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The mission of the Acoustical Society of America (www.acousticalsociety.org)
is to increase and diffuse the knowledge of acoustics and promote its practical
applications. The ASA is recognized as the world’s premier international scientific
society in acoustics, and counts among its more than 7,000 members, professionals
in the fields of bioacoustics, engineering, architecture, speech, music, oceanography,
signal processing, sound and vibration, and noise control.

Since its first meeting in 1929, The Acoustical Society of America has enjoyed
a healthy growth in membership and in stature. The present membership of
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and other countries. The Society has attracted members from various fields related to
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aeroacoustics; macrosonics; acoustical signal processing; bioacoustics; and many
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To assure adequate attention to these separate fields and to new ones that
may develop, the Society establishes technical committees and technical groups
charged with keeping abreast of developments and needs of the membership in their
specialized fields. This diversity and the opportunity it provides for interchange of
knowledge and points of view has become one of the strengths of the Society.

The Society’s publishing program has historically included the Journal of the
Acoustical Society of America, the magazine Acoustics Today, a newsletter, and
various books authored by its members across the many topical areas of acoustics.
In addition, ASA members are involved in the development of acoustical standards
concerned with terminology, measurement procedures, and criteria for determining
the effects of noise and vibration.
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Series Preface for Modern Acoustics and Signal Processing

In the popular mind, the term ‘“acoustics” refers to the properties of a room or
other environment—the acoustics of a room are good or the acoustics are bad.
But as understood in the professional acoustical societies of the world, such as
the highly influential Acoustical Society of America, the concept of acoustics is
much broader. Of course, it is concerned with the acoustical properties of concert
halls, classrooms, offices, and factories—a topic generally known as architectural
acoustics, but it is also concerned with vibrations and waves too high or too low to
be audible. Acousticians employ ultrasound in probing the properties of materials,
or in medicine for imaging, diagnosis, therapy, and surgery. Acoustics includes
infrasound—the wind-driven motions of skyscrapers, the vibrations of the earth,
and the macroscopic dynamics of the sun.

Acoustics studies the interaction of waves with structures, from the detection
of submarines in the sea to the buffeting of spacecraft. The scope of acoustics
ranges from the electronic recording of rock and roll and the control of noise in
our environments to the inhomogeneous distribution of matter in the cosmos.

Acoustics extends to the production and reception of speech and to the songs
of humans and animals. It is in music, from the generation of sounds by musical
instruments to the emotional response of listeners. Along this path, acoustics
encounters the complex processing in the auditory nervous system, its anatomy,
genetics, and physiology—perception and behavior of living things.

Acoustics is a practical science, and modern acoustics is so tightly coupled to dig-
ital signal processing that the two fields have become inseparable. Signal processing
is not only an indispensable tool for synthesis and analysis but it also informs many
of our most fundamental models about how acoustical communication systems
work.

Given the importance of acoustics to modern science, industry, and human wel-
fare Springer presents this series of scientific literature, entitled Modern Acoustics
and Signal Processing. This series of monographs and reference books is intended
to cover all areas of today’s acoustics as an interdisciplinary field. We expect that
scientists, engineers, and graduate students will find the books in this series useful
in their research, teaching, and studies.

William M. Hartmann



Foreword

For more than 40,000 years, human beings have been making and playing musical
instruments. Although Greek philosophers of the Pythagorean school carried out
pioneering studies on stringed instruments, it is only in the last few centuries
that advances in physics and mathematics have made it possible to develop a
reasonably comprehensive scientific understanding of how musical instruments
function. By the mid-twentieth century, the basic principles of classical mechanics,
fluid dynamics and acoustics had been successfully applied to explain many aspects
of the behaviour of musical instruments. In recent decades, however, there has
been a remarkable acceleration in the scope and pace of research in musical
acoustics, leading to fresh insights into musically important features of instrumental
behaviour which are not captured by simplified models. Experimental studies
have benefited from the ready availability of highly sophisticated instrumentation
devices, while the rapid growth in computational power has made numerical
modelling an increasingly important resource. In parallel with these technological
advances, there have been theoretical developments which have clarified the often
complex physical processes whose interaction is responsible for the generation of
sound in musical instruments.

The time is therefore ripe for a textbook which provides a systematic presentation
of the current state of our understanding of the physics of musical instruments.
Antoine Chaigne and Jean Kergomard are the ideal authors to present such an
overview, since each has an outstanding record of research leadership and publi-
cation in this field. Where appropriate they have invited authoritative contributions
from other experts, including Xavier Boutillon, Jean-Pierre Dalmont, Benoit Fabre,
Joél Gilbert and Cyril Touzé. A notable feature of this book, which makes it
particularly valuable as a textbook for advanced students, is its systematic exposition
of the mathematical treatments, with full derivations of the crucial equations.
This provides an excellent pedagogical introduction to the research literature, for
which extensive references are given. The book is structured to facilitate a gradual
unfolding of different formalisms. Modal theory, for example, is introduced in
Chap. 3 for the case of undamped normal modes; complex modes which include

vii



viii Foreword

dissipation are discussed in Chap.5; and the increasingly important theory of
nonlinear modes is presented in Chap.8. In each case the relevance to musical
examples is made clear.

This book will undoubtedly become the standard reference text for postgraduate
students and teachers of musical instrument acoustics. The mathematical level
required to engage fully with the theoretical derivations is that of an undergrad-
uate degree in physics, mathematics or engineering. Readers without a formal
scientific education will also gain many fascinating and important insights, since
the mathematical treatments are usually introduced and framed by non-technical
discussions and explanations. The authors display a deep understanding of the
musical significance of the scientific discussions and are able to convey this in a
language which is readily accessible to performers and musical instrument makers.
There are many aspects of the sound production and playability of instruments
which are musically important, but which depend on subtle details of the underlying
physics. The study of such subtleties has been a hallmark of much recent work in
musical instrument acoustics, and this textbook leads the reader from basic physical
principles to the current research frontier with a unique and admirable combination
of scientific rigour and musical sensibility.

Edinburgh, UK Murray Campbell
1 February 2016



Preface

Objectives of the Book

This book is devoted to the acoustics of musical instruments. Its prime aim is to
highlight the physical principles that govern the production and radiation of sound
by these complex sources. It is the result of several years of work which would not
have been possible without the active and enthusiastic contribution of colleagues to
whom we wish to extend our sincere thanks and gratitude. We should also mention
that Chap. 10 on the flute was written by Benoit Fabre and Chap. 11 on the violin
by Xavier Boutillon. Jean-Pierre Dalmont, Jo€l Gilbert and Cyril Touzé wrote some
paragraphs in the third part.

The book is meant primarily as a textbook for students at master’s and doctorate
levels. This is the reason why it includes a large number of significant equations
where the mathematical derivations are presented in detail. In addition, we thought
that it was necessary to account for the most recent results of research in musical
acoustics. Therefore, a large number of references can be found at the end of each
chapter. N. Fletcher and T. Rossing’s famous book Physics of Musical Instruments
(Springer) was published in 1991, and ever since this field of research has benefitted
from plenty of new discoveries. One can cite, for example, the essential contribution
of fluid dynamics and aeroacoustics for the comprehension of wind instruments, the
interest of nonlinear structural models for describing the behaviour of cymbals and
gongs and, more generally, the application of the theory of dynamical systems to
every class of instruments.

In fact, this book is intended not only for students but also to researchers,
engineers and other physicists with a strong interest in music. We also hope that
musicians, instrument makers and music lovers who wish to acquire some basic
knowledge on the physics of musical instruments will be able to read it profitably,
even if they cannot follow all mathematical aspects in detail. In this view, the
links between physical phenomena, instrument making and playing are explained
as clearly as possible.

ix
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How much remains unknown in the realm of musical instruments? Is it worth
putting so much attention to the instrument itself, given the somewhat fundamental
role of the player in the subtleties of musical sound? Our belief is that a number of
phenomena still remain to be elucidated with regard to the production and radiation
of sound in musical instruments, despite the contribution of famous acousticians
over the last four centuries. It is remarkably difficult to find the physical basis
of musical instruments in a single book, due to the great variety of the subjects
involved.

Basically, all musical instruments are governed by fundamental laws of fluid and
solid mechanics, including acoustics and vibrations. Today, the main outlines of
these laws are well known. However, musical instruments are very subtle sound
sources that need to be described with great accuracy, in view of the ability of the
players and sensitivity of the human ear. In the case of a violin, for example, the
sound results from continuous friction of a bow on a stretched string, one end of
which is connected to a bridge attached to the soundboard. In Chap. 11, we will see
that even the melding properties of the rosin play an important role in the origin of
the oscillations of the string and, in turn, of the violin sound.

Two main aspects must be considered with regard to the perception of a musical
instrument. First, we need to understand the causes that influence the perception of
the instrument by the player: the so-called playability of the instrument. Second,
we want to identify the factors influencing the perception of sound by the listeners,
including the player, which can be referred to as “sound quality”. Today, the science
has not found an entirely satisfying answer to these questions. In this context, this
book attempts to review and to describe the physical phenomena related to these
problems. The auditory perception is sometimes mentioned in this book, and this
seems to be natural in view of the normal function of an instrument. However, its
prime objective is to analyse the instrument and its playing from the point of view
of the physics.

Contents of the Book

In the first part “Basic Equations and Oscillators”, the main continuous models
of the elementary constitutive parts of the instruments are described: strings, bars,
plates, tubes, etc. In addition, models of the excitation mechanisms (finger, mallet,
etc.) are presented, which are specific to musical instruments. The single degree
of freedom (SDOF) oscillator is presented in detail in the second chapter, since its
properties are essential and serve as references for the rest of the book.

The fundamental concepts of sound waves and modes of vibrations are presented
in the second part “Waves and Modes”, starting from the simple case of 1-D waves.
The concepts are illustrated by examples which are directly linked to musical
instruments: plucked string, wind and percussive instruments. Emphasis is put on
the equivalences between temporal and modal representations, since the transition
from time to modal domain is of high interest in musical acoustics. For pedagogical
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reasons, dissipation phenomena are ignored in this presentation. However, Chap. 5
is entirely devoted to these mechanisms. This chapter is important, since decay
and damping due to losses are essential parameters of musical sounds. In this
chapter, the main mechanisms of dissipation both in the air and in the structural
components of the instruments are described. As a consequence, it is shown how
the properties of waves and modes are modified, due to damping. The concept of
complex modes is introduced, which is relatively new in the context of musical
acoustics. This part ends with a description of some coupling situations in string
instruments (Chap.6), followed by the presentation of the main characteristics
of wind instrument tubes (variable section, discontinuities, bells, toneholes, etc.)
which are essential for understanding their functioning (Chap. 7). The general idea
of this part is thus to model complete instruments starting from basic concepts with
progressive refinements.

These first two parts belong to the fields of linear acoustics and linear vibrations.
The basic results are presented within the framework of musical instruments.
However, some presentations are relatively original and could probably be used in
other contexts.

In the real world, musical instruments are most often governed by nonlinear
phenomena, and this might explain why numerous physicists today are interested
in their behaviour. For percussive instruments such as gongs and cymbals, the
nonlinearity is due to the large amplitude of the motion following the impact. This
forms the heart of Chap. 8 whose goal is also to introduce the main models and
methods applicable to nonlinear oscillations. On the other hand, a nonlinear element
is mandatory for bowed strings and wind instruments, since it is necessary here to
convert a continuous (or slowly varying) source of energy, such as blowing pressure
or bow velocity, into a rapidly oscillating acoustic source. Three chapters are
devoted to the corresponding families of instruments: reed instruments (including
brass instruments), flute-like instruments and bowed string instruments.

Obviously, the ultimate purpose of musical instruments is to radiate sound, and
thus, Part IV is entirely dedicated to radiation. In fact, references to radiation can
be found in the previous parts, but, in most cases, radiation does not influence the
production of sound significantly which, therefore, authorizes such an apparently
paradoxical splitting.

An extensive list of references can be found in the literature with regard to
sound radiation, particularly within the context of noise reduction: in this case, most
applications have the objective to reduce sound power. For musical instruments,
the goal is to enhance the radiated sound though without affecting the tone quality
and the function of the instrument. It will be seen in Chap. 13, for example, that
it is not always appropriate to increase the transfer of energy from the strings to
the soundboard in a piano, since it causes at the same time a decrease in tone
duration, which is also a determining quality of piano sound. In order to be able
to explain numerous examples such as this one, we believe that it is worth recalling
the main results of radiation theory, through the viewpoint of musical acoustics.
As a consequence, Part IV starts with the description of elementary sound sources,
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continues with the fundamentals of structural acoustics with applications to stringed
and percussive instruments and ends with more complex systems involving fluid-
structure interaction.

Organization of the Book

One main feature of the book lies in the progressive description from elementary
systems to complete instruments. Except for some particular cases (reed instru-
ments, flute, violin), the chapters do not refer explicitly to a given family of
instruments. Our strategy consists rather in grouping the presentation of concepts
and results applicable to all instruments whenever possible. This is particularly true
for the first two parts of the book. In the first chapter, for example, emphasis is put
on the analogies between strings and pipes.

The index has been built so as to identify the sections dealing with one particular
instrument. Thus, the reader interested in the acoustics of the piano, for example,
will find information on strings in Chap. 3 and on damping in Chap.5. A detailed
discussion on coupled piano strings follows in Chap. 6 and considerations on piano
radiation in Chap. 13. Similarly, the reader interested in the clarinet will benefit from
reading Chaps. 4, 7 and 9.

Due to constraints of size, we also had to make choices, and thus this book
does not pretend to be exhaustive: the instruments are rather described in terms
of physical principles and in great detail. Some important instruments, such as the
singing voice, are not presented at all. The book is also restricted to “acoustic”
instruments, as opposed to “electronic” instruments where the sound has an
electronic origin and where the reproduction of sound is made through loudspeakers
or headphones.

It is our hope that this book will help the reader to get a better understanding
of the physical phenomena involved in musical instruments. It is also aimed at
illustrating how to take advantage of instrument modelling for practical applications
in sound recording and instrument making. During the last 20 years, more and
more sophisticated models were used for application in sound synthesis, either for
the validation of a physical description or for musical applications, sometimes in
conjunction with elaborated signal processing techniques. These sound synthesis
applications are probably today one of the key milestones in the recent scientific
research on musical instruments.
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Part I
Basic Equations and Oscillators

Basic differential and partial differential equations of current use in vibrations and
acoustics of musical instruments are reviewed in this first part. The main source
terms of the instruments are also presented. The analogies between strings and
tubes are summarized in Table 1.1, which should be of help throughout the book.
Chapter 2 is devoted to the presentation of free and forced oscillations of the Single
Degree Of Freedom (SDOF) oscillator. This oscillator is the elementary component
of the modal decomposition, also used permanently throughout this book.



Chapter 1
Continuous Models

Antoine Chaigne and Jean Kergomard

Abstract The aim of this introductory chapter is to summarize the main mechanical
models which describe the physics of musical instruments and of their constitutive
parts. These models derive from the general principles of the mechanics of con-
tinuous media (solids and fluids). In this framework, the phenomena are described
at a scale of the so-called particle, or element, whose dimensions are infinitesimal
in the sense of differential calculus. Particular emphasis is given to the bending of
structures and to the equations of acoustic waves in air, because of their relevance in
musical acoustics. One section is devoted to the excitation mechanisms of musical
instruments. Analogies between vibrations of solids (such as strings) and fluids (in
pipes) are underlined. Elementary considerations on the numerical formulation of
the models are also given. This chapter should be considered as a summary which
contains reference results to help in reading the rest of the book. It focuses on
the origin of the equations and on their underlying assumptions, living aside the
complete demonstrations.

1.1 Strings, Membranes, Bars, Plates, and Shells

1.1.1 Introduction

In this chapter, we present linear models. This means, in particular, that we
limit ourselves to the case of small displacements (geometric linearity) and to
materials whose constitutive stress—strain relations are linear (material linearity).
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4 A. Chaigne and J. Kergomard

Conversely, in Chap. 8, several examples of nonlinearity will be examined. For
the time being, the dissipative phenomena in solids are ignored. Chapter 5 will be
specifically devoted to damping.

We study here the class of elastic solids. If such a solid is deformed under the
effect of a given load, the deformation disappears as the load is gradually removed
until the solid returns to its initial state. For example, if we hit the bar of a vibraphone
with a soft mallet, and if we touch the bar after a few seconds in order to suppress
the sound, we find that the state of the bar is unchanged. However, if a xylophone
wooden bar is hit with a hard mallet, irreversible plastic deformations may appear
locally on the bar. A hard stroke might even break it!

In order to excite the structures used in musical acoustics, it is often necessary
to apply a prestress to some of them. This is, for example, the case of strings
and membranes subjected to a static tension field at rest. A piano (or a guitar)
soundboard is also subjected to a strong prestress due to the tension of the strings
attached to, or passing over, the bridge (see Fig. 1.1) [7, 40]. The prestress works
only if the structure departs from its equilibrium. It is sometimes called geometric
stiffness.

The dynamics of structures which are vibrating parts of musical instruments are
governed by both elasticity and geometric stiffness. If only elasticity is present, we
are in the extreme case of bars and plates. Geometric stiffness dominates in the
case of strings and membranes. In practice, a structure with zero elasticity can never
be found. Systems with geometric stiffness, such as ideal strings and membranes,
where the intrinsic elasticity is ignored, should be considered as theoretical limiting
cases (see Sect. 1.1.2).

The case of shells is more complex and will be considered separately. This book
is limited to the study of thin shallow shells. Such structures are found both in
percussion (cymbals, gongs, etc.) and string instruments (soundboard of bowed
string instruments, for example). The presence of curvature has several important

String

Board

Fig. 1.1 (Left) A grand piano soundboard with its bridge (© Pleyel). (Right) Simplified diagram
of the prestress supported by a piano soundboard. The soundboard is initially curved. Under the
influence of string tension, the bridge presses on the soundboard. This transverse force is partially
converted into longitudinal stress in the soundboard
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effects: change of the radiation properties compared to flat plates (see Chap. 13),
increase of the maximum static load supported by the soundboard, easier starting
nonlinear behavior for large amplitude of vibration for shells with free edges such
as gongs (see Chap. 8).

A common feature between membranes, plates, and thin shells follows from
the fact that their models involve only two spatial dimensions. If the vibration
wavelength is large compared to the thickness, it is justified to integrate the stress
along this dimension and neglect the thickness strain. As a consequence, the “3D”
model is reduced to a “2D” one. In addition, to obtain string and bar equations, it is
assumed that these structures are slender, where one dimension (the length) is large
compared to the other two. This leads then to a “1D” model where the integration
of the stress is now made along the two dimensions of a cross-section.

1.1.2 Membranes and Strings

Preamble For a complete demonstration of the membrane equation, the reader can
consult the literature devoted to the mechanics of continuous media (see [51]). The
presentation is limited here to the heterogeneous membrane equation in orthonormal
Cartesian coordinates.

We consider an infinitesimal element of membrane with coordinate vector x and
density p(x), for which the elastic stiffness is ignored. At equilibrium, the membrane
is located in the plane (ey, e,) and subjected to a tension field. This tension field is
described by a symmetrical tensor of order 2

mT
_ [ 11 12i|’ (1.1)
T12 ™2
where the 7; are the components of the tensor (see Fig. 1.2). From this tensor, we
can derive the tensional forces acting on a membrane elements:

on the surfaces with normal vector oriented along e, : 7, = 111€, + T21€,,

on the surfaces with normal vector oriented along e, : 7, = 712€, + 122€,,
(1.2)

A tension field is measured in force per unit length, and its unit is thus in Nm™!,
Integrating this tension along the perimeter of a given surface gives the total external
force which is necessary to apply at the periphery to balance the internal tension
field.

The off-diagonal tension components have the symmetry property ;o = 12
to ensure equilibrium of the moments on the membrane element (reciprocity
principle). Each component 7j; is a function of the coordinate vector x. It is assumed
that the membrane can move freely along e, so that its vertical displacement £ (x, y, #)
at time ¢ is governed by the equilibrium between the inertial forces and the restoring
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Fig. 1.2 Tension field
exerted on a membrane
element. e, e,, and e, are the
unit vectors in Cartesian
coordinates

forces due to the tension field. Gravity is ignored. With the assumptions of small
displacements, the rotations 6, and ¢, of the membrane element on both planes
(ex, e;) and (ey, e;) are given by:

3
ox’
3
dy

0, ~ sin 6, ~ tan 0, ~
(1.3)
0y ~ sin6, ~ tan 0, ~

Similarly, for any function G(x,y) on the membrane, a first-order expansion
yields

G
G(x 4+ dx,y) = G(x,y) + 3 dx,
X
9G (1.4)
G(x,y + dy) = G(x,y) + oy dy .

Balancing the forces applied on each sides of the element, and projecting them on
the vertical axis e;, we obtain the equation of transverse motion of a heterogeneous
membrane:

. 0 o o 0 o o
h§ = 1.
p(x)h§ . (Tn g T2 8y) + By (le o T2 oy ) (1.5)
where # is the thickness. Denoting:
3 3
= X Al 1
gradé 8xe + By e, (1.6)
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we can write this equation in a more compact form:

p(x)hé' = div (r.gradé) . (1.7)

If the membrane is also subjected to external pressure forces that cannot be
neglected, as for drums and timpani, then the projection of Newton’s second law
along the vertical axis e, leads to the equation with a “source” term:

p(x)hE = div (r.grads) 4 p(x,y,07,8) — plx,y, 07,1 . (1.8)

In Eq. (1.8), the source term corresponds to a pressure jump across the membrane.
For timpani, this pressure jump is equal to the difference between the sound pressure
in the cavity and the sound pressure in the external air, in the membrane plane z = 0.
More generally, the membrane may be subjected to a distribution of external forces
localized or distributed on its surface. This surface distribution of forces f;(x, y, t)
(with dimension of a pressure) is due, for example, to the action of a timpani mallet
or of a drum stick. In this case, the equation of motion becomes'

p(x)hE = div (t.gradé) +p(x,y,07,1) —p(x,y, 07, 0) + f;(x,y.1) . (1.9)

1.1.2.1 1D Approximation: Transverse Motion of Strings

The string length of musical instruments are large compared to the radius of the
cross-section, so that it is justified to neglect the deformation in both transverse
dimensions. Rewriting Eq. (1.5) through integration of inertial and tension forces
along e, yields the 1D approximation of the transverse motion equation (along e;)
for a heterogeneous string:

pwi = ) |17 | (110
X ox
where 1 = p,S is the linear density of the string and T the tension at rest (in N). S
is the cross-sectional area of the string.
If the string is subjected to external forces along its length (linear density
of forces fexi(x,f) in Nm™!) the equation of motion, including the source term,
becomes

.8 ok
ek = [T(x) )

X

} + fex(x, 1) . (1.11)

1Equation (1.9), written here in Cartesian coordinates, can be generalized to other coordinate
systems.
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Since we are dealing here with a 1D model, there is no need to consider air pressure
forces here.

Comments

1. Another transverse motion 7 (x, f) oriented along e, exists on the string. The equa-
tion of motion for n(x, 7) is analogous to (1.10). In general, both polarizations are
excited.

2. In the absence of coupling terms in the model, £ and 7 are independent of each
other. In stringed musical instruments, however, this coupling does exist: it is
mainly due to motion of the bridge at the end and to the existence of nonlinear
terms for large amplitude motion (see Chap. 8).

3. Strings (and membranes) are also subjected to longitudinal vibrations. Such
vibrations arise because fluctuations in length induce stress fluctuations. As a
consequence, the stress becomes a function of the amplitude (and thus a function
of time). This transverse—longitudinal coupling is usually neglected under the
assumption of small amplitude. Nevertheless, it can be easily observed in piano
strings, for example. This point will be clarified in Chap. 8.

1.1.2.2 Homogeneous Membranes and Strings Under Uniform Tension

For a uniformly stretched membrane made of a homogeneous material, the tension
tensor T becomes isotropic, which can be written as t = t1l, where 1 denotes the
unit tensor. Equation (1.7) becomes

tdiv (grad§) = tAE = phé, (1.12)
where the Laplacian in Cartesian coordinates is

%6 9%
A = . 1.13

s ax? + dy? (1.13)

For timpani and drums, the most easier way to obtain a uniform tension is
to choose a circular geometry for the membrane. In this case, the use of polar
coordinates (r, 6) is preferable and Eq. (1.12) is written:

2 2
ag+1ag+1ag).

a2 ror 1?2962 (119

phgzr(

Homogeneous String Under Uniform Tension

With a uniform tension 7', Eq. (1.11) reduces to:

2

0 i + fou (X, 1) (1.15)
X

-
ué 9
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This partial differential equation of order 2 can be rewritten in the form of a system
of two equations of order 1 involving force and velocity:

ta 3’; 2 (1.16)
v ) ) _
I o = 9 + fext(x, 1) with v = o

The latter formulation is useful in numerical analysis and sound synthesis, where
it is often easier to solve systems of equations of lower order. It also helps in
highlighting formal analogies with electrical transmission lines (see Chap. 4).

1.1.3 Stress and Strain

Before starting to examine the deformation of elastic solids, it is necessary to
briefly recall the concepts of strain and stress that form the basis of continuum
mechanics. For more details the reader may refer to specialized textbooks (see, for
example, [49]).

1.1.3.1 Strain
General Formulation
The concept of strain can be introduced by writing the variation of length of an
elementary vector ds;, whose both ends are subjected to the displacements & and
& + dég, respectively (see Fig. 1.3).

Starting from the general formula giving the length of sides in a triangle, we get

the length of the vector ds;, noting that:

ds; —ds? ~ 2ds;.dé = 2 [ddx) + dErdxy + dEzdxs], (1.17)

Fig. 1.3 Displacement of a vector in a deformable solid. The length of the vector ds; is calculated
from the length of sides in triangle T’
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where the second-order terms in d¢ 2 are neglected, and where x; (i = {1,2,3}) denote
the coordinates of the initial vector ds;. The displacement &(x) depends on the
coordinates x;, therefore the differential of each of its components is written:

3.9 £
dt; = Z axjdxj. (1.18)
j=1
The subscript j in (1.18) is called summation index (or dummy index), since it
appears in both the partial derivative and differential form. In continuum mechanics,
we use the Einstein convention which consists in ignoring the summation sign
(3°) when it applies to a dummy index, in order to simplify the notation. In these
conditions, Eq. (1.17) becomes
0&;

dxjdx,- . (119)

ds; —ds? ~ 2 9
j

In addition, one can show the following property of symmetry:

0& 0§
= _". 1.20
an axi ( )
Therefore, each term in (1.19) can be written as follows:
. 1 (0§ 0§
ds; —dst ~ eydxdx; with g; = 5 (ax,» + Bx]i) . (1.21)

The quantities ¢;; form a set of six distinct components called strain tensor, which
is written e. It is a tensor of rank 2, since it depends on two indices. This tensor is
symmetrical since ¢; = gj;. Its six components fully characterize the strain of a
continuous medium in three dimensions.

1.1.3.2 Stress

In the mechanics of rigid bodies, a general load is represented by a set of forces
and moments. In fluid mechanics, it is necessary to also introduce the concept
of pressure. However, these notions are not sufficient to represent the internal
constraints acting in a deformable solid. It is observed first that the contact load
exerted by an infinitesimal element on its neighbors inside the deformable medium
cannot be reduced to a simple set of forces and moments. Secondly, the resulting
forces are not oriented normally to each contact surface, as it is the case for perfect
fluids. It is therefore necessary to introduce the concept of stress reflecting the fact
that, on each elementary surface of contact between two particles, the surface force
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Fig. 1.4 Stress components exerted on a small elementary cubic volume

density vector is defined by three components. To clarify this, the concept of stress
is illustrated on a small elementary cubic volume, with edges parallel to the axes
(see Fig. 1.4).

The elementary forces applied on each surface dS; (j = {1,2,3}) can be
decomposed into three components dF; (i = {1, 2, 3}). The surface density of force
is defined as:

dF;

g 1.22
0jj ds; ( )

The balance of moments leads to the symmetry property:
0jj = 0ji. (123)

In total, on each side of the elementary volume, we get nine components o;; which
reduce to six components, due to symmetry. This set, denoted o, is the stress tensor
for the continuous medium. It is a symmetric tensor of rank 2, as for the strain
tensor. In vector and tensor notation, we write the resulting force on a surface dS
with normal vector n:

dF = o.ndS . (1.24)
T = o.n is the stress vector on the surface. Finally, in the presence of a body
force field f, and taking further the inertial forces into account, the local equilibrium
equation in a given solid element of density p is written:

pé = divo + f, (1.25)

where E is the local acceleration.
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1.1.4 Constitutive Equations of Materials: Linear Elasticity

In the dynamics of rigid bodies, the motion reduces to a set of translations and
rotations, as a result of the application of forces and moments. In this case, inertial
quantities such as the masses and the moments of inertia of the body make the links
between load and motion. In continuum mechanics, we need a finer description of
the internal properties of the deformable body to interpret static and dynamic strain
and stress. The applied load results in a distribution of stress in the body. In the
example discussed in the following subsection, a tensile force along the axis of
a specimen leads to an almost uniaxial stress. As a result of stress, the structure
will deform more or less according to its internal properties. We call constitutive
equations of materials all properties (elasticity, viscosity, and thermal expansion)
that make the link between stress and strain. We restrict ourselves to the particular
class of linear elastic materials.

1.1.4.1 A One-Dimensional Traction Experiment

Let us perform a simple traction experiment on an homogeneous cylinder with
cross-section S, whose length at rest Ly is significantly larger than +/S. It is observed

that the relative extension Lz:‘) ~ &y, linearly varies with the surface density of force

Oy A I; , as long as it does not exceed the yield strength o, (see Fig. 1.5).

In addition, it is observed that the experiment is reversible and that the sample
recovers its initial form when the tensile force is removed. As a consequence, we
write

O = E ey, (126)

Fig. 1.5 Tension experiment.

The force F is applied along

. . . G
the axis of the cylinder with A_ ‘i(x

initial cross-section S and
length L. The relative
extension “7H & Exy 1S Ogl------mmmm-
measured for increasing and
decreasing values of the stress L | keozooes 4 s
O X f Aslongasonis | |
less than the yield strength o,
(which depends on the
material) the curve

0 = f(&y) is linear and
reversible. The slope is the
Young’s modulus £ -
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where E (in N/m?) is the Young’s modulus of the material. One important point here
is that the stress is proportional to the strain: we are in the situation of a linear elastic
behavior. This relationship, based on experimental facts, is also called Hooke’s law.

Comment The relation (1.26) does not take the variation of the cross-section in
the body consecutive to elongation (or compression) into account. This can only be
done with the 3D generalization of Hooke’s law (see the next section).

1.1.4.2 Elasticity Tensor

In a deformable body, one stress component oj; is likely to generate several
components of strain . Assume a linear constitutive law, we can generalize
Eq. (1.26) to:

o = Ajju €us (1.27)

where Ay, represents the elasticity tensor of the material, also denoted A. It is a

fourth rank tensor. In theory, this tensor should have 3* = 81 distinct components.
However, if we recall that o and ¢ are symmetrical, it reduces to 36, which is
the maximum number of independent components for A. Because of additional

energetic considerations, this number is reduced to 21 in the case of an anisotropic
material [8]. Finally, taking also the symmetry of the material into account allows
to reduce again the number of elasticity components.

Isotropic Material

In an isotropic material, all directions are equivalent. In this particular case, only 12
components Ay, are non-zero, and they are defined as function of two independent
elasticity coefficients only, A and w, called Lamé parameters [49]. For such a
material, the stress—strain relations are written:

fo A4+2n0 A A 0 0O Exx

Oyy A A+20 A 0 0 O Eyy

oz | _ A A A+20 0 0 O &z (1.28)
O 0 0 0 210 0 ex |’ '
Oy; 0 0 0 0 2u O &z

Oy 0 0 0 0 0 2u Exy

which can be written equivalently using the following compact tensor form:

o = Atre) L + 2pue, (1.29)
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where tre is nothing but the divergence of the displacement field: div€. We also call
it dilatation. In order to derive the strain tensor from the stress tensor, it is sufficient
to invert Eq. (1.29), which leads to:

1
&= ZUU—Z(tro)ﬂ, (1.30)
with
30 +2 A
o HGAT2D (1.31)

A+n VT o0+

We recognize here the Young’s modulus E and the Poisson’s ratio v. The latter is
a dimensionless coefficient such that —1 < v < 1/2. By inverting the system (1.31),
we obtain the expression of the Lamé parameters as function of E and v:

% ) E

AEE i) P T 2y

(1.32)

For a uniaxial stress field oy, applied (see the previous experiment of tension)
to a “3D” specimen, we get from (1.29): e,, = 0/E, &,y = —v0oy/E, and ¢, =
—v0,,/E (see Fig. 1.6).

We can conclude that the Poisson’s ratio gives a measure of the lateral compres-
sion of a specimen along the axes e, and e, under the effect of a traction along e,.
This property is called “Poisson’s effect.”

Orthotropic Material

Unlike isotropic materials, anisotropic materials do not show identical elastic
properties in all directions. Wood, for example, is an orthotropic material, which
is a special case of anisotropy. To be convinced of such a behavior, a simple
experiment can be made which consists in bending a guitar soundboard in Spruce
with the hands. The experienced rigidity is higher when the bending is applied in the
direction of the fibers compared to the case where the bending moment is applied
in a direction perpendicular to them. More generally, for an orthotropic material,
we can distinguish three orthogonal directions: longitudinal (L), radial (R), and
tangential (7') (see Fig. 1.7).

2 | [ Fr~-1r-——=
el Bl ol --F-~ 1
I

D E—— [}

R Z_ v

Fig. 1.6 Tension of a 3D bar and lateral compression (Poisson’s effect)
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Fibers direction

e ——ha,

T

Fig. 1.7 Orthotropic material. A sample made from an orthotropic material (such as wood) has
different elastic properties depending on whether the longitudinal direction (L), the radial direction
(R), or the tangential direction (T) is considered

For a system of axes with coordinates (x, y, z) corresponding to these directions,
the strain tensor in such a material is expressed as follows [28]:

Sxx EL - :E[‘:‘ - VE{Yl: 0 0 O Uxx

Eyy - vl;éf Er gf 0 0 0 Oyy

Sz | _ |~ ‘;ELLT _?RT ElT 0 0 0 Oz (1.33)
Eox 0 0 0 ,5 0 0 []on ‘

&yz 0o 0 0 0, Glm 0 Oy:

Exy 00 0 0 0 , /\ow

where the Poisson’s ratios v;; correspond to a contraction in direction j consecutive
to an extension applied in direction i. As an example, vig corresponds to a
contraction in the radial direction consecutive to an extension in the longitudinal
direction.
The symmetry properties of the material lead to the following equalities:
VLR VRL vLr V1L VRT VTR
= ; = ; = . (1.34)

E, Ep E Er ~ Er  Er
In summary, the elastic properties of an orthotropic material are defined by nine
independent coefficients:

» Three Young’s moduli (or elasticity moduli): E;, Eg, andE7,
e Three Poisson’s ratios: vig, Vg7, and vrz,
¢ Three shear moduli: G;7, Grg, and Ggy.

Comment For a guitar soundboard made of Spruce, the ratio E;/E7 usually lies
between 10 and 20. The directions of the fibers correspond to those of the strings so
that the board resists to the shear induced by the bridge. Flexibility in the tangential
direction is partially compensated by stiffeners glued on the inferior face of the
board. Using more recent materials, such as carbon fiber and composites, it is
possible to control the elastic properties in all three directions [8]. Today, a number
of soundboards of stringed instruments are made by mixing, in various proportions,
wood and carbon fibers [9]. It will be seen in Chap. 13 that the choice of materials in
instrument making is not only governed by static considerations but also by radiation
criteria, which is fully understandable for musical instruments.
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1.1.5 Bars and Plates

We are now interested in the case of elastic solids without prestress. As previously
done for the membranes, dissipation phenomena are ignored. The bar model can
be applied to elastic solids whose one dimension is of a higher order of magnitude
than the two others (slender solid), and for which a one-dimensional model can thus
be developed. Plates correspond to 2D plane solids where the order of magnitude
of the thickness is lower than the length of the sides. For a bar subjected to
small perturbations it is justified to decouple the different regimes of vibrations:
traction, torsion, and bending [39]. For pedagogical reasons, we will examine these
limiting cases in the order of increasing difficulty. Thus, traction and torsion will
be presented before the bending, although this does not correspond to the relative
significance of these regimes in musical acoustics. In xylophones and other mallet
instruments, for example, bending vibrations are responsible for the essential part of
the sound. Torsional vibrations are also present, but are usually unwanted. Finally,
longitudinal motion is unsignificant.

1.1.5.1 Traction (or Compression) of a Bar

Consider an isotropic elastic bar loaded along its main axis (denoted e,) (see
Fig. 1.8). In this case, the displacement & (x, ) at each point is axial (or longitudinal).
In musical acoustics, the axial vibrations of piano strings play a major role,
especially during the attack transient [5].

The strain in the baris g,, = ¢ = gi The axial stress is 0, = 0 = Ee¢ where E is
the Young’s modulus. For a bar of length L and cross-section S, the elastic potential
energy is given by:

1 [* 96\
E, = 2/0 ES(ax) dx, (1.35)
and the kinetic energy is
1 (b [0E\?
E = S dx . 1.36
2/0 P (at) x (1.36)
| | N,
T T »
0 L X
S(x1)
——— p— S
F, Sr(x.t) F,

Fig. 1.8 Traction (or compression) of a bar. One-dimensional model
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Application of Hamilton’s principle yields the equation of motion:

0%€ 0 o0&
S — ES = Jt 1.37
pS 0 ax( ax) filet) (1.37)
where f7 (x, f) is the force per unit length applied to the bar.

Comment. Unless otherwise specified, quantities E, p, and S defined above are
functions of the abscissa x. Thus, the present model allows to treat the case of
heterogeneous bars and/or bars of variable thickness.

Denoting Fy and F; the forces applied at both ends x = 0 and x = L (see
Fig. 1.8), the boundary conditions are written:

(53)
ES = —Fy,
dx x=0
(1.38)

In this book, we will have to consider general boundary conditions (BC) of the
type:

ai +BE=F with (a,p)€R, (1.39)

ES
*=25

These general conditions include the two following simple cases:

0

= 0 (freeBC) ; £ =0 (fixedBCO). (1.40)
X

1.1.5.2 Torsion of a Bar

The bars of keyboard percussion instruments often show a torsional motion around
the main axis, especially when they are struck near the edge. The amplitude of this
motion can be significant if the bar is cut in its central part since, in this case,
the torsional stiffness decreases notably (see below for an accurate definition of
torsional stiffness). The torsional vibrations can be musically annoying, because the
corresponding frequencies are generally not in harmonic correspondence with the
main components of the bending vibrations (see the next section) that mainly
contribute to the sound of the instrument.

Bowed strings (which can be considered as prestressed bars) are also subjected to
a torsional moment induced by the bow. Woodhouse and colleagues have shown that
these vibrations, particularly through their dissipative function, have an important
role in the stability of the motion of the bowed string [23, 56, 57] (see Chap. 11).

To model torsional vibrations, we consider the simple case of a cylinder with a
circular cross-section of radius a (see Fig. 1.9).
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Fig. 1.9 (Left) Torsional motion of a marimba bar. Such a motion, which can be musically very
annoying, often appears when a bar with an undercut is struck near the edge. For such a bar of
complex geometry, the equations that govern the torsional motion can only be solved numerically.
(Right) Torsion of a cylindrical bar with a circular cross-section of radius a. We assume that, under
the effect of a torsional torque, each cross-section of the cylinder of abscissa x rotates with an angle
0(x, 1). The dashed lines show the deformation of the generatrices of the cylinder, consecutive to the
rotation 6(x, ¢). The cylinder can be viewed as a kind of “spaghetti” bundle where each generatrix
remains straight in the rotation

We note 0(x, f) the angular displacement of a cross-section of abscissa x, dS =
rdrd a surface element in this section, o the modulus of the torsional stress, G the
torsional modulus of the cylinder’s material, and ¢ the angular displacement of a
generatrix initially parallel to the x axis. First, we can write

20

p=r, . (1.41)

According to the definition of the torsional modulus, we have 0 = G¢. In this
case, the relation between the moment M (x) applied to the cross-section S of the
cylinder and the rotation is given by:

00 060
M= /UrdS = /Gr2 ds=GJ ., (1.42)
Ky Ky ax 8x

where J = fs r2dS is the rotational inertia of the section. This quantity has the
dimension of a length to the fourth power. It is equal to J = ma*/2 for a circular
cross section of radius a.

Newton’s second law (or law of conservation of angular momentum) applied to
an element dx of the bar leads to the balance of moments:

%0 M
1 2 = o + me, (1.43)

where [ is here the mass moment of inertia with respect to the axis x and per
unit length of the cylinder; m, is the density per unit length of the external
momenta applied to the cylinder. Combining (1.43) and (1.42), we obtain the partial
differential equation governing 6:

1829— g GJae + (1.44)
2 ox 0x e, '



1 Continuous Models 19

which, in the case of a uniform cylinder of constant cross-section, reduces to:

9’0 9%6
I, = e 1.4
ap =Gy tm (1.45)

In the particular case of a homogeneous beam of constant circular cross-section
(and in this case, only!), we also have I = pJ. We formally obtain a wave equation
with the same form as for the vibrating string (or for the longitudinal vibrations of
a bar), but notice that the physical phenomena at the origin of these equations are
fully different.

1.1.5.3 Bending of an Isotropic Bar

We now consider the bending of a slender bar in the plane (e,, e,) with the following
assumptions:

1. One dimension (along the main axis) is large compared to the other two.

2. The material is elastic and linear.

3. The cross-sections are symmetrical so that we make no distinction between the
mean fiber (locus of the center of gravity of the cross-sections) and the neutral
fiber (locus of the points which are not subjected to bending stress during the
deformation).

4. The Poisson’s effect (lateral contraction—extension) is ignored.

5. Each point of a cross-section at abscissa x moves vertically in the direction of the
axis e, with amplitude v(x) small compared to the bar’s thickness.

6. The cross-sections are subjected to a rotation 6, around the axis e, so that they
remain straight and perpendicular to the mean fiber during the motion.

7. The rotations are small, so that we can perform a first-order approximation
0, ~ gz In addition, we neglect the rotational kinetic energy of the sections.

Within the framework of these Euler—Bernoulli assumptions, a displacement field
is of the form:

RS
’ ~

’ N

’ ’ >

’ ’ ’

< ’ ’
JNe ’
’
4 ? ’

e,

Fig. 1.10 (Left) Euler—Bernoulli kinematics. During the motion, the cross-sections remain straight
and perpendicular to the neutral fiber. (Right) Bending motion of a marimba bar. The bending of
such a bar is well described by a model of a bar with variable cross-section
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v

gx:_yez%_ya ; %-y:U i & =0, (1.46)
X
from which we get, from (1.21), the strain tensor:

- & 0%v

S PR R

1 [(0& 0§
vy — x — = O’ .
Exy = & 2(8y+8x (1.47)
d&,
Eyy = B; =0.

The hypothesis of isotropic material yields the stress tensor. Here, we write [see
Eq. (1.26)] 0.« = Ee,y, since the Poisson’s effect is neglected.

Let us now express the elastic potential energy, also called strain energy, of
the bending bar. For an elementary spring of stiffness k, the elastic energy stored
under the effect of a traction (or compression) of elongation x from equilibrium is
E, = ;kxz. By analogy, the elementary force dF applied to an element of length
dx of the bar with cross-section dS is, according to (1.22): dFy = 0,,dS. Therefore,
the elementary elastic potential energy is: dE, = éaxxsxx dx dS. By integrating this
expression on the complete volume of the bar of length L, we get

E —1//LE2 P 2d dS—I/LEI() v Zd (1.48)
1)_250 Y ox2 * _20 e 0x? * ’

where I,(x) = fs y2dS is the principal moment of inertia along the axis 0z of the

v -

. . 2 . .
cross-section S. The quantity .# = EI, gxg is the bending moment and ¢" = £ 7 is

the curvature.
The kinetic energy E. of the beam of density p is written:

L[ . | I [ A
E. = // pE%dxdS = // oly +0° | dxdS. (1.49)
2 sJo 2 sJo 0x

This energy can be rewritten as:

e Lt
E. = / pl.6%dx + / pSv2dx, (1.50)
2 Jo < 2 Jo

which shows that the kinetic energy is the sum of both a rotational and a translational
energy. Under the Euler—Bernoulli framework, the rotational inertia is neglected, so
that we get

1 L
E.~ / pSH2dx . (1.51)
2 Jo
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Starting from the energetic quantities, we obtain the equation of motion through
application of Hamilton’s principle. Denoting f(x, ) the density per unit length
of non-conservative external forces applied to the bar, and dv a cinematically
acceptable virtual displacement (test function), we get the virtual mechanical work
W, of these forces from the expression:

L
SWe =/ f(xt) v dx. (1.52)
0

The method consists in deriving the equation of motion and the boundary
conditions that must be verified by the displacement field v(x, ) to ensure that the
following integral is equal to zero between two arbitrary moments of time #; and #,
[21, 25]:

n
/ (8Ec — 8E, + 8W,c)dt = 0. (1.53)

n

The variations of both kinetic and potential energy are given by:

OE, OE, d (9E, L
SE. = . 8 §0 = — Sv=— St Sv dx, 1.54
aw Tt 9% dt(a@)” /Op”vx (1.54)
and
dE, Pv_ 119 Pv Loty Pv
SE,= _P8v =|EL . v | — EI 8 EI Sv dx,
P gy %Y |: © 0x2 vi|0 |:3x( Zax2) vi|0+/0 Bx( ZBxZ) v
(1.55)
where v’ = gi'z) and v’ = g;

By inserting (1.55) and (1.54) in (1.53), we derive the bending equation of motion
of the bar, within the simplified framework of Euler—Bernoulli assumptions:

. 02 0%
oSV + o2 (EIZ sz) =7, (1.56)

with the boundary conditions:

2 L 2 L
I:Elzglz)8v/:| =0 and [3 (Ela U)SU:| —0. (1.57)
0 0

X ox “ox2

Equation (1.56) is of fourth-order in space. Therefore, four boundary condi-
tions, two conditions at each end, are necessary to properly define the problem.
From (1.57), we see that only four combinations are possible at each end:
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. 0%v
Simply supported edge: v = 0 and .# = EI, 92 =0,
X

d
Clamped edge : av =0andv =0,
X

(1.58)
9 9%v 9%v
Free edge: 7 = 9 (EIz 8x2) =0and #Z = EI, 92 = 0,

Guided edge: 7 — 2 (E.5") —0ana 2 — 0
uided edge: .J = =0 an =0.
£ 0x “ox2 0x

0 9?
The quantity .7 = EI, ) is the shear force.
ox ox?

* In musical acoustics, the Euler—Bernoulli model gives satisfactory results pro-
vided that the ratio between the length and a characteristic dimension of the
cross-section (radius or side length) is greater than or equal to about 10.
For keyboard percussion instruments (xylophone, vibraphone, and marimba),
this model is valid for the lowest bars only. As the length of the bar decreases, it
is necessary to choose a kinematic model accounting for the fact that the cross-
sections do not remain perpendicular to the neutral axis during the motion. It
becomes also necessary to take the rotational inertia of the sections into account
(Timoshenko model) [19]. For a detailed comparison of different models of bars,
the reader can refer to [27].

1.1.5.4 Bending of Thin Elastic Plates

The “thin plate” hypotheses (or Kirchhoff-Love model) generalize for plates the
Euler-Bernoulli assumptions applied to the bars (see Sect.1.1.5.3). A detailed
presentation of the equation of bending plates is beyond the scope of this book.
We can refer, for example, to the work by Yu [58] or Geradin and Rixen [21].

Here, only the main steps of the modeling are summarized, using the same
approach as for bars in the previous paragraph. The case of orthotropic plates is
selected as an illustration. It is particularly useful in musical acoustics since it can
be applied to wooden plates used in lutherie [13, 55]. The problem is treated in
Cartesian coordinates, and the transverse displacement is denoted w(x,y,?). We
assume that the coordinates coincide with the symmetry axes of the material and
that e, is the transverse direction. We therefore consider that the displacement field
& in the plate is of the form:

ow ow
Exz—zax ; Eyz—zay ;o E=w, (1.59)
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from which we get the strain tensor, assumed to be plane:

- 0&, _ 9w
xx — 9 = -z 9x2 s
0§, 9w
Syy = ay = ayz ’ (160)
. L0 0&\ 9w
b = & = 2 (ay + 8x) a Zaxay ’

The orthotropy of the material leads to the following relations between plane
stress and strain:

E, VyEy
Oxx R N A Exx
= Vi E E
oy | = yxex y Eyy (1.61)
R N A
ny €Xy

0 0 2G,

where the coefficients v;; are such that 1 — v;v; > 1 [13].
The bending moments are obtained by integration of the elementary moments on
the plate thickness h:

h/2 h/2 h/2
My = / W0xedz s My = / W0wdz 5 Myy = My = / W0xdz,  (1.62)
—h/2 —h/2 —h/2

from which we derive the relations between moments and curvatures:

9w
M, Dy D2 0 ox?
9%w
My | =—|D2/2 Ds 0 o | (1.63)
/fxy 0 0 Dy/2 2w
dxady
where
E.h? E.vy,h° Eyvoh®
D = S N %)
12(1 = vyvyy) 6(1 — veyVyy) 6(1 — vgvyy)
En3 G
Dy = Y : Dy= . (1.65)

12(1 = vyyvy) 3
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The equation of motion is again obtained from the Hamilton integral [Eq. (1.53)].
The variation of the kinetic energy resulting from a virtual displacement éw is
written:

SE. = —/pphﬁ) swds . (1.66)
s

The variation of the potential energy that generalizes the case of bars is
SE, = /S [//lxé’wxx + MW+ 2///,@8%] ds . (1.67)

Finally, for a surface density of transverse force f(x, y, t), the virtual mechanical
work is written:

Wy = /f(x,y, 1) Swdx . (1.68)
s

Applying Hamilton’s principle to the set of Eqs. (1.66)—(1.68), we derive the
bending equation of the plate:

Pw M, M, 0> M
o= ! Y42 0 1) 1.
101 atz ax2 + ayz + axay +f('x y t) ( 69)

Equation of Motion of Plates in Terms of Displacement

We eliminate the bending moments from Egs. (1.63) and (1.69) to get the equation
describing the transverse displacement of the orthotropic plate:

h32w n 92 9w . D, 3*w 92 92w . D, 3*w
P o To \Tlae T 2 92 ) T2 \TPae T2 g
(1.70)
n d? D 9w Py 1)
= x’ b .
0xdy 4 0xdy Y
which becomes, in the particular case of a homogeneous plate:
9w d*w d*w d*w
h D D D, + D =flx,y,1). 1.71

For an isotropic plate, we have E; = E, = E and vy, = v,, = v, so that the
rigidity constants are written:

Dy =D Ene D; Dy =2vD
= = = ’ = 2vD,
T T - ?
(1.72)
uh’ Enh?
Dy = 2(1 - U)D .

3 6(1+v)
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In conclusion, we obtain the classical equation of homogeneous and isotropic
thin plates under Kirchhoff-Love assumptions:

’w tw o tw *w
ol * [ax4 gy +28x28y2:| e (7%

More generally, we assume the following notation, which is independent of the
coordinate system:

9w

oph a2 T DVw =, (1.74)

where V* represents the bi-Laplacian. The symbol A? is also used for designating
this operator.

Boundary Conditions

In Sect. 1.1.5.3, Eq. (1.55) has shown that the boundary conditions are the results of
integration by parts carried out to express the variation of elastic potential energy
as a function of the virtual displacement (noted §v for bars). We proceed here in a
similar manner for the variation of potential energy in plates written in (1.67). Here
the integration is performed on a surface, and thus the results and the number of
possible boundary conditions depend on the geometry of the plate. For rectangular
plates, for example, Leissa lists 21 possible cases for the boundary conditions [36].
For a given edge (at x = xo for example), the most commonly encountered
conditions are the following:

. i _ : ow __
1. Clamped edge: displacement w = 0 and rotation %" = 0,

2. Simply supported edge: displacement w = 0 and bending moment .#, = 0,
3. Free edge: bending moment .#, = 0 and shear force .7, = agil” + 23/3/5"“" =0.

The boundary conditions for a free edge are written in Cartesian coordinates:

Pw Dy *w
—+ =
0x2 2 0y?

y_a D82w+D282w +8 Dazw —0
T oo Ul a2 2 0y? dy 43x3y S

For a corner at the intersection of two free edges, we must add the condition:

My = Dy 0,

(1.75)

9w

My =0, or oxdy =

0. (1.76)



26 A. Chaigne and J. Kergomard

Fig. 1.11 The vibrations of
bells are described by models
of shells. © Australian-
Dream.Fotolia.com

For an isotropic and homogeneous material, the conditions (1.75) become

0?w n 9w 0 and

v = n
0x2 0y? a 77
P Y g o
ox3 oxdyr

1.1.6 Egquation of Shells

A shell is a continuous medium which is completely defined by a surface and a
thickness (see, as an example, the bells on Fig. 1.11). A plate corresponds to the
special case of a shell with a plane surface. In musical acoustics, models of shells
can be applied to a large number of percussion instruments (gongs, cymbals, bells,
etc.) and to soundboards of string instruments. Here, we restrict our study to a brief
presentation of the theory of thin elastic shells (the thin shell theory).* This theory,
due to Love, is applicable when the thickness of the shell is small compared to other
dimensions [51].

As for the Kirchhoff-Love model previously applied to plates, we assume that the
local displacement field in the cross-sections consists in a translation and a rotation,
so that each cross-section remains plane during the motion (see Figure 1.12).
Translations and rotations differ from one section to another, otherwise, we would

2Here, we do not treat the cylindrical shells theory, which naturally applies to wind instruments,
because it requires significant developments that are beyond the scope of this book. Nevertheless,
we provide valuable references in Chap. 13 which deals with sound—structure interaction.
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Fig. 1.12 Deformation of a thin shell. Each cross-section is subjected to a combination of
translation and rotation

simply get a rigid body global displacement for the shell and, consecutively, no
strain. In what follows, rotational inertia and transverse shear are ignored.

The main difference between strain tensors of plate and shell, respectively, is that,
because of the non-zero curvature, the deformation induced by a transverse load is
not only of the bending type as in the case of bars and plates, but also includes a
membrane-like deformation. This means that a strain normal to the load exists in
the thickness of the shell. The strain tensor is therefore formed by the sum of two
contributions (see in the following Section the example of the spherical cap).

The Love model can be further simplified under the assumption that the shells
are slightly curved, or shallow, and excited along their transverse dimension.
The resulting model is traditionally called “Donnell-Mushtari—Vlasov model” (or
DMV model) and is one of the most often used in shell theory. The fundamental
assumptions of this model are

1. The membrane displacement is neglected in the bending strain.
2. Inertia of the membrane displacement is neglected.

To solve the problem it is convenient to introduce an auxiliary variable called
force function or Airy function. Consequently, the motion equations take the form
of a system of partial differential equations with two unknowns: the transverse
displacement and the force function. For more details, the reader is invited to read
the specialized literature on shells [3, 37, 51].

1.1.6.1 Thin Shallow Spherical Shells

In order to illustrate its general concepts, the main features of the DMV model are
applied to the particular case of thin shallow spherical shells. This example has the
advantage of being simple enough, while showing the influence of the curvature. In
addition, it allows to properly explain the dynamics of cymbals and gongs.
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Fig. 1.13 Geometry of a thin
spherical cap

Presentation

We are interested in a thin spherical cap of constant thickness & small compared to
the radius a of the circle ¥ obtained by projecting the cap on the horizontal plane
(see Fig. 1.13).

We assume that the cap is slightly curved (shallow shell), which is expressed
by the condition a <« R, where R is the radius of curvature of the shell. It is
supposed that the Kirchhoff-Love conditions are fulfilled: rigid body displacement
for each cross-section, shear and rotational inertia neglected. Only the case of a
homogeneous and isotropic shell is considered. Because of the rotational symmetry,
we use the polar coordinates (r,0,7) where (r,0) are the coordinates of the
projection of a current point M of the shell on the disk of radius a, and z its vertical
coordinate in the shell thickness, with —h/2 < z < h/2.

Displacement Field

With the Kirchhoff-Love assumptions, the components of the displacement field &
in the shell are written:

& = u(r,0) + zB.(r,0),
€ = v(r,0) + zBo(r, 0), (1.78)
& = w(r,0),

where (u, v, w) are the components of a translation vector and where 8, and Sy are
the elementary rotations of a cross-section of the shell along » and 6. First-order
expansions of these rotations are written [51]:
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u ow
B (r,0) = R o

v 1low
Polr0) = p= 40

Strain Tensor

29

(1.79)

We obtain the strain tensor by calculating the elongation of a small vector under
an elementary displacement [see Eq. (1.19)]. In the case of thin shallow shells, the

strain tensor can be put on the form:

&= (S)m + Z(S)f

(1.80)

where (¢g),, is a membrane type tensor that expresses the strains in the thickness
of the shell, and where (¢); is a bending type tensor with components representing
the changes of curvature consecutive to the displacement. These components are

written:
(Srr)m = ou + W’
or r
(E00)m = u n 1 dv n w
£66)m = r rdod R’
1dv d /v
(8r0)m - (Sﬁr)m - r 90 + rar (r) s
and
9w
(8rr)f - 8r2 s
(£00) __1 3w+132w
sor == \or " rog2 )
d (1ow
(8r9)f = (89r)f = _23'_ (}" 89) .

