition of the contact
radius into an elastic part and a plastic part [54]. The detailed presentation of this
theory is beyond the scope of the present book. The results show that this model is
able to predict the variations of the coefficient of restitution with the impact velocity
accurately. This represents a significant advance over previous models in the sense
that most of the parameters of this model can be directly related to material and
geometric properties of the solids. Impact modeling still remains an open field of
study, especially in the field of granular media.

1.5 Lumped Elements; Helmholtz Resonator

Having established the differential equations and discussed about the sources, we
study a very particular case, usually encountered at low frequencies. Under certain
conditions, the acoustic wave equation can be simplified. Leaving aside the sources
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in (1.111), there are conditions for which the term containing the time derivative
(of order two) of the pressure is very small compared to that containing the spatial
derivative. To establish these equations we make a dimensional analysis, assuming
that there is a length L and a time � by which we make dimensionless distance and
time. If we note these quantities x, y, z, t, we get

@2p

@x2
C @2p

@y2
C @2p

@z2
D .He/2 @2p

@t2
;

where He D L
c�

is the Helmholtz number, which is mostly written with an angular
frequency ! D 1=� :

He D !L

c
D kL D 2�L

�
; (1.151)

where � is the wavelength. We see that at the limit of low frequencies, spatial
variations become predominant and we can solve the Laplace equation �p D
0, valid for an incompressible (not viscous) fluid. This occurs particularly near
singularities such as the open end of a pipe, when considering only a “compact”
area, i.e., an area of dimensions small compared to the wavelength c=!: such a zone
is called “lumped zone.” In fact we can go a step further by examining the two first
order equations involving pressure and velocity, (1.109) and (1.110).

• In Eq. (1.109) without right-hand side, the time-derivative term becomes very
small under the following conditions: at low frequencies—in fact at low
Helmholtz number, as it has been seen—or if the pressure is small, which
also occurs near the end of a pipe, or if the compressibility is low (the fluid is
close to incompressibility). Then, by integrating the term divv in the considered
zone, we see that the flow rate is zero. Thus, in one dimension, the incoming
flow rate is equal to the outgoing one, and it is the same for the velocity. The two
equations can be reduced to an acoustic “Ohm’s law” 10:

vx.x/ D vx.x C ıx/ D v I p.x/ � p.x C ıx/ D �.@vx=@t/ ıx D �c.@vx=@t/He :

(1.152)

• In the second Eq. (1.110), the time-derivative term becomes very small under the
following conditions: at low frequencies, if the velocity is small, or if the fluid is
very light (small �). This occurs in particular near a rigid wall, where the velocity
is zero, and, in turn, the term gradp is zero: the pressure is uniform in the

10The electroacoustic analogy called “acoustic impedance” associates acoustic pressure and
velocity to electric voltage and current, respectively. Ohm’s law states that between two points
the difference in one of the quantities is proportional to the other quantity.
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considered area, and using the divergence theorem, the total flow rate entering
the zone of volume V is equal to V�S@p=@t. In one dimension this gives the
second Ohm’s law11:

p.x/ D p.x C ıx/ D p I vx.x/ � vx.x C ıx/ D �S.@p=@t/ ıx D c�S.@p=@t/He:

(1.153)

• A physical system exists that combines these two effects: the Helmholtz res-
onator. It is made of a rigid cavity of volume V with a neck of length ` and
section S (see Fig. 1.27), the neck being open onto a large space imposing a low
pressure at the exit of the neck.

In order to model the resonator at wavelengths much greater than its dimensions,
taking the sources into account, we have to consider the connection between the
neck and the volume. Using again the divergence theorem, the flow rate u entering
the cavity, where the pressure is uniform pV , is written:

u D Ca@pV=@t � usource; (1.154)

Pv

Pv

Pv

Pv

Us

Ps Ps

Us

Ma
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Ca
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u
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Fig. 1.27 Helmholtz resonator: its behavior is that of a system with localized constants at its
resonance frequency. The volume of the cavity is V , the length and thickness of the neck are `

and S. We have: Ca D �SV and Ma D �`=S: The case shown on the top of the figure is that of a
flow rate excitation [first Eq. (1.156)], the lower one corresponds to a pressure excitation [second
Eq. (1.156)]

