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Series Preface for Modern Acoustics and Signal Processing

In the popular mind, the term “acoustics” refers to the properties of a room or
other environment—the acoustics of a room are good or the acoustics are bad.
But as understood in the professional acoustical societies of the world, such as
the highly influential Acoustical Society of America, the concept of acoustics is
much broader. Of course, it is concerned with the acoustical properties of concert
halls, classrooms, offices, and factories—a topic generally known as architectural
acoustics, but it is also concerned with vibrations and waves too high or too low to
be audible. Acousticians employ ultrasound in probing the properties of materials,
or in medicine for imaging, diagnosis, therapy, and surgery. Acoustics includes
infrasound—the wind-driven motions of skyscrapers, the vibrations of the earth,
and the macroscopic dynamics of the sun.

Acoustics studies the interaction of waves with structures, from the detection
of submarines in the sea to the buffeting of spacecraft. The scope of acoustics
ranges from the electronic recording of rock and roll and the control of noise in
our environments to the inhomogeneous distribution of matter in the cosmos.

Acoustics extends to the production and reception of speech and to the songs
of humans and animals. It is in music, from the generation of sounds by musical
instruments to the emotional response of listeners. Along this path, acoustics
encounters the complex processing in the auditory nervous system, its anatomy,
genetics, and physiology—perception and behavior of living things.

Acoustics is a practical science, and modern acoustics is so tightly coupled to dig-
ital signal processing that the two fields have become inseparable. Signal processing
is not only an indispensable tool for synthesis and analysis but it also informs many
of our most fundamental models about how acoustical communication systems
work.

Given the importance of acoustics to modern science, industry, and human wel-
fare Springer presents this series of scientific literature, entitled Modern Acoustics
and Signal Processing. This series of monographs and reference books is intended
to cover all areas of today’s acoustics as an interdisciplinary field. We expect that
scientists, engineers, and graduate students will find the books in this series useful
in their research, teaching, and studies.

William M. Hartmann



Foreword

For more than 40,000 years, human beings have been making and playing musical
instruments. Although Greek philosophers of the Pythagorean school carried out
pioneering studies on stringed instruments, it is only in the last few centuries
that advances in physics and mathematics have made it possible to develop a
reasonably comprehensive scientific understanding of how musical instruments
function. By the mid-twentieth century, the basic principles of classical mechanics,
fluid dynamics and acoustics had been successfully applied to explain many aspects
of the behaviour of musical instruments. In recent decades, however, there has
been a remarkable acceleration in the scope and pace of research in musical
acoustics, leading to fresh insights into musically important features of instrumental
behaviour which are not captured by simplified models. Experimental studies
have benefited from the ready availability of highly sophisticated instrumentation
devices, while the rapid growth in computational power has made numerical
modelling an increasingly important resource. In parallel with these technological
advances, there have been theoretical developments which have clarified the often
complex physical processes whose interaction is responsible for the generation of
sound in musical instruments.

The time is therefore ripe for a textbook which provides a systematic presentation
of the current state of our understanding of the physics of musical instruments.
Antoine Chaigne and Jean Kergomard are the ideal authors to present such an
overview, since each has an outstanding record of research leadership and publi-
cation in this field. Where appropriate they have invited authoritative contributions
from other experts, including Xavier Boutillon, Jean-Pierre Dalmont, Benoit Fabre,
Joël Gilbert and Cyril Touzé. A notable feature of this book, which makes it
particularly valuable as a textbook for advanced students, is its systematic exposition
of the mathematical treatments, with full derivations of the crucial equations.
This provides an excellent pedagogical introduction to the research literature, for
which extensive references are given. The book is structured to facilitate a gradual
unfolding of different formalisms. Modal theory, for example, is introduced in
Chap. 3 for the case of undamped normal modes; complex modes which include

vii



viii Foreword

dissipation are discussed in Chap. 5; and the increasingly important theory of
nonlinear modes is presented in Chap. 8. In each case the relevance to musical
examples is made clear.

This book will undoubtedly become the standard reference text for postgraduate
students and teachers of musical instrument acoustics. The mathematical level
required to engage fully with the theoretical derivations is that of an undergrad-
uate degree in physics, mathematics or engineering. Readers without a formal
scientific education will also gain many fascinating and important insights, since
the mathematical treatments are usually introduced and framed by non-technical
discussions and explanations. The authors display a deep understanding of the
musical significance of the scientific discussions and are able to convey this in a
language which is readily accessible to performers and musical instrument makers.
There are many aspects of the sound production and playability of instruments
which are musically important, but which depend on subtle details of the underlying
physics. The study of such subtleties has been a hallmark of much recent work in
musical instrument acoustics, and this textbook leads the reader from basic physical
principles to the current research frontier with a unique and admirable combination
of scientific rigour and musical sensibility.

Edinburgh, UK Murray Campbell
1 February 2016



Preface

Objectives of the Book

This book is devoted to the acoustics of musical instruments. Its prime aim is to
highlight the physical principles that govern the production and radiation of sound
by these complex sources. It is the result of several years of work which would not
have been possible without the active and enthusiastic contribution of colleagues to
whom we wish to extend our sincere thanks and gratitude. We should also mention
that Chap. 10 on the flute was written by Benoît Fabre and Chap. 11 on the violin
by Xavier Boutillon. Jean-Pierre Dalmont, Joël Gilbert and Cyril Touzé wrote some
paragraphs in the third part.

The book is meant primarily as a textbook for students at master’s and doctorate
levels. This is the reason why it includes a large number of significant equations
where the mathematical derivations are presented in detail. In addition, we thought
that it was necessary to account for the most recent results of research in musical
acoustics. Therefore, a large number of references can be found at the end of each
chapter. N. Fletcher and T. Rossing’s famous book Physics of Musical Instruments
(Springer) was published in 1991, and ever since this field of research has benefitted
from plenty of new discoveries. One can cite, for example, the essential contribution
of fluid dynamics and aeroacoustics for the comprehension of wind instruments, the
interest of nonlinear structural models for describing the behaviour of cymbals and
gongs and, more generally, the application of the theory of dynamical systems to
every class of instruments.

In fact, this book is intended not only for students but also to researchers,
engineers and other physicists with a strong interest in music. We also hope that
musicians, instrument makers and music lovers who wish to acquire some basic
knowledge on the physics of musical instruments will be able to read it profitably,
even if they cannot follow all mathematical aspects in detail. In this view, the
links between physical phenomena, instrument making and playing are explained
as clearly as possible.

ix



x Preface

How much remains unknown in the realm of musical instruments? Is it worth
putting so much attention to the instrument itself, given the somewhat fundamental
role of the player in the subtleties of musical sound? Our belief is that a number of
phenomena still remain to be elucidated with regard to the production and radiation
of sound in musical instruments, despite the contribution of famous acousticians
over the last four centuries. It is remarkably difficult to find the physical basis
of musical instruments in a single book, due to the great variety of the subjects
involved.

Basically, all musical instruments are governed by fundamental laws of fluid and
solid mechanics, including acoustics and vibrations. Today, the main outlines of
these laws are well known. However, musical instruments are very subtle sound
sources that need to be described with great accuracy, in view of the ability of the
players and sensitivity of the human ear. In the case of a violin, for example, the
sound results from continuous friction of a bow on a stretched string, one end of
which is connected to a bridge attached to the soundboard. In Chap. 11, we will see
that even the melding properties of the rosin play an important role in the origin of
the oscillations of the string and, in turn, of the violin sound.

Two main aspects must be considered with regard to the perception of a musical
instrument. First, we need to understand the causes that influence the perception of
the instrument by the player: the so-called playability of the instrument. Second,
we want to identify the factors influencing the perception of sound by the listeners,
including the player, which can be referred to as “sound quality”. Today, the science
has not found an entirely satisfying answer to these questions. In this context, this
book attempts to review and to describe the physical phenomena related to these
problems. The auditory perception is sometimes mentioned in this book, and this
seems to be natural in view of the normal function of an instrument. However, its
prime objective is to analyse the instrument and its playing from the point of view
of the physics.

Contents of the Book

In the first part “Basic Equations and Oscillators”, the main continuous models
of the elementary constitutive parts of the instruments are described: strings, bars,
plates, tubes, etc. In addition, models of the excitation mechanisms (finger, mallet,
etc.) are presented, which are specific to musical instruments. The single degree
of freedom (SDOF) oscillator is presented in detail in the second chapter, since its
properties are essential and serve as references for the rest of the book.

The fundamental concepts of sound waves and modes of vibrations are presented
in the second part “Waves and Modes”, starting from the simple case of 1-D waves.
The concepts are illustrated by examples which are directly linked to musical
instruments: plucked string, wind and percussive instruments. Emphasis is put on
the equivalences between temporal and modal representations, since the transition
from time to modal domain is of high interest in musical acoustics. For pedagogical
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reasons, dissipation phenomena are ignored in this presentation. However, Chap. 5
is entirely devoted to these mechanisms. This chapter is important, since decay
and damping due to losses are essential parameters of musical sounds. In this
chapter, the main mechanisms of dissipation both in the air and in the structural
components of the instruments are described. As a consequence, it is shown how
the properties of waves and modes are modified, due to damping. The concept of
complex modes is introduced, which is relatively new in the context of musical
acoustics. This part ends with a description of some coupling situations in string
instruments (Chap. 6), followed by the presentation of the main characteristics
of wind instrument tubes (variable section, discontinuities, bells, toneholes, etc.)
which are essential for understanding their functioning (Chap. 7). The general idea
of this part is thus to model complete instruments starting from basic concepts with
progressive refinements.

These first two parts belong to the fields of linear acoustics and linear vibrations.
The basic results are presented within the framework of musical instruments.
However, some presentations are relatively original and could probably be used in
other contexts.

In the real world, musical instruments are most often governed by nonlinear
phenomena, and this might explain why numerous physicists today are interested
in their behaviour. For percussive instruments such as gongs and cymbals, the
nonlinearity is due to the large amplitude of the motion following the impact. This
forms the heart of Chap. 8 whose goal is also to introduce the main models and
methods applicable to nonlinear oscillations. On the other hand, a nonlinear element
is mandatory for bowed strings and wind instruments, since it is necessary here to
convert a continuous (or slowly varying) source of energy, such as blowing pressure
or bow velocity, into a rapidly oscillating acoustic source. Three chapters are
devoted to the corresponding families of instruments: reed instruments (including
brass instruments), flute-like instruments and bowed string instruments.

Obviously, the ultimate purpose of musical instruments is to radiate sound, and
thus, Part IV is entirely dedicated to radiation. In fact, references to radiation can
be found in the previous parts, but, in most cases, radiation does not influence the
production of sound significantly which, therefore, authorizes such an apparently
paradoxical splitting.

An extensive list of references can be found in the literature with regard to
sound radiation, particularly within the context of noise reduction: in this case, most
applications have the objective to reduce sound power. For musical instruments,
the goal is to enhance the radiated sound though without affecting the tone quality
and the function of the instrument. It will be seen in Chap. 13, for example, that
it is not always appropriate to increase the transfer of energy from the strings to
the soundboard in a piano, since it causes at the same time a decrease in tone
duration, which is also a determining quality of piano sound. In order to be able
to explain numerous examples such as this one, we believe that it is worth recalling
the main results of radiation theory, through the viewpoint of musical acoustics.
As a consequence, Part IV starts with the description of elementary sound sources,
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continues with the fundamentals of structural acoustics with applications to stringed
and percussive instruments and ends with more complex systems involving fluid-
structure interaction.

Organization of the Book

One main feature of the book lies in the progressive description from elementary
systems to complete instruments. Except for some particular cases (reed instru-
ments, flute, violin), the chapters do not refer explicitly to a given family of
instruments. Our strategy consists rather in grouping the presentation of concepts
and results applicable to all instruments whenever possible. This is particularly true
for the first two parts of the book. In the first chapter, for example, emphasis is put
on the analogies between strings and pipes.

The index has been built so as to identify the sections dealing with one particular
instrument. Thus, the reader interested in the acoustics of the piano, for example,
will find information on strings in Chap. 3 and on damping in Chap. 5. A detailed
discussion on coupled piano strings follows in Chap. 6 and considerations on piano
radiation in Chap. 13. Similarly, the reader interested in the clarinet will benefit from
reading Chaps. 4, 7 and 9.

Due to constraints of size, we also had to make choices, and thus this book
does not pretend to be exhaustive: the instruments are rather described in terms
of physical principles and in great detail. Some important instruments, such as the
singing voice, are not presented at all. The book is also restricted to “acoustic”
instruments, as opposed to “electronic” instruments where the sound has an
electronic origin and where the reproduction of sound is made through loudspeakers
or headphones.

It is our hope that this book will help the reader to get a better understanding
of the physical phenomena involved in musical instruments. It is also aimed at
illustrating how to take advantage of instrument modelling for practical applications
in sound recording and instrument making. During the last 20 years, more and
more sophisticated models were used for application in sound synthesis, either for
the validation of a physical description or for musical applications, sometimes in
conjunction with elaborated signal processing techniques. These sound synthesis
applications are probably today one of the key milestones in the recent scientific
research on musical instruments.
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Part I
Basic Equations and Oscillators

Basic differential and partial differential equations of current use in vibrations and
acoustics of musical instruments are reviewed in this first part. The main source
terms of the instruments are also presented. The analogies between strings and
tubes are summarized in Table 1.1, which should be of help throughout the book.
Chapter 2 is devoted to the presentation of free and forced oscillations of the Single
Degree Of Freedom (SDOF) oscillator. This oscillator is the elementary component
of the modal decomposition, also used permanently throughout this book.



Chapter 1
Continuous Models

Antoine Chaigne and Jean Kergomard

Abstract The aim of this introductory chapter is to summarize the main mechanical
models which describe the physics of musical instruments and of their constitutive
parts. These models derive from the general principles of the mechanics of con-
tinuous media (solids and fluids). In this framework, the phenomena are described
at a scale of the so-called particle, or element, whose dimensions are infinitesimal
in the sense of differential calculus. Particular emphasis is given to the bending of
structures and to the equations of acoustic waves in air, because of their relevance in
musical acoustics. One section is devoted to the excitation mechanisms of musical
instruments. Analogies between vibrations of solids (such as strings) and fluids (in
pipes) are underlined. Elementary considerations on the numerical formulation of
the models are also given. This chapter should be considered as a summary which
contains reference results to help in reading the rest of the book. It focuses on
the origin of the equations and on their underlying assumptions, living aside the
complete demonstrations.

1.1 Strings, Membranes, Bars, Plates, and Shells

1.1.1 Introduction

In this chapter, we present linear models. This means, in particular, that we
limit ourselves to the case of small displacements (geometric linearity) and to
materials whose constitutive stress–strain relations are linear (material linearity).
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4 A. Chaigne and J. Kergomard

Conversely, in Chap. 8, several examples of nonlinearity will be examined. For
the time being, the dissipative phenomena in solids are ignored. Chapter 5 will be
specifically devoted to damping.

We study here the class of elastic solids. If such a solid is deformed under the
effect of a given load, the deformation disappears as the load is gradually removed
until the solid returns to its initial state. For example, if we hit the bar of a vibraphone
with a soft mallet, and if we touch the bar after a few seconds in order to suppress
the sound, we find that the state of the bar is unchanged. However, if a xylophone
wooden bar is hit with a hard mallet, irreversible plastic deformations may appear
locally on the bar. A hard stroke might even break it!

In order to excite the structures used in musical acoustics, it is often necessary
to apply a prestress to some of them. This is, for example, the case of strings
and membranes subjected to a static tension field at rest. A piano (or a guitar)
soundboard is also subjected to a strong prestress due to the tension of the strings
attached to, or passing over, the bridge (see Fig. 1.1) [7, 40]. The prestress works
only if the structure departs from its equilibrium. It is sometimes called geometric
stiffness.

The dynamics of structures which are vibrating parts of musical instruments are
governed by both elasticity and geometric stiffness. If only elasticity is present, we
are in the extreme case of bars and plates. Geometric stiffness dominates in the
case of strings and membranes. In practice, a structure with zero elasticity can never
be found. Systems with geometric stiffness, such as ideal strings and membranes,
where the intrinsic elasticity is ignored, should be considered as theoretical limiting
cases (see Sect. 1.1.2).

The case of shells is more complex and will be considered separately. This book
is limited to the study of thin shallow shells. Such structures are found both in
percussion (cymbals, gongs, etc.) and string instruments (soundboard of bowed
string instruments, for example). The presence of curvature has several important

String

Board

Bridge

Fig. 1.1 (Left) A grand piano soundboard with its bridge (© Pleyel). (Right) Simplified diagram
of the prestress supported by a piano soundboard. The soundboard is initially curved. Under the
influence of string tension, the bridge presses on the soundboard. This transverse force is partially
converted into longitudinal stress in the soundboard
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effects: change of the radiation properties compared to flat plates (see Chap. 13),
increase of the maximum static load supported by the soundboard, easier starting
nonlinear behavior for large amplitude of vibration for shells with free edges such
as gongs (see Chap. 8).

A common feature between membranes, plates, and thin shells follows from
the fact that their models involve only two spatial dimensions. If the vibration
wavelength is large compared to the thickness, it is justified to integrate the stress
along this dimension and neglect the thickness strain. As a consequence, the “3D”
model is reduced to a “2D” one. In addition, to obtain string and bar equations, it is
assumed that these structures are slender, where one dimension (the length) is large
compared to the other two. This leads then to a “1D” model where the integration
of the stress is now made along the two dimensions of a cross-section.

1.1.2 Membranes and Strings

Preamble For a complete demonstration of the membrane equation, the reader can
consult the literature devoted to the mechanics of continuous media (see [51]). The
presentation is limited here to the heterogeneous membrane equation in orthonormal
Cartesian coordinates.

We consider an infinitesimal element of membrane with coordinate vector x and
density �.x/, for which the elastic stiffness is ignored. At equilibrium, the membrane
is located in the plane (ex; ey) and subjected to a tension field. This tension field is
described by a symmetrical tensor of order 2

� D
�
�11 �12
�12 �22

�
; (1.1)

where the �ij are the components of the tensor (see Fig. 1.2). From this tensor, we
can derive the tensional forces acting on a membrane elements:(

on the surfaces with normal vector oriented along ex W �x D �11ex C �21ey;

on the surfaces with normal vector oriented along ey W �y D �12ex C �22ey;
(1.2)

A tension field is measured in force per unit length, and its unit is thus in N m�1.
Integrating this tension along the perimeter of a given surface gives the total external
force which is necessary to apply at the periphery to balance the internal tension
field.