The other components of the tensor ¢ are equal to zero.

Stress—Strain Relation

(1.81)

(1.82)

For a homogeneous and isotropic material, characterized by its Young’s modulus £
and Poisson’s ratio v, the non-zero components of the stress tensor are written:
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E
Oy = 1— V2 (Srr + US@G) s
E
Opg = 2 (899 + Vsrr) s (183)
1—v
E
0,9 = 09y = &0 .
R Y0 BT S

Resulting Forces and Moments

As for bars and plates (see Sect.1.1.5.4), the resulting forces applied to each
elementary volume of the shell are obtained through integration of the stress vector
over the thickness:

h/2 )2 h/2
N, = / o dz ; Ny = / 099 dz ; Nyg = Ny, = / o6 dz . (184)
—h/2 —h/2 —h/2

Similarly, the resulting moments are obtained by calculating:

h)2 k)2 k)2
M, = / Ol dz ; My = / 0962 dz Mg = My, = / 092 dz.

—h/2 —h/2 —h/2
(1.85)
As aresult, we get
Eh
N/” = 2 [(Srr)m + V(Sﬁﬁ)m] 5
1—v
No =, [(€o0)m +viern]. (1.86)
Eh
N,y = Ny, = 0)m -
9 "= o4 (e/0)
and
En?
Mr = rr s
12(1 - v?) [(en)y + v(e00)s]
Enh?
My = el 1.87
"= 21— w2 [(00)r + v(En)r] (1.87)
M,y = My, = BN (r9)
rg — Or—24(1+v) ré)f -

These expressions show that the resulting forces applied by an element of shell on
its neighboring elements are entirely due to membrane deformations. The resulting
moments are the consequence of changes in curvature, as in the case of plates.
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Equations of Motion

The equations of motion for the shell are obtained by writing down the balance of
forces and moments on a shell element, and applying Newton’s second law. After
some calculations, we get

N, + Ny 9w . ER?
Dv* h o= th D= ,
Wt g TPy, =Sow 12(1 = 12)
a(Ver) ON,4
—Ng =0, (1.88)
or T TNV
a(rNrO) 8N9
No=0.
or T g TV

These three spherical shells Eq.(1.88) are expressed in terms of transverse
displacement w and force components N,, Ny, and N,g. These four unknowns are
not independent since the three force components depend on the coordinates u,
v, and w [see Eq. (1.86)]. The first equation in (1.88) shows that the additional
term (N, + Ng)/R is due to membrane forces and tends to zero when the radius of
curvature tends to infinity: it corresponds to the case of plates (Eq. 1.74). In most
cases, we are primarily interested in the vertical component w of the displacement.
The variables u and v can be eliminated in Eq. (1.88) by introducing a force function
(or Airy function) F such that:

_18F+132F. _82F.N_N_18F 1 oF (1.89)
T orar 2002 0T a2 0 T T T 290 T ar00” ‘
As a result, we obtain

V2F =N, +Nj . (1.90)
Finally, the system (1.88) is written:
V2F 92
DV*w + +oh" Y =7,
R or?
(1.91)
4 Eh_,
VF = Vow .
R

If necessary, the Airy function F can be further eliminated, in order to derive an
equation in terms of w. However, in most cases, and, in particular, in the context of
numerical resolution, it is more appropriate to keep a formulation based on a system
with two unknowns, which offers the advantage to involve differential operators of
lower orders.
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Boundary Conditions

The boundary conditions for the thin shallow shell are obtained from Hamilton’s
principle using the same method as for bars and plates (see Eq. 1.57). This yields
the following possibilities at the periphery of the shell (in » = a):

N, =0 or u=0,

M,y
Nyo + R =0 or v=0,

18Mr9
=0 or w=0,
r a6

M, =0 or B,=0.

(1.92)

A shell clamped at its edge, for example, has the following four boundary
conditions:

u=v=w=0 and B, =0, (1.93)
while the boundary conditions for a spherical shell with free edges are written:

Mr9 aMr9
N, =0 ; N, =0 ; =0; M,=0. 1.94
ot 20 (1.94)

1.2 3D Acoustic Waves

The equation of three-dimensional (3D) acoustic waves in a non-dissipative medium
at rest, at low level, forms the basis of each book of acoustics. The knowledge of
the solution allows at least deriving a first approximation of the eigenfrequencies of
wind instruments, known since Bernoulli to be very close to the played frequencies,
or the frequencies of cavity appearing in string and percussion instruments. Further
in this book, we need to partially remove the above-mentioned restrictions, par-
ticularly concerning dissipation. Conversely, we will start by studying cases much
simpler than the 3D problem. We now establish the three-dimensional equation to
set the framework of many following chapters. For more details on this subject, we
refer the reader to some basic textbooks on acoustics [12, 41, 44, 48], but also on
fluid mechanics [6].

Under the above-defined conditions, the acoustic wave equation is the result of
the elimination of two acoustic variables, the velocity v and the density p. Only
the acoustic pressure, which is a scalar quantity, is kept from two conservation
equations and a state equation. For a given physical quantity, the corresponding
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acoustic quantity is defined as the variation of the quantity around an average value,
considered as time invariant. This variation is assumed to be small, which allows to
use linear approximations of phenomena (see the comments in the box below). The
propagation of a sound wave in a fluid mainly depends on the fact that this fluid has
a mass and a compressibility. It can therefore be seen as a combination of masses
and springs, or rather springs with a certain mass, that are modeled in continuum
mechanics as infinitesimal objects, called “particles.” The compressibility of the
fluid makes an acoustic motion different from a regular, incompressible flow, with
a density remaining constant. Some results presented here are summarized and
detailed further in Chap. 5 where the dissipation effects are studied.

Acoustic Quantities and Decibels

The variation of the acoustic quantities is small, but its magnitude can vary
considerably, by a factor 107, from the lowest audible sound to the sound of a
taking off airplane: this is the reason why the decibel scale is used. For a given
acoustic pressure amplitude (i.e., the root-mean-square pressure), p, we define
Ngg = 201og(p/po), where py is the reference value equal to 2 x 107> Pa. This
value is almost the lowest sound level perceived by the ear at 1000 Hz. For a
musical instrument playing piano, the sound level is approximately 60 dB, or
0.02 Pa, and for a fortissimo play, the sound hardly exceeds 100dB, or 2 Pa,
which is very far from the atmospheric pressure, equal to 10° Pa. However, it
will be seen in Part III that the pressure at the input of a wind instrument can
reach 170dB, or 6000 Pa (this value still remains well below the atmospheric
pressure, although it will produce new phenomena which be discussed in
Part III of the book). Finally, to take into account that hearing perceives
frequencies between 1000 and 3000 Hz much better than other frequencies,
a weighted decibel, the dBA [20, 59] has been defined.

1.2.1 State Equation of a Gas

At equilibrium, the gas has a density po, expressed in kg m™3, a uniform temperature
T, expressed in °K, and a pressure py, expressed in Nm™2 or Pascals (Pa). If we
consider a volume V equal to nM/p, nM being the mass of the fluid® in the volume
V, these quantities are linked by a state equation, f(P,V,T) = 0. As there are only
two independent thermodynamic variables, we can express any variations of the
quantities defining the fluid in terms of two of them.

Thus for the specific heat received by a fluid element dQ = TdS, (where S is
the entropy per unit mass, which is a state function), we can express it in terms
of the variations dP and dV (or dP and dp = —pdV /V). For acoustic motions of

311 is number of moles, and M the molar mass.
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a sufficiently high frequency, it is assumed that motions are isentropic (dQ = 0),
i.e., there is no heat exchange between the fluid elements (dissipation is discussed
in Chap.5). We derive a proportionality relation between pressure variations and
density variations, which gives the first of the three sought equations. It is written:

dP = *dp, (1.95)

where ¢ £ \/ (0P/0p)g is a coefficient which will be later identified as the speed of
sound waves. We note that c is simply related to the isentropic compressibility

K52 (ap e (1.96)

* If we write that pressure P = po + p and density p = po + o’ slightly vary around
their equilibrium values,” po and pg, we obtain from (1.95):

1

p= o =c*p. (1.97)
PoXs

We note also that for constant entropy, as for the density variation, the temperature
variation is proportional to the pressure variation. So if we write T = T + T,
the acoustic temperature t is proportional to the acoustic pressure p. We find the
expression of the corresponding coefficient in Chap. 5, as well as the values of the
compressibility and the speed of sound for a given gas law, including temperature.
We will show that if PV = nRT, or MP = RTp, where R is the constant of an ideal
gas, we have

1 /0 1 1 RT
XT 2 ( p) = whichleadsto ys = and ¢* = Yho _ y 0,
p \9P/)r  po YPo Po M
(1.98)

where y = C,/C,, the ratio of specific heats at constant pressure and volume. This
allows calculating the theoretical value of the speed of sound with respect to the
temperature. Numerical values of the speed of sound, density, and other constants
of air are given in Chap. 5.

1.2.2 Momentum Conservation

Here we write the conservation of momentum, i.e., the Newton’s second law. We use
the Eulerian variables, which are best suited for this study: these are the variables
that an observer sees when he is looking at the fluid evolution from a fixed point
in space, r, instead of following the evolution of a fluid element (Lagrangian
description).

4This difference in notation for pressure and density, although it is apparently illogical, is
convenient for the following of the statement.
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* Considering a given quantity f depending on space and time, its time variation
depends on the infinitesimal motion with velocity v = dr/dt. We write

df =f(@+dr,t+dr)—f(r,1)
=f(r+dr,t+dt)—f(r,t+dt) + f(r,t + dt) —f(r,1)
= gradf(r, ¢ + dt).dr+ [0f (r, 1)/ 0] dr,
or at the first order

df = gradf(r,1).dr+ [9f (r, 1)/ 0t] dt = gradf(r,1).vdt+ [df (r, 1)/ 0] dt.

(1.99)
Thus, we can define in general the following operator:
d ad
= (v.grad . 1.100
o= (vgrad) + (1.100)
¢ Now we write the Newton’s second law for an infinitesimal volume:
d

0 dj — _gradP + pF (1.101)

where F is an external force per unit mass. In one dimension, it is read as follows:
the product of the acceleration by the mass of the fluid element is equal to the
pressure difference at both sides added to an external force. The — sign on the
right-hand side comes from the fact that, at position (x + dx), a positive pressure
applies a force along the negative x-axis, in contrast to what happens at position x.

Equation (1.101) is the equation of the momentum conservation pv. For a
finite volume D bounded by a surface S, it can be written in the following integral

form:
/// o Wap = —//PdS+ /f/ pFdD. (1.102)
p dt s D

The derivative with respect to time of the momentum in the volume D is equal to
the outflow, which is simply the pressure force applied on the surface, added to
the effect of forces external to the fluid.

* In linear acoustics, we can now linearize Eq. (1.101) to the first order, which is
the Euler equation. For a fluid at rest, the total velocity v is the acoustic velocity,
which is small, i.e., of the first order, and we obtain

av
00 9 = —gradp + poF. (1.103)
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Equation (1.101) implies that the zeroth order of F is zero (because py is not
zero): thus, F is of the first order. We obtain here the second vector equation
connecting p, p, and v, this time with a source external to the fluid.?

Bernoulli’s Law

Returning to the non-linearized Euler Equation (1.101), it is seen that if the
force F is irrotational, this is also the case for the velocity, and they both
derive from a potential, written —V and ¢: F = —gradV and v = gradg. If
the motion is isentropic (i.e., adiabatic and reversible), the pressure P depends
on p only, and we can write

1 1dpP 1dP dp
gradP = gradp = grad dp = grad
P pdp pdp P

In addition (v.grad)v = ;gradv2 — (v X rotv) = ;gradvz, and we obtain
from (1.101):

do 1, dP
d Vi=0.
gra[at—i-zv—i—/p—i-}

We can integrate this equation in space: by calculating the scalar product
of this quantity and v, and noting that the quantity v.grad = vd/d, is
the derivative in the direction of v, i.e., along a streamline. We obtain the
Bernoulli’s law by integrating along such a line:

9o + ey / Py function(r). (1.104)
a2 P

We can include the right-hand side function in the potential ¢, which is
defined apart from a space-independent function, and we obtain a right-
hand side equal to zero. The quasi-static version of (1.104), in homogeneous
medium and without external force, will be useful to describe the flow at the
input of a reed instrument. It is written:

1
P+ vaz = constant. (1.105)
Concerning the version obtained in linear acoustics for a homogeneous
medium at rest, it is simply written: p = —podg/dt, where ¢ is the velocity
potential.

SWe could also add a source to Eq. (1.97): it would be a heat source, varying in time, which does
not occur in musical instruments.
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1.2.3 Conservation of Mass

We need another equation to link the quantities p, p, and v: it is the conservation of
mass, that we first write in an integral form. The mass entering a domain D bounded
by a surface S per unit of time, to which we possibly add the one produced by a
density of source mass pg, is equal to the increase in fluid mass in the domain per
unit of time:

_//Spv,der///qu(r,z)dD: ;t ///DpdD, (1.106)

if dS is the outgoing normal of the volume. We will see examples of sources ¢(r, 7),
which are flow sources per unit volume, especially for reed instruments. By using
the divergence theorem, we get

///D [div(pv)—i- g’; }dD: ///D o5 1)dD.

This expression is valid for any domain D and can therefore be written in a
differential form:

div(pv) + g‘; = pg(r,1). (1.107)

For the same reasons as those given for F (see Sect. 1.2.2), g is of order 1, and the
linearization gives for a homogeneous medium at rest:

/

d
P = poq(r.). (1.108)

di
podivy + o

1.2.4 Acoustic Wave Equation

* In summary, the three linearized equations (1.97), (1.103), and (1.108) (from
here, we omit the subscript O for the average density), where only two of them
have an external source, are written:

1
p= ,0/ — Czp/’
PXs

0
pdivv + 8[; = pq(r,1),

v
0 = —gradp + pF.
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« Eliminating the acoustic density p’, we derive two equations for the two most
usual quantities, acoustic pressure and particle velocity:

)

divy + xs 31: = 4(r.1); (1.109)
av

gradp + p o = pF. (1.110)

* The mass-spring fluid system is finally characterized by two main parameters,
its density p and its compressibility ys. If we remove the velocity, using a cross
derivation, we obtain the wave equation for the pressure:

1 3p . dq
Ap= ;a5 —p(leF— at) (1.111)

where A = V2. The choice of the pressure as the unique acoustic variable is very
common, because, on the one hand, the pressure is a scalar quantity, and, on the
other hand, the pressure is, to a first approximation, the quantity to which the ear
is sensitive. We see that the production of sound is due to the time variation of
the flow gq. If the flow is constant, there is no sound.

1.2.5 Simple Solutions: Traveling and Standing Waves

We consider the particular case of a plane wave, where all quantities vary in the x
direction, only. After the change of variables (x,f) — (x — ct, x + ct), the general
solution is of the form:

p=fT(x—ct) +f (x + 1), (1.112)

which is the sum of two traveling waves, an outgoing one and an incoming one, of
any shape. The wave speed is c, the square of which is the inverse of the product of
the two parameters p and ys [see Eq. (1.95)]. Notice that when there is no term in
the right-hand side in the equation, the velocity potential is governed by the same
equation as the pressure (provided that it has been adequately chosen). This is also
the case for the acoustic velocity. Therefore, in one dimension, the general solution
for both the potential and velocity has an expression similar to Eq. (1.112).

For the outgoing wave, we have dfT /0t = —cdf"/dx, and we deduce
p = pcvy. The quantity p/v is the specific acoustic impedance, which, for both
waves, is called the characteristic impedance. It is equal to Zg = pc = \/ o0/ xs»
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while ¢ = 1/, /pys. The pair of parameters of our fluid-spring system, p and ys, is
equivalent to another pair, which characterizes a plane traveling wave: the speed of
sound ¢ and the specific characteristic impedance, or impedance of the medium, Zs.
We can alternatively use one pair or the other, depending on the context.

* There is another simple general solution of the wave equation, which separates
the space and time variables. If we search for a solution of the form p(r,?) =
R(r)T (1), Eq. (1.111) without sources becomes

AR 1d°T
2
= . 1.113

R T dr? ¢ )

The left-hand side is a function of space only, and the right-hand side a function of

time only. Therefore, each side is a constant, known as the separation constant, that

we denote —w? if it is negative.® The function of time depends on two constants, A

and ¢:

T(t) = Acos(wt + ¢).
For plane waves, we can also find the function of space, and finally write:
p(r,t) = (acoskx + bsinkx) cos(wt + ¢),

where a and b are two constants. k = w/c is the wavenumber. It is related to the
spatial period A, i.e., the wavelength, by k = 2m/A. The solution is a standing
wave solution, since all points of the space are vibrating in phase (or in antiphase,
depending on the sign of the spatial solution): the phase is equal to ¢ or ¢ + 7. They
are clearly distinguishable from traveling waves (1.112), which are not separable
into functions of space and time.

Complex Notation: Fourier and Laplace Transforms
If a quantity varies sinusoidally, for example, p(f) = A cos(wt + ¢), it is very
convenient to associate a complex quantity to it:

pe(t) = aé® , where a = Ae/*. (1.114)

The interesting quantity is the real part of this complex quantity p(r) =
Ne [pc(1)]. a is called complex amplitude. This simplifies all linear calcula-
tions, such as addition, scalar multiplication, derivation, and integration. For

(continued)

SExponentially time-increasing or time-decreasing solutions may also exist if the constant is
positive (but this is rare). The case of complex values is treated in the following section.
Furthermore we can continue this operation by separating the variables of space. This will happen
several times in this book.
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example,

p1(t) + pa(t) = Ne [per (1) + pea(D)] .

Thus we can use this method for the wave equation (1.111). Most often, the ¢
subscript is omitted because there is no confusion. The solution with separate
variables p(r,f) = R(r)T(¢) can also be written using complex quantities.
It can happen that the constant w is complex, thus the functions R(r) and
T(¢) are complex (a complete problem must include the boundary conditions,
which are governing the possible values of the separation constant). For this
case there are no standing waves, as it can be easily verified by taking the real
part: the phase varies in space.

Looking for solutions with sinusoidal variation is usual. Therefore we use
a complex formulation, with a time dependence in exp(jw?). This means that
we look for particular solutions, related to the time variation of the source.

This search for particular sinusoidal solutions should be distinguished from
the search for general solution using a Fourier transform. For the latter, we
will choose the definition:

+o00 )
P(r,w) = / p(r,He ' dt, with (1.115)
—o0
1 +o0 )
p(r, 1) = / P(r,w)e”dw. (1.116)
27 J_oo

In these expressions, p(r,t) is the real physical general solution, which
implies P(r,—w) = P*(r,w). Thus, if the pressure at one given point is
p(t) = acos(wot + ¢), we have

* P(w) = (a/2) [(w — wo) exp(jp) + 8(w + wo) exp(—je)], (1.117)

* where § is the delta function. Recall that, for any function g(x), and for any
interval [a, b] including the origin, the delta function satisfies

b
/ (W8 ()dx = g(0).

For example, the wave equation (1.111) without sources becomes, in the
Fourier domain, the Helmholtz equation: (A + kz) P(r,w) = 0.

For initial values problems, we also use the Laplace transform, where s =
0 + jw has a positive real part:

(continued)
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+o00
P(r,s) :/ p(r, e "'dt with (1.118)
0
1 joo+e
p(r, 1) = / P(r, s)e"ds. (1.119)
27 Jjoote

As a reminder, the derivation rules for this transform are

If £(r) — F(s), then f'(r) — sF(s) — £(0) and f"(t) = s*F(s) — sf(0) — f'(0).
(1.120)

1.3 Energy, Intensity, and Power

In this section, two simple examples are treated in parallel: the vibrating string and
the acoustic waves, in order to emphasize some interesting analogies.

1.3.1 Example of the Vibrating String

We consider an ideal homogeneous vibrating string without external source. In view
of the results presented in Sect. 1.1.2, the equation of motion is written:

9%¢ 0%¢
“atz —T,.= 0. (1.121)
An energy-based formulation of the problem is obtained by multiplying this
equation by the speed v = %f and integrating the resulting expression over the
entire length of the string. After an integration by parts, we find
L 92 9¢ L 9% 3¢ 9 08 1-
d T d -T =0 1.122
/0 “ae o ”/0 ot dx ”[ 3x3ti|0 (1.122)

The first two integrals in (1.122) correspond to the time variation of the total energy
E = E. + E, of the string, where
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E /L d h ! 9 ’
.= e.dx where e, = ,
0 2M ot

E / ’ d h ! T % 2
= where = .
» A e, dx ep ) o

In these expressions, e, is the kinetic energy per unit length and e, the elastic
potential energy per unit length. For the total energy per unit length, e = e, + ¢,
Eq. (1.122) is simply rewritten as:

L L
/ % i+ [—Tag as} —0, (1.124)
o 01 0

(1.123)

dx ot

which can be alternatively formulated in the form:

L
de 0 ot 0§
-T dx=0. 1.125
/0(3t+3x|: axath (1.125)
The quantity IT = —Tgi aaf has the dimension of an instantaneous power at point
M with abscissa x. It is the product of the force f = —Tgi by the velocity af; of

the string at point M. For a wave traveling to the right, this power is imparted to the
points situated at the right-hand side of M (see Fig. 1.14).

Finally, the fact that the integral in (1.125) vanishes implies that we can write at
any point:

de  OIT

—0. 1.126
a T o (1.126)

Equation (1.126) is a classical example of conservation law. It links the time
variation of a density (here e) to the spatial variation of a flow (here IT). This
equation shows that wave propagation corresponds to a continuous energy transfer
from one point to another in the medium.

Fig. 1.14 Energy transfer on a string
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1.3.2 Example of Linear Acoustic Waves

In linear acoustics, writing an equation for energy as a corollary of linearized
equations is questionable, since the goal is to calculate quantities of order 2.
However, it can be shown from the non-linearized equations that the following result
is correct. Using (1.109) and (1.110), the quantity div(pv), can be calculated. Since
div(pv) = pdiv(v) + v.gradp, we obtain

d
divl = ~o [E] + pq + pv.F, (1.127)
1
wherel = pv ; E = ) [)(sz + pv.v] . (1.128)

The quantity E is the total energy per unit volume: it can be shown that E, =
; xsp? is the potential energy density, and E, = ;pv.v the kinetic energy density.
The vector I = pv is the acoustic intensity. It is connected to the power per unit area
by dP = L.ndS, where n is the unit vector in the velocity’s direction.

By integrating on a volume V and using the divergence theorem, Eq. (1.127) can
be interpreted as follows: the power [J ¢ pVv.dS going out the volume V through the
surface S is equal to the total energy decrease in the volume added to the power
supplied by sources. In periodic regime, averaged over a period, the term containing
E vanishes (the average of the time derivative of a periodic quantity is zero), and in
the absence of a source, the average outgoing power is zero. This is due to the fact
that we assume the system to be conservative.

1.3.3 Power and Impedance
1.3.3.1 Instantaneous and Average Acoustic Power: Acoustic Impedance

With the previous definition of the acoustic power, we consider the instantaneous
power through the surface of area S in harmonic regime: & = Sp(t)v(t) = p()u(z),
where u(t) = Sv(t) is the flow rate. We assume that the pressure and velocity
are uniform on this surface, and that p.(f) = Aexpj(wt + ¢). With the complex
variables, we define also the acoustic impedance Z = p./u. and the acoustic
admittance Y = u./p., thus and u, = Yp.. We get

u(t) = Ne [uc(1)] = Re [YAS” ] = ARe(Y) cos(wt + ¢) — ASm(Y) sin(wt + @),

and the instantaneous acoustic power is written as follows:

P =put) = P, + ;Az [Ne(Y) cos2(wt + ¢) — Im(Y) sin 2(wt + ¢)] .
(1.129)
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The term &, = ;Azﬂie(Y ) is the power averaged over a period. The second term,
of zero mean value, is called “fluctuating power,” as the system restores during a
half-period the energy it has received in the previous half-period.’

In complex notation (see Sect. 1.2.5), the calculation of quadratic quantities turns
out to be rather tricky. However, in practice, as previously, we often calculate the
average values of some variables over a period 7, only. The general result for two
variables p; and p» is

1 /7 1 1
T /0 p1(Op2(dt = 2916 [P (P (0] = 4 [P (P (1) + Pl (Dpea ()]

where * is the conjugate quantity. With these expressions, we can write the most
useful formulas:

1 1 1
P =, Nelpen)) =, |uc]* Re(Z) =, |pel* Re(¥) (1.131)

1.3.3.2 Power Supplied to a Passive System

* The power is either provided to a system, or provided by this system, depending
on the sign of the real part of the impedance (resp. admittance). Consider a simple
example in mechanics: a force f is applied to a passive system, it performs the
mechanical work f.x, where x is the displacement of the system. The generated
power, i.e., the work per unit time, is therefore f.v. This scalar product is equal
to the provided power, which is also the power dissipated in the passive system,
and it is, by definition, positive.

* By convention we define the impedance as the ratio of a quantity providing
energy to a quantity characterizing a passive system (we can see that if we choose
the reaction force of the passive system on the excitation, equal to —f, we would
have a definition leading to a negative real part for the impedance). An example
of such a system is a volume of air excited by a vibrating wall: the definition of
the impedance is the ratio between the force applied by the wall on the air and
the velocity (either of the wall or of air, because these velocities are identical
for a perfectly reflecting wall). The opposite convention would be to use the
force exerted by air on the wall. If the passive system is not dissipative, i.e.,
conservative, the impedance is purely imaginary.

"The average power 2, is also called active power. A “reactive” power is also defined by
_ 1 « 1 1
P, = 23m(pv ) = —, lpl” Sm(Y) = 5 [v]” Im(Z). (1.130)

We choose arbitrarily its sign, which will be positive or negative depending on whether the system
is dominated by stiffness or mass (we do not go further here, because the chosen quantities are
formal).
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Fig. 1.15 Acoustic pressure S
force

p [—» F=5i

* A special case is that of the force of acoustic pressure, because pressure is a scalar
quantity. Let us consider a passive surface S on which the pressure p is applied
(see Fig. 1.15). We choose, by convention, to define the specific impedance as
p/v, where v is the projection of the velocity onto the normal to the surface in the
direction of the force due to the pressure (and the acoustic impedance as p/(Sv)).
We see that this convention is consistent with the previous choice. It is also the
case for the input impedance of a wind instrument: as the resonator is passive, if
a pressure is applied at its input, the input impedance of the resonator is always
defined by choosing the velocity projection along the axis directed towards the
exit of the pipe.

1.3.3.3 Standing Waves

In sinusoidal regime, for the complex quantity corresponding to a standing wave,
we can write: p. = f(r)exp(jwt + ¢), where ¢ does not depend on the spatial
dimension. Using the Euler equation (1.110), we derive that the velocity is in phase
quadrature with the pressure, since d/d¢t = jw. Therefore, the impedance is purely
imaginary for the three velocity components, thus the admittance vector Y = v/p
is purely imaginary, and the average acoustic intensity over a period is zero in all
directions. It is noticeable that standing waves do not carry any energy averaged
over a period. It is (almost) the case for the oscillation of the air column of a wind
instrument or, similarly, for the vibration of a string.

1.4 Sources in Musical Acoustics: Excitation Mechanisms

In the previous sections, a number of differential equations were written to describe
the structures used in musical instruments. To use them, we must know the sources,
which can be introduced either in the differential equation itself, such as for Eq. (1.9)
or Eq.(1.111), or in the boundary and initial conditions. In this section, some type
of sources found in musical acoustics are presented.
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1.4.1 Generalities About Sources and Types of Oscillations

To build a model, we need to consider that one or more physical quantities are
imposed in a region of space and time, and that they are insensitive to the medium
in which they are imposed. These quantities play the role of sources, or generators.
Thus in a linear circuit, it is often assumed that one can impose a voltage (possibly
with an internal impedance, according to Thevenin and Norton’s theorems). All
quantities in the circuit are proportional to the magnitude of this source. The power
supplied to the circuit depends on the circuit, i.e., on the impedance viewed at the
source. Thus a source term not only implies a notion of imposed magnitude, but also
a notion of supplied power.

In musical acoustics, we have to consider sources that produce oscillations and,
in turn, sounds. Different types of oscillations can be encountered:

* The oscillations are linear if the result is proportional to the cause, or, in
case of multiple causes, if the result is a linear combination of these causes
(superposition principle). If a source is sinusoidal, a result proportional to the
cause is also sinusoidal with the same frequency. Otherwise, the oscillations are
nonlinear.

* Oscillations are free after extinction of the sources, and are forced during
application of the sources.

Musical instruments enter into two main categories:

* Instruments with a transient excitation, followed by free oscillations. In this case,
the sound usually lasts longer than the excitation: this is the case for percussion
and string instruments, except for bowed strings. For these instruments, the free
oscillations can be either linear or nonlinear (piano, timpani, cymbals,...). The
excitation is produced by means of an impact (hammer, stick, and mallet), or a
pluck (plectrum and finger).

* Instruments with a continuous excitation, which is often constant or slowly
varying. Oscillations arising from a constant or slowly varying excitation are
necessarily nonlinear, and are called “self-sustained oscillations.” This is the
case for bowed string instruments excited by a continuous bow-string friction
process, and for all wind instruments, where the excitation is the result of jet—
edge interaction (flute-like instruments) or air—structure interaction (vocal folds,
lips, and reed).

Some constitutive parts of an instrument can be regarded as steady-state oscil-
lating sources generating forced oscillations: a string fixed at the bridge of a
soundboard (or soundbox), for example, acts as a source of oscillations for the
board. Such a source generally has a low internal impedance, which means that
the string transmits to the board the force developed at the point of coupling,
almost entirely. Conversely, the soundboard (or soundbox) is an oscillating source
that induces forced oscillations to the surrounding air. This source is generally
of high internal impedance: the board transmits its velocity to the ambient fluid.
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For wind instruments, the air in the pipe plays the same role for the external air
as the soundboard. It can be assumed, especially at low frequencies, that the flow
produced at the holes is not affected by radiation.

For most models expressed in the form of differential equations, such as acoustic
waves, source terms appear in the right-hand side of the conservation equations. In
some cases, however, the sources are included in the boundary conditions, or even in
initial conditions. In a number of cases, both formulations are equivalent. A simple
example is the one of a plucked string released from its initial position at the origin
of time: the problem can be either treated as an initial value problem, or as a problem
with a second member that contains a plucking force (see Chap. 3).

1.4.2 Acoustic Sources
1.4.2.1 Flow Source

Equations (1.109) and (1.110) show two types of acoustic sources, referred to as
sources of type 1 (flow sources) and type 2 (force sources). We will reexamine
these concepts in Chap. 12 devoted to radiation in free space. Let us now illustrate
Eq. (1.109) with the example of a vibrating body that imposes its velocity to the fluid
(at rest). One can imagine the membrane of a small loudspeaker, with displacement
(1), acting at a given point a in space. This loudspeaker is assumed to be a point-
source, which means in practice that its dimensions are much smaller than the
wavelength (see the following Sect. 1.5). The speaker is located in an enclosure, to
avoid a short-circuit between both sides of the membrane. In three dimensions, the
speaker can be viewed as a “pulsating” sphere, radiating uniformly in all directions
(see Fig. 1.16).

This source, which is well-known in acoustics, is obviously an idealized object,
only conceivable in “thought experiments.” The displacement per unit volume is
&(1)8(r — a), where 6 is the Dirac delta function (integrating this quantity on any vol-
ume yields &(f)). Consequently, the velocity per unit volume is 6(r — a)d[£(¢)]/dr,

Fig. 1.16 “Punctual” a b
speaker, located in an

enclosed space, radiating:

(a) in free space; (b) in a pipe

N




48 A. Chaigne and J. Kergomard

and the flow per unit volume is ¢ = S,,6(r —a)d [£(¢)] /0t, where S,, is the
membrane area.’

e Let us now turn back to wind instruments, assuming a cylindrical cross-section.
The elementary acoustic solutions are plane waves. We put the little speaker on
the side of the pipe (Fig. 1.16), and we study the case of a sinusoidal excitation
with angular frequency w. A flow u,(r) = S, 9[£(¢)] /0t = Smjwé is produced,
at point x = a. For a pipe of cross-section S, the projection of the velocity vectors
on the x axis yields

Uy = S[ve(x 4 dx) — v,(0)] = Sve(a™) — vie(aT)]. (1.132)

It is assumed further that the speaker does not disturb the pressure field, which
remains plane and continuous at the position of the speaker (this question will be
discussed in more details in Chap. 7 with regard to the effects of side holes). The
law of dynamics: dp/dx = —jwpv, (1.110) applies here. Therefore, the pressure
p is continuous at position x = a whereas its derivative is discontinuous. This
gives for the wave equation:

2 2 ;
le; czzp = —]a;puﬁ(x—a). (1.133)

(We can verify this result by integrating this equation between a~ and a™: it

is the discontinuity of the derivative that brings the Dirac delta function on the

right-hand side).
e If we now return to an arbitrary dependence in time u,(¢), we obtain

Fp  1¥p _ pdu()

2o =TS dt 8(x—a). (1.134)

This is consistent with what was obtained in three dimensions. The presence
of the cross-section S here is a consequence of the unidimensional character of
the Dirac delta function which is inversely proportional to a length, and not to
a volume. We can imagine a practical illustration by considering the key of an
instrument with side holes that are instantaneously closed. The flow is almost a

8 Assuming a given function of time for the displacement, the source term in Eq.(1.111) is
entirely known. A “realistic” simple function is, for example, #H(t), where h is the amplitude
and H(r) the unit step function (or Heaviside step function). In practice, this means that the
membrane is suddenly moved, then blocked. In this case, the source term in (1.111) becomes
—phS,,8(r —a)d [§(r)] /¢, since §(¢) is the derivative of H(r). In the next chapters, a particular
case of elementary source called Green’s function, where the source is written 6(r — a)3(r — ),
will be examined in details. To achieve it in our “thought experiment,” the velocity should be a
step function, and therefore, the displacement should increase indefinitely, which is not realistic!
Another way to obtain this Green’s function is to write the acoustic wave equation in terms of
velocity potential [see Eq. (1.105)]. In this latter case, the source term becomes 4S,,6(r — a)d(t).
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pulse, but as the closure is not instantaneous, the pulse is not perfect. However,
we clearly hear a sound with definite pitch.

Since we impose a displacement, we can also consider a problem without a
source, but rather with imposed boundary conditions.” Several problems exist with
imposed flow, or rather with flow function u; = F(p) of the pressure, particularly
for reed instruments. At the origin of the transients, this function is linear, and we
can write u; = Fy + Ap. Since we are interested in the derivative only, the source
term is written —¢ApS(x — a). As the oscillation starts, growing exponentially, the
source must provide energy, and the coefficient A must be negative. Otherwise, it
would not be a source, but a dissipating system.

1.4.2.2 Relation Between Applied Force and Acoustic Force Strength

What happens if the membrane of the speaker, which is now supposed to be free on
both sides, is set perpendicular to the pipe, thus preventing any continuous flow? It
exerts a force f on the fluid, which has to be balanced by the pressure. By projecting
this force on the x-axis, we obtain

f+S[pa)—p@hH]=0.

With an imposed force, we obtain a source of pressure difference and not the
difference of its derivative. We can write an expression similar to (1.134), by
interchanging the roles of pressure and velocity, i.e., by using the conservation of
mass instead of Euler equation:

P, 1 Pu _ xsdf)

w2 2ok S dt dx—a).

Taking the derivative of both terms with respect to x, and integrating with respect to
time, we get

?p 19p 1 d
— = —a). 1.1
oxz 2 or? .Sj ® dxg(x 0 (1.135)

In Chap. 10, it will be shown that the production of sound in flute-like instruments
can be represented by such an aeroacoustical force strength.

°A wave equation or a boundary condition including a source is called heterogeneous. It can
be shown that it is always possible to transform a heterogeneous boundary condition into a
homogeneous one by changing the wave equation.



50 A. Chaigne and J. Kergomard

Fig. 1.17 (Left) A piano hammer (© Itemm). (Right) Interaction between an exciter and the
vibrating system. Example of the piano hammer. As a result of the motion of the key pressed
by the pianist, the hammer strikes the string(s) and transmits a force F that depends on time and
impact velocity. According to the principle of action and reaction, the string exerts an equal and
opposite force that leads to push the hammer back after an interaction time of a few milliseconds

1.4.3 Transient Mechanical Excitation

We describe here the transient vibrations of strings and percussion instruments
subjected to impact or friction (plucking). During such transients, the energy of the
exciter is transmitted to the vibrating system during a finite duration. In this time
interval, the interaction between the exciter and the system can be rather complex
and it is generally not possible to ignore the reaction of the structure on the exciter.
In the case of the piano, for example, the impact force is not imposed: it is the result
of the temporal evolution of the strings in contact with the hammer (see Fig. 1.17).

1.4.3.1 Friction and Plucking

Transient excitation by friction, or plucking, occurs in plucked string instruments
such as guitar, lute, harp or harpsichord. In most works, the plucking action is simply
viewed as an initial condition for the displacement of the string (see [45]). This
model provides a first approximation of the spectral content of the free vibration of
the string. However, it does not account for the interaction with the exciter or the
player. This initial stage is essential since it contributes to determine the timbre of
the produced sound. Auditory experiments performed with recorded sounds where
the initial transients are truncated show that the listeners are not able to recognize the
instruments anymore. Some elements to consider for a better physical description
of the plucking are given below.

* The string is moved from its initial position by a force localized on a small portion
of the string, that we can write as F(X, ) = F(f)§(x—X,). As long as the frictional
force exerted by the finger (or plectrum) on the string remains below a given
threshold Fjy, it stays stuck to the exciter: this corresponds to the stick phase.
The amplitude of F then continues to increase and is balanced by the restoring
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force resulting from the angle formed by the two sides of the string on both sides
of the exciter. During this phase, the motion of the string might contain a torsional
component.

When the restoring force reaches the threshold Fy, then the string slides under
the finger and begins to produce free oscillations. During this slip phase, which
is relatively short compared to the stick phase, the finger (or plectrum) is likely
to introduce a damping which decreases as the relative velocity between exciter
and string at the contact point increases. We will find again such a succession
of stick and slip phases in the mechanics of the bowed string (see Chap. 11). In
the latter case, the essential difference follows from the fact that such transitions
occur repeatedly with a cadence that gradually synchronizes with the oscillation
of the string.

A detailed description of the excitation of a guitar string by the friction of
the finger was done by Pavlidou [43]. More recently, a similar model has been
developed for a plucked harp string [14, 15, 34]. We briefly recall here some
principles of the Pavlidou model. The two transverse polarizations and torsional
waves are taken into account on the string. We also consider the motion of the
bridge at one end. The tension T of the string is assumed to be constant during
the motion. The finger model first includes a muscle, represented by a nonlinear
spring with a spring force S(§) which is a hyperbolic function of its elongation &
(see Fig. 1.18) written as:

01§ for o, >&>0,
0y —§&
S() = ot (1.136)
1
oy + & for —op <& <0,

where o1 and o, are constants derived from experimental measurements. The
model also includes the upper part of the finger, considered as a lever arm with
a speed imposed by the guitarist, and the nail, circular, in direct contact with
the string. The interaction with the pulp of the finger is not considered here (see
Fig. 1.19).

During the three phases of the motion, the model is obtained by considering:

. During the stick phase: (a) the translational motion of the string element

interacting with the exciter, (b) the rotational motion of the fingertip, (c) the
rotational motion of the string element, and (d) the relative velocity between
string and finger.

. During the slip phase: the friction coefficient u depends on the relative velocity

Vel between string and nail. Typically, such a function is of the form (see
Fig. 1.20):
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Fig. 1.18 Force-elongation diagram of a muscle (from Pavlidou [43])

Articulation
/

\ Muscle

\ String

Articulation \

Finger
Fig. 1.19 Finger model (from Pavlidou [43]). This diagram shows the two last phalanges of the

finger. The last one is in direct contact with the string, and its motion is guided by both the
articulation and muscle that connect it to the upper phalanx

(_VOPLJ - HdVrel)

for Vi > 0,
Vrel + VO
p=1 y (1.137)
(Vopts = HaViet) for Vi <O.
VO - Vrel

In this equation u, is the static friction coefficient, u, the dynamic friction
coefficient, and Vj the initial velocity of the finger impacting the string. A similar
model accounts for the friction of the rosin on a violin bow (see, for example,
[50], and Chap. 11 of this book). For more information on friction models, the
reader can refer to [1].
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3. During the free oscillations: the motion of the string is completely defined by
three equations (two transverse polarizations and one torsional oscillation) with
initial conditions obtained from the equations of the stick phase.

Giordano and Winans measured the string—plectrum interaction force for a
harpsichord string (see Fig.1.21). They showed a gradual increase of the force
during the stick phase followed by a rapid decrease during the slip phase [24].
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For plucked strings, there is an average rise time of about 20 ms followed by a
rapid decrease (<1 ms), after which the free oscillation starts. Systematic variations
of interaction parameters show that the sound quality primarily depends on the
following properties:

* The characteristics of the finger-string friction, mostly during the slip phase. This
mainly affects the relaxation phase.

* The elastic properties of the finger muscle.

e The input admittance of the string at the bridge. This admittance affects the
transmission rate of energy from string to soundboard. The reaction force exerted
by the string on the exciter depends on this rate: the player says that he “feels”
his instrument under his finger.

e The initial direction of the finger motion (angle of attack). This parameter affects
the initial polarizations of the string that are coupled at the bridge [32].

Finally, the plucking velocity primarily affects the amplitude of vibration (and
sound), and weakly the timbre, as long as the assumption of linear vibrations of
the string is valid.

1.4.3.2 Elastic Hertzian Impact

Impact excitation concerns the piano and almost all percussion instruments. Musical
experience shows that the sound produced depends, among other things, on the
properties of the exciter: the thickness of the felt varies among the piano hammers,
and timpani mallets show a large variety of rigidity (see Fig. 1.22). The head of
xylophone mallets also differs from each other in terms of weight and stiffness. To
be convinced of the relevance of exciter properties, just look at percussionists in an
orchestra: they change their sticks and mallets several times during a performance.

Fig. 1.22 Examples of
kettledrum mallets. They
differ from each other
through the stiffness of the
felt and the elasticity of the
stick
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Fig. 1.23 Contact between
an elastic sphere and an
infinite rigid plane. The
quantity § indicates the
compression of the sphere,
which represents its change in
thickness consecutive to the
impact

15

During the impact, an interaction force is generated between the impactor and
the struck structure, as a result of the deformation of both elastic solids in contact.
Historically, the first theory of contact between two semi-infinite elastic solids is
due to Hertz and was published in 1882 [29]. This theory predicts, in particular, the
stress distribution in the contact area. One of the most famous result of this theory
is the expression of the interaction force F':

F = K§*?, (1.138)

where § is the compression or, in other words, the summation of strains on both
surfaces (see Fig. 1.23), and K is a constant which depends on both the curvature
and elastic coefficients of the solids. This constant is given by [33]:

1 3[1—v2 1-=21 /1 1 31 1
- 4 + = , (1.139)
K 4| E E> Ri "Ry 4Eq /Ry

where E; and E; are the Young’s moduli, v; and v, the Poisson’s ratios, R; and R,
the radii of curvature of the solids at the contact point. The quantities Eq and Req
are equivalent Young’s modulus and radius, respectively, often used to simplify the
formula.

The formula (1.139) can be applied to the case of a sphere impacting an infinite
rigid plane, as R, — oo. If, in addition, E; > E,, which means that the impactor is
significantly more rigid than the impacted surface. As a consequence, the coefficient
K becomes

4 E
= > VR in Nm™2. (1.140)

K =
31—v;

In other words, the softer solid imposes the main properties of the impact.

* Hertz’s contact theory remains valid as long as the dimensions of the contact
area remain small compared to both the dimensions of the solids and radii of
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curvature. It does not predict good results for head materials subjected to large
deformations as, for example, rubber (see [16]). Hertz’s theory also ignores the
effects of inertia and elastic waves in the media in contact. However, if the contact
time is small compared to the period of the studied phenomena, this theory
reasonably accounts for experimental observations, which explains its wide use.

Pulse Duration and Maximum Impact Force

Based on Hertz’s law, an estimation for both the pulse duration and maximum of
the impact force can be derived. If V} is the initial velocity of the impactor on the
solid surface at rest, and denoting m, = mymy/(m; + my) the reduced mass of the
two solids, the conservation of the total energy of the system (without dissipation)
is written [33]:

1 ., 2 1
2m,82 + 5K85/2 = 2mrvg. (1.141)

The maximum of the compression is obtained when § = 0, which provides

5m, \*° 4/5
8Max=(4K) vy (1.142)

The duration t of the force impulse is obtained by integrating (1.141):

St ds 25m2 \'7 ot g
0 4K 16K2V, 0 \/1 — £5/2
Vi — s 85/

r

which yields finally:

m2 1/5
r=3218 (Kz{/o) . (1.144)

Equation (1.144) shows, in particular, that the pulse duration only weakly
depends on the impact velocity. This result is in agreement with measurements made
on a large number of mallets [11]. From an experimental point of view, the constant
can be derived K from measurements of the maximum impact force and pulse width
using Eqgs. (1.138), (1.142), and (1.144). We find

1 m>
K=354 . (1.145)
-

Max
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1.4.3.3 Empirical Generalization of Hertz’s Law

Since Ghosh in 1927 [22], several authors proposed a generalization of Hertz’s law
for piano hammers, on the form:

F = K&, (1.146)

where the superscript p is between 2.0 and 4.0 approximately [26]. This expression
has been also used for modeling the impact of timpani mallets [46]. The power
law (1.146) is essentially empirical and is not based on an accurate analysis of
stress and strain, in contrast with Hertz’s law. This expression fairly accounts for
the compression of the felt (a porous material) wrapped around the wooden tip. It
offers the practical advantage to identify experimental force-compression laws with
two parameters only.

1.4.3.4 Impact with Dissipation

In practice, the contact force is not purely elastic. Due to their rheological properties,
hammer and mallet materials are subjected to internal dissipation. Moreover,
impacts can be strong and lead to additional dissipation due to plastic deformation.
We can, for example, easily observe proofs of impacts on wooden xylophone bars.

Viscous Dissipation

N.B. In this section, plastic deformation is ignored.

As a consequence of viscous dissipation, the force-deformation curve F(§) shows
a hysteresis loop (see Fig. 1.24). This loop is due to the viscoelasticity of the
material, a “memory effect” which produces a relaxation (decrease) of stress over
time after application of strain. The first attempt to extend Hertz’s law to viscoelastic
media was made by Pao [42]. His theory leads to a modified expression of the form:

F=F, [53/2 — /r w(E— t)83/2(§)d§:| , (1.147)
0

where W(r — §) is a relaxation function which can be represented by a sum of
exponentials. This expression was revisited by Stulov [53] for piano hammers:

F=F, [51’— ¢ /texp(gt_t) 51’(5)515}, (1.148)
0

t() o

where ¢ is a dimensionless coefficient that reflects the hysteresis area, i.e., the energy
lost per cycle, and where 7, is the relaxation time. In the case of piano hammer felt,
7, is approximately 1-2 ms.
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Fig. 1.24 Force-compression curve for a dissipative mallet with hysteresis loop. Solid line:
experimental curve; dotted line: differential model (1.149)

For piano and percussion instruments, the contact pressure on the felt is applied
relatively slowly, since the impact velocities do not exceed 5m/s. This allows
writing F >> 1, ‘Z . Calculating ‘g: from (1.148), we find

dF ds?
Fipy >~ F o =K|[8f+R R 1.149
tot + 7 dt |: + dti| ( )

where K = Fy(1 — ¢) is the stiffness coefficient and R = lr_”s the coefficient of
viscous dissipation. The differential formulation (1.149) has been used in models
of piano and drums [31]. An estimation for the coefficient R can be obtained by
energetic considerations [17]. This differential expression is simpler to use than
the integral formulation (1.148), though it remains valid for medium or low impact
velocities only. Figure 1.24 shows a comparison between an experimental curve and
a differential model of type (1.149) for a timpani mallet.

Plastic Strain

By definition, a plastic solid shows stable residual strains, after cessation of the
excitation. This behavior does not depend explicitly on time (see, for example,
[38]). For an elastic, perfectly plastic solid, strain ¢ is linear (and characterized
by a Young’s modulus E) below the yield stress (or threshold) of plasticity oy.
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\

0 £p )

Fig. 1.25 (Left) Behavior law for an elastic perfectly plastic solid. (Right) Behavior law for an
elastoplastic solid

The stress then remains constant as & increases above o;/E. As the stress then
decreases, another curve is drawn, distinct from the linear part, showing a permanent
deformation ¢, at 0 = 0 (see Fig. 1.25).

In the case of an elastoplastic solid, the stress continues to increase beyond the
threshold of plasticity oy, generally in a nonlinear manner with respect to e. Again,
we note the existence of a permanent deformation after cessation of the loading (see
Fig. 1.25).

In the case of contact between two spheres, Johnson showed that the impact
becomes plastic when the average pressure between the two solids is about p,, =
1.10; [30]. From this property, this author deduced that the velocity of contact above
which plastic deformations are likely to occur is about V; = 0.14 ms™! for a steel of
medium hardness and V; < 0.08 ms™! for aluminum. The important point indicated
by these values is that plasticity is present in most of the common impacts, even at
low speed. For an impact between two solids made of the same material of density
p, with a threshold of plasticity o, and for which the the relative velocity of impact is
V, the following table, due to Johnson [30], provides a good order of magnitude:
pv?
Os

¢ 1070 < p{ZZ < 1073 — elastoplastic behavior

< 107® — elastic behavior.

. -3 _ pV? —1 . .
1077 < f - < 10 — perfectly plastic behavior.

One effect of plasticity is that the force-compression curve again shows a
hysteresis loop (see Fig. 1.26).

This curve shows a maximum at point A (of coordinates F.,.). We see that
there is a non-zero residual deformation §, as the interaction force equals zero,
corresponding to the situation where the two solids move away from each other
(point B on the curve). As a consequence, the energy restored during the decrease
of the force, which corresponds to the area below the curve AB, is less than the
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Fig. 1.26 Force-compression E Hertz's law
curve for an impact between N) (elastic solid)
two elastoplastic solids.

From [54]

Elastoplastic
solid

0 8p Oc  &mm)

energy stored during the impact, corresponding to the area below the curve OA. The
restitution coefficient is the ratio between these two energies. It is less than unity for
a plastic impact.

Several formulations were proposed to extend Hertz’s law to elastoplastic or
perfectly plastic case. Stronge [52] suggests to model the loading curve OA using
Hertz’s law, and the unloading curve AB with an equation of the form:

4
F = E \/R;‘q(S —8,)%2. (1.150)

where R;‘q is a curvature radius greater than Ry, due to plastic deformation.

Vu-Quoc and Zhang developed a numerical model of impact between two
elastoplastic spheres whose central idea is based on the decomposition of the contact
radius into an elastic part and a plastic part [54]. The detailed presentation of this
theory is beyond the scope of the present book. The results show that this model is
able to predict the variations of the coefficient of restitution with the impact velocity
accurately. This represents a significant advance over previous models in the sense
that most of the parameters of this model can be directly related to material and
geometric properties of the solids. Impact modeling still remains an open field of
study, especially in the field of granular media.

1.5 Lumped Elements; Helmholtz Resonator

Having established the differential equations and discussed about the sources, we
study a very particular case, usually encountered at low frequencies. Under certain
conditions, the acoustic wave equation can be simplified. Leaving aside the sources
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in (1.111), there are conditions for which the term containing the time derivative
(of order two) of the pressure is very small compared to that containing the spatial
derivative. To establish these equations we make a dimensional analysis, assuming
that there is a length L and a time t by which we make dimensionless distance and
time. If we note these quantities x, y, z, f, we get

02 92 9? 02
St g e = M
ox ady 0z at
where He = CLT is the Helmholtz number, which is mostly written with an angular
frequency w = 1/t :

wL 2nL
He = = kL = , (1.151)
c A

where A is the wavelength. We see that at the limit of low frequencies, spatial
variations become predominant and we can solve the Laplace equation Ap =
0, valid for an incompressible (not viscous) fluid. This occurs particularly near
singularities such as the open end of a pipe, when considering only a “compact”
area, i.e., an area of dimensions small compared to the wavelength ¢/w: such a zone
is called “lumped zone.” In fact we can go a step further by examining the two first
order equations involving pressure and velocity, (1.109) and (1.110).

e In Eq.(1.109) without right-hand side, the time-derivative term becomes very
small under the following conditions: at low frequencies—in fact at low
Helmbholtz number, as it has been seen—or if the pressure is small, which
also occurs near the end of a pipe, or if the compressibility is low (the fluid is
close to incompressibility). Then, by integrating the term divv in the considered
zone, we see that the flow rate is zero. Thus, in one dimension, the incoming
flow rate is equal to the outgoing one, and it is the same for the velocity. The two
equations can be reduced to an acoustic “Ohm’s law” '°:

V(x) = v(x +0x) = v ; px) — p(x + 8x) = p(dv,/0t) §x = pc(dv,/df)He .
(1.152)

* In the second Eq. (1.110), the time-derivative term becomes very small under the
following conditions: at low frequencies, if the velocity is small, or if the fluid is
very light (small p). This occurs in particular near a rigid wall, where the velocity
is zero, and, in turn, the term gradp is zero: the pressure is uniform in the

10The electroacoustic analogy called “acoustic impedance” associates acoustic pressure and
velocity to electric voltage and current, respectively. Ohm’s law states that between two points
the difference in one of the quantities is proportional to the other quantity.
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considered area, and using the divergence theorem, the total flow rate entering
the zone of volume V is equal to Vysdp/0dz. In one dimension this gives the
second Ohm’s law'!:

p(x) =px+8x) =p ; va(x) = v:lx + 8x) = xs(dp/01) bx = cys(dp/0r)He.

(1.153)

* A physical system exists that combines these two effects: the Helmholtz res-

onator. It is made of a rigid cavity of volume V with a neck of length £ and

section § (see Fig. 1.27), the neck being open onto a large space imposing a low
pressure at the exit of the neck.

In order to model the resonator at wavelengths much greater than its dimensions,
taking the sources into account, we have to consider the connection between the
neck and the volume. Using again the divergence theorem, the flow rate u entering
the cavity, where the pressure is uniform py, is written:

u = C,0py/ 0t — Usource, (1.154)

A

Po

Ps—u> Po Pe <> Po | ——C,

Fig. 1.27 Helmholtz resonator: its behavior is that of a system with localized constants at its
resonance frequency. The volume of the cavity is V, the length and thickness of the neck are £
and S. We have: C, = x5V and M, = p{/S. The case shown on the top of the figure is that of a
flow rate excitation [first Eq. (1.156)], the lower one corresponds to a pressure excitation [second
Eq. (1.156)]

""'We will encounter several times this concept of lumped-element systems. Notice that the finite
difference calculation (Sect. 1.7.1) is based upon the division of a continuous system into lumped
elements.
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where C, = ysV is the acoustic compliance and uspuee = [[f,, q(x,1)dV [see
Eq. (1.109)]. In the neck, the flow entering from outside is equal to the flow rate
u entering the cavity. As the transverse dimension of the neck is small compared
to the wavelength, we assume that the pressure is uniform (i.e., plane) in a slice of
fluid. We will see later (Chap. 7) how to connect the pressure at the exit of the neck
with that of the cavity. For now, we assume that they are equal. Using the equation
obtained above in one dimension, we derive

du
—pPv= M, 9t — Psource- (1155)

where M, = pf/S is the acoustic mass and psouce = pe + P fneck F . dx. In this last
expression the incoming pressure is added to the acoustic force strength.

*  We will see that the correct matching leads to the same equation with a modified
length £ (Chap.7). We can then distinguish the two problems depending on
whether the source is a source of flow in the cavity or a source of pressure in
the neck, and write the second-order differential equations:

azpv 1 aM%ource
a = ) d
¢ or? + Mu ot an
(1.156)
M 32u 4 1 apsource
“ 912 Ca At

These equations are similar to those of electric circuits which are well known: if
we choose the “acoustic impedance” analogy (pressure, flow, mass and compliance
are analog of voltage, current, inductance, capacitance, respectively), the first
equation is that of an antiresonant circuit (mass and compliance in parallel), while
the second is that of a resonant circuit (mass and compliance in series). Of course,
we expect to find in these equations a derivative of order 1, associated with
damping. We will formally introduce damping in Chap.?2 to study the behavior of
these equations. However in most situations, damping is frequency dependent, the
modeling as a derivative of order 1 being a rough approximation.

Another way to model approximately an acoustic (or mechanical) system is to
calculate a modal expansion, and to truncate the modal series to the first mode, as it
is often done in this book.