11We will encounter several times this concept of lumped-element systems. Notice that the finite
difference calculation (Sect. 1.7.1) is based upon the division of a continuous system into lumped
elements.
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where Ca D �SV is the acoustic compliance and usource D ”
V q.r; t/dV [see

Eq. (1.109)]. In the neck, the flow entering from outside is equal to the flow rate
u entering the cavity. As the transverse dimension of the neck is small compared
to the wavelength, we assume that the pressure is uniform (i.e., plane) in a slice of
fluid. We will see later (Chap. 7) how to connect the pressure at the exit of the neck
with that of the cavity. For now, we assume that they are equal. Using the equation
obtained above in one dimension, we derive

� pV D Ma
@u

@t
� psource: (1.155)

where Ma D �`=S is the acoustic mass and psource D pe C �
R

neck Fxdx: In this last
expression the incoming pressure is added to the acoustic force strength.

• We will see that the correct matching leads to the same equation with a modified
length ` (Chap. 7). We can then distinguish the two problems depending on
whether the source is a source of flow in the cavity or a source of pressure in
the neck, and write the second-order differential equations:

Ca
@2pV

@t2
C 1

Ma
pV D @usource

@t
and

Ma
@2u

@t2
C 1

Ca
u D @psource

@t
:

(1.156)

These equations are similar to those of electric circuits which are well known: if
we choose the “acoustic impedance” analogy (pressure, flow, mass and compliance
are analog of voltage, current, inductance, capacitance, respectively), the first
equation is that of an antiresonant circuit (mass and compliance in parallel), while
the second is that of a resonant circuit (mass and compliance in series). Of course,
we expect to find in these equations a derivative of order 1, associated with
damping. We will formally introduce damping in Chap. 2 to study the behavior of
these equations. However in most situations, damping is frequency dependent, the
modeling as a derivative of order 1 being a rough approximation.

Another way to model approximately an acoustic (or mechanical) system is to
calculate a modal expansion, and to truncate the modal series to the first mode, as it
is often done in this book.

1.6 Vibrating Strings-Sound Pipes Analogies

The analogy between longitudinal waves in solids and fluids is obviously very
natural. It is so true that the term analogy can be discussed. However, it is not really
useful in musical acoustics. As previously noticed, we are most often interested
in transverse vibrations of solids, mainly in 2D, while for the fluid we are mainly
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concerned with 1D and 3D models. We therefore limit this section to the analogy
between lumped elements (“0D”) and the analogy between vibrating strings and
sound pipes, considered as 1D systems. Notice that, in all cases, we choose a
pair of main quantities whose product gives the power, and whose ratio gives the
impedance. Thus the mechanical impedance is the ratio force=velocity, and the
admittance (or mobility) the inverse ratio. For a fluid, several pairs may be chosen.

• Let us start by lumped elements: we consider a fluid element of surface S moving
with a velocity v and subjected to a pressure force f D Sp, which are the
projection of vectors on the same axis. If we consider these two quantities, the
acoustic system appears to be a mechanical system. But this choice of basic
quantities is not the most useful for a main reason: as seen in Sect. 1.5, at the
junction between ducts, the conserved quantity is the flow rate u D Sv. This is
similar to the forces at the junction of several elementary mechanical elements,
such as springs, having an identical velocity. For joined ducts, we will show
that, at the lowest frequencies, the pressure is uniform. An important example
for wind instruments is the junction between the main pipe and the “chimney”
of a tonehole. Flow conservation at a junction is a major reason for which the
most used impedance for a fluid is the impedance called “acoustic impedance,”
based upon the equivalence between pressure p and velocity of a mechanical
system v, and between acoustic flow rate u D Sv and force f , respectively. We
consider here scalar quantities obtained by projecting a vector on an axis. Thus
the acoustic impedance12 is defined as the ratio pressure/flow rate Z D p=Sv.
Notice that the power through a section S of pipe is given by the product of these
two quantities, whatever the chosen pair .f D Sp; v/ or .p; u D Sv/.

• This analogy is presented in Table 1.1 for vibrating strings and sound pipes in
one dimension.13 We call it “reverse” analogy, because it reverses potential and
kinetic energies. However, it is the most useful in practice. It can be extended, in
particular, to continuous sources of self-sustained oscillations: velocity for bowed
strings, pressure for reed instruments. On the other hand, for flutes, because of
the nature of the source of self-sustained oscillations, it is preferable to choose
the direct analogy, where the pair (f ; v) matches the pair (p; Sv). For this reason,
Table 1.1 also mentions this analogy.