The off-diagonal tension components have the symmetry property �12 D �21
to ensure equilibrium of the moments on the membrane element (reciprocity
principle). Each component �ij is a function of the coordinate vector x. It is assumed
that the membrane can move freely along ez so that its vertical displacement �.x; y; t/
at time t is governed by the equilibrium between the inertial forces and the restoring
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Fig. 1.2 Tension field
exerted on a membrane
element. ex, ey, and ez are the
unit vectors in Cartesian
coordinates

τ22 τ12 τ21

τ11

dx

dy

ey

ez
ex

forces due to the tension field. Gravity is ignored. With the assumptions of small
displacements, the rotations �x and �y of the membrane element on both planes
.ex; ez/ and .ey; ez/ are given by:8̂̂<̂

:̂
�x � sin �x � tan �x � @�

@x
;

�y � sin �y � tan �y � @�

@y
:

(1.3)

Similarly, for any function G.x; y/ on the membrane, a first-order expansion
yields 8̂̂<̂

:̂
G.x C dx; y/ D G.x; y/C @G

@x
dx;

G.x; y C dy/ D G.x; y/C @G

@y
dy :

(1.4)

Balancing the forces applied on each sides of the element, and projecting them on
the vertical axis ez, we obtain the equation of transverse motion of a heterogeneous
membrane:

�.x/h R� D @

@x

�
�11
@�

@x
C �12

@�

@y

�
C @

@y

�
�12
@�

@x
C �22

@�

@y

�
; (1.5)

where h is the thickness. Denoting:

grad� D @�

@x
ex C @�

@y
ey; (1.6)
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we can write this equation in a more compact form:

�.x/h R� D div
�
� :grad�

�
: (1.7)

If the membrane is also subjected to external pressure forces that cannot be
neglected, as for drums and timpani, then the projection of Newton’s second law
along the vertical axis ez leads to the equation with a “source” term:

�.x/h R� D div
�
�:grad�

�
C p.x; y; 0�; t/ � p.x; y; 0C; t/ : (1.8)

In Eq. (1.8), the source term corresponds to a pressure jump across the membrane.
For timpani, this pressure jump is equal to the difference between the sound pressure
in the cavity and the sound pressure in the external air, in the membrane plane z D 0.
More generally, the membrane may be subjected to a distribution of external forces
localized or distributed on its surface. This surface distribution of forces fs.x; y; t/
(with dimension of a pressure) is due, for example, to the action of a timpani mallet
or of a drum stick. In this case, the equation of motion becomes1

�.x/h R� D div
�
�:grad�

�
C p.x; y; 0�; t/ � p.x; y; 0C; t/C fs.x; y; t/ : (1.9)

1.1.2.1 1D Approximation: Transverse Motion of Strings

The string length of musical instruments are large compared to the radius of the
cross-section, so that it is justified to neglect the deformation in both transverse
dimensions. Rewriting Eq. (1.5) through integration of inertial and tension forces
along ey yields the 1D approximation of the transverse motion equation (along ez)
for a heterogeneous string:

�.x/ R� D @

@x

�
T.x/

@�

@x

�
; (1.10)

where � D �sS is the linear density of the string and T the tension at rest (in N). S
is the cross-sectional area of the string.

If the string is subjected to external forces along its length (linear density
of forces fext.x; t/ in N m�1) the equation of motion, including the source term,
becomes

�.x/ R� D @

@x

�
T.x/

@�

@x

�
C fext.x; t/ : (1.11)

1Equation (1.9), written here in Cartesian coordinates, can be generalized to other coordinate
systems.
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Since we are dealing here with a 1D model, there is no need to consider air pressure
forces here.

Comments

1. Another transverse motion �.x; t/ oriented along ey exists on the string. The equa-
tion of motion for �.x; t/ is analogous to (1.10). In general, both polarizations are
excited.

2. In the absence of coupling terms in the model, � and � are independent of each
other. In stringed musical instruments, however, this coupling does exist: it is
mainly due to motion of the bridge at the end and to the existence of nonlinear
terms for large amplitude motion (see Chap. 8).

3. Strings (and membranes) are also subjected to longitudinal vibrations. Such
vibrations arise because fluctuations in length induce stress fluctuations. As a
consequence, the stress becomes a function of the amplitude (and thus a function
of time). This transverse–longitudinal coupling is usually neglected under the
assumption of small amplitude. Nevertheless, it can be easily observed in piano
strings, for example. This point will be clarified in Chap. 8.

1.1.2.2 Homogeneous Membranes and Strings Under Uniform Tension

For a uniformly stretched membrane made of a homogeneous material, the tension
tensor � becomes isotropic, which can be written as � D �1l, where 1l denotes the
unit tensor. Equation (1.7) becomes

�div .grad�/ D ��� D �h R�; (1.12)

where the Laplacian in Cartesian coordinates is

�� D @2�

@x2
C @2�

@y2
: (1.13)

For timpani and drums, the most easier way to obtain a uniform tension is
to choose a circular geometry for the membrane. In this case, the use of polar
coordinates (r; �) is preferable and Eq. (1.12) is written:

�h R� D �

�
@2�

@r2
C 1

r

@�

@r
C 1

r2
@2�

@�2

�
: (1.14)

Homogeneous String Under Uniform Tension

With a uniform tension T, Eq. (1.11) reduces to:

� R� D T
@2�

@x2
C fext.x; t/ : (1.15)



1 Continuous Models 9

This partial differential equation of order 2 can be rewritten in the form of a system
of two equations of order 1 involving force and velocity:8̂̂<̂

:̂
@f

@t
D T

@v

@x
;

�
@v

@t
D @f

@x
C fext.x; t/ with v D @�

@t
:

(1.16)

The latter formulation is useful in numerical analysis and sound synthesis, where
it is often easier to solve systems of equations of lower order. It also helps in
highlighting formal analogies with electrical transmission lines (see Chap. 4).

1.1.3 Stress and Strain

Before starting to examine the deformation of elastic solids, it is necessary to
briefly recall the concepts of strain and stress that form the basis of continuum
mechanics. For more details the reader may refer to specialized textbooks (see, for
example, [49]).

1.1.3.1 Strain

General Formulation

The concept of strain can be introduced by writing the variation of length of an
elementary vector ds1, whose both ends are subjected to the displacements � and
� C d�, respectively (see Fig. 1.3).

Starting from the general formula giving the length of sides in a triangle, we get
the length of the vector ds2, noting that:

ds22 � ds21 ' 2 ds1:d� D 2 Œd�1dx1 C d�2dx2 C d�3dx3	; (1.17)

Fig. 1.3 Displacement of a vector in a deformable solid. The length of the vector ds2 is calculated
from the length of sides in triangle T
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where the second-order terms in d�2 are neglected, and where xi (i = {1,2,3}) denote
the coordinates of the initial vector ds1. The displacement �.x/ depends on the
coordinates xi, therefore the differential of each of its components is written:

d�i D
3X

jD1

@�i

@xj
dxj : (1.18)

The subscript j in (1.18) is called summation index (or dummy index), since it
appears in both the partial derivative and differential form. In continuum mechanics,
we use the Einstein convention which consists in ignoring the summation sign
(
P

) when it applies to a dummy index, in order to simplify the notation. In these
conditions, Eq. (1.17) becomes

ds22 � ds21 ' 2
@�i

@xj
dxjdxi : (1.19)

In addition, one can show the following property of symmetry:

@�i

@xj
D @�j

@xi
: (1.20)

Therefore, each term in (1.19) can be written as follows:

ds22 � ds21 ' "ijdxjdxi with "ij D 1

2

�
@�i

@xj
C @�j

@xi

�
: (1.21)

The quantities "ij form a set of six distinct components called strain tensor, which
is written ". It is a tensor of rank 2, since it depends on two indices. This tensor is
symmetrical since "ij D "ji. Its six components fully characterize the strain of a
continuous medium in three dimensions.

1.1.3.2 Stress

In the mechanics of rigid bodies, a general load is represented by a set of forces
and moments. In fluid mechanics, it is necessary to also introduce the concept
of pressure. However, these notions are not sufficient to represent the internal
constraints acting in a deformable solid. It is observed first that the contact load
exerted by an infinitesimal element on its neighbors inside the deformable medium
cannot be reduced to a simple set of forces and moments. Secondly, the resulting
forces are not oriented normally to each contact surface, as it is the case for perfect
fluids. It is therefore necessary to introduce the concept of stress reflecting the fact
that, on each elementary surface of contact between two particles, the surface force
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s31s31

s21

s12
s32

s22

s23

s33

s13

x2

x3
x1

Fig. 1.4 Stress components exerted on a small elementary cubic volume

density vector is defined by three components. To clarify this, the concept of stress
is illustrated on a small elementary cubic volume, with edges parallel to the axes
(see Fig. 1.4).

The elementary forces applied on each surface dSj .j D f1; 2; 3g/ can be
decomposed into three components dFi .i D f1; 2; 3g/. The surface density of force
is defined as:


ij D dFi

dSj
: (1.22)

The balance of moments leads to the symmetry property:


ij D 
ji : (1.23)

In total, on each side of the elementary volume, we get nine components 
ij which
reduce to six components, due to symmetry. This set, denoted 
 , is the stress tensor
for the continuous medium. It is a symmetric tensor of rank 2, as for the strain
tensor. In vector and tensor notation, we write the resulting force on a surface dS
with normal vector n:

dF D 
:ndS : (1.24)

T D 
:n is the stress vector on the surface. Finally, in the presence of a body
force field f , and taking further the inertial forces into account, the local equilibrium
equation in a given solid element of density � is written:

� R� D div
 C f ; (1.25)

where R� is the local acceleration.
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1.1.4 Constitutive Equations of Materials: Linear Elasticity

In the dynamics of rigid bodies, the motion reduces to a set of translations and
rotations, as a result of the application of forces and moments. In this case, inertial
quantities such as the masses and the moments of inertia of the body make the links
between load and motion. In continuum mechanics, we need a finer description of
the internal properties of the deformable body to interpret static and dynamic strain
and stress. The applied load results in a distribution of stress in the body. In the
example discussed in the following subsection, a tensile force along the axis of
a specimen leads to an almost uniaxial stress. As a result of stress, the structure
will deform more or less according to its internal properties. We call constitutive
equations of materials all properties (elasticity, viscosity, and thermal expansion)
that make the link between stress and strain. We restrict ourselves to the particular
class of linear elastic materials.

1.1.4.1 A One-Dimensional Traction Experiment

Let us perform a simple traction experiment on an homogeneous cylinder with
cross-section S, whose length at rest L0 is significantly larger than

p
S. It is observed

that the relative extension L�L0
L0

� "xx linearly varies with the surface density of force


xx � F
S , as long as it does not exceed the yield strength 
e (see Fig. 1.5).

In addition, it is observed that the experiment is reversible and that the sample
recovers its initial form when the tensile force is removed. As a consequence, we
write


xx D E "xx; (1.26)

Fig. 1.5 Tension experiment.
The force F is applied along
the axis of the cylinder with
initial cross-section S and
length L0. The relative
extension L�L0

L0
� "xx is

measured for increasing and
decreasing values of the stress

xx � F

S . As long as 
xx is
less than the yield strength 
e

(which depends on the
material) the curve

xx D f ."xx/ is linear and
reversible. The slope is the
Young’s modulus E

L S E

F

σxx

εxx

σe

0
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where E (in N/m2) is the Young’s modulus of the material. One important point here
is that the stress is proportional to the strain: we are in the situation of a linear elastic
behavior. This relationship, based on experimental facts, is also called Hooke’s law.

Comment The relation (1.26) does not take the variation of the cross-section in
the body consecutive to elongation (or compression) into account. This can only be
done with the 3D generalization of Hooke’s law (see the next section).

1.1.4.2 Elasticity Tensor

In a deformable body, one stress component 
ij is likely to generate several
components of strain "kl. Assume a linear constitutive law, we can generalize
Eq. (1.26) to:


ij D Aijkl "kl; (1.27)

where Aijkl represents the elasticity tensor of the material, also denoted A. It is a

fourth rank tensor. In theory, this tensor should have 34 D 81 distinct components.
However, if we recall that 
 and " are symmetrical, it reduces to 36, which is
the maximum number of independent components for A. Because of additional

energetic considerations, this number is reduced to 21 in the case of an anisotropic
material [8]. Finally, taking also the symmetry of the material into account allows
to reduce again the number of elasticity components.

Isotropic Material

In an isotropic material, all directions are equivalent. In this particular case, only 12
components Aijkl are non-zero, and they are defined as function of two independent
elasticity coefficients only, � and �, called Lamé parameters [49]. For such a
material, the stress–strain relations are written:0BBBBBBB@


xx


yy


zz


zx


yz


xy

1CCCCCCCA
D

0BBBBBBB@

�C 2� � � 0 0 0

� �C 2� � 0 0 0

� � �C 2� 0 0 0

0 0 0 2� 0 0

0 0 0 0 2� 0

0 0 0 0 0 2�

1CCCCCCCA

0BBBBBBB@

"xx

"yy

"zz

"zx

"yz

"xy

1CCCCCCCA
; (1.28)

which can be written equivalently using the following compact tensor form:


 D �.tr"/1lC 2�"; (1.29)
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where tr" is nothing but the divergence of the displacement field: div�. We also call
it dilatation. In order to derive the strain tensor from the stress tensor, it is sufficient
to invert Eq. (1.29), which leads to:

" D 1C �

E

 � �

E
.tr
/1l; (1.30)

with

E D � .3�C 2�/

�C �
et � D �

2.�C �/
: (1.31)

We recognize here the Young’s modulus E and the Poisson’s ratio �. The latter is
a dimensionless coefficient such that �1 < � < 1=2. By inverting the system (1.31),
we obtain the expression of the Lamé parameters as function of E and �:

� D E
�

.1C �/.1� 2�/
I � D E

2.1C �/
: (1.32)

For a uniaxial stress field 
xx applied (see the previous experiment of tension)
to a “3D” specimen, we get from (1.29): "xx D 
xx=E, "yy D ��
xx=E, and "zz D
��
xx=E (see Fig. 1.6).

We can conclude that the Poisson’s ratio gives a measure of the lateral compres-
sion of a specimen along the axes ey and ez under the effect of a traction along ex.
This property is called “Poisson’s effect.”

Orthotropic Material

Unlike isotropic materials, anisotropic materials do not show identical elastic
properties in all directions. Wood, for example, is an orthotropic material, which
is a special case of anisotropy. To be convinced of such a behavior, a simple
experiment can be made which consists in bending a guitar soundboard in Spruce
with the hands. The experienced rigidity is higher when the bending is applied in the
direction of the fibers compared to the case where the bending moment is applied
in a direction perpendicular to them. More generally, for an orthotropic material,
we can distinguish three orthogonal directions: longitudinal (L), radial (R), and
tangential (T) (see Fig. 1.7).

Fig. 1.6 Tension of a 3D bar and lateral compression (Poisson’s effect)
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R

L

T

Fibers direction

Fig. 1.7 Orthotropic material. A sample made from an orthotropic material (such as wood) has
different elastic properties depending on whether the longitudinal direction (L), the radial direction
(R), or the tangential direction (T) is considered

For a system of axes with coordinates (x; y; z) corresponding to these directions,
the strain tensor in such a material is expressed as follows [28]:0BBBBBBB@

"xx

"yy

"zz

"zx

"yz

"xy

1CCCCCCCA
D

0BBBBBBBB@

1
EL

� �RL
ER

� �TL
ET

0 0 0

� �LR
EL

1
ER

� �TR
ET

0 0 0

� �LT
EL

� �RT
ER

1
ET

0 0 0

0 0 0 1
2GLT

0 0

0 0 0 0 1
2GTR

0

0 0 0 0 0 1
2GRL

1CCCCCCCCA

0BBBBBBB@


xx


yy


zz


zx


yz


xy

1CCCCCCCA
(1.33)

where the Poisson’s ratios �ij correspond to a contraction in direction j consecutive
to an extension applied in direction i. As an example, �LR corresponds to a
contraction in the radial direction consecutive to an extension in the longitudinal
direction.

The symmetry properties of the material lead to the following equalities:

�LR

EL
D �RL

ER
I �LT

EL
D �TL

ET
I �RT

ER
D �TR

ET
: (1.34)

In summary, the elastic properties of an orthotropic material are defined by nine
independent coefficients:

• Three Young’s moduli (or elasticity moduli): EL, ER, andET ,
• Three Poisson’s ratios: �LR, �RT , and �TL,
• Three shear moduli: GLT , GTR, and GRL.

Comment For a guitar soundboard made of Spruce, the ratio EL=ET usually lies
between 10 and 20. The directions of the fibers correspond to those of the strings so
that the board resists to the shear induced by the bridge. Flexibility in the tangential
direction is partially compensated by stiffeners glued on the inferior face of the
board. Using more recent materials, such as carbon fiber and composites, it is
possible to control the elastic properties in all three directions [8]. Today, a number
of soundboards of stringed instruments are made by mixing, in various proportions,
wood and carbon fibers [9]. It will be seen in Chap. 13 that the choice of materials in
instrument making is not only governed by static considerations but also by radiation
criteria, which is fully understandable for musical instruments.
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1.1.5 Bars and Plates

We are now interested in the case of elastic solids without prestress. As previously
done for the membranes, dissipation phenomena are ignored. The bar model can
be applied to elastic solids whose one dimension is of a higher order of magnitude
than the two others (slender solid), and for which a one-dimensional model can thus
be developed. Plates correspond to 2D plane solids where the order of magnitude
of the thickness is lower than the length of the sides. For a bar subjected to
small perturbations it is justified to decouple the different regimes of vibrations:
traction, torsion, and bending [39]. For pedagogical reasons, we will examine these
limiting cases in the order of increasing difficulty. Thus, traction and torsion will
be presented before the bending, although this does not correspond to the relative
significance of these regimes in musical acoustics. In xylophones and other mallet
instruments, for example, bending vibrations are responsible for the essential part of
the sound. Torsional vibrations are also present, but are usually unwanted. Finally,
longitudinal motion is unsignificant.

1.1.5.1 Traction (or Compression) of a Bar

Consider an isotropic elastic bar loaded along its main axis (denoted ex) (see
Fig. 1.8). In this case, the displacement �.x; t/ at each point is axial (or longitudinal).
In musical acoustics, the axial vibrations of piano strings play a major role,
especially during the attack transient [5].

The strain in the bar is "xx D " D @�

@x . The axial stress is 
xx D 
 D E"where E is
the Young’s modulus. For a bar of length L and cross-section S, the elastic potential
energy is given by:

Ep D 1

2

Z L

0

ES

�
@�

@x

�2
dx; (1.35)

and the kinetic energy is

Ec D 1

2

Z L

0

�S

�
@�

@t

�2
dx : (1.36)

x0 L

F0 FL

(x,t)ξ
fL(x,t)

Fig. 1.8 Traction (or compression) of a bar. One-dimensional model
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Application of Hamilton’s principle yields the equation of motion:

�S
@2�

@t2
� @

@x

�
ES
@�

@x

�
D fL.x; t/ (1.37)

where fL.x; t/ is the force per unit length applied to the bar.

Comment. Unless otherwise specified, quantities E, �, and S defined above are
functions of the abscissa x. Thus, the present model allows to treat the case of
heterogeneous bars and/or bars of variable thickness.