1.6 Vibrating Strings-Sound Pipes Analogies

The analogy between longitudinal waves in solids and fluids is obviously very
natural. It is so true that the term analogy can be discussed. However, it is not really
useful in musical acoustics. As previously noticed, we are most often interested
in transverse vibrations of solids, mainly in 2D, while for the fluid we are mainly
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concerned with 1D and 3D models. We therefore limit this section to the analogy
between lumped elements (“0D”) and the analogy between vibrating strings and
sound pipes, considered as 1D systems. Notice that, in all cases, we choose a
pair of main quantities whose product gives the power, and whose ratio gives the
impedance. Thus the mechanical impedance is the ratio force/velocity, and the
admittance (or mobility) the inverse ratio. For a fluid, several pairs may be chosen.

* Letus start by lumped elements: we consider a fluid element of surface S moving
with a velocity v and subjected to a pressure force f = Sp, which are the
projection of vectors on the same axis. If we consider these two quantities, the
acoustic system appears to be a mechanical system. But this choice of basic
quantities is not the most useful for a main reason: as seen in Sect. 1.5, at the
junction between ducts, the conserved quantity is the flow rate # = Sv. This is
similar to the forces at the junction of several elementary mechanical elements,
such as springs, having an identical velocity. For joined ducts, we will show
that, at the lowest frequencies, the pressure is uniform. An important example
for wind instruments is the junction between the main pipe and the “chimney”
of a tonehole. Flow conservation at a junction is a major reason for which the
most used impedance for a fluid is the impedance called “acoustic impedance,”
based upon the equivalence between pressure p and velocity of a mechanical
system v, and between acoustic flow rate # = Sv and force f, respectively. We
consider here scalar quantities obtained by projecting a vector on an axis. Thus
the acoustic impedance'? is defined as the ratio pressure/flow rate Z = p/Sv.
Notice that the power through a section S of pipe is given by the product of these
two quantities, whatever the chosen pair (f = Sp, v) or (p,u = Sv).

* This analogy is presented in Table 1.1 for vibrating strings and sound pipes in
one dimension.'? We call it “reverse” analogy, because it reverses potential and
kinetic energies. However, it is the most useful in practice. It can be extended, in
particular, to continuous sources of self-sustained oscillations: velocity for bowed
strings, pressure for reed instruments. On the other hand, for flutes, because of
the nature of the source of self-sustained oscillations, it is preferable to choose
the direct analogy, where the pair (f, v) matches the pair (p, Sv). For this reason,
Table 1.1 also mentions this analogy.

2Sometimes we will also use an acoustic impedance called specific defined by the ratio
pressure/velocity (see Sect. 1.2.4). This choice is convenient for some problems of unbounded
media, or for energy transmission between two media with different sound speed or density.

3This table has some specificity with regard to the dimensions. The quantity f.,, for example,
is a force per unit length, whereas the quantity F in Eq.(1.110) is a force per unit mass. In
addition, the equation of vibrating strings is written in terms of velocity: this is rather unusual,
but it allows to easily highlight some analogies. Finally, the wave equations are written here for
a homogeneous medium, although we will have to deal with heterogeneous strings and horns, for
which the analogies remain valid.
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Table 1.1 Reverse and direct analogies for strings and pipes

Variable 1

Variable 2
Equation 1

Equation 2

Source

Parameter 1

Parameter 2

Element 1

Element 2

Wave speed
Ratio

Wave characteristic

Additional variable

Wave equation

Strings

flxn =
—T0¢&/0x = force
applied to the right

of x by the tension T
(towards the x > 0)

v = velocity
v _ 19
Tt
af v
ax - pS 3t +fext

fext = external force
per unit length

T = tension

pS = density X
cross-section

C = compliance
=1/KK=
stiffness)

M = plS = mass

c=./T/pS
Y = mechanical
admittance = v /f

1
T JTpS
c/T

& = displacement

=/vdt

Sazv T32v _
Por = o T
af;axl

ot

Pipes (reverse
analogy)

u = flow rate

p = pressure

op _  pou
xS

u ap

o X5y 14

q = flow rate per
unit length

S/p = cross-
section/density
xsS =

compressibility X
cross-section

M, =pl/S =
acoustic mass

Ca = Xs V=
acoustic compliance
c=1//pxs

Z = acoustic
impedance = p/u

Zc = \/p/XSS2 =
pc/S

¢ = velocity
potential

= —/p/pdt

Sazp_

3%p
SXS a2

dq
ot

p 0x2

65

Pipes (direct
analogy)

p = pressure

u = Sv = flow rate

dou
ox

ap
= —Sy«
Xs Py

ap

e
0 Oou
S ot +
fext = external force
per unit length
/xS =
1/(compressibility x
section)
p/S =
density/cross-
section
Co= sV =
acoustic compliance

ext

M, = pl/S =
acoustic mass
=1/ Jpts

Y = acoustic
admittance = u/p

Y. = \/S2Xs/p =
S/pc

volume
displacement

= / udt

p 0%u 1 %u _
S92 gSox
1 Ofext

S ot
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1.6.1 Note on the Definition of Impedances
Jor Forced Oscillations

A definition was given in Sect.1.3.3.1 for the impedance in case of forced
oscillations. This concept can be slightly extended, considering a simple situation
with a point excitation of linear and sinusoidal forced oscillations, for example a
source of acoustic flow, so that we can define:

* a transfer impedance as the ratio of the pressure response P at a point b to the
flow source U provided at point a: Z, = P(b)/U(a);

* adriving-point impedance as the previous quantity for the particular case a = b:
Z = P(a)/U(a).

Of course, the inverse ratio is called admittance. When we use mechanical
quantities, both are vectors, so that impedance and admittance become matrices.
Similarly if there are multiple sources and multiple receivers, we can have an
impedance matrix, and if there are continuous sources and receivers, we have
an operator. These concepts are developed in Chap. 3 extensively.

Here we used the frequency domain. In the time domain, we would write
equivalent equations, for example:

p(b) = Z(1) * u(a),

where Z/(\t) is an impulse response, i.e., the inverse Fourier transform of the
impedance. If the impedance is a pressure response to a unit flow, the corresponding
impulse response is the pressure response to a flow pulse §(¢). In addition, there are
other concepts of impedance:

* in the case of one-dimensional waves, the local impedance: we consider a pipe
excited by several sources, and a point a downstream the sources. The part
downstream of the point a is therefore passive. Then, the impedance Z =
P(a)/U(a) at point a is determined by the characteristics of the downstream
medium, and has the same value as the impedance at the driving-point a. This is
the typical case of the input impedance of a wind instrument, and, by extension,
of the admittance matrix imposed by a soundboard or a sound box to the string.
This concept can be generalized to one or more dimensions, but it will not be
treated here.

* the impedance of an element: if between two points of a pipe a and b, the flow
rate u is constant, the pipe element has an impedance Z = [P(a) — P(b)] /U (we
can define something similar if the pressure is constant, see Sect. 1.5). Thus, in
the table of analogies 1.1, the impedances Z = joM, Z = 1/jwC,. .., correspond
to the impedances of a mass, the compliance of a spring, etc.
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1.7 Numerical Methods

Analytical methods for solving the wave equation will be presented in Chaps. 3
and 4. As this equation becomes more complex through addition of extra terms
(damping, stiffness, interaction with an exciter, etc.) which are needed to properly
model an instrument, then the use of numerical methods becomes necessary.

A detailed description of the numerical techniques used for solving partial
differential equations involved in models of musical instruments is beyond the
scope of this book. However, we find it useful to say a few words about two of the
most common techniques used, namely the finite difference and the finite element
methods. To introduce and illustrate the foundations of these methods, the simple
example of the ideal wave equation, without source terms, is selected. Emphasis is
put on time-domain numerical modeling. For more information on the application
of finite differences to simulations in musical acoustics, one can refer to the book
by Bilbao [10].

1.7.1 Finite Difference Methods

In order to illustrate the use of finite difference methods we discuss the typical
example of the wave equation where the initial conditions are given in explicit form.
The objective is to solve the following system numerically:

2 2
835 = gxi Vx, YVt >0,
(1.157)
d
O =6 1 6.0 = 6.

Here, the variable & (x, f) might designate, for example, the transverse oscillation
of a string, the longitudinal motion of a bar, or the sound pressure in a 1D pipe.
The resolution method consists in replacing this continuous variable by a discrete
variable § = £(x;,7") which is defined at some discrete spatial points .x;, and for
a discrete series of instants ' only. Equally spaced points x; = jAx are generally
selected, where Ax is the spatial step. Similarly, the simplest methods use constant
time steps At, so that we can write * = nAt. Variable step methods are also used,
particularly when it is needed to refine a subdomain of the meshing [2].

In what follows, we limit ourselves to the case of a uniform mesh in space and
time. The basic principle of finite difference methods is to approximate the partial
derivatives in time and space by linear combinations of éj". Thus, for example, if
we want to make a second-order approximation of the partial derivatives appearing
in (1.157), we write
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n+1 n n—1
PEma Y T
ol A2 ’ (1.158)
% (x, 1) ~ §r1 — 28 T &L
w2t Ax?
The resulting difference equation can be rewritten:
At
g =201 o)) + o (E, + &) — &7 with o = A (1.159)

In (1.159), a recurrence equation is obtained that allows to explicitly calculate
the future value %”H as a function of the values taken by the same variable at earlier
instants, at the same point and at neighboring points. This is called an explicit finite
difference scheme. Equation (1.159) is initialized at both instants (n = O andn = 1)
by means of the initial conditions in displacement and velocity defined in (1.157).

The number of spatial steps included in a recurrence equation depends on the
order of the scheme. For a better accuracy, it might be necessary to use higher order
approximations. As an example, the following approximation:

Bzg 1 1 n 4 n 5 n 4 " 1 .
axz(xj,tn) ~ 2 (—12%_24— ng—l - 2% + 3 i1 T 12 j+2) (1160)

is of the fourth-order in space. The explicit scheme presented in (1.159) is a special
case. If & ;"H cannot be directly expressed as a function of the values of the variable
at earlier instants, an implicit scheme is obtained [4].

1.7.1.1 Stability of the Discretization Scheme

With a given discrete approximation, cumulative errors might propagate during the
calculation over time, causing the “explosion” of the solution because of numerical
instability. Each numerical scheme thus requires a prior analysis of its stability
properties. Such an analysis can be performed by energy methods or by Fourier
techniques. Some guidance on this latter method are given below. The reader is
invited to consult the specialized literature for more details [2, 47].

In the Fourier method, discrete solutions of the form §' = é” exp (—ikx;) are

tested, where i = +/—1 and k the wavenumber. Within the framework of our
reference example (1.159), this leads to the equation:

) . kA
Etl (1 —2B)E" 4 £"1 =0 where B = 207 sin? 2x . (1.161)

The resulting scheme will be stable provided that the solutions do not contain
terms whose amplitude grows continuously with time. It is known that the general
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solution of (1.161) is g?" = a1d} + a>d; where d; and d, are solutions of the
associated characteristic equation d> — 2(1 —28)d + 1 = 0. If B > 2, either
the modulus of d;, or the modulus of d, is greater than unity, and instability occurs.
Therefore, the stability condition imposes here B < 2. This result must be true for
any k, thus leading to the condition:

o=c <1. (1.162)

This last condition is called Courant—Friedrichs—Levy (or CFL) condition. It shows
that, for stability reasons, time and space steps cannot be selected independently.
A specific condition of stability corresponds to each scheme. Some implicit schemes
can guarantee an unconditional stability, but at the cost of lower accuracy, for a given
order of approximation [18].

1.7.1.2 Numerical Dispersion

Numerical schemes also have dispersive properties, which means that the propa-
gation velocities are not correctly estimated. The dispersion properties of a given
scheme are analyzed on the basis of the Fourier transform, which states that the
solution can be represented as a superposition of plane waves of the form & (x;, ') =
¢/ expi(wt" — kx;). By introducing this form in the recurrence equation (1.159), it
is found that the relation of numerical dispersion between angular frequency w and
wavenumber k, is given by:

At AP kA
2@Al_ A2t g (1.163)

Dnum 7k = si
(w, k) = sin A2 5

Equation (1.163) shows that the numerical phase velocity is equal to:

w c ) in K h K kAx  wAx 1164
cnum—k—aKarcsm[asm ] wi = 5, =, - (1.164)

As K tends to zero in (1.164), i.e., when the spatial step is small compared to the
wavelength A, then cpyy, tends to the continuous phase velocity c. Thus, if we want
to numerically reproduce a wave propagation with good accuracy, it is necessary to
discretize the equation with a large number of points per wavelength. Figure 1.28
shows the ratio R = ¢y /c as a function of the parameter K for different values of
the stability parameter . It can be seen that the dispersion properties of the scheme
are degraded as « decreases. Notice that the ideal wave equation shows a remarkable
result for the limiting stability value « = 1. In this case, Eq. (1.164) shows that
the numerical phase velocity is strictly equal to ¢, whatever the wavelength. This
limiting condition of stability therefore provides the exact solution of the wave
equation for the particular centered explicit scheme selected here. This result is due
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to the particular form of this equation. We could show, for example, that with a fluid
damping term introduced in (1.157), then it is not anymore possible to find a value
of o giving the exact solution of the problem.

1.7.2 Finite Element Method

The ideal wave equation with simple boundary conditions (equation of the ideal
string of length L fixed at both ends) is now solved by means of the finite element
method. The main idea is that the solution £(x, ) is now approximated by a linear
combination of basic functions ¢;(x) [35]:

N
£ ) > ) qiDdi(x), (1.165)

i=1

where N is the number of discrete points with abscissa x; on the string and g;(f)
the unknown functions of time which are expected to provide the best possible
approximation for & (x, f).

The method is illustrated using hat functions for ¢;(x). Hat functions (or
triangular functions) are equal to 1 for x; and show linear slopes from O to 1 between
x; and its adjacent points x;—; and x;4; (see Fig. 1.29). The 2D equivalent of such
piecewise linear functions are triangle functions and, in 3D, tetrahedron functions.
These basic functions are the most commonly used.

Figure 1.30 shows that we can achieve a discrete approximation of the string
motion at each time using a linear combination of hat functions.
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Fig. 1.29 “Hat” function (or y
triangular function) Bi(x)

Fig. 1.30 Discrete
approximation of a string

motion using hat functions §lae, t0)

Variational Formulation of the Wave Equation

The finite element method is based on a variational formulation (or weak formula-
tion) of the motion equations. Let us note ¢ 2§, — &, —f = 0 the wave equation,
where the subscripts are the partial derivatives with respect to time and space.
Considering v(x) as a continuous fest-function, at least differentiable once, and
bounded on the interval [0, L], that satisfies the boundary conditions at both ends
of the string. We can check that

L
/ (C_ZSTT - gxx _f)v dx=0. (1.166)
0
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After integration by parts, and taking the boundary conditions into account,
(1.166) is written:

L L L
/ c g dx+/ vaxdx—/ fodx=0. (1.167)
0 0 0

The discrete formulation of the problem is done by replacing &(x, ¢) in (1.167)
by its approximation (1.165). Considering that every hat function ¢(x) satisfies
all conditions imposed to v(x), the following system of differential equations is
obtained

oy [ . b dg; dgy L
c ;%‘/0 ¢i(X)¢k(X)dx+;!Zi/0 d dr dx:/o for dx, (1.168)

that can be written as
MQ +KQ=F (1.169)

where Q is the vector whose components are the g;(f) and where F is the vector
whose components are the projection of the excitation f on the discrete string.

The parameter h = L/(N + 1) is the space step. The following results for the
coefficients of mass M and stiffness matrices KK can be verified, in case of hat
functions:

L 2h L rdgi\? 2
/¢,-2dx= : / P\ gy = Vi=1,2,...N,
0 3 o \ dx h
t h L dg; dpit 1
iQir1dx = dx = — Vi=1,2,...N—1,
/0¢¢+1x 6 /0 dx dx . h !
(1.170)
which leads to
2/31/6 0 ... 0 0 0
1/62/31/6 0 ... 0 0
M— o2y 0 1/62/31/6 0 ... 0 (171
0 0 0 1/62/31/6
0 0 0 ... 0 1/62/3
and
2 -1 0 . 0 0 O
-1 2 -10 .0 0
1 — _
K- 0-12-10..0[ 117
0 0 0 —-12 —1
0 0 O 0 -1 2
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Therefore, for i # 1 and i # N, the discrete variable g;(f), which represents here
the displacement &;(¢) at point x; = ih of the string, since ¢;(x;) = 1, is governed by
the equation:

=F;. 1.173
6 dr 3de2 6 df? h2 ( )

(1 I | 2d% ] d2§i+1) _ b = 26+ b

Comparing this finite element approximation (1.173) with the second-order

centered finite difference method approximation (1.159), one can see that the
second-order partial derivative in space is identical in both cases:

P& Eit1 — 26 + &

X)) =~ . 1.174

axz ( l) ]’l2 ( )

However, the approximation of the second-order partial derivative in time is not
punctual here, since it involves three spatial points:

92 1d%6_, 2d%; 1d%;
Sy~ Lo ; Sit1 (1.175)
or? 6 df? 3 dr? 6 di?

Without going into details, let us mention here the existence of techniques known
as “mass lumping” which consists in the simplification:

P dE

g ()= o (1.176)

which is equivalent to replacing the matrix M by ¢2hl where I is the identity
matrix [18].
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Chapter 2
Single-Degree-of-Freedom Oscillator

Antoine Chaigne and Jean Kergomard

Abstract Single-degree-of-freedom oscillators are often found as such in musical
acoustics. It is important to understand their behavior because they are elementary
building blocks of more complicated (discrete or continuous) systems in the context
of the modal theory. In this chapter, a number of basic results are summarized.
Fundamental methods, based on the use of Green’s functions, are introduced and
applied to the harmonic oscillator. Their relevance and efficiency for treating more
complex systems will appear throughout this book. Whenever possible, conclusions
are drawn concerning practical examples. Two important notions, that are not
always intuitively well understood by musicians, are addressed: resonance and
reverberation. In addition, three different definitions of the quality factor are given,
and the analysis of the harmonic oscillator in terms of energetic quantities is
emphasized.

2.1 Introduction

For this introductory chapter, the most common example of a standard mechanical
oscillator is chosen. We have seen how to switch from mechanical to acoustical
resonators by means of analogies (see Table 1.1). The example of the Helmholtz
resonator without dissipation, in particular, has been studied in Chap. 1 (Sect. 1.5).
Consider a mechanical oscillator of mass M, stiffness K, and with a viscous damping
coefficient R, driven by a force f(r) and whose moving part has a velocity v(z) (see
Fig.2.1). The motion of this oscillator is described by the differential equation:

d
Mdl; + Rv +K/vdt:f, 2.1)
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Fig. 2.1
Single-degree-of-freedom f l
mechanical oscillator

which can be written equivalently with respect to displacement y(¢) (v(f) =
dy(t)/dt) and usual scaled parameters:

d’y dy S
2 2y — s 2.2
e + % . + wyy M (2.2)
where
K wo R
a)g = M and oy = §0w0 = 2Q0 = 2M. (23)

The resonance angular frequency is denoted by wy, which, because of the
damping coefficient R, is not necessarily equal to the eigen (or natural) angular
frequency: both angular frequencies will be defined later in this chapter. Qp is
the second basic parameter describing the sharpness of the resonance: it is called
“quality factor,” and plays an essential role in several properties of the oscillator.
One should remember that its limit is infinite when damping approaches zero. It
may appear cumbersome to define three quantities to express damping, o, ¢,, and
Qo. However, each quantity has its own meaning and use, as it will be seen later.

The damping model has not been discussed yet. In Chap.5 it will be shown
that damping often depends on frequency, which of course strongly modifies the
time-domain equation (2.2). It is assumed that it is not the case here. Similarly, the
damping coefficient is chosen positive so that free oscillations decrease exponen-
tially: in fact, for self-oscillating instruments (see Part III), the sound starts with an
exponential growth, because the energy source is proportional to the term R, which
can be either positive or negative.
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2.2 Solution With and Without a Source: Green’s Function

2.2.1 Solution Without a Source; Eigenfrequency

The first step is to write the solutions of Eq.(2.2) without source terms, i.e.,
after the extinction (f(f) = 0). This corresponds therefore to the case of free
oscillations. Complex solutions in the form Ae/*’ are sought, where w is the angular
eigenfrequency.' The equation to be solved is derived from Eq. (2.2):

2

1
[a)} —J “ _1=0 (2.4)
o0 Qo wo

and the solutions are given by:

1

- 4Q3' (2.5)

wi = joy + w, where @, = woy, with §) = \/1 —i= \/1

If ¢y is greater or equal to unity, i.e., if Qp is lower or equal to 1/2, the two
solutions a)gE are purely imaginary, and there is no oscillations. Discarding this
case, two complex eigenfrequencies are found, which have the same real part
wp, in absolute value. The real part is often called (angular) eigenfrequency of
the oscillator, even if the signal is pseudo-periodic, when it is attenuated. In the
following, the term “eigenfrequency” will be used for a)(;|r and w, as well as for
w), because there is generally no ambiguity. The general solution is written as:

y(t) = e ' [ATe™" + AT or y(1) = Ae"' sin(wpt + ¢). (2.6)

The first expression involves two complex coefficients, A*, but only the real part
is of interest for us. The second expression involves two real coefficients: A and ¢.
The signal has a pseudo-period T = 2m/w,, and is exponentially attenuated, the
exponent being proportional to y. During a pseudo-period, the amplitude of the
signal is divided by a factor:

"What does “eigen” mean? The German word eigen can be translated as “own,” or “natural.” For
a physicist, it means that the eigenfrequency is characteristic of the oscillator, thus independent of
external excitation. For a mathematician, it is linked to the eigenvalues of an operator. Thus, if (2.2)

is written as:
d y . 0 1 y
dr \dy/dt ] — \ =g —2a9 ) \ dy/dt )"
+

The operator is a usual matrix and it can be shown that its eigenvalues are jws~ and its

. 1
eigenvectors | . .
(fwoi)
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Table 2.1 Some typical values of the quality factor Q in musical

acoustics
Instrument Frequency domain Q-factor
Clarinet 150 Hz-3 kHz 10-50
Wooden guitar soundboard 50Hz-5kHz 10-100
Acoustic modes of a violin sound box 100 Hz-10kHz 50-150
Kettledrum drumhead 50Hz-1kHz 10-300
Guitar string (Nylon) 100 Hz—5 kHz 100-1000
Piano string 20Hz-15kHz 102-10*
Metal harpsichord string 20Hz-20kHz 103-10*

To a first approximation, each resonance can be viewed as a single
resonator with its own Q-factor (see Chap. 3). The Q-factors are usually
decreasing with frequency, but this decrease is not monotonous in
general

o)=L a) e
er = exp|— 0| =exp|— . .
! P1™ s P17 000
The larger the quality factor, the longer the oscillation. If it is large enough
(6o ~ 1), an approximate definition for the oscillation to decrease by a factor
e = 2.7 is given by the number of pseudo-periods, divided by 7. Table 2.1 gives
some typical values of quality factors encountered in some musical instruments.
The coefficients A and ¢ in (2.6) can be found provided that initial values of
the function y(¢) and its first derivative v(¢) are known. The following results are
obtained by setting r = 0 in Eq. (2.6) and in the corresponding expression for dy/dr:

y(t) = e |:cj [v(0) + 0py(0)] sin wyt + y(0) cos a)pti| , (2.8)
D

and
v(t) = e™ ™! [U(O) Cos wyt — 80_1 [Cov(0) 4+ woy(0)] sin a),,t] . (2.9)

A special case of initial conditions, which is important for future considerations,
is the case where the oscillator is released without initial velocity and with an initial
displacement y(0). This means that a force f~ (#) = F~ = Ky(0) was applied during
negative time. The velocity (see Fig.2.2) is expressed by:

F
v(t) = — e
Mw,

—oot

sin(wp?). (2.10)
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Fig. 2.2 Oscillator released at + = 0 without initial velocity. On the left the displacement and on
the right the velocity. y(0) = 1; fo = 30Hz ; Oy = 18.85. In this case it takes 6 pseudo-periods
for the oscillation to decrease by a factor e

and the displacement:

_YO) o

cos(wpt + @) (2.11)
8o

y(t) = y(0)e™*' [cos(wpt) + go sin(wpt):|
0

where tan ¢ = —{y/8p (or cos¢ = &p).

2.2.2 Solution with an Elementary Source: Green’s Function

Expression (2.11) is a first illustration of an oscillator with a source switched off at
t = to. Looking also at negative times, it can be written as a solution of the following
equation, with a source term:

d*y dy 5 F~

2 = H(tp—1), 2.12
ar + Oéodt+a)0y M (to—1) ( )
where H (¢) is the Heaviside step function. The velocity is a solution of the following
equation:

2 —
il; + 2050‘5;; + wozv = —1;/1 8(t—to).

It is therefore, to within the multiplicative factor —F~ /M, a solution of the
equation with an elementary source 3(r—ty). The solution is called Green’s function.
This function and its first derivative are assumed to be equal to zero at time ¢ < fy.
It allows expressing a solution for any source (see the following section). The
Green’s function is denoted g(¢|to), and is a solution of the following equation:
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d? d
[d,z +2 , + wé} g(tlto) = 8(1 —10), (2.13)

and, according to (2.10), is equal to:

1
g(tlte) =~ H(t —t9)e ™™ sin[w, (1 — 1o)]. (2.14)
Wp

tp is the pulse emission time, and ¢ is the observation time. Note that the Green’s
function is a function of (# — #): it does not change if the emission time #; is
changed to —¢, and the observation time from ¢ to —fy. This is the property of
temporal reciprocity.” Except for a multiplying factor, its shape is that of the velocity
inFig.2.2,if tp = 0.

A direct solution of Eq.(2.13) is now shown. To simplify the problem it is
assumed that 7 is zero. The method is similar to the one developed for the solution
without a source (2.8), by matching solutions at t = 0. It is known that, for ¢ > 0,
the solution has the form (2.6). Both coefficients A and ¢ are found by matching
this solution to the solution for negative time, which is equal to zero, as it is the case
for its first derivative. It can be shown, and at least it can be a posteriori checked,
that the presence of the Dirac delta function in Eq. (2.13) implies the continuity of
the solution at + = 0, hence ¢ = 0, and the discontinuity of its first derivative. By
integrating Eq. (2.13) between ¢ — ¢ and ¢ + ¢, the following results are obtained:

d t+e 1
[ g(t, 0):| =1 hence A= ,
dr t—e Wp

and Eq. (2.14) is obtained again for #p = 0.

2.2.3 General Solution with a Source Term
2.2.3.1 Solution by Fourier Transform

From the Green’s function, the general equation (2.2) can be solved. We first
derive the Fourier transforms of the equation with y(¢) and of the Green’s function
equation:

F
[—0® + 200j0 + 0f| ¥ = Y (2.15)

Notice that the Green’s function does not have the dimension of a mechanical quantity but only
of a time [the dimension of the Dirac delta function is the inverse of a time, which can be seen
immediately when integrating the 2nd term of Eq. (2.13)]. An equation with physical meaning is
obtained by multiplying the source term by a factor with the right dimensions.
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[~0? + 2apjo + 0} ]G =1 (2.16)

where % (w), F(w), and G(w) are the Fourier transforms of y(¢), f(¢), and g(z|0).
Calculating the ratio of the two previous equations yields

Y (w) =

Fz(\;)) G(w). (2.17)

Therefore, by returning to the time domain, and considering that the convolution
product is the inverse Fourier transform of the ordinary product in the frequency
domain, we get

1 +o0 ) 1 +o00
o=, /_ FO)G@)do = /_ £t =1 10)r.

+o00

or y(1) = RN = /_ FW)g)dr 2.18)

M J_

In fact, because the Green’s function g(¢|¢') is a function of (r—¢'), the convolution
becomes a simple product, and the Green’s function is equal to zero for ¢/ > 1.

2.2.3.2 Solving by Laplace Transform

For a source starting at a given time, the force can be written f(r) = H(£)f(f), and
the previous result (2.18) is applicable. But it is often more convenient to use the
Fourier transform of the product rather than the convolution product. It is then easier
to use the Laplace transform, which involves the initial conditions [see Eq. (1.118)].
Equation (2.17) is replaced by:

X (s) = G(s) [F(s)/M + (s + 200)y(0) + v(0)] (2.19)
and the integral equation (2.18) becomes

dg(IIO)'

W (2.20)

90 = oy [ FORUO + 2oy )+ v0)] £10) +50)

If there is no source (), the solution without a source (2.8) is found again, which
can be verified.?

3This is the standard form of an integral equation which makes use of an elementary solution such
as the Green’s function. If the initial conditions are identical to those of the Green’s function, only
the integral term remains. This kind of equations can be generalized to a problem with variables
depending on both space and time, but the initial conditions can be chosen for the Green’s function:
if it satisfies the same initial conditions as the unknown, there will be no terms linked to these
conditions, which would not be the case otherwise.
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2.3 Examples of Free and Forced Oscillations

This section aims at studying some examples of solutions, in the case of a steady-
state excitation, or for an excitation which is either starting or stopping at a given
time. One can easily imagine a vibrating string, acting as an oscillating source for a
sound box that would have a single-degree-of-freedom: the starting and stopping of
the sound box’s vibration is of great interest, even if the present study will provide
qualitative results only. Similarly one can easily transpose these simple situations to
any instrument producing a sound in a room: it also acts as an oscillating source.
This illustration implies that the oscillation produced is not influenced by the room
itself; this is reasonable, except maybe in the case of an organ (because of the size
of the pipes).

2.3.1 Displacement of a System from Equilibrium

We first treat the case of the displacement of a system from equilibrium, because
it is very simple and complementary to the case of a system released without
initial velocity [Eq.(2.11)]. Let the force be f(t) = FyH(f), the system being at
equilibrium at + = 0: y(0) and v(0) are zero. We do not discuss the method for
producing such a force. We can use the linearity of the problem, and therefore the
superposition principle, and observe that f(t) + f~(t) = Fy, if f~ () = FyH(—1),
which is a case we have already described in Eq.(2.11). Now the solution for
f(r) = Fy (constant) is known: itis y(f) = Fy/Mw?. Subtracting the solution (2.11)
from this result, we obtain the complete solution:

— Fy _ p %ot CO 1
y(t) = Mo |:1 e (cos(wpt) + 5 sm(a)pt))} . (2.21)

The expected initial conditions are satisfied. However, we find that it was not
needed to use them for this new problem! In fact all the information is contained
in the evolution of the force from t = —oo to +00: f(f) = Fy/H(t). The important
fact is that a sudden change of excitation in one direction or the other produces
a free oscillation which is attenuated exponentially, in addition to the steady term
Fy/Ma} (see Fig.2.3).

2.3.2 Excitation (Forced) by a Steady Sinusoidal Force

Consider, for example, f(f) = Fy coswt. The solution is the real part of the
solution for f(f) = Fye/®'. For steady forced oscillations, the solution can be
sought in the form A(w)e/®!. The derivatives are then derived in a straightforward
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Fig. 2.3 Displacement of the T T T T T T
system from equilibrium: the 2.0
displacement is calculated

with the same parameters as
in Fig.2.2, but y(0) = 0 1.5 ]
S 1o0r -
05 4
o — _

0 0.2 0.4 0.6 0.8 1.0 1.2

way. The oscillating response has the same frequency as the excitation. Now, the
eigenfrequency intervenes in the amplitude only: this point will be discussed in
detail later. Using Eq. (2.16), one obtains

y(1) = FyM™'G(w)e®". (2.22)

Taking the real part of this result yields

eiwr

M .
= sin(wt + 2.23
—w? + 2jagw + w§i| MD'/?(w) (@ ®) ( )

F
y(t) = Af;iﬁe |:
where
D(w) = [(0® — w])* + 4aj0?] ; tang = (—0* + )/ 2000.  (2.24)

The velocity is given by:

Cl)FM

MD'2(w) (2.25)

v(f) = Acos(wt + ¢) where A =

2.3.3 Excitation by a Sinusoidal Force Starting att = (0

Consider now the particular case when the starting time of the source is taken
into account. Let us roughly suppose that it starts abruptly: the force is, for
example, (1) = FyH(t) cos wt. We now calculate the velocity by using the Laplace
Transform. The transform of the force is F(s) = Fys/ (s> + »?), and that of the
derivative is Fs2/ (s> +@?) —f(01) = —Fyw? /(s> +?). Since the initial velocity
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and the acceleration are zero (velocity is zero for all negative times), the transform
of the velocity is

FM 602

V(s) = — .
(s) M (s2 4+ 0?)(s2 + 2005 + ©F)

(2.26)

The standard method for calculating the inverse transform is the partial fractions
expansion in terms of the form (s — s,,) ™', which leads to simple poles. It is actually
more efficient to group the conjugate poles (we expect to find the combination of two
signals of angular frequency w and w,). We are therefore looking to write V(s) as:

b 's+ b
_ st @5t . (2.27)
2+ §2+ 2008 + of
The result is obtained, after identification and inverse transform, but the calcula-
tion remains heavy. A lighter approach is based on the observation that, given the
form of Eq. (2.27), the solution is of the type:

v(t) = H(1) [Acos(wt + ¢) + Ape " cos(wyt + @) ] . (2.28)

and thus only the first term remains when time goes to infinity. In other words, the
first term is equal to the solution (2.25), multiplied by H(¢). To find the other two
parameters, we can simply use the initial conditions (zero velocity and acceleration),
which gives

wtang = oy + wptang, ; Acosp = —A, cos @p,

and, after some calculations, A, = Aw/w,.

The second term in the right-hand side of (2.28) is not negligible compared to
the first as long as the observation period is small compared to the characteristic
damping time oy, !. For some weakly damped structural modes of musical instru-
ments, this characteristic time can be of the order of magnitude of 0.1 ms or higher.
Therefore, assuming that the exponential becomes negligible after a time of five to
ten times larger, it appears that this second term cannot be neglected for 0.5 to 1s
after the excitation has started, if we want to correctly estimate the average power
dissipated.

2.3.4 Excitation by a Sinusoidal Force Stopping att = ()

What happens for a force stopping at t = 0, i.e., f(t) = FyH(—t) coswt ? One can
use the Fourier Transform, with the necessary precautions concerning the function
H(—1), but a simpler method exists. We use the principle of superposition applied
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to the previous problem, which gives a sinusoidal steady source, and we derive by
simple subtraction between (2.25) and (2.28):

v(1) = AH(—1) cos(wt + @) — A,H(t)e ™ cos(wpt + ¢p). (2.29)

The form (2.29) is interesting because it exhibits the reverberation: after the
pulsation source w stops, the oscillator vibrates at its eigenfrequency, with free
oscillations. The phenomenon that occurs when the source starts [see Eq. (2.28)] can
also be called reverberation: however, it overlaps with the oscillation produced by
the source. The reverberation is a phenomenon triggered by the non-stationarity of a
source: it is an oscillation whose frequency is the eigenfrequency of the system, and
which decreases because of damping. These results are qualitatively very general,
since they can be extended to any vibrating system with several degrees of freedom
(DOF). The only phenomenon that cannot occur with a single DOF (i.e., a single
mode) is the phenomenon of echo, due to delays: in a room, there is a very
large number of modes (or DOF), which combine together and produce successive
reflections on the walls. In Chap. 4 the relationship between modes and waves will
be presented.

2.4 Forced Oscillations: Frequency Response

Forced sinusoidal motions are often used in experimental devices, in order to
estimate the mechanical losses of a structure, in particular. It is therefore necessary
to understand their main aspects and their theoretical limitations. In a steady
sinusoidal regime, it is convenient to use the complex notation, what we adopt
hereafter. We wish to study the response of the displacement (Eq. 2.15), and, above
all, the velocity due to a sinusoidal force f(z) = Fy exp(jwr), since the product of
force by velocity determines the power. We must therefore consider the response,
called mechanical admittance, when the frequency varies

Vi) 1 Jjo

Y(w) = = ,
@) Flo) M —w?+ 2joa)+ o}

(2.30)

the Fourier Transform of f(z) being F(w') = Fyd(w’ — w). A function of @ of
this form is often called “Lorentzian.” We are interested in the quantities: modulus,
argument (which is a phase difference), real and imaginary parts of the admittance,
for which the evolution versus frequency can be seen in Figs.2.4 and 2.5. We
limit the study to the response in velocity, because in musical acoustics the input
admittance (or impedance) is the most useful response. However the responses in
displacement or in acceleration are interesting too, and show other variations with
frequency.

It will be shown in Chap. 3 that for any discrete or continuous system, under
certain conditions, the response is simply the sum of quantities of the type (2.30),
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Fig. 2.4 Oscillator’s admittance modulus and argument versus frequency, for Qp = 18.85; fo =
30Hz, M =1

Fig. 2.5 Real (dotted line)
and imaginary part (solid
line) of the oscillator’s
admittance versus frequency,
for Qy = 18.85; fy =30Hz,
M=1
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each corresponding to a mode. For forced oscillations, we are interested in the
maximum of this quantity; for self-sustained oscillations, our interest is in the zeros
of the imaginary part (this will be explained in Chap. 9), the two kinds of frequencies
being very close. For the present case (single mode), they are identical.

To study the admittance variation versus frequency, the easiest way is to start by
considering the inverse quantity, i.e., the impedance

Z(w):ja)M—l—R—i—,K:Mwo[jw—jwo—i— 1] 2.31)
Jjw wo "o Qo

Z is real when w = wyp, which implies that the admittance also is real. For v >
wy, the leading term is the mass term, otherwise it is the stiffness term Mw02 Jjw.
The real parts of Z and Y are always positive for a passive system, as explained in
Chap. 1. The imaginary part is either positive or negative.
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The modulus Z is minimum when @ = wy, the so-called resonance angular
frequency. For a given amplitude of excitation F (the cause), it corresponds to
the angular frequency for which the amplitude of the response V (the effect) is
maximum.* It differs from the angular eigenfrequency w,, unless the damping is
low [large Qo, see Eq. (2.5)]. If Qy is large, impedance and admittance are almost
purely imaginary at any frequency, except very close to the resonance.

Two other frequencies are interesting’: these are those for which the imaginary
part is equal or opposite to the real part (the argument of Z is then £ /4). This gives
the following values:

o _ 1+1i1—lil+0(1) (2.32)
o 403~ 200 200 o5/ .

For very large Qy, they are very close to the resonance frequency. It is easy to show
that they correspond to extrema of the imaginary part of admittance, which can be
written as:

1 1 —juQo o W

h = — . 2.33
Man 201 1 g8 M T, (2.33)

Y =
At these frequencies, the modulus of Y is thus equal to its value at the resonance
(n = 0), divided by V2. We note that

ot—a- 1 1
R (2.34)
wo Qo 40,

This quantity is the relative width of the peak of the quantity |Y|2 at half maximum:
for large Qy, it is close to 1/Qy. This is a second definition of the quality factor, the
first one being the decay rate by period for free oscillations [see (2.7)]. However the
two definitions only coincide at the third order of Q'. We still have to examine the
variation of the real part of the admittance: Equation (2.33) shows that it reaches a
maximum at the resonance, and it is then equal to:

Re(Y) = |¥] = = . (2.35)

4wy is also the angular eigenfrequency of the undamped system, obtained for R = 0.

SThey are called quadrantal frequencies.
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Im(Y)

Fig. 2.6 Imaginary part of the admittance when Q, tends to infinity: there is no zero-crossing. The
dotted curve represents the case Qp = 18.85. The two curves merge far from resonances

2.4.1 Remarks on the Determination of the Resonance
Frequency

We notice that the resonance frequency wy does not depend on the quality factor.
This is why in the case where we are only interested in resonance frequencies, the
quality factor can be taken to be infinite, i.e., the damping equal to zero. We then
have a purely imaginary admittance, which approaches oo when the frequency
approaches the resonance. In this case, the shape of the curve of the imaginary part
of Y becomes very different, since the two extrema are infinite, and it does not cross
0 (Fig.2.6). If we consider Eq.(2.33), we see that the limit of the imaginary part
of Y when Qy — 00 is not straightforward for small x. On the other hand, the
modulus of the impedance Z shows little change.

It turns out that the imaginary part of the impedance is a very good candidate for
determining the resonance frequency by interpolation. A simple calculation shows
that if Im(Z) is known at two angular frequencies w; and w;, the resonance is
given by:

) _ 010 [@23m(Z1) — w13Im(Zy)]

2.36
w1Im(Zy) — w2 Im(Z;) ( )

This method can be used even if other modes are present, since the admittance
is then the sum of terms of type (2.33). In the presence of modes, some of
them may have an amplitude such that the imaginary part of ¥ does not vanish
anymore. Nevertheless if we ignore the damping terms, each term goes to infinity at
resonance, and this problem does not arise. Ignoring damping to find the resonance
frequencies is therefore very usual and this approximation is very useful in musical
acoustics, regardless of the number of modes. Finally, what happens when damping,
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and therefore the quality factor depends on frequency (in this case, the initial
time-domain equation can be greatly modified)? If we look at the cancelation of
the imaginary part, the resonance frequency remains independent of the variation
of damping with frequency, as seen in the expression of the impedance (2.31).
Conversely if we look at the maximum of the modulus of Y for forced oscillations,
it is a bit more complicated but it can be shown that the variation of Qy(w) leads
to a variation of magnitude 1/Q3 only, for both the resonance frequency and the
maximum.

Simplification of the response around the resonance: ‘“‘simple” modes
We saw in Sect.2.2.1 that a single-degree-of-freedom oscillator has two
complex eigenfrequencies denoted a)gE [Eq. (2.5)]. These frequencies are the
(simple) poles of the admittance (2.30). We have

w? —jowy/ Qo — a)g = (0 —of)(®—wy).

Hence if Yy0 = Qo/Mwy is the maximum of the modulus of Y:

. jo _ YMO[ oy wy

_Ma)g—a)2+ja)w0/Qo_ 2 Qoo a)—a)g' o —wy

(2.37)

Each term can be seen as a mode that we will call “simple mode.”® Around
® = wy, we can ignore the term of negative eigenfrequency (more specifically
the term with a negative real part), which gives, if Z,0 = 1/Yyp is the
minimum of the impedance:

Z=1/Y = 2j00d0Zno [w_(fﬂ = 7 [1+2onw_w°8°} .
20 1+j/(2Q060) o
(2.38)
If the quality factor Qy is large enough, this reduces to:
n

w — W w — o,
Z >~ Zmo [1 + 2j00 0} ~ 2jZm0 0o o (2.39)
wo wo

(continued)

5One can also write s) = jaz)o+ = (jw; )*

Y= _j YM() S0 . SS<
2Q08() ja)—S() j(J()—SS< ’

hence Y(—w) = Y*(w) for w real.
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This highlights that such an approximation is convenient for representing a
Lorentz resonance near its maximum, at the cost of a first-order approximation
in 1/Qp. A more direct approximation method is to write @ = wo(1 + €)
in Eq.(2.37) and expand it to the first order in e. This approximation is
justified as well as the truncation of a modal series to a single mode, under
the condition that the frequency is close to the resonance of this mode, with a
high quality factor.

2.5 Energy, Power, and Efficiency

2.5.1 Energy and Power

The instantaneous mechanical power p,(t) of the oscillator is given by the scalar
product of f and v (see Chap. 1), which leads to:

R S 2
Pm= [2Mv + 2Ky :| + Rv~ . (2.40)
The three terms on the right-hand side of (2.40) represent the temporal variations
of the kinetic energy of mass M, the elastic energy of spring K, and the power
dissipated in the resistance R, respectively.

In most applications, the time average of p,,(?), i.e., its slow fluctuations, is more
interesting than its fine details and rapid evolution in time. In audible acoustics, for
instance, the human ear is sensitive to the sound level which is well correlated to the
average value of the sound power, after integration over a period of 50 ms. This is
typically the kind of information that can be read on a sound level meter. In room
acoustics, the reverberation time is defined in the same way as the decay of the slow
fluctuations of the energy density in the room after the excitation has stopped.

We define below an integration time T whose selection criteria will be discussed
later. Using Eq. (2.40) we calculate the average mechanical power &,,(T):

T
Pu(T) = ;T [Mv*(T) + Ky*(T) — Mv*(0) — Ky*(0)] + ; /0 Rv?(1)dr .

(2.41)
For free oscillations the average power &,,(T) is zero. We derive

T
;[MUZ(T) + KA (T)] = ; [Mv*(0) + Ky*(0)] — /0 Rv*(1)dt, (2.42)
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which quantifies the average power Z(T) = fOT Rv?(t)dt dissipated during the
given time interval 7. This power & (T) is also the power needed by the system
to ensure a periodic motion of period 7. We notice, in this case, that the quantity
between brackets in (2.41) vanishes.

2.5.1.1 Special Case: Steady Sinusoidal Movement

For an excitation force f(f) = F), coswt, it has been shown in Eq. (2.25) that the
velocity is given by v(f) = Vi cos(wt + ¢). Therefore, the average power is written
as follows:

1 T
P.(T) = T/o FVy cos wt cos(wt + ¢)dt (2.43)

The oscillation period is denoted v = 2{4’)’ The integration time is then given by
T = nt + 1, where n is a positive integer. The average power becomes

1 FuV . .
P.(T) = 2FMVM cos¢y + 4(27{:1”+Mt o) [sinwt, + ¢) —sing] . (2.44)

Discussion

* Equation (2.44) shows that the average power &,,(T) is approximately equal
to ;F mVy cos @ only if the average integration period involves a sufficiently
large number n of oscillation periods. For the special case where T equals ,
the equality is strict. In what follows, we consider that this condition is satisfied,
so that the dependence of the terms of the average power on the integration period
is suppressed.

» For a given force, the expression of the velocity was found (see Sect.2.3.2). The
average power can be written using complex quantities:

Py = ;Eﬂe [Fv* ()] = ;F@mem. (245)

This result, which is consistent with Eq. (1.131), confirms the well-known result
that the maximum of dissipated power is obtained when the excitation frequency
is equal to the resonance frequency of the oscillator, namely for @ = wy. Then,
following Eq. (2.35) we can write:

Fiy

Max (2} = (2.46)

As a consequence, from Eq. (2.46), if F); is known, we can easily derive R by
power measurements.
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Fig. 2.7 Variation with time 0.08 . . . . .
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* For forced oscillations with angular frequency w, the calculation of the power
P, exhibits terms in @ + wpdp and |@ — wdo|, where & is defined in Eq. (2.5).
Consequently, the average power exhibits low frequency variations before the
steady state emerges (see Fig. 2.7). Experimentally, this transient state may take
some time if w is close to wy, which might pose some difficulty for practical
measurements of the average power.

2.5.1.2 Third Definition of the Quality Factor

Itis possible to link the average power supplied to the energy of the system, averaged
over a period, through the quality factor Qy. The total energy, which is the sum of
kinetic energy and potential energy, is given in Eq. (2.40). Using complex quantities
for force and velocity, we have f(f) = Fyexp(jwt) and v(t) = Vi exp(jot + ¢).
Using the results of Chap. 1, the power and the total energy averaged over a period
are given by:

1 1
P = RIP b=, [M|v|2+K|y|2] .

We get the ratio

T2, Ax R|v|? T 4w wp w?

& o M +K|y* Qo o [ wz]
= = 1+ .
This shows that at the resonance, it is equal to Qy/2m. This definition comple-
ments the definitions based on the decay rate (2.7) and on the relative width of the
resonance peak (2.34). These three definitions coincide for small damping values
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Fig. 2.8 Mechanical
single-degree-of-freedom
oscillator loaded by air p c
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M

only. When a more general response is considered, expressed as the sum of several
modes, the situation becomes even more complicated. Finally, at the resonance, the
average energy is equally distributed between potential and kinetic energy.

2.5.2 Mechanical Air Loaded Oscillator

The following example is the simplest model of acoustic radiation by a structure
with a single-degree-of-freedom. As in the previous paragraph, we examine its
properties in terms of energy, and we define its efficiency in terms of power.

To illustrate the model, imagine a mechanical single-degree-of-freedom oscil-
lator loaded by a semi-infinite tube of cross section S, filled with air of density p
and where the sound speed is denoted ¢ (see Fig.2.8). A wave travels in the tube
whose specific characteristic impedance pc was found in Chap. 1 (Sect. 1.2.4). The
pressure force is simply proportional to velocity. The equation of this oscillator is
written as:

d
f:MdI; Y Rv+K / vdt + Ry with R, = peS. (2.47)

The instantaneous power supplied to the system is written as follows:

dTJ1 1
n(f) = Mv? Ky? R + R,)v>. 2.48
pult) = &y [ 07+ K62 R R 2.48)

Hence the average power (per period) is

T T
P(T) = ; /0 Rv*(t)dr + ; /0 R ()dt = P(T) + P,(T), (2.49)
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where Z2,(T) is the average acoustic power radiated into the tube. We define the
acoustical efficiency by:

_ Pa(T) _ Z.(T) _ R,
" Pu(T)  P(T)+ P(T) R+R,’ (2.50)

This last result requires some comments.

* We observe in (2.50) that the efficiency is independent of 7.

* Although the form of n here appears to be very simple, its experimental deter-
mination is not straightforward because it requires to estimate R, for example,
through measurements in vacuo.

* In the academic example presented above, R, is obtained analytically, which
is rarely the case for structures with complex materials and geometry such as
musical instruments. In the general case, &2,(T) is obtained experimentally (or
numerically) by computing the flow of the acoustic intensity vector over a closed
surface surrounding the source.

* In general, the efficiency may depend on frequency, which is not the case here,
but when there are no losses (this corresponds here to setting R = 0) it is always,
by definition, equal to unity! Conversely, we have seen that the response of a
resonant system always depends on frequency, especially when the losses are
small (see, for example, Fig. 2.4). Efficiency and response are therefore quantities
whose physical meaning is very different.

2.5.2.1 Link Between Radiated Power and Damping Factor

For a radiating single-degree-of-freedom system, it is possible to estimate the sound
power from the measurement (or numerical simulation) of the damping factor, in
free oscillations. In Chap. 13, we will examine the conditions for extending this
result to systems with multiple DOF. The equation of the mechanical oscillator
loaded by air can be written in a reduced form:

d*y
dr?

R+R,
R 2.51)

dy =, .
2 =0 th =
+ 2wy it + wyy with ¢ Moy,

for which it is known that the solution is written as (assuming ¢ < 1):

¢

¥(0) = exp(—{wo) [cosw A

) sin(wo /1 —@%)} . (252
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Equation (2.52) shows that the damping factor (equal to the inverse of the time
constant) is equal to:

R+ R,

o ="Llw = R (2.53)
In conclusion, considering the definition (2.3), we note that, for the simple case
of a single-degree-of-freedom oscillator, the acoustical efficiency can be estimated

in the time domain by using the expression:
p=%"% (2.54)

o
Note It should, however, be emphasized that one of the damping effects is to
slightly modify the frequency of the oscillator, compared to the in vacuo case. This
effect has no consequence here because, concerning a “monochromatic” signal, the
determination of « from the exponential envelope is independent of the oscillation
frequency. Furthermore, in the present example, the air load is considered as purely
resistive. If, however, we are in a situation where the fluid load also includes a mass
or elastic component, we could not obtain the efficiency from a formula as simple

as Eq. (2.54). This point of view will be developed in more detail in Chap. 13.



Part 11
Waves and Modes

This second Part of the book is devoted to the linear vibrations of musical
instruments. The “modal” and “wave” approaches are described in Chaps. 3 and 4,
respectively, for non-dissipative structures of simple shapes. Dissipation phenomena
are presented in Chap. 5. Coupled systems are addressed in Chap. 6, whereas Chap. 7
is devoted to the resonators of wind instruments. For these instruments, the exact
shape of the bore (flaring, toneholes) has an essential function. Leaving aside the
radiation, which will be presented in the fourth part of the book, this part is aimed
at presenting a global approach of free linear oscillations, eigenfrequencies and
eigenmodes of musical instruments.



Chapter 3
Modes

Antoine Chaigne and Jean Kergomard

Abstract The concept of mode (or eigenmode) is ubiquitousin musical acoustics,
since the behavior of musical instruments, as many other mechanical systems, is
fairly described by boundary value models, for which the modes are the eigenso-
lutions, in the strict mathematical sense. In this chapter, the basic properties of the
eigenmodes are reviewed, for both discrete and continuous non dissipative systems.
The efficiency of the modal description is illustrated by numerous examples taken
from the physics of strings and percussive instruments. In addition, most of the
results presented in this chapter will be used in Chap. 7 devoted to wind instruments.
It is shown, in particular, to what extent the geometry, material, and conditions
of excitation determine the vibrational properties of the instruments. Fundamental
results on the vibrations of strings, beams, membranes, plates, and shells are
demonstrated, which will be used throughout the book. The links with experimental
modal analysis are also emphasized.

3.1 Introduction

The concept of modes is widely used in musical acoustics. Experimentally, one
can gain a visual appreciation of modes through the so-called Chladni patterns
(see Fig.3.1). Such patterns are obtained by sprinkling sand on a plane or on a
slightly curved structure (plate and soundboard) which is being continuously excited
(using, for example, a bow, or a loudspeaker driven by a sinusoidal input signal).'

Chladni patterns on drumheads were obtained by Worland [43].
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Fig. 3.1 Chladni patterns showing the modes of vibration of a guitar soundboard, at 117, 285 and
481 Hz, respectively. According to [41]. © Thomas Erndl

It is observed that the grains gather together on continuous lines, or nodal lines,
corresponding to points with zero amplitude of vibration. The resulting figure is
the mode shape corresponding to the excited eigenfrequency. One can clearly hear
the associated sound when the structure is weakly damped, as it is the case for a
metallic plate. In what follows, eigenmodes, or simply modes, designate the set of
eigenfrequencies and mode shapes of a continuous, or of a discrete, system for a
given geometry and material.

In the previously described experiment, different modes can be successively
excited if the excitation point, or the excitation frequency, is modified. If the
boundary conditions are changed, then the eigenmodes and eigenfrequencies also
change. This result has important consequences in lutherie: it shows that the violin
soundboard, once glued to the instrument, does not exhibit the same eigenmodes as
it did when it was free to vibrate at the edge.

From a theoretical point of view, the concept of modes is of great interest.
Because of their mathematical orthogonality, it is possible to expand any linear
solution of vibratory or acoustic phenomena onto a basis of eigenmodes. In Chap. 8,
it will be shown under which conditions such expansions can be applied to weakly
nonlinear systems.

Strictly speaking, the concept of eigenmodes can be applied to any undamped,
linear system of finite dimensions involving both kinetic and elastic energy, when
the dynamics of the system are observed over a time scale which is large compared
with the “characteristic time” of the system. The characteristic time corresponds to
the time taken by a wave to propagate from an internal excitation point to the edges
of the finite domain defined by the system. In Chap. 5 this notion will be extended
to damped systems by introducing the concept of complex modes.

In the present chapter, the discussion is restricted to real modes. The basic
mathematical properties of modes are presented, as well as general methods
to calculate them. We illustrate these concepts using some examples linked to
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string and percussion instruments. The acoustics of wind instrument resonators is
considered in Chap. 7, where some results of the present chapter are used, drawing
on the analogies outlined in Table 1.1 in Chap. 1.

3.2 Time Scale: Transition from Wave to Mode

When a continuous elastic medium (either solid or fluid), of finite size, is perturbed
by an external stimulus, then the disturbance propagates away from the excitation
point. The propagation speed of the disturbance depends on the inertial properties
(density) and elasticity (compressibility, Young’s moduli, and Poisson’s ratios) of
the medium. As long as the disturbance does not reach the boundaries of the
medium, a wave approach such as the one outlined in Chap. 1 and developed in
Chap. 4 is a suitable means of describing the phenomenon. Taking L as being a
characteristic dimension of the medium, and ¢ as the propagation speed, we can
define a characteristic time t. = L/c, where this wave approach remains valid (see
Fig.3.2). When the disturbance reaches the boundaries of the domain, part of the
energy is generally transmitted to the external medium, the remaining part being
reflected inside. Two situations can occur

1. The interference between incident and reflected waves at the boundaries is
constructive. This happens at frequencies for which the incident and reflected
waves are in phase. In this case, the total energy for these frequencies tends
to increase with time. Only energy losses due to absorption or transmission at
the boundaries, and during the propagation through the medium itself, limit this
growth. In the absence of dissipation, the energy increases indefinitely in the
medium.

2. The interference between incident and reflected waves at the boundaries is
destructive. In this case, the phase relationship is such that no energy growth
is possible over time in the medium. Because of absorption, the amplitudes of
the corresponding frequencies gradually decrease.

t<t, t=t, t>>t,

Fig. 3.2 Local vs. global approach of dynamic phenomena. t. is the characteristic time



104 A. Chaigne and J. Kergomard

If the observation time is significantly larger than the characteristic time #, of the
medium, then the initial disturbance travels back and forth several times between
the excitation point and the boundaries of the domain. In this scenario, it is therefore
more useful to describe the phenomenon in a way that accounts for the fact that the
energy of the system is distributed over a set of discrete frequencies. In the absence
of dissipation, these frequencies are the “eigenfrequencies” of the finite medium.
In the following paragraph, a rigorous definition will be introduced. As stated in
the introduction, if a single eigenfrequency can be isolated (this can be achieved
with a monochromatic excitation spectrum), then the spatial profile of the medium
corresponds to an eigenshape.