12Sometimes we will also use an acoustic impedance called specific defined by the ratio
pressure/velocity (see Sect. 1.2.4). This choice is convenient for some problems of unbounded
media, or for energy transmission between two media with different sound speed or density.
13This table has some specificity with regard to the dimensions. The quantity fext, for example,
is a force per unit length, whereas the quantity F in Eq. (1.110) is a force per unit mass. In
addition, the equation of vibrating strings is written in terms of velocity: this is rather unusual,
but it allows to easily highlight some analogies. Finally, the wave equations are written here for
a homogeneous medium, although we will have to deal with heterogeneous strings and horns, for
which the analogies remain valid.
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Table 1.1 Reverse and direct analogies for strings and pipes

Pipes (reverse
analogy)

Pipes (direct
analogy)Strings

Variable 1 f .x; t/ D
�T@�=@x D force
applied to the right
of x by the tension T
(towards the x > 0)

u D flow rate p D pressure

Variable 2 v D velocity p D pressure u D Sv D flow rate

Equation 1 @v

@x
D � 1

T

@f

@t

@p

@x
D � �

S

@u

@t

@u

@x
D �S�S

@p

@t

Equation 2 @f

@x
D ��S

@v

@t
C fext

@u

@x
D �S�S

@p

@t
C q

@p

@x
D

� �

S

@u

@t
C 1

S
fext

Source fext D external force
per unit length

q D flow rate per
unit length

fext D external force
per unit length

Parameter 1 T D tension S=� D cross-
section/density

1=�sS D
1=(compressibility �
section/

Parameter 2 �S D density �
cross-section

�SS D
compressibility �
cross-section

�=S D
density/cross-
section

Element 1 C D compliance
D 1=K (K D
stiffness)

Ma D �`=S D
acoustic mass

Ca D �SV D
acoustic compliance

Element 2 M D �`S D mass Ca D �SV D
acoustic compliance

Ma D �`=S D
acoustic mass

Wave speed c D p
T=�S c D 1=

p
��s c D 1=

p
��s

Ratio Y D mechanical
admittance D v=f

Z D acoustic
impedance D p=u

Y D acoustic
admittance D u=p

Wave characteristic
Yc D 1p

T�S
D

c=T

Zc D p
�=�SS2 D

�c=S
Yc D p

S2�s=� D
S=�c

Additional variable
� D displacement

D
Z

vdt

' D velocity
potential

D �
Z

p=�dt

volume
displacement

D
Z

udt

Wave equation
�S

@2v

@t2
� T

@2v

@x2
D

@fext

@t

S�S
@2p
@t2 � S

�

@2p

@x2
D

@q

@t

�

S

@2u

@t2
� 1

�sS

@2u

@x2
D

1

S

@fext

@t
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1.6.1 Note on the Definition of Impedances
for Forced Oscillations

A definition was given in Sect. 1.3.3.1 for the impedance in case of forced
oscillations. This concept can be slightly extended, considering a simple situation
with a point excitation of linear and sinusoidal forced oscillations, for example a
source of acoustic flow, so that we can define:

• a transfer impedance as the ratio of the pressure response P at a point b to the
flow source U provided at point a: Zt D P.b/=U.a/I

• a driving-point impedance as the previous quantity for the particular case a D b:
Z D P.a/=U.a/:

Of course, the inverse ratio is called admittance. When we use mechanical
quantities, both are vectors, so that impedance and admittance become matrices.
Similarly if there are multiple sources and multiple receivers, we can have an
impedance matrix, and if there are continuous sources and receivers, we have
an operator. These concepts are developed in Chap. 3 extensively.

Here we used the frequency domain. In the time domain, we would write
equivalent equations, for example:

p.b/ D bZ.t/ � u.a/;

where bZ.t/ is an impulse response, i.e., the inverse Fourier transform of the
impedance. If the impedance is a pressure response to a unit flow, the corresponding
impulse response is the pressure response to a flow pulse ı.t/. In addition, there are
other concepts of impedance:

• in the case of one-dimensional waves, the local impedance: we consider a pipe
excited by several sources, and a point a downstream the sources. The part
downstream of the point a is therefore passive. Then, the impedance Z D
P.a/=U.a/ at point a is determined by the characteristics of the downstream
medium, and has the same value as the impedance at the driving-point a. This is
the typical case of the input impedance of a wind instrument, and, by extension,
of the admittance matrix imposed by a soundboard or a sound box to the string.
This concept can be generalized to one or more dimensions, but it will not be
treated here.