Denoting F0 and FL the forces applied at both ends x D 0 and x D L (see
Fig. 1.8), the boundary conditions are written:8̂̂̂<̂

ˆ̂:
�

ES
@�

@x

�
xD0

D �F0;�
ES
@�

@x

�
xDL

D FL :

(1.38)

In this book, we will have to consider general boundary conditions (BC) of the
type:

˛ES
@�

@x
C ˇ� D F with .˛; ˇ/ 2 R; (1.39)

These general conditions include the two following simple cases:

@�

@x
D 0 (free BC) I � D 0 (fixed BC) : (1.40)

1.1.5.2 Torsion of a Bar

The bars of keyboard percussion instruments often show a torsional motion around
the main axis, especially when they are struck near the edge. The amplitude of this
motion can be significant if the bar is cut in its central part since, in this case,
the torsional stiffness decreases notably (see below for an accurate definition of
torsional stiffness). The torsional vibrations can be musically annoying, because the
corresponding frequencies are generally not in harmonic correspondence with the
main components of the bending vibrations (see the next section) that mainly
contribute to the sound of the instrument.

Bowed strings (which can be considered as prestressed bars) are also subjected to
a torsional moment induced by the bow. Woodhouse and colleagues have shown that
these vibrations, particularly through their dissipative function, have an important
role in the stability of the motion of the bowed string [23, 56, 57] (see Chap. 11).

To model torsional vibrations, we consider the simple case of a cylinder with a
circular cross-section of radius a (see Fig. 1.9).
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q

a

x

Fig. 1.9 (Left) Torsional motion of a marimba bar. Such a motion, which can be musically very
annoying, often appears when a bar with an undercut is struck near the edge. For such a bar of
complex geometry, the equations that govern the torsional motion can only be solved numerically.
(Right) Torsion of a cylindrical bar with a circular cross-section of radius a. We assume that, under
the effect of a torsional torque, each cross-section of the cylinder of abscissa x rotates with an angle
�.x; t/. The dashed lines show the deformation of the generatrices of the cylinder, consecutive to the
rotation �.x; t/. The cylinder can be viewed as a kind of “spaghetti” bundle where each generatrix
remains straight in the rotation

We note �.x; t/ the angular displacement of a cross-section of abscissa x, dS D
rdrd� a surface element in this section, 
 the modulus of the torsional stress, G the
torsional modulus of the cylinder’s material, and 
 the angular displacement of a
generatrix initially parallel to the x axis. First, we can write


 D r
@�

@x
: (1.41)

According to the definition of the torsional modulus, we have 
 D G
. In this
case, the relation between the moment M.x/ applied to the cross-section S of the
cylinder and the rotation is given by:

M D
Z

S

rdS D

Z
S

Gr2
@�

@x
dS D GJ

@�

@x
; (1.42)

where J D R
S r2dS is the rotational inertia of the section. This quantity has the

dimension of a length to the fourth power. It is equal to J D �a4=2 for a circular
cross section of radius a.

Newton’s second law (or law of conservation of angular momentum) applied to
an element dx of the bar leads to the balance of moments:

I
@2�

@t2
D @M

@x
C me; (1.43)

where I is here the mass moment of inertia with respect to the axis x and per
unit length of the cylinder; me is the density per unit length of the external
momenta applied to the cylinder. Combining (1.43) and (1.42), we obtain the partial
differential equation governing � :

I
@2�

@t2
D @

@x

�
GJ
@�

@x

�
C me; (1.44)
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which, in the case of a uniform cylinder of constant cross-section, reduces to:

I
@2�

@t2
D GJ

@2�

@x2
C me : (1.45)

In the particular case of a homogeneous beam of constant circular cross-section
(and in this case, only!), we also have I D �J. We formally obtain a wave equation
with the same form as for the vibrating string (or for the longitudinal vibrations of
a bar), but notice that the physical phenomena at the origin of these equations are
fully different.

1.1.5.3 Bending of an Isotropic Bar

We now consider the bending of a slender bar in the plane (ex; ey) with the following
assumptions:

1. One dimension (along the main axis) is large compared to the other two.
2. The material is elastic and linear.
3. The cross-sections are symmetrical so that we make no distinction between the

mean fiber (locus of the center of gravity of the cross-sections) and the neutral
fiber (locus of the points which are not subjected to bending stress during the
deformation).

4. The Poisson’s effect (lateral contraction–extension) is ignored.
5. Each point of a cross-section at abscissa x moves vertically in the direction of the

axis ey with amplitude v.x/ small compared to the bar’s thickness.
6. The cross-sections are subjected to a rotation �z around the axis ez so that they

remain straight and perpendicular to the mean fiber during the motion.
7. The rotations are small, so that we can perform a first-order approximation
�z � @v

@x . In addition, we neglect the rotational kinetic energy of the sections.

Within the framework of these Euler–Bernoulli assumptions, a displacement field
is of the form:

ey

ex

ez

Fig. 1.10 (Left) Euler–Bernoulli kinematics. During the motion, the cross-sections remain straight
and perpendicular to the neutral fiber. (Right) Bending motion of a marimba bar. The bending of
such a bar is well described by a model of a bar with variable cross-section
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�x D �y�z � �y
@v

@x
I �y D v I �z D 0; (1.46)

from which we get, from (1.21), the strain tensor:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

"xx D @�x

@x
D �y

@2v

@x2
;

"xy D "yx D 1

2

�
@�x

@y
C @�y

@x

�
D 0;

"yy D @�y

@y
D 0 :

(1.47)

The hypothesis of isotropic material yields the stress tensor. Here, we write [see
Eq. (1.26)] 
xx D E"xx, since the Poisson’s effect is neglected.

Let us now express the elastic potential energy, also called strain energy, of
the bending bar. For an elementary spring of stiffness k, the elastic energy stored
under the effect of a traction (or compression) of elongation x from equilibrium is
Ep D 1

2
kx2. By analogy, the elementary force dFx applied to an element of length

dx of the bar with cross-section dS is, according to (1.22): dFx D 
xxdS. Therefore,
the elementary elastic potential energy is: dEp D 1

2

xx"xx dx dS. By integrating this

expression on the complete volume of the bar of length L, we get

Ep D 1

2

Z
S

Z L

0

Ey2
�
@2v

@x2

�2
dx dS D 1

2

Z L

0

EIz.x/

�
@2v

@x2

�2
dx (1.48)

where Iz.x/ D R
S y2dS is the principal moment of inertia along the axis 0z of the

cross-section S. The quantity M D EIz
@2v
@x2

is the bending moment and C D @2v
@x2

is
the curvature.

The kinetic energy Ec of the beam of density � is written:

Ec D 1

2

Z
S

Z L

0

� P�2dxdS D 1

2

Z
S

Z L

0

�

"
y2
�
@ Pv
@x

�2
C Pv2

#
dx dS : (1.49)

This energy can be rewritten as:

Ec D 1

2

Z L

0

�Iz
P�2z dx C 1

2

Z L

0

�S Pv2dx; (1.50)

which shows that the kinetic energy is the sum of both a rotational and a translational
energy. Under the Euler–Bernoulli framework, the rotational inertia is neglected, so
that we get

Ec ' 1

2

Z L

0

�S Pv2dx : (1.51)
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Starting from the energetic quantities, we obtain the equation of motion through
application of Hamilton’s principle. Denoting f .x; t/ the density per unit length
of non-conservative external forces applied to the bar, and ıv a cinematically
acceptable virtual displacement (test function), we get the virtual mechanical work
ıWnc of these forces from the expression:

ıWnc D
Z L

0

f .x; t/ ıv dx : (1.52)

The method consists in deriving the equation of motion and the boundary
conditions that must be verified by the displacement field v.x; t/ to ensure that the
following integral is equal to zero between two arbitrary moments of time t1 and t2
[21, 25]:

Z t2

t1

�
ıEc � ıEp C ıWnc

	
dt D 0 : (1.53)

The variations of both kinetic and potential energy are given by:

ıEc D @Ec

@v
ıv C @Ec

@ Pv ı Pv D � d

dt

�
@Ec

@ Pv
�
ıv D �

Z L

0

�S Rv ıv dx; (1.54)

and

ıEp D @Ep

@v
00 ıv

00 D
�

EIz
@2v

@x2
ıv

0

�L

0

�
�
@

@x

�
EIz
@2v

@x2

�
ıv

�L

0

C
Z L

0

@

@x

�
EIz
@2v

@x2

�
ıv dx;

(1.55)

where v
00 D @2v

@x2
and v

0 D @v
@x .

By inserting (1.55) and (1.54) in (1.53), we derive the bending equation of motion
of the bar, within the simplified framework of Euler–Bernoulli assumptions:

�S Rv C @2

@x2

�
EIz
@2v

@x2

�
D f ; (1.56)

with the boundary conditions:

�
EIz
@2v

@x2
ıv

0

�L

0

D 0 and

�
@

@x

�
EIz
@2v

@x2

�
ıv

�L

0

D 0 : (1.57)

Equation (1.56) is of fourth-order in space. Therefore, four boundary condi-
tions, two conditions at each end, are necessary to properly define the problem.
From (1.57), we see that only four combinations are possible at each end:
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8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

Simply supported edge: v D 0 and M D EIz
@2v

@x2
D 0;

Clamped edge :
@v

@x
D 0 and v D 0;

Free edge: T D @

@x

�
EIz
@2v

@x2

�
D 0 and M D EIz

@2v

@x2
D 0;

Guided edge: T D @

@x

�
EIz
@2v

@x2

�
D 0 and

@v

@x
D 0 :

(1.58)

The quantity T D @

@x

�
EIz
@2v

@x2

�
is the shear force.

• In musical acoustics, the Euler–Bernoulli model gives satisfactory results pro-
vided that the ratio between the length and a characteristic dimension of the
cross-section (radius or side length) is greater than or equal to about 10.
For keyboard percussion instruments (xylophone, vibraphone, and marimba),
this model is valid for the lowest bars only. As the length of the bar decreases, it
is necessary to choose a kinematic model accounting for the fact that the cross-
sections do not remain perpendicular to the neutral axis during the motion. It
becomes also necessary to take the rotational inertia of the sections into account
(Timoshenko model) [19]. For a detailed comparison of different models of bars,
the reader can refer to [27].

1.1.5.4 Bending of Thin Elastic Plates

The “thin plate” hypotheses (or Kirchhoff–Love model) generalize for plates the
Euler–Bernoulli assumptions applied to the bars (see Sect. 1.1.5.3). A detailed
presentation of the equation of bending plates is beyond the scope of this book.
We can refer, for example, to the work by Yu [58] or Geradin and Rixen [21].

Here, only the main steps of the modeling are summarized, using the same
approach as for bars in the previous paragraph. The case of orthotropic plates is
selected as an illustration. It is particularly useful in musical acoustics since it can
be applied to wooden plates used in lutherie [13, 55]. The problem is treated in
Cartesian coordinates, and the transverse displacement is denoted w.x; y; t/. We
assume that the coordinates coincide with the symmetry axes of the material and
that ez is the transverse direction. We therefore consider that the displacement field
� in the plate is of the form:

�x D �z
@w

@x
I �y D �z

@w

@y
I �z D w; (1.59)
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from which we get the strain tensor, assumed to be plane:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

"xx D @�x

@x
D �z

@2w

@x2
;

"yy D @�y

@y
D �z

@2w

@y2
;

"xy D "yx D 1

2

�
@�x

@y
C @�y

@x

�
D �z

@2w

@x@y
:

(1.60)

The orthotropy of the material leads to the following relations between plane
stress and strain:

0BBBBB@

xx


yy


xy

1CCCCCA D

0BBBBBBBB@

Ex

1 � �xy�yx

�yxEx

1 � �xy�yx
0

�yxEx

1 � �xy�yx

Ey

1 � �xy�yx
0

0 0 2Gxy

1CCCCCCCCA

0BBBBB@
"xx

"yy

"xy

1CCCCCA (1.61)

where the coefficients �ij are such that 1 � �ij�ji > 1 [13].
The bending moments are obtained by integration of the elementary moments on

the plate thickness h:

Mx D
Z h=2

�h=2
z
xxdz I My D

Z h=2

�h=2
z
yydz I Mxy D Myx D

Z h=2

�h=2
z
xydz; (1.62)

from which we derive the relations between moments and curvatures:

0BBBBB@
Mx

My

Mxy

1CCCCCA D �

0BBBBB@
D1 D2=2 0

D2=2 D3 0

0 0 D4=2

1CCCCCA

0BBBBBBBBBB@

@2w

@x2

@2w

@y2

@2w

@x@y

1CCCCCCCCCCA
; (1.63)

where

D1 D Exh3

12.1� �xy�yx/
I D2 D Ex�yxh3

6.1� �xy�yx/
D Ey�xyh3

6.1 � �xy�yx/
; (1.64)

D3 D Eyh3

12.1� �xy�yx/
I D4 D Gxyh3

3
: (1.65)
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The equation of motion is again obtained from the Hamilton integral [Eq. (1.53)].
The variation of the kinetic energy resulting from a virtual displacement ıw is
written:

ıEc D �
Z

S
�ph Rw ıw dS : (1.66)

The variation of the potential energy that generalizes the case of bars is

ıEp D
Z

S

h
Mxıw

00

xx C Myıw
00

yy C 2Mxyıw
00

xy

i
dS : (1.67)

Finally, for a surface density of transverse force f .x; y; t/, the virtual mechanical
work is written:

ıWnc D
Z

S
f .x; y; t/ ıw dx : (1.68)

Applying Hamilton’s principle to the set of Eqs. (1.66)–(1.68), we derive the
bending equation of the plate:

�ph
@2w

@t2
D @2Mx

@x2
C @2My

@y2
C 2

@2Mxy

@x@y
C f .x; y; t/ : (1.69)

Equation of Motion of Plates in Terms of Displacement

We eliminate the bending moments from Eqs. (1.63) and (1.69) to get the equation
describing the transverse displacement of the orthotropic plate:

�ph
@2w

@t2
C @2

@x2

�
D1

@2w

@x2
C D2

2

@2w

@y2

�
C @2

@y2

�
D3

@2w

@y2
C D2

2

@2w

@x2

�
C @2

@x@y

�
D4

@2w

@x@y

�
D f .x; y; t/ :

(1.70)

which becomes, in the particular case of a homogeneous plate:

�ph
@2w

@t2
C D1

@4w

@x4
C D3

@4w

@y4
C .D2 C D4/

@4w

@x2@y2
D f .x; y; t/ : (1.71)

For an isotropic plate, we have Ex D Ey D E and �xy D �yx D �, so that the
rigidity constants are written:

D1 D D3 D Eh3

12.1� �2/ D D I D2 D 2�D;

D4 D �h3

3
D Eh3

6.1C �/
D 2.1� �/D :

(1.72)
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In conclusion, we obtain the classical equation of homogeneous and isotropic
thin plates under Kirchhoff–Love assumptions:

�ph
@2w

@t2
C D

�
@4w

@x4
C @4w

@y4
C 2

@4w

@x2@y2

�
D f .x; y; t/ : (1.73)

More generally, we assume the following notation, which is independent of the
coordinate system:

�ph
@2w

@t2
C Dr4w D f ; (1.74)

where r4 represents the bi-Laplacian. The symbol �2 is also used for designating
this operator.

Boundary Conditions

In Sect. 1.1.5.3, Eq. (1.55) has shown that the boundary conditions are the results of
integration by parts carried out to express the variation of elastic potential energy
as a function of the virtual displacement (noted ıv for bars). We proceed here in a
similar manner for the variation of potential energy in plates written in (1.67). Here
the integration is performed on a surface, and thus the results and the number of
possible boundary conditions depend on the geometry of the plate. For rectangular
plates, for example, Leissa lists 21 possible cases for the boundary conditions [36].
For a given edge (at x D x0 for example), the most commonly encountered
conditions are the following:

1. Clamped edge: displacement w D 0 and rotation @w
@x D 0,

2. Simply supported edge: displacement w D 0 and bending moment Mx D 0,
3. Free edge: bending moment Mx D 0 and shear force Tx D @Mx

@x C 2
@Mxy

@y D 0:

The boundary conditions for a free edge are written in Cartesian coordinates:8̂̂̂<̂
ˆ̂:

Mx D D1

@2w

@x2
C D2

2

@2w

@y2
D 0;

Tx D @

@x

�
D1

@2w

@x2
C D2

2

@2w

@y2

�
C @

@y

�
D4

@2w

@x@y

�
D 0 :

(1.75)

For a corner at the intersection of two free edges, we must add the condition:

Mxy D 0; or
@2w

@x@y
D 0 : (1.76)
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Fig. 1.11 The vibrations of
bells are described by models
of shells. © Australian-
Dream.Fotolia.com

For an isotropic and homogeneous material, the conditions (1.75) become8̂̂̂<̂
ˆ̂:
@2w

@x2
C �

@2w

@y2
D 0 and

@3w

@x3
C .2 � �/ @

3w

@x@y2
D 0 :

(1.77)

1.1.6 Equation of Shells

A shell is a continuous medium which is completely defined by a surface and a
thickness (see, as an example, the bells on Fig. 1.11). A plate corresponds to the
special case of a shell with a plane surface. In musical acoustics, models of shells
can be applied to a large number of percussion instruments (gongs, cymbals, bells,
etc.) and to soundboards of string instruments. Here, we restrict our study to a brief
presentation of the theory of thin elastic shells (the thin shell theory).2 This theory,
due to Love, is applicable when the thickness of the shell is small compared to other
dimensions [51].

As for the Kirchhoff–Love model previously applied to plates, we assume that the
local displacement field in the cross-sections consists in a translation and a rotation,
so that each cross-section remains plane during the motion (see Figure 1.12).
Translations and rotations differ from one section to another, otherwise, we would

2Here, we do not treat the cylindrical shells theory, which naturally applies to wind instruments,
because it requires significant developments that are beyond the scope of this book. Nevertheless,
we provide valuable references in Chap. 13 which deals with sound–structure interaction.
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Fig. 1.12 Deformation of a thin shell. Each cross-section is subjected to a combination of
translation and rotation

simply get a rigid body global displacement for the shell and, consecutively, no
strain. In what follows, rotational inertia and transverse shear are ignored.

The main difference between strain tensors of plate and shell, respectively, is that,
because of the non-zero curvature, the deformation induced by a transverse load is
not only of the bending type as in the case of bars and plates, but also includes a
membrane-like deformation. This means that a strain normal to the load exists in
the thickness of the shell. The strain tensor is therefore formed by the sum of two
contributions (see in the following Section the example of the spherical cap).

The Love model can be further simplified under the assumption that the shells
are slightly curved, or shallow, and excited along their transverse dimension.
The resulting model is traditionally called “Donnell–Mushtari–Vlasov model” (or
DMV model) and is one of the most often used in shell theory. The fundamental
assumptions of this model are

1. The membrane displacement is neglected in the bending strain.
2. Inertia of the membrane displacement is neglected.

To solve the problem it is convenient to introduce an auxiliary variable called
force function or Airy function. Consequently, the motion equations take the form
of a system of partial differential equations with two unknowns: the transverse
displacement and the force function. For more details, the reader is invited to read
the specialized literature on shells [3, 37, 51].

1.1.6.1 Thin Shallow Spherical Shells

In order to illustrate its general concepts, the main features of the DMV model are
applied to the particular case of thin shallow spherical shells. This example has the
advantage of being simple enough, while showing the influence of the curvature. In
addition, it allows to properly explain the dynamics of cymbals and gongs.
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Fig. 1.13 Geometry of a thin
spherical cap

Presentation

We are interested in a thin spherical cap of constant thickness h small compared to
the radius a of the circle C obtained by projecting the cap on the horizontal plane
(see Fig. 1.13).