It is always possible to describe the dynamics in terms of waves. We will
show some applications of this approach in the next chapter. However, this wave
approach quickly becomes very cumbersome and does not always provide a clear
understanding of the physics. It is worth noting, finally, that, strictly speaking,
the growth of an eigenmode needs a significant number of round-trips. Therefore,
there is a definite intermediate period of time (between one and “a number of” ¢,),
where both the “wave” approach and the “mode” approach are acceptable.

3.3 Definitions and Basic Properties of the Eigenmodes

An eigenmode, for a discrete system or for a continuous medium with finite
dimensions, is an eigensolution of a boundary value problem without a source
(in the mathematical sense). In practice, this means that they are solutions of
the equations describing the system without external excitation. If the system is
conservative, these solutions are sinusoidal in time and are in phase (or in anti-
phase): “standing waves” are obtained. The restriction to conservative media at this
stage may be surprising as dissipation is essential for musical instruments, but before
we consider musical instruments it is first important to understand the properties of
the eigenmodes for this limiting reference case.

3.3.1 Discrete System

A discrete system has a finite number of degrees of freedom. In linear dynamics, the
equations of motion of a discrete conservative system can be written in the general
form:

ME + K& =0, (3.1)

where & is a vector containing the variables which describe the motion of the system,
M is the mass matrix, and K the stiffness matrix. Each component of & is a function
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of time. Matrices M and K are symmetrical. The general form of Eq.(3.1) is the
same as that obtained for a discretized continuous medium, using finite element or
finite difference methods (see Chap. 1).

In Chap. 2, it was shown how the eigenvectors and eigenfrequencies of an SDOF
oscillator can be found. Let us now define the vector w and the matrix Mig:

() () e

so that Eq. (3.1) becomes: w = Mgw.
By definition, the eigenvectors of My must fulfill the condition: Mxw = Aw, or

£ =Af ; —M 'K& = A£, from which K& = —A>ME. (3.3)
Denoting A2 = —w?, the eigenfrequencies are the roots w, of the characteristic
polynomial:

det[-w’M + K] =0. (3.4)

The number of roots is finite. These roots are real for a conservative system [16].
The eigenvectors (or eigenshapes) @, are therefore the nonzero solutions of the
following equation:

[~oyM + K] @, =0. 3.5)

Important Property Since Eq.(3.5) is indeterminate, the components of @,, are
defined up to a multiplying factor.

The set (w,, D,) defines the eigenmodes of the system. The mathematical theory
of spectral analysis shows that the shapes @, form an M- and K-orthogonal basis of
the vector space corresponding to the small motion of the system, which means

'$,M®, =0 and ‘®,K®, =0 for m#n, (3.6)

where 'V represents the transpose of vector V.

Demonstration
Let us write (3.5) for two specific eigenmodes n and m. We obtain
M@, = K@, and w:M®, =K, . (3.7)

(continued)
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Multiplying both sides of the first expression by ‘@, and, similarly, both sides
of the second expression by '®,,, we obtain

'®,0:M®, ='®,K®, and '@,0.M®,, ='®,K®,, . (3.8)
We now transpose the second expression, which leads to:
'@, M®, ='9,'KD, . (3.9)
Given the symmetry properties of M and K, the last equality becomes
'®,0:M®, ='®,K®, . (3.10)
By comparing the first expression of (3.8) with (3.10), we find

(0f — wp) ' ®,M®, =0, (3.11)
from which the expressions (3.6) are derived, since the eigenfrequencies are
different.”

The orthogonality properties mean that the inertia and stiffness forces involved
in a given eigenmode do not develop energy in the motion of the other modes.
A mechanical independence exists between two distinct modes.

In theory, one can take advantage of this orthogonality to expand any solution of
this problem onto the eigenmodes of the system. Thus, if the system is excited by a
distribution of forces f, its motion is described as:

ME + K& =f. (3.12)

The spectral theory shows that the eigenmodes form a complete system. As a
consequence any solution of Eq. (3.12) yields a unique projection on the eigenmodes
basis [15]. This projection can be written as:

=Y @..1). (3.13)

The functions g,(t) are referred to as the generalized displacements or the modal
participation factors. By substituting (3.13) into (3.12), and by making a inner
product on both sides with any eigenvector @,,, we find, (after eliminating the
zero products when m # n):

(¢nv M¢n>Qn + (¢ns K¢n>Qn = (¢nsf> P (314)

21t is shown, see, e.g., [18], that the orthogonality properties can be extended to the case of multiple
eigenvalues.
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where the notation { , ) represents the inner product: {x,x")= ‘xx’. Equation (3.14)
expresses the decoupling of generalized displacements. Each of these displacements
is described by the differential equation of an independent SDOF oscillator. The
quantity

my = (@, M®,) (3.15)

is the modal mass of the mode n. Like the eigenshapes, the modal masses are defined
up to a constant multiplicative factor. Similarly, the quantities

kn = (@, K®,) (3.16)

are the modal stiffnesses. Note that:

Kn = Muwy,” . (3.17)

Finally, the quantity

o = (Pn.f) (3.18)

represents the projection of the external forces onto the mode n. In practice, if the
inner product is zero, it is not possible to excite the corresponding mode. This
occurs, for example, if a string is attached at a position corresponding to a node
of a soundboard mode: in this case, the string cannot excite this mode.

In view of these definitions, we can rewrite the equation of each oscillator in the
following generic form:

Gn + 02q, = S (3.19)
m

n

The Fourier transform of & [Eq. (3.13)] becomes

E(w) = Z:p m w2—w2 . (3.20)

The right-hand side of this expression is a sum of resonant terms. Consequently,
if the system is forced at a frequency w close to one particular eigenfrequency w,,
the amplitude of that term will tend to infinity. In such a situation, the assumption
of linearity for the system is no longer justified, and other tools for describing the
nonlinear phenomena must be used (see Chap. 8).

Note 1: Since the eigenvectors are defined up to a constant multiplicative factor
C, (3.15) shows that the modal mass is proportional to C2. Consequently, (3.18)
shows that f, is proportional to C and (3.19) indicates that g, is proportional
to C~!. In summary, (3.13) shows that the solution £ is independent of C.
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Note 2: The expression normal mode is sometimes used to designate an
eigenmode normalized by an arbitrary constant. This constant can either be the
modal mass of the mode n, or any other appropriate constant (the total energy of
the system, the modal mass of the fundamental...), depending on the physical
context.

3.3.1.1 Energy Approach

The total kinetic energy of the system is

1 . . 1
b= (& ME) = (3" @an(0). MY Puiin(1))

1 N
= 5 22 D (@ M) (0im(1) (3.21)
1 .
Similarly, the elastic potential energy is
1 1 2
&= (& KE) = ) D k(1) (322)

Therefore, the total energy of the system is the sum of the modal energies:

1
E=6+6=, ;mnq,%(r) + k() = Zé@ : (3.23)

3.3.2 Extension to Continuous Systems

Extending the results obtained for discrete systems to continuous (conservative)
systems, within the framework of linear approximation, shows that an infinite set
of eigenmodes exists with orthogonality properties related to mass and stiffness
operators. These eigenmodes form a complete basis for any linear motion of the
system. In this case, the eigenvectors @, defined for discrete systems become
continuous eigenfunctions of space @(x) and the inner products are expressed in
the form of integrals over the entire structure.
The equation of motion for linear continuous systems can be written as:

LY+ =s@x,1), (3.24)
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where y(x, 1) is the displacement (or one of its derivatives), .2 (y) a linear operator,
function of y and of its derivatives, and s(x, r) a source term. It is necessary to add
boundary and initial conditions to define a well-posed problem.?

3.4 Application to Vibrating Strings

As the name suggests, the basic sound generation mechanism in any string
instrument is the vibration of the strings attached to the neck and soundboard.
The soundboard is set into motion by the strings, which act as vibratory sources,
and the vibrations of the soundboard are transformed into an acoustic pressure (see
Fig.3.3).

A

Strings Soundboard

Radiation

A, Y

Exciter

Soundbox

Fig. 3.3 Basic principles of string instruments. An exciter (finger, plectrum, hammer, and bow)
sets one or more strings into vibration. This results in a string-exciter coupling which is either
limited in time (plucked or struck strings) or permanent (bowed). The vibrations of the strings are
transmitted to the soundboard via the bridge. The motion of the soundboard modifies the vibration
of the strings slightly, especially if it is light and flexible, since it provides a moving end for the
strings. The soundboard is usually coupled to an air cavity with sound holes (rose, f-holes). The
radiation of the instrument is primarily due to the soundboard and soundholes and, to a lesser
extent, to the back plate. The other parts of the instrument (neck, ribs) do not radiate much sound
in general

30ne can also define a vector w = (y) and separate time and space. Thus for the wave equation
y
2 y . .
L) = —c? ?)x; , the equation to be solved can be written:
. 0 1
w = Aw , where A = 5 02y .
TC 2

We therefore have a matrix operator A, for which we can determine the eigenvectors and
eigenvalues.
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The same basic principles apply for all string instruments, though a wide
variety of sounds and tone colors exist in this family. Variations in the excitation
mechanisms and the material properties of the body are largely responsible for this
diversity, although significant differences between the properties and regimes of
vibration of the strings themselves are observable from one instrument to another.
As an illustration, we will present some properties of bowed strings at the end of
this section. These properties will be discussed in more detail in Chap. 11.

The experimental study of vibrating strings is a hard task, mainly because it is
difficult to mechanically isolate them from their supporting frame: it is, for example,
extremely hard in practice to obtain perfectly fixed boundary conditions. Moreover,
the motion of a real string does not remain planar: there are always conditions of
excitation, heterogeneities, and/or coupling conditions at the fixed ends that induce
two polarizations and thus a resulting 3D motion. Finally, a coupling exists between
the (dominant) transverse vibration and the longitudinal vibration (see Chap. 8).

In what follows, the fundamental behavior of string motion is reviewed, in the
context of musical acoustics. The discussion is limited to the case of a planar
transverse motion.

3.4.1 Heterogeneous String

For a one-dimensional string with density p(x), tension 7'(x), length L, and cross-
section S(x) (case of a heterogeneous string with variable diameter), the equation
that describes the transverse displacement y(x, ) is [see Eq. (1.11)]:

32

0 )
o5~ [T(x) ” ] — ), (3.25)

where f(x, 1) is a linear density of force applied to the string, which can even be
propagative, for example, in the case of a sliding finger. A variable tension T'(x) can
be obtained if, for example, one hangs a string vertically, because of gravity. We
deliberately choose this example of a heterogeneous string to highlight the general
properties of the eigenmodes.

We limit ourselves in this section to cases where the boundary conditions are
characterized either by a zero displacement or by a zero force. In Sect.3.4.5 the
extension to more complex situations will be examined, such as the cases (important
in musical acoustics) of mass or elastic ends.

Let @, (x) be the set comprising the eigenshapes of the string, for given boundary
conditions. We expand a solution onto this basis by writing

Y1) =) Bu(0ga(0) - (3.26)
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Multiplying both sides of (3.25) by any mode &,,(x), and integrating over the entire
string, yields

L
Z én (t) / b, (x)¢m (X),O(X)S(x)dx
n 0
L d d®,(x)
- ZH:Qn(t)/O D, (x) dx (T(x) d )dx

L
:/ D, (X)f (x, H)dx , (3.27)
0

which can be rewritten in a symbolic form:
MG, D) + Ay, P) = (f, D) - (3.28)
Equation (3.28) is very general and can be applied to any continuous conservative
system. The symbol .# designates the mass operator, and % is the stiffness
operator.

3.4.1.1 Orthogonality of the Eigenmodes

Consider a given eigenmode @, (x). It must satisfy Eq. (3.25) for the case where the
source term f(x, #) = 0:

(3.29)

WS P() = [T( i (x)}

Using a similar method as used previously for discrete systems, we multiply both
sides by @,,(x) and we integrate over the string’s length. This gives

w? / ’ D, (%) D, (x) p(x)S (x)dx + / ’ @, (x) d (T( )d(p n(x )) dc=0. (3.30)
0 0 dx

To simplify the working, the following notation is used:

L
Pram.n) = /0 , (0B (1) (D) (1)l (3.31)

and

dcbm (x) d®,()

L
Pr(m,n) :/0 T(x) dx (3.32)
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After integration by parts of the second term, the equality (3.30) becomes
WF Pra(m, ) = Py(m,m) — [cp W70 (x)} (3:33)
0
Writing the same equation for both indices (r, m) yields

, (3.34)
0

(wfﬂ—w,%)gzmm,n):[ 2,007 " 0,007 ‘“x)}

and

do, (x) do,, (x)

(@2 — &) Pr(m.n) = [w B(T() 02 P ()T ()

(3.35)
With the assumptions made on the boundary conditions (i.e., zero displacement
or zero force), the terms between brackets are zero. Therefore, if m # n, the
orthogonality of the eigenmodes with regard to mass and stiffness can be written as:

Py(m,n) =0 ; Pr(m,n) =0. (3.36)

The kinetic and potential energies can be expressed as functions of these quantities:
Z@M(m n) qngm 5 Ep Z@T(m 1) gnqm - (3.37)

Since the products &y and Pr are zero for m # n, the energy is thus the sum of
the energy of the modes (see Sect.3.3.1.1).

Notes The orthogonality properties (3.36) are not related to any particular form
of the solutions @(x) (sinusoidal or other). The demonstration here is valid for a
heterogeneous string, for which the eigenfunctions are not explicitly known.

The previous results are also valid for a mode with a zero eigenfrequency.
Equation (3.29) then shows that we must have 7d® /dx = constant, which occurs
when both boundary conditions are of “zero force” type. We then obtain ¢ =
constant as one of the solutions to the problem (this corresponds to a globally
undeformed displacement, also known as a rigid body mode). To achieve such
boundary conditions in the case of strings, we can think of rings sliding on rails
orthogonal to the string, but it is a little bit exotic in the context of musical
applications. However, an equation of the form (3.25) can be found in other contexts
(longitudinal vibrations of bars and sound pipes) where the present remark then
makes full sense.
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3.4.1.2 Generalized Displacements

As a consequence of the orthogonality of the eigenmodes, and by taking Eq. (3.29)
into account, (3.28) becomes

- (t
a0 + o2a, ) =" (338)
where the modal mass of the mode n is
L
m, = / @2 (x)p(x)S (x)dx, (3.39)
0
and where
L
50 = [ s, was (3.40)
0
is the projection of the force density on the mode n. The modal stiffness is equal to:
L (do,\’
Ky = My’ :/ T( ) dx . (3.41)
0 dx

N.B. In general, finding the modal mass m,, is easier than finding the modal
stiffness k,. Since w, is known, the modal stiffness is most often determined using
the first equality in Eq. (3.41).

A set of oscillator equations is obtained for the generalized displacement of a
continuous system, in the same way as for discrete systems. The main difference is
that, for a continuous system, the number of independent differential equations is
infinite in theory. In practice, however, a truncation of modes is made, depending
on the frequency range under examination. In musical acoustics, we are primarily
interested in the frequency domain corresponding to the audible range. This range
might be further restricted in view of other considerations, such as damping or the
spectral width of the excitation.

To solve the problem related to each generalized displacement, the methods
and results presented in Chap.2 devoted to the oscillator are of direct relevance.
Damping phenomena will be introduced later in Chap. 5. The differential equations
to be solved require a knowledge of the initial conditions. In the broad sense, these
initial conditions include cases where the excitation is known starting from t = —oo
(see Chap. 2).

Consider the case where the string is set into motion at a particular instant of time
(t = 0) with initial profile y(0, #) and initial velocity y(0, f). We can write as:

Y0,1) =Y ®,(x)g,(0). (3.42)



114 A. Chaigne and J. Kergomard

A similar expression can be written for the initial velocity. The mass and stiffness
orthogonality of the modes yields the initial conditions for the displacements g, (f):

1 L
w0 = /0 (S0, )yx) dx

and (3.43)
1 L
in(0) = / P(SF(0. 1) By(x) dx
my Jo

This leads to the result:

1 ! inw,
an(t) = / £(6) sinwn(t — 0) d6 + gu(0) coswnt + 4n(0) " (3.44)
m,wy Jo w,

n

sin a),,

Denoting g,(1) = , the first term of ¢, () is the convolution f,, (¢) * g,(¢), where
gn(?) is the Green’s functlon of the oscillator corresponding to the nth-mode of the
string (Note: see Chap. 2 and compare (3.44) with (2.20)).

3.4.1.3 Impulse Response of a String

In the particular case where f,(7) is a Dirac delta function of the form f,o 8(7), its
Laplace transform is a constant F,(s) = f,0. The expression (3.44) can then be
reduced to:

0 Sin W, t smwnt
gn(t) = Juo + ¢(0) cos @t + §,(0) (3.45)
m , ,

n n n

The impulse response for the nth-mode of the string is obtained. Some remarks can
be made

1. An equivalence exists between the expressions of g, () obtained for the impulse
excitation and the initial velocity condition, respectively. In other words, the
string motion is identical, if the vibration is generated with an initial velocity
profile or with a spatial distribution of forces whose time dependence is a Dirac
delta function.

2. If the excitation also occurs at an infinitesimally small point in space, i.e., located
at the point x = xy, it is written f(x, 1) = A8(x — x0)5(¢). In this case, the result
is f,(1) = {f(x, 1), D, (x)) = AD,(x0)5(f). The magnitude of the the contribution
of the nth mode to the string motion therefore depends on the value of the mode
shape at the excitation point. In other words, the mode n of the string cannot be
excited if the force is applied on one of its vibration nodes.
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3. The Green'’s function for Eq. (3.25) can be defined as the function for which the
applied force is*:

S, 1) = T(x0)8(t — 10)8(x — xo) .
The solution is:

g i, 1) = H(t— )Ty OO S0 g

This solution illustrates the reciprocity between the source (at position x) and the
receiver (at position x). For the constant mode @(x) = 1 (when it exists), one must
replace the last ratio with (¢ — #;). In this case, the growth over time is compensated
in practice by the damping.

3.4.2 Ideal String Fixed at Both Ends

The simplest case to be considered is the so-called ideal string rigidly fixed at
both ends. An ideal string is homogeneous with density p, constant cross-section
S, and uniform tension 7. It is assumed that vibrations occur without damping and
restricted to a single plane. This situation is far from a real string, but it can be
considered as a reference case. The transverse displacement y(x, 7) of the string is
then described by the wave equation:

19> 3%
= , 3.47
2o ox? (347)
where ¢ = \/ ; is the propagation speed of the transverse waves. For a har-
monic wave of the form y(x,7) = @ Eq.(3.47) yields the dispersion

equation D(w, k) which expresses the relationship between angular frequency
and wavenumber k. We obtain

D(w,k) = 0> = > =0, (3.48)

showing that the ratio between angular frequency and wavenumber is constant and
equal to ¢, a general property of non-dispersive medium. For a string of length L
rigidly fixed at both ends, the eigenmodes must fulfill the conditions:

a>P, 2
+ % @, =0 with @,(0)=®,(L)=0. (3.49)
dx? c?

4The factor T(xo) is written here in the applied force term to be consistent with other Green’s
functions which will appear in later chapters of this book.
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As a consequence, the solutions for the eigenfunctions are
D, (x) = sink,x, (3.50)

where the wavenumber values correspond to the discrete set:

kn= . 3.51
I (3.51)

Using Eq. (3.48), the discrete set of angular frequencies is

w, = nzc, i.e., for the eigenfrequencies: f, = ZZ . (3.52)

According to Eq. (3.39), the modal mass is m, = * gL = Agf , Where M; is the total
mass of the string. In this particular case, all modal masses are equal. It is worth
remembering that the value of the ratio m,/M; = 1/2 is purely arbitrary, since
the modal masses are defined up to a multiplicative factor. On the contrary, the
multiplicative constants are suppressed in Eq. (3.21) showing that the kinetic energy

& = ;mnqﬁ has a physical meaning.

3.4.3 Initial Conditions and Starting Transients

Traditionally, string instruments are divided into three main families: plucked strings
(guitar, harpsichord, harp, etc.), struck strings (piano, hammered dulcimer, etc.),
and bowed strings (violin, viola, cello, and double bass). This classification is based
directly on the different excitation mechanisms of the string. In Chap. 1, a detailed
physical description of the pluck was presented. In this chapter, the main focus is on
vibration modes, and we will thus restrict ourselves in Sect. 3.4.4 with a simplified
description of the pluck excitation.

In Sect.3.4.7 there is some discussion on struck strings, with emphasis on the
interaction between piano hammer and string. Finally, in Sect. 3.4.9, some properties
of bowed strings are presented. The bow—string interaction is presented in detail in
Chap. 11, focusing on the violin.

3.4.4 Plucked String

When plucked by a finger or a plectrum, the string is moved away from its initial
equilibrium position. During the stick phase, a contact exists between the exciter and
the string. When the restoring force due to tension (see Fig. 3.4) becomes slightly
higher than the frictional force, the string slips under the finger (see Sect. 1.4.3.1 in
Chap. 1).
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Fig. 3.4 Balance of forces
for the plucked string. F is the
pulling force of the finger and
T is the tension of the string

0 X0 L x

\

Fig. 3.5 Simplified model of initial profile for a plucked string without stiffness

A simplified model for the starting transient of the string is presented below. It is
assumed that the string leaves the exciter without initial velocity at string position
xo with the initial profile (see Fig. 3.5):

hx
f 0 <x <xp,
y0. = O =T =T0 (3.53)

ML= for xg <x < L.
L—x¢ — —

Note The string shape here is a perfect triangle, which is not realistic because of
the intrinsic stiffness of the string. If stiffness terms are added to the string equation,
then this initial string shape will have to be revisited.

The modal method involves searching for solutions of the form indicated in
Eq. (3.26). This equation must be satisfied in particular at time ¢ = 0, which leads to
Eq. (3.43). Since the initial string velocity is taken equal to zero, we get ¢,(0) = 0,
and the remaining unknown variables of the problem are the initial generalized
displacements ¢,(0). Using the orthogonality properties of the modes, we find

1 [r 1 [t
q,(0) = / pSy(0, )P, (x) dx = / pSy(0, f) sin k,x dx , (3.54)
my Jo my Jo

from which we derive’

SIn the particular case considered here, the constant term pS can be moved out of the integrals in
Eq. (3.54), and the orthogonality properties of the modes are reduced to:
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0) 2L in k, (3.56)
. (0) = sin k,xo . .
1 n2m2xy(L — xo) 0

The expression for g,(¢) is provided by the equation of an oscillator with no
applied force:

n+ wign =0, (3.57)

which, given the initial displacement and velocity conditions, leads to ¢,(f) =
qn(0) cos w,t. In summary, the general expression of the transverse displacement
of the string is given by:

2hL?
y(x, 1) = Zn: n22x0(L — x0) sin k,x( sin k,x cos wyt . (3.58)

Despite its simplicity, this last expression is very informative:

1. For an ideal plucked string rigidly fixed at both ends, the eigenfrequencies are
integer multiples of a fundamental frequency fi = ¢/2L which corresponds to
the inverse of the period of vibration (Fig. 3.6). We obtain a harmonic spectrum.

2. The amplitudes of the modal components decrease as 1/n? (see Fig.3.7). As a
consequence of this rapid decrease with regard to the rank n of the mode, one
can consider representing the vibration with a limited number of components.
In fact, the modal truncation depends on the problem under examination. In
practice, a note played on the low E-string of the guitar (83 Hz fundamental)
may contain 60—100 audible components, whereas notes produced on the high
E-string (fundamental 330 Hz) only contain about 10-20 audible components.

3. The fact that the amplitude of mode rn is proportional to sin k,xp shows that it
is possible to suppress a given spectral component w, by exciting the string at
points (xp), = an where p is an integer < n.

4. The respective roles of the excitation position xo and observation position x
are exchangeable in (3.58). This property is a consequence of the principle of
reciprocity.

5. As xp tends to 0, y(x, t) tends to

2h
1) = ink, nt . 3.59
y(x, 1) Xn: T sin k,x cos w, ( )
L
/ @, (X) Py (x) dx = {‘Z for m 7 n, (3.55)
0 , form=n.

This expression is a particular case. The formulation (3.54) is more general and this is the
reason why we have kept it.
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Fig. 3.6 Waveform of the displacement for an ideal string plucked at 7/8th of its length and
observed at the same point. (a) One component; (b) three components; (c) ten components. As
the number of components increases, the solution converges to a piecewise linear function, which
corresponds to the exact solution (see Chap. 4)

The magnitudes of the components now vary as 1/n, which means that if
the excitation point is close to one end, then more harmonics are excited
with significant amplitude. The corresponding sound will be “brighter”. By
symmetry, the same argument can be made in the case where x, tends to L.

5The brightness of a sound is one of the perceptual attributes that characterize its timbre. A number
of studies show that it is highly correlated to the spectral centroid, or SC, of the sound (indicating
the “center of gravity of the spectrum”). If A is the amplitude of the frequency spectral component

N .
% of a sound containin, components, the is define = 5 . This quantit
£ d containing N comp he SC is defined by SC szlf;*‘k This quantity
k

k=
characterizes the balance between bass and treble: a dull sound has a low Sé, whereas a bright
sound contains many high frequency components and therefore has a high SC.
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Fig. 3.7 Left: spatial shape of the string plucked at 7/8th of its length for a fixed time ¢. (Dotted)
One mode; (dashed) three modes; (solid line) ten modes. Right: spectrum of the displacement of
the string shown in Fig. 3.6 (ten components)

3.4.4.1 Force Transmitted by the String to the Bridge

As the string is moving, it exerts a time-dependent transverse force at both ends. To a
first-order, we can assume that this force is proportional to the spatial derivative of
the displacement, i.e., given the orientation of the x-axis (see Fig. 3.5):

F(O,t):T(ay) and F(L,t):—T(ay) . (3.60)
ox x=0 ox x=L

In what follows, the bridge is arbitrarily taken as being located at x = L. The force
transmitted by the string to the bridge can then be written as:

2hL

dy
F(L,t) =-T =-T k,Lsin k,, .
(L,1) ( ax)x:L En nxo(L — xo) cos k, L sin k,xo cos o,

(3.61)
The amplitudes of the spectral components of the force vary as 1/n, and tend
towards a constant value when the excitation position xo gets closer to one of the
ends. Thus, they decrease less rapidly with n than the displacement components do.
Through sound synthesis, one can verify that the simulated sound of a “force” is
“brighter” than the sound of the corresponding “displacement.”

We will verify in Chap.4 that, for an ideal string, the displacement waveform
is piecewise linear (exact solution). The force waveform is therefore piecewise
constant. Experimentally, it is observed that the force pulses are rounded, a
consequence of string stiffness, limited bandwidth of the excitation, and damping.
The truncation to ten modes shown here illustrates the resulting error on force and
displacement waveforms (see Figs. 3.6 and 3.8).
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Fig. 3.8 Force transmitted by the string to the bridge. (Left) waveform (ten components); (right)
corresponding spectrum. The force eigenfrequencies are identical to those of the displacement, but
the comparison with Fig. 3.7 shows that the amplitudes of the force components with high order
n (around 1000 Hz) are less attenuated compared to the components with lower order (around
100 Hz) than it is the case for the displacement component

3.4.5 String with a Moving End

In a string instrument, the strings do not radiate any significant acoustic energy,
because their diameter is small compared to the acoustic wavelength (see Chap. 12).
As an empirical proof, it is easy to carry out a simple experiment: stretch a string
between your fingers and pluck it. You will only hear a sound when the string is
brought close to your ear.

To radiate acoustic energy efficiently, the string needs to be coupled to a resonator
with a large surface. This is the main role of the soundboard. As a consequence, the
assumption of zero displacement at both ends of the string is unrealistic. It would
imply that the soundboard is rigidly fixed and does not produce any sound.

We shall therefore now consider that at least one of the string’s ends is moving.
This boundary condition corresponds to the coupling of two continuous systems
(string and soundboard), each of them presenting an infinite number of modes.
A comprehensive model of such coupled systems will be presented in Chap. 6. Here,
the effect of one particular mode (a single oscillator) of the soundboard on the string
will be examined.

It is well-known (see Chap. 2) that such an oscillator behaves either like a spring
or like a mass, depending on the ratio between the excitation frequency and the
eigenfrequency of the oscillator. These two limiting cases will be studied, leaving
the particular case where the oscillator behaves as a pure damper temporarily aside.
This latter case will be studied in detail in Chap. 5. In actual fact, the soundboard
itself is subjected to dissipation, because of internal losses and radiation, which we
will also ignore for the moment.
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Fig. 3.9 String fixed at one
of its ends (at position x = 0)
to a spring of stiffness K

3.4.5.1 Purely Elastic End

Consider first the situation of a homogeneous string fixed to a spring of stiffness Ky
at point x = 0 (see Fig. 3.9). The balance of forces yields the boundary condition:

T(W) = Ko y(0,1) . (3.62)
dx x=0

It is assumed that the displacement of the string remains equal to zero at the other
end, i.e., y(L,7) = 0. To calculate the eigenmodes, we search for solutions of the
form y(x, ) = @(x) cos wt. According to Eq. (3.47), the functions @ (x) must satisfy
the equation:

d*P

M2+H¢=o (3.63)

and the two boundary conditions. Equation (3.63) with the condition @(L) = 0
gives

D, (x) = sink,(x — L). (3.64)
The condition at x = 0 yields

k,T

tank,L = —
Ko

(3.65)

The index n in Eq. (3.65) shows that the condition is fulfilled for a discrete set of
values of the variable k only. Equation (3.63) is, in turn, only satisfied for a discrete
set’ of functions @, (x). Using Eq. (3.65), we can write:

"The solution k, = 0 is excluded here, since it leads through (3.63) to the degenerate solution
®,(x) = 0 Vx, because of the condition of zero displacement in x = L.
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RL

Fig. 3.10 Graphical representation of Eq. (3.65) for the case of a moving end. Dotted line: elastic
end. Dashed line: string with a mass at one end

k. T
P, (x) = sink,x + K cos k,x . (3.60)
0

The graphical representation of (3.65) (see Fig. 3.10) shows that the roots k,, are
no longer multiples of ki, as it was the case for the ideal string with fixed ends.
As a consequence, the motion of the string is not periodic. The roots depart more
and more from the ideal harmonic series as the rank # of the partial increases. The
presence of a spring at one end of the string systematically leads to a decrease in
the eigenfrequencies in comparison with the ideal case. This is not surprising as
it corresponds to introducing a finite stiffness into the system, compared with the
perfectly rigid case (equivalent to an infinite stiffness). Introducing flexibility in a
system leads to a lowering of its eigenfrequencies.®

80ne can also consider the introduction of a spring as an apparent increase in the length of the
string, but with the condition that the length correction depends on the rank n of the partial. If one
writes k, A = arctan [k,T/Ky), the roots are solutions of the equation tank,(L + A¢) = 0. For
the first modes, we have A¢ >~ T /K. This approach is very convenient for wind instruments.
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Once the modes are determined, the initial values g,(0) of the generalized
displacements can be derived from the integral expressed in Eq.(3.54). Equa-
tions (3.34) and (3.35) show that, for an isolated string, the modes are orthogonal
with respect to mass, but are no longer orthogonal with respect to stiffness. However,
one can generalize the concept of orthogonality to the whole system (string + spring)
by considering the total potential energy.’

According to Egs. (1.124), (3.62), and (3.37):

1[5 (ay)? 1
E,= 2/0 T(a)yc) dx+ Koy (0.0)

1
2

> [ 2r(m.n) + Ko@u(0) B(0)] Gugm -

nm

However, according to Eq. (3.35), Zr(m,n) = —Ko®,(0) ,,(0) for n # m. So,
finally we get'’

1
&= > [kn + Ko®(0)] g2 where K, = Pr(n.n). (3.67)

n

3.4.5.2 String with a Mass at One End

The case of a homogeneous string with a mass at one end is now examined. It is
assumed that the mass My is located at position x = 0. The following boundary
condition must then be satisfied!':

ay _ 9%y
T (3x)x=o =M, o 0,7) . (3.68)

°In (1.124), the term within the brackets corresponds to the input power at both ends. We get:

dy dy dy _ deg

Tovor —Kovg, =

1
where ¢y = 2Koy2 inx =0.

10A similar problem will be tackled in Chap. 4 for a pipe loaded by a radiation impedance at low
frequencies. We will see that, assuming k,A¢ << 1, where AL = T/K,, the moving end can
be replaced by a fixed termination for the pipe with an end correction A{ at the end x = 0.
The calculations of the modes are simplified, and we can recover the term Ko@®2(0), considering
the energy located between x = —Af and x = 0. This means that, instead of considering a
boundary condition corresponding to a lumped element at x = 0, we consider a longer medium,
with some particular parameters p, S, and 7 in the extension, and with a simple boundary condition,
y(=AL, 1) =0.

'We obtain identical results with the mass located at position x = L. In this latter case, there is a
change of sign in the boundary condition.
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It is assumed that the other end is fixed, i.e., y(L,#) = 0. The condition (3.68)
involves time derivatives, which makes the resolution by Fourier transform difficult
(see below). The method used here is the separation of variables. It involves testing
the existence of standing waves of the form y(x,?) = @(x)w(¢) and searching for
those conditions under which the equations of the problem are verified. Inserting
y(x, 7) in Eq. (3.47), we obtain:

odw &l
o =V g (3.69)

By grouping the terms involving the same variables, we derive

1 d*w 1 @ )

Gwde a2 (3.70)
where —a? is a constant. The only way to satisfy the first equality of Eq. (3.70) is
for both sides of the equality to be set as constant, since they involve a different
variable (resp. ¢ and x). Due to the boundary conditions, it will be now shown that
the constant « is real.

The resolution of both differential equations in (3.70) yields the general solu-
tions:

w(t) = Acoscat + Bsincat and @(x) = Ccosax + Dsinox . 3.71)
The boundary conditions for x = 0 and x = L imply that:

®(L) = CcosaL + DsinaL =0

dd (3.72)
and T (0) = —a*c*My®(0) .
dx
Thus o must fulfill the condition:
S
tanal = P , (3.73)
OlM()

and is therefore real.
Figure 3.10 shows that this equality can be obtained for a discrete set of
wavenumbers only:

ki <ky<...<k,. (3.74)

This leads to the eigenvalue equation:

oS
tank,L = . 3.75
an Mok, (3.75)
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The mass loading leads to an increase in the eigenfrequencies of the string and in
turn to an apparent decrease in its length (see Fig. 3.10). The ideal case is obtained
as My tends to infinity in Eq. (3.75).

In the case of a mass-loaded end, the modes of the string are orthogonal with
regard to stiffness, but not with regard to mass. For the string+mass system, the
orthogonality can be extended by considering the total kinetic energy:

1
b=, > [+ Mo®(0)] g2 where my, = Py (n.n). (3.76)

n

Note The first consequence of the coupling between string and soundboard is
to modify its eigenfrequencies. This is one cause of inharmonicity in the sound
produced by the instrument. The coupling affects the lowest eigenfrequencies
primarily, i.e., those for which the amplitude of the soundboard motion is the
strongest, and thus where the assumption of perfect rigidity is the least satisfied.

Orthogonality Properties of a Heterogeneous String

Turning back to the general case of a heterogeneous string of length L (Eq. (3.25)
without an applied force term), the goal is now to find the orthogonality properties
of the eigenmodes when one end is fixed while the other end is connected to a mass
M. With boundary conditions of the problem:

2
y0.0=0 and —T) > =, atx=1, (3.77)
ox or?
we obtain
Pr(mn) = " 8~ My D, (LB, (L). (3.78)
wn
where
L AP, (x)
= Py(n,n) :/ T( )[ i| dx . (3.79)
0

This shows that the modes are orthogonal with regard to stiffness, but not with
regard to mass. In conclusion, Eq. (3.38) becomes

. 1Ly [ fx dqj (x)
2 —
qn(t) + wnqn(t) - 1y /O 0x (p(X)S(X)) ( )

1 [ f(L 1)
i Lp(D)S(L)

. (3.80)
My, (L) + o? / fx, t)@n(x)dx:| )
0
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Fourier Domain Approach

Eigenmode decomposition can also be applied in the Fourier (or in the
Laplace) domain. To illustrate this, the case of a homogeneous string with
a mass at one end is presented. In the Fourier domain, the condition at the
mass-loaded end (3.68) is

az
T = Mo*% . (3.81)
dx

The Fourier transform of the wave equation (3.25) is the Helmholtz equation:

I (w) ? 1
+ ¥ (w)=—_F(x, o). 3.82
o+ LT == Fo) (3.82)
Let us now examine the case of a localized excitation, e.g., a Green’s function
F(x,w) = T(xp)§(x — x0). The solution is expanded onto the eigenfunctions
¥, of the equation:

2
d2 Wp wp

dx2 C2 wp = O > (383)

with the boundary conditions: ¥ (0) = 0, and (3.81). In Egs. (3.81) and (3.82),
w is a parameter. Thus the eigenfunctions and their corresponding eigenfre-
quencies w, depend on frequency: As a consequence, we do not get modes in
the strict sense. Finally, we write: v/, = sin(wpx/c), where

nw,,(a))L T wy(0)

ta =
c Mc o?

(3.84)

For a given w, there is an infinite set of values for w,. The solution can then
be expressed as a sum of functions ¥, (x):

Y () =) VX 0(®). (3.85)
P

These functions are orthogonal with regard to the mass, i.e., for a homoge-
neous string:

L
/O 1rlfﬁ(x)lr//q(x)dx = A[)Spcp (3.86)

(continued)
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where A, is a constant and §,, the Kronecker symbol. All these functions
satisfy Eq. (3.81) with a fixed . One can therefore write

V) =y ?)(xwp(x()) : (3.87)
p

» [©} (@) — 0?]

If (3.84) is solved for a given frequency, (3.87) enables the calculation of the

Fourier transform of y(t), that is %' (w) and, by inverse Fourier transform, y(7)
itself. This approach is often used in acoustics, especially in room acoustics
[27]. It is also systematically used in sound synthesis based on physical
models by Rabenstein and Trautmann [37].

Note 1: The previously described orthogonality is simple for this conser-
vative problem. In general, depending on the end impedances, one must
build an adjoint problem, with an adjoint modes basis denoted v,. The
bi-orthogonality between both families of modes is written:

L
/0 Yo ()Y, (X)dx = Apbp . (3.88)

It turns out that the adjoint family is the family of the conjugates,
which implies fOL Yp ()W, (x)dx = A,8,,, even if the functions ¥, (x) are
complex.

Note 2: Inverse transformation to the time domain, and therefore to
the modes, is possible in the case studied above, but it is subtle. In
the series (3.87), for a given frequency w, only two functions v,(x) are
resonant, which means that some terms of the series may have a zero
denominator. Denoting their indices by n and —n, we have: w, = o
and both correspond to the same shape v, (x). By inserting w, = Fw
in (3.84), it can be seen that the two values of w, satisfy Eq.(3.75). As
a consequence, both resonant terms of the series (3.87) have an infinite
number of poles. Finally, one can check that v,,(x) = @,(x). The residues
theorem is used to return to the time domain (see the appendix at the end
of this chapter). First, the Taylor expansion of the denominator D(w) =
Ap(w? — w?) is written in the form D(w) = D(w,) + (@ — w,)D'(w,),
with:

D (w,) = [dD(w)i| = A, [anic;))" — 2a)i| )

dw
dw,
:2Anwn|:( ‘”) —1]. (3.89)
do w=aw,

(continued)
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To calculate dw,/dw in w,, one needs to derive Eq. (3.84) with respect
to w. It is also necessary to explicitly calculate A,. After some tedious
calculations, we get

d(l)n Ln .
A, —1|=- with
do } -, 2

Al M
L,=L+ , Where Al = . (3.90)

14 (wncAl) oS

In addition, we find t, = TL,»?/(2¢?). By adding both terms with poles
of Eq. (3.87), we finally obtain # (@) = Y ¥, (x)Q,(w), with:

— ©°0y + ;05 = 262, (x0) /Ly = TYu(x0); /1. (3.91)
This is in agreement with the expression (3.80), when f(x,f) = T4§
(x = x0)8(2).

3.4.6 Influence of Spatial Width and Duration of the Excitation

In practice, the excitation of a string is distributed over a segment of finite length.
One can think, for example, of the width of a violin bow, of a piano hammer, or of a
player’s finger. Many string instruments (piano, guitar, harp, violin played pizzicato,
etc...) are also excited over a finite time interval, corresponding to the duration of
the interaction with the exciter. In this section, the effect of both the spatial width
and finite duration of the excitation on the string’s response are examined.

Note For simplicity, only the example of the ideal string fixed at both ends
is treated here. In this case, we know that the eigenmodes are @,(x) = sink,x.
Nevertheless, the method developed here remains valid in the general case.

We first consider the situation presented in Fig. 3.11 where the string is excited
by a force term comprising a Dirac delta function in time, and distributed over a
string segment of width 2a centered at position xo. We write'?

i —a<x<
1) = Bb@g() with g =] 'RTas¥sRtTa (3.92)
0 elsewhere .

2The coefficient B in this expression has the dimension of a mass divided by time ([M][T]™!)
because of the presence of the Dirac delta function.
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Fig. 3.11 Spatial width of f
the excitation of a string. The
force f exerted on a string by
a finger, a plectrum, a
hammer, or a bow, is
distributed over a finite width,
here denoted 2a

2a

Y1 Y

0.4 N
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Fig. 3.12 Low pass filtering of the string displacement due to the width 2a of the exciter

We derive the projection of the applied force term on the mode n:

Xota sin k,a

fu={f, D) = B(t) sin k,x dx = 2aB4(t) sin k,xg r . (3.93)
a

xXo—a n
Hence, for a string initially at rest, the displacement is

sin k,,x sin k,xo sin k,a sin w,t

y(x.f) =2aB ) . (3.94)

my k,a wy

The expression (3.94) shows that, compared to the case of a point excitation, the
spatial width induces a low pass filtering of the string response, through the term in
Sil‘;’j;“ (see Fig. 3.12). The first cutoff frequency f, of this filter occurs when ka = m,
ie.,fo = 2La
Numerical Example For a piano wire of length L = 62cm, corresponding to
the note C4 (fundamental f; = 262 Hz), the propagation speed of the transverse
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Fig. 3.13 Pulse of finite A
duration h

<« t

27

waves is ¢ = 2Lf] = 325 m/s. Taking 2a = 2 cm as an order of magnitude estimate
for the spatial window of excitation by the hammer, we find f, = 16 kHz, which
approximately corresponds to the upper limit of the audible spectrum.

* Now the effect of the finite duration of the interaction between string and exciter
is investigated. We assume a spatially localized force density of the form:

f(x, 1) = C8(x — x0)h(?) (3.95)
with

1 for0<r<2rt,
h(e) = or0 <t <2t
0 fort> 2t,

where C has a dimensions [M][L][T]~2, and where 27 represents the duration
of the interaction between string and exciter (see Fig. 3.13).

From Eq.(3.44), and under the assumption of a string initially at rest, the
generalized displacement of mode 7 is

Cd’n 2t
() = 00 / sin w, (1 — 0)d6, (3.96)
mywy 0

which gives the string displacement:

sin k,x sin k,xg 1 — cos w,t
For 0<t<2t y(xn=2:CYy ~ " " "
my wlt
n
)y =2 CZ sin k,x sin k,,xq sin w,t sin w,(t — 1)
=21 .
m, w,T Wy,

For t>2t y(x,t

n

(3.97)
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As for the spatial width analysis, the finite duration of the interaction force results
in a low pass filtering of the response y(x,t) through the term Sizwt”r. Returning
back to the example of the piano wire, we notice that the calculation of the cutoff
frequency, defined by the first zero of the previous function, yields here f, = 211 . By
taking 27 = 1 ms as an order of magnitude typically observed on piano wires, (see,
for example, [3]), we find f, = 1kHz. This cutoff frequency is significantly lower

than the one resulting from the spatial width of the excitation.

3.4.7 Struck String

The previous considerations give some understanding of the effects of finite width
and duration on the string spectrum. Returning now to a more accurate description
of the piano string, we must take the mass M}, of the hammer and its initial impact
velocity Vj into account. This description will be refined later with the introduction
of damping mechanisms both in the string and in the hammer’s felt, as shown in
Chap. 5.

During the contact phase between hammer and string, some of the initial kinetic
energy is transformed into elastic compression energy of the felt (see Fig. 3.14).

The resulting compression force is imparted to the string and gives rise to
transverse traveling waves. These waves are initiated on both sides of the impact
position. As a result of the magnitude of the propagation speed of the bending wave
on the string, and the small distance between the impact position and one of its ends
(the agraffe side), the waves propagating on this “shorter side” of the string reach the
hammer before it leaves the string (see Figs. 3.14 and 3.15). As a consequence, the
action of the wave modifies the compression force, resulting in a modulation of
the interaction force between hammer and string. These modulations can be intense
enough to cause the hammer to bounce back and, in turn, a discontinuity of the force
in the lower range of the instrument can be observed (see Fig. 3.16).

An abundance of literature on the analytical and numerical modeling of the
hammer-string interaction is available; see, for example, [7, 11, 22]. We will see
a similar 2-D example in Chap. 14: the mallet-membrane interaction in timpani.

3.4.8 Driving-Point and Transfer Admittance

The motion of the end of the string that is fixed to the bridge induces vibrations
in the soundboard. The modal approach is an appropriate tool to characterize this
transfer, both theoretically and experimentally. In order to study this coupling,
which is essential for the understanding of string instruments, we start by defining
the concept of mechanical admittance (or mobility) (see also Sect. 1.6 in Chap. 1),
before studying its frequency behavior in detail.
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To the bridge
 —

—_—

Fig. 3.14 Hammer-string interaction. (/) The hammer with initial impact velocity V|, comes into
contact with the string. The felt is compressed and a force is imparted to the string. Transverse
waves are developed on the string on both sides of the hammer. (2) As long as string and hammer
stay in contact, the waves developed on the shorter side of the string stay confined between
the agraffe and the hammer, which prevents propagation towards the bridge. (3) After a few
milliseconds, the reaction of the string pushes the hammer back and these waves are free to
propagate

Consider a continuous structure, a piano soundboard, for example, subjected
to forces and moments. In general, for numerical and/or experimental reasons, it
is necessary to work on a discretized version of this structure, i.e., on a mesh
containing a finite number N of areas whose dimensions are small in comparison
with the wavelength. These small areas are commonly referred to as*“points.” This
amounts to considering the structure as a discrete system with N degrees of freedom
(see Fig.3.17).

At each point of the mesh, the motion is characterized by three translation
components and three rotation components. In what follows, the velocity is treated
as a variable. Similarly, the external actions at each point reduce to three force
components and three moment components [9].

Admittances are defined in the frequency domain. At each point, the velocity
components of the motion (V) are linked through a 6x6 matrix to the force
and moment components, denoted F;. The admittance matrix at one point Y is
defined as:

V =YF. (3.98)
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Fig. 3.15 Simulation of the String velocity

wave propagation on a piano e

wire just after the hammer ¥ -—--.._-——-"_v____/———’—\____""‘—-—
impact. The letter H marks W—\
the position of the hammer, A —

is the agraffe, and B is the
bridge. For about 1 ms, waves
are “trapped” on the shorter
side (between A and H).
There are then released and
follow the main front which

propagates towards B. At > ——
bridge B, the waves are 13 e —
reflected and their sign Gé —
changes, according to [10] =
=
gy
N
e~
<)
A H B

Consider now the complete structure, composed of N points. For each action
component at a given point j, denoted Fj;, a motion is induced at any point i. If
Vix represents one component of this motion, we define for the pair (Vjy, Fj;) the
transfer admittance:

Yiji = ?.Ill; with 1 <i,j<N and 1<k/I[<6. (3.99)
J

In total, we obtain for the transfer admittance matrix a group of 6N x 6N coefficients

such as Yj;, to characterize the structural response to external stimuli.

As an application of the concept of transfer admittance, one can think of the
sympathetic excitation of the strings of an instrument through the bridge: the point j
refers to the attachment point at the bridge of the excited string, while the point
i refers to the attachment point of the sympathetic string (see Fig.3.18). The
sympathetic string vibrates if some frequencies of the excitation signal in j are
close to eigenfrequencies of string i and, in addition, if the admittance coefficient
Y;; at this frequency is sufficiently high and does not correspond, for example, to a
vibration node of the bridge at this frequency. The concept of admittance is essential
for understanding the behavior of coupled strings in the piano [39] (see Chap. 6).

Notation. In what follows, the indices (k, /) used for designating the components
of force and velocity are removed for simplicity. The coefficients of the transfer
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Fig. 3.16 Simulations of the /
interaction force between F(N)

hammer and string. (Top) 40 L
String C7 (2093 Hz);
(Middle) String C4 (262 Hz);

(Bottom) String C2 (65.4 Hz).
The amplitude modulations

of the envelope are due to the
waves returning from the L L L L
agraffe to the hammer, 0 1 2 3 4 t(ms)
according to [11]

20 |

F(N)

1 2 3 4 t (ms)

admittance matrix are written Yj;, which can be reduced to Y;; (or simply to Y;
through index contraction) in the case of the admittance coefficients at the driving-
point. Emphasis is put on force and translation velocity, though the results can be
generalized to moments and rotations.

The frequency behavior of the transfer admittance coefficients Y;; are now
examined. The force excitation is located at the coordinate x;. The displacement
at a given point x; on the structure is: § = ) ®,(x;)g.(?). To be consistent with
the notation used for a continuous medium, we write: £(x;) = &, f(x;) = f;. The
corresponding vector component is written @, (x;). According to (3.18), we derive:
Jfo = @u(x)f (xj). Equation (3.19) can be rewritten as:

D, (x)f (x;) ‘

n

dn(D) + 0y qu(t) = (3.100)

In the frequency domain (using the convention of writing the variables in capital
letters), the generalized displacements Q, (w) are
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Fig. 3.17 (Left) Transfer admittance for a structure with N degrees of freedom. For each pair of
points 1 < i, j < N, the transfer admittance Yj;; is the ratio between the velocity component
Vi at point i and the force component Fj); at point j. (Right) Vibratory and acoustic analysis of a
cello. We note on the cello soundboard the presence of circles marking positions of excitation or
response in modal analysis experiments (© A. Garcia, CNAM)

D, (x)F(x;
(@2 —0?) Q, = CFOg) (3.101)
my
Through modal projection, the displacement at point x; is
() ()
E(xi)zz T F(xg), (3.102)

= m, (0} — 0?)

where N corresponds to the number of discrete points on the structure (and thus to
the number of modes). The quantity & (x;) in Eq.(3.102) represents the shape of
the structure (commonly referred to as the Operating Deflection Shape or ODS) for
a forced excitation with frequency w located at point x;, from which the transfer
admittance between points x; and x; is derived:

N
3 D (xi) Pulx)) (3.103)

Yi(w) =j .
](C!)) Jjw 2 m, (a)% _wz)
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Fig. 3.18 (Left) Excitation of sympathetic strings. Several strings which have one end fixed to
a moving bridge are likely to vibrate in sympathy. Such a phenomenon requires two conditions:
the transfer admittance between i and j should not be zero, and the strings must have at least
one eigenfrequency in common. (Right) The harp is an example of instrument where sympathetic
vibrations are observed, because of the coupling of the strings through the mounting bar located
on the axis of the soundboard [24]

N.B. The symbol j in the previous expression refers to the complex root of
unity, and should not be confused with the index “;” which appears in the spatial
coordinates and the mechanical variables.

The driving-point admittance at point x; is

2.
Yi(w) = jo Y Eulx) (3.104)

Note Both expressions (3.103) and (3.104) were obtained within the framework
of the modal theory for conservative systems, i.e., with no damping. In practice,
it is more realistic if account is taken of dissipation in the structure. It will be
shown in Chap. 5 that, under some particular assumptions, the modal shapes remain
unchanged in the presence of damping, so that one can write:

, (3.105)

N
. ¢n(xi) ¢n(—xj)
Yi‘ =
]((l)) Jw ; m, (wnz + 2‘]§nwnw _ wz)
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where {, is a one-dimensional modal damping coefficient, with the assumption
£, < 1. As a result, the admittance can be considered as being a sum of damped
SDOF oscillators (see Chap. 2).

3.4.8.1 Frequency Analysis of Admittances

The modulus of Yjj(w) reaches its maximum at frequencies close to the eigenfre-
quencies of the structure. These maxima are sometimes difficult to detect, especially
if the modes are closely spaced in frequency, and with significantly different
amplitudes. The imaginary part of the admittance vanishes for frequencies equal
to the eigenfrequencies of the structure, and the slope of the phase is maximum (see
Figs. 3.19 and 3.20). In the presence of modal damping, a better accuracy is often
obtained by using the imaginary part (rather than the magnitude) to determine the
eigenfrequencies from experimental admittance measurements.

2 2.0
1 15
? 1.0
- < 05
E -2 ; 0
_3 (‘6 0
) -0.5
-5 -1.0
-6 -15
-7
0 100 200 300 400 500 0 100 200 300 400 500
F(HZ) F(HZ)

Fig. 3.19 Example of a typical admittance, highlighting the dependence of magnitude and phase
on frequency

4.0 2.0
3.0 1.0
S s |
o 20 e O r\//‘\/\/\,
o E
1.0 -1.0
0 J - -2.0

0 100 200 300 400 500 0 100 200 300 400 500
F(HZ) F(HZ)

Fig. 3.20 Example of a typical admittance, highlighting the dependence of real and imaginary
parts on frequency
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®n (xi) @n (Xj)

my (0 — @)’

* When w >~ w,, the main term of Y;(w) is equal to jow

¢ When w > w,, the coefficients become

. Di(x;) Dilx)) 1 o1 Di(x;) Dilx))
Y ~ ~ th = . 3.106
ij = J@ Z —mw? Mo W Z m ( )

I>n I>n

All modes with a rank higher than a given value n play the role of a mass M
whose value depends on the modal masses and modal shapes at points x; and x;.
The value of M depends on rank ».

* Similarly, considering the modes with rank lower than n, we find

, Di(x) Pi(x)  jo 1 Di(xi) Pilxy)
Yii >~ ~ th = . 3.107
i~ jo Z e K Wi Z e} ( )

I<n I<n

The contribution of these modes is equivalent to a stiffness K. In summary,
in the vicinity of a given mode n, the transfer admittance can be written
approximately as:

D) Bulx) jo 1

. 3.108
m, (w2 —w?) K Mo ( )

Yij(w) ~ jo

In summary, Eq. (3.108) shows that one cannot generally consider the term of
rank n only in the expansion of Yj; it is also necessary to take both the mass and
stiffness residues M and K into account. These two terms represent the influence
of the other modes in the vicinity of the n-th mode.

3.4.9 Strings of Bowed Instruments

Bowed strings are either single wires (like the E-string of a modern violin) or
wrapped strings, where a central wire core is overwound with some form of fine
wire. Pickering [29] and Schumacher [34] investigated the mechanical behavior of
strings for bowed instruments in detail. In the case of wrapped strings, the core can
either be made of a monofilament (steel, tungsten or aluminum) or made of many
threads (generally nylon, but sometimes also steel). The winding is a metallic ribbon
or a thread (different kinds of aluminum, silver, copper, or tungsten alloys) twisted
around the core.

Each string of the instrument is stretched with tension 7 during the initial tuning.
During normal playing, the length L is changed for each note. These two parameters
will be considered as constant in what follows, although this is not totally true in
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practice. In fact, the use of vibrato (a modulated motion of a finger, resulting in
four to eight oscillations per second) affects both the actual length of the string
and its tension, and probably also the mobility at the bridge. The amplitude of this
motion varies during a note interval, however, on average, it results in an increase in
tension.!?

Three main types of waves are observed in a vibrating string.

* Longitudinal waves can generally be ignored in the motion of bowed strings.

* (Transverse) bending waves are predominant. Since the main component of the
bowed string motion occurs in the plane formed by the direction Ox of the string
at rest and the direction Oy of the bow velocity, only this polarization plane will
be considered for transverse waves in the following sections.

» Torsional waves involve the angular displacement v (x, ) of each section of the
string, with regard to the string axis Ox. Since the bow excites the string at its
outer surface, these waves are always present in a bowed string.

3.49.1 Bending Waves

When a string is deflected from its rest position, it tends to return back under the
combined effects of two restoring forces oriented in the Oy-direction: one due to

the tension 7 and the other due to the intrinsic stiffness of the string. The restoring
2

force on a portion of string of length dx is T where £ is the displacement along

2,
X
Oy. For a single string with Young’s modulus £ and geometric moment of inertia

of a cross-section I, the restoring force due to the finite elasticity of the string is
4

—EI, ij (see Chap. 1).

Bowed strings are only single wires; most often they present very complex
wrapped structures. However, assuming that the structure remains invariant during
the deformation (which means that there is no aggregation of the threads in the
neutral plane, for example), we can homogenize the cross-section of the string and
consider an equivalent single string. The stiffness force then keeps the same formal

4

expression —(El,) At where (El,) is an equivalent bending modulus. For a string
X

with linear density'* €, the equation of motion becomes

4 2 2
—(Elg)dg—i-Tds—edg

=0 . 3.109
dx* dx? dr? ( )

This equation is dispersive because of the presence of the stiffness term (see
the example of a prestressed bar in Sect.3.5.1.4). The dispersion is low if the

13The period of a vibrato is typically 125 ms whereas the largest period of a violin note is only 5 ms
(up to 25 ms for the double bass). In view of this duration, it is justified to consider the average
tension increase in the string.

l4¢ is denoted pS for a homogeneous single wire string.
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perturbation term ¢ = (EI,)/TL? is small compared with unity (see Eq.3.138),
which is the case for bowed instruments. The important point here is that the
eigenfrequencies of the string are inharmonic. However, for a bowed string, we will
see in Chap. 11 that the motion is composed of self-sustained oscillations and is
thus quasi-periodic. As a consequence, the components of the bowed string motion
do not coincide with the eigenfrequencies of the string. In contrast, in the case of
free oscillations, like those resulting from a “pizzicato” pluck, the sound spectrum
consists of the eigenfrequencies predicted by Eq. (3.138).