• the impedance of an element: if between two points of a pipe a and b, the flow
rate u is constant, the pipe element has an impedance Z D ŒP.a/ � P.b/	 =U (we
can define something similar if the pressure is constant, see Sect. 1.5). Thus, in
the table of analogies 1.1, the impedances Z D j!M, Z D 1=j!C,. . . , correspond
to the impedances of a mass, the compliance of a spring, etc.
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1.7 Numerical Methods

Analytical methods for solving the wave equation will be presented in Chaps. 3
and 4. As this equation becomes more complex through addition of extra terms
(damping, stiffness, interaction with an exciter, etc.) which are needed to properly
model an instrument, then the use of numerical methods becomes necessary.

A detailed description of the numerical techniques used for solving partial
differential equations involved in models of musical instruments is beyond the
scope of this book. However, we find it useful to say a few words about two of the
most common techniques used, namely the finite difference and the finite element
methods. To introduce and illustrate the foundations of these methods, the simple
example of the ideal wave equation, without source terms, is selected. Emphasis is
put on time-domain numerical modeling. For more information on the application
of finite differences to simulations in musical acoustics, one can refer to the book
by Bilbao [10].

1.7.1 Finite Difference Methods

In order to illustrate the use of finite difference methods we discuss the typical
example of the wave equation where the initial conditions are given in explicit form.
The objective is to solve the following system numerically:

8̂̂
<
ˆ̂:

@2�

@t2
D c2 @2�

@x2
8x; 8t > 0;

�.x; 0/ D �0.x/ I @�

@t
.x; 0/ D �1.x/ :

(1.157)

Here, the variable �.x; t/ might designate, for example, the transverse oscillation
of a string, the longitudinal motion of a bar, or the sound pressure in a 1D pipe.
The resolution method consists in replacing this continuous variable by a discrete
variable �n

j D �.xj; tn/ which is defined at some discrete spatial points xj, and for
a discrete series of instants tn only. Equally spaced points xj D j�x are generally
selected, where �x is the spatial step. Similarly, the simplest methods use constant
time steps �t, so that we can write tn D n�t. Variable step methods are also used,
particularly when it is needed to refine a subdomain of the meshing [2].

In what follows, we limit ourselves to the case of a uniform mesh in space and
time. The basic principle of finite difference methods is to approximate the partial
derivatives in time and space by linear combinations of �n

j . Thus, for example, if
we want to make a second-order approximation of the partial derivatives appearing
in (1.157), we write
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8̂̂
<̂
ˆ̂̂:

@2�

@t2
.xj; tn/ � �nC1

j � 2�n
j C �n�1

j

�t2
;

@2�

@x2
.xj; tn/ � �n

jC1 � 2�n
j C �n

j�1

�x2

(1.158)

The resulting difference equation can be rewritten:

�nC1
j D 2.1 � ˛2/�n

j C ˛2.�n
j�1 C �n

jC1/ � �n�1
j with ˛ D c

�t

�x
: (1.159)

In (1.159), a recurrence equation is obtained that allows to explicitly calculate
the future value �nC1

j as a function of the values taken by the same variable at earlier
instants, at the same point and at neighboring points. This is called an explicit finite
difference scheme. Equation (1.159) is initialized at both instants (n D 0 and n D 1)
by means of the initial conditions in displacement and velocity defined in (1.157).

The number of spatial steps included in a recurrence equation depends on the
order of the scheme. For a better accuracy, it might be necessary to use higher order
approximations. As an example, the following approximation:

@2�

@x2
.xj; tn/ � 1

�x2

�
� 1

12
�n

j�2 C 4

3
�n

j�1 � 5

2
�n

j C 4

3
�n

jC1 � 1

12
�n

jC2

�
(1.160)

is of the fourth-order in space. The explicit scheme presented in (1.159) is a special
case. If �nC1

j cannot be directly expressed as a function of the values of the variable
at earlier instants, an implicit scheme is obtained [4].