We assume that the cap is slightly curved (shallow shell), which is expressed
by the condition a � R, where R is the radius of curvature of the shell. It is
supposed that the Kirchhoff–Love conditions are fulfilled: rigid body displacement
for each cross-section, shear and rotational inertia neglected. Only the case of a
homogeneous and isotropic shell is considered. Because of the rotational symmetry,
we use the polar coordinates (r; �; z) where (r; �) are the coordinates of the
projection of a current point M of the shell on the disk of radius a, and z its vertical
coordinate in the shell thickness, with �h=2 � z � h=2.

Displacement Field

With the Kirchhoff–Love assumptions, the components of the displacement field �
in the shell are written: 8̂̂<̂

:̂
�r D u.r; �/C zˇr.r; �/;

�� D v.r; �/C zˇ� .r; �/;

�z D w.r; �/;

(1.78)

where .u; v;w/ are the components of a translation vector and where ˇr and ˇ� are
the elementary rotations of a cross-section of the shell along r and � . First-order
expansions of these rotations are written [51]:
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8̂̂<̂
:̂
ˇr.r; �/ D u

R
� @w

@r
;

ˇ� .r; �/ D v

R
� 1

r

@w

@�
:

(1.79)

Strain Tensor

We obtain the strain tensor by calculating the elongation of a small vector under
an elementary displacement [see Eq. (1.19)]. In the case of thin shallow shells, the
strain tensor can be put on the form:

" D ."/m C z."/f (1.80)

where ."/m is a membrane type tensor that expresses the strains in the thickness
of the shell, and where ."/f is a bending type tensor with components representing
the changes of curvature consecutive to the displacement. These components are
written: 8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

."rr/m D @u

@r
C w

r
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."�� /m D u
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;

."r� /m D ."�r/m D 1

r

@v

@�
C r

@

@r

�v
r

�
;

(1.81)

and 8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

."rr/f D �@
2w

@r2
;

."�� /f D �1
r

�
@w

@r
C 1

r

@2w

@�2

�
;

."r� /f D ."�r/f D �2 @
@r

�
1

r

@w

@�

�
:

(1.82)

The other components of the tensor " are equal to zero.

Stress–Strain Relation

For a homogeneous and isotropic material, characterized by its Young’s modulus E
and Poisson’s ratio �, the non-zero components of the stress tensor are written:
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8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:


rr D E

1 � �2
."rr C �"��/ ;


�� D E

1 � �2
."�� C �"rr/ ;


r� D 
�r D E

2.1C �/
"r� :

(1.83)

Resulting Forces and Moments

As for bars and plates (see Sect. 1.1.5.4), the resulting forces applied to each
elementary volume of the shell are obtained through integration of the stress vector
over the thickness:

Nr D
Z h=2

�h=2

rr dz I N� D

Z h=2

�h=2

�� dz I Nr� D N�r D

Z h=2

�h=2

r� dz : (1.84)

Similarly, the resulting moments are obtained by calculating:

Mr D
Z h=2

�h=2

rrz dz I M� D

Z h=2

�h=2

��z dz I Mr� D M�r D

Z h=2

�h=2

r� z dz :

(1.85)
As a result, we get 8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

Nr D Eh

1 � �2
Œ."rr/m C �."��/m	 ;

N� D Eh

1 � �2
Œ."�� /m C �."rr/m	 ;

Nr� D N�r D Eh

2.1C �/
."r� /m :

(1.86)

and 8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Mr D Eh3

12.1� �2/


."rr/f C �."��/f

�
;

M� D Eh3

12.1� �2/



."�� /f C �."rr/f

�
;

Mr� D M�r D Eh3

24.1C �/
."r� /f :

(1.87)

These expressions show that the resulting forces applied by an element of shell on
its neighboring elements are entirely due to membrane deformations. The resulting
moments are the consequence of changes in curvature, as in the case of plates.
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Equations of Motion

The equations of motion for the shell are obtained by writing down the balance of
forces and moments on a shell element, and applying Newton’s second law. After
some calculations, we get8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

Dr4w C Nr C N�
R

C �h
@2w

@t2
D f with D D Eh3

12.1� �2/
;

@.rNr/

@r
C @Nr�

@�
� N� D 0;

@.rNr� /

@r
C @N�

@�
C Nr� D 0 :

(1.88)

These three spherical shells Eq. (1.88) are expressed in terms of transverse
displacement w and force components Nr, N� , and Nr� . These four unknowns are
not independent since the three force components depend on the coordinates u,
v, and w [see Eq. (1.86)]. The first equation in (1.88) shows that the additional
term .Nr C N� /=R is due to membrane forces and tends to zero when the radius of
curvature tends to infinity: it corresponds to the case of plates (Eq. 1.74). In most
cases, we are primarily interested in the vertical component w of the displacement.
The variables u and v can be eliminated in Eq. (1.88) by introducing a force function
(or Airy function) F such that:

Nr D 1

r

@F

@r
C 1

r2
@2F

@�2
I N� D @2F

@r2
I Nr� D N�r D 1

r2
@F

@�
� 1

r

@F

@r@�
; (1.89)

As a result, we obtain

r2F D Nr C N� : (1.90)

Finally, the system (1.88) is written:8̂̂<̂
:̂

Dr4w C r2F

R
C �h

@2w

@t2
D f ;

r4F D Eh

R
r2w :

(1.91)

If necessary, the Airy function F can be further eliminated, in order to derive an
equation in terms of w. However, in most cases, and, in particular, in the context of
numerical resolution, it is more appropriate to keep a formulation based on a system
with two unknowns, which offers the advantage to involve differential operators of
lower orders.
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Boundary Conditions

The boundary conditions for the thin shallow shell are obtained from Hamilton’s
principle using the same method as for bars and plates (see Eq. 1.57). This yields
the following possibilities at the periphery of the shell (in r D a):8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Nr D 0 or u D 0;

Nr� C Mr�

R
D 0 or v D 0;

1

r

@Mr�

@�
D 0 or w D 0;

Mr D 0 or ˇr D 0 :

(1.92)

A shell clamped at its edge, for example, has the following four boundary
conditions:

u D v D w D 0 and ˇr D 0; (1.93)

while the boundary conditions for a spherical shell with free edges are written:

Nr D 0 I Nr� C Mr�

R
D 0 I @Mr�

@�
D 0 I Mr D 0 : (1.94)

1.2 3D Acoustic Waves

The equation of three-dimensional (3D) acoustic waves in a non-dissipative medium
at rest, at low level, forms the basis of each book of acoustics. The knowledge of
the solution allows at least deriving a first approximation of the eigenfrequencies of
wind instruments, known since Bernoulli to be very close to the played frequencies,
or the frequencies of cavity appearing in string and percussion instruments. Further
in this book, we need to partially remove the above-mentioned restrictions, par-
ticularly concerning dissipation. Conversely, we will start by studying cases much
simpler than the 3D problem. We now establish the three-dimensional equation to
set the framework of many following chapters. For more details on this subject, we
refer the reader to some basic textbooks on acoustics [12, 41, 44, 48], but also on
fluid mechanics [6].

Under the above-defined conditions, the acoustic wave equation is the result of
the elimination of two acoustic variables, the velocity v and the density �. Only
the acoustic pressure, which is a scalar quantity, is kept from two conservation
equations and a state equation. For a given physical quantity, the corresponding
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acoustic quantity is defined as the variation of the quantity around an average value,
considered as time invariant. This variation is assumed to be small, which allows to
use linear approximations of phenomena (see the comments in the box below). The
propagation of a sound wave in a fluid mainly depends on the fact that this fluid has
a mass and a compressibility. It can therefore be seen as a combination of masses
and springs, or rather springs with a certain mass, that are modeled in continuum
mechanics as infinitesimal objects, called “particles.” The compressibility of the
fluid makes an acoustic motion different from a regular, incompressible flow, with
a density remaining constant. Some results presented here are summarized and
detailed further in Chap. 5 where the dissipation effects are studied.

Acoustic Quantities and Decibels
The variation of the acoustic quantities is small, but its magnitude can vary
considerably, by a factor 107, from the lowest audible sound to the sound of a
taking off airplane: this is the reason why the decibel scale is used. For a given
acoustic pressure amplitude (i.e., the root-mean-square pressure), p, we define
NdB D 20 log.p=p0/, where p0 is the reference value equal to 2�10�5 Pa. This
value is almost the lowest sound level perceived by the ear at 1000Hz. For a
musical instrument playing piano, the sound level is approximately 60 dB, or
0:02Pa, and for a fortissimo play, the sound hardly exceeds 100 dB, or 2Pa,
which is very far from the atmospheric pressure, equal to 105 Pa. However, it
will be seen in Part III that the pressure at the input of a wind instrument can
reach 170 dB, or 6000Pa (this value still remains well below the atmospheric
pressure, although it will produce new phenomena which be discussed in
Part III of the book). Finally, to take into account that hearing perceives
frequencies between 1000 and 3000Hz much better than other frequencies,
a weighted decibel, the dBA [20, 59] has been defined.

1.2.1 State Equation of a Gas

At equilibrium, the gas has a density �0, expressed in kg m�3, a uniform temperature
T, expressed in ıK, and a pressure p0, expressed in N m�2 or Pascals (Pa). If we
consider a volume V equal to nM=�, nM being the mass of the fluid3 in the volume
V , these quantities are linked by a state equation, f .P;V;T/ D 0: As there are only
two independent thermodynamic variables, we can express any variations of the
quantities defining the fluid in terms of two of them.

Thus for the specific heat received by a fluid element dQ D TdS, (where S is
the entropy per unit mass, which is a state function), we can express it in terms
of the variations dP and dV (or dP and d� D ��dV=V). For acoustic motions of

3n is number of moles, and M the molar mass.



34 A. Chaigne and J. Kergomard

a sufficiently high frequency, it is assumed that motions are isentropic (dQ D 0),
i.e., there is no heat exchange between the fluid elements (dissipation is discussed
in Chap. 5). We derive a proportionality relation between pressure variations and
density variations, which gives the first of the three sought equations. It is written:

dP D c2d�; (1.95)

where c ,
p
.@P=@�/S is a coefficient which will be later identified as the speed of

sound waves. We note that c is simply related to the isentropic compressibility

�S , 1

�

�
@�

@P

�
S

D 1

�c2
: (1.96)

• If we write that pressure P D p0Cp and density � D �0C�0 slightly vary around
their equilibrium values,4 p0 and �0, we obtain from (1.95):

p D 1

�0�S
�0 D c2�0: (1.97)

We note also that for constant entropy, as for the density variation, the temperature
variation is proportional to the pressure variation. So if we write T D T0 C � ,
the acoustic temperature � is proportional to the acoustic pressure p. We find the
expression of the corresponding coefficient in Chap. 5, as well as the values of the
compressibility and the speed of sound for a given gas law, including temperature.
We will show that if PV D nRT, or MP D RT�, where R is the constant of an ideal
gas, we have

�T , 1

�

�
@�

@P

�
T

D 1

p0
which leads to �S D 1

�p0
and c2 D �p0

�0
D �

RT0
M
;

(1.98)
where � D Cp=Cv , the ratio of specific heats at constant pressure and volume. This
allows calculating the theoretical value of the speed of sound with respect to the
temperature. Numerical values of the speed of sound, density, and other constants
of air are given in Chap. 5.

1.2.2 Momentum Conservation

Here we write the conservation of momentum, i.e., the Newton’s second law. We use
the Eulerian variables, which are best suited for this study: these are the variables
that an observer sees when he is looking at the fluid evolution from a fixed point
in space, r, instead of following the evolution of a fluid element (Lagrangian
description).

4This difference in notation for pressure and density, although it is apparently illogical, is
convenient for the following of the statement.
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• Considering a given quantity f depending on space and time, its time variation
depends on the infinitesimal motion with velocity v D dr=dt. We write

df D f .r C dr; t C dt/ � f .r; t/

D f .r C dr; t C dt/ � f .r; t C dt/C f .r; t C dt/ � f .r; t/

D gradf .r; t C dt/:drC Œ@f .r; t/=@t	 dt;

or at the first order

df D gradf .r; t/:drC Œ@f .r; t/=@t	 dt D gradf .r; t/:vdtC Œ@f .r; t/=@t	 dt:
(1.99)

Thus, we can define in general the following operator:

d

dt
D .v:grad/C @

@t
: (1.100)

• Now we write the Newton’s second law for an infinitesimal volume:

�
dv
dt

D �gradP C �F (1.101)

where F is an external force per unit mass. In one dimension, it is read as follows:
the product of the acceleration by the mass of the fluid element is equal to the
pressure difference at both sides added to an external force. The � sign on the
right-hand side comes from the fact that, at position .x C dx/, a positive pressure
applies a force along the negative x-axis, in contrast to what happens at position x.

Equation (1.101) is the equation of the momentum conservation �v. For a
finite volume D bounded by a surface S, it can be written in the following integral
form: •

D

�
dv
dt

dD D �
“

S

PdSC
•

D

�FdD: (1.102)

The derivative with respect to time of the momentum in the volume D is equal to
the outflow, which is simply the pressure force applied on the surface, added to
the effect of forces external to the fluid.

• In linear acoustics, we can now linearize Eq. (1.101) to the first order, which is
the Euler equation. For a fluid at rest, the total velocity v is the acoustic velocity,
which is small, i.e., of the first order, and we obtain

�0
@v
@t

D �gradp C �0F: (1.103)
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Equation (1.101) implies that the zeroth order of F is zero (because �0 is not
zero): thus, F is of the first order. We obtain here the second vector equation
connecting p, �, and v, this time with a source external to the fluid.5

Bernoulli’s Law
Returning to the non-linearized Euler Equation (1.101), it is seen that if the
force F is irrotational, this is also the case for the velocity, and they both
derive from a potential, written �V and ': F D �gradV and v D grad'. If
the motion is isentropic (i.e., adiabatic and reversible), the pressure P depends
on � only, and we can write

1

�
gradP D 1

�

dP

d�
grad� D grad

Z
1

�

dP

d�
d� D grad

Z
dP

�
:

In addition (v:grad/v D 1
2 gradv2 � .v � rotv/ D 1

2 gradv2, and we obtain
from (1.101):

grad
�
@'

@t
C 1

2
v2 C

Z
dP

�
C V

�
D 0:

We can integrate this equation in space: by calculating the scalar product
of this quantity and v, and noting that the quantity v:grad D v@=@n is
the derivative in the direction of v, i.e., along a streamline. We obtain the
Bernoulli’s law by integrating along such a line:

@'

@t
C 1

2
v2 C

Z
dP

�
C V D function.t/: (1.104)

We can include the right-hand side function in the potential ', which is
defined apart from a space-independent function, and we obtain a right-
hand side equal to zero. The quasi-static version of (1.104), in homogeneous
medium and without external force, will be useful to describe the flow at the
input of a reed instrument. It is written:

P C 1

2
�v2 D constant. (1.105)

Concerning the version obtained in linear acoustics for a homogeneous
medium at rest, it is simply written: p D ��0@'=@t; where ' is the velocity
potential.

5We could also add a source to Eq. (1.97): it would be a heat source, varying in time, which does
not occur in musical instruments.
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1.2.3 Conservation of Mass

We need another equation to link the quantities p, �; and v: it is the conservation of
mass, that we first write in an integral form. The mass entering a domain D bounded
by a surface S per unit of time, to which we possibly add the one produced by a
density of source mass �q, is equal to the increase in fluid mass in the domain per
unit of time:

�
“

S

�v:dS C
•

D

�q.r; t/dD D @

@t

•
D

� dD; (1.106)

if dS is the outgoing normal of the volume. We will see examples of sources q.r; t/,
which are flow sources per unit volume, especially for reed instruments: By using
the divergence theorem, we get•

D

�
div.�v/C @�

@t

�
dD D

•
D

�q.r; t/dD:

This expression is valid for any domain D and can therefore be written in a
differential form:

div.�v/C @�

@t
D �q.r; t/: (1.107)

For the same reasons as those given for F (see Sect. 1.2.2), q is of order 1, and the
linearization gives for a homogeneous medium at rest:

�0divv C @�0

@t
D �0q.r; t/: (1.108)

1.2.4 Acoustic Wave Equation

• In summary, the three linearized equations (1.97), (1.103), and (1.108) (from
here, we omit the subscript 0 for the average density), where only two of them
have an external source, are written:

p D 1

��S
�0 D c2�0;

�divv C @�0

@t
D �q.r; t/;

�
@v
@t

D �gradp C �F:
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• Eliminating the acoustic density �0, we derive two equations for the two most
usual quantities, acoustic pressure and particle velocity:

divv C �S
@p

@t
D q.r; t/ ; (1.109)

gradp C �
@v
@t

D �F: (1.110)

• The mass-spring fluid system is finally characterized by two main parameters,
its density � and its compressibility �S. If we remove the velocity, using a cross
derivation, we obtain the wave equation for the pressure:

�p � 1

c2
@2p

@t2
D �

�
divF � @q

@t

�
(1.111)

where� D r2: The choice of the pressure as the unique acoustic variable is very
common, because, on the one hand, the pressure is a scalar quantity, and, on the
other hand, the pressure is, to a first approximation, the quantity to which the ear
is sensitive. We see that the production of sound is due to the time variation of
the flow q. If the flow is constant, there is no sound.

1.2.5 Simple Solutions: Traveling and Standing Waves

We consider the particular case of a plane wave, where all quantities vary in the x
direction, only. After the change of variables .x; t/ ! .x � ct; x C ct/, the general
solution is of the form:

p D f C.x � ct/C f �.x C ct/; (1.112)

which is the sum of two traveling waves, an outgoing one and an incoming one, of
any shape. The wave speed is c, the square of which is the inverse of the product of
the two parameters � and �S [see Eq. (1.95)]. Notice that when there is no term in
the right-hand side in the equation, the velocity potential is governed by the same
equation as the pressure (provided that it has been adequately chosen). This is also
the case for the acoustic velocity. Therefore, in one dimension, the general solution
for both the potential and velocity has an expression similar to Eq. (1.112).

For the outgoing wave, we have @f C=@t D �c@f C=@x, and we deduce
p D �cvx. The quantity p=v is the specific acoustic impedance, which, for both
waves, is called the characteristic impedance. It is equal to ZS D �c D p

�=�S,
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while c D 1=
p
��S. The pair of parameters of our fluid-spring system, � and �S, is

equivalent to another pair, which characterizes a plane traveling wave: the speed of
sound c and the specific characteristic impedance, or impedance of the medium, ZS.
We can alternatively use one pair or the other, depending on the context.

• There is another simple general solution of the wave equation, which separates
the space and time variables. If we search for a solution of the form p.r; t/ D
R.r/T.t/, Eq. (1.111) without sources becomes

c2
�R

R
D 1

T

d2T

dt2
: (1.113)

The left-hand side is a function of space only, and the right-hand side a function of
time only. Therefore, each side is a constant, known as the separation constant, that
we denote �!2 if it is negative.6 The function of time depends on two constants, A
and ':

T.t/ D A cos.!t C '/:

For plane waves, we can also find the function of space, and finally write:

p.r; t/ D .a cos kx C b sin kx/ cos.!t C '/;

where a and b are two constants. k D !=c is the wavenumber. It is related to the
spatial period �, i.e., the wavelength, by k D 2�=�. The solution is a standing
wave solution, since all points of the space are vibrating in phase (or in antiphase,
depending on the sign of the spatial solution): the phase is equal to ' or 'C� . They
are clearly distinguishable from traveling waves (1.112), which are not separable
into functions of space and time.