One effect of string end mobility is a modification of the string’s eigenfrequencies
compared with the case where the ends are rigidly fixed (see Sect. 3.4.5). To a first-
order, the relative change is equal to (see Eq. 6.54):

8 _JjZerY
h b

where Z, 7 is the characteristic impedance of the bending waves and Y the mobility
at one end of the string (either in x = 0 or x = L) assuming that the other end
is fixed. The end mobility usually has a reactive component which modifies the
eigenfrequencies and a dissipative component which introduces damping in the
eigenmodes or, equivalently, a finite width in the resonance curve.

During the coupling with the bow, a transverse string mode can be excited if
the inharmonicity resulting from both the stiffness and finite end mobility remains
lower than the width of the resonance curve related to dissipation.

, (3.110)

3.4.9.2 Torsional Waves

Like the bar of circular cross-section described in Chap. 1, the string has a torsional
stiffness GJ, so that the relationship between the moment . (x,t) exerted on a
section and its angular displacement v is given by [see Chap. 1, Eq. (1.42)]:

M(x,t) = Gde . (3.111)
dx

The string also has a rotational inertia with regard to its axis, with moment / per
unit length. The equation for torsional waves (see Chap. 1, Eq. (1.45)) can then be
written as:

ey 1 dy

— =0 , 3.112
dx? Clze dr? ( )
where the propagation speed cg is \/ GJ/I. This speed is about five times higher
than the propagation speed for transverse waves. Torsional waves have an important
intrinsic damping: their associated Q-factor is typically a few tens, an order of
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N

Fig. 3.21 Transverse displacement £ combined to the rotation i of a string section consecutive to
a horizontal force F applied at its surface by the bow. Right: string at rest; left: string in motion

magnitude below that for bending waves [20, 42]. Torsional waves also have a
characteristic impedance which links .# and y for a traveling wave:

M = +IGI . (3.113)
Finally, a force F applied at the string’s curved outer surface is equivalent to the

following combination (see Fig.3.21):

» aforce F applied at the center generating a bending wave and
e amoment.# = aF (where a is the string’s radius) which generates the torsional
wave ¥ (x, 7).

The expression of the velocity v, at the string’s surface combines together the
torsional and the bending waves:

ve = €+ ayr, (3.114)

It is generally more convenient to use the variables (v., F) for describing the
combination of both traveling waves:

Ve = YerF + d? =Y,F, (3.115)
! JIGI
a2
where Ye=Y.r + (3.116)
ICR

is the resulting mobility of the string at its surface. In this expression, the
characteristic impedance of the torsional waves, seen from the outer curved surface
of the string, is

F ICR
Zr = im.p = 5 (3.117)

The characteristic mobility Y, will be used to describe the dynamics of the string in
Chap. 11.
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3.5 Application to Percussion Instruments

Percussion instruments are characterized by a short excitation, followed by free
oscillations. In the linear range, the spectral content of the sound during decay is
composed of the eigenfrequencies of the excited system. In the first chapter of this
book, the basic equations describing the vibrations of elementary structures such
as bars, plates, membranes, and shells were presented. A number of percussion
instruments are made up of such structures. In Chap. 1, the main impact mechanisms
were also described. Using the general properties of modes, we are now able to
apply these results to percussive instruments.

3.5.1 Vibration of Beams

Beam models are well suited to the description of tuned mallet percussion instru-
ments with keyboard such as the xylophone, vibraphone, marimba, glockenspiel,
etc. For these instruments, the bending transverse vibrations are dominant, and
deserve careful attention. However, other modes, including torsional modes, can
also be excited. This is particularly true in the upper frequency range of these
instruments, when the length of the beam becomes comparable to the other
dimensions, and therefore treating the beam as a “slender solid” is no longer valid.'>

In this section we restrict ourselves to the case of transverse bending vibrations.
We first examine the analytical reference solution provided by the case of bars
with constant cross-section. We then study the case of bars of variable cross-
section, which better correspond to real instruments. Finally, the particular case of
prestressed bars allows us to establish a comparison with the transverse vibrations
of strings discussed in Sect. 3.4.

As shown in Chap. 1, the basic equation describing the transverse bending
vibrations of bars, assuming Euler—Bernoulli assumptions and isotropic material,
is written:

0? 0%y 0%y
92 (El(x) sz) + p(x)S(x) e = 0, (3.118)
where y(x,f) is the transverse vertical displacement (in the e, direction). The
eigenmodes y(x,f) = @(x)coswt are the sinusoidal solutions of (3.118) which
satisfy the equation:

3Tn musical acoustics, the word bar is often used to designate xylophone beams. Both terms are
used in this book. In structural dynamics, the term beam is used to designate slender solids in
bending regime, while the term bar is used in the context of longitudinal vibrations. We do not
make such a distinction here.
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hI S
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L

Fig. 3.22 Geometry of a bar with a constant cross-section

d2

d*® )
e (EI(x) 0 ) —w px)Sx)® =0. (3.119)

Equation (3.119) cannot be solved analytically, except in a small number of cases
such as a bar of constant cross-section, discussed in Sect.3.5.1.1 below. For
variable cross-section bars, we must use approximate resolution techniques (see
Sect.3.5.1.2).

3.5.1.1 Free-Free Bars of Constant Cross-Section

Consider the reference case of an homogeneous, isotropic bar of length L, width b,
thickness A, constant cross-section S = bh, whose moment of inertia with respect to
the neutral plane at z = h/2 (see Fig.3.22) is I = bh’/12.

In this case, Eq. (3.118) reduces to:

oty 9%y
EI S =0. 3.120
x4 T or? ( )

Searching eigensolutions of the form y(x, 1) = @(x) cos wt leads to [19]:
®(x) = Acoshkx + Bsinhkx + C cos kx + D sin kx

with k= © where v = ¢w</§§ . (3.121)

This expression shows that the phase velocity v of the bending waves varies as the
square root of the angular frequency w. The waves are therefore dispersive, the high
frequencies propagating faster than the low frequencies. The associated dispersion
equation is

EIk* — pSw? = 0, (3.122)

from which we obtain v as a function of wavenumber k:

El
v=? = k\/ . (3.123)
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However, in terms of energy transportation, the appropriate velocity to consider is
not the phase velocity, but the group velocity (see, for example, [21]). For a “wave
packet” localized in time, the group velocity is the velocity of the envelope, which
can be calculated by:

ow El El
- =2k =20 =2Jw? . 3.124
K ok \/pS v Vo \/pS ( )

The group velocity here is twice the phase velocity. This result reveals a
paradoxical phenomenon, namely that the group velocity of elastic bending waves in
the bar tends to infinity with frequency. This is in disagreement with the basic laws
of physics since if would mean that some bending waves could propagate faster than
light! This apparent paradox is a result of the simplified model of Euler—Bernoulli
which ignores the effects of rotational inertia of the bar and the shear of the cross-
sections. Introducing these two corrections into the bar model (Timoshenko model
[18]), shows that the velocity of the bending waves actually varies as +/w at low
frequencies and then tends to a constant asymptotic value as the frequency increases,
which is more realistic (see Fig. 3.23).

Continuing the calculation, we introduce the free boundary conditions
(Fig. 3.24), which amount to nullifying moments and forces exerted by the external
environment on the ends of the bar (see Chap. 1), which yields

0%y 0%y
92 0,1 = 92 (L,1) =0,

d3y 3y
and 5 (0.0 =, S(L.0) =0. (3.125)

Finally, the eigenfrequency equation for a bar of constant cross-section free at
both ends (see Fig. 3.26) is

coskLcoshkL = 1. (3.126)
Fig. 3.23 Group velocity of )
bending waves in a bar, for Group Euler-Bernoulli
different models velocity

Timoshenko

Frequency
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Fig. 3.24 On tuned keyboard percussion instruments, the “free-free” boundary conditions are
obtained by attaching the bars together with a light and flexible cord. The attachment points of
the cord on the bar are approximately located at the position of the nodes of the fundamental mode
in order to minimize damping. We see on this figure the example of a balafon or African xylophone

Fig. 3.25 Xylophone bar
with its suspension

Note 1: In (3.126), the solution kX = 0 does not hold: it would correspond to the
case where the free bar goes to infinity after the impact. Imagine, for example,
striking a bar with a hockey stick on a frozen lake: it will take a rigid body motion
made of the combination of translation and rotation, and you will have to run far
away to recover it!

Note 2: In practice, the boundary conditions are satisfied by flexible suspen-
sions.!® These suspensions, combined with the total mass of the bar, provide an
extra rigid body mode (see Sect.3.4.1.1). This mode usually has an eigenfre-
quency of a few Hz, which is very low as compared with the first eigenfrequency
of the transverse motion (see Fig. 3.25).

The graphical resolution of Eq. (3.126) in Fig. 3.26 shows that the roots are such
that k,L. ~ (2n + 1)m/2. From the dispersion equation (3.122), we derive the
eigenfrequencies f, (in Hz):

16The arrangement of bars of ascending pitch is, for example, maintained by a thin cord which
passes through all bars.
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Fig. 3.26 Graphical solution 1
of the eigenfrequency m cos kL
equation for a free 1.0 . . . .
homogeneous bar of constant / /
cross-section: the solutions
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Fig. 3.27 Waveform and amplitude spectrum for a bar of constant cross-section. The waveform is
not periodic and the spectral components are not integer multiples of the fundamental

El ©

2 g2 72 2
p58L2[3,5,7,...,(2n+1)]. (3.127)

fu

Unlike for the case of an ideal string, the bending eigenfrequencies for a bar
of constant cross-section are inharmonic, i.e., they are not integer multiples of a
fundamental. This property is apparent in Fig.3.27 which shows the amplitude
spectrum for the vibration of a bar of constant cross-section. On the same figure,
an extra peak close to zero (a few Hertz) can be seen which corresponds to
the suspension resonance of the bars. This resonance, which is not predicted by
Eq. (3.126), does not produce any sound.

From a musical point of view, the major shortcoming of an inharmonic spectrum
is that the perceived pitch is not well defined. For this reason, the bars are cut on
their lower side. The eigenfrequencies of bars with an undercut can be calculated
from Eq.(3.119). In this case, there is no analytical solution and one has to use
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numerical approximations. It is possible to optimize the width and depth of the cut
(while respecting other criteria such as, for example, the non-appearance of torsional
vibrations and the elasticity limit of the bar) in order to ensure that the partials of
higher rank will be close to multiples of the fundamental.

3.5.1.2 Bars of Variable Cross-Section

The Galerkin method of solving the eigenvalue problem for the bending vibrations
in a bar of variable cross-section is now briefly explained [26]. This method applies
to conservative and non-conservative problems. It is an approximation method
where the eigenmodes @ (x) are sought in the form of a finite sum of p terms:

p
PV (x) = ajg(x) (3.128)

where the functions ¢;(x) are arbitrary with the restriction that they must fulfill
the boundary conditions: they are said to be kinematically admissible. Combining
Egs. (3.128) and (3.119), and defining A?) = (w?)® (the approximate eigenvalues
of order p), we obtain the Galerkin’s residue:

2 )
Z [0V (x)] = ; (EI( ) ) — AP p(x)S(x)@P | (3.129)

which can be written, given Eq. (3.128):

14
Z([®V(x)] = Z { @ (EI( )d 9i(x )) —W)p(x)S(x)@(x)} . (3.130)

dx?
Jj=1

The functions ¢;(x) are now used to obtain a weak formulation for the eigenvalue
problem, i.e., after multiplication by a function ¢; and integration over the entire
length of the bar:

d?

/ ¢,(x)Za, { g (EI( )d2¢j( )) _,\Wp(x)s(x)qu(x)} dc=0. (3.131)

The problem is equivalent to searching those coefficients a; which cancel the residue
2 [®P(x)]. The formulation (3.131) can then be written as:

P 14
Y kjai— AP “myaj=0 for i=1.2,.p, (3.132)
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Fig. 3.28 Bar with an

undercut

where the mass and stiffness coefficients are given by:

&
kij = / ¢,(x)d ) (EI( ) ¢J(X)) »

and my = / @i(x) p(x)S(x)p;(x) dx . (3.133)
0
Equation (3.132) can be written in matrix form:
[K—AM]a =0, (3.134)

where a is a vector of dimension p, and where K and M are matrices of dimensions
p % p. The method presented is thus equivalent to solving an eigenvalue problem
similar to those encountered for discrete systems.

A simple example of a bar of variable cross-section is depicted in Fig.3.28
which shows a bar with reduced height in its central part. Removing material near
the center decreases the inertia (proportional to thickness), but also the stiffness
in higher proportion (since the stiffness is proportional to the third power of the
thickness), and therefore the eigenfrequencies whose corresponding eigenshapes
reach a maximum near the center decrease, which is the case for odd modes.
This simple example shows that it is possible to control the spacing of the
eigenfrequencies with an appropriate undercut.

3.5.1.3 Application to Xylophone and Keyboard Instruments

In practice, bar shapes similar to the one shown in Fig.3.28 should be avoided
since high internal stress is concentrated near the sharp corners, which weakens
the structure. It is preferable to design bar profiles with a high radius of curvature
and without slope discontinuities.

Today, the design of bars for keyboard percussion instruments still remains
largely empirical. Cutting the bar near its center lowers the frequency f; of the first
partial, while keeping the frequency f, of the second partial approximately constant,
and lowering the frequency f; of the third partial slightly. Instrument makers usually
adjust the ratios Ry = f,/fi and R, = f3/fi. In practice, it becomes difficult to
independently adjust the partials of higher rank, and so the focus usually remains
on these two parameters only. The depth of the undercut is limited by the resistance
of the bar to shocks and by the fact that, if the bar becomes too thin in the center,
torsional vibrations might become important. According to Eq. (3.127), the initial
values of the two frequency ratios (before starting the undercut) are
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25 49
Rip = 9 =2.754 and Ry = 9 = 5.404. (3.135)

From experience, it is known that the target for R; usually lies between 3 and 4, and
between 6 and 10 for R,. The standard values used by makers are the following:

hd R1=3andR2=6,
hd R1=4andR2=8,
° R1=3andR2=9,
hd R1=4andR2=10.

On real tuned mallet percussion instruments, these ratios can only be obtained
for the lower notes. In the middle register, the second and third partials are not
in harmonic ratio with the fundamental anymore. This is due to the fact that the
assumption that a bar behaves as a 1D slender solid is less justified as the length of
the bars decreases. Ordufia-Bustamante suggests to cutting parabolic profiles in the
bars [28]. The idea is to adjust the depth A, and width x, of the undercut to obtain
appropriate values for R; and R;. This idea has been extended by Doutaut who
suggests polynomial profiles of order 4 and 8, enabling a larger range of possible
modifications for the eigenfrequencies (see Fig. 3.29) [12].

In order to tune the complete range of bars in a mallet percussion instrument,
it is necessary to adjust both the shape of the undercut and the length of the bars.
For an instrument with four octaves, the ratio between the higher and the lower
fundamental is fyax/fmin = 2* = 16. Since the eigenfrequencies of the bars vary
as the inverse of the square of the length [see Eq. (3.127)], in principle, it might be
considered that the length of the bars should be adjusted such that D = Lyax /Linin =
4. However, measuring actual bar lengths on most real instruments shows that D is
close to 3. There are several reasons for this: the first reason is with respect to the
playability of the instrument; the player would encounter difficulties in playing on
very short bars in the high frequency range. At the other end of the instrument, long
bars at low frequencies would be more difficult to produce, would take more space
and would use more material. The second reason is linked to manufacturing, because
of the constraints associated with the attachment of the bars. Finally, as mentioned
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Fig. 3.29 Examples of undercut shapes for xylophone bars. (Left) Polynomial of order 8 for bar
C4 (fi = 262 Hz); (Middle) Polynomial of order 4 for bar C5 (f; = 524 Hz; (Right) Polynomial of
order 2 for bar C7 (f; = 2093 Hz), according to [12]
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above, it is preferable to have longer bars at high frequencies for tuning reasons.
In practice, to make a chromatic instrument where fundamental frequencies vary by
6 % from one note to the next, about 5 % of the variations are obtained by modifying
the lengths of the bars and the remaining 1 % by adjusting the cuts. Makers tend to
start by using the most usable length of bar for the high frequency notes, and then
make greater and greater undercuts as they work towards the lower notes.

3.5.1.4 Prestressed Bars and Stiff Strings

Strings of musical instruments are made of elastic materials that have a finite
Young’s modulus. As a consequence, it is impossible to create any discontinuity
of slope by bending the string. This is particularly true for metallic strings, such as
piano wires. If such a string is fixed at one end, when undisturbed it remains almost
straight, like a bar. Therefore, it is necessary to refine the previous ideal string model,
to take both the axial prestress (due to tension 7') and bending stiffness into account.
The equation that describes the transverse bending vibrations of a stiff string (or,
equivalently, of a prestressed bar), assuming an Euler—Bernoulli behavior, becomes

0%y 0%y 9ty
S =T —EI . 3.136
p or? ox2 x4 ( )
For a traveling wave of the form y(x,r) = €@~ we obtain the dispersion
equation:
EI
w? = kK (1 + kz) ) (3.137)
For a string of length L, the usual orders of magnitude are such that it is justifiable
to define a dimensionless coefficient ¢ = TELIZ, small compared to unity, so that
Eq. (3.137) becomes
w® =k (1 +ek’L?) . (3.138)

For the case of a stiff string simply supported at both ends, the displacement
and moment are both zero at these points, which yields the condition for the
wavenumbers:

sinkL =0 ie. k,L=nm. (3.139)

From Eq. (3.138), the eigenfrequencies of the stiff string are given by:

2.2

nmc n°mw
2 1 . 3.140
w I ( +¢ 5 ) ( )
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Due to bending stiffness, the eigenfrequencies of the stiff string are higher than
those of the corresponding ideal string. This difference increases with the rank »n of
the partial. This property is observed on piano wires [30]. The inharmonicity due to
stiffness for the nth-partial of the string is defined as:

Wy — Whpo

iy = , (3.141)

wﬂ()

where w,, is the angular frequency in the case of no stiffness. The application of
this definition to the present case leads to:

n?m?

i = . 3.142
i e ) ( )
In real instruments, the inharmonicity due to stiffness should be added to the
inharmonicity due to the coupling with the soundboard, as studied in Sect. 3.4.5.

Time Domain: Precursor

For stiff strings, the dispersion equation (3.138) shows that the phase velocity
vy = w/k and the group velocity v, = ‘Z‘Z are both monotonic increasing functions
of frequency. In the time domain, rapidly varying oscillations preceding steep
wavefronts can be seen on force waveforms (see Fig. 3.30). These oscillations were
called “precursors” by Cuesta and Valette [38]. These authors also highlighted the
modifications of the precursor due to amplitude nonlinearity (see Chap. 8) and their

perceptual significance.

3.5.2 Vibrations of Membranes In Vacuo

A similar distinction can be made for 2D systems as it has been previously made for
strings and bars. In what follows, an ideal membrane refers to a thin structure, i.e.,
whose thickness is small compared with the other dimensions, and where the elastic

Fig. 3.30 Precursor due to Amplitude
stiffness in linear regime l

A\//\\/ Time
/

Precursor
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restoring forces are due to prestress, i.e., to a surface tension applied at its periphery.
Conversely, a plate is a thin, two-dimensional structure where the restoring forces
are due to the intrinsic elasticity of the material. As for strings, real membranes have
a nonzero modulus of elasticity. Finally, we also find prestressed plates in musical
acoustics, such as the soundboard of a piano. For almost all string instruments, the
body of the instrument is prestressed by the tension of the strings. In membranes,
in addition, the presence of both the surrounding air and the cavity influences the
vibrations. This is due to both the large surface in contact with the fluid and the small
thickness of the membrane. In this section, only the case of membrane vibrations in
vacuo will be addressed, keeping in mind that this reference case has no practical
interest in musical acoustics. However, it will be used in Chap. 14 for building a
kettledrum model.

3.5.2.1 Transverse Free Vibrations of a Circular Membrane

Membranes are used in percussion instruments (timpani, drums, bass drum, etc.)
and in a number of string instruments (banjo [31], African kora, etc.). A circular
geometry is usually preferred so as to obtain homogeneous tension across the
membrane (Fig.3.31). Membranes are usually excited by impact and therefore the
oscillations are free after the mallet (or stick) has left the membrane. The discussion
here is restricted to free oscillations. Assuming small displacements (which might
not be justified during the excitation phase in the case of strong impacts), one can
assume that the free transverse displacement z(r, 6, r) of a membrane in vacuo with
surface density o (in kg m~2) and tension per unit length  (in Nm™') is described
by the 2D wave equation (see Chap. 1):

82
o Z:rAz:t|:

%z 10z 1 9%z
0 } (3.143)

or? + ror + r2 062

A standard method of solving Eq. (3.143) is to use separation of variables [21]. A
condition of zero displacement at the edge z(r = a,6,7) = 0 is imposed. In real
instruments (in a kettledrum, for example), energy losses occur at the edge of the
membrane because of both the presence of absorbing material (such as rubber) and
the transmission of vibrations to the kettle. Such dissipation will be ignored in this
chapter. For an ideal circular membrane, the transverse displacement can be written
as [21]:

o0 o0
72(r,0,1) = Z Z Zun (1, 0) (A OS Wyt + By SIN @y t)
m=1 \n=0

o0
+ Z Zyn(r, 0) (A cOS Opnt + By Sin0pnt) ¢ . (3.144)
n=1
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Fig. 3.31 Kora (African harp). The string vibrations are transmitted to a skin (or membrane)
coupled to a cavity (a gourd) with a hole on the back

In Eq. (3.144), the eigenshapes of the membrane are given by:
Zon(r,0) = J(Bymr) cosn® and  Zyy(r, 0) = J,(Bpwr) sinn , (3.145)

where the functions J,, are the Bessel functions of the first kind of order n [1]. Indices
m and n correspond to the number of nodal circles and diameters, respectively
(see Fig.3.32). The discrete values of the wavenumber B, are determined by the
boundary conditions at the edge. For a fixed edge, we get

Ju(Ba) =0. (3.146)

For each value of n, we obtain an infinite series B,,, of roots of Eq.(3.146). For
n = 0, for example, we find that Jo(Ba) = O yields the solutions B, 0a =
2.405, 5.520, 8.654, 11.792, 14.931,.... Similarly, the roots of J;(Ba) = 0 are
given by B,1a = 3.832, 7.016, 10.173, 13.324, 16.471, .. ..

The first nodal circle (m = 1) corresponds to the edge of the membrane. The
symmetrical modes correspond to the cases where n = 0, i.e., with no nodal
diameter. In these cases, only the shapes of type Z,,(r, 8) remain. These modes
are excited for a membrane struck near its center. In all other cases, we get twin
modes with the same dependence with regard to r but which differ from each
other by an angular shift equal to 7/2n. The modes m1 are strongly excited when
the player strikes near the edge, and are the most important from a musical point
of view (see Chap. 14). The eigenfrequencies w,,, are derived from the 2D wave
equation (3.143):

T

Wpn = ¢Bun Where ¢ = \/ . (3.147)
o
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Fig. 3.32 Modal shapes of a circular membrane in vacuo. Each mode is designated by nm where
n is the number of nodal diameters and m the number of nodal circles. The corresponding
eigenfrequencies are indicated below each shape

In contrast to ideal strings, the eigenfrequencies of a membrane in vacuo are not
harmonically related. We will see in Chap. 14, however, that the first modes of
the m1 family can become almost harmonic under the combined loading effects
of surrounding air and cavity. As a consequence, in this situation, a defined pitch
can be produced when the membrane is struck near the edge.

3.5.2.2 Modal Density of a Membrane

The transverse vibrations of a membrane in vacuo can be viewed as a 2D
generalization of the vibrations of ideal strings. One main difference between these
two systems lies in the modal density (or number of modes per Hz) observed in their
respective spectra.

In this book, we will have several opportunities to discuss the concept of modal
density. This quantity influences linear and nonlinear couplings, acoustic radiation,
and the statistical representation of vibration phenomena at high frequencies.
The modal density of an ideal string stretched between two rigid supports is
compared below with the modal density of a rectangular membrane rigidly fixed
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at its edges. The rectangular geometry is chosen here only for the sake of simplicity,
but the results obtained can be generalized to other geometries. We start by
calculating the number of modes N(f) with eigenfrequencies lower than a given
frequency f. On a wavenumber scale, the successive modes of a string are equally
spaced with an interval equal to 7z/L. Therefore we have

k2L
N{f)= , = f. (3.148)
7 c
The modal density is, by definition:
dNn 2L 1
D(f) = = = . (3.149)
a ¢ h

We find that the number of modes per Hz for an ideal string is equal to the inverse
of the fundamental, which is a fairly obvious result. A similar method is now used
for a rectangular membrane of length L, and width L,. The eigenfrequencies can
be obtained by the method of separation of variables. The wavenumbers are now
given by:

m?n?  n2m?
— /2 2 — ;
kpn = /K2, + k2 = \/ I + 2 with m,n>1. (3.150)

In the k-plane, each discrete wavenumber k,,, with components (k,,, k) is repre-
sented by a vector of origin O and whose end is one of the nodes of the mesh with
spatial steps 7/L,, /L, (see Fig.3.33). The number N(f) is obtained by dividing
the area of the quarter circle of radius k by the area of one element of the mesh:

7 4m?f? L.L, Sf?
4 2 g2 T 2’

N(f) = (3.151)

where § is the membrane surface area. We derive, in turn, the modal density:

by =N =278 3.152

="y = 0" (3.152)

The modal density of a membrane is proportional to the frequency. We will see

in Chap.5 that, for timpani membranes and for drumheads, the damping also

increases with frequency. This leads to a modal overlap, so that it is not possible
to discriminate the modes anymore. The spectrum becomes almost continuous.

3.5.3 Transverse Vibrations of Thin Plates

Flat plates can be viewed as two-dimensional bars, the third dimension (thickness)
being considered as small compared with length and width. A piano (or a guitar)
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Fig. 3.33 Determining the number of modes and modal density for a two-dimensional system

soundboard is fairly well represented by a plate model. This is also the case for
other string instruments, such as harps or lutes. Freely suspended metallic plates
can also be used as percussion instruments [33].

In what follows, the transverse plate displacement is assumed to be small enough
so that the equation of motion is linear. The thickness is also assumed to be small and
the frequency range under study is such that transverse shear and rotational inertia
can both be ignored. The transverse vibrations of the plates are then described by the
Kirchhoff-Love model (see Chap. 1). This model is a generalization of the Euler—
Bernoulli model (previously introduced for bars) to the case of plates.

The modes of simply supported rectangular plates are briefly reviewed below,
in the context of musical acoustics. Emphasis is put on orthotropic plates, since
most soundboards of string instruments are made of wood. Isotropic plates are thus
considered as limiting cases. The effects of boundary conditions are discussed. As
for membranes, we limit ourselves to the case of plates in vacuo. The structural-
acoustic coupling between vibrating plate and air will be studied in Chap. 13.

3.5.3.1 Simply Supported Rectangular Orthotropic Plates

For a homogeneous orthotropic plate in Cartesian coordinates, with the axes
oriented in the principal directions of orthotropy, and under Kirchhoff-Love
assumptions, the equation that describes the transverse bending displacement w is
(see Chap. 1):

9%w 9w 9w 9w
oph 9 + D, o + (Dy + Dy) 9x20y2 + D3 oyt =0. (3.153)
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For a simply supported rectangular plate of dimensions a and b, the displacement
and bending moment are zero at the edges:

w(0,y,1) = w(a,y,t) = w(x,0,1) = w(x,b,1) =0
'%X(Ov yv t) = %X(av yv t) = '%y(x’ 07 t) = '%y(x’ b? t) = 0 . (3154)

The eigenmodes are

®p(x,y) =sin " sin ”Zy : (3.155)
a

and the wavenumbers take the discrete values:

m27r2 I’lzﬂz
+

2 _ g2 2 _
ky, =k, +k, = 2 p

(3.156)

Using the dispersion equation, the associated angular eigenfrequencies are obtained

2 [ 1 Dm4+Dn4+(D JFD)’"Z"2 (3.157)
Opn = T . .
mn pph 1 @ 3b4 2 4 a2b?
In these expressions, m and n are positive integers.!” As previously shown for
strings in Sect. 3.3.2, the eigenmodes &,,, are orthogonal with respect to mass and
stiffness, which means here:

ifm=#m orn#n,

ifm=m'andn =n'.
(3.158)

where M, is the modal mass for the mode (m, n). The eigenfrequencies of the

orthotropic plate are distributed in an area located between two limiting dispersion
curves (see Fig.3.34).

a b
0
/ / Pph @y (X, ) Py (x, y)dx dy = {
0 0 an

3.5.3.2 Isotropic Case

For an isotropic material, one needs to substitute in the previous equations:

D, =Ds=D Bl d

= = = an

P 12(1 — v2)

o= EP . _op _p,= BV (3.159)
T el y) T T T T g1 -y ‘

7They can also be zero in case of free boundary conditions.
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Fig. 3.34 (Top) Example of dispersion curves for an orthotropic plate. The eigenfrequencies
(asterisk) are located between two limiting curves corresponding to the highest and lowest
elasticity modulus, respectively. (Bottom): The soundboard of an upright piano is an example of an
orthotropic plate. The ribs oriented perpendicularly to the fibers increase the transverse stiffness
significantly. (© Itemm)

Here, the elastic behavior of the material is entirely determined by two constants:
the Young’s modulus E and the Poisson’s ratio v. The equation of motion of the
plate becomes

*wW *w *w *w
=0. (3.160)

h
PPt o ot T oo T gy
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The mode shapes @,,,(x,y) have the same form as in Eq.(3.155). However, the
eigenfrequencies are now given by:

e L 3.161
Oy = T ool a2+b2 . (3.161)

Prestressed Isotropic Plate

For a prestressed plate, under the combined effects of a tension 7, applied in the
plane of the plate in the direction Ox and a tension T, applied along Oy, then the
isotropic plate equation is modified in the following way [4]:

wh yp D\ o +28x23y2 o ) T e -T =0. (3.162)

2w (34W W 32W) W 2w
D ,
dy2

In this case, the eigenfrequencies become
1 2m? w2\’ m2m? n’m?
= D T, Ty . 3.163
@ poh (a2+b2)+ e T (3.163)

3.5.3.3 Modal Density of a Plate

Because of their 2D geometry, plates show higher modal density than bars. As a
consequence of damping, especially in wood, a high density of modes leads to a
modal overlap (as in membranes), which means that it becomes difficult, or even
impossible, to isolate a particular mode.

The case of a simply supported isotropic plate is considered here as an example.
Its eigenfrequencies are given by (3.161). Taking the square root of this expression,

we obtain /w,, = JC \/ m + Zi, where C = nz\/ pfh. In the k-plane (see

(lz
Fig.3.33), the quantity \/ wmn/ C is represented by a vector pointing from the origin
to the coordinates (m/a, n/b).

As previously done for membranes, the number of modes N(f) contained in the
interval [0, f] is calculated. For this purpose, a circle arc of radius R = \/ w/C is
drawn in the k-plane. The number of discrete points contained in a quarter of this
circle of area 7R?/4 = "¢ is determined. Since the area of a single rectangular

4c
element is 1/ab, the total number of modes below a given frequency f is given by:

N(f) = azb p;’)hf, (3.164)
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from which we derive the modal density:

_ 12
D) = a2b \/ppDh _ ahb \/3p,,(1E v2) ' 3.165)

In summary, the modal density for a simply supported isotropic plate is constant.
This constant is a function of both the geometry and elastic properties of the
material. The modal density increases as the plate becomes more flexible, or thinner,
and when its surface area increases. For an orthotropic plate whose rigidity constants
have the property D,+Dy = 2+/D;1D;, we obtain the same expression as Eq. (3.165)

1/4
for the modal density, provided that D is replaced by D; and bby 8 = b (g;) .

For a given plate geometry and material, orthotropy leads to an increase in the modal
density compared to the isotropic case [32].

Particular Case of a Prestressed Isotropic Plate

The influence of prestress on the eigenfrequencies of a plate can be discussed with
the help of Eq. (3.163). In this equation, the terms of highest degrees in m and n are
modified by the respective factors 1+ HT;'D r‘:; and 1+ HTZ"D Zi .If T, and T, are positive
(tensile case), the eigenfrequencies increase compared to the non-prestressed case.
If T, and T, are negative, the overall stiffness decreases, and the eigenfrequencies
decrease. The consequences in terms of modal density are not straightforward.
The analytical calculation was made by Wilkinson [40] who showed that the effects
of prestress are essentially noticeable on the lowest modes, and that the modal
density of the prestressed plate tends asymptotically to modal density of a plate
without tension as the frequency increases. In addition, the modal density is a
function of the squared tension, so that it is independent of its sign. As shown in
the PhD manuscript by Ege [17, p. 151], the modal density of a plate decreases
with the prestress, whatever its sign. One can also show that the modal density of a
plate under high tension becomes close to the modal density of a membrane: this is
coherent from a physical point of view.

3.5.3.4 Other Boundary Conditions for Plates

The general determination of eigenmodes for plates under complex boundary
conditions will not be discussed in this book. One can refer, for example, to books
by Yu [44] and Graff [21] for more information. Only the case of an isotropic
rectangular plate is briefly presented below. The standard method used is separation
of variables. It involves testing in Eq. (3.160) solutions of the form:

w(x, y, 1) = X(x)Y ()" . (3.166)
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As aresult X and Y must obey:

- "o . 4 . 4 C()prh
X"Y+2XY +XY"—-B°XY =0 with g* = D (3.167)
The variables can be separated under the conditions:
Y = —y2Y and Y" = y*Y
or, alternatively (3.168)

7

X = —a’X and X" = o*X.

In a third case, both conditions can be satisfied simultaneously. In Eq. (3.168), a?
and y? are real positive numbers given by the boundary conditions. Let us suppose
that the conditions of the second group (those relating to X) are satisfied. We then
derive from Eq. (3.167) the condition for Y, for each value o, of o defined by the
boundary conditions on X:

Y" —202Y — (B*—ahHy =0. (3.169)

Equation (3.169) has different types of solution, depending on the value of B
compared to . For § > «, we get

Y(y) = Asinkyy + Bcoskyy + Csinhkyy + Dcoshky
(3.170)
with & = \/,32 +o? and k, = \/,Bz—oz%.

The constants A, B, C, and D are then determined by the boundary conditions in y.
For a plate clamped at y = 0 and y = b, for example, we have the conditions:

Y(0) =Y'(0) =Y(b) = Y'(b) = 0. (3.171)

The eigenfrequencies are given by the roots of the determinant of the system of
equations that governs the constants, which yields

kiky [cos kb coshkib — 1] — ozﬁ sink,b sinh kb =0 . (3.172)
For each value of n, Eq.(3.172) provides the m successive values of § (and, in

turn, the eigenfrequencies w). The same equations can then be used to calculate the
eigenshape associated with each mode.
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3.5.3.5 Piano Soundboard and Ribbed Structures

Ribbed plates and shells can be found in numerous vehicles (planes and ships)
and in architecture. The prime function of ribs is to increase the rigidity of a
given structure without increasing its mass too much. In Chap. 13, it will be shown
that such a property also is desirable for enhancing the radiation efficiency of
stringed instruments. For this reason, guitar and piano soundboards, for example, are
reinforced by ribs (see Fig. 3.34). Another reason follows from static considerations.
As mentioned in Chap. 1, wood is an orthotropic material. As a consequence,
wooden plates are more rigid in the direction of the fibers than in the direction
perpendicular to them, where they can break more easily. Therefore, if the purpose
is to globally stiffen the soundboard, for dynamical and acoustical reasons, as well
as to increase its breaking strength, then a good strategy consists is to glue the ribs
perpendicular to the fibers.

In the case of the piano, the soundboard is also stiffened by the bridges, which are
fixed on the upper side, where the strings are attached (see Fig. 1.1 in Chap. 1). The
combination of the ribs and bridges has pronounced effects on the sound quality of
a piano, as underlined by several studies and patents in the past decades [0, 14]. The
exact nature of these effects was identified and quantified more accurately in recent
studies [8, 13]. Let us consider, first, the simplified example of a ribbed plate whose
geometry and material are comparable to those of an upright piano soundboard. As
long as the modal frequencies remain lower than, say, 1 kHz, then the way the ribs
are spaced has little effect on the global patterns of the modal shapes (see Fig. 3.35).

Fig. 3.35 Influence of the
ribs on the modal shapes of
the lowest modes of a ribbed
soundboard. (Top) Regularly
spaced ribs; (Bottom)
Irregularly spaced ribs
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For such an example, one can prove mathematically, with the help of homog-
enization techniques, that an equivalent homogeneous plate can be defined in this
frequency range, with similar properties to the ribbed plate [5]. However, above a
certain cutoff frequency (which is near 1.1-1.2kHz for most upright pianos), the
elastic half wavelength becomes of the same order of magnitude as the mean inter-
rib distance. As a consequence, the soundboard zones between the ribs behave like
“waveguides” bounded by the ribs, as seen on the modal shapes (see Fig.3.36).
At this stage, it is worth noting that the rib distance usually varies slightly on a
soundboard. The calculation of the modes then shows that, even for slightly irregular
rib spacing, the parts of the soundboard with significant amplitudes are restricted to a
few inter-ribs zones only (see Fig. 3.36). This is the so-called localization of modes.
Such localization effects resulting from small departures from exact periodicity
are frequently encountered in physics. They have been intensively studied by
Anderson [2]. These phenomena are often referred to as “Anderson’s localization
effects.” On a piano soundboard, the localization is further enhanced by the presence
of the bridges. As shown in Fig.3.36d, only a section of one inter-rib spacing,
situated in the region above the main bridge, vibrates significantly. For the frequency
shown here (2149 Hz), the bridge appears to act as a supplementary boundary
condition. Thus, the vibrational energy is confined in a section of one inter-rib zone

Fig. 3.36 Influence of rib spacing and bridge on the localization of modes for an upright piano
soundboard. (a) Regular rib spacing; (b) Slightly irregular rib spacing; (¢) Sketch of soundboard
with bridge and ribs; (d) Increased localization of modes due to the bridge
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only. It will be seen in Chap. 7 that the phenomenon is slightly different for wind
instruments. Finally, in Chap. 14, the effects of mode localization on piano radiation
and, particularly, on the directivity of the radiated field, will be presented.

3.5.4 Vibrations of Shells

As indicated for plates, a detailed study of the vibrations of shells is beyond the
scope of this book. The interested reader will find more information in specialized
books, such as [35].

3.5.4.1 Spherical Caps

In this section, the vibrations of a thin and shallow spherical cap are investigated.
This structure illustrates the effect of a finite radius of curvature, compared with the
case of thin circular plates. To a first approximation, it can be assumed that some
percussion instruments, such as cymbals and gongs, can be modeled by such shells.
We consider here that the vibrations are linear, so that we can use a modal approach.
As a consequence, the presentation is restricted to the case of low stress, low strain,
and small displacements compared with the shell thickness. As the displacement
field of the shell becomes comparable or larger than the shell thickness, nonlinear
vibrations will have to be considered, as developed in Chap. 8. In order to account
for cymbals and gongs, the particular case of free boundary conditions is treated
below. This problem is not commonly addressed in the literature [25].

We consider a spherical cap of thickness A, radius of curvature R, and whose
plane projection is a circle of radius a (see Fig.3.37). The hypotheses of Donnell-
Mushtari—Vlasov (see Chap. 1) applied to the case of a thin (4 < a) and shallow
(@ < R) shell yield the equation describing the free transverse bending motion
w(r, 8, 1) of the cap [35]:

DV4w+Ehw+ hw = 0 3.173
R phw =0, (3.173)

where E is the Young’s modulus, p the density, v the Poisson’s ratio, and D =
12(51’7_3 V) the rigidity factor. Equation (3.173) is equivalent to Eq. (1.88) shown in
Chap. 1, but with the force function F removed. It is convenient to express this

equation in a dimensionless form, through introduction of the reduced variables

W= w/W,, r =r/aand t = t/t, with t, = a* %’. We get

4

V4w 4+ yw 4+ =0 where y = 12(1 — \JZ)RU;h2 .

(3.174)
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Fig. 3.37 A thin shallow

spherical cap. R is the radius

of curvature, a is the radius of

the circle obtained by

projection of the cap on a

plane, and 4 is the thickness.

The assumption of thin shell M
means i < a, and a shallow X

shell is such that a << R \

Note 1: In the linear case, w, can be chosen arbitrarily. This will not be the case
for nonlinear vibrations, as seen in Chap. 8.

Note 2: In what follows, only the dimensionless equation is solved, but the
overlines on the variables are omitted, for the sake of clarity.

3.5.4.2 Eigenmodes of a Spherical Cap with Free Edges

We look for solutions of Eq. (3.174) of the form w(r,8,1) = @(r,0)q(r). These
solutions must satisfy one of the following conditions [23]:

If @>—x=¢">0 then [V'—(*]® =0 casel

(3.175)
If (1)2—)( = —54 < 0 then [V4—|—§4]¢ =0 case2
In case 1, the eigenfunctions are given by:
B, 0) = (At + Budn(Conr) + Caly(Gomr)] |95 (3.176)
sin mf

where A, B,, and C, are constants, (,,, are determined by the boundary conditions,
J,, are the Bessel functions of the first kind, and /,, are the modified Bessel functions
of the first kind [1].

In case 2, the eigenfunctions are given by:

cos mf

d)nm(rv 9) = [Anrn + Bnbern(é‘nmr) + Cnbeln(é‘nmr)] sin mo

(3.177)
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where ber, and bei, are the Kelvin’s functions defined by [1]:
ber, (x) + jbei,(x) = J,(xexp (3j/4)) . (3.178)

For a free edge, the eigenvalues (,, are determined by the boundary condi-
tions (1.94) at r = a. Four different situations may occur [36]:

for ne 0,1}, Vm>1 wm= \/X+w,§932

forn>2, m=0 and y < ylm a)no:\/)(-i-CiO

’ (3.179)
for n>2, m=0 and y > ylim wnO:\/X_ o

n

for I’l22, mzl, wnm:\/X+ l?m

where a),(l(,),z are the eigenfrequencies of a circular plate with free edges of radius a,

corresponding to the limiting case of a cap with zero curvature (infinite radius of
curvature). Figure 3.38 shows how the different eigenfrequencies of the cap vary as
a function of the curvature parameter y.

The limiting value of the parameter y that makes the difference between “Bessel”
modes and axisymmetric “Kelvin” modes is given by Johnson and Reissner [23]:

. (1= )3+ v)r2(® —1)

X = 1 n2(n—1)(1—v)(dn—v+9)
T+ (=) =2) = 2t 3)

(3.180)

Appendix: Modal Decomposition Using the Residue Calculus

One often needs to expand a transfer function G(®) in the frequency domain
onto a modal basis. In this case residue calculus is a powerful tool. It yields,
in turn, the inverse Fourier transform g(¢) as a sum of damped sinusoids. We
restrict ourselves to the simple, though frequently encountered, case where the
poles of the function G(w) are simple. These poles w, are generally complex.
It is assumed here that their imaginary part is positive, so that the function
exp(jw,?) is decreasing for r > 0. The poles are therefore located in the upper
complex half-plane. The result, shown below, is the following:

g(t) =) Ry fort >0, (3.181)

with g() = 0 for ¢ < 0. The quantities R, are the residues defined for simple
poles by:

R, = h_r)n (w0 — w,)G(w). (3.182)

(continued)
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Fig. 3.38 Variations of the eigenfrequencies for a spherical cap with curvature parameter .
Notice that the eigenfrequencies increase with y, except for the modes w,o which remain almost

unchanged

If G(w) = N(w)/D(w), in order to calculate the residues, one only needs
to write the denominator in the form'® D(w) ~ (0 — w,)D'(w,). As a

consequence, we get

_ N(wy)

R, = :
D'(w)

For the proof, we start from the definition of g(¢) [see Eq.(1.116)] :

1 Foo )
g = 2n/_ G(w)e®dw.

(o]

(3.183)

(3.184)

(continued)

18We make sure that the numerator N(w) and the denominator D(w) have only zeros and no poles.

Thus, the tangent function is written as the ratio sine/cosine.
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Fig. 3.39 Contour of the
integral (3.185), equivalent to
the integral on the real axis.
The equivalence applies when
the radius of the circle p tends
to infinity, since the

function to integrate on the
circle tends to 0 >

The integration is carried out for a real w, from —oco to 400, but we
can convert it to a contour integral: as a consequence the integral on the
contour presented in Fig.3.39 is equal to the integral (3.184), when ¢ > 0.
The coordinate of a point located on the semi-circle of the complex plane can
be written: z = pcos 6 + jpsin 6, with sin® > 0. When ¢ is positive, and
when the radius p of the circle tends to infinity, the quantity G(z)¢/* tends to
0, provided that the modulus of the function G(z) tends sufficiently quickly to
0 as z tends to infinity (Jordan’s lemma). The value of the contour integral on
the semi-circle tends to 0, and this contour integral is the result that we were
searching for.

The residue theorem states

95 F(z)dz = 2mj ) _ Residues(F(z)). (3.185)
In this formula, the contour goes counterclockwise. We obtain

g(t) =j ) Residues(G(w)e™) = j> Ry

For ¢t < 0, we can use the symmetrical contour with regard to the real axis.
This contour is located in the lower half-plane, and since there are no poles in
this half-plane, it is equal to 0. Given the choice made for the poles of G(w),
we find that g(7) is causal.

In addition, since the function g(7) is real, the poles are grouped by
pairs: the existence of terms of the form jR, exp(jw,t) implies terms
—jR exp(—jw; t). Similarly, the existence of poles w, implies the poles —w,*
(which are also located in the upper half-plane).

Finally, taking the Fourier transform of (3.181) yields

_ R, N(wy)
G(w) = Zw Lo = Z(w o)D)’ (3.186)

n n

(continued)



170 A. Chaigne and J. Kergomard

To prove this, we can apply the formula (3.181) to the function R,/ (v — wy),
whose residue is R,! When o tends towards w,,, only the nth-term of the series
is relevant, since we have: G(w) = N(w,)/ [(w — w,)D'(w,)] = N(w)/D(w).

A difficulty remains for the poles located on the real axis: the formula
given for the poles located in the upper half-plane is valid, but the proof is
more difficult (it uses the necessary causality of the function g(7)).
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Chapter 4
Waves

Antoine Chaigne and Jean Kergomard

Abstract Wave analysis of the acoustic pressure field is shown to be a useful
complement to modal analysis. In this chapter, many intuitive results are directly
obtained in the time domain, by considering an impulse source and successive wave
reflections at boundaries, for a one-dimensional medium. In the frequency domain,
it is shown that the concept of input impedance (or admittance), of current use in
musical acoustics, can be viewed as a generalized frequency response to a sinusoidal
source. Furthermore, it is shown how infinite series of modes (resp. waves) can be
avoided by using a closed-form of the responses, both in the time and frequency
domain. For the sake of simplicity, 2D and 3D media are not considered, but the
direct relationship between modes and waves is established for the particular case
of a 1D medium. The chapter is mainly based on the example of a cylindrical tube,
but all the results can be transposed to the case of a homogeneous string.

4.1 Introduction

Solutions of numerous differential equations encountered in musical acoustics have
been given as modes in Chap.3. In a bounded medium such as those studied
(strings, pipes, bars, membranes, etc.), another way of studying the phenomena is
to decompose the variables into expressions featuring successive reflected waves.
Due to the very high number of reflections, such a decomposition would be heavy
in a general medium with 2 or 3 dimensions; that is why the present chapter deals
only with one-dimensional media. The aim of this chapter is to show how, for this
simple case, we can go from one decomposition to another, which is often useful in
musical acoustics. A particular case is that of periodic reflections, which correspond
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to modes with harmonically related eigenfrequencies. The emphasis will be put
on the time-domain representation. While it is less usual, it is essential for some
applications such as calculation by multi-convolution (see [1]), or, in its discrete
time version, for sound synthesis.

We still search for responses to a given source, with particular attention to two
types of idealized excitations: pulse and sine function. Acoustic waves are chosen
as illustrating examples. We limit ourselves to a homogeneous medium, keeping for
Chap. 7 some examples of heterogeneous media or non-cylindrical tubes like horns.
However, we will again take interest in the boundary conditions, which already lead
to a great variety of situations. These boundary conditions can be absorbing, but
the medium itself is supposed to be non absorbing (the case of absorbing media
will be treated in Chap. 5). Finally, in addition to both the modal expansion and the
decomposition into successive reflections, another general solution expressed in a
closed-form, i.e., not in the form of an infinite series, will be presented.

4.2 Solutions Without Source, First Reflection

In Sect. 1.2.4 (Chap. 1) the general solution of the equation without a source has
been written as the superposition of outgoing and incoming traveling waves:

p,t) =fT(t—x/c)+f(t+x/c). 4.1)

Actually, the reality here is described only in a quite abstract way. Generally, there
is an infinity of incoming and outgoing waves because an infinity of reflections
appear in a bounded medium. Mathematically, the sum of outgoing waves is again
an outgoing wave, and similarly for the incoming waves. More precisely, it can be
written! f(t —x/c) = fT(¢) * §(t — x/c) : thus every convolution of an outgoing
wave by a function of time, independent of x, always leads to an outgoing wave.
This is, for example, the case of a simple delay §(r — 7), or of a delay followed by
two reflections, at each end.

* Conversely, a reflection at only one end (let us choose the right one, called ¢)
must transform an outgoing wave into an incoming wave (or vice versa for the
left one), and a reflection function r(x, f) appears such as:

r(x, 1) xfH () x 8(t—x/c) =f (1) * 8(t + x/c) Vx,
hence f(r) = r(x,1) * fT(f) * §(t — 2x/c). 4.2)

!'The mathematically accurate notation would be f+ (r — x/c) = [f‘" * 8y /L.] (1), but for numerous
successive reflections, it would be very heavy. Let us highlight also that the FT of this expression
is F 1 (w) exp(—jwx/c).
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If £T(¢) is a pulse §(¢), the reflection function r(x, f) is
r(x,f) =f () * §(t + 2x/c) = f (¢t + 2x/c). (4.3)

We can define it as the response in incoming wave to a pulse of outgoing wave.

At the extremity x = £, the reflection function is known if the external medium is
passive (it is equivalent to the termination impedance, the relation between the two
quantities will be seen later): it will be denoted r; (). By definition:

f(t+L€/c)=ri()xfT(t—4L/c) Vi, or (4.4)
F(0) = re(t) xfT (1) x 8(t—2L/c) Vt . 4.5)

Thus, with (4.2), as the convolution integral is commutative:
r(x,t) =rg(t) x5 [t —2(f —x)/c]. (4.6)

This result can be interpreted very easily: the outgoing wave in x propagates until
the extremity £, thus over the length (£ — x), where it is reflected according to r¢ (%),
and propagates again in the other direction on the length (¢ — x). This calculation
can be done again in the frequency domain as an exercise.

Finally, it can be noticed that the reflection function for the flow rate is the
opposite of the reflection function for the pressure. Actually, using the Euler
equation, we have to differentiate the pressure (4.1) with respect to x, then integrate
the result with respect to #: the general solution for the flow is linked to the one for
the pressure through

uCe,t) =Z ' [fH(t—x/c)—f(t+x/0)]. 4.7)

This expression is again written as a sum of incoming and outgoing waves, but
the incoming function is different, implying the difference in reflection functions for
pressure and flow. Thus, for a zero pressure at every moment at the end £, f~ = —f+
at this point, and there is a (local) doubling of acoustic flow (and vice versa). Here
Z. = pc/S, because it is defined as the ratio of pressure/flow rate. It is the acoustic
impedance, which differs from the specific acoustic impedance defined in Sect. 1.2.5
of Chap. 1.
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4.3 Successive Reflections of Waves Produced by a Pulse
Source

4.3.1 General Expression

In Chap. 1 it has been seen that an impulsive point source of flow can be created
by a small piston placed on the pipe side in x = x; and moved suddenly at
t = 0 from a height & [Eq.(1.134)]. The piston location is #H(¢), and the flow
is ug(t) = Suhé(t) = us6(r) (see Fig.4.1). We will see that this is the Green’s
function’s derivative with respect to time, and what its equivalent is for a plucked
string.

¢ In an infinite pipe, this piston creates a plane pressure wave Z.u(t), where Z. =
pc/S (S is the section of the pipe); but as the piston sees both parts (right and left)
of the pipe indifferently, the flow is divided in two equal parts, and the pressure
created in the pipe is

Pdir(x, 1) = ;ZCMXS(Z‘ — |x = x4 /o). (4.8)

In this expression, the delay depends on the absolute value of the distance
to the source only. Obviously, on the right of the source (x > x;), this is an
outgoing wave. On the other side, (x < xg,) it is a “incoming” wave, with our
nomenclature linked to the direction of the x-axis. The two waves (4.8) will be
called direct waves.

/\
@ Prieft = —

Pdir
To
@ Prr

I T T T
0 X X

S

Fig. 4.1 Source of flow rate u(¢) located on a pipe side; it produces two direct pressure waves
in opposite directions. These reflect at the ends characterized by the reflection functions, r(¢)
and r¢(7), linked to termination impedances, Zy(w) and Z;(w). The labeled arrows point out the
four “primary” waves, which form the pattern reflecting periodically at each back and forth on the
length ¢, and are linked to the spatial form of modes (see Sect. 4.6.2)
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The direct left wave, pgi, reflects in x = 0 (see Fig.4.1), with the reflection
function r((¢), and creates a reflected wave, pjer, which comes back to x:

Prefi(x, 1) = pair(0, 1) % ro(£) ¥ 8(1—x/c) = ;Zcuer(t) #8[1—(x+x,)/c]. (4.9

The direct right wave also reflects, in x = £, with the function r;(¢), and comes
back to x:

Pright (%, 1) = paic (€, 1) % re(2) * 8]t — (£ = x)/c] = ;Zcusrz(t) #8[t— (20 —x — xy)/c].

(4.10)

All the delays included in the three previous waves are lower than the time of a
round trip in the pipe (t = 2£/c). Another wave remains, which reaches x before
this time 7: the one that reflects at both ends. If x < x, it is the wave traveling to
the right, and reflected first in x = £ then in x = 0. It is written:

Por(.1) = Prgnn (v.1) % () % 8(1 — 2x/¢) = ;zcm () % ro0) % 8t — (2€ + x — x;) /c].

@.11)

In the case where x > x;, the result is obtained by inverting x and x;, i.e., by
replacing (x — x;) by its absolute value. All the other reflections are obtained
by considering each of these four “primary” waves, shifted by a round trip, two
round trips, etc. Now a complete round trip acts as a convolution by the following
function, independent of both the source and receiver positions,

grr(t) = re(t) x ro(t) * 8(t — 24 /c). (4.12)
Finally, for a finite pipe the response to a flow pulse is found to be:
P(x,1) = Pprimary (X, 1) * 0 () (4.13)
where

o(t) = 8(t) + grr(t) + [grr * grr] (1) + [grT * grRT * gRT] (1) + -+~ (4.14)

and

Pprimary (X, 1) = ;Zcus[5(t —lx=xs| /c) + ro(r) * 8[t — (x + x;)/c]
Fre(t) % 8t — (20 —x — x5) /]
+r(2) % ro(2) * 8[t — (2€ — |x — x;]) /]] (4.15)
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The symmetry between the source and receiver abscissae can be noticed. We will
see that it is possible to factorize the term of primary waves, resulting in the spatial
dependency of modes.