1.7.1.1 Stability of the Discretization Scheme

With a given discrete approximation, cumulative errors might propagate during the
calculation over time, causing the “explosion” of the solution because of numerical
instability. Each numerical scheme thus requires a prior analysis of its stability
properties. Such an analysis can be performed by energy methods or by Fourier
techniques. Some guidance on this latter method are given below. The reader is
invited to consult the specialized literature for more details [2, 47].

In the Fourier method, discrete solutions of the form �n
j D O�n exp .�ikxj/ are

tested, where i D p�1 and k the wavenumber. Within the framework of our
reference example (1.159), this leads to the equation:

O�nC1 � 2.1 � 2ˇ/ O�n C O�n�1 D 0 where ˇ D 2˛2 sin2 k�x

2
: (1.161)

The resulting scheme will be stable provided that the solutions do not contain
terms whose amplitude grows continuously with time. It is known that the general
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solution of (1.161) is O�n D a1dn
1 C a2dn

2 where d1 and d2 are solutions of the
associated characteristic equation d2 � 2.1 � 2ˇ/d C 1 D 0. If ˇ > 2, either
the modulus of d1, or the modulus of d2 is greater than unity, and instability occurs.
Therefore, the stability condition imposes here ˇ � 2. This result must be true for
any k, thus leading to the condition:

˛ D c
�t

�x
� 1 : (1.162)

This last condition is called Courant–Friedrichs–Levy (or CFL) condition. It shows
that, for stability reasons, time and space steps cannot be selected independently.
A specific condition of stability corresponds to each scheme. Some implicit schemes
can guarantee an unconditional stability, but at the cost of lower accuracy, for a given
order of approximation [18].

1.7.1.2 Numerical Dispersion

Numerical schemes also have dispersive properties, which means that the propa-
gation velocities are not correctly estimated. The dispersion properties of a given
scheme are analyzed on the basis of the Fourier transform, which states that the
solution can be represented as a superposition of plane waves of the form �.xj; tn/ D
�n

j exp i.!tn � kxj/. By introducing this form in the recurrence equation (1.159), it
is found that the relation of numerical dispersion between angular frequency ! and
wavenumber k, is given by:

Dnum.!; k/ D sin2 !�t

2
� c2�t2

�x2
sin2 k�x

2
D 0 : (1.163)

Equation (1.163) shows that the numerical phase velocity is equal to:

cnum D !

k
D c

˛K
arcsin Œ˛ sin K	 with K D k�x

2
D ��x

�
: (1.164)

As K tends to zero in (1.164), i.e., when the spatial step is small compared to the
wavelength �, then cnum tends to the continuous phase velocity c. Thus, if we want
to numerically reproduce a wave propagation with good accuracy, it is necessary to
discretize the equation with a large number of points per wavelength. Figure 1.28
shows the ratio R D cnum=c as a function of the parameter K for different values of
the stability parameter ˛. It can be seen that the dispersion properties of the scheme
are degraded as ˛ decreases. Notice that the ideal wave equation shows a remarkable
result for the limiting stability value ˛ D 1. In this case, Eq. (1.164) shows that
the numerical phase velocity is strictly equal to c, whatever the wavelength. This
limiting condition of stability therefore provides the exact solution of the wave
equation for the particular centered explicit scheme selected here. This result is due
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Fig. 1.28 Numerical
dispersion of a second-order
centered finite difference
scheme applied to the wave
equation, for different values
of the stability
parameter˛ D c�t=�x
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to the particular form of this equation. We could show, for example, that with a fluid
damping term introduced in (1.157), then it is not anymore possible to find a value
of ˛ giving the exact solution of the problem.

1.7.2 Finite Element Method

The ideal wave equation with simple boundary conditions (equation of the ideal
string of length L fixed at both ends) is now solved by means of the finite element
method. The main idea is that the solution �.x; t/ is now approximated by a linear
combination of basic functions i.x/ [35]:

�.x; t/ '
NX

iD1

qi.t/i.x/; (1.165)

where N is the number of discrete points with abscissa xi on the string and qi.t/
the unknown functions of time which are expected to provide the best possible
approximation for �.x; t/.