Complex Notation: Fourier and Laplace Transforms
If a quantity varies sinusoidally, for example, p.t/ D A cos.!t C'/, it is very
convenient to associate a complex quantity to it:

pc.t/ D aej!t , where a D Aej' . (1.114)

The interesting quantity is the real part of this complex quantity p.t/ D
<e Œpc.t/	. a is called complex amplitude. This simplifies all linear calcula-
tions, such as addition, scalar multiplication, derivation, and integration. For

(continued)

6Exponentially time-increasing or time-decreasing solutions may also exist if the constant is
positive (but this is rare). The case of complex values is treated in the following section.
Furthermore we can continue this operation by separating the variables of space. This will happen
several times in this book.
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example,

p1.t/C p2.t/ D <e Œpc1.t/C pc2.t/	 :

Thus we can use this method for the wave equation (1.111). Most often, the c
subscript is omitted because there is no confusion. The solution with separate
variables p.r; t/ D R.r/T.t/ can also be written using complex quantities.
It can happen that the constant ! is complex, thus the functions R.r/ and
T.t/ are complex (a complete problem must include the boundary conditions,
which are governing the possible values of the separation constant). For this
case there are no standing waves, as it can be easily verified by taking the real
part: the phase varies in space.

Looking for solutions with sinusoidal variation is usual. Therefore we use
a complex formulation, with a time dependence in exp.j!t/. This means that
we look for particular solutions, related to the time variation of the source.

This search for particular sinusoidal solutions should be distinguished from
the search for general solution using a Fourier transform. For the latter, we
will choose the definition:

P.r; !/ D
Z C1

�1
p.r; t/e�j!tdt; with (1.115)

p.r; t/ D 1

2�

Z C1

�1
P.r; !/ej!td!: (1.116)

In these expressions, p.r; t/ is the real physical general solution, which
implies P.r;�!/ D P�.r; !/. Thus, if the pressure at one given point is
p.t/ D a cos.!0t C '/, we have

� P.!/ D .a=2/ Œı.! � !0/ exp.j'/C ı.! C !0/ exp.�j'/	 ; (1.117)

* where ı is the delta function. Recall that, for any function g.x/, and for any
interval Œa; b	 including the origin, the delta function satisfiesZ b

a
g.x/ı.x/dx D g.0/:

For example, the wave equation (1.111) without sources becomes, in the
Fourier domain, the Helmholtz equation:

�
�C k2

	
P.r; !/ D 0:

For initial values problems, we also use the Laplace transform, where s D

 C j! has a positive real part:

(continued)
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P.r; s/ D
Z C1

0

p.r; t/e�stdt with (1.118)

p.r; t/ D 1

2�j

Z j1C"

�j1C"
P.r; s/estds: (1.119)

As a reminder, the derivation rules for this transform are

If f .t/ ! F.s/, then f 0.t/ ! sF.s/ � f .0/ and f 00.t/ D s2F.s/� sf .0/� f 0.0/:

(1.120)

1.3 Energy, Intensity, and Power

In this section, two simple examples are treated in parallel: the vibrating string and
the acoustic waves, in order to emphasize some interesting analogies.

1.3.1 Example of the Vibrating String

We consider an ideal homogeneous vibrating string without external source. In view
of the results presented in Sect. 1.1.2, the equation of motion is written:

�
@2�

@t2
� T

@2�

@x2
D 0 : (1.121)

An energy-based formulation of the problem is obtained by multiplying this
equation by the speed v D @�

@t and integrating the resulting expression over the
entire length of the string. After an integration by parts, we findZ L

0

�
@2�

@t2
@�

@t
dx C

Z L

0

T
@2�

@x@t

@�

@x
dx C

�
�T

@�

@x

@�

@t

�L

0

D 0 (1.122)

The first two integrals in (1.122) correspond to the time variation of the total energy
E D Ec C Ep of the string, where
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8̂̂̂<̂
ˆ̂:

Ec D
Z L

0

ec dx where ec D 1

2
�

�
@�

@t

�2
;

Ep D
Z L

0

ep dx where ep D 1

2
T

�
@�

@x

�2
:

(1.123)

In these expressions, ec is the kinetic energy per unit length and ep the elastic
potential energy per unit length. For the total energy per unit length, e D ec C ep,
Eq. (1.122) is simply rewritten as:Z L

0

@e

@t
dx C

�
�T

@�

@x

@�

@t

�L

0

D 0; (1.124)

which can be alternatively formulated in the form:Z L

0

�
@e

@t
C @

@x

�
�T

@�

@x

@�

@t

��
dx D 0 : (1.125)

The quantity˘ D �T @�

@x
@�

@t has the dimension of an instantaneous power at point

M with abscissa x. It is the product of the force f D �T @�

@x by the velocity @�

@t of
the string at point M. For a wave traveling to the right, this power is imparted to the
points situated at the right-hand side of M (see Fig. 1.14).

Finally, the fact that the integral in (1.125) vanishes implies that we can write at
any point:

@e

@t
C @˘

@x
D 0 : (1.126)

Equation (1.126) is a classical example of conservation law. It links the time
variation of a density (here e) to the spatial variation of a flow (here ˘ ). This
equation shows that wave propagation corresponds to a continuous energy transfer
from one point to another in the medium.

–T
∂ξ

∂ξ
∂x

∂t

c

Fig. 1.14 Energy transfer on a string
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1.3.2 Example of Linear Acoustic Waves

In linear acoustics, writing an equation for energy as a corollary of linearized
equations is questionable, since the goal is to calculate quantities of order 2.
However, it can be shown from the non-linearized equations that the following result
is correct. Using (1.109) and (1.110), the quantity div.pv/; can be calculated. Since
div.pv/ D pdiv.v/C v:gradp, we obtain

div I D � @

@t
ŒE	C pq C �v:F, (1.127)

where I D pv ; E D 1

2



�sp

2 C �v:v
�
: (1.128)

The quantity E is the total energy per unit volume: it can be shown that Ep D
1
2
�sp2 is the potential energy density, and Ec D 1

2
�v:v the kinetic energy density.

The vector I D pv is the acoustic intensity. It is connected to the power per unit area
by dP D I:ndS, where n is the unit vector in the velocity’s direction.

By integrating on a volume V and using the divergence theorem, Eq. (1.127) can
be interpreted as follows: the power

’
S pv:dS going out the volume V through the

surface S is equal to the total energy decrease in the volume added to the power
supplied by sources. In periodic regime, averaged over a period, the term containing
E vanishes (the average of the time derivative of a periodic quantity is zero), and in
the absence of a source, the average outgoing power is zero. This is due to the fact
that we assume the system to be conservative.

1.3.3 Power and Impedance

1.3.3.1 Instantaneous and Average Acoustic Power: Acoustic Impedance

With the previous definition of the acoustic power, we consider the instantaneous
power through the surface of area S in harmonic regime: P D Sp.t/v.t/ D p.t/u.t/,
where u.t/ D Sv.t/ is the flow rate. We assume that the pressure and velocity
are uniform on this surface, and that pc.t/ D A exp j.!t C '/: With the complex
variables, we define also the acoustic impedance Z D pc=uc and the acoustic
admittance Y D uc=pc; thus and uc D Ypc: We get

u.t/ D <e Œuc.t/	 D <e


YAej!tC'� D A<e.Y/ cos.!t C '/� A=m.Y/ sin.!t C '/;

and the instantaneous acoustic power is written as follows:

P D p.t/u.t/ D Pm C 1

2
A2 Œ<e.Y/ cos 2.!t C '/ � =m.Y/ sin 2.!t C '/	 :

(1.129)
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The term Pm D 1
2
A2<e.Y/ is the power averaged over a period. The second term,

of zero mean value, is called “fluctuating power,” as the system restores during a
half-period the energy it has received in the previous half-period.7

In complex notation (see Sect. 1.2.5 ), the calculation of quadratic quantities turns
out to be rather tricky. However, in practice, as previously, we often calculate the
average values of some variables over a period T, only. The general result for two
variables p1 and p2 is

1

T

Z T

0

p1.t/p2.t/dt D 1

2
<e


pc1.t/p

�
c2.t/

� D 1

4



pc1.t/p

�
c2.t/C p�

c1.t/pc2.t/
�
;

where � is the conjugate quantity. With these expressions, we can write the most
useful formulas:

Pm D 1

2
<e.pcu�

c / D 1

2
jucj2 <e.Z/ D 1

2
jpcj2 <e.Y/ (1.131)

1.3.3.2 Power Supplied to a Passive System

• The power is either provided to a system, or provided by this system, depending
on the sign of the real part of the impedance (resp. admittance). Consider a simple
example in mechanics: a force f is applied to a passive system, it performs the
mechanical work f:x, where x is the displacement of the system. The generated
power, i.e., the work per unit time, is therefore f:v. This scalar product is equal
to the provided power, which is also the power dissipated in the passive system,
and it is, by definition, positive.

• By convention we define the impedance as the ratio of a quantity providing
energy to a quantity characterizing a passive system (we can see that if we choose
the reaction force of the passive system on the excitation, equal to �f, we would
have a definition leading to a negative real part for the impedance). An example
of such a system is a volume of air excited by a vibrating wall: the definition of
the impedance is the ratio between the force applied by the wall on the air and
the velocity (either of the wall or of air, because these velocities are identical
for a perfectly reflecting wall). The opposite convention would be to use the
force exerted by air on the wall. If the passive system is not dissipative, i.e.,
conservative, the impedance is purely imaginary.

7The average power Pm is also called active power. A “reactive” power is also defined by

Pr D 1

2
=m.pv�/ D �1

2
jpj2 =m.Y/ D 1

2
jvj2 =m.Z/: (1.130)

We choose arbitrarily its sign, which will be positive or negative depending on whether the system
is dominated by stiffness or mass (we do not go further here, because the chosen quantities are
formal).



1 Continuous Models 45

Fig. 1.15 Acoustic pressure
force

S

p
i

F = Spi

• A special case is that of the force of acoustic pressure, because pressure is a scalar
quantity. Let us consider a passive surface S on which the pressure p is applied
(see Fig. 1.15). We choose, by convention, to define the specific impedance as
p=v, where v is the projection of the velocity onto the normal to the surface in the
direction of the force due to the pressure (and the acoustic impedance as p=.Sv/).
We see that this convention is consistent with the previous choice. It is also the
case for the input impedance of a wind instrument: as the resonator is passive, if
a pressure is applied at its input, the input impedance of the resonator is always
defined by choosing the velocity projection along the axis directed towards the
exit of the pipe.

1.3.3.3 Standing Waves

In sinusoidal regime, for the complex quantity corresponding to a standing wave,
we can write: pc D f .r/ exp.j!t C '/, where ' does not depend on the spatial
dimension. Using the Euler equation (1.110), we derive that the velocity is in phase
quadrature with the pressure, since @=@t D j!. Therefore, the impedance is purely
imaginary for the three velocity components, thus the admittance vector Y D v=p
is purely imaginary, and the average acoustic intensity over a period is zero in all
directions. It is noticeable that standing waves do not carry any energy averaged
over a period. It is (almost) the case for the oscillation of the air column of a wind
instrument or, similarly, for the vibration of a string.

1.4 Sources in Musical Acoustics: Excitation Mechanisms

In the previous sections, a number of differential equations were written to describe
the structures used in musical instruments. To use them, we must know the sources,
which can be introduced either in the differential equation itself, such as for Eq. (1.9)
or Eq. (1.111), or in the boundary and initial conditions. In this section, some type
of sources found in musical acoustics are presented.
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1.4.1 Generalities About Sources and Types of Oscillations

To build a model, we need to consider that one or more physical quantities are
imposed in a region of space and time, and that they are insensitive to the medium
in which they are imposed. These quantities play the role of sources, or generators.
Thus in a linear circuit, it is often assumed that one can impose a voltage (possibly
with an internal impedance, according to Thevenin and Norton’s theorems). All
quantities in the circuit are proportional to the magnitude of this source. The power
supplied to the circuit depends on the circuit, i.e., on the impedance viewed at the
source. Thus a source term not only implies a notion of imposed magnitude, but also
a notion of supplied power.

In musical acoustics, we have to consider sources that produce oscillations and,
in turn, sounds. Different types of oscillations can be encountered:

• The oscillations are linear if the result is proportional to the cause, or, in
case of multiple causes, if the result is a linear combination of these causes
(superposition principle). If a source is sinusoidal, a result proportional to the
cause is also sinusoidal with the same frequency. Otherwise, the oscillations are
nonlinear.

• Oscillations are free after extinction of the sources, and are forced during
application of the sources.

Musical instruments enter into two main categories:

• Instruments with a transient excitation, followed by free oscillations. In this case,
the sound usually lasts longer than the excitation: this is the case for percussion
and string instruments, except for bowed strings. For these instruments, the free
oscillations can be either linear or nonlinear (piano, timpani, cymbals,. . . ). The
excitation is produced by means of an impact (hammer, stick, and mallet), or a
pluck (plectrum and finger).

• Instruments with a continuous excitation, which is often constant or slowly
varying. Oscillations arising from a constant or slowly varying excitation are
necessarily nonlinear, and are called “self-sustained oscillations.” This is the
case for bowed string instruments excited by a continuous bow-string friction
process, and for all wind instruments, where the excitation is the result of jet–
edge interaction (flute-like instruments) or air–structure interaction (vocal folds,
lips, and reed).

Some constitutive parts of an instrument can be regarded as steady-state oscil-
lating sources generating forced oscillations: a string fixed at the bridge of a
soundboard (or soundbox), for example, acts as a source of oscillations for the
board. Such a source generally has a low internal impedance, which means that
the string transmits to the board the force developed at the point of coupling,
almost entirely. Conversely, the soundboard (or soundbox) is an oscillating source
that induces forced oscillations to the surrounding air. This source is generally
of high internal impedance: the board transmits its velocity to the ambient fluid.
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For wind instruments, the air in the pipe plays the same role for the external air
as the soundboard. It can be assumed, especially at low frequencies, that the flow
produced at the holes is not affected by radiation.

For most models expressed in the form of differential equations, such as acoustic
waves, source terms appear in the right-hand side of the conservation equations. In
some cases, however, the sources are included in the boundary conditions, or even in
initial conditions. In a number of cases, both formulations are equivalent. A simple
example is the one of a plucked string released from its initial position at the origin
of time: the problem can be either treated as an initial value problem, or as a problem
with a second member that contains a plucking force (see Chap. 3).

1.4.2 Acoustic Sources

1.4.2.1 Flow Source

Equations (1.109) and (1.110) show two types of acoustic sources, referred to as
sources of type 1 (flow sources) and type 2 (force sources). We will reexamine
these concepts in Chap. 12 devoted to radiation in free space. Let us now illustrate
Eq. (1.109) with the example of a vibrating body that imposes its velocity to the fluid
(at rest). One can imagine the membrane of a small loudspeaker, with displacement
�.t/, acting at a given point a in space. This loudspeaker is assumed to be a point-
source, which means in practice that its dimensions are much smaller than the
wavelength (see the following Sect. 1.5). The speaker is located in an enclosure, to
avoid a short-circuit between both sides of the membrane. In three dimensions, the
speaker can be viewed as a “pulsating” sphere, radiating uniformly in all directions
(see Fig. 1.16 ).

This source, which is well-known in acoustics, is obviously an idealized object,
only conceivable in “thought experiments.” The displacement per unit volume is
�.t/ı.r � a/, where ı is the Dirac delta function (integrating this quantity on any vol-
ume yields �.t/). Consequently, the velocity per unit volume is ı.r � a/@Œ�.t/	=@t,

Fig. 1.16 “Punctual”
speaker, located in an
enclosed space, radiating:
(a) in free space; (b) in a pipe

a b
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and the flow per unit volume is q D Smı.r � a/@ Œ�.t/	 =@t; where Sm is the
membrane area.8

• Let us now turn back to wind instruments, assuming a cylindrical cross-section.
The elementary acoustic solutions are plane waves. We put the little speaker on
the side of the pipe (Fig. 1.16), and we study the case of a sinusoidal excitation
with angular frequency !. A flow us.t/ D Sm @ Œ�.t/	 =@t D Smj!� is produced,
at point x D a. For a pipe of cross-section S, the projection of the velocity vectors
on the x axis yields

us D S Œvx.x C dx/� vx.x/	 D S


vx.a

C/� vx.a
�/
�
: (1.132)

It is assumed further that the speaker does not disturb the pressure field, which
remains plane and continuous at the position of the speaker (this question will be
discussed in more details in Chap. 7 with regard to the effects of side holes). The
law of dynamics: dp=dx D �j!�vx (1.110) applies here. Therefore, the pressure
p is continuous at position x D a whereas its derivative is discontinuous. This
gives for the wave equation:

d2p

dx2
C !2

c2
p D � j!�

S
usı.x � a/: (1.133)

(We can verify this result by integrating this equation between a� and aC: it
is the discontinuity of the derivative that brings the Dirac delta function on the
right-hand side).

• If we now return to an arbitrary dependence in time us.t/, we obtain

@2p

@x2
� 1

c2
@2p

@t2
D ��

S

dus.t/

dt
ı.x � a/: (1.134)

This is consistent with what was obtained in three dimensions. The presence
of the cross-section S here is a consequence of the unidimensional character of
the Dirac delta function which is inversely proportional to a length, and not to
a volume. We can imagine a practical illustration by considering the key of an
instrument with side holes that are instantaneously closed. The flow is almost a

8Assuming a given function of time for the displacement, the source term in Eq. (1.111) is
entirely known. A “realistic” simple function is, for example, hH.t/, where h is the amplitude
and H.t/ the unit step function (or Heaviside step function). In practice, this means that the
membrane is suddenly moved, then blocked. In this case, the source term in (1.111) becomes
��hSmı.r � a/@ Œı.t/	 =@t, since ı.t/ is the derivative of H.t/. In the next chapters, a particular
case of elementary source called Green’s function, where the source is written ı.r � a/ı.t � t0/,
will be examined in details. To achieve it in our “thought experiment,” the velocity should be a
step function, and therefore, the displacement should increase indefinitely, which is not realistic!
Another way to obtain this Green’s function is to write the acoustic wave equation in terms of
velocity potential [see Eq. (1.105)]. In this latter case, the source term becomes hSmı.r � a/ı.t/.
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pulse, but as the closure is not instantaneous, the pulse is not perfect. However,
we clearly hear a sound with definite pitch.

Since we impose a displacement, we can also consider a problem without a
source, but rather with imposed boundary conditions.9 Several problems exist with
imposed flow, or rather with flow function us D F.p/ of the pressure, particularly
for reed instruments. At the origin of the transients, this function is linear, and we
can write us D F0 C Ap. Since we are interested in the derivative only, the source
term is written � �

S Apı.x � a/. As the oscillation starts, growing exponentially, the
source must provide energy, and the coefficient A must be negative. Otherwise, it
would not be a source, but a dissipating system.