4.3.2 Reflections and Modes Periodicity

The infinite series of round trips in the function o(#) (4.13) corresponds to a
series of reflections occurring at periodic instants. For simple cases, we can deduce
harmonically related eigenfrequencies, which are multiples of the lowest one. For
example, for the case where r¢(f) = ro(f) = —§(), the pipe being open at both
ends,” this series is periodic, and is written

+o00
o) =Y 8(t—2nt/c).

n=0

For negative times, o (f) = 0, and the series can be written also:

+o00
o()=H(t) Y 8(t—2nt/c)

n=—0o0

as the function 6 (x) is null for strictly negative x. The infinite series is a Dirac comb,
which is a periodic function; the Poisson formula enables to develop it in Fourier
series:

+00 +o0
o) = ZCEH(I) 3 expion) = ZH(t)Z cos(@n?). (4.16)

n=—o0o n=0

where w, = nmc/{. We converted from waves to modes, because, by convoluting
o (1) by the term of primary waves (i.e., the term between brackets, see Eq. (4.15)),
which depends on x and x;, the spatial dependency p(x, f) can be found. Here is the
result:

+o00
plx, 1) = 2C€H(t) Z Porimary (X, @n) exp(jwyt). “4.17)

n=—0o0o

The calculation of Pprimary (X, @,) is not given here: we simply wanted to illustrate in
a simple way the change from waves into modes. We will see further more general

2 This means that radiation impedance is ignored. The equivalent is a string fixed on a perfectly
rigid support, acoustic pressure and string velocity being analogous.
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methods to realize this kind of change when there is no periodicity. Using the present
method, we see that Formula (4.17) remains valid for the case r¢(f) = ro(t) =
8(r), which corresponds to a pipe closed at both ends, but with a different term
Pprimary (X, wn)-

* Regarding the case r¢(f) = —§(t), ro(t) = 8(¢), which corresponds to a closed—
open pipe, we remark that the periodicity is different: the period is double, and
the infinite series in (4.14) must be written as:

+o00
o () = [8() — 8(t— 2€/0)] * Y _8(t — dnt /o).

n=0
The following mode decomposition is deduced, if w, = nwc/24 :

+00
plx, 1) = 42 H(1) Z Pprimary (X, @) [1 — exp(=2jw,L /)] exp(jwnt).
n=—0o0
It appears that the term between brackets is cancelled for even harmonics, and
that again Formula (4.17) is found, but is limited to the odd harmonics. Let
us note that the round trip function grr(f) is important for the evolution of
the system: Eq.(4.12) exhibits that no essential difference exists between the
dissipation occurring at extremities, in the reflections, and the one occurring
during propagation, modifying the Dirac function.

What has just been studied is the impulse response in pressure (at a pulse in flow
rate); this is nothing other, more or less, than the Green’s function, which will be
studied now. This is a useful tool in many situations.

4.3.3 Remark on the Reflection Function (4.3)

If, at a given point, the excitation is a pulse of outgoing wave fT(f) = §(¢), this
means namely that the outgoing wave is null at this point for all positive times. This
pulse reflects, for instance, at x = £, and the reflection function (4.3) simply is the
incoming wave at the x point: there is only an incoming wave. No other successive
reflections occur, otherwise the outgoing wave would not be impulsive! In other
words, a termination without echo has been put at the pipe entry, which produces
the impedance of an incoming wave?(the acoustic impedance is pc/S) .

3This impulsive outgoing wave cannot be realized with a small lateral piston, as the flow pulse
divides into two: an outgoing wave (or more generally right wave) and an incoming one (or more
generally left one). Thus the response to the outgoing wave must include the incoming wave
coming back from x = £, but also the incoming wave directly from the source (about this matter,
see [1]).



180 A. Chaigne and J. Kergomard

4.4 One-Dimensional Green’s Function

4.4.1 Expression of the Green’s Function

Equation (1.134) has been solved, and can be written as follows:

?p 10%p p dé()
- = — U 8(x — xy). 4.18
ax2  ¢% o s ar (= %) (4.18)
Now the Green’s function, the solution of the wave equation for an elementary
source, is solution of the following equation:

9? 1 58

[ o atz} g(x.1]x,.0) = =5(n8(x — x,), (4.19)
if the source emission time is fy = 0 (otherwise, ¢ can just be replaced by ¢ — 1 in
this equation). Up to the constant multiplicative factor pu,/S, the solution for the
time derivative of the Green’s function in a finite pipe has been found above. In
order to obtain the Green’s function itself, Eq. (4.13) must be integrated, i.e., one of
the convolution integral factors must be integrated: thus the functions ¢ are replaced
by step functions H in (4.15). Doing this, a condition is imposed on the Green’s
function: it needs to be null for negative times as must its first derivative, as already
shown in Chap. 2. Its value can be written as:

8(x, t]x5,0) = gprimary * [8(2) 4 grr(?) + [grT * grT] () + .. ], (4.20)
where
8primary = ;[H(t_ |-x_xs| /C) + VO(t) * H[t_ ()C +XS)/C]
+re(®) * H[t — (20 —x — x,)/c]
+re(t) *ro(t) * H[t — (20 — |x — x;]) /]]. 4.21)

It is the one-dimensional Green’s function. Two other very useful expressions can
be found: the first one is a closed-form expression, see Sect. 4.6, and the second one
is the modal expansion, already studied above.

4.4.2 Approximated “Practical” Realization

An intuitive idea of the Green’s function, or at least of its first derivative, is easily
obtained with the excitation on the pipe side [Expression (4.13)]. Figure 4.2 shows
this derivative for the case x = x; = 0, which is the response of a cylinder-shaped
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Fig. 4.2 Example of a pressure response in a tube to a sudden closing at input; the pipe is open
at the output, where the pressure wave reflects with a change in sign, and closed at the input (after
excitation), where the pressure signal is received. Visco-thermal effects, studied in Chap. 5, are
taken into account for better realism, by replacing the functions §(7) in (4.13) by the functions
given by (5.148). The first pulse §(¢) at ¢+ = 0, unaffected by dissipation, has been omitted.
The dotted line corresponds to (4.13); the solid line corresponds to the modal expansion, derived
from (4.53) when losses are ignored (the expression will be given in Chap. 5). The modal series
being truncated (to the first 200 modes), oscillations appear before each peak, corresponding to the
Gibbs phenomenon. This phenomenon is well known in the sum of Fourier series. It is even clearer
on the right figure, showing a zoom of the second peak, for a summation over ten modes only. The
pipe dimensions are: radius 4 mm and length £ = 50 cm

instrument to a sudden closing at the entry. This response is the inverse Fourier
transform of the input impedance. In order to make it more realistic, dissipation has
been taken into account. This kind of response can also be realized approximatively
at any point x; by closing suddenly a hole placed at this point: because of dissipation,
the obtained sound decreases quickly, but it is possible to hear the frequency clearly.
It is familiar to the instrumentalists, and is the equivalent of pizzicato for bowed-
string instruments. The obtained frequency corresponds roughly to ¢/4€., where
Lt is the pipe length upstream to the first open hole.

Turning our attention to strings, this intuitive idea is also very simple. The string
can be regarded as plucked by a force applied at point x,, and stopped at t = 0,
as shown before for a single- degree-of-freedom oscillator in Chap. 1. The only
difference is that the excitation now is a force per unit length. The equation of strings
with a source term can be used [see Eq. (3.25)]:

_Kﬂ(lh— 5) H(=1)8(x — xy), (4.22)

92 1 92
oxz 2?02

}@ﬂz
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Fig. 4.3 The shape of a string plucked at the 7/8th of its length and released without initial
velocity is shown at successive times t = 0, T/16, 3T/16, 5T/16, 7T/16, and T/2 (left, top). To
obtain these lines in the interval [0, L] bounding the string, at each chosen time, the contributions
of the two waves propagating in opposite direction from each others, and reflecting with a change
in sign at the ends, are added (see bottom figure). By plotting as a function of time the successive
values taken by the string at a given position (here in x = 7L/8), the shape of the displacement
wave is obtained for this position (right, top) and can be compared to Fig. 3.6 of Chap. 3

where § = x,/£ (in the static regime, the force must compensate for the unbalanced
tension force in x;). Thus, up to a constant, the string velocity is the Green’s function
in this problem, and the acceleration is the time derivative of the Green’s function:
the string-tube analogy (see Table 1.1) works here only up to a time derivative for
the source. Thus the acceleration is a succession of pulses, velocity is a succession
of steps, and displacement is a succession of corners (see Fig. 4.3).

The Case of an Infinite String: D’ Alembert Equation
The above section is concerned with a string of finite length and an impulsive
excitation. An interesting calculation, due to d’ Alembert, enables us to easily

(continued)
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determine the displacement of an infinite string whose initial conditions, yo(x)
and vy(x), are known. A method consists in putting the Green’s function into
an integral equation. Another simpler method is the following: when there is
no source, the displacement can be written as [see (4.1)]:

vy, ) = fT(x—ct) +f (x + c1).
hence, by differentiating with respect to time:
v(x, 1) = —cf T(x — ct) + of (x + ci).
At time ¢ = 0, the displacement is
Y =T+ 1700 3 vo)/c == () + ().

The second relation gives

! / " voo)dxo = —FF () + £ (0.
C

—00
Hence:
+ L[
2f*(x) = yo(x) F o (Xo0)dxo
€ J-oo
and finally
171 x+ct
yx, 1) = 5 [C / o (X0)dxo + Yo(x — ct) + yo(x + Cl)} . (4.23)
x—ct

4.5 Solutions Without Source in the Frequency Domain;
Transmission Lines

Before calculating the Green’s function in the frequency domain, some classical
notions and results, namely the concept of projected impedance from one point to
another, are reviewed. We start from Eq. (4.1) written in the frequency domain:

P(x,w) = PT(w)e ™ + P~ (w)e*. (4.24)
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There are two complex coefficients, P¥ (x), depending on frequency, which will be
shown* to be the Fourier transforms of f*(r). The ratio between the two waves is
called reflection coefficient R(w):

P~
— jkox
R(x,w) = P+e . (4.25)
This coefficient’s amplitude is independent of x, contrary to its argument. If each
member is multiplied by P, this equation is none other than the Fourier transform
of Eq. (4.2): R(x, w) is the transform of r(x, f). The solution can also be written for

the velocity (which is itself the solution of the same equation as for the pressure), or
for the flow [see Eq. (4.7)]:

Ux,0) = Z" [PTe ™ — P~e™]. (4.26)

Equivalently, general solutions for pressure and flow can be rewritten by replacing
P* and P~ (which depend only on frequency and are constant in x) by the flow and
pressure values in x = 0, denoted Py = P(0,w) and Uy = U(0, w), and using a
simple expansion of the exponential functions in sine and cosine:

P(x, w) =Py cos kx — UyZj sin kx
4.27)

Ux,t) =— POZC_Ij sin kx + Uy cos kx.

A generalization to x; and x, abscissae, with obvious notations, leads to the
following formula:

(Pl) _ ( cos [k(xa —x1)]  Zcjsin [k(x, —Xl)]) (Pz) (4.28)
U1 o Zc_lj sin [k(xz —xl)] COS [k(XQ — xl)] U2 ’ ’

This relation is of the “transfer matrix” kind: if the (flow, pressure) vector is known
at a point xp, it is known everywhere else. Instead of two constants for one scalar
quantity, there is only one constant for a vector quantity. This formalism is called
“transmission line” formalism: it is based upon first-order differential equations [see
Egs. (1.109) and (1.110)], for a vector quantity. It will be used efficiently when the
damping in pipes is treated. In particular it allows us to write a relation for the
impedance:

jtan k(o —x1)] + 22/ Z.

VAVVARS .
1/ 1+ jtan [k(x2 — x1)] Z>/Z.

= jtan [k(xa —x1) + n2] (4.29)

where

4The Fourier transform of Eq. (4.1) is calculated by doing the following variable change in the
integral: ¥ =1 F x/c.
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N, = —arctan(jZ,/Z.), hence jtann, = Z,/Z,. (4.30)

The impedance at point x; is called the impedance projected from point x,. If the
impedance is purely imaginary at a point, it is purely imaginary everywhere, because
of energy conservation: if there is no power at a point, there is power nowhere.
A similar equation is obtained for the admittance, replacing Z/Z. by Y/Y,. For a
cylinder-shaped pipe, the duality is perfect between pressure and flow rate (similarly
for a homogeneous string, duality is perfect between velocity and force exerted on
one side). Equations (4.24) and (4.26) also show that the impedance depends on one
constant only, which is none other than the reflection coefficient:

Z(x,0) 14 R(x, o)

= ) 4.31
Z 1 —R(x,w) ( )
The inverse relationship is found to be:
Z(x,w)/Z. — 1
Ri.w) = 23 @)/ (4.32)

C Zw)/Ze+ 17

The result (4.29) is important: in a medium without source, if the impedance
is known at a point, it is known everywhere. Thus, for a wind instrument, whose
source is at the input, the impedance seen by the source is easily deduced when
the termination impedance is known. For instance, if the radiation impedance in
infinite space’ is simplified in Z, = 0, the input impedance is Zj tan k¢. The input
impedance of an open cylinder is shown in Figs.4.4 and 4.5: because of losses
the maxima are not infinite; this will be explained in Chap.5. If, as a first rough
estimate, the frequencies of a cylindrical clarinet can be said to correspond to the
input impedance maxima,® they are found to be: (2n + 1)c/4L. For a cylinder-
shaped flute, they correspond to minima, and are nc/2£. For a closed flute, such
as bourdon pipes of organs or panpipes, the termination impedance is infinite, and
the frequencies are the same as for a cylindrical clarinet. It can finally be noted that
calculating the upstream reflection coefficient is very easy, thanks to (4.24):

Ry = Rye =), (4.33)

This section does not detail all classical results for pressure and velocity maxima
and minima, impedance measurement, especially using Kundt’s tube, Smith chart,
etc. (see, e.g., [S]).

3 At the open end of a pipe, the impedance is set by the fact that the external medium is passive.
It is called radiation impedance. We will come back to this quantity in the fourth part of the book,
but for now it is supposed to be zero for the sake of simplicity: the external medium is so huge
compared to the pipe that the pressure does not vary much there.

6 Actually, Chap. 9 will explain more precisely that there are frequencies canceling the imaginary
part of admittance.
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Fig. 4.4 Input impedance of a cylinder (the left plot shows the modulus and the right plot shows
the argument). Experimental (solid line) and theoretical (dotted line) results. The radius is 10.7 mm
and the length is 92.8 cm
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Fig. 4.5 Input impedance of a cylinder: theoretical results, without radiation (Z, = 0). This figure
represents the Fourier transform of the response for the same pipe as this of Fig.4.2. Dotted line
corresponds to the closed-form expression (4.29), visco-thermal effects being taken into account
(see Eq. (5.144) at first order). Solid line corresponds to the sum of ten modes [see Eq. (5.168)].
The left plot shows the modulus and the right plot shows the argument

4.6 Green’s Function in Sinusoidal Regime: the Particular
Case of the Input Impedance

4.6.1 Closed-Form Solution of the Green’s Function

Results presented in the previous section show that the pipe input impedance is
known thanks to the passive character of the pipe, and with the hypothesis that only
plane waves propagate in it, or more generally, that propagation is one-dimensional.
Using an impedance projected towards the source can seem to be odd, as causality
suggests the calculation of the acoustic quantities from the source, but it must
be recalled that the sinusoidal regime is a steady state, and not a transient one:
therefore, there is energy in the whole space. The impedance, and all transfer
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functions between input and output quantities, are known as soon as the termination
impedance is known, as it can be remarked by observing the matrix equation (4.28).
Then, if the input quantities are known, the output flow can also be calculated, and
it gives access to the sound radiated outside. All that is written here applies even if
the source is located upstream of abscissa x|, and whatever else is upstream of xj,
such as discontinuities or side holes: all the transfer functions between any pair of
abscissae are set by the fact that the pipe is passive, and the termination impedance
is set by the fact that the surrounding space is passive.

* A flow rate source is now considered on the pipe side at a point x;, as it has
been done for the impulse regime (see Fig.4.1). For that purpose, the Fourier
transform of Eq. (4.18) is calculated

2P 2
TR0 L px,w) = —jo Uy(@)8— ). (4.34)
ax2 c? S

For the case where u,(f) = u8(t), this gives Uy(w) = uy (the source amplitude
is constant, independent of frequency): P(x, ®) is the Green’s function in the
frequency domain G, (x, x;), apart from the multiplicative factor ja)§ U,, and
G, (x, x5) is the Fourier transform of g(x, |x;, 0) [Eq. (4.19)].

The flow U is divided into two flows, U, = Uj’ — U, the minus sign coming
from the fact that the flows are calculated towards a surface whose outside normal
is in the positive x direction. These flow rates depend on the boundary conditions
at both ends, linked to the reflection coefficients Ry(w) and R;(w), which are
the Fourier transforms of the reflection functions ry(¢) and r(¢). In other words,
these coefficients are linked to the termination impedances, satisfying conditions
like (4.32). Using the matrix relation (4.28) between x; and x, for the case where
X > Xy, and projecting the termination admittance back to x, then gives

P Z, . jtan[k(€ —x)] +Ye /Y.
= . with Y/Y.=" .
U jsin[k(x —x;)] + cos [k(x —x5)] Y/ Y. 1+jtan [k(£—x)] Y; /Y.
(4.35)
It remains to calculate the same ratio P/ U, and to deduce P/ Uy, but the calculation
using impedances is stopped here, because it is easier to use reflection coefficients in
order to make the link to the time domain. On both sides of the source, the solution
is written as in (4.24), but the constants are different. For the sake of simplicity, the
constants are chosen as follows:
P(x. ) = AT [ 4 BFel],
where BY = Rpe ¥ =% if X > 0 ; (4.36)
P(x,w) = A~ [B_e_jkx + e/kX] ,
where B~ = Rye 7% if X < 0. (4.37)
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where X = x — x;. At x = x;, pressure continuity and flow conservation U; =
U} — U; can be written. After some calculations’ the following result is obtained:

_ Pprimary
P = | — er(@) (4.38)
where grr(w) = R¢Roexp(—2jkl) (4.39)

1 .
and Pprimary (w) = ZZC Use ke

X [ejk(l_"‘) + Rge_jk(l_x)] [¢ + Roe ™™ ] if x > x;. (4.40)

Similarly, it can be shown that inverting x and x; is sufficient to obtain the
result for the case where x < x,. It can be verified that Pyimary is the Fourier
transform of pprimary(x, ) [see Eq.(4.15)] when Us(w) = u,. It may be noted
that a factorization of the square brackets involved in (4.15) has been found. This
factorization distinguishes two cases corresponding to the respective positions of
source and receiver.

e It remains to be checked that the result (4.38) is indeed the Fourier transform
of the result expressed in (4.13). grr(w) is the transform of grr(?). For the case
where |grr(w)| is less than unity,® the factor including grr(w) can be replaced by:

1

1= grr() | T ERT@) + 8rr(@) + grr(@) + -+ (4.41)

Reflections for a complete round trip are found again.
Another equivalent expression for Eq. (4.38) is useful:

Px.xy) = jzo0, S RE =D o sin b o] 4 (4.42)
sin [k€ + 1o + n¢]

TAt x = x,, it is written:
Pl ) =AT [1 + Bﬂ =A"[B" +1] ;ZUF (@) =AT [1 - B+] i ZU" () = A" (B~ —1].
The total admittance at the source point is the sum of the upstream admittances on both sides:

ZUS_ 1-Bt B~ —1
‘Ps  14+BT B +1

This leads to the value of P, = A1 [1 + B+] as a function of Ug. This yields AT, and the final
result thanks to (4.36).

8 This condition assumes that one of the ends is absorbing: thus, either |Ry| or |R;| is smaller than
unity. Equation (4.38) remains valid when damping occurs during propagation (This is studied in
details in the next chapter), i.e., when jk is replaced by jk + o, where « is positive. This is a third
case, where |grr(w)| < 1. If there is an energy source at one extremity, or during propagation, this
condition implies that globally the round trip must be dissipative, damping prevailing over energy

supply.
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with

Ry = —e 2™ where Z;/Z. = jtanng (4.43)

and Ry = —e ¥ where Zy/Z. = —jtanny.

For a zero termination impedance, the quantity 7 is zero; for an infinite
impedance n = 7/2. Generally 7 is real if the impedance is purely imaginary. If
both terminal impedances are purely imaginary (energy conservation), the ratio
P/ U, is purely imaginary whatever x is. In other words all pressures are in phase
or in anti-phase. The waves are thus standing waves in the sense that they do not
transport any energy from one point to another: the power supplied by the source
Ve [P,UY] is zero.

» Itis also possible to deduce the Green’s function in the frequency domain, which
is the solution of the Fourier transform of Eq. (4.19):

2
[aaxz + kz} G, X;) = —8(x — xy). (4.44)

Dividing the result (4.38) by jw ’; Uy, yields®

Ga) ,primary

Ga) yXs) = s
(6% =1 RuRy exp(—2jk0)

(4.45)

where

1 _. . . . .
G primary = z,ke_/k‘z [eJk(l_x) + Rge_fk({_x)] [e’]“‘ + Roe_/k"x] if x > x;.
<
(4.46)

Finally, we get

Gy,(x,x5) = sin k(¢ _ %)+ nel sin [k + o] if x > x;. (4.47)
k sin [k€ + 1o + 1]

If both termination impedances are purely imaginary (energy conservation),
the Green’s function is real. This closed-form solution (4.47), which is not
decomposed in terms of modes or successive reflections, is very useful; it will
be used, for example, in the calculation of a modal expansion with absorbing
end conditions (through residue calculus), and its time domain version presented

9This calculation is equivalent to write the solution at both the right and left side of the source,
together with the continuity of the solution at x = x;, and the jump of the first spatial derivative
due to the function §(x — xy), as it has been done for the time variable of the single-degree-of-
freedom oscillator (Chap. 2 Sect. 2.2.2).
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in Sect.4.6.4 will be used for the transient calculations of violins and wind
instruments (see Part III of this book). Unfortunately, this closed-form exists only
when the problem depends on a unique space coordinate.

4.6.2 Modal Expansion

Returning back to the modal expansion can be made in several ways: either using
mode orthogonality, when the modes are proved to be orthogonal (see Chap. 3), or
using the residue calculus (by calculating the inverse Fourier transform), or using
the Poisson formula, which will not be developed here. The present section will
be limited to three canonical cases for which the use of three methods is possible:
open—open pipe, closed—closed pipe, and closed—open pipe (or the equivalent for a
string).

4.6.2.1 Mode Orthogonality

This section begins with the use of mode orthogonality, as previously used to obtain
Eq. (3.46), however, considering the Fourier domain first (both are equivalent, as
the boundary conditions studied here are independent of frequency). Modes @, (x)
are solutions of Eq. (4.44) without the right-hand side member, and with the same
boundary conditions as the Green’s function, which are written according to the
Euler equation:

Z() 3Gw . Z[ aGa} .
= jkG,, and = —jkG,. 4.48
Z. Ox J an Z. Ox J ( )

The differential equation and the condition at x = 0 impose
@, (x) = sin(k,x + no) (4.49)
and the condition at x = £ implies that, if n is an integer, eigenfrequencies satisfy
kol = —no — ne + nm. (4.50)

For the studied cases, only positive or zero values of n are considered.

* For an open—open pipe, no = n; = 0, and the mode —n is the same as the
mode n (it should be recalled that modes have an amplitude defined up to a
multiplicative factor!), and there is no mode 0 here (ky = 0), because of the
boundary conditions implying the nullity of the studied physical quantity. For
that case, the eigenfrequencies are nc/2¢.
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* For a closed—-open pipe, o = 7 /2, n; = 0, the mode —n is the same as the mode
n + 1: the negative or zero indices give the same modes as the positive indices,
and the eigenfrequencies are (2n — 1)c/4X.

* Foraclosed—closed pipe, no = n/2,1; = /2, modes —n and n+2 are identical,
the eigenfrequencies are the same as for the open—open case (this is due to the
symmetry of the problem) but here the constant mode exists (k; = 0).

The orthogonality of modes is very simple here, because the pipe is homoge-
neous:

¢
/ D, (x)D,, (x)dx = §5nm. 4.51)
0

(The norm is £ for the constant mode). Seeking the solution of (4.44) in the form
Gy (x, x5) = Y A, ®,(x), orthogonality gives, in a way similar to that of Chap. 3:

2

262 D, (X) D, (x5) c
Golxx) =", > 0o T (4.52)
n>0
The term in brackets corresponds to the constant mode that exists only in the
closed—closed case. In Chap. 2, the inverse transform of the Green’s function (2.16)
was given in (2.14), hence:

Wn

2 : 2
g(x, 1x,,0) = 2; HO) 0, ()@, (x,) St [2 tH(t):|. (4.53)

n>0

which is indeed Eq. (3.46). For the constant mode, the method is the same, because
both the Green’s function and its first derivative vanish at negative times.

4.6.2.2 Residue Calculus

Starting from the closed-form formula (4.47), it can be noticed that the poles are
given by the denominator zeros, and indeed give the eigenfrequencies (4.50): but all
poles must be considered, with either positive or negative frequencies. If the zero
pole is discarded for now, all poles are simple. Residues are calculated by first-order
expansion of the inverse of the function G, (x, x;) around the poles w,. This gives
without difficulties, for small (0 — w,):

c* 1 sin(kyx + 1o) sin(k,x; + 7o)

Gul(x,x) ~ — ¢
Wy w — Wy

(4.54)
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The residue theorem indicates that the inverse Fourier transform is, for positive
times, j times the sum of the residues, hence [see Eq. (3.181)]:

2 +oo alont
glx . 0) = —j Y sin(kux + no) sin(kuxs +n0) (4.55)
¢ n=—00 Wn

To find Eq. (4.53), the two modes with the same shape @, (x) must be added (the
reader can do this calculation, e.g., for the open—open case). It can also be deduced
that G, (x, x) is simply given by the sum of terms like (4.54):

2 Fo© i i
c 1 sin(k,x + no) sin(k,x; +
Golx,x,) = — . E " ( Z;)_ a)( 770). (4.56)

n=—0o0

When the terms due to the poles w, and —w, are added, (4.52) is obtained. This
remark is important, because it can lead to another definition of the modes: in
Chap. 3, it has been said that they are real functions varying sinusoidally with time
(for a non dissipative system). Modes with a complex dependency ¢/ against time
could also be sought, which leads to two modes instead of one, with frequencies w,
and —w,. They are called “single” modes in Chap. 2 (Sect.2.4.1).

The zero pole remains: the study of (4.47) for each studied case confirms that it
exists for the closed—closed case only (for the other cases the numerator vanishes
t0o), and that the pole is double: for @ near 0, G, (x, x;) = —c?/({w?). It is indeed
the constant term of (4.52), and its inverse transform has already been calculated.

4.6.2.3 Transfer Impedances and Transfer Functions

As explained earlier, we do not need the Green’s function itself, but its derivative,
corresponding to impedances at one point and transfer impedances. Equation (4.42)
gives the transfer impedance P(x)/U,. Its modal expansion is written as [see
Egs. (4.49) and (4.52)]:

2 B, (1) P, (x, 1
Pr.x) = ZU, " jo) (f) (f) + [ZCUY, C]. 4.57)
"= o -o jo !t

Using the Euler equation, the transfer function for the flow rate can also be found:

k(l — in [k, ,
Ulexy) = 0,0 RE =0 +adsinfl +mol (4.58)
sin [k€ + 1o + ne]

in [k(£ — kxg .
U(x,x;) = —Us sin [k( . %) + el cos [kxs + o] if x < x;. (4.59)
sin [k€ + 1o + n¢]
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It can be checked that U (xj' ,x5) —U(x;, x;) = Us. For x # x,, the modal expansion
of the flow transfer function is therefore written as:

U(x,x;) = —U, ZCZZ @n(x‘y)dQn(x)/dx'

S (4.60)

n>0

4.6.3 The Particular Case of a Source at the Input: Input
Impedance

What happens if the source position tends towards one of the limits, for example,
x; = 0, which is the most frequent case for reed instruments? All quantities at every
position in the pipe are thus perfectly determined, using the second equation of the
matrix relation (4.29), and with x; = 0 and U; = u,. This consists in solving the
equation without source with the so-called inhomogeneous boundary condition, i.e.,
including a source term:

. P
P ]wSUS. 4.61)
Can the general calculation of the Green’s function still be used? The answer is yes,
if Uy = U, thus U7 = 0, hence Ry = 1, o = 7/2, Zy = oo. A boundary
condition must therefore be imposed, as well as a source term, and this gives the
right result (the justification demands long explanation, see [2]). The result will
easily be shown to be correct by inserting x; = 0 and 1y = 7/2 into Eq. (4.47)

_ Lsin[k(€ —x) + ne]
Co(x.0) = k  cos[kf + 1]

thus

_sinfk(€ =) + nd)
P(x,0) = Z.Uyj cos ikl m] - (4.62)

It is sufficient to use a formula like (4.35) to check this result. It must be remembered
that the input impedance is a Green’s function, up to the multiplicative factor jwp/S
if an infinite impedance is imposed at the input, which is not intuitive. The flow rate
transfer function is also written:

_ o cos k(€ —x) + nf]
U0y =0, Ktm] (4.63)
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4.6.4 Closed-Form Expression: Back to the Time Domain

It has been seen how, in the frequency domain, the closed-form expression leads
to successive reflections, using Eq. (4.41). A closed-form expression can also be
found in the time domain, which is useful for calculating the Helmholtz motion
for wind and bowed-string instruments (see Part III). It will be done here for the
transfer impedance P/U;. Equation (4.38) must be multiplied by the denominator
[1 — grr(w)], then expressed in the time domain. Thus for a source u(f):

p(x, 1) — ro(t) * re(t) * p(x,t — T) = Pprimary (X, ), (4.64)

where

2Zc_lpprimaly(x, 1) = ug(t — |x — x4 /) + ro(2) * ug[t — (x 4+ x5) /]
+re(0) * us[t — v + (x + x5) /]
+re(t) % ro(f) * ust — v + |x — x5| /.

with T = 2£/c. This expression can be obtained directly in the time domain but the
calculation is less straightforward: the two terms of the left-hand side of (4.64) must
be replaced by their decomposition as successive reflections, and it can be checked
that infinite series disappear.

An interesting example is the Raman model (see [7]) for a bowed-string. It is
assumed that r¢(f) = ro(tf) = —A, hence A is a positive and real coefficient,
which represents a particular damping model (independent of frequency). This
model enables a stability study much more useful than the model without losses.
The situation where the source is at the same place as the receiver is considered,
x = x; = {4, where lies the nonlinearity that produces the oscillation. The equation
for the mechanical quantities is

v() = A u(t—1) = );C [/i()) = Afilt — 244/ c] — Afslt — T 4+ 244 /c] + At — 7)].

(4.65)
Let us suppose that the bow excites the string with a ratio a/b = £,/({ — £,),
where a and b are integers such as a < b, and that the time step is defined as
A =1t/N =2{/cN, where N = a + b. Because £, = al /N, a difference equation
is obtained (if we denote v,, = v(n4) and f, = f(nA)):

Y.
Un — szn—N = 2 [ﬁl - Afn—a - Af;l—b + Azf;l—N:I . (4‘66)

This equation simplifies the calculation, avoiding the infinity of successive
reflections.
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Length Correction and Modal Decomposition

Chapter 3 has dealt with strings with moving ends or mass ends. This section
will discuss for the case where the termination impedance is the radiation
impedance of a pipe at low frequencies. The impedance is of mass type (this
will be studied in Chap. 12):

Zg = Z.jkAL where Zg =ja)pS_1A€. (4.67)

where A{ ~ 0.6R, R being the radius. The real part has not been written, i.e.,
damping is ignored.

If the low frequencies assumption is still considered, kA{ being small,
it can be written as: Zg ~ Z.jtankAL, where n, = kAL [see Eq.(4.43)].
This assumption is consistent with Eq. (4.67), obtained using a Taylor series
approximation. Everything that has been written previously can be applied,
and happens as if the pipe length was increased by a length correction
AL. This can be used for the closed-form expression, as for the modal
or successive reflection expansions, but only if low frequencies alone are
considered. Thus the transfer and input impedances are obtained using the
formulas

sink({ + AL —x) 2c cos kpx
P(x,0) =Z.Uyj =Z.Ug
(x. 0) V' cosk(l + Al) Py Ae;wg w?
(4.68)
Zo/Z. = jtank(l + Al) = jo € 3 ! (4.69)
. = jtan = jw , .
0 / / + Al = op — ?
where
- ! ¢ (4.70)
w, = |n 5 ne LAl .
For the flow rate transfer functions this leads to:
cosk({ + AL —x) 2¢? sin k,x
U(x,0) = U, =-U; k, . 471
(x. 0) cos k(L + AL) z+Aen§ 02— &

The former modal expansion is not valid at x = 0, at the source. However, for
x as small as wanted, the infinite series does not tend to 0, because quantities
k,x are not small for higher modes.

(continued)
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Some Remarks

1. In the following, the assumption leading to Expressions (4.68)—(4.71) will
be used often, with the total pipe length equal to be L = £ + AL. This
poses a small problem at the end, because it should not be forgotten that at
the end, x = £ and not L. However for U, = U({, 0), which is the main
quantity for the radiation calculation, cos kA can be approximated by 1 at
the same order of approximation. This is equivalent to writing x = L!

2. All these equations have been detailed to fully understand the meaning of
modal expansion. Now the approximation kA{ ~ tankA{ is not made
anymore. Then a boundary condition appears similar to the “moving end”
condition (see Chap.3, Sect.3.4.5): Aldp/dx = —p at x = ¥, which
does not depend on frequency (the quantity 7/K, can be seen as a length
correction). Since we are interested in the input impedance, the modes are
different from those calculated earlier: @, (x) = cosk,x, where cotk,l =
k,AL. Applying the method described in Sect.4.6.2.1, the modal norm
being A, = é [6 + AL/(1+ kﬁAﬁz)], the following result is obtained:

P( ) = 22U, Z 1 cos k,x cos k,x 4.72)
X, X)) = 2Z.Ugjowc .
VL A1+ AR 0 - w?
hence for the input impedance:
jtankl + jkAL ) 1 1
Zo/Z, = =2 .
/2 ="t Attanke J”C;e AL+ AR 02 — o
(4.73)

The comparison of this expression with Eq.(4.69) shows that the two
expressions are equivalent if kA¢ << 1. If k,A¢ << 1, the two modal
expansions are also identical (with the same eigenfrequencies), because
k, AL = tank, AL. This can be explained as follows: in the low frequency
range, only the first terms for which the condition k,A{ = tank,Al
is valid intervene significantly. However making approximations in an
infinite series generally requires some precautions. It is better to make them
on the closed-form formula.

3. Modal expansions were written in the form of series. No details will be
given on the decomposition in terms of a product of modes. Nevertheless,
this decomposition is useful for the study of an elementary model of
singing voice, called the “source-filter” model (see [3, 4, 6]). In this model,
the glottis is a flow source at the input of the vocal tract. We are interested

(continued)
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again in the transfer function U,/ Uj. For the case where the vocal tract is
cylindrical, it can be shown that:

UY 2C2 (—1)nkn Uv
oskL "L rg:wz—wz 14 — w?/w?) (4.74)

n

UL.0) = _

References

1. Agullo, J., Barjau, A., Martinez, J.: Alternative to the impulse response h(t) to describe the
acoustical behavior of conical ducts. J. Acoust. Soc. Am. 84, 1606-1612 (1988)

2. Bensoam, J.: Integral representation applied to sound synthesis by physical modeling
(in French). Ph.D. thesis, Université du Maine, France (2003)

3. Fant, G.: Acoustic Theory of Speech Production: With Calculations Based on X-Ray Studies of
Russian Articulations, 2nd edn. Mouton, The Hague, Paris (1970)

4. Flanagan, J.L.: Speech Analysis, Synthesis and Perception. Springer, Berlin (1965)

5. Léwy, S.: Industrial acoustics and aeroacoustics (in French). Hermes (2001)

6. Sundberg, J.: The Science of the Singing Voice. Northern Illinois University Press, DeKalb, IL
(1987)

7. Woodhouse, J.: Idealised models of a bowed string. Acustica 79, 233-250 (1993)



Chapter 5
Dissipation and Damping

Antoine Chaigne and Jean Kergomard

Abstract This chapter examines the dissipation of sound and vibration into heat,
which, in turn, yields a damping of the amplitudes. One consequence of dissipation
is that the quality factors of the resonances decrease. This decrease usually depends
on frequency. In addition, dissipative phenomena are likely to modify the nature
of the modes, which can become a combination of traveling and standing waves,
called complex modes. This happens if the internal damping is said to be “non-
proportional,” i.e., when the damping coefficients depend on space. It also occurs as
a consequence of acoustic radiation into an “infinite” space, outside the instruments.
Various causes of dissipation are examined in solid materials and in air. In solid
materials, thermoelasticity and viscoelasticity are the main mechanisms of internal
damping mechanisms. In some situations, air viscosity should also be considered as
a pertinent cause of energy loss, as in the case of thin strings. In wind instruments,
heat diffusion and viscosity are the main causes of damping. They appear near the
walls of a tube. The theory of Kirchhoff, following that of Stokes and simplified by
Zwikker and Kosten, is particularly relevant for describing these phenomena.

5.1 Introduction: Dissipative Phenomena in Musical
Acoustics

Like in any physical systems, dissipative phenomena are present in musical instru-
ments. This means that part of the mechanical energy imparted to the instrument
through impact, blow or air, or continuous excitation by a bow, is transformed
into heat. These losses result from viscous phenomena in fluids and solids, from
coupling between thermal and elastic properties in materials, or from dissipation at
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the boundaries imposed by the player. One can think, for example, of the dissipation
due to the finger on a string, or due to the lips at the mouthpiece of a saxophone. In
addition, and this is rather good news, a part of the mechanical energy is transformed
into acoustical energy which propagates to the far-field, thus allowing us to hear the
radiated sounds (see Part IV of this book).

For instruments generating free oscillations (plucked and struck strings, per-
cussion instruments), the dissipation phenomena have a damping effect on the
oscillations, which results in a decrease of the amplitude of the radiated sound.
From a theoretical point of view, if a modal expansion is made onto the basis of the
associated conservative system, then the damping is often responsible of an inter-
modal coupling. However, under some assumptions that will be detailed later in this
chapter, it is possible to use approximate modal descriptions of the system, and,
even in some cases, an exact modal description, though with extension of the modal
properties (see the next section devoted to complex modes).

For instruments generating self-sustained sounds (bowed strings and wind
instruments), dissipation phenomena are essential to ensure the stability of the
system. Here, the sounds produced strongly depend on the balance between input
and dissipated energies. For instruments based on free oscillations, the timbre of the
sound largely depends on its spectral distribution, i.e., on all excited eigenmodes
and eigenfrequencies. Experiences of sound synthesis carried out for more than 50
years have shown that the timbre strongly depends on the time history of the partials.
In short, the dissipation phenomena are not only essential from a physical point
of view, but are also critical in the context of musical sound perception (see, for
example, the book by Castellengo, with numerous sound examples [8]). Therefore,
these phenomena are of prime importance in musical acoustics.

In this chapter, the consequences of dissipation on the theoretical results related
to eigenmodes in Chap. 3 are presented. These general considerations are necessary
to understand the examples treated in subsequent parts of this book. The main
damping mechanisms encountered in musical instruments are also briefly reviewed.
For the sake of brevity, the important questions related to measurements of damping
are not reviewed here, and the reader is invited to consult the specialized literature
[3, 17].

5.2 Generalizing the Concept of Mode

Comment. Some developments presented in this section were directly inspired by
the book by Géradin and Rixen [19] to which the reader can refer for more details.

In continuity with Chap. 3, the consequences of damping mechanisms on the
eigenmodes obtained in the conservative case will be first examined. The advantages
and drawbacks of this formulation will be highlighted. A more general approach
leading to the definition of complex modes is then presented.
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5.2.1 Dissipative Discrete System

In a linear system with a finite number of degrees of freedom (DOF), the dissipated
energy can be written as a quadratic function of the velocity:

1. .
ép = 5 '£CE, 5.1

where C is a symmetrical damping matrix whose elements are positive or null
(non-negative matrix). This class of functions corresponds to a large number of situ-
ations encountered in the physics of musical instruments. Under this assumption, the
equations of motion (3.12) obtained for a conservative system can be transformed
into the matrix equation:

Mé + CE +KE =F. (5.2)
As in Chap. 3, w, and @, are the eigenfrequencies and eigenshapes of the associated

conservative system. To take advantage of the orthogonality properties of the
eigenmodes, £ is developed in this basis, as':

Through scalar multiplication of Eq. (5.2) by &,, we get

(Pu, M) G + Z(‘Pn, CPu)gm + (Pn. KPu)gn = (Pu. F), (5.4

m

thus, using the conventional notations, and defining further:
(¢nv(c¢m> = 2§nmmnwn, (5.5

where (,,, are the inter-modal damping coefficients, it is finally found that the
generalized coordinates satisfy the system of equations:

.. . Jn
n 2 n nmYm 2 n — s 5.6
q+wzm:§q+wnq - (5.6)
which can be rewritten as:
o + 2000 + 020 = " — 200 Y L (5.7)
Mn m#n

ISelecting 1, or m, as index in the expression of & has no consequence, since they are dummny
indices.
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where ¢, is the modal damping coefficient for the mode n. In general, the matrix C
cannot be diagonalized, so that the ¢, are not all equal to zero. As a consequence,
the generalized displacements are coupled. This is due to the fact that we are not
dealing here with the “true” eigenmodes. However, this method has the advantage
of showing the links with the modes of the associated conservative system. It can be
used in the case of weak damping, when approximated solutions are sufficient (see
the next section).

5.2.1.1 Systems with Weak Damping

It is, in fact, possible to simplify the formulation (5.7) for systems with weak
damping. In musical acoustics, this corresponds to the case of strings and metallic
percussion instruments. However, the condition of weak damping is generally not
fulfilled for wooden soundboards or timpani heads, especially in the high frequency
range.

In the case of weak damping, a first-order expansion of the eigenfrequencies and
eigenshapes can be done in the form:

o, =w,+ Aw, ; P, =S, + AD,, (5.8)

where Aw,, A®, and all the coefficients of the matrix C are supposed to be of the
same order (i.e., in &(¢)). Inserting these expressions in Eq. (5.2) without right-hand
side, and ignoring the second-order terms, yields

(K — w;M) AD, + », (—2Aw,M + jC) D, ~ 0. (5.9)
Through scalar multiplication of (5.9) by @,, we get
Aw, >~ jCw, . (5.10)

This last expression shows two major results:

1. The correction in frequency due to damping is purely imaginary. As a con-
sequence, the eigensolution now becomes a damped sinusoid of the form
exp(jw,t) exp(—L,wnt), which is slowly decreasing if the damping is weak.

2. Under the assumption of weak damping, the inter-modal damping coefficients
have no influence on the first-order frequency correction. This is equivalent to
the approximation of a diagonal matrix for C.

In a second step, Eq. (5.9) is used to determine the influence of damping on the
eigenshapes. This amounts to searching for the coefficients «,, in the expansion
Ad, defined by:

AD, =) ay®, . (5.11)
m#n
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Injecting this expression in (5.9) and multiplying this quantity by any other
eigenshape, taking further the orthogonality properties of @,, into account, yields
to first-order:

2
U =2 (5.12)
My (

Wy — wr%t)

Consequently, the eigenshapes with weak damping become, still to the first-order:

o

P, =@, + 2jmw; Y By o (@7 02)

m#n

(5.13)

The expression (5.13) shows that:

1. If the eigenfrequencies of the associated conservative system are sufficiently
separated from each other, the corrective terms on the shapes are of the order of
magnitude of the inter-modal reduced damping ,,,. Otherwise, as a consequence
of the presence of the factor w? — w2 in the denominator, the shapes can be
significantly modified.

2. As for the eigenfrequencies, the corrective terms of the eigenshapes are purely
imaginary. Therefore, these shapes are no longer in phase (or in anti-phase) as in
the ideal limiting case of the conservative system.

In summary, if the inter-modal damping coefficients ¢, are sufficiently weak, and
if, at the same time, the eigenfrequencies of the associated conservative system are
sufficiently separated from each other, then it is legitimate to decouple the equations
of the generalized displacements, which are then written:

gn + za)nann + wy%Qn x~ ’{: . (5.14)

n

In addition, we can admit that the eigenshapes remain unchanged compared to the
conservative case.

5.2.1.2 Proportional Damping

Examining Eq. (5.2) carefully shows that a family of particular cases exists where
the damping matrix is diagonal and can be written in the form C = oM + BK,
where o and § are two real constants. In this case, (5.4) becomes

(D4, M®,) G, + (D, MDy) gy,
+B(Pn, KDy)g, + (P, KDy )g, = (P, F) . (5.15)
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Fig. 5.1 Example of a modal 3.0 T
damping factor as a function
of the frequency in case of 25+
proportional damping
(¢ = 100, B = 0.0001) 20+t
157}
1.0
0.5t
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S (lz)
This can be written in a reduced form:
. . 2 Ja . o Bw,
qn + za)né‘nQn + w,qn = with é‘n = + . (5.16)
m, 2w, 2

In this case, the eigenmodes have the same shapes as in the conservative case, but
the eigenfrequencies become complex. A modal damping factor is obtained, which is

a function of frequency (see Fig. 5.1). With positive values for & and 8, the damping
decreases approximately as 1/w up to w = \/ g, and increases then linearly. This
type of damping rarely corresponds to a particular physical phenomenon. It is most
often selected for mathematical reasons of convenience, to allow the decoupling
of the differential equations of the generalized displacements. However, such a
frequency dependence can be reasonably used for approximating damping laws
observed experimentally, at least in a restricted frequency range. One example will

be presented later in this chapter, for the particular case of viscoelastic strings.

5.2.1.3 Discrete Systems: First Notions on Complex Modes

For more general damping laws, it has been shown in Sect. 5.2.1 that the matrix C
cannot be diagonalized with the matrices K and M only. The goal is now to obtain
exact solutions, and not approximated ones which are no longer valid, and a new
method is necessary. After defining v = £, the matrix equation (5.2) is rewritten in
the form of a system of two first-order differential equations, as follows:

g Ovey —Iv | )81 _ ) O
{iz} + [M—lK M‘I(C} {v} N {M‘IF} ' (5-17)
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where Oyxy is the null matrix and Iy the identity matrix of dimension N. N is the
number of DOF in the system. If C = 0 in (5.17), the conservative solution is found.
The characteristic equation then yields purely imaginary conjugate solutions, and
the eigenmodes analysis made in Chap. 3 can be carried out.

In the general case, the roots of the characteristic equation solutions are complex,
with non-zero real parts. The general solution of the equation (without right-hand
side) is searched in the form:

E() =2¢, e ¥ coswt — 2¢; e Y sinwt . (5.18)

This solution is real. However, it is convenient to do all calculations in the complex
space, and return to the real expressions of the results only at the end. It is the reason
why complex modes of the form:

v =9r+jvi (5.19)
are introduced, as well as complex generalized displacements:
q(t) = e ¥ [coswt +jsinwt] = " with s = —a + jo . (5.20)

The main results with regard to complex modes are now developed briefly, so that
differences and analogies with the real modes defined in Chap.3 are enhanced.
Equation (5.17) is written in the form:

= - . Ovxy =y
E —AF =7 with A= _I:M:;KM_I(C} . 5.21)

A is independent of time. Then, the eigenvalues problem corresponds to finding the
eigenvalues A, and the associated eigenvectors ¥,,, such as:

AW, = LW, (5.22)

The orthogonality conditions for the complex modes can be simply obtained by
rewriting first Eq. (5.17) in the form:

i [E R o

or, equivalently, in compact matrix form:

off ool -1

) v 0
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The eigenvectors must then fulfill:
A.D+BWY, =0 (5.25)

which, in the case of distinct eigenvalues (4,, # A,) leads to the orthogonality
conditions:

"W, DY, =0 and ‘W,B¥,, =0 for m # n. (5.26)
The solution of (5.17) is written:
E =) W.q.0) (5.27)
where the generalized displacements satisfy the differential equations:
A [Gn — Angn) = "W, AZ with A, = 'W,AV, . (5.28)
Finally, the initial conditions yield
Angn(0) = "W,AZE (0) . (5.29)

The two components of the vector ¥ are written explicitly:

v
v =Z). 5.30
('/f) 630

With (5.22), the relations governing the eigenvectors are
Vn=Iu¥hn © A2M¥y + 1Cn + Kipy = 0. (5.31)
Expressing now the orthogonality conditions (5.26) explicitly yields
YuKn = Aok YuM¥u 3 YuCPn + (A + A0) " YuMipy =0, (5.32)
Notice that the orthogonality conditions for real modes can be retrieved by canceling
the damping matrix C in (5.32). As soon as the eigenvalues and eigenvectors are

known, the displacement & and the velocity v are expanded onto this basis, yielding
finally:

EO =) ¥nda(®) : v(O) =) AaWugald) . (5.33)
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5.2.2 Continuous Systems

The results obtained for discrete damped systems can be generalized to the
continuous case, as it has been done for conservative systems in Chap.3. The
example of a string vibrating is treated here (see also Sect.3.3.2 in Chap.3). As
for discrete systems, we consider the case of weak damping and start by looking for
solutions expanded onto the basis of the conservative modes of the form:

Y1) =) Bu(0)ga(D) - (5.34)

As a consequence, the equations for the generalized displacements can be written in
a symbolic form as?:

M @a ¢m) + € (5/7 q)m) + X (J/v q)m) = (fa ®m> (5.35)

where 4 represents the damping operator. Recall that Eq. (5.35) is obtained after
multiplication of both sides of the partial differential equations by an arbitrary
eigenshape @,,(x), followed by an integration on the string length. This operation
generalizes the scalar product used for discrete systems. This formulation has
the advantage to take the boundary conditions into account, due to the use of
integrations by parts, as it has been shown, for example, for moving ends in
Sect. 3.4.5 of Chap. 3.

One reason for expanding the solution in the basis of eigenmodes @, (x), even in
the case of damped systems, is to take advantage of their mathematical orthogonality
properties. As shown in the discrete case, the damping operator induces a coupling
of the generalized displacements ¢,(f), except in some particular cases, such as the
proportional damping. These general ideas are now illustrated with some examples
of practical relevance in musical acoustics.

5.2.2.1 A Simple Example of Proportional Damping:
The Homogeneous String
i) Damping Independent of Frequency
A string with damping independent of space is considered. For simplicity, the study

is limited to the case of a homogeneous string. The unrealistic, though useful,
reference case of a damping independent of frequency is treated. We start with

2See Chap. 3, Sects. 3.3 and 3.4, for the definition of the notations (a, b) used for a continuous
operator, and (a, b) for the scalar product.
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Eq. (3.25) in which a damping term is added in the form of a proportional force
with opposite sign with regard to velocity:

Py dy Py

S +2apS . =T =f(x,1), 5.36
PS o pS g —T oo =fx1) (5.36)
where, for convenience, the damping coefficient is written 2apS. The method
presented in Sect. 3.3.2 can be fully applied here, since « does not vary with x, and,
therefore, no mode coupling exists. Again, the selected basis of modes here is that

of the conservative case. Searching for solutions of the form y(x, 1) = Y_®,(x)g,(?),
a generalization of Eq. (3.38) is obtained

én + 20“.171 + wy%CIn :fn/mn . (537)

The notations are identical to those used in Chap. 3. Similar equations were solved
in Chap. 2. Thus, for a Green’s function such as f(x,7) = T§(x — x0)d(z), we get
f2(t) = T®,(x0)é(¢), and Eq. (2.14) is used

D, (x)DPp(x0) _,, SN Wyt
gx,t) =H®OT E e e
- my, Wpn

where wp, = w, \/ 1 — o2 /w? (in most usual cases, it can be written as w,, ~ w,,
since damping is weak). For Dirichlet boundary conditions (fixed ends), we have
®,(x) = sink,x, k, = nw/L = w,/c, m, = pSL/2. Thus:

2c2 sin w,,,t
glx,t) = H(1) Z sin k,x sin k,xpe ™ P
L - Wpn

that can be compared to Eq. (4.53). Here, the eigenfrequencies are complex.?
For a damped plucked string with no initial velocity, we derive from (2.11)
and (3.58) the expression of the displacement:

2hL? . . 0 COS(@Wpnt + @)
y(x, 1) = Xn:nznzxo(L—xo) sin k,,x sin k,xpe 5, (5.38)
where tang, = —oa/wp, and 8, = wp,/w,. The Green’s function G(x) in the

frequency domain is derived

3What is the connection between the present case and the proportional damping in discrete systems
seen in Sect. 5.2.1.2? To answer this question, assume that the string is discretized in small elements
of the same length, similar to the use of spatial finite differences. The mass and damping matrices
are diagonal, with equal elements: they are thus proportional, with proportionality coefficient 2«,
from (5.36). By writing o« = w, ¢, for all elements, Eq. (5.16) is found again, up to a factor 2, since
we had C = aM], and not C = 2aM.
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2¢2 Z sin k,x sin k,,xo

G =",

(5.39)

n a);% - a)2 +ja)wn/Qn

with Q,, = w,/2«a. This formula can be compared to (4.52).

ii) Frequency-Dependent Damping

If the damping phenomena depend on frequency, the partial differential equa-
tion (5.36) can often take a very complicated form, as it will be seen later in
Sect. 5.4 in this chapter for the damping in tubes.* It is thus more convenient to
return to the frequency domain, where a decomposition remains simple as long
as the boundary conditions do not depend on frequency. For boundary conditions
similar to the previous case of the string, Eq.(5.39) remains valid when o(w)
depends on w. Notice that we write w, which is a continuous variable, and not
w, which corresponds to the discrete series of the string modes. Thus we can
write O, = w,/2a(w) for the quality factor. What changes here, compared to the
standard oscillator, is that the variations with frequency of the magnitude are not
given by a Lorentzian function anymore (see Chap. 2). However, it is often the case
that, since the effects of the damping are significant near ® = w, only, one can
approximately write O, ~ ,/2a(w,). Under this assumption, G(x) in Eq. (5.39)
can be approximated by a series of Lorentzian terms, which enables us to return
to the time domain using (5.38). This question will be addressed again for tubes
(Sect. 5.6).

5.2.2.2 Example of Non-proportional Damping: Localized Damping

A vibrating string of length L is now considered with eigenfrequencies w, and
associated eigenshapes @,(x) in the conservative case (no damping).> A “fluid”
localized damping is introduced at a point of abscissa x = x,, with 0 < x, < L,
in the form of a mechanical resistance R (see Fig.5.2). This simple model is a
rough, though relevant, description of the type of damping that occurs when a player
presses his (or her) finger against the fingerboard.

In terms of energy, the mechanical resistance yields a quadratic function of string
velocity. Its action is described by a force proportional to velocity, with an opposite
sign, of the form —RYy(x, r)§(x — x,). Using the notations of Sect.3.3.2 in Chap. 3,
the equation of motion of the string becomes

“In some cases, it is possible to search for equivalent time-domain formulations of damping terms,
as shown later in this chapter for damping in plates (see Sect.5.3). However, such formulations
usually are rather complicated.

SThese assumptions are valid for heterogeneous strings with non-dissipative impedance-like
boundary conditions. The case of dissipative boundary conditions is addressed in Sect. 5.2.2.3.
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Fig. 5.2 String with a 0 X L
localized damping,

represented by a mechanical
resistance R at a fixed point I I

X = X
’ | J I

2

Py 9 o .9
PUISE)'y 5 + Ry Slx—x) = o |:T(x) o } — f(x,1) (5.40)

which, after standard use of the scalar product, leads to:
L L
> o) /0 @, ()P, () p()SWdx + Y (1) /0 RS (x = ) Py (1) P, () dx

_ Zm: an(®) /0 ' QDn(x)jx (T(x) dqjd";(x)) dx = /0 ' &, ()f (x, dx . (5.41)

As a consequence, taking advantage of the orthogonality properties of the eigen-
shapes @, (x), the generalized coordinates satisfy the differential equations:

where the inter-modal damping coefficients are written:
R®n 0 ®m 0
= RO C0)Pno) (5.43)
2m,w,

Again, it is observed that the damping leads to a coupling between the modes of the
conservative system. However, as it has been shown in Sect. 5.2.1.1, these equations
can be decoupled, using first-order approximations for weak damping, which leads
to the simplified equation:

G + 20080Gn + 02, = ,{1 (5.44)

n

where the modal damping coefficient is now defined by:

_ ROF(x,)

5.45
2m,w, ( )

En
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Application To illustrate the practical importance of this example, the simplified
case of an homogeneous string fixed rigidly at both ends is taken, for which @, (x) =
sink,x and @, = ck, = "7°. The damper (finger) is supposed to be applied at the
middle of the string at position x, = L/2. In this case, Eq. (5.45) shows that the

. . . . Rsin? ("7 . .
modal damping coefficient is written §, = (wz ). Based on this expression, one
. nWn
has to consider two cases:
s 2onmwy _ R
1. For odd values of n, sin®("}) = land ¢, = I,

2. For even values of n, ¢, = O.

As a conclusion, we see that, in this particular example, only the odd modes of the
string are damped. In other words, the damper has no action on the modes if its
location corresponds to a nodal point. This result is coherent with the fact that the
damper cannot dissipate energy if the velocity of the string at its attachment point is
zZero.

5.2.2.3 String with a Dissipative End

A string with a dissipative end is the simplest case for which the concept of complex
modes can be generalized to continuous systems. Such as system yields time-
varying modal shapes, among other results. Intuitively, one can easily imagine that
some difficulties may occur to maintain a stable eigenshape, since some energy is
dissipated at one end. This section presents the simple example of a homogeneous
string without a source term, rigidly fixed at one end, and attached to a mechanical
resistance at the other (see Fig. 5.3). The model is the following:

0%y 0%y
S.. =T =0, 5.46
P> on ox2 (5.46)
with boundary conditions:
dy dy
y(0,)=0 and T~ (L,t)=—-R_ (L,1). (5.47)
dx ot
Fig. 5.3 String with a 0 X0 L

damper at one end } : .