The method is illustrated using hat functions for i.x/. Hat functions (or
triangular functions) are equal to 1 for xi and show linear slopes from 0 to 1 between
xi and its adjacent points xi�1 and xiC1 (see Fig. 1.29). The 2D equivalent of such
piecewise linear functions are triangle functions and, in 3D, tetrahedron functions.
These basic functions are the most commonly used.

Figure 1.30 shows that we can achieve a discrete approximation of the string
motion at each time using a linear combination of hat functions.
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Fig. 1.29 “Hat” function (or
triangular function)
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Fig. 1.30 Discrete
approximation of a string
motion using hat functions
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Variational Formulation of the Wave Equation

The finite element method is based on a variational formulation (or weak formula-
tion) of the motion equations. Let us note c�2�tt � �xx � f D 0 the wave equation,
where the subscripts are the partial derivatives with respect to time and space.
Considering v.x/ as a continuous test-function, at least differentiable once, and
bounded on the interval Œ0; L	, that satisfies the boundary conditions at both ends
of the string. We can check that

Z L

0

.c�2�tt � �xx � f /v dx D 0 : (1.166)
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After integration by parts, and taking the boundary conditions into account,
(1.166) is written:

Z L

0

c�2�ttv dx C
Z L

0

�xvx dx �
Z L

0

f v dx D 0 : (1.167)

The discrete formulation of the problem is done by replacing �.x; t/ in (1.167)
by its approximation (1.165). Considering that every hat function k.x/ satisfies
all conditions imposed to v.x/, the following system of differential equations is
obtained

c�2

NX
iD1

Rqi

Z L

0

i.x/k.x/ dx C
NX

iD1

qi

Z L

0

di

dx

dk

dx
dx D

Z L

0

f k dx; (1.168)

that can be written as

M RQ C KQ D F (1.169)

where Q is the vector whose components are the qi.t/ and where F is the vector
whose components are the projection of the excitation f on the discrete string.

The parameter h D L=.N C 1/ is the space step. The following results for the
coefficients of mass M and stiffness matrices K can be verified, in case of hat
functions:

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

Z L

0

2
i dx D 2h

3
I

Z L

0

�
di

dx

�2

dx D 2

h
8i D 1; 2; : : : N;

Z L

0

iiC1dx D h

6
I

Z L

0

di

dx

diC1

dx
dx D �1

h
8i D 1; 2; : : : N � 1;

(1.170)
which leads to

M D c�2h

0
BBBBBBB@

2=3 1=6 0 : : : 0 0 0

1=6 2=3 1=6 0 : : : 0 0

0 1=6 2=3 1=6 0 : : : 0

: : : : : : : : : : : : : :

0 0 : : : 0 1=6 2=3 1=6

0 0 0 : : : 0 1=6 2=3

1
CCCCCCCA

(1.171)

and

K D 1

h

0
BBBBBBB@

2 �1 0 : : : 0 0 0

�1 2 �1 0 : : : 0 0

0 �1 2 �1 0 : : : 0

: : : : : : : : : : : :

0 0 : : : 0 �1 2 �1

0 0 0 : : : 0 �1 2

1
CCCCCCCA

: (1.172)
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Therefore, for i ¤ 1 and i ¤ N, the discrete variable qi.t/, which represents here
the displacement �i.t/ at point xi D ih of the string, since i.xi/ D 1, is governed by
the equation:

�
1

6

d2�i�1

dt2
C 2

3

d2�i

dt2
C 1

6

d2�iC1

dt2

�
� c2 �iC1 � 2�i C �i�1

h2
D Fi : (1.173)

Comparing this finite element approximation (1.173) with the second-order
centered finite difference method approximation (1.159), one can see that the
second-order partial derivative in space is identical in both cases:

@2�

@x2
.xi/ ' �iC1 � 2�i C �i�1

h2
: (1.174)

However, the approximation of the second-order partial derivative in time is not
punctual here, since it involves three spatial points:

@2�

@t2
.xi/ ' 1

6

d2�i�1

dt2
C 2

3

d2�i

dt2
C 1

6

d2�iC1

dt2
: (1.175)

Without going into details, let us mention here the existence of techniques known
as “mass lumping” which consists in the simplification:

@2�

@t2
.xi/ ' d2�i

dt2
; (1.176)

which is equivalent to replacing the matrix M by c�2hI where I is the identity
matrix [18].
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