1.4.2.2 Relation Between Applied Force and Acoustic Force Strength

What happens if the membrane of the speaker, which is now supposed to be free on
both sides, is set perpendicular to the pipe, thus preventing any continuous flow? It
exerts a force f on the fluid, which has to be balanced by the pressure. By projecting
this force on the x-axis, we obtain

f C S


p.a�/� p.aC/

� D 0 :

With an imposed force, we obtain a source of pressure difference and not the
difference of its derivative. We can write an expression similar to (1.134), by
interchanging the roles of pressure and velocity, i.e., by using the conservation of
mass instead of Euler equation:

@2vx

@x2
� 1

c2
@2vx

@t2
D ��S

S

df .t/

dt
ı.x � a/:

Taking the derivative of both terms with respect to x, and integrating with respect to
time, we get

@2p

@x2
� 1

c2
@2p

@t2
D 1

S
f .t/

d

dx
ı.x � a/: (1.135)

In Chap. 10, it will be shown that the production of sound in flute-like instruments
can be represented by such an aeroacoustical force strength.

9A wave equation or a boundary condition including a source is called heterogeneous. It can
be shown that it is always possible to transform a heterogeneous boundary condition into a
homogeneous one by changing the wave equation.
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F

F

Fig. 1.17 (Left) A piano hammer (© Itemm). (Right) Interaction between an exciter and the
vibrating system. Example of the piano hammer. As a result of the motion of the key pressed
by the pianist, the hammer strikes the string(s) and transmits a force F that depends on time and
impact velocity. According to the principle of action and reaction, the string exerts an equal and
opposite force that leads to push the hammer back after an interaction time of a few milliseconds

1.4.3 Transient Mechanical Excitation

We describe here the transient vibrations of strings and percussion instruments
subjected to impact or friction (plucking). During such transients, the energy of the
exciter is transmitted to the vibrating system during a finite duration. In this time
interval, the interaction between the exciter and the system can be rather complex
and it is generally not possible to ignore the reaction of the structure on the exciter.
In the case of the piano, for example, the impact force is not imposed: it is the result
of the temporal evolution of the strings in contact with the hammer (see Fig. 1.17).

1.4.3.1 Friction and Plucking

Transient excitation by friction, or plucking, occurs in plucked string instruments
such as guitar, lute, harp or harpsichord. In most works, the plucking action is simply
viewed as an initial condition for the displacement of the string (see [45]). This
model provides a first approximation of the spectral content of the free vibration of
the string. However, it does not account for the interaction with the exciter or the
player. This initial stage is essential since it contributes to determine the timbre of
the produced sound. Auditory experiments performed with recorded sounds where
the initial transients are truncated show that the listeners are not able to recognize the
instruments anymore. Some elements to consider for a better physical description
of the plucking are given below.

• The string is moved from its initial position by a force localized on a small portion
of the string, that we can write as F.x; t/ D F.t/ı.x�xo/. As long as the frictional
force exerted by the finger (or plectrum) on the string remains below a given
threshold FM, it stays stuck to the exciter: this corresponds to the stick phase.
The amplitude of F then continues to increase and is balanced by the restoring
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force resulting from the angle formed by the two sides of the string on both sides
of the exciter. During this phase, the motion of the string might contain a torsional
component.

• When the restoring force reaches the threshold FM , then the string slides under
the finger and begins to produce free oscillations. During this slip phase, which
is relatively short compared to the stick phase, the finger (or plectrum) is likely
to introduce a damping which decreases as the relative velocity between exciter
and string at the contact point increases. We will find again such a succession
of stick and slip phases in the mechanics of the bowed string (see Chap. 11). In
the latter case, the essential difference follows from the fact that such transitions
occur repeatedly with a cadence that gradually synchronizes with the oscillation
of the string.

A detailed description of the excitation of a guitar string by the friction of
the finger was done by Pavlidou [43]. More recently, a similar model has been
developed for a plucked harp string [14, 15, 34]. We briefly recall here some
principles of the Pavlidou model. The two transverse polarizations and torsional
waves are taken into account on the string. We also consider the motion of the
bridge at one end. The tension T of the string is assumed to be constant during
the motion. The finger model first includes a muscle, represented by a nonlinear
spring with a spring force S.�/ which is a hyperbolic function of its elongation �
(see Fig. 1.18) written as:

S.�/ D

8̂̂̂<̂
ˆ̂:


1�


2 � �
for 
2 > � � 0;


1�


2 C �
for � 
2 < � < 0;

(1.136)

where 
1 and 
2 are constants derived from experimental measurements. The
model also includes the upper part of the finger, considered as a lever arm with
a speed imposed by the guitarist, and the nail, circular, in direct contact with
the string. The interaction with the pulp of the finger is not considered here (see
Fig. 1.19).

During the three phases of the motion, the model is obtained by considering:

1. During the stick phase: (a) the translational motion of the string element
interacting with the exciter, (b) the rotational motion of the fingertip, (c) the
rotational motion of the string element, and (d) the relative velocity between
string and finger.

2. During the slip phase: the friction coefficient� depends on the relative velocity
Vrel between string and nail. Typically, such a function is of the form (see
Fig. 1.20):
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ξ

S

0

Fig. 1.18 Force-elongation diagram of a muscle (from Pavlidou [43])

Articulation

Finger

String

Muscle

Articulation

Fig. 1.19 Finger model (from Pavlidou [43]). This diagram shows the two last phalanges of the
finger. The last one is in direct contact with the string, and its motion is guided by both the
articulation and muscle that connect it to the upper phalanx

� D

8̂̂<̂
:̂
.�V0�s � �dVrel/

Vrel C V0
for Vrel > 0;

.V0�s � �dVrel/

V0 � Vrel
for Vrel < 0 :

(1.137)

In this equation �s is the static friction coefficient, �d the dynamic friction
coefficient, and V0 the initial velocity of the finger impacting the string. A similar
model accounts for the friction of the rosin on a violin bow (see, for example,
[50], and Chap. 11 of this book). For more information on friction models, the
reader can refer to [1].
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Fig. 1.20 Friction model during the slip phase

Fig. 1.21 String–plectrum
interaction force of a
harpsichord note
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3. During the free oscillations: the motion of the string is completely defined by
three equations (two transverse polarizations and one torsional oscillation) with
initial conditions obtained from the equations of the stick phase.

Giordano and Winans measured the string–plectrum interaction force for a
harpsichord string (see Fig. 1.21). They showed a gradual increase of the force
during the stick phase followed by a rapid decrease during the slip phase [24].



54 A. Chaigne and J. Kergomard

For plucked strings, there is an average rise time of about 20 ms followed by a
rapid decrease (<1 ms), after which the free oscillation starts. Systematic variations
of interaction parameters show that the sound quality primarily depends on the
following properties:

• The characteristics of the finger-string friction, mostly during the slip phase. This
mainly affects the relaxation phase.

• The elastic properties of the finger muscle.
• The input admittance of the string at the bridge. This admittance affects the

transmission rate of energy from string to soundboard. The reaction force exerted
by the string on the exciter depends on this rate: the player says that he “feels”
his instrument under his finger.

• The initial direction of the finger motion (angle of attack). This parameter affects
the initial polarizations of the string that are coupled at the bridge [32].

Finally, the plucking velocity primarily affects the amplitude of vibration (and
sound), and weakly the timbre, as long as the assumption of linear vibrations of
the string is valid.

1.4.3.2 Elastic Hertzian Impact

Impact excitation concerns the piano and almost all percussion instruments. Musical
experience shows that the sound produced depends, among other things, on the
properties of the exciter: the thickness of the felt varies among the piano hammers,
and timpani mallets show a large variety of rigidity (see Fig. 1.22). The head of
xylophone mallets also differs from each other in terms of weight and stiffness. To
be convinced of the relevance of exciter properties, just look at percussionists in an
orchestra: they change their sticks and mallets several times during a performance.

Fig. 1.22 Examples of
kettledrum mallets. They
differ from each other
through the stiffness of the
felt and the elasticity of the
stick
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Fig. 1.23 Contact between
an elastic sphere and an
infinite rigid plane. The
quantity ı indicates the
compression of the sphere,
which represents its change in
thickness consecutive to the
impact

d

During the impact, an interaction force is generated between the impactor and
the struck structure, as a result of the deformation of both elastic solids in contact.
Historically, the first theory of contact between two semi-infinite elastic solids is
due to Hertz and was published in 1882 [29]. This theory predicts, in particular, the
stress distribution in the contact area. One of the most famous result of this theory
is the expression of the interaction force F:

F D Kı3=2; (1.138)

where ı is the compression or, in other words, the summation of strains on both
surfaces (see Fig. 1.23), and K is a constant which depends on both the curvature
and elastic coefficients of the solids. This constant is given by [33]:

1

K
D 3

4

�
1 � �21

E1
C 1 � �22

E2

�s
1

R1
C 1

R2
D 3

4

1

Eeq

1p
Req

; (1.139)

where E1 and E2 are the Young’s moduli, �1 and �2 the Poisson’s ratios, R1 and R2
the radii of curvature of the solids at the contact point. The quantities Eeq and Req

are equivalent Young’s modulus and radius, respectively, often used to simplify the
formula.

The formula (1.139) can be applied to the case of a sphere impacting an infinite
rigid plane, as R2 ! 1. If, in addition, E1 	 E2, which means that the impactor is
significantly more rigid than the impacted surface. As a consequence, the coefficient
K becomes

K D 4

3

E2
1 � �22

p
R1 in N m�3=2 : (1.140)

In other words, the softer solid imposes the main properties of the impact.

• Hertz’s contact theory remains valid as long as the dimensions of the contact
area remain small compared to both the dimensions of the solids and radii of
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curvature. It does not predict good results for head materials subjected to large
deformations as, for example, rubber (see [16]). Hertz’s theory also ignores the
effects of inertia and elastic waves in the media in contact. However, if the contact
time is small compared to the period of the studied phenomena, this theory
reasonably accounts for experimental observations, which explains its wide use.

Pulse Duration and Maximum Impact Force

Based on Hertz’s law, an estimation for both the pulse duration and maximum of
the impact force can be derived. If V0 is the initial velocity of the impactor on the
solid surface at rest, and denoting mr D m1m2=.m1 C m2/ the reduced mass of the
two solids, the conservation of the total energy of the system (without dissipation)
is written [33]:

1

2
mr

Pı2 C 2

5
Kı5=2 D 1

2
mrV

2
0 : (1.141)

The maximum of the compression is obtained when Pı D 0, which provides

ıMax D
�
5mr

4K

�2=5
V4=5
0 : (1.142)

The duration � of the force impulse is obtained by integrating (1.141):

� D 2

Z ıMax

0

dıs
V2
0 � 4K

5mr
ı5=2

D 2

�
25m2

r

16K2V0

�1=5 Z 1

0

d�p
1 � �5=2

; (1.143)

which yields finally:

� D 3:218

�
m2

r

K2V0

�1=5
: (1.144)

Equation (1.144) shows, in particular, that the pulse duration only weakly
depends on the impact velocity. This result is in agreement with measurements made
on a large number of mallets [11]. From an experimental point of view, the constant
can be derived K from measurements of the maximum impact force and pulse width
using Eqs. (1.138), (1.142), and (1.144). We find

K D 35:4
1

�3

s
m3

r

FMax
: (1.145)
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1.4.3.3 Empirical Generalization of Hertz’s Law

Since Ghosh in 1927 [22], several authors proposed a generalization of Hertz’s law
for piano hammers, on the form:

F D Kıp; (1.146)

where the superscript p is between 2.0 and 4.0 approximately [26]. This expression
has been also used for modeling the impact of timpani mallets [46]. The power
law (1.146) is essentially empirical and is not based on an accurate analysis of
stress and strain, in contrast with Hertz’s law. This expression fairly accounts for
the compression of the felt (a porous material) wrapped around the wooden tip. It
offers the practical advantage to identify experimental force-compression laws with
two parameters only.

1.4.3.4 Impact with Dissipation

In practice, the contact force is not purely elastic. Due to their rheological properties,
hammer and mallet materials are subjected to internal dissipation. Moreover,
impacts can be strong and lead to additional dissipation due to plastic deformation.
We can, for example, easily observe proofs of impacts on wooden xylophone bars.

Viscous Dissipation

N.B. In this section, plastic deformation is ignored.
As a consequence of viscous dissipation, the force-deformation curve F.ı/ shows

a hysteresis loop (see Fig. 1.24). This loop is due to the viscoelasticity of the
material, a “memory effect” which produces a relaxation (decrease) of stress over
time after application of strain. The first attempt to extend Hertz’s law to viscoelastic
media was made by Pao [42]. His theory leads to a modified expression of the form:

F D F0

�
ı3=2 �

Z t

0

�.� � t/ı3=2.�/d�

�
; (1.147)

where �.t � �/ is a relaxation function which can be represented by a sum of
exponentials. This expression was revisited by Stulov [53] for piano hammers:

F D F0

�
ıp � "

�o

Z t

0

exp

�
� � t

�o

�
ıp.�/d�

�
; (1.148)

where " is a dimensionless coefficient that reflects the hysteresis area, i.e., the energy
lost per cycle, and where �o is the relaxation time. In the case of piano hammer felt,
�o is approximately 1–2 ms.
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Fig. 1.24 Force-compression curve for a dissipative mallet with hysteresis loop. Solid line:
experimental curve; dotted line: differential model (1.149)

For piano and percussion instruments, the contact pressure on the felt is applied
relatively slowly, since the impact velocities do not exceed 5 m/s. This allows
writing F 	 �o

dF
dt . Calculating dF

dt from (1.148), we find

Ftot ' F C �o
dF

dt
D K

�
ıp C R

dıp

dt

�
; (1.149)

where K D F0.1 � "/ is the stiffness coefficient and R D �o
1�" the coefficient of

viscous dissipation. The differential formulation (1.149) has been used in models
of piano and drums [31]. An estimation for the coefficient R can be obtained by
energetic considerations [17]. This differential expression is simpler to use than
the integral formulation (1.148), though it remains valid for medium or low impact
velocities only. Figure 1.24 shows a comparison between an experimental curve and
a differential model of type (1.149) for a timpani mallet.

Plastic Strain

By definition, a plastic solid shows stable residual strains, after cessation of the
excitation. This behavior does not depend explicitly on time (see, for example,
[38]). For an elastic, perfectly plastic solid, strain " is linear (and characterized
by a Young’s modulus E) below the yield stress (or threshold) of plasticity 
s.
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Fig. 1.25 (Left) Behavior law for an elastic perfectly plastic solid. (Right) Behavior law for an
elastoplastic solid

The stress then remains constant as " increases above 
s=E. As the stress then
decreases, another curve is drawn, distinct from the linear part, showing a permanent
deformation "p at 
 D 0 (see Fig. 1.25).

In the case of an elastoplastic solid, the stress continues to increase beyond the
threshold of plasticity 
s, generally in a nonlinear manner with respect to ". Again,
we note the existence of a permanent deformation after cessation of the loading (see
Fig. 1.25).

In the case of contact between two spheres, Johnson showed that the impact
becomes plastic when the average pressure between the two solids is about pm D
1:1
s [30]. From this property, this author deduced that the velocity of contact above
which plastic deformations are likely to occur is about Vl D 0:14m s�1 for a steel of
medium hardness and Vl < 0.08 m s�1 for aluminum. The important point indicated
by these values is that plasticity is present in most of the common impacts, even at
low speed. For an impact between two solids made of the same material of density
�, with a threshold of plasticity 
s and for which the the relative velocity of impact is
V , the following table, due to Johnson [30], provides a good order of magnitude:

• �V2


s
< 10�6 ! elastic behavior.

• 10�6 < �V2


s
< 10�3 ! elastoplastic behavior

• 10�3 < �V2


s
< 10�1 ! perfectly plastic behavior.

One effect of plasticity is that the force-compression curve again shows a
hysteresis loop (see Fig. 1.26).

This curve shows a maximum at point A (of coordinates Fc; ıc). We see that
there is a non-zero residual deformation ıp as the interaction force equals zero,
corresponding to the situation where the two solids move away from each other
(point B on the curve). As a consequence, the energy restored during the decrease
of the force, which corresponds to the area below the curve AB, is less than the
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Fig. 1.26 Force-compression
curve for an impact between
two elastoplastic solids.
From [54]

Elastoplastic
solid

Hertz's law
(elastic solid)
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B
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energy stored during the impact, corresponding to the area below the curve OA. The
restitution coefficient is the ratio between these two energies. It is less than unity for
a plastic impact.

Several formulations were proposed to extend Hertz’s law to elastoplastic or
perfectly plastic case. Stronge [52] suggests to model the loading curve OA using
Hertz’s law, and the unloading curve AB with an equation of the form:

F D 4

3
Eeq

q
R�

eq.ı � ıp/
3=2: (1.150)

where R�
eq is a curvature radius greater than Req, due to plastic deformation.

Vu-Quoc and Zhang developed a numerical model of impact between two
elastoplastic spheres whose central idea is based on the decomposition of the contact
radius into an elastic part and a plastic part [54]. The detailed presentation of this
theory is beyond the scope of the present book. The results show that this model is
able to predict the variations of the coefficient of restitution with the impact velocity
accurately. This represents a significant advance over previous models in the sense
that most of the parameters of this model can be directly related to material and
geometric properties of the solids. Impact modeling still remains an open field of
study, especially in the field of granular media.

1.5 Lumped Elements; Helmholtz Resonator

Having established the differential equations and discussed about the sources, we
study a very particular case, usually encountered at low frequencies. Under certain
conditions, the acoustic wave equation can be simplified. Leaving aside the sources
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in (1.111), there are conditions for which the term containing the time derivative
(of order two) of the pressure is very small compared to that containing the spatial
derivative. To establish these equations we make a dimensional analysis, assuming
that there is a length L and a time � by which we make dimensionless distance and
time. If we note these quantities x, y, z, t, we get

@2p

@x2
C @2p

@y2
C @2p

@z2
D .He/2

@2p

@t2
;

where He D L
c� is the Helmholtz number, which is mostly written with an angular

frequency ! D 1=� :

He D !L

c
D kL D 2�L

�
; (1.151)

where � is the wavelength. We see that at the limit of low frequencies, spatial
variations become predominant and we can solve the Laplace equation �p D
0, valid for an incompressible (not viscous) fluid. This occurs particularly near
singularities such as the open end of a pipe, when considering only a “compact”
area, i.e., an area of dimensions small compared to the wavelength c=!: such a zone
is called “lumped zone.” In fact we can go a step further by examining the two first
order equations involving pressure and velocity, (1.109) and (1.110).