'_
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The method used here consists in searching for the general solution in separated
variables y(x, r) = f(x)g(¢). This method will be detailed in Chap. 7, Sect. 7.6. Due
to the dissipative condition in x = L, it is convenient to search for the general
solution in the complex space.® Thus, solutions are sought in C-space of the form:

g(t) = Ae™ 4 Be", (5.48)

with A, B and s € C. The function f(x) satisfies

d’f(x) s . T
e = sz(x) with ¢ = \/,OS . (5.49)

Using the boundary condition in x = 0, it is found that the spatial dependency f(x) is
f(x) = sinhsx/c. (5.50)

It can be shown (though not demonstrated here) that both terms in (5.48) give the
same modes. Thus, for the sake of simplicity, the resolution of the problem continues
from here with g(f) = exp(st) only. The boundary condition at x = L yields

coshsL/c = —rsinhsL/c (5.51)

where r = R/Z., with Z. = T/c the characteristic impedance of the string. With
s = jo+o, two families of solutions are found, depending on whether the resistance
R is larger than Z, or not.

1. For r < 1, Eq.(5.51) gives the conditions:

L L
cos oF _ 0 ; tanh ok —r. (5.52)
c c

2. Forr > 1, Eq.(5.51) gives the conditions:

sin ol =0 ; tanh oL = —1 . (5.53)
c c r

In what follows, only the case » > 1 will be considered. This situation corresponds
to string instruments, where the real part of the impedance at the bridge is
significantly larger than the characteristic impedance of the strings. The angular
eigenfrequencies are complex. Their real parts w, = nmc/L are unchanged,
compared to the case of a string rigidly fixed at both ends. Denoting @™ the positive
value of a, so that tanhatL/c = 1/r, then we get

ONevertheless, as shown at the end of this section, the “physical” solution obtained after
considering the initial conditions will be expressed in the real space.
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g() = exp [jmrc/L - a+] .
where n can be either positive or negative. The general solution can be written as:

g(t) =exp [jwn - a+] t. Finally, the following decomposition of y(x, t) is obtained,
(denoting now o™ = «) :

y(x,f) = e Z ay, sinh [(jw, — a)x/c] &, (5.54)

which can be rearranged under the following form, where the factor 1/2 is inserted
in the amplitude a,:

y(x, 1) = e |:e—ozx/c Zand‘w,,(t-i-x/c) — e¥le Z andw,,(r—x/c):| (5.55)
or in closed form:
— ot | ,—ax/c X _ ax/c _ X ]
Y1) = e [e F (t + C) e (t c) , (5.56)
with
F(t) =Y ane™" . (5.57)

The complex constants a, are determined by the initial conditions. It can be shown
that the result leads to a real function F'().
A number of interesting remarks can be derived from Eq. (5.56):

1. The presence of the resistance R results in an exponentially decreasing oscilla-
tion, with time constant 7 = 1/« independent of frequency.

2. The term between [ ] corresponds to two traveling waves in opposite direction
and with different amplitudes, except in x = 0 where both terms cancel at any
time, according to the boundary condition. Consequently, no standing wave can
exist on the string.

In conclusion, as shown in Fig. 5.4, traveling waves exist on the string with a
dissipative end. Strictly speaking, one cannot describe the phenomena in terms
of modes, nodes, and antinodes, since all these quantities are moving with time.
In the frequency domain, we will refer to such dynamics as “complex” modes.
Chapter 13 deals with a similar example, since the radiation in space can be viewed
as a 3D generalization of a string with a resistive end. The “complex” modes are
not orthogonal for the usual scalar products seen in Chap. 3, exhibiting mass and
stiffness orthogonality. However, we will present in Sect. 5.2.3 below another scalar
product with specific orthogonality properties. With this scalar product, the complex
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Fig. 5.4 Snapshots of a string with a dissipative end, at successive instants of time

modes form a complete basis for the solutions, which enables to solve general
problems with initial values and source terms [28].

For continuous systems, as for discrete systems, first-order approximations are
possible in the case of weakly dissipative systems, where the modal shapes are
almost stationary. In the particular case of the string with dissipative end presented
above, the problem gives an exact solution, and no approximations are necessary.
This solution shows, in the time domain, the consequences of phase shift due to
dissipation between the eigenmodes, as shown in Sect.5.2.1.1.

5.2.3 Continuous Complex Modes

This section deals with the general case of continuous systems where the damping
operator cannot be diagonalized. For simplicity, only one-dimensional systems, such
as bars or strings, are considered for which the equation of motion is written in the
form [31]:

L(w) + COv) + pSiv = f(x. 1), (5.58)

where w(x, 1) is the displacement. As for the discrete case, the velocity variable
v = w is introduced, so that (5.58) can be written in state variables:
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Z 0 w E pS|(w f
= ) 5.59
it R M I 55
It is further assumed that the stiffness ¥ and damping % operators are
self-adjoints. This property implies some restrictive conditions on the boundary
conditions, However, it is applicable to a large class of problems in dynamics. In

practice, it means that, given two displacements w and w' that fulfill the boundary
conditions, we can write [35]:

/ Lww* dx = / wLw* dx, (5.60)
L L

where the x sign indicates the complex conjugate.

5.2.3.1 Solution of the Eigenvalue Problem

Defining

wl . ._ | 0 ~ 0 .
W = {U} ; F= {(pS)_lf} and A = [—(pS)_lg —(pS)_l(f:| (5.61)

the system (5.59) is written in the same way as for the discrete case seen in
Sect.5.2.1.3:

W—AW=F. (5.62)
Consequently, the eigenvalue problem is written:
AW, = LW, 5 Aow, =0, 1 LWy + 2, Ew, + pSA2w, = 0. (5.63)

The orthogonality relations can also be generalized. We obtain

/Wr [-Z — A An oS wadx = Ay,

L (5.64)
/w, [€ 4+ pS(A; + Ap)] wudx = By, -

L

Notice that the constants A, and B, are not independent. In fact, combining the
two relations in (5.64) for r = n, we have A, = —A,B, = —ZAﬁmm where m,, is
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the modal mass generalized to complex modes. This quantity can be equivalently
written:

1 1
m, = Z/Lwn [pS— /\%Z:| wydx
—/ S + ! C | wnd (5.65)
= Lwn Je 2, Wudx . .

Using both the orthogonality properties and the expressions of the modal masses
allows us to expand the solution in terms of the eigenmodes’:

wi(x, 1) wn(x)

where the ¢,(f) are functions of time with complex amplitudes. Substituting
these expansions in the equation of motion (5.59), and taking advantage of the
orthogonality properties of the eigenmodes, the equations governing the generalized
coordinates are obtained:

Angn + Bug, = f, with f, = /wnf(x, t)dx, (5.67)
L

which can be alternatively expressed in terms of modal mass m,, and eigenvalue A,,:

1

I (5.68)

Qn - AnCIn =

Finally, a set of first-order decoupled differential equations is obtained, that can
be compared to the system of second-order differential equations obtained in the
conservative case (see Chap. 3).

As for real modes, the integration constants are obtained through the introduction
of initial conditions for both the displacement and velocity:

w(x,0) | _ Wi (X)
[v(x, 0)} =20 I:Anvn(x):| ‘ (5-69)

n

Using again the orthogonality relations, we have

7Since . and ¥ are self-adjoints operators, the adjoint operator of A is equal to its transpose and
its eigenvalues are the same as for A. It can then be shown that bi-orthogonality relations exist
between these two families of modes that guarantee the uniqueness of the solution. These very
technical considerations will not be developed further.
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1
qn(0) = — /wn [Zw(x,0) — A, pSv(x,0)]dx
ZA%mn L

= ! /w,, [(E + A,pS)w(x,0) + pSv(x,0)] dx . (5.70)
L

Anttiy

In contrast with the real mode case, ¢,(0) depends on both displacement and
velocity conditions. To illustrate the method of complex modes, an example of
application is given in the next section.

5.2.3.2 Application: String with a Localized Damping

In Sect. 5.2.2.2, the example of a string with a localized damping has been presented
with details (see Fig. 5.2). It has been shown that the eigenmodes of the conservative
system are generally coupled, and that only a few particular cases can be found
where decoupling is possible. This example is used again below in order to show
how to tackle the problem when the damping operator ¢ cannot be diagonalized,
and, in addition, when simplifying assumptions cannot be made. The following
example has been solved by Krenk [31]. In the particular case where the damper
is put at the end of the string, then the reader will recognize some of the results
obtained in Sect. 5.2.2.3. However, the method used below is by far more general.

The case of a homogeneous string with two fixed ends is investigated. It is
described by the well-known equations:

9%y 9%y
—pS =0 f ,
a2~ P on or x# X0 (5.71)

¥(0,1) =y(L,H) =0.

T

As shown in Fig.5.2, a damper with resistance R is attached to the string at
position x = xy. In this point, the solution must satisfy the discontinuity relation:

dy dy dy
T X — Xo— =R x=xp - 572
|:8x|°+ 8x|°] 8t| 0 (5.72)
Free vibrations are sought in the form y(x,?) = Y(x)exp(jwt), where Y and w are

complex. The dispersion equation then gives the complex wave number k = w/c.
Because of the discontinuity in x = X, the general form of the complex modes is
given by:

sin k,.x
Y, (xo) . for 0 <x < xo,
sin k,,xo
Yu(x) = (5.73)
ink,(L —
Y, (xo) s.1n ( %) for xg <x <L,

sin k,, (L — xo)
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where the k, are obtained by the discontinuity condition (5.72):

R
cot k,xo + cotk, (L — xp) =jZ . (5.74)
where Z, is the characteristic impedance of the string. Using the general results
obtained in the first part of this section, the modal mass is found to be equal to:

X0 L—XO

1
m, = zpsyg(xo) (5.75)

sin” k,xo  sin“ k,(L — xo)

Finally, in the case of a forced regime with, for example, a force of amplitude F
applied at x = x; for t > 0, the generalized coordinate is obtained

FYn(-xl)

1% [1—e%]. (5.76)

Qn(t) = -

From the knowledge of Y,,(x) and ¢, (¢), the solution y(x, ¢) is obtained, using (5.66).

5.3 Damping Mechanisms in Solid Materials

5.3.1 Introduction

The analysis and modeling of damping in solid materials is difficult, due to the
existence of many different mechanisms. Any irreversible process in materials
dissipates energy. Figure 5.5 shown below illustrates three common processes:

* (a) A straight line is drawn in the stress—strain plane, consecutive to a traction
test on a sample made of elastic material. During the release, it it observed that

a b c
y | A
o o o
0 € 0 € 0 €

Fig. 5.5 Reversible and irreversible processes. (a) Elastic, non-dissipative behavior. (b) Anelastic
behavior. (¢) Linear viscoelastic behavior
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the same line is drawn and that the final state corresponds to the initial state at the
origin of the axes. The process is said to be reversible and no energy is dissipated
during the experiments.

e (b) If the same test is made on a glass fiber, for instance, a curve is obtained
showing that a part of the mechanical energy is transformed into heat at each
cycle. This dissipation is due to an internal reorganization of the solid. As
a consequence, the particles do not go over the same equilibrium states, for
increasing and decreasing stress, respectively. The behavior is said anelastic.

* (c) Some materials exhibit reversible processes, provided that they remain in
the linear domain, but are sensitive to strain velocity. This is the case for
viscoelastic materials. Wood and polymers enter in this category of materials,
which are largely used in musical acoustics. The viscoelastic damping also
depends strongly on the temperature.

For metals, which are conductors of heat, it is necessary to also take the coupling
between elastic waves and heat diffusion into account. Everybody can easily
reproduce the experience of bending a metallic rod and noticing that a warm-up
occurs, especially in the zone of maximum strain. This mechanism is a consequence
of thermoelastic losses that also occur in metallic strings or in structures used in
percussion (bars, plates, and shells). Dislocations, i.e., motions of defects lines that
are hindered by impurities present in the crystal lattice, also occur in metals. These
motions induce losses whose amplitude and spectrum depend on the metallurgical
treatment undergone by the metal. In this context, Valette reports important results
with regard to losses in harpsichord strings [43].

In what follows, special consideration is given to the description of thermoelastic
and viscoelastic damping, which are the predominant dissipative mechanisms in the
materials used for making musical instruments. Hysteretic damping will also be
mentioned, since it is widely used in the context of structural dynamics. In addition,
the viscous damping of a string vibrating in the air will be briefly presented, and
the reader should refer to Valette for more developments [43]. For bars, plates, and
shells, these viscosity effects are often negligible compared to the other causes of
damping. The damping due to acoustic radiation will be presented in the fourth part
of this book.

5.3.2 String Damping Due to Air Viscosity

The main reference model of viscosity losses for a string vibrating in air was given
by Stokes in 1851 [41]. He shows that the mechanical resistance per unit length r,,
for a cylinder with diameter d and oscillation frequency f in a fluid such as air with
viscosity coefficient |4 and density p, is equal to:
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2 (V2 1 d [2xf
. ith M= , 5.77
’ ”pf2<M+2M2) W 4\ v, (5.77)

where v, = u/p is the fluid kinematic viscosity.

For air, we have 1 = 1.832 x 10 kg/ms and v, = 1.52 x 107> x m?/s.
For typical strings of musical instruments, in the medium frequency range, the
dimensionless coefficient M is of the order of unity.

The power &, dissipated by viscosity is obtained by summing the scalar product
of the elementary viscosity forces df = —r,,vdx and transverse string velocity v
over the total length of the string. The kinetic energy decreases as a consequence of
viscosity losses. In total, we can write

dé,
P, = =—ry / v2dx . (5.78)
dt L

Denoting p, the string density, its kinetic energy is written

_nS

e
2

/ v2dx, with §= nd*/4.
L

Equation (5.78) can be put in the form:

dé&, & s M?
= _% with 7, = " ( ) (5.79)
dt T, 2nfp \2/2M + 1

where 7, is the time constant. The energy is proportional to the square of the
amplitude, therefore the viscosity time constant 7 of the string motion is equal to:

=27, = p‘?( M ) (5.80)
wfp \24/2M + 1

Equation (5.80) shows that the viscosity time constant decreases roughly as 1/ ./f
for f > v,/4mr?, which corresponds approximately to f > 5 Hz for the numerical
data shown in Fig. 5.6. Viscosity losses can be significant for high frequencies. They
can be reduced with the use of dense materials. One can also check that t increases
(hence losses decreases) with radius r.

5.3.3 Thermoelasticity in Orthotropic Plates

The thermoelastic damping is a consequence of the coupling between elastic strain
and heat diffusion. It affects the vibrations of solids with a noticeable thermal
conductivity, such as metals. This type of damping is adequately described by
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Fig. 5.6 Viscosity time constant for a Nylon string as a function of the frequency. Numerical
values: p, = 10*kg/m*; p = 1.29kg/m’ ;d = 1.0 mm

a coupling between the dynamics of the structure under consideration and heat
diffusion [5, 44]. In this section, it will be shown how to represent this damping
by adding an imaginary part to the stiffness constants. The method is illustrated
by the example of orthotropic plates. The thermoelastic damping in isotropic plates
and bars is then deduced as particular cases. The case of thermoelastic damping in
prestressed bars (or stiff strings) was done by Valette and Cuesta [43].

The variations of temperature 6 in the materials are supposed to be reasonably
weak so that the constitutive equations relating stress o;; and strain W; can be
linearized (the symbols ij represent here the partial derivative of the transverse
displacement W with respect to the coordinates). The symbol s is the Laplace
variable. In Cartesian coordinates, the three stress components in the plate are
written [10]:

D,

O = —122(D1 W + 5

W,yy) — 0,

D
0y = —122(DsW,yy + 22 W) = 0.
Oy = —62D4 Wy . (5.81)

where ¢, and ¢, are the thermal coefficients of the material. For the particular case
of an isotropic material, ¢, =¢, =¢, and this coefficient is related to the thermal
dilatation coefficient o by the relationship [39]:

E

¢=a1_2U. (5.82)
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Fig. 5.7 Thermoelastic plate. ) +

The temperature 0 increases 2T ] |
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The system (5.81) is complemented by the heat diffusion equation, where it is
assumed that 6 depends on the coordinate z of the plate thickness only (see Fig. 5.7):

K0, — pCsO = —zTos (pxWx + Sy W,yy) (5.83)

In (5.83), Ty is the absolute temperature, C is the specific heat for constant strain,
and « is the thermal conductivity. Following the method used by Cremer [15], 6(z)
is supposed to be of the form:

. T2 h h
0(z) = 6y sin P for z € [ 5 2:| . (5.84)
This expression accounts for the fact that the thermal exchange between plate and
air is small. Integrating zo;; along the plate thickness %, one obtains the expressions
that connect the bending and torsion moments M; to the spatial derivatives of the
transverse displacement W. After some calculations, it is found that the stiffness
factors are written [10]:

D =Di+e7 "
Dos) = Do + 2609, ° .
1+ s
Ds(s) = D3 + ¢f sé‘ ;
1+ s
Dy(s) = Ds. (5.85)

The thermal relaxation time constant 7 and the parameter { are defined as
follows:

pCh?
T =

_ 8Toh?
km? N '

Kkt

and ¢ (5.86)



5 Dissipation and Damping 223

Table 5.1 Thermal constants for some usual materials

Wood Steel Glass Aluminum Nylon
C (J/kg°C) 2000 460-625 700 900 1500
a (x107°K™) 4 14 6-10 22 10°
kK (W/mK) 0.04-0.4 1146 1.1 105-250 0.1-0.3

The thermoelastic losses are proportional to the imaginary part of the stiffness
constants D;(jw). From (5.85), these losses are shown to increase with frequency
and reach an asymptotic value proportional to ¢/72. In practice, this means that the
thermoelastic losses increase proportionally to 1/A2.

It can also be noticed that Dy is real. As a consequence, the modes of the plates
subjected to a torsional strain, involving Dy, are less affected by the thermoelastic
damping than the other modes. In fact, the thermoelastic damping depends on the
modal shapes, so that, from one mode to another, the graphs showing the evolution
of the modal damping factors in s~! as a function of frequency have an apparent
erratic behavior (see Fig.5.8). This behavior is a direct consequence of the theory
of thermoelasticity, and is not the result of errors in measurements.

In some cases, it might be appropriate to write the complex stiffnesses under the
following form:

SR,‘
s+ c1/h?
Du(s) = Dy, (5.87)

Di(S) = Di [1 + Zlit(s)] = Di [1 + :| . i = [1,2, 3]

in order to highlight their dependency upon thickness. Considering the order of
magnitude of the thermal constants for usual materials (see Table 5.1), the norm of
the term dj(s) can be considered to be small compared to unity, so that it appears as
a perturbation term. In (5.87), the coefficients R; are defined as:

8Top2 16Topud, . 8Tody

R = Ry = Ry = .
T DipC T T mtDypC Y T w4DspC

(5.88)

Thermoelastic damping is not the only dissipation mechanism present in vibrat-
ing structures. For non metallic plates and shells, the viscoelastic damping is
often predominant. The radiation damping must also be considered. However,
thermoelastic damping remains the primary cause of dissipation at low frequencies
for metals.
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Fig. 5.8 (Top) Damping factors (in s~!) of a rectangular aluminum plate, as a function of
frequency (in kHz). Comparison between theory (solid line) and experiments (open circle).
(Bottom) Zoom of the previous figure in the lower part of the spectrum, showing the apparent
erratic behavior of the thermoelastic damping due to the influence of the modal shapes. From [10]

5.3.4 Viscoelasticity

The viscoelastic models used in vibration theory are based on a macroscopic
approach to dissipation phenomena and are most often derived from experiments. In
their general form, these laws can be expressed as a function relating stress, strain,
time, and temperature, as follows [11]:

F(21(0), D-(e),1,T) = 0 (5.89)
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where 9, and 2, are integral or differential operators that are assumed to be linear
throughout this section.

5.3.4.1 Preliminary Experiments: Viscoelastic String

Each string instrument player has experienced the fact that a newly stretched string
does not keep its tension, and that it is necessary to wait for a couple of days to get
stability of the pitch. This effect of stress relaxation is due to viscoelasticity, which
is the main cause of thermal dissipation in non heat conducting materials (such as
nylon, or catgut, which are materials largely used for strings). One approach for
modeling this phenomenon is to consider that if the string is abruptly subjected to

a variation of length (or of strain ¢ = LZL” , where L, is the initial string length),
then the tension divided by the section S of the string (or axial stress 0 = g) is

described by the differential equation [16]:

&+ (T’ — Eé (5.90)
where E is the Young’s modulus of the string, and t a relaxation constant. By turning
the peg at one end of the string, a strain (#) = &;H(f) is imposed, where H(?) is
the Heaviside function. As a consequence, the axial stress decreases exponentially
with time: o () = Ege”+ . Therefore, the string tension also decreases with time,
which is confirmed by daily experiments (see Fig.5.9).

During playing, the string is constantly subject to variations of tension, associated
with the flexural vibrations, and thus the viscoelasticity phenomenon is present.
Here, one can consider that these fluctuations of stress lead to variations of strain
according to the equation:

o =E(e+1é) . (5.91)
2.0 2.0
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Fig. 5.9 Relaxation of a stretched string, after a sudden variation of strain (arbitrary units)
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Introducing (5.91) in the vibrating string Eq. (3.47), we get

2 2 3
123y=3y . 9y (5.92)
202 0x? dx? ot
Consider now the propagation of a harmonic wave of the form y(x, 1) = &&= in
this damped string. The string is supposed to be infinite in length (this is equivalent
to considering the propagation of the waves before they reach the ends). The
dispersion equation becomes

o? = A(1 — jwr)k* . (5.93)

For an imposed wavenumber k, and considering further that 7 < kzc , the displace-
ment can be written as:

T 2C2 H N
y(x, 1) = e~ G 1 glklxken) (5.94)

The large wave numbers are found to be damped faster than the small ones, which
induces a deformation of the wave during its propagation.

The solution of Eq.(5.92) is now expressed as an expansion onto the basis of
the eigenmodes of the ideal string. Using the orthogonality properties as shown in
Sect. 3.3.2, the equations satisfied by the generalized coordinates are obtained

G + 102G, + 02q, = 0. (5.95)

With 7 < (3, a condition that is usually fulfilled for the strings of musical
instruments in their usual frequency range, and with zero initial velocity, we have

2
wjy

gn(t) ~ qn(O)e_l2 Tcosw,t . (5.96)

In the time domain, the viscoelastic damping introduced in (5.92) consequently
leads to a time constant which is proportional to the square of frequency. This simple
model is in accordance with the phenomena observed in Nylon strings.

Remark. With the viscoelastic damping term introduced here in the string
equation, it is observed that the differential equations of the generalized coordinates
remain decoupled. This is a particular case of proportional damping presented in
Sect.5.2.1.2, where the damping matrix is written here C = tK.

5.3.4.2 General Viscoelastic Models

Both examples (5.90) and (5.91) represent particular cases of a general differential
formulation of viscoelasticity combining stress, strain, and their time derivatives.
These simple examples provide a reasonable interpretation of some phenomena
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Fig. 5.10 Linear standard model (or Zener model). Variation of the real part E’ (dotted line),
and imaginary part E” (solid line) of the complex Young’s modulus as a function of the angular
frequency w. Ordinate units are arbitrary

observed in stringed instruments. One generalization of these models is the so-called
standard viscoelastic linear model (or Zener model):

0+ 116 = E(¢ + 128) (5.97)

which includes three parameters (E, 1, and t3). If Eq.(5.97) is written in the
frequency domain, for solutions of the form o = 0¢e/’ and ¢ = g9e/®!, a complex
Young’s modulus can be expressed as:

(5.98)

E@ =" =E/) +JE' @) = E[l to'nn | o(n - n)}

1+ a)2t12 J 1+ a)2t12

Variations of real (') and imaginary( E") parts of the complex Young’s modulus
vs. frequency are shown in Fig.5.10. Even if it is conceptually and qualitatively
interesting, the main drawback of this model is that the commonly observed
variations of the Young’s modulus with frequency are less pronounced. As a
consequence, it is often difficult to adjust the constants of the model E, t;, and
75 to fit the experimental data.

Because of these limits to this use, several authors have proposed to extend the
standard model to a generalized differential formulation such as:

", dio ", die
o—i—Za,-dti :E<8+Zb,~dﬂ) . (5.99)

i=1 =1
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This formulation enables a better fit to observed phenomena, compared to the Zener
case. The price to pay is that a larger number of parameters need to be adjusted,
which implies to collecting a larger number of measured data. In the frequency
domain, the complex Young’s modulus becomes

L+ Y aijo)’

FOY=E Ly by

(5.100)

In (5.100), n is an integer, which limits the model to moduli exhibiting flat slopes
vs. frequency. For that reason, recent developments use fractional values of n for
representing smoothly varying frequency dependence [34].

5.3.4.3 Integral Formulation

The previous section has shown some limits of the differential models for describing
linear viscoelasticity. In some cases, an integral continuous formulation is preferred,
such as [11]:

o(t):/t E(t — 1)de(7), (5.101)

—00

where E(¢ — ) is a relaxation function. Physically, this formulation, in the form of a
convolution integral, means that the stress depends on the history of material strain.
With E(t) = Ey + E,(t), and assuming further that E,(¢) tends to zero as time ¢
tends to oo, an equivalent formulation is found

t

o) = Eos(t) + / E-n% D

5.102
0 dt ( )

The obtained formulation can be easily handled with Fourier or Laplace analysis.

5.3.5 Hysteretic Damping

Hysteretic damping accounts for energetic losses observed in phenomena with
hysteresis loops. It is frequently encountered in the dynamics of structures. By
defining the loss factor as the ratio between the energy dissipated in the system
during one period of oscillation, and the maximum of the potential energy [13], the
hysteretic damping is shown to represent a loss factor independent of frequency.
The equation of motion of a one DOF oscillator with hysteretic damping is written
in the frequency domain:

[~Mw? + K (1 + jn sgn(w))]E(w) = F(w) . (5.103)
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Such a formulation accounts for stationary oscillations of the system. However,
its dual formulation in the time domain is not causal. In fact, the inverse Fourier
transform of the damping term Fy(w) = joR(w)E(w) = jKn sgn(w)& (w) is
written [13]:

. +00 +o0
fd(t)zjfj? / sen(w)e® do / E(t)e 7 dr . (5.104)

o —00

The mass displacement expression is then:

1 +o00 et +o00 )
E(r) = / . dw fa(r)e 7t dr. (5.105)
27K J-oo Jjsgn(®)  Jooo

As an example, let us impose f;(f) = §(¢). Equation (5.105) yields

11
£@) = —00 <t < +o00. (5.106)
wKnt

The expression (5.106) is clearly non causal, since the response precedes the
excitation. As a conclusion, this calculation shows that hysteretic damping does not
constitute an appropriate formulation for losses in the time domain, and that other
strategies should be then used to model a loss factor independent of frequency.

5.4 Damping Mechanisms in Cylindrical Pipes

5.4.1 Introduction

There are several types of attenuation mechanisms for an acoustic wave in air,
and their relative importance varies significantly with both the frequency and
limits of the spatial domain. In pipes, two mechanisms clearly dominate at audible
frequencies: viscosity and thermal conduction effects. Both occur primarily near the
walls. This means that the plane waves that are assumed to occur in a pipe cannot
be truly plane, because the velocity tangential to a wall must be zero. Physical
arguments have been found from experimental observations (a theory based on the
analysis of molecular motion would be very complex): then if the velocity parallel
to walls is zero at the wall, and non-zero near the walls, friction occurs because of
air viscosity (see Fig.5.11).

The complete theory of attenuation and dispersion (the dispersion is the variation
of the phase velocity with frequency) is due to Kirchhoff [30]. It takes the viscosity
and thermal conduction effects into account, and is valid both in free space and near
the walls.

In free space, attenuation increases as the square of frequency: it is the mech-
anism responsible for the dissipation by radiation (this is true for all musical
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Fig. 5.11 Axial velocity profile in a cylindrical pipe, for a Stokes number equal to 21: the velocity
is zero on the walls and uniform in the central part of the pipe. The ordinate axis shows the radial
coordinate r, normalized by its value R on the wall

instruments!). The radiated energy is never reflected in free space, because it is
dissipated before reaching any obstacle; nevertheless, it is not needed to know the
dissipation mechanism precisely as it is sufficient to write that no wave returns back
from infinity (see Chap. 12).

Near the walls attenuation increases as the square root of frequency. It is the
dominant attenuation mechanism in pipes, and thus needs to be well understood.
At the wall, Kirchhoff suggested to add two supplementary conditions to the
model with zero velocity perpendicular to a rigid wall: the vanishing of both
tangential velocity and acoustic temperature. A first method consists of simplifying
Kirchhoff results to observe what occurs near the walls. However, this approach
can be cumbersome, and here a simple theory is preferred: it is a simplification
of Kirchhoff’s theory, and it enables a better understanding of the phenomena
encountered in wind instruments. This approach due to Zwikker and Kosten [45],
forms the basis of the theory of absorbing materials with rigid skeleton, seen as a
set (or bundle) of narrow rigid pipes. Its knowledge is useful for wide pipes (it is
defined later what is meant by “wide”), and for very narrow pipes such as a small slit
leading to leaks. This theory is largely sufficient for the study of wind instruments.
Let us add that damping is essential for the sound production, as it determines the
threshold of self-sustained oscillations (see Chap. 9).

The Zwikker and Kosten theory enables replacing the propagation equations of
a plane wave by one-dimensional equations obtained by averaging the acoustic
quantities over a pipe cross section. A great advantage is that it separates the
viscous effects and the thermal conduction effects, and leads to a transmission line
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Fig. 5.12 Geometry of a ring
in a pipe slice

formulation for averaged quantities. The case of a cylindrical pipe of radius R is
chosen, and polar coordinates will be used. Similar results have been obtained for
rectangular pipes [2, 27].

N.B. If readers prefer to skip the proof, they can continue to read this chapter from Sect. 5.5.

5.4.2 Viscous Effects
5.4.2.1 Simplified Navier-Stokes Equation

The equation of momentum conservation is now written including viscosity. By
doing so, the Navier—Stokes equation is obtained, that replaces Euler Equation [see
Eq. (1.101)]. In fact, this equation is simplified straightaway, assuming that there is
no average flow, and making some other assumptions, such as axisymmetry. Let us
consider a fluid slice between abscissae x and x+dx, and in this slice, a ring between
radius r and r 4 dr (see Fig. 5.12). Without viscosity, the force equilibrium is

0
— 2mrdr) apdx = p(2mrdr)dx (5.107)
by

vy (r, x)

5 .
where v, (7, x) is the axial velocity. The pressure difference between x and x + dkx,
on the surface 2wrdr is on the left-hand side. The friction forces, linked to the
viscosity coefficient 1, must be added to the pressure force. They are, by definition,
proportional to u, to the wall surface area, and to the derivative of the axial velocity.
On the internal and external faces of the ring, their values are respectively:

— (27 rdx) Gux(r, )

v, (r + dr, x)
or ’

and w27 (r + dr)dx] 5
r

The choice of signs can be explained as follows: the axial velocity must decrease
from r = 0 to r = R, where it is zero, thus dv,/dr is negative, and the force must
speed up the slower fluid layer, and slow down the faster fluid layer. On the internal
face, the layer outside of the ring (radius lower than ) moves faster than the layer
inside the ring, and thus the latter should speed up (positive force); it is the opposite
for the external face. Dividing by (27 rdxdr), the force equilibrium yields
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o [ av*} _ o _ 0 (5.108)

r or rar ox

It can be verified that this is the linearized Navier—Stokes equation, for the x
direction, i.e.:

v iz .
o 9 + gradp = pAv + [n + 3 ] graddivv

where the leading term of the axial velocity Laplacian is assumed to be the radial
one. Furthermore, the velocity divergence is assumed to be essentially longitudinal
(v, /0x > r~'9[rv,] /dr). Moreover, second viscosity effects have been neglected
(linked to rotation and vibration movements of molecules, coefficient 7) relative to
shear effects (linked to the translation movements of molecules, with coefficient ).
It can also be shown that the velocity v can be decomposed as the sum of an
irrotational component and a solenoidal one, with zero divergence. Thus, for the
Xx-component, v, = Uy, + Uy, and, with the approximations leading to Eq. (5.108),

ap — _pavxa and Av, ~ 10 ravxt _ P avxr'
0x or u ot

ot ror (5.109)

The term v,, corresponds to the acoustic velocity of a plane wave, which is known
to be a solution of a propagation equation, whereas velocity v,, is a solution of a
diffusion equation (the time derivative term is a single derivative with respect to
time, as for the heat equation): this term is crucial near the wall, as it must have
equal magnitude and opposite sign to the plane wave at the wall, and very be small
far from the wall, as it is seen below.

5.4.2.2 Solving of the Equation

Equation (5.108), is solved in the frequency domain,® and an additional assumption

is made, that is legitimated by a comprehensive calculation of the Kirchhoff

theory. The assumption is that the pressure remains plane, the term dp/dx being

independent of r. The following equation can be solved in r:

19 oV,
|: (5.110)

. jop]'?
or ’

1dpP
KV, =
}r“ W d. 5

where k, = |:
X

ror

ky is the wavenumber of the diffusion wave for viscous effects. The general solution
of this equation is the sum of a particular solution and of the general solution of the
equation without a right-hand side member:

8 In fact, terms in 1/jow will be found, that correspond to a derivative of time order 1/2: about this
topic, the reader should refer to [7, 20, 21, 37].
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Vi = Ady(hkor) + BNokr) +
uk? dx

where A and B are two constants. Jy and N, are the Bessel functions of first and
second kinds, respectively. Considering that Ny tends towards infinity for r = 0, the
boundary condition is B = 0 since the field must be finite in » = 0. It remains to
write the condition on the wall (v, = 0 in r = R), from which the coefficient A is
derived, which gives

L dp [1 J"(k“r)] (5.111)

Cjopdx | Jo(kR)

Figure 5.11 shows the velocity profile obtained. r, = |k,R| is an essential parameter
(as well as the parameter r/R) representing the ratio of the radius to the boundary
layer thickness, where the axial velocity decreases quickly towards zero. It is called
the Stokes number. Using the asymptotic expansion for large’ pipes near the walls,
the following result is obtained (for large values of k,r):

Ve = —,1 ap [1 —exp [jky(r — R)]] . (5.112)
Jjop dx
The exponential term, corresponding to the solenoidal velocity, has an argument
proportional to (1 4 j)(r — R), which has a real negative part as r < R. It decreases
therefore quickly as r decreases away from the wall, as is expected for the solution
of a diffusion equation. If the boundary layer thickness E, is defined as the value of
(R — r) for which the modulus of the exponential is 1/e, it is equal to

E, = /2u/wp. (5.113)

The boundary layer thickness is inversely proportional to the square root of
frequency, because attenuation increases with frequency. When the Stokes number
is large, the total velocity linearly increases from the wall:

1 dpP
Ve >~ ky(r —R) . (5.114)
wp dx

Conversely, if the boundary layer thickness is the same order of magnitude as the
radius, which occurs at low frequency, then the two boundary layers on opposite
sides of the pipe overlap and phenomena change. Writing Jo(x) = 1—x2/4 + 0(x*),
this leads to

° To calculate the Bessel function, it should be noticed that it is function of an argument of type
z+/—j, where 7 is real: it is a Kelvin function, denoted bero(x) + jbeiy(x), already met for shell
vibrations in Chap. 3, and for which asymptotic expansion can be found in tables [1].
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1dPR*—r*

Vy=
ndx 4

(5.115)

The velocity profile becomes parabolic. For this case, the flow is laminar and is
called Poiseuille flow. For (low) audible frequencies, this behavior is met only
for pipes with a very small diameter (less than a tenth of a mm) that are called
capillaries. This is also true for very narrow slits, e.g., leak interstices in a wind
instrument. Musicians want to avoid such leaks, because they strongly disturb the
input impedance. This behavior is also met in static regime for a viscous fluid flow,
for which the viscosity effects overcome the convection effects (which are zero
in linear acoustics without mean flow). In fact it should not be forgotten that in
Eq. (5.108), the convection terms of the Navier—Stokes equation have been ignored
(as done for Euler Equation (1.101)). As a dimensionless number, the Stokes number
is the ratio of the unsteadiness term to the viscosity term.'”

5.4.2.3 Averaged Axial Velocity

Going back to a one-dimensional system, the average of Eq. (5.111) remains to be
calculated, which is equivalent to calculating the axial flow rate u = 2x fOR vy rdr.
This provides the first of the two required equations. It replaces the one-dimensional
Euler Equation, with a kind of effective density, that we will denote p, (®), which
depends on both viscosity and frequency. Its behavior will be studied further. As
[ xJo(x)dx is equal to xJ; (x), it is written as:

P 1 1
U=-— S d where = [1

5.116
Jwpy dx (@) p ( )

2 -]1 (kUR)
kR Jo(kvR):| ‘

5.4.3 Thermal Conduction Effects

Thermal conduction effects are responsible for a temperature profile which is very
similar to that of the axial velocity. An equation giving the effective compressibility
and linking pressure and velocity can be established. Here, we start from four

1%When a convection term exists, the Reynolds number (pvR/u) is defined as the ratio of
the convection term to the viscosity one, and the Strouhal number (wR/v) as the ratio of the
unsteadiness term to the convection one. It can be checked that the square of the Stokes number is
the product of the Reynolds and Strouhal numbers.
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equations with five acoustic unknowns (temperature 7, density p’, entropy s,
pressure p, and velocity v). In order to obtain one single equation for two unknowns
p and v, three unknowns must be eliminated.

5.4.3.1 Thermodynamics Equations
i) Statement of the Equations

The problem with four thermodynamic variables (P, T, p, and S) can be reduced to
two variables for a bivariant gas, depending on only two variables. T is the absolute
temperature, expressed in Kelvin degrees (°K), S is the mass entropy, which is a state
function. The variations dp and dS are expressed as functions of dP and dT: four
coefficients are needed, searched as functions of usual “measurable” coefficients.

By definition [see Eq. (1.95)]:
P
& = (3 ).
/s

Then the isothermal and isentropic compressibilities are used

L (0p and Lo\ 1
XT—p )., Xs—p BPS_pcz’

as well as the specific heats at constant pressure and volume:

C T 0 dC T o5
p — an v = 5
g aT ), ar J

and the coefficient of bulk thermal expansion:
1 (0dp
#=y (o),
p \9T Jp

dp = pyrdP — pBdT. (5.117)

Therefore, by definition:

This is the first equation needed. It is classically shown that:'!

"n fact as oT
y‘(ar)P(aS),,
and
= (), ()= (), o), ). G5
XS_ oP /)y aps_ a8/ \oP ) \OT s\ dp /s

It remains to use, for (p, S, T) and (S, P, T'), the following relationship valid for any three variables

(). (), (), ==
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Xt = v hence pyr = y/c*. (5.118)

In a similar way to (5.117), this gives

1 ap
dp= _dP das. 5.119
p= o+ (45) (5.119)

Eliminating dp between (5.117) and (5.119), yields

as -1
dS:( ) |:—p,8dT+ - dP]
a0 /p c
Finally, using coefficients C, and 8, the second equation is found:

c, 1 y—1
ds =" [dT— - dP] (5.120)
pB ¢

Back to the Isentropic Approximation (Chap. 1)

Under the assumption of isentropic transformation, Eq. (5.120) gives the
proportionality coefficient between acoustic temperature and pressure (see
Chap. 1):

1 y—1 BT
T = p where t = D,

B B c? pCp

the second expression being obtained using Maxwell law (dS/dP)r = —f/p.
If the gas is now supposed to satisfy a law p/p = f(T), by using the definition
of yr, the equilibrium coefficients are found:

1 1
xr =  hence ys = and ¢ = 170)/'

(5.121)
Po pboY Po
If, finally, f(T) is the ideal gas law, MP = RTp, the sound speed is
RT),
2
= ; 5.122
=v oy ( )

this formula is widely used for sound speed calculation (see a discussion in
[36], and for numerical values of some useful constants, in Sect. 5.5.2): it is
thus proportional to the square root of the absolute temperature. Moreover
B = 1/T, and the acoustic temperature 7 is also given by:

(continued)
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T _y—=lp
Ty Y po

Finally, with Eqgs. (1.95) and (5.121), the well-known formula for isentropic
motion is also found: dP/P = ydp/p, or, after integration:

Pp~? = constant = Pyp, "’ . (5.123)

ii) Linearization

It remains to linearize Egs. (5.117) and (5.120). We write dS = s, dp = o/, dT = 7,
dP = p, and for averaged quantities, we again use p instead of py. This gives

G . 1 y—1
s = T —agp) with oy = , 5.124
To( p) of & ( )
and
2
o = Vz[p_ Poc f] (5.125)
c Y

5.4.3.2 Heat Equation and Solution

We start from the Fourier-Kirchhoff heat equation, (see for instance [36]), linearized
for a fluid at rest:

kAt = Typds/ot,

where « is the thermal conductivity coefficient, Ty and p being the average values
of temperature and density. Using the state relationship for entropy (5.124), it gives
in the frequency domain (for the temperature, t,, is the transform of (7)) :

oC
Aty + Kty = —jo P PP, where (5.126)
K

C
k = \/—ja)p K”. (5.127)
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k; is the thermal diffusion wavenumber. Assuming P to be plane, and, again, that
the Laplacian is almost radial, an equation very similar to (5.110) is obtained. The
boundary conditions are given by the requirement to have a finite solution at r = 0,
and by a condition proposed by Kirchhoff: ¢ = 0 on the wall. This imposes that the
temperature does not vary at the wall. Therefore a heat flow exists inside the wall.
Furthermore the product of the heat capacity by the thermal coefficient needs to be
larger in the wall than in the fluid [6]. The solution is written:

Jo(kt")i|

R (5.128)

Ty = P [1

Therefore the temperature profile is similar to that of the axial velocity, since
the wavenumber k; is very close to k,. The temperature is the sum of the acoustic
temperature, which is planar, and of a temperature linked to the entropy variation,
the sum of these two temperatures vanishing at the wall.

It remains to find the relationship between temperature and axial velocity; to
achieve this, both the state equation (5.125) and mass conservation (1.108) are
used, assuming again that the term of axial velocity variation is predominant in
the divergence

oV,
1Y = —jop’, (5.129)
0x

and in the state equation (5.125). Finally:

Vv,

- p [1 (= 1y Totn) } :
ox pc

Jo(k:R)

It remains to calculate the average of V, on the section, or the flow U. We obtain the
equation giving an effective compressibility, noted y,(w), completing Eq. (5.116):

du

2 JikR) } . (5.130)
dx

JjwSyP where y(w) = . [ + )krR Jo(kiR)

5.4.4 Radiation Dissipation at the Open End of the Pipe

A detailed presentation of the radiation is proposed in the 4th part of this work.
However, an approximated formula of the radiation impedance Zy is needed from
now in order to determine the field in the pipe. The effect of a length correction to
the imaginary part of Z has already been seen in Eq. (4.67). Dissipation adds a real
part to it. Restricting ourselves to the case of low frequencies (transverse dimension
very small compared to the wavelength, i.e., kR < 1), the radiation impedance is
written:
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1
Zr = Z. [jkAe + 4(kR)2} , (5.131)

where R is the radius, and A¢ =~ 0.6R. This formula is satisfactory as long as
kR < 1. Although smaller in relative value than the imaginary part, the real part
is qualitatively the most important, because it ensures the energy radiation all the
way to our ears.

5.5 Transmission Line Equations

5.5.1 General Equations and Solutions

The description of the cylindrical pipe has been previously obtained in the form:

dP du
= —Z,U and =-Y,P (5.132)
dx dx
where
jwp 2 Jik,R) ]!
Z, = 1-— ; 5.133
S [ kyR Jo(kyR) ( )
. 2 Ji(kR)
Y, = Sl -1 . 5.134
= Jox [ +(y )krRJO(krR):| ( )

Equations (5.132) are of the transmission line type, and are called telegraphist’s
equations. Z, and Y, are the impedance in series and the admittance in parallel, both
being expressed per unit length, corresponding to viscous and thermal conduction
effects, respectively (Jyp and J; are the Bessel functions). The terms “series” and
“parallel” are justified as follows: if one of these quantities does not vary, integrating
on x, the Ohm’s law is obtained (see Chap. 1, Sect. 1.5) as

either p; —pr, = (x2 — x1)Zy u,
or uy—uy;=@—x)Y;p. (5.135)
By analogy between electric voltage and current, and acoustic pressure and flow
rate, the impedance Z, per unit length is said to be in series, and admittance Y; per

unit length in parallel. It is convenient to use two characteristic lengths, £, and ¢;,
in order to define the viscous and thermal diffusion wavenumbers k,, and &;:

7! K jw Jjw
t="stb= sky = ([=" ) ski= =" . 5.136
pc ! pcC, \/ cl, ' \/ ct; ( )
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In air, these lengths are very small,'? as £, is equal to 4 x 1078 m, and their ratio,
called Prandtl number : £, /€, = P,, is equal to 0.71.

For sinusoidal signals, assuming without proof, that the acoustic intensity in each
segment at every time is given by the product Spv, the average intensity over a period
isl = éETie(PU *), and its derivative is

dl

1 1
= —zme(y,) P — 2me(zv) |UJ*. (5.137)

Energy must be dissipated. Thus Ne(Y;) and Ye(Z,) must be positive. Thus viscous
effects are important when flow rate is large, while thermal effects are important
when the pressure is large. Standard solutions of line equations are written as:

P=Pte ™+ P andU =Y. [PTe ™ — P '] (5.138)

where I' = \/Z,Y, and Z. = 1)Y, = \/Z,/Y.. (5.139)

I' is the propagation constant (I" = jk., where k. is the wavenumber) and Z, is the
characteristic impedance. Notice that when boundary layers are taken into account,
the characteristic impedance differs slightly from the lossless value, that we used in
Chap. 4 or in Eq. (5.131). Both are complex, and the chosen square root is such that
the real part is positive: for I", this is due to the fact that waves must be attenuated
when they propagate, and, for Z, this is due to the fact that they must carry energy
in their propagation direction.'?

Another expression of these solutions is obtained using transfer matrices [see
Eq. (4.28)]:

P1 _ cosh F(Xz —xl) ZL- sinh F()CQ —Xl) P2 (5 140)
U1 a YC Sil’th()Q—xl) COShF()Cz—Xl) U2 ' ’

The projected impedance formula can be deduced immediately, and will not be
reproduced here [see Eq. (4.29)].'4

12 The validity of these formulas is very broad: solving completely the Kirchhoff theory, the
following conditions are found: ¢, < R, and w{,/c < 1, which is not cause for concern
for audible frequencies and for musical instruments. Another condition enables to be sure that
attenuation effects in the volume are very weak: [wR/c] «/w{,/c < 1, and which, again, does not
pose any problem [24, 40].

31n fact, the first expression of Z., when I' is chosen, is Z,/I" and thus the choice of I" implies
the choice of Z..

4Notion of wall admittance: in 1948, another simplification of the Kirchhoff theory has been
proposed by Cremer [14]. He dealt with the reflection of a wave incoming to a wall with an
incidence angle 6 with respect to the normal. He has shown that the boundary layer effect can
be replaced by an equivalent admittance:
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5.5.2 Numerical Values of Main Constants in Air

The numerical values of the main constants useful to calculate propagation in a
pipe filled with air are given, with indication of the uncertainty. t is the temperature
in Celsius degrees, and T the absolute temperature. Thus for fp = 0°C : Ty =
273.16 °K. It should be noticed that the three last quantities do not vary substantially
with temperature (see for instance [9]). Finally, air humidity plays a role that has
received little attention so far [12].

Sound velocity: ¢ = 331.45\/T/T0 ms~! (4 0.015 %)

Density: p = 1.2929 T,/T kgm ~> (£ 0.01 %)

Viscosity: = 1.708 x 107>(1 + 0.00297) kgm™'s™! (2 %)

Thermal conductivity: k = 5.77 x 1073(1 + 0.0033¢) Cal/(ms°C) (% 2 %)
Specific heat with constant pressure: C, = 240 Cal/(kg°C) (£ 0.1 %)

Ratio of specific heats: y = C,/C, = 1.402 (£ 0.1 %)

Prandtl number: P, = {,/{, = (r,/r,)> = 0.71. (5.142)

5.5.3 “Wide” Pipes
5.5.3.1 Expression of Parameters

The expression of the parameters Z, and Y; involves the Stokes number r, = |k,R|,
which is the ratio of the radius to the boundary layer thickness. When pipes are

L \/jw [sin29\/ﬁv + \/e,]. (5.141)
p pcVoe

This quantity is the specific admittance; v is the velocity projected on the outgoing normal of
the wall. The thermal effects do not depend on incidence, in contrast to viscous effects: for a wave
coming perpendicularly to the wall, there can be no shear effects. A new problem can be solved
for a large pipe considering a propagation without losses with wall admittance, and the former
results would be obtained again. To this end, as plane waves in a pipe propagate parallel to the
wall, 8 = 7/2 must be chosen. Conversely this formula is also useful at the end of a stopped
pipe (i.e., an organ pipe closed at its passive end), with this time # = 0, and Y, will be used as
a termination admittance. In fact it can be shown that the total dissipation is linked to the total
surface, and the terminal surface of a stopped pipe is clearly smaller than the surface of the side
walls, which legitimates to ignore this effect, considering further that only thermal effects occur
then.

It can be finally added that this notion can be generalized to a porous wall. The Cremer
theory assumes that the wall is perfectly smooth, but experimental results show that this is very
satisfactory.
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wide, i.e., when the Stokes number is large (typically larger than 10), the asymptotic
expansion of the Kelvin functions is made. The second-order approximation is
largely sufficient for musical instruments, and even the first order is often useful
(see [22] for more general formulas). The following expressions are obtained:

= Jop |:1 + 27 - 3£:| and Y; = joyx,S |:1 + (-1 (Zi_j + J ):|

S Ty 2 : r?

(5.143)

1—i
with \/—j = \/21; ry = |kyR)| :R\/ch = R\/sz = vr, where v = \/P,.
v t

Zy

Thus, expanding again to the second-order, the propagation constant is

r=;* [1 Loy —jaj] (5.144)
C ry }’v
y—1 y=1 y—1 (y=17

1
with: a; = 2 |:1 + :| =1.044and ar=1 + =1.080.

v yo 202 212
For numerical values, the properties for air have been used, i.e., v = 0.843 and
y = 1.402, which vary very little with temperature. Exhibiting the damping o and

the phase velocity vy, it is obtained

F=a+1wwherea=w|:al+a22:| and w:‘“[1+°‘1] (5.145)
Vg c L r, Uy c v
Finally:
1—i .
z.="¢ [1 pod=i_ “2’} (5.146)
S ry r2
where
1 y—1 y—1 y—1 3@y —=1)7?
= 1— = 0.370 ; =1- + + = 1.147.
. V2 ( v ) *2 v 202 202

Some comments on the values obtained are useful:

* The damping o increases with the square root of frequency, and with the inverse
of the radius; visco-thermal losses are generally much higher than radiation
“losses,” except at high frequencies. The wind instrument efficiency is therefore
quite low. This enables, as a first approximation, to study their functioning
independently of their radiation, as the sound production mainly depends on low
frequencies (see Chaps. 9 and 10).

* The phase velocity v, slightly decreases from the isentropic value ¢ when
frequency decreases, and all the more that radius is small. For a low note of
a narrow instrument, such as the bassoon (a conical instrument), the variation
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of low resonance frequencies can reach 4 %, which is nearly to a semitone.
This variation of sound speed with frequency yields inharmonicity and has some
significant consequences on the functioning, as it will be seen in the third part.

 For the characteristic impedance Z, as viscous and thermal effects are subtracted
from each other, the first-order coefficient is weak; this is a first reason for which
the characteristic impedance is often assumed to keep the isentropic value. A
second reason is that, at resonances, there is equipartition of total energy in the
pipe, i.e., equality between kinetic and potential energies (see [20]).

A simple approximated formula for a pipe is often needed; it is thus chosen:

«/f;Zczpc

, 5.147
R s ( )

w
F=j +(0+j)3x107°
c
where f and R are frequency and pipe radius expressed in MKS units. In the present

work, the dispersion effect will often be ignored, replacing factor (1 + j) by 1 in
Eq. (5.147).

5.5.3.2 Propagation of an Impulse

The propagation constant I" (or the complex wavenumber) depends on frequency.
Thus a monochromatic wave is attenuated and distorted because of dispersion. Let
us consider the case of an impulse. Using the result (5.144), the inverse transform
of the following quantity can be calculated

exp(—I"x) = exp [— (jw + B\/ja) + a; b ) xi| where B = o ! \/ZEU.

c R2 RY ¢
The first term in the exponential corresponds to propagation, the second to a pure
diffusion (wave in /jw), the third to a simple attenuation independent of frequency.
In the time domain, the first is a delay of x/c, the second is the impulse response of
the diffusion equation (such as the heat equation), which is known analytically. The
inverse Fourier transform can thus be calculated and it gives [32, 38]:

N D exp|[-D?*/(t—x/c) Ly
TF ! [exp(—T'x)] = H(t —)c/c)jrl/2 [(t — x/e)? ] exp —052);2

(5.148)

D = Bx/?2 has the same dimension as +/z. This function replaces the simple delay
8(t — x/c) when there is no dissipation. For a fixed x, the maximum is 0.2313/D?
and is obtained for t = x/c + 2D?/3. It takes place thus just after the signal arrival
at t = x/c, and is large. The longer the traveled distance, the more attenuated
the wave, the rise being decreasingly steep [29]. Figure 5.13 shows the reflection
function at the input of an open cylindrical pipe. If we assume that radiation does
not occur because the pipe is quite narrow, the reflection function is nothing else
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Fig. 5.13 Reflection function for a long open cylindrical pipe of radius 4 mm and length 15m
[Eq. (5.148), first-order calculation (¢, = 0)]. The second-order calculation would multiply the
curve by a factor 0.93. The slow decrease after the maximum can be observed

that this transfer function for x = 2¢, with a negative sign for the reflection at
the output. Two facts are essential: no signal is arriving quicker that the sound
(the arrival time is thus exactly 2£/c), and the rate of decrease is very slow. We
notice that the dimensionless parameter is ££,,/ R2, where £ is the traveled distance,
corresponds to the inverse of the Stokes number |k, R|, in which the wavelength has
been replaced by the propagation distance. It can also be seen in Fig. 4.2 how the
different reflections are added for the response in pressure to a flow rate impulse.

5.5.3.3 Input Impedance of a Cylinder

In the previous chapter, it was seen that the input impedance characterizes the wind
instrument response. The calculation can now be made precisely for a cylinder:

Z, = Z tanh[I"{ 4 argtanh(Zg/Z.)] . (5.149)
If Formula (5.131) is used, to the second-order in kR, argtanh(Zg/Z.) can be
replaced by Zg/Z., and this gives

1
Z, >~ Z.tanh (I't + Zr/Z.) = Z.tanh |:j @ L+ ol + 4(kR)2:| . (5.150)
Vg

where L = { + A{ (the sound speed on the length Af is considered to be v,
instead of ¢, which is a small approximation). If the quantity tanh [056 + i(kR)Z],
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which is smaller than unity, and the phase velocity are assumed to slowly vary
with frequency, the maxima can be shown to be obtained for an infinite value of
tan [wL/v,, ], and the minima for zero tan [wL/v, |. The extrema of the modulus are
therefore obtained for

fo=02n—1)v,/4L and f, = nv, /2L, (5.151)
respectively (v,, is calculated for the value of frequency without dispersion), and are

|Ze|max = Zc/ tanh [l + [ (kR)*] and |Z|, =~ Z tanh [l + } (kR)?].
(5.152)

Nothing forbids the numerical calculation of the exact formula, but these
approximations are convenient. For the extrema, the impedance is real, as for a one-
degree-of-freedom oscillator. The term af + i(kR)2 corresponds to dissipation, as
previously shown. When dissipation is large, extrema tend towards the characteristic
impedance. At low frequencies, maxima decrease as the square root of frequency,
while minima increase as the square root of frequency. These calculations can
be shown to be valid to the first-order of the Stokes number. The second-order
calculation can be found in [23], but the differences with the previous result are

quite small for wind instruments.
1
The property that the first peaks are proportional to w™ 2 is important. If rules

for pipe ranks are desired (for an organ or a panpipe for instance), the first idea that
comes to mind to keep a similar behavior is to maintain the same dimensionless
parameter «(f; )4, i.e., the inverse of the Stokes number written as +/££, /R. In other
words, if the pipe length is multiplied by 2, its radius is multiplied by /2. This
rule was used by the Chinese in very ancient times. In practice, this question is
very complex, and organ makers have quite different rules. To go further, radiation
[18] and excitation parameters must be taken into account. Nevertheless, a first very
simple approach of the problem is obtained here.

Figure 5.14 shows an input impedance curve, in modulus, calculated at the first-
order of the Stokes number. This is the same curve as the one given in Fig. 4.5, but
in a log-log scale. The logarithmic scale exhibits in ordinate the symmetry between
peaks and dips, and in abscissa the relative width of the peaks, which decreases
with frequency. As a consequence, the quality factor increases with frequency. Its
calculation is done in Sect. 5.6.

Approximated Calculation of the Radiated Power: Boundary Conditions
Corresponding to a Weak Coupling

In Chap. 4, the successive or closed-form reflection formulas were found
to be valid for arbitrary boundary conditions, which can be absorbing, and

(continued)
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Fig. 5.14 Input impedance modulus of a cylinder terminating in a zero impedance, in a log-log
scale. It is the same curve as in Fig. 4.5. For higher notes, peaks are lower, but sharper (their relative
width decreases, in other words their quality factor increases)

therefore can be in particular a radiation impedance condition. The next
section will focus on the difficult question of modal expansion.