• In Eq. (1.109) without right-hand side, the time-derivative term becomes very
small under the following conditions: at low frequencies—in fact at low
Helmholtz number, as it has been seen—or if the pressure is small, which
also occurs near the end of a pipe, or if the compressibility is low (the fluid is
close to incompressibility). Then, by integrating the term divv in the considered
zone, we see that the flow rate is zero. Thus, in one dimension, the incoming
flow rate is equal to the outgoing one, and it is the same for the velocity. The two
equations can be reduced to an acoustic “Ohm’s law” 10:

vx.x/ D vx.x C ıx/ D v I p.x/� p.x C ıx/ D �.@vx=@t/ ıx D �c.@vx=@t/He :
(1.152)

• In the second Eq. (1.110), the time-derivative term becomes very small under the
following conditions: at low frequencies, if the velocity is small, or if the fluid is
very light (small �). This occurs in particular near a rigid wall, where the velocity
is zero, and, in turn, the term gradp is zero: the pressure is uniform in the

10The electroacoustic analogy called “acoustic impedance” associates acoustic pressure and
velocity to electric voltage and current, respectively. Ohm’s law states that between two points
the difference in one of the quantities is proportional to the other quantity.
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considered area, and using the divergence theorem, the total flow rate entering
the zone of volume V is equal to V�S@p=@t. In one dimension this gives the
second Ohm’s law11:

p.x/ D p.x C ıx/ D p I vx.x/� vx.x C ıx/ D �S.@p=@t/ ıx D c�S.@p=@t/He:
(1.153)

• A physical system exists that combines these two effects: the Helmholtz res-
onator. It is made of a rigid cavity of volume V with a neck of length ` and
section S (see Fig. 1.27), the neck being open onto a large space imposing a low
pressure at the exit of the neck.

In order to model the resonator at wavelengths much greater than its dimensions,
taking the sources into account, we have to consider the connection between the
neck and the volume. Using again the divergence theorem, the flow rate u entering
the cavity, where the pressure is uniform pV , is written:

u D Ca@pV=@t � usource; (1.154)

Pv

Pv

Pv

Pv

Us

Ps Ps

Us

Ma

Ma

Ca
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u

u

u

u

Fig. 1.27 Helmholtz resonator: its behavior is that of a system with localized constants at its
resonance frequency. The volume of the cavity is V, the length and thickness of the neck are `
and S. We have: Ca D �SV and Ma D �`=S: The case shown on the top of the figure is that of a
flow rate excitation [first Eq. (1.156)], the lower one corresponds to a pressure excitation [second
Eq. (1.156)]

11We will encounter several times this concept of lumped-element systems. Notice that the finite
difference calculation (Sect. 1.7.1) is based upon the division of a continuous system into lumped
elements.
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where Ca D �SV is the acoustic compliance and usource D ”
V q.r; t/dV [see

Eq. (1.109)]. In the neck, the flow entering from outside is equal to the flow rate
u entering the cavity. As the transverse dimension of the neck is small compared
to the wavelength, we assume that the pressure is uniform (i.e., plane) in a slice of
fluid. We will see later (Chap. 7) how to connect the pressure at the exit of the neck
with that of the cavity. For now, we assume that they are equal. Using the equation
obtained above in one dimension, we derive

� pV D Ma
@u

@t
� psource: (1.155)

where Ma D �`=S is the acoustic mass and psource D pe C �
R

neck Fxdx: In this last
expression the incoming pressure is added to the acoustic force strength.

• We will see that the correct matching leads to the same equation with a modified
length ` (Chap. 7). We can then distinguish the two problems depending on
whether the source is a source of flow in the cavity or a source of pressure in
the neck, and write the second-order differential equations:

Ca
@2pV

@t2
C 1

Ma
pV D @usource

@t
and

Ma
@2u

@t2
C 1

Ca
u D @psource

@t
:

(1.156)

These equations are similar to those of electric circuits which are well known: if
we choose the “acoustic impedance” analogy (pressure, flow, mass and compliance
are analog of voltage, current, inductance, capacitance, respectively), the first
equation is that of an antiresonant circuit (mass and compliance in parallel), while
the second is that of a resonant circuit (mass and compliance in series). Of course,
we expect to find in these equations a derivative of order 1, associated with
damping. We will formally introduce damping in Chap. 2 to study the behavior of
these equations. However in most situations, damping is frequency dependent, the
modeling as a derivative of order 1 being a rough approximation.

Another way to model approximately an acoustic (or mechanical) system is to
calculate a modal expansion, and to truncate the modal series to the first mode, as it
is often done in this book.

1.6 Vibrating Strings-Sound Pipes Analogies

The analogy between longitudinal waves in solids and fluids is obviously very
natural. It is so true that the term analogy can be discussed. However, it is not really
useful in musical acoustics. As previously noticed, we are most often interested
in transverse vibrations of solids, mainly in 2D, while for the fluid we are mainly
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concerned with 1D and 3D models. We therefore limit this section to the analogy
between lumped elements (“0D”) and the analogy between vibrating strings and
sound pipes, considered as 1D systems. Notice that, in all cases, we choose a
pair of main quantities whose product gives the power, and whose ratio gives the
impedance. Thus the mechanical impedance is the ratio force=velocity, and the
admittance (or mobility) the inverse ratio. For a fluid, several pairs may be chosen.

• Let us start by lumped elements: we consider a fluid element of surface S moving
with a velocity v and subjected to a pressure force f D Sp, which are the
projection of vectors on the same axis. If we consider these two quantities, the
acoustic system appears to be a mechanical system. But this choice of basic
quantities is not the most useful for a main reason: as seen in Sect. 1.5, at the
junction between ducts, the conserved quantity is the flow rate u D Sv. This is
similar to the forces at the junction of several elementary mechanical elements,
such as springs, having an identical velocity. For joined ducts, we will show
that, at the lowest frequencies, the pressure is uniform. An important example
for wind instruments is the junction between the main pipe and the “chimney”
of a tonehole. Flow conservation at a junction is a major reason for which the
most used impedance for a fluid is the impedance called “acoustic impedance,”
based upon the equivalence between pressure p and velocity of a mechanical
system v, and between acoustic flow rate u D Sv and force f , respectively. We
consider here scalar quantities obtained by projecting a vector on an axis. Thus
the acoustic impedance12 is defined as the ratio pressure/flow rate Z D p=Sv.
Notice that the power through a section S of pipe is given by the product of these
two quantities, whatever the chosen pair .f D Sp; v/ or .p; u D Sv/.

• This analogy is presented in Table 1.1 for vibrating strings and sound pipes in
one dimension.13 We call it “reverse” analogy, because it reverses potential and
kinetic energies. However, it is the most useful in practice. It can be extended, in
particular, to continuous sources of self-sustained oscillations: velocity for bowed
strings, pressure for reed instruments. On the other hand, for flutes, because of
the nature of the source of self-sustained oscillations, it is preferable to choose
the direct analogy, where the pair (f ; v) matches the pair (p; Sv). For this reason,
Table 1.1 also mentions this analogy.

12Sometimes we will also use an acoustic impedance called specific defined by the ratio
pressure/velocity (see Sect. 1.2.4). This choice is convenient for some problems of unbounded
media, or for energy transmission between two media with different sound speed or density.
13This table has some specificity with regard to the dimensions. The quantity fext, for example,
is a force per unit length, whereas the quantity F in Eq. (1.110) is a force per unit mass. In
addition, the equation of vibrating strings is written in terms of velocity: this is rather unusual,
but it allows to easily highlight some analogies. Finally, the wave equations are written here for
a homogeneous medium, although we will have to deal with heterogeneous strings and horns, for
which the analogies remain valid.
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Table 1.1 Reverse and direct analogies for strings and pipes

Pipes (reverse
analogy)

Pipes (direct
analogy)Strings

Variable 1 f .x; t/ D
�T@�=@x D force
applied to the right
of x by the tension T
(towards the x > 0)

u D flow rate p D pressure

Variable 2 v D velocity p D pressure u D Sv D flow rate

Equation 1 @v

@x
D � 1

T

@f

@t

@p

@x
D ��

S

@u

@t

@u

@x
D �S�S

@p

@t

Equation 2 @f

@x
D ��S

@v

@t
C fext

@u

@x
D �S�S

@p

@t
C q

@p

@x
D

��
S

@u

@t
C 1

S
fext

Source fext D external force
per unit length

q D flow rate per
unit length

fext D external force
per unit length

Parameter 1 T D tension S=� D cross-
section/density

1=�sS D
1=(compressibility �
section/

Parameter 2 �S D density �
cross-section

�SS D
compressibility �
cross-section

�=S D
density/cross-
section

Element 1 C D compliance
D 1=K (K D
stiffness)

Ma D �`=S D
acoustic mass

Ca D �SV D
acoustic compliance

Element 2 M D �`S D mass Ca D �SV D
acoustic compliance

Ma D �`=S D
acoustic mass

Wave speed c D p
T=�S c D 1=

p
��s c D 1=

p
��s

Ratio Y D mechanical
admittance D v=f

Z D acoustic
impedance D p=u

Y D acoustic
admittance D u=p

Wave characteristic
Yc D 1p

T�S
D

c=T

Zc D p
�=�SS2 D

�c=S
Yc D p

S2�s=� D
S=�c

Additional variable
� D displacement

D
Z
vdt

' D velocity
potential

D �
Z

p=�dt

volume
displacement

D
Z

udt

Wave equation
�S
@2v

@t2
� T

@2v

@x2
D

@fext

@t

S�S
@2p
@t2 � S

�

@2p

@x2
D

@q

@t

�

S

@2u

@t2
� 1

�sS

@2u

@x2
D

1

S

@fext

@t
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1.6.1 Note on the Definition of Impedances
for Forced Oscillations

A definition was given in Sect. 1.3.3.1 for the impedance in case of forced
oscillations. This concept can be slightly extended, considering a simple situation
with a point excitation of linear and sinusoidal forced oscillations, for example a
source of acoustic flow, so that we can define:

• a transfer impedance as the ratio of the pressure response P at a point b to the
flow source U provided at point a: Zt D P.b/=U.a/I

• a driving-point impedance as the previous quantity for the particular case a D b:
Z D P.a/=U.a/:

Of course, the inverse ratio is called admittance. When we use mechanical
quantities, both are vectors, so that impedance and admittance become matrices.
Similarly if there are multiple sources and multiple receivers, we can have an
impedance matrix, and if there are continuous sources and receivers, we have
an operator. These concepts are developed in Chap. 3 extensively.

Here we used the frequency domain. In the time domain, we would write
equivalent equations, for example:

p.b/ D bZ.t/ � u.a/;

where bZ.t/ is an impulse response, i.e., the inverse Fourier transform of the
impedance. If the impedance is a pressure response to a unit flow, the corresponding
impulse response is the pressure response to a flow pulse ı.t/. In addition, there are
other concepts of impedance:

• in the case of one-dimensional waves, the local impedance: we consider a pipe
excited by several sources, and a point a downstream the sources. The part
downstream of the point a is therefore passive. Then, the impedance Z D
P.a/=U.a/ at point a is determined by the characteristics of the downstream
medium, and has the same value as the impedance at the driving-point a. This is
the typical case of the input impedance of a wind instrument, and, by extension,
of the admittance matrix imposed by a soundboard or a sound box to the string.
This concept can be generalized to one or more dimensions, but it will not be
treated here.

• the impedance of an element: if between two points of a pipe a and b, the flow
rate u is constant, the pipe element has an impedance Z D ŒP.a/� P.b/	 =U (we
can define something similar if the pressure is constant, see Sect. 1.5). Thus, in
the table of analogies 1.1, the impedances Z D j!M, Z D 1=j!C,. . . , correspond
to the impedances of a mass, the compliance of a spring, etc.
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1.7 Numerical Methods

Analytical methods for solving the wave equation will be presented in Chaps. 3
and 4. As this equation becomes more complex through addition of extra terms
(damping, stiffness, interaction with an exciter, etc.) which are needed to properly
model an instrument, then the use of numerical methods becomes necessary.

A detailed description of the numerical techniques used for solving partial
differential equations involved in models of musical instruments is beyond the
scope of this book. However, we find it useful to say a few words about two of the
most common techniques used, namely the finite difference and the finite element
methods. To introduce and illustrate the foundations of these methods, the simple
example of the ideal wave equation, without source terms, is selected. Emphasis is
put on time-domain numerical modeling. For more information on the application
of finite differences to simulations in musical acoustics, one can refer to the book
by Bilbao [10].

1.7.1 Finite Difference Methods

In order to illustrate the use of finite difference methods we discuss the typical
example of the wave equation where the initial conditions are given in explicit form.
The objective is to solve the following system numerically:8̂̂<̂

:̂
@2�

@t2
D c2

@2�

@x2
8x; 8t > 0;

�.x; 0/ D �0.x/ I @�

@t
.x; 0/ D �1.x/ :

(1.157)

Here, the variable �.x; t/ might designate, for example, the transverse oscillation
of a string, the longitudinal motion of a bar, or the sound pressure in a 1D pipe.
The resolution method consists in replacing this continuous variable by a discrete
variable �n

j D �.xj; tn/ which is defined at some discrete spatial points xj, and for
a discrete series of instants tn only. Equally spaced points xj D j�x are generally
selected, where �x is the spatial step. Similarly, the simplest methods use constant
time steps �t, so that we can write tn D n�t. Variable step methods are also used,
particularly when it is needed to refine a subdomain of the meshing [2].

In what follows, we limit ourselves to the case of a uniform mesh in space and
time. The basic principle of finite difference methods is to approximate the partial
derivatives in time and space by linear combinations of �n

j . Thus, for example, if
we want to make a second-order approximation of the partial derivatives appearing
in (1.157), we write
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8̂̂̂<̂
ˆ̂:
@2�

@t2
.xj; t

n/ � �nC1
j � 2�n

j C �n�1
j

�t2
;

@2�

@x2
.xj; t

n/ � �n
jC1 � 2�n

j C �n
j�1

�x2

(1.158)

The resulting difference equation can be rewritten:

�nC1
j D 2.1� ˛2/�n

j C ˛2.�n
j�1 C �n

jC1/ � �n�1
j with ˛ D c

�t

�x
: (1.159)

In (1.159), a recurrence equation is obtained that allows to explicitly calculate
the future value �nC1

j as a function of the values taken by the same variable at earlier
instants, at the same point and at neighboring points. This is called an explicit finite
difference scheme. Equation (1.159) is initialized at both instants (n D 0 and n D 1)
by means of the initial conditions in displacement and velocity defined in (1.157).

The number of spatial steps included in a recurrence equation depends on the
order of the scheme. For a better accuracy, it might be necessary to use higher order
approximations. As an example, the following approximation:

@2�

@x2
.xj; t

n/ � 1

�x2

�
� 1

12
�n

j�2 C 4

3
�n

j�1 � 5

2
�n

j C 4

3
�n

jC1 � 1

12
�n

jC2
�

(1.160)

is of the fourth-order in space. The explicit scheme presented in (1.159) is a special
case. If �nC1

j cannot be directly expressed as a function of the values of the variable
at earlier instants, an implicit scheme is obtained [4].

1.7.1.1 Stability of the Discretization Scheme

With a given discrete approximation, cumulative errors might propagate during the
calculation over time, causing the “explosion” of the solution because of numerical
instability. Each numerical scheme thus requires a prior analysis of its stability
properties. Such an analysis can be performed by energy methods or by Fourier
techniques. Some guidance on this latter method are given below. The reader is
invited to consult the specialized literature for more details [2, 47].

In the Fourier method, discrete solutions of the form �n
j D O�n exp .�ikxj/ are

tested, where i D p�1 and k the wavenumber. Within the framework of our
reference example (1.159), this leads to the equation:

O�nC1 � 2.1� 2ˇ/ O�n C O�n�1 D 0 where ˇ D 2˛2 sin2
k�x

2
: (1.161)

The resulting scheme will be stable provided that the solutions do not contain
terms whose amplitude grows continuously with time. It is known that the general
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solution of (1.161) is O�n D a1dn
1 C a2dn

2 where d1 and d2 are solutions of the
associated characteristic equation d2 � 2.1 � 2ˇ/d C 1 D 0. If ˇ > 2, either
the modulus of d1, or the modulus of d2 is greater than unity, and instability occurs.
Therefore, the stability condition imposes here ˇ � 2. This result must be true for
any k, thus leading to the condition:

˛ D c
�t

�x
� 1 : (1.162)

This last condition is called Courant–Friedrichs–Levy (or CFL) condition. It shows
that, for stability reasons, time and space steps cannot be selected independently.
A specific condition of stability corresponds to each scheme. Some implicit schemes
can guarantee an unconditional stability, but at the cost of lower accuracy, for a given
order of approximation [18].

1.7.1.2 Numerical Dispersion

Numerical schemes also have dispersive properties, which means that the propa-
gation velocities are not correctly estimated. The dispersion properties of a given
scheme are analyzed on the basis of the Fourier transform, which states that the
solution can be represented as a superposition of plane waves of the form �.xj; tn/ D
�n

j exp i.!tn � kxj/. By introducing this form in the recurrence equation (1.159), it
is found that the relation of numerical dispersion between angular frequency ! and
wavenumber k, is given by:

Dnum.!; k/ D sin2
!�t

2
� c2�t2

�x2
sin2

k�x

2
D 0 : (1.163)

Equation (1.163) shows that the numerical phase velocity is equal to:

cnum D !

k
D c

˛K
arcsin Œ˛ sin K	 with K D k�x

2
D ��x

�
: (1.164)

As K tends to zero in (1.164), i.e., when the spatial step is small compared to the
wavelength �, then cnum tends to the continuous phase velocity c. Thus, if we want
to numerically reproduce a wave propagation with good accuracy, it is necessary to
discretize the equation with a large number of points per wavelength. Figure 1.28
shows the ratio R D cnum=c as a function of the parameter K for different values of
the stability parameter ˛. It can be seen that the dispersion properties of the scheme
are degraded as ˛ decreases. Notice that the ideal wave equation shows a remarkable
result for the limiting stability value ˛ D 1. In this case, Eq. (1.164) shows that
the numerical phase velocity is strictly equal to c, whatever the wavelength. This
limiting condition of stability therefore provides the exact solution of the wave
equation for the particular centered explicit scheme selected here. This result is due
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Fig. 1.28 Numerical
dispersion of a second-order
centered finite difference
scheme applied to the wave
equation, for different values
of the stability
parameter˛ D c�t=�x
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to the particular form of this equation. We could show, for example, that with a fluid
damping term introduced in (1.157), then it is not anymore possible to find a value
of ˛ giving the exact solution of the problem.

1.7.2 Finite Element Method

The ideal wave equation with simple boundary conditions (equation of the ideal
string of length L fixed at both ends) is now solved by means of the finite element
method. The main idea is that the solution �.x; t/ is now approximated by a linear
combination of basic functions 
i.x/ [35]:

�.x; t/ '
NX

iD1
qi.t/
i.x/; (1.165)

where N is the number of discrete points with abscissa xi on the string and qi.t/
the unknown functions of time which are expected to provide the best possible
approximation for �.x; t/.

The method is illustrated using hat functions for 
i.x/. Hat functions (or
triangular functions) are equal to 1 for xi and show linear slopes from 0 to 1 between
xi and its adjacent points xi�1 and xiC1 (see Fig. 1.29). The 2D equivalent of such
piecewise linear functions are triangle functions and, in 3D, tetrahedron functions.
These basic functions are the most commonly used.