At low frequencies, the real part of the radiation impedance and therefore
the radiated power are very weak. In other words, the coupling between pipe
and surrounding space is very weak. This is why calculating the radiated field
by perturbation is legitimate, beginning by ignoring it, then deducing it from
the obtained flow rate.

We consider a termination corresponding to an impedance Z;, which is
small or at least has a small real part. The condition is sought for which the
output flow rate U, can be calculated as if the impedance was zero (implying
P, = 0), then the approximated value P, = Z;U, can be deduced. For
stringed instruments, this will also be the case for a small bridge admittance,
when the coupling between a string and the soundbox is weak. This kind of
reasoning can be iterated, enabling convergence to the exact result. For the
particular case of a homogeneous one-dimensional medium, the limits of this
method can be exactly determined. If a source U is given, it is known that it
can be expressed as a function of two constants.!®> It can be written as:

Us =Y,Pe+ F Uy (5.153)

where Y; and F, are two coefficients depending on frequency. In the case
where the source is at the input, they are easily deduced from the transfer

(continued)
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matrices (4.28) or (5.140). In the most general case, Eqs. (4.42) and (4.58)
can be used, and a zero output impedance is obtained (it is recalled that ng
corresponds to the input boundary condition):

=Ty oo sy 519
The iterative calculation is done by writing successively:
PP =0;U" = U/F; (5.155)
PP =70 Ul = (U= vP"|F sete (5.156)
This calculation is equivalent to expanding the exact result in series:
Uy Us (5.157)

 F(1 +ZY,FrYy

the validity condition being Z;¥,F~! < 1. In fact, when there is no
dissipation, the resonance frequencies are indeed given by Eq. (5.157), when
the denominator vanishes. Consequently, in this case this method has no
practical interest, because then Z,Y,F;” ' = —1 1 On the contrary, if there
is some dissipation, the situation can be quite different. Losses are considered
during propagation and at both ends, which means that the wavenumber and
coefficients 1y and 71, are complex. As the considered domain is the Fourier
one, there is no limit to this reasoning, as all coefficients can depend on
frequency without additional complexity.

Let us consider the case where the impedance Z; is real, thus n, =
—joe, where g is real (and positive, if the output impedance is passive).
|Ze| < |Y,_1F,\ is wanted, i.e., tanh ¢y < |tan(k€ 4 no)|. Expanding complex
quantities into real and imaginary parts, it can be written as: k€ + 1y =
k€ — jal + ny, — jng, and if (e + ny) is small (weak losses) and does not
vary too much with frequency, quantity [tan(k{ + no)| is a classical resonance
term, which minimum is about «£ + 1. As a result this perturbation reasoning
has a meaning provided that ¢, < af + 1y, which simply means that output
losses in £ are smaller than other losses. In order to stop the perturbation at
the first-order, these losses in £ must be much smaller than other losses. This
is the case for a cylindrical pipe, except at very high frequencies: radiation
losses at an open end are smaller than losses during propagation.

As a conclusion, in this case, it is valid to calculate the transfer function
U,/ U ignoring losses at the pipe output (or at the string end), then deducing
losses using the calculation of the power éﬂ’ie(Zg) |U, |2. This is quite general

(continued)
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because often the power radiated by an instrument is very small, although it
is essential! The previous analysis could be generalized when the impedance
Z, also has an imaginary part. This means that the real part can be ignored to
calculate the transfer function, but obviously the imaginary part cannot. The
difficulty would be the same as the previous one, i.e., the shift of resonance
frequencies, resulting in a great change of the results around the resonances.
The case of a strong coupling will be studied in Chap. 6.

15 As a matter of fact Eq. (4.34) is a second-order equation; taking into account dissipation
does not change the formulas of the frequency domain of Chap. 4, except for the complex
character of the wavenumber.

5.5.4 “Narrow” Pipes

We will not fully develop the case of narrow pipes, i.e., of capillary pipes at very low
frequencies. However, the main results will be given, corresponding to the results
of Eq. (5.143) and following. They are obtained by doing the series expansion with
respect to the Stokes number of Eqs. (5.133) and (5.134) that are valid for |k,R| < 1.
At the fourth order this gives

pc 8¢, 1., pc 8¢, 4w

Z, = | - d 5.158

SRZ[ T T s R T3] ™ (5.158)
y—1.

. N 1 2 . y—1, , W
Y, = joy 1-— | =joxS|1— JR . (5.159)
pc? 8y 8y cl;

It is noticed that there is no thermal dissipation here as Y, is purely imaginary.
At lower frequencies, the motion is isothermal. Conversely viscous dissipation is
significant, because it is proportional to the real part of Z,, inversely proportional
to the fourth power of the radius. It can be shown that frequency variations of
reactive terms are very weak throughout the audible frequency range (the acoustic
mass decreases monotonously from a coefficient 4/3 at low frequencies to 1 at
higher frequencies, and the compliance from y = 1.4 to 1). The calculation of
the propagation constant I" shows that a diffusion wave occurs, as it is proportional
to +/jw . In the time domain, this leads to a shape of the kind (5.148), but without
delay of the signal arrival. An impulsive diffusion wave is immediately spread out
in the entire space. In fact taking the higher order terms into account includes the
delay, no signal propagating with a speed faster than sound speed [29].

The main conclusion is that a small open pipe behaves as a resistance equal to
8€4,pc/wR*, if its length £ is small enough with respect to the diffusion wavelength
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(|I"'€] < 1, see Chap. 1, Sect. 1.5 for the behavior of lumped elements systems). For
other slit shapes, the coefficients are different, but the behavior is the same: pressure
and velocity fields obey the Poiseuille law (5.115).

When the frequency increases, it is possible to find a continued fraction
expansion for the equations of Zwikker and Kosten (5.132) [4, 25, 42]. This can
avoid the use of the asymptotic expansion at high frequencies, which involves terms
with square roots of frequency.

5.6 Modes of a (Reed) Cylindrical Instrument

5.6.1 Presentation

The modal expansion is now given for the input impedance of a pipe with visco-
thermal effects and radiating into infinite space. The Green’s function is calculated
considering a flow rate source for reed instruments. The different case of instruments
with a flute mouthpiece will be addressed in Chap.7. There it will be seen that
radiation by the mouth, with a section smaller than that of the pipe, complicates the
problem.

We start again in the frequency domain: damping during propagation depends
on frequency, which is not really a cause for concern, as seen in Sect.5.2.2.1.
Conversely the fact that radiation impedance does depend on frequency is a
difficulty: exact solutions have been found if this impedance is equivalent to a mass
termination [see Eq. (4.73)], or to a resistive one (see Sect. 5.2.2.3). But the radiation
resistance is proportional to the square of frequency.

The advantage of modal expansion for self-oscillating instruments is to largely
simplify the oscillation analysis (see third Part). As mostly low frequencies are
involved in self-oscillation production, some low-frequency approximations can
be made, especially for the radiation impedance. In fact, even this basic problem
requires a numerical approach or tedious analytical calculation. In the following,
the essential phenomena will be highlighted using a method that could be easily
generalized in the case of non-cylindrical instruments.

To simplify the calculation, we study first the approximation for which radiated
power is ignored (and thus also the real part of Zg), and where the pipe length
£ includes the length correction A{: that is, L = £ 4+ A{. This simplifies the
understanding of the boundary layer effects: the dependency on frequency is a
problem that is significantly simplified by the nature of the boundary conditions
considered. The method used is that of Sect.5.2.2.1. Then the result taking the
radiated power into account is given.
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5.6.2 Modes Orthogonality Method (Without Radiation)

For reed instruments, a flow rate source is considered. For any position x; we can
write (see Chap. 4, Sect.4.6.1):

vt = L[4 T (dPY-
P Sz | \ax dx ) |

For the propagation, I' = jk.(w) is given by (5.144); for the sake of simplicity,
visco-thermal effects will be limited to the first-order:

a(1 —J')i| '

Iy

ko(w) = ‘;’ [1 + (5.160)

Remembering that r, depends on frequency, the equation to be solved and the
boundary conditions are written as:

d2
[d ,+ kf} P = —Z,U8(x — xy), (5.161)
X
dpP
d =0 for x=0 ; P=0 for x=L. (5.162)
X

The input condition is necessary to calculate the input impedance as the limit
when the source tends towards the input (see Chap. 4, Sect.4.6.3). The modes on
which the solution is projected are solutions of:

d? 5
|:dx2 * kn:| o =0

and of the boundary conditions (therefore modes do not depend on damping during
propagation). Thus:

D, (x) = cosk,x ; (5.163)
cothkn = 0, hence knl = (2n — 1)72r : (5.164)
¢ 1
/ D, (x)D,,(x)dx = 25,”". (5.165)
0

Using this relation as in Sect. 4.6.2.1, we obtain a formula that generalizes Eq. (4.72)
of Chap. 4:

2 cos k,x cos k,x;
pP= eZ” USZ 2 ko) where (5.166)

n>0
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2 1—i 2
K =k2- [1 4 ol ’)} . (5.167)
C Iy

This expression is not exactly a modal decomposition, because of the variation
of r, with frequency. We will show later how to obtain this decomposition. For
now, knowing that visco-thermal effects vary slowly with frequency, r, can just be
calculated for frequency w, in each term of the series, and the boundary layer effects
in Z, can be ignored: Z, = jwp/S. Then to first order in r, :

2 1—j 2
o) 2= (14200 D L@ [y @
c? ry(@p) vZ, ry(wn)

1 1
with - [1 T } .
Ugn c 7y (wn)

The expression of phase velocity v, is indeed the same as the one given by (5.145).
It remains to approximate each term as a one-degree-of-freedom oscillator:

2c . c Uén cos k,x cos k,x;
P= ZjoUs 5 o ) 5 where (5.168)
14 on‘T ¢ o +jow, Q0 — o

o 1 o ay |4,
w, = k,c|1— and =2 ~2 . (5.169)
[ Iy (wn):| Oy Iy (wn) R \/kn

Expressions (5.166) and (5.168) give similar numerical results, except for frequen-
cies lower than the first resonance. In Fig.4.5, the latter is compared with the
compact formula. The truncation at 10 modes highlights the effect of higher order
modes even at low frequencies. The value of peak maxima is

2¢ On

Iyn = Z .
M. { w,

(5.170)

The quality factor is proportional to the square root of frequency, in contrast to the
impedance peaks, which are inversely proportional to it. Finally the quality factor is
proportional to the radius R, and impedance peaks are inversely proportional to R'®
(because of the characteristic impedance factor). Some practical consequences have
been discussed in Sect. 5.5.3.3 (see in particular Fig. 5.14).

16A wide pipe has impedance peaks lower than a narrow one: this explains why the vocal tract has
not much influence on the playing of reed instruments, at least for low notes.
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5.6.3 Residue Calculus (Taking Radiation into Account)

Still in the frequency domain, the closed form (4.47) is used to deal exactly with the
problem including radiation. The boundary conditions are written as o = 7/2 and

Jjne = argtanh(zg) = h(s) (5.171)

Al 1 (sR\?
where s = jo and zg = Zg/Ze =5 —, (s ) . (5.172)
C C

P(x) is the solution of (5.161). After some calculations, it gives, for x > x; :

P=U Z, sinh [I"(€ — x) + h(s)] cosh I"x,

‘r cosh [I€ + h(s)] ’ (5.173)

where I"(s) is given by (5.160). As I" and A vanish at s = 0, there is no constant (or
“rigid”) mode. Poles s,, and thus the eigenfrequencies are a priori complex and are
given by:

cosh [I"(sp)€ + h(s,)] = 0, 1i.e., I'(sy)f + h(s,) = jy, where y, = 2n— 1)721.

(5.174)

Near the poles, the denominator is written as:
D = (s —s,) [T (s))€ + K (s,)] sinh [I"(s,)€ + h(s,)] .

where the symbol ' represents the derivative with respect to the variable s.
Considering expressions of I" and 4, the poles s, occur as complex conjugate pairs.

The application of the residue theorem and some further calculations give the
expansion of P(w) as a sum of terms:

P, = Z, (Sn) cosh [F(Sn)x] cosh [F(Sn)xs] where h/(Sn) — 1 Z;?

T () (s =) [T ()l + W (s0)] (5.175)

%

It should be noted that Z,/I" = Z.. Considering (5.174), the eigenmode shapes
are complex, and the dependency on s is the one of a generalized Lorentzian
corresponding to complex modes. This was previously seen for a resistive end (for
that case h(s) was a real constant). The question of the orthogonality of the modes
will not be discussed here.

The relation with the particular case zzg = 0, treated in the former section, is
sought now. If the terms corresponding to s, and s) are added, an equation similar
to Eq.(5.166) is found; in fact the two equations differ because of the frequency
variation of I". However, the modes are the same. There can thus be several kinds of
expansion in the frequency domain on the same modes. It can be shown that (5.166)
corresponds to the following formula, when A(s) = 0:
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P —U Z,(s) cosh [I"(s,)x] cosh [I"(s,)x;]

s . 5.176
Pl [FC+ () v ©-176)

Expressions (5.175) and (5.176) are different, but because each term has the same
residue, the inverse Fourier transform is identical. In fact the residues are unchanged
if Z,(s,) is changed in Z,(s); as for the denominators, they are, thanks to (5.174),
equivalent to first-order in (s—s, ). Obviously the time expression must be calculated
directly with (5.175)! The fact that they are exact should be highlighted,'” and this
is true whatever are the frequency dependencies of Z,, I", and h.

Approximated Expression of the Modal Expansion

In order to have an approximated formula in an analytical form, Eq. (5.176) is
calculated ignoring losses (in boundary layers and by radiation), except in the
resonance term. For the effects of boundary layers to first-order, Eq. (5.144)
is used; in addition the imaginary part of the radiation impedance is supposed
to be much larger than its real part. Given

C(s) = I'(s)L + h(s) = Co(s) + C1(s), (5.177)

2¢,

with I'(s) = * + 8+/s where § = 012 \/ .
c c

where Cy(s) is the term without losses and C; (s) the term with losses that are
assumed to be small. These terms are

{ Al
Co(s) = g 86jIm(+/s) + argtanh g ;
C C

2 2 —1
coomen-1 (2]

Without losses, [if Eq. (5.145) is used] the eigenfrequencies, denoted w,,g =
—jsno verify

ol w0 AL
Co(sn0) = >0 + argtanh o =Jjn
Uy c

0 AL n n
hence @no = tan [yn _@ 0€:| = cot @ % (5.178)
c Vg Vg

(continued)
17This question can be quite complicated when visco-thermal effects occur: Equation s, + e/Sn =

Jm/2 can have two solutions in ,/s,, but one of them can be ignored, when the problem is stated
completely [33]. Thus we know that only the solution near the case ¢ = 0 is interesting.
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This equation, whose solutions w, are real, is similar to the one written in
Sect.4.6.4 of Chap.4, when v, = c. Now C(s) = jy, = Co(sq0) will be
solved assuming s, — sy to be small. It gives

C(S) = CO(SnO) + (sn - SnO)C(/)(snO) + Cl (SnO)a hence

Cl (SnO)

Sp — S0 = —C where C = .
0 C} (sn0)

(5.179)

If the variation with frequency of the phase velocity v,is ignored, the quantity
C(’) (sn0) which appears in the denominator of (5.175) is written:

¢ AL 2 Ap277!
Co(sn0) = + [1 4 “no } .

Vg (Wno) c?

With the assumptions made, and assuming the characteristic impedance
independent of the boundary layer effects, thanks to (5.175), the sum of terms
in s, and s} can be calculated:

P = USZCZCOSh [T (840)x] cosh [T (s,0)x] [ 1

1
, 5.180
Co((sno) s—sm s s;:| ( )

n>0

where cosh [I"(sn0)x] = cos wuox/v,. Denoting C = éwnerjl and neglecting
the second-order terms in Q;, !, the term in brackets can be written as:

C o + w007
SrE g T 2 (5.181)
§2 +2sC — s, wr + jow 0! — w?

This expression has the form of a generalized Lorentzian of complex modes:
the denominator is the one of a usual Lorentzian, however, the numerator
differs by the constant term. To second-order in Q;l , the resonance frequency

is given by wyg [1 + 8Q2] and the value of the maximum of the bracket
modulus is then 20,/ w,. It remains to express the quality factor:

1
1 B 2Cl(sn0) B 20;31[ \/a),,(c)-lv + 1 (a),,()R) I:l“r‘ noA(:I

- _ (5.182)
On @0 Ci(Sn0) ¢ wae !
’ @n0 | v, (@n0) +4 [1 + :| ’

(continued)
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The inverse of the quality factor is proportional to the sum of terms of visco-
thermal and radiation losses. They could be compared to the terms obtained
by the closed-form formula of the projected impedance (Sect. 5.5.3.3).
Simplification of the Approximated Expression

Formulas (5.178) to (5.182) are valid for large quality factors. This
supposes among other things that radiation remains weak (k,R < 1). If
needed, it is better to numerically calculate Expression (5.175). However, the
formulae can be substantially simplified by assuming that the radius is small
with respect to wavelength (wﬁoAZZ /c? < 1), and, ignoring the dispersion
(vy = ¢). Then this gives, if L = £ + AL, k, = y,/L:

2 2 o + w00
P=jo pe UXZ cos kyxcoskyx; J o2 02, where
L s e wr + jow 0! — w?
1 2 ¢ [l 1 (k,R)?
oo = cky, —— \/ 4 (kaR) . (5.183)
O R VLY yu 2
where y, = (2n — 1)7/2. In practice, the term in Q! can be ignored in

the numerator. When radiation is negligible, this formula is very close to
Formula (5.168), which takes the dispersion into account. It can also be shown
that the three definitions of the quality factor approximately coincide for a
cylindrical pipe, as for a one-degree-of-freedom oscillator (see Chap. 2).
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Chapter 6
Coupled Systems

Antoine Chaigne and Jean Kergomard

Abstract As a natural continuation of the previous chapters, this chapter is devoted
to the description of some important coupling phenomena in musical acoustics. The
presentation starts with the basic coupling between a SDOF oscillator and a one-
dimensional pipe. This example illustrates the modifications of the eigenfrequencies
due to coupling, and allows fundamental concepts to be introduced such as added
mass and stiffness. It is then generalized to the coupling between soundboard and
cavity observed in stringed instruments. As a second example, the coupling of piano
strings at the bridge is examined extensively. It is shown, in particular, how the
tuning of the strings and the bridge admittance affect the temporal evolution of
piano tones. Another example of coupling between a damped string and a dissipative
soundboard yields useful light on the effects of “strong” and “weak” coupling
observed in violins and guitars, respectively. The chapter ends with a description of
the soundboard-bridge coupling in violins, and on its consequence on the observed
input admittance.

6.1 Introduction

String and percussive instruments can be viewed as the assembly of different
elementary structures. Some of these are designed to vibrate and, in turn, to radiate
acoustic energy into the surrounding air, while others are not. In the case of
timpani, for example, the objective is to control and enhance the vibrations of the
membrane while minimizing those of the bowl. In most cases, these instruments
show a closed, or semi-open, air cavity whose acoustic function is essential.
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For these instruments, a number of different couplings can be exhibited, with
variable proportions, depending on the instrument:

1.

2.

Multiple degrees of freedom structural coupling between two elements (e.g.,
string—soundboard coupling);

Coupling between a mechanical structure and an air cavity (e.g., timpani
drumhead—cavity, or soundboard—soundbox coupling in a violin);

. Coupling between a structure and an infinite or semi-infinite space filled with

air: this is the case for almost all instruments, if room (bounded space) effects
are ignored;

. Coupling between a vibrating structure and a passive resonator located in its

vicinity: case of keyboard percussive instruments (marimba, xylophone, and
vibraphone).

General structural-acoustic coupling with applications to musical instruments,

including the effect of passive resonators in the sound field, is presented in the fourth
part of this book. The acoustical coupling between resonators of simple form is
treated in Chap. 7. The present chapter is limited to the description of some selected
simple coupling situations between structural elements, with or without a closed
cavity, in order to emphasize their physical meaning. The consequences of these
couplings are of several kinds:

The coupling between attached structures modifies the natural frequencies and
damping factors of the constitutive parts of the system.

In the case of a vibrating structure coupled to a cavity, structural-acoustic modes
can be observed. In addition, for some frequencies, the cavity affects the structure
either as an added mass or as an added stiffness.

When the cavity is open (which is generally the case of stringed instruments),
radiation through the holes can extend the frequency range in which radiation is
efficient.

When a vibrating structure is surrounded by air, the reaction of the fluid changes
the structural modes: the in vacuo modes of the structure are coupled together.
A concert hall also is an acoustic cavity whose modes are coupled to the
instrument.

Finally, the sound field that reaches the ears of a listener can be modified by the
presence of other vibrating structures, typically passive resonators, placed in the
vicinity of a given instrument and excited by its radiated field.

6.2 Structure—Cavity Interaction

6.2.1 Mechanical Oscillator Coupled to a Pipe

The simple example presented in this section aims at illustrating the influence
of the coupling between an air cavity and an elastic structure. This situation is
encountered in almost all stringed instruments and can also be found in a significant
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number of percussion instruments, as the membranophones (drums and timpani).
To simplify the presentation, the structure is modeled here by a single-degree-of-
freedom oscillator, while the cavity is assumed to be one-dimensional. The system
is composed by a pipe with cross-section S and length L excited at one end by a
mechanical oscillator of mass M, angular frequency wy, and reduced damping ¢,
(see Chap.2). The term f(¢) is the excitation force of the oscillator. Visco-thermal
losses are ignored in the pipe, for simplicity (Fig. 6.1).

It is further assumed that the pipe is closed at the other end by a mechanical
impedance Z;, defined in the Laplace formalism as SP(L, s) = Z;(s)V(L, s), where
P(L,s) and V(L,s) are the Laplace transforms of sound pressure and acoustic
velocity, respectively (for more details on the properties of the Laplace transform,
see, for example, [11]). The other equations of the problem, written in the time
domain, are

1 p
2o = e for 0<x<L,
v dp
Por = ax ©.1)
0 (E + 200 + 03) = ~Splx = 0.0 + 0.
U(O, t) = é(t) M

This system can be solved in terms of the oscillator displacement & and pipe
pressure p. The goal is to show, in particular, the influence of the coupling on the
eigenfrequencies.

6.2.1.1 Oscillator Displacement and Pipe Pressure

The Laplace formalism is used here. Using the continuity of the displacement at
x = 0, and the formula for the transfer impedance (4.29) leads to the expression for
the input impedance of the pipe acting on the oscillator:

tanh SCL +zz

P(x =0,s) = spcZ(s)z(s) where z(s) =
( ) = spcE(s)z(s) (s) | + 2 tanh

(6.2)

K
—_—
f
R M

0 L~

Fig. 6.1 Single-degree-of-freedom oscillator coupled to a tube of finite length loaded at one end
by an impedance Z;,
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with z; = Z;/pcS, and where Z (s) is the Laplace transform of the displacement £.
The equation of motion of the oscillator is written:

F(s) _peS

[s? + 28,005 + 0f| E(s) = w5 u Z(5)z(s). (6.3)

The displacement of the oscillator can be written in the form:

- F(s) 1
E(s) = , 5 (6.4)
M s 42w [$o + Caz(s)] s + ]
with
cS
2§aw0 = pM .

6.2.1.2 Discussion

A number of particular cases now deserve consideration:

» If the loading of the pipe at position x = L is Z; = pcS, there is no reflection,
and z(s) = 1. This also corresponds to the case of an infinite pipe. Acoustic
propagation in the pipe has the effect of increasing the damping of the oscillator
through radiation (see also Chap. 2, Sect. 2.5.2).

 If the pipe is closed at x = L, then Z; tends to infinity and z(s) = 1/ tanh [sL/c].
In addition, if the length L of the pipe is assumed to be small enough so that the
approximation tanh [sL/c] ~ sL/c can be made, then the displacement of the
oscillator becomes

_F(s) 1

E(s) = . 6.5
() M 52+ 2wpl,s + a)g + 2wol,c/L (6.5)

The pipe thus becomes a lumped element system. It acts here as an added stiffness

_ 2woME.c pc2S?
L v’

where ¥ is the volume of air enclosed in the pipe. This stiffness has an influence
on the oscillator only if K, is comparable to, or greater than, K (K = Ma)g is the
stiffness of the oscillator). The effect is therefore significant for flexible structures
(K < Ko).

o If the pipe is open at x = L, and if the radiation at the open end is ignored to
a first approximation, then Z;, = 0 and z(s) = tanh [sL/c]. For a pipe of short
length or, more generally, for sL/c < 1 it leads to:

K. (6.6)

F(s) 1

E(s) = ,
© M s+ 2w08,s + 0F + 2w08as2L/

6.7)
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which means that the pipe acts now as an added mass

2MwoC,L
M, = wog = pr, (68)
&
which corresponds to the total mass of air enclosed in the pipe. As a consequence,
light structures (M < M,) are significantly affected by this coupling.

6.2.1.3 Eigenfrequencies of the Coupled System

Let us now consider the case of the pipe closed atx = L. The eigenfrequencies of the
system are obtained by setting s = jw and looking for the poles of the displacement,
given by the roots of the real part of the denominator Z(w):

L L
Re{Z(w)} = (—w* + a)g) sin @ + 2wow(, cos o5 _ 0. (6.9)
C C

Recall that dissipation is ignored in this case (see Chap.?2). Notice that the roots
of Ne{Z(w)} also yield the poles of the pressure. Equation (6.9) is now written
in a dimensionless form, in order to show the different behaviors of the system,
depending on the reduced values of the parameters. The reduced driving frequency
is written X = wL/c, where L/c is the characteristic time of the pipe corresponding
to the traveling time of a longitudinal acoustic wave between both ends. Finally,
we define the dimensionless quantities Xo = woL/c and ¢ = K, /K. Equation (6.9)
becomes

be X eXX2

=1 ivalently tanX = . 6.10
Xé +8tanX or equivalently tan X2—X§ ( )

The following situations can be identified, which depend on the frequency domain
in which the system operates:

« If X > X, or, in other words, if the frequency w is large compared to the
reduced frequency wy of the mechanical oscillator, then (6.10) shows that tan X
is positive. The mechanical oscillator is of mass type. Due to the presence of the
oscillator, the resonances of the tube closed at both ends are increased, compared
to the isolated closed tube. This increase of frequency can be easily understood
considering that, compared to the limiting case of an “infinite mass” at the end for
the closed tube, the presence of the oscillator, of finite mass, corresponds to a
decrease of the overall inertia of the system. The eigenfrequencies increase even
more if ¢ is large. This corresponds to the case where the equivalent stiffness of
the closed tube is large compared to that of the oscillator. However, for higher
eigenfrequencies, the modifications are smaller. Similar results are found for a
stringed instrument: the higher the frequency, the lesser the eigenfrequencies of
the string are modified by the modes of the soundboard (see Chap. 3).
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* Conversely, if X < Xj, tanX is negative. In this case, the eigenfrequencies of
the tube are reduced because of the presence of the oscillator, compared to the
tube closed at both ends. In fact, below its resonance frequency, the oscillator is
governed by its stiffness. This stiffness is always smaller than those of perfectly
rigid ends. Here again, this effect is more pronounced if ¢ is large.

* If X < 1, meaning that the frequency is much smaller than the characteristic
frequency of the tube, there is no resonance inside the tube, and the only
eigenfrequency of the system is given by X = Xy+/1 + & (which implies that
Xop < 1). Like in the previous case, the tube acts as an additional stiffness which
has the effect of increasing the eigenfrequency of the mechanical oscillator.

* Suppose now that X is close to Xy, and, in addition, that these two quantities are
close to a resonance of order n of the tube. In this case, the eigenfrequencies
of the tube given in Eq.(6.10) are strongly modified in comparison to the
solutions X,, = ns obtained for the isolated tube (see Fig. 6.2). The difference
between structural modes (S) and acoustic modes (A) cannot hold any longer.
The modes are strongly coupled and are sometimes referred to as structural-
acoustic modes (SA).

6.2.2 Soundboard-Cavity Coupling in Stringed Instruments
at Low Frequencies

The coupling between soundboard and soundbox in stringed instruments is an
example of structure—cavity interaction which has been extensively treated in the
literature. The first models were published in the 1980s [3]. They are often limited
to the interaction between the first (lowest) mode of the soundboard and the
lowest acoustic mode of the cavity. Traditionally, these two modes are called T'1
(soundboard) and AO (air), respectively, when coupled together on the complete
instrument. A simplified model with two degrees of freedom fairly reproduces
the behavior of real instruments at low frequencies, i.e., below T'1. It has been a
source of inspiration for Hutchins in the realization of her violin octet, among other
things [9].

Today, the main limitations of such models are well known: the soundbox is not
only coupled to the soundboard, but also to the back plate and neck [6]. In addition,
the coupling to the radiated field and the presence of holes also contribute to form
a complex system: this will be discussed in detail in Chap. 14. The study is limited
here to a simplified system with two degrees of freedom where the soundboard
is represented by a rigid body with mass m,, of area A, and intrinsic stiffness k,
subjected to the vertical force F of the strings. Its vertical displacement is denoted
&, which can be seen as the mean displacement of the attached soundboard vibrating
near its first mode (see Fig. 6.3).

In this model, the soundbox is represented by a Helmholtz resonator (see Chap. 1,
Sect. 1.5) with one moving wall (the soundboard). The inertial part of the resonator
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-10

Fig. 6.2 Graphical solution for the eigenfrequencies of a 1-D acoustic tube loaded by a mechanical
oscillator; ¢ = 0.1; Xy = m. The intersections of the tan function (solid line) with the X-axis
yield the eigenfrequencies X = ns of the tube closed at both ends. The intersections (o) of the
tan function with the expression eXX2/(X? — X2) (dashed line) yield the eigenfrequencies of the
coupled system. The first eigenfrequency of the tube and the frequency of the mechanical oscillator,
both equal to 7 in the decoupled case, are strongly modified by the coupling. Higher frequencies
of the coupled system increase only slightly in comparison to the isolated tube

Fig. 6.3 (Left) At low frequencies (approximately f < 300 Hz), the Soundboard—cavity coupling
of the classical guitar is reasonably modeled by a system with two degrees of freedom.
(Right) Experimental vibroacoustical study of a guitar (© LAUM)
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is the mass of air my, oscillating through the holes of total area Aj, with the overall
displacement &,. During the motion, the change of volume in the cavity is equal to
AV = Ap§, + Apy,. Because of the compressibility of the air, the resulting change
of pressure is Ap = —pc? AV |V = — (A&, + Arén) (see Chap. 1). For simplicity
the damping matrix of the system is assumed to be diagonal. The losses are modeled
as resistances which remain constant over frequencies, and are here denoted R, and
Ry, respectively. Under these assumptions, the equations of motion for this system
are written:

. . )
R R e A T R K I AR

0 my] (én 0 Ryl (én uARA, Ay | S 0
This is a system coupled through the stiffness terms 1A;A,, and the matrix K is not

diagonal. In what follows, the eigenfrequencies of the coupled system are compared
to some specific frequencies:

* Without an aperture in the soundboard (closed hole: A, = 0), it can be seen
from (6.11) that the box acts on the board as a spring of added stiffness ;J,AIZ,. Its

angular eigenfrequency (without damping) becomes w, = \/ (kp + ;LAIZ,) /.

» If, in addition, the board has no stiffness (k, = 0), this angular frequency
becomes w, = \/,uAI%/m,,.

e If now the board with an open hole is rigidly maintained, a classical case of

Helmboltz resonator is obtained with angular eigenfrequency w;, = \/ [,LA% /my.

In what follows, the coupled system will be conveniently expressed in terms of these
three particular frequencies (wj, w,, and wy,).

The eigenfrequencies of the associated conservative system are obtained from
det[K — @*M] = 0 which can be written as:

9 = (a)§ — ?) (0} — 0?) — a);h =0 where w;h = wlw} . (6.12)
With typical numerical values for a classical guitar (see Fig. 6.4), the eigenfrequen-
cies of the coupled system are equal to f; = 86 Hz and f, =206.5 Hz. The frequency
/i corresponds to the coupled acoustic mode A0, while f, is the eigenfrequency of
the coupled mode 7'1. A main effect of the coupling is to move the frequencies
apart compared to the uncoupled case (here f, = 100Hz and f, = 200 Hz).! These

frequencies also have the following mathematical property:

0l + 0} = wﬁ + W}, (6.13)

!'Unfortunately, f; is often referred to as the Helmholtz frequency, however, this is an error that
should not be made. Although f; and f, are usually close in frequency, they correspond to opposite
physical facts: the first frequency is related to a maximum, whereas the second is related to a
minimum displacement for a given force. The latter is obtained by replacing the flow rate excitation
of the cavity (upper Fig. 1.27) by a force excitation.
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Fig. 6.4 Model of structure—cavity coupling with two degrees of freedom. (Left) Characteristic

equation 2 as a function of frequency. (Right) Amplitude of soundboard displacement |&,| as a

function of frequency. fi, = 100Hz; f, = 200Hz; m, = 0.2kg; A, = 0.3 m*; ¥ = 0.014 m*;
—1¢ 1oy =9l

yh=1s "y, =2s

which is of particular interest, for example, in order to estimate the parameters of a
given instrument experimentally.

The eigenvectors @; (i = 1, 2) are obtained from the equation [K — a)le] P; = 0.
Whatever the parameters values, the two components of @; are opposite in sign,
which means that the respective displacements of soundboard and hole have
opposite signs, at the lowest coupling frequency fi. Conversely, they are in phase
at frequency f>.

The interested reader can pursue this modal approach, using the method pre-
sented in Chap. 3. The modal projection & = Z @,q;(t) is written here:

l

[} ={onf a0+ {oof e

where ¢g;(t) are solutions of the system of uncoupled equations:
migi +kigi =0 with m; = '&M®; and k; = '&;K&; = w?m; . (6.15)

The displacements obtained from (6.15) are approximate since the damping
terms are ignored. These approximations may be sufficient in some situations, for
example, when the goal is to predict acoustic or structural modifications required to
modify the eigenfrequencies of the system (see Sect. 6.2.2.1 below).

However, the approximations (6.15) are not accurate enough if the evolution of
the displacements with frequency needs to be known and, in particular, when one has
to estimate their maximum (resp. minimum) values. In these cases, it is necessary
to take the damping terms into account. One can use, for example, the method
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of complex modes explained in Chap. 5. In the present simple example, with two
degrees of freedom only, another relatively straightforward (and equivalent) solution
is to solve the linear system (6.11) directly. This gives

£ = F a),f—wz—}—jwyh
’ my, Dc '
: F A, } (6.16)
h =
my, Ah DC
with D, = (a)g — o’ +ja))/,,)(a),f — ? +joy) — w[fh,

where y, = Rp/my, and y, = R,/m,,.

Figure 6.4 shows the amplitude |&,| of the soundboard displacement versus
frequency. Considering the low values chosen for y, and y, in our example, the
maxima for |&,| are obtained for frequencies very close to the eigenfrequencies
f1 and f>. It is found that the minimum is obtained for f = f, = 100Hz, which
corresponds exactly to the frequency of the Helmholtz resonator. This is consistent
with the fact that f;, corresponds to the case of a resonator with fixed walls, when
the displacement of the soundboard is equal to zero. It can be noted that the
determination of this minimum is a very good way to experimentally estimate the
Helmholtz frequency of a string instrument.

6.2.2.1 Structural Modifications of the Instrument: The Art of the Maker

A model of soundboard coupled to the soundbox like the one shown in (6.11) allows
estimating the effects of structural modifications (mass of the board, soundbox
volume, hole area, stiffness of the board,. ..) on the eigenfrequencies of the system.
Such a procedure is similar to the skilled practice of a maker. However, the model
presented above is elementary, and one should keep in mind that the requirements
that govern the making of an instrument are not limited to the prediction of
eigenfrequencies. Within this restrictive framework, the approach proposed below,
inspired by French [7], illustrates a good example of the use of physics in instrument
design.

As a starting point, we use the eigenvectors equation [K]@ = A[M]® where
A = w?. The matrices K and M are symmetric. Mathematically speaking, we are
interested in the so-called sensitivity dA/da of the eigenvalues A with respect to a
physical or a geometric parameter of the system, denoted a. Through derivation,
we get

” [M]@ +A[M] @ +AM[92] . (6.17)

)0 +K[2]= 0" :
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Multiplying by the transposed eigenvector and using the symmetry properties of
the matrices yields

tp[K)p — )t [M] P
o _'o[5%] (512 (6.18)
da ‘¢ [M] @

To illustrate the use of this general formula, some examples of structural changes
are presented below.

Effect of Variation of the Soundboard Mass

In this case a = m,. Equation (6.11) gives

oM 10
= . 6.19
[on = [00) 61
Since the vectors @; are known, the resulting changes of the eigenvalues are derived
from (6.18):
0A; 1 D%

=— . 6.20
omy, m,,@lzi + mhgbzzi ( )

It can be seen that if the mass of the soundboard is increased, then the eigenfrequen-
cies of the system are lowered. The effects of such changes on the acoustic radiation
will be examined in Part IV of this book.

Effect of Soundbox Volume Modification

The previous method is again applied, by setting now a = ¥'. Only the stiffness
matrix is affected by a change in volume, which gives

2 2
ool e A 6.21)
V4 V2 AWA, A

from which the sensitivity can be obtained

O[]0 __(@p/ VA + MLl A
07 " 1o [M]® my @7, + m; @3 -

It can be seen that an increase of the soundbox volume lowers the eigenfrequencies.
This corresponds to one major structural changes in guitar making at the end of the
nineteenth century, when the romantic guitar has evolved to the Torres guitar, which
is still a reference model today for classical guitars [14].
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Modification of the Hole Area

The average thickness of the hole is denoted A, taking the end corrections into
account.? The mass of air in the hole is written: mj, = phAj. Therefore a perturbation
of A, induces changes both in stiffness and mass matrices. It gives

oK 0 A, M7 To 0
[aAJ 8 [A,, 2A;J an [aAJ [0 ph} (29

which leads to:

aki . 2/,L(Apd)1,'¢2j + Ah¢221) — A,ph¢22l (6 24)
An m, @2 + my, @2 ' '
Thus, an increase in the area of the openings induces an increase of the eigenfre-
quencies, while an increase in thickness causes the opposite effect.

Modification of the Soundboard Stiffness

The makers modify the overall stiffness of the soundboard either by varying the
thickness or by adding stiffeners (bracing), or both. When the thickness e of the
board is modified, the mass varies in proportion to it, but the stiffness varies as e,
so significantly more strongly (see Chap. 1). For simplicity, it is assumed here that
only the stiffness k, is changed, but not the mass m, whose effects were studied

above. We obtain

i _ Pl 6.25)
ok, mp@lzi + mh®22i ' '

It can be seen that a decrease of the soundboard thickness lowers the eigenfre-
quencies. To be more rigorous, the model should be refined by writing m, and
kp as functions of the thickness e and recalculating the sensitivities gi in order to
simultaneously show the influence of mass and stiffness matrices, as it was done for

the area Aj, of the holes.

2The thickness to be considered is the sum of the geometric height and length corrections due to
radiation, at both sides of the hole. The origin of these corrections is due to the radiation impedance
of the hole. See Chaps. 7 and 12.
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Fig. 6.5 Comparison between (a) a romantic guitar (René Lacote 1828) and (b) a contemporary
guitar (Fleta 1977). The dimensions of the second one, including soundboard thickness, are larger
than those of the first one. (¢) The spectral balance shows a clear shift of the average spectrum of
the second guitar in the direction of low frequencies: the spectral envelopes above were obtained
by averaging over the same piece of music (Ejercicio by Jose Ferrer) played by the same musician
(Bruno Marlat) successively on both guitars. These changes correspond to an aesthetic evolution
due to the repertoire, the art of playing and musical taste between the nineteenth and the twentieth
century. (d) shows the romantic guitar in real playing situation around the year 1820. (a) and (b):
© Bruno Marlat; (d) Danielle Ribouillaut
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6.3 Coupling of Piano Strings

Except at low frequencies, piano notes are obtained by striking a doublet or a triplet
of strings. The listening experience shows that the sound is significantly changed
if one string (of a doublet) or two strings (of a triplet) are damped, with only
one vibrating string left. There are many coupling phenomena between strings that
contribute to characterize the piano sound strongly. These properties are confirmed
by experiments: the beat phenomenon® and double decay* have been highlighted by
several authors [5].

The first theoretical and experimental comprehensive study on coupled piano
strings is due to Weinreich [16]. The model developed in his study uses the
formalism of dynamic matrices, which is a standard tool in solid-state physics,
especially for studying the vibrations of atomic chains [4]. In order to make the
link between this approach and the physics of strings described in this book, a
detailed presentation of the problem studied by Weinreich is made below, starting
from general equations, and discussing then the approximations made by this author
systematically.

Fig. 6.6 Inside view of a piano showing string doublets (far left) and string triplets struck by the
same hammer. © Pleyel

3 A beat is a pronounced amplitude modulation at low frequency (less than a dozen Hz) due to the
juxtaposition of very close frequencies f; and f5.

“The double decay characterizes free oscillations where the temporal evolution of the amplitude
shows two successive parts with different time constants. In piano tones, the amplitude decay most
often shows first a short time constant followed by a longer one.
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Fig. 6.7 Two strings coupled To the agraffe
to the bridge of a piano. For — Vg
simplicity, the motion of the

string is assumed to be
vertical only

N.B. For consistency with other chapters in this book, some notations have been
changed below compared to the cited paper by Weinreich. All changes are indicated
in the text.

6.3.1 General Equations of the Problem

In what follows, the problem is simplified by considering the coupling between two
strings of identical length, mass, and cross-sectional area, and differing by their
tensions only. We consider the linear transverse vibrations of both strings only,
in vertical polarizations y; (x,7) and y,(x, t) with regard to bridge and soundboard
plane (see Fig. 6.7). The lateral and longitudinal components are ignored, as well as
dissipative and intrinsic stiffness effects. The free regime is considered, immediately
after the interaction with the hammer. Therefore, the action of the hammer is ignored
in the equations. With pS the mass per unit length of both strings, the equations of
motion are written:

32)’1 32)’1
S — =0,
Pooe T e
, , (6.26)
9“2 07y2
S - T =0.
p ox2 2 o

Both strings are assumed to be rigidly fixed at the one end, at the agraffe side,
so that we can write y1(0,7) = y2(0,f) = 0. At the other end (at x = L),
the strings are attached to the bridge, which is here symbolically represented by
the impedance Zp (or, equivalently, by the admittance Yp). The validity of this
representation is justified in Sect. 6.3.1.2. At the attachment point, the displacements
of both strings are equal to the displacement gp(7) of the bridge, so that we have
yi(L,t) = y2(L,t) = gp(r). Finally, the total force exerted by the strings on the
bridge is written:

9 9
fB=f1+fz=—T1(ayl) —Tz( yz) . (6.27)
X S =L dx x=L
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6.3.1.1 Two-Mode Approximations

Assuming the linearity of the problem, the transverse displacements of the strings
can be expanded onto their eigenmodes:

N0 =Y Pu@@qun@) and y(nn) = Pu@qu() . (6.28)

i=1 i=1

The bridge mobility is assumed to be small, which is consistent with experiments. In
this case, it is justified to expand the string displacements onto the series of modes
obtained for strings fixed at both ends: @,(x) = sink,x with k,L = nm. As a
consequence, all perturbation terms resulting from departure from the ideal case are
found in the expressions of generalized displacements g, (7).

Since the fundamental frequencies of the strings of a given doublet are very
close to each other in a piano, the general system can be represented as a set of
modes coupled by pairs (one mode per string). Our study is then restricted to the
coupling between one pair of two modes, without loss of generality. We focus
below on the coupling between the fundamental frequencies, but the results are
generalizable to any pair of modes of higher rank. This corresponds to seeking
solutions to the following problem:

yi(x, 1) = @1(x)q1(1) and ya(x, 1) = Pr(x)qa(1), (6.29)
where

g1 + o5q1 = 81(q1),
(6.30)

i+ 03qr = g2(q1) -

In (6.30), the left-hand side terms represent the temporal evolution of the
oscillators, without coupling, loaded by an infinite impedance, and in unison. The
perturbations of the system are grouped in the terms g; (¢) and g, (¢) on the right-hand
side: detuning (departure from unison) and finite impedance at the bridge. These are
functions of g; and of their time derivatives.

6.3.1.2 Complex Notation

The goal is now to determine the oscillation frequencies and damping rates of the
freely vibrating strings coupled at the bridge and slightly detuned. The mechanical
quantities are defined as the real part of complex quantities. The solutions are
of the form ¢/# where the variable B is complex, and where the imaginary part
represents the attenuation of oscillations in time, resulting from damping at the
bridge. As in the paper by Weinreich, the displacements are denoted: ¢; = NRe {V;}.
Equation (6.30) becomes
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(@2 = BV = yi(¥),

(6.31)
(@5 = B)v2 = ya(¥i)

where y; and y, are the complex quantities associated to g; and g». For the strings,
the notations v;(r) = Ne{V;} and fi(r) = NRe{F;}, are used, where V; and F;
are the complex quantities associated with velocities and forces at the bridge,
respectively. Since the detuning between the two strings is assumed to be small, the
angular frequencies of the coupled system are close to the fundamental frequency
wy = \/ T/pS corresponding to tuned strings in unison. Over this small frequency
range, the complex impedance of the bridge at the attachment point Zg can therefore

be regarded as constant (Zp(w) =~ Zp(wp)), and the following equation can be
written as:

Fg=F|+ F, = ZgVs. (6.32)

This yields the admittance matrix at the bridge:

Y Y F
Viy = (Ve Ye) (F1) (6.33)

V2 Y, B YB F 2
This admittance matrix is not invertible since its determinant is zero. Still following
Weinreich’s approach, Y3 is normalized with respect to the characteristic impedance

of the strings in unison, denoted Z. = Zy = +/pST (T; = T» = T), so that the
following expression is obtained:

T i bid
Yp= . (= _ x= ., E+jn, (6.34)
P jonZo i%o 7%
where £ and 7 are dimensionless quantities.’
Because of the presence of dissipative phenomena at the bridge, 1 is always
positive or null. The case = 0 corresponds to a purely reactive bridge. The
motion of the bridge has the effect of shifting the eigenfrequencies of the strings (see

Chap. 3). The particular case £ = 0 corresponds to a string with purely dissipative
ends (see Chap. 5).

Example of a Simplified Model of a String

In order to illustrate the expression of g; in (6.30) with a practical example,
one can see the fundamental mode as the oscillation of a mass M concentrated

(continued)

SWarning! In Weinreich’s paper [16] these quantities have the dimension of a frequency. Here, they
are divided by wy.
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Fig. 6.8 Simplified scheme

of a string vibrating at its

fundamental frequency and qd1
loaded by a finite impedance

at the bridge

in the middle of the string of stiffness K. In the case of two oscillators, we
writte M = M; = M, and K, = K;(1 4 2¢), which accounts for a slight
difference of tension between both strings. With the assumptions of small
mobility at the bridge, the displacement gz (?) is small compared to ¢; and ¢,
(see Fig. 6.8).

With w02 = K, /M, the equations are written:

i1 + ogq1 = wiqs,
(6.35)
q» + wéqz = a)g(l + 2¢)gp — 2£a)5q2,

where the displacement at the bridge g3 is linked to ¢g; and g, by the boundary
condition:

fi +f2 = Ki(g1 — ) + K2(q2 — q) . (6.36)
or, equivalently, in terms of impedance:
Fi+F, = KpQp, (6.37)

where Kp represents the dynamic stiffness of the bridge defined by ZgVp =
KpQg. With the previous notations, Eq. (6.36) is rewritten:

_ Y+ el +2e)

Os
2(1+¢) + 7

(6.38)

The model can be further simplified, taking the small detuning between both
strings into account (¢ < 1). Equation (6.35) becomes

(continued)
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Vi+ ¥

(@5 = B = 0)32+ Ky
Ma)(z)

(6.39)
+
@ =a} | VTP 2ey, |
2+ MBz
@

where the expressions for g; and g, are exhibited.

6.3.2 Formulation of the Problem in Terms of Forces

The model presented in Sect.6.3.1 has direct applications in sound synthesis and
in experimentation. However, the formulation in terms of displacements is not
convenient for obtaining the dynamical matrices. Another elegant method to obtain
the equations whose solutions are the (complex) eigenfrequencies of coupled strings
is to formulate the problem in terms of forces. The assumption is based primarily on
the calculation of the transfer impedance Z in x = L of a string with characteristic
impedance Z, = /TpS = T/c fixed at x = 0. From (4.29), the transfer impedance
is equal to:

Z = jZ.cotkL . (6.40)

At this stage, it is interesting to use the series expansion of the cotangent
function [1]:

re= ! p2ey ! (6.41)
mTeotmwz = , .
¢ z Zn=1 72 —n?
from which we derive
T 20T 1
Z=j +J , 6.42
lor ™ L ; w? — w2 (642)

where w, = ck, = nmc/L are the eigenfrequencies of the string rigidly fixed at
both ends. One can here recognize some expressions seen in Chap. 4. If the angular
frequency o is close to one eigenfrequency w,, Eq. (6.42) can be simplified as:

20T 1 F
Z~j = . 6.43
J L o?>—w? Vg ( )
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and we have

(0 —w?) F = —ZLT joVp. (6.44)

Returning now to the time domain, the equations that describe the string forces f;(¢)
at the bridge are obtained

s a. 2T
Jit wifi = =" "oy with i =[1.2]. (6.45)

With the notations defined above, this yields

2T
(07 — B*)F) = — Llj,BYB(Fl + F2),
6.46
2 2 275 . (040
(w; — By = — I JBYg(F1 + F») .

The detuning of the strings is modeled by setting w; = wp and w; = wy(1 + 2¢),
where ¢ < 1 (notice that ¢ is here a dimensionless quantity, whereas in Weinreich’s
paper [16], this term has the dimension of an angular frequency). In terms of tension,
we have T, = T1(1 + 4¢). A first-order approximation of (6.46) then gives

J[B —wol F1 = jE(F1 + F3),

(6.47)
J[B —wol F2 = jE(F1 + F3) + 2jewoFa,

where ¢ is given by (6.34). These equations can be further simplified if the variables
are defined as differences, compared to the unison reference case, and if the
admittance at the bridge is written in dimensionless form [see Eq. (6.34)]. Thus,
we write B = o + wp and a = a‘fo. After calculations, the following differential
system is obtained:

F o (FrY _ X Fi
m(m)=e ()=l () e

where £ is the dynamical matrix of the coupled system.

6.3.3 Eigenvalues of the Strings-Bridge Coupled System

The forces F; and F,, solutions of the system (6.48), are linear combinations
of exp{jayt} and exp{ja_t}, where ay and a_ are solutions of the characteristic
equation:

a>—2(y +¢e)a+2ex =0, (6.49)
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from which we get the following roots:

ar = y+e+tpu with p= 2+ ). (6.50)

6.3.3.1 Discussion

To illustrate this result, Fig. 6.9 shows the variations of the coupled frequencies with
respect to string detuning ¢ for some selected values of the bridge admittance.

¢ When the admittance is purely reactive [y = &, see Eq.(6.34)], we have a; =
£ 4 &+ (§2 4 £%)!/2. Figure 6.9a shows the representative curve of b+ = a4 — £
with respect to wpe. When ¢ is large, the eigenfrequencies of the strings are close
to those obtained in the uncoupled case. As ¢ tends to zero (unison), the bridge
coupling is important and moves the eigenfrequencies apart from each other.

4
p 2r
A 2 > A // N
:Jr 7 o / \\1
= 0 fffffffffff S e Y S 2 T A,
2 5 ; 1 l\ ;
X x N /
2 -2 i £ Q P
i or
-4 S
-6 1
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
wy X€-> w, X €->

0

Fig. 6.9 Eigenvalues of the system of strings coupled to the bridge. (a) Reactive end (wpé = 1,
n = 0); b4 = ax — £. (b) Resistive end (wyn = 1, § = 0): real part. (¢) Particular case (wo§ =
1/2, won = 1): real part. Solid lines: solutions of the coupled system; dashed lines: uncoupled
case. (d) End with nonzero resistive part: imaginary part. Solid line: woé = 1/2, won = 1; dashed
line:won =1, =0
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* When the bridge admittance is purely resistive (y = jn), two cases must be
discussed depending on whether 7 is smaller or larger than ¢. The first case yields
ar = e+ jn=x \/ &2 — n%. The real part of the solution is represented by two
branches of hyperbola in Fig. 6.9b. The imaginary part is represented by two
segments Im(as) = n= cst (see Fig. 6.9d).

In the case where 1) > &, we get ax = ¢ + jn %+ j/n? — 2. The real part is
represented by the line segment fe(a+) = &, and the imaginary part is the circle
with center ¥ = (0, n) and radius 7.

e In the general case (y = & + jn), one can observe intermediate situations
compared to the previous particular cases (see Fig. 6.9c, d). The eigenfrequencies
and damping factors of the strings are modified by the coupling, essentially for
small values of ¢. In this case, one string of the pair is damped much faster than
the other: it can be observed on Fig. 6.9d, for wye between +1/2 and —1/2, that
woIm(a) is close to 2 for one string, which corresponds to a damping rate twice
as high as for an isolated string, while for the other string wyIm(a) is less than
0.1. For the particular case ¢ = 0, it can be seen that one string is no longer
damped at all. Everything happens as if the energy dissipated in the bridge is
fully “pumped” by one string of the doublet.

6.3.4 Bridge Motion

The expressions for the forces are obtained by solving the system (6.47). The values
of the integration constants are given by the initial conditions. Setting, for example,
f1(0) = £2(0) = Fy and using dimensional quantities for the frequencies, we get

F . .
Fr=_" [(x — &+ we™" + (e — x + w)e*],

21

F (6.51)
F, = ZJX [(e + W (x — & + W) + (s — )(e — x + "],

where 1 = /2 + x> = /&2 + £2 — 2. From these expressions, the bridge
velocity is derived [see Eq. (6.32)]:
27{F0X i(e+ x)wot . : jwot
Vg = Yp(F| + F,) = 7 TN cos wwot + Jy sin pawot] €07 . (6.52)
HLo

The temporal evolution of forces and velocities is obtained by taking the real parts
of Expressions (6.51) and (6.52).
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Fig. 6.10 Temporal envelope of the bridge velocity. (a) Coupling of strings with a purely resistive
admittance at the bridge and ¢ > 7. (b) Same situation with ¢ < 1. (¢) Coupling of strings with a
complex admittance at the bridge and > + £2 > n?. (d) Same case with &2 + £2 < n?

6.3.4.1 Discussion

Figure 6.10 shows the envelopes of the bridge velocity for some special cases of
bridge admittance and string detuning.

* The case (a) corresponds to a coupling with a purely resistive admittance where
& > 1. A single decay of the velocity is observed with a time constant 1/7 with
superimposed beats of frequency j = /&2 — 72.

* The case (b) again corresponds to a purely resistive coupling, but with ¢ < 7. In
this case, the velocity modulus is written:

27t17077

il ET0 [ | cosh | | wot — 1 sinh || wod] (6.53)

|Va| =

The beats disappear and the velocity envelope shows a double decay: a rapid
initial decay followed by a slower decay that arises after a strong minimum.

* The case (c) corresponds to a bridge admittance with both a resistive and a
reactive part, and where the detuning between the strings is such that the quantity
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w is real, or, equivalently, &2 + &> > n?. As for case (a), oscillations are
superimposed to a single decay. However, the amplitude of the beats is less
pronounced here.

* Finally, the case (d) also corresponds to a common admittance, but with the
condition &2 + £ < n?, which implies i = j|u|. As for the case (b), a double
decay is observed, though with a less pronounced minimum.

All these regimes are commonly observed on real pianos. We are now able to
better understand the role of the piano tuner, who does not only adjust the pitch, but
also the temporal envelope of sound.

6.3.4.2 Limiting Case of a Single String

In the particular case of a single string coupled to the soundboard, Eq. (6.47)
becomes
YpZ,
Bow=g=j """ (6.54)
b4
Setting Yg(wo) = Gp + jBp, Eq.(6.54) gives the frequency shift and the damping
factor of the string due to coupling, which is

B = wy+ dwy +

ith 86()() _ BBZ() _ Z();NSm{YB}
YT x T m (6.55)

woGp woZoNe{Yp}
and o = = .
T T
These are the classical formulas established by several authors [12]. They are

similar in form to those obtained for a lossless tube loaded by a radiation impedance.

6.4 String—-Soundboard Coupling

In Sects. 6.2 and 6.3, two examples of coupling were studied and illustrated by
simple models with two degrees of freedom. In this section, the purpose is extended
by considering the more general coupling between N; string modes and N}, board
modes. The damping coefficients are still considered as small, which allows for
some approximations (see Chap.5). The approach presented below is based on a
study by Woodhouse in the case of the guitar [17]. In a first step, both string and
soundboard kinematics are formulated. Then the mass and stiffness matrices are
derived, using energetic considerations. The eigenvalues and eigenvectors of the
associated conservative system are obtained using the general method described in
Chap. 3.