Figure 1.30 shows that we can achieve a discrete approximation of the string
motion at each time using a linear combination of hat functions.
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Fig. 1.29 “Hat” function (or
triangular function)
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Fig. 1.30 Discrete
approximation of a string
motion using hat functions
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Variational Formulation of the Wave Equation

The finite element method is based on a variational formulation (or weak formula-
tion) of the motion equations. Let us note c�2�tt � �xx � f D 0 the wave equation,
where the subscripts are the partial derivatives with respect to time and space.
Considering v.x/ as a continuous test-function, at least differentiable once, and
bounded on the interval Œ0;L	, that satisfies the boundary conditions at both ends
of the string. We can check thatZ L

0

.c�2�tt � �xx � f /v dx D 0 : (1.166)
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After integration by parts, and taking the boundary conditions into account,
(1.166) is written:Z L

0

c�2�ttv dx C
Z L

0

�xvx dx �
Z L

0

fv dx D 0 : (1.167)

The discrete formulation of the problem is done by replacing �.x; t/ in (1.167)
by its approximation (1.165). Considering that every hat function 
k.x/ satisfies
all conditions imposed to v.x/, the following system of differential equations is
obtained

c�2
NX

iD1
Rqi

Z L

0


i.x/
k.x/ dx C
NX

iD1
qi

Z L

0

d
i

dx

d
k

dx
dx D

Z L

0

f
k dx; (1.168)

that can be written as

M RQ C KQ D F (1.169)

where Q is the vector whose components are the qi.t/ and where F is the vector
whose components are the projection of the excitation f on the discrete string.

The parameter h D L=.N C 1/ is the space step. The following results for the
coefficients of mass M and stiffness matrices K can be verified, in case of hat
functions:8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

Z L

0


2i dx D 2h

3
I

Z L

0

�
d
i

dx

�2
dx D 2

h
8i D 1; 2; : : :N;

Z L

0


i
iC1dx D h

6
I
Z L

0

d
i

dx

d
iC1
dx

dx D �1
h

8i D 1; 2; : : :N � 1;

(1.170)
which leads to

M D c�2h

0BBBBBBB@

2=3 1=6 0 : : : 0 0 0

1=6 2=3 1=6 0 : : : 0 0

0 1=6 2=3 1=6 0 : : : 0

: : : : : : : : : : : : : :

0 0 : : : 0 1=6 2=3 1=6

0 0 0 : : : 0 1=6 2=3

1CCCCCCCA
(1.171)

and

K D 1

h

0BBBBBBB@

2 �1 0 : : : 0 0 0

�1 2 �1 0 : : : 0 0

0 �1 2 �1 0 : : : 0

: : : : : : : : : : : :

0 0 : : : 0 �1 2 �1
0 0 0 : : : 0 �1 2

1CCCCCCCA
: (1.172)
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Therefore, for i ¤ 1 and i ¤ N, the discrete variable qi.t/, which represents here
the displacement �i.t/ at point xi D ih of the string, since 
i.xi/ D 1, is governed by
the equation:�

1

6

d2�i�1
dt2

C 2

3

d2�i

dt2
C 1

6

d2�iC1
dt2

�
� c2

�iC1 � 2�i C �i�1
h2

D Fi : (1.173)

Comparing this finite element approximation (1.173) with the second-order
centered finite difference method approximation (1.159), one can see that the
second-order partial derivative in space is identical in both cases:

@2�

@x2
.xi/ ' �iC1 � 2�i C �i�1

h2
: (1.174)

However, the approximation of the second-order partial derivative in time is not
punctual here, since it involves three spatial points:

@2�

@t2
.xi/ ' 1

6

d2�i�1
dt2

C 2

3

d2�i

dt2
C 1

6

d2�iC1
dt2

: (1.175)

Without going into details, let us mention here the existence of techniques known
as “mass lumping” which consists in the simplification:

@2�

@t2
.xi/ ' d2�i

dt2
; (1.176)

which is equivalent to replacing the matrix M by c�2hI where I is the identity
matrix [18].
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Chapter 2
Single-Degree-of-Freedom Oscillator

Antoine Chaigne and Jean Kergomard

Abstract Single-degree-of-freedom oscillators are often found as such in musical
acoustics. It is important to understand their behavior because they are elementary
building blocks of more complicated (discrete or continuous) systems in the context
of the modal theory. In this chapter, a number of basic results are summarized.
Fundamental methods, based on the use of Green’s functions, are introduced and
applied to the harmonic oscillator. Their relevance and efficiency for treating more
complex systems will appear throughout this book. Whenever possible, conclusions
are drawn concerning practical examples. Two important notions, that are not
always intuitively well understood by musicians, are addressed: resonance and
reverberation. In addition, three different definitions of the quality factor are given,
and the analysis of the harmonic oscillator in terms of energetic quantities is
emphasized.

2.1 Introduction

For this introductory chapter, the most common example of a standard mechanical
oscillator is chosen. We have seen how to switch from mechanical to acoustical
resonators by means of analogies (see Table 1.1). The example of the Helmholtz
resonator without dissipation, in particular, has been studied in Chap. 1 (Sect. 1.5).
Consider a mechanical oscillator of mass M, stiffness K, and with a viscous damping
coefficient R, driven by a force f .t/ and whose moving part has a velocity v.t/ (see
Fig. 2.1). The motion of this oscillator is described by the differential equation:

M
dv

dt
C Rv C K

Z
vdt D f ; (2.1)
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Fig. 2.1
Single-degree-of-freedom
mechanical oscillator

f

M

K
R

which can be written equivalently with respect to displacement y.t/ (v.t/ D
dy.t/=dt) and usual scaled parameters:

d2y

dt2
C 2˛0

dy

dt
C !20y D f

M
; (2.2)

where

!20 D K

M
and ˛0 D �0!0 D !0

2Q0

D R

2M
: (2.3)

The resonance angular frequency is denoted by !0, which, because of the
damping coefficient R, is not necessarily equal to the eigen (or natural) angular
frequency: both angular frequencies will be defined later in this chapter. Q0 is
the second basic parameter describing the sharpness of the resonance: it is called
“quality factor,” and plays an essential role in several properties of the oscillator.
One should remember that its limit is infinite when damping approaches zero. It
may appear cumbersome to define three quantities to express damping, ˛0, �o, and
Q0. However, each quantity has its own meaning and use, as it will be seen later.

The damping model has not been discussed yet. In Chap. 5 it will be shown
that damping often depends on frequency, which of course strongly modifies the
time-domain equation (2.2). It is assumed that it is not the case here. Similarly, the
damping coefficient is chosen positive so that free oscillations decrease exponen-
tially: in fact, for self-oscillating instruments (see Part III), the sound starts with an
exponential growth, because the energy source is proportional to the term R, which
can be either positive or negative.
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2.2 Solution With and Without a Source: Green’s Function

2.2.1 Solution Without a Source; Eigenfrequency

The first step is to write the solutions of Eq. (2.2) without source terms, i.e.,
after the extinction (f .t/ D 0). This corresponds therefore to the case of free
oscillations. Complex solutions in the form Aej!t are sought, where ! is the angular
eigenfrequency.1 The equation to be solved is derived from Eq. (2.2):�

!

!0

�2
� j

1

Q0

!

!0
� 1 D 0; (2.4)

and the solutions are given by:

!0̇ D j˛0 ˙ !p where !p D !0ı0; with ı0 D
q
1 � �20 D

s
1 � 1

4Q2
0

: (2.5)

If �0 is greater or equal to unity, i.e., if Q0 is lower or equal to 1=2, the two
solutions !0̇ are purely imaginary, and there is no oscillations. Discarding this
case, two complex eigenfrequencies are found, which have the same real part
!p, in absolute value. The real part is often called (angular) eigenfrequency of
the oscillator, even if the signal is pseudo-periodic, when it is attenuated. In the
following, the term “eigenfrequency” will be used for !C

0 and !�
0 as well as for

!p, because there is generally no ambiguity. The general solution is written as:

y.t/ D e�˛0t


ACej!pt C A�e�j!pt

�
or y.t/ D Ae�˛0t sin.!pt C '/: (2.6)

The first expression involves two complex coefficients, A˙, but only the real part
is of interest for us. The second expression involves two real coefficients: A and '.
The signal has a pseudo-period T D 2�=!p, and is exponentially attenuated, the
exponent being proportional to �0. During a pseudo-period, the amplitude of the
signal is divided by a factor:

1What does “eigen” mean? The German word eigen can be translated as “own,” or “natural.” For
a physicist, it means that the eigenfrequency is characteristic of the oscillator, thus independent of
external excitation. For a mathematician, it is linked to the eigenvalues of an operator. Thus, if (2.2)
is written as:

d

dt

�
y

dy=dt

�
D
�

0 1

�!20 �2˛0
��

y
dy=dt

�
:

The operator is a usual matrix and it can be shown that its eigenvalues are j!˙
0 and its

eigenvectors

 
1

j!˙
0

!
.
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Table 2.1 Some typical values of the quality factor Q in musical
acoustics

Instrument Frequency domain Q-factor

Clarinet 150 Hz–3 kHz 10–50

Wooden guitar soundboard 50 Hz–5 kHz 10–100

Acoustic modes of a violin sound box 100 Hz–10 kHz 50–150

Kettledrum drumhead 50 Hz–1 kHz 10–300

Guitar string (Nylon) 100 Hz–5 kHz 100–1000

Piano string 20 Hz–15 kHz 102–104

Metal harpsichord string 20 Hz–20 kHz 103–104

To a first approximation, each resonance can be viewed as a single
resonator with its own Q-factor (see Chap. 3). The Q-factors are usually
decreasing with frequency, but this decrease is not monotonous in
general

eT D exp

�
� 2�

ı0
�0

�
D exp

�
� �

Q0ı0

�
. (2.7)

The larger the quality factor, the longer the oscillation. If it is large enough
(ı0 ' 1), an approximate definition for the oscillation to decrease by a factor
e D 2:7 is given by the number of pseudo-periods, divided by � . Table 2.1 gives
some typical values of quality factors encountered in some musical instruments.

The coefficients A and ' in (2.6) can be found provided that initial values of
the function y.t/ and its first derivative v.t/ are known. The following results are
obtained by setting t D 0 in Eq. (2.6) and in the corresponding expression for dy=dt:

y.t/ D e�˛0t

�
1

!p
Œv.0/C ˛0y.0/	 sin!pt C y.0/ cos!pt

�
; (2.8)

and

v.t/ D e�˛0t


v.0/ cos!pt � ı�1

0 Œ�0v.0/C !0y.0/	 sin!pt
�
: (2.9)

A special case of initial conditions, which is important for future considerations,
is the case where the oscillator is released without initial velocity and with an initial
displacement y.0/. This means that a force f �.t/ D F� D Ky.0/was applied during
negative time. The velocity (see Fig. 2.2) is expressed by:

v.t/ D � F�

M!p
e�˛0t sin.!pt/: (2.10)
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Fig. 2.2 Oscillator released at t D 0 without initial velocity. On the left the displacement and on
the right the velocity. y.0/ D 1 ; f0 D 30Hz ; Q0 D 18:85. In this case it takes 6 pseudo-periods
for the oscillation to decrease by a factor e

and the displacement:

y.t/ D y.0/e�˛0t
�

cos.!pt/C �0

ı0
sin.!pt/

�
D y.0/

ı0
e�˛0t cos.!pt C '/ (2.11)

where tan ' D ��0=ı0 (or cos' D ı0/:

2.2.2 Solution with an Elementary Source: Green’s Function

Expression (2.11) is a first illustration of an oscillator with a source switched off at
t D t0. Looking also at negative times, it can be written as a solution of the following
equation, with a source term:

d2y

dt2
C 2˛0

dy

dt
C !20y D F�

M
H.t0 � t/; (2.12)

where H.t/ is the Heaviside step function. The velocity is a solution of the following
equation:

d2v

dt2
C 2˛0

dv

dt
C !20v D �F�

M
ı.t � t0/:

It is therefore, to within the multiplicative factor �F�=M, a solution of the
equation with an elementary source ı.t�t0/. The solution is called Green’s function.
This function and its first derivative are assumed to be equal to zero at time t < t0.
It allows expressing a solution for any source (see the following section). The
Green’s function is denoted g.tjt0/, and is a solution of the following equation:
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�
d2

dt2
C 2˛0

d

dt
C !20

�
g.tjt0/ D ı.t � t0/; (2.13)

and, according to (2.10), is equal to:

g.tjt0/ D 1

!p
H.t � t0/e

�˛0.t�t0/ sinŒ!p.t � t0/	: (2.14)

t0 is the pulse emission time, and t is the observation time. Note that the Green’s
function is a function of .t � t0/: it does not change if the emission time t0 is
changed to �t, and the observation time from t to �t0. This is the property of
temporal reciprocity.2 Except for a multiplying factor, its shape is that of the velocity
in Fig. 2.2, if t0 D 0.

A direct solution of Eq. (2.13) is now shown. To simplify the problem it is
assumed that t0 is zero. The method is similar to the one developed for the solution
without a source (2.8), by matching solutions at t D 0. It is known that, for t > 0,
the solution has the form (2.6). Both coefficients A and ' are found by matching
this solution to the solution for negative time, which is equal to zero, as it is the case
for its first derivative. It can be shown, and at least it can be a posteriori checked,
that the presence of the Dirac delta function in Eq. (2.13) implies the continuity of
the solution at t D 0, hence ' D 0, and the discontinuity of its first derivative. By
integrating Eq. (2.13) between t � " and t C ", the following results are obtained:�

d

dt
g.t; 0/

�tC"

t�"
D 1 hence A D 1

!p
;

and Eq. (2.14) is obtained again for t0 D 0.

2.2.3 General Solution with a Source Term

2.2.3.1 Solution by Fourier Transform

From the Green’s function, the general equation (2.2) can be solved. We first
derive the Fourier transforms of the equation with y.t/ and of the Green’s function
equation:


�!2 C 2˛0j! C !20
�
Y D F

M
(2.15)

2Notice that the Green’s function does not have the dimension of a mechanical quantity but only
of a time [the dimension of the Dirac delta function is the inverse of a time, which can be seen
immediately when integrating the 2nd term of Eq. (2.13)]. An equation with physical meaning is
obtained by multiplying the source term by a factor with the right dimensions.
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�!2 C 2˛0j! C !20
�

G D 1 (2.16)

where Y .!/, F.!/; and G.!/ are the Fourier transforms of y.t/, f .t/, and g.tj0/.
Calculating the ratio of the two previous equations yields

Y .!/ D F.!/

M
G.!/: (2.17)

Therefore, by returning to the time domain, and considering that the convolution
product is the inverse Fourier transform of the ordinary product in the frequency
domain, we get

y.t/ D 1

2�M

Z C1

�1
F.!/G.!/ej!td! D 1

M

Z C1

�1
f .t0/g.t � t0j0/dt0;

or y.t/ D 1

M

Z C1

�1
f .t0/g.tjt0/dt0 D 1

M

Z t

�1
f .t0/g.tjt0/dt0: (2.18)

In fact, because the Green’s function g.tjt0/ is a function of .t�t0/, the convolution
becomes a simple product, and the Green’s function is equal to zero for t0 > t.

2.2.3.2 Solving by Laplace Transform

For a source starting at a given time, the force can be written f .t/ D H.t/Qf .t/, and
the previous result (2.18) is applicable. But it is often more convenient to use the
Fourier transform of the product rather than the convolution product. It is then easier
to use the Laplace transform, which involves the initial conditions [see Eq. (1.118)].
Equation (2.17) is replaced by:

Y .s/ D G.s/ ŒF.s/=M C .s C 2˛0/y.0/C v.0/	 (2.19)

and the integral equation (2.18) becomes

y.t/ D 1

M

Z t

0

f .t0/g.tjt0/dt0 C Œ2˛0y.0/C v.0/	 g.tj0/C y.0/
dg.tj0/

dt
: (2.20)

If there is no source f .t/, the solution without a source (2.8) is found again, which
can be verified.3

3This is the standard form of an integral equation which makes use of an elementary solution such
as the Green’s function. If the initial conditions are identical to those of the Green’s function, only
the integral term remains. This kind of equations can be generalized to a problem with variables
depending on both space and time, but the initial conditions can be chosen for the Green’s function:
if it satisfies the same initial conditions as the unknown, there will be no terms linked to these
conditions, which would not be the case otherwise.
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2.3 Examples of Free and Forced Oscillations

This section aims at studying some examples of solutions, in the case of a steady-
state excitation, or for an excitation which is either starting or stopping at a given
time. One can easily imagine a vibrating string, acting as an oscillating source for a
sound box that would have a single-degree-of-freedom: the starting and stopping of
the sound box’s vibration is of great interest, even if the present study will provide
qualitative results only. Similarly one can easily transpose these simple situations to
any instrument producing a sound in a room: it also acts as an oscillating source.
This illustration implies that the oscillation produced is not influenced by the room
itself; this is reasonable, except maybe in the case of an organ (because of the size
of the pipes).

2.3.1 Displacement of a System from Equilibrium

We first treat the case of the displacement of a system from equilibrium, because
it is very simple and complementary to the case of a system released without
initial velocity [Eq. (2.11)]. Let the force be f .t/ D FMH.t/, the system being at
equilibrium at t D 0: y.0/ and v.0/ are zero. We do not discuss the method for
producing such a force. We can use the linearity of the problem, and therefore the
superposition principle, and observe that f .t/ C f �.t/ D FM , if f �.t/ D FMH.�t/,
which is a case we have already described in Eq. (2.11). Now the solution for
f .t/ D FM (constant) is known: it is y.t/ D FM=M!20 . Subtracting the solution (2.11)
from this result, we obtain the complete solution:

y.t/ D FM

M!20

�
1 � e�˛0t

�
cos.!pt/C �0

ı0
sin.!pt/

��
: (2.21)

The expected initial conditions are satisfied. However, we find that it was not
needed to use them for this new problem! In fact all the information is contained
in the evolution of the force from t D �1 to C1: f .t/ D FMH.t/. The important
fact is that a sudden change of excitation in one direction or the other produces
a free oscillation which is attenuated exponentially, in addition to the steady term
FM=M!20 (see Fig. 2.3).

2.3.2 Excitation (Forced) by a Steady Sinusoidal Force

Consider, for example, f .t/ D FM cos!t. The solution is the real part of the
solution for f .t/ D FMej!t. For steady forced oscillations, the solution can be
sought in the form A.!/ej!t. The derivatives are then derived in a straightforward
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Fig. 2.3 Displacement of the
system from equilibrium: the
displacement is calculated
with the same parameters as
in Fig. 2.2, but y.0/ D 0
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way. The oscillating response has the same frequency as the excitation. Now, the
eigenfrequency intervenes in the amplitude only: this point will be discussed in
detail later. Using Eq. (2.16), one obtains

y.t/ D FMM�1G.!/ej!t: (2.22)

Taking the real part of this result yields

y.t/ D FM

M
<e

�
ej!t

�!2 C 2j˛0! C !20

�
D FM

MD1=2.!/
sin.!t C '/ (2.23)

where

D.!/ D 

.!2 � !20/

2 C 4˛20!
2
�

; tan' D .�!2 C !20/=2˛0!: (2.24)

The velocity is given by:

v.t/ D A cos.!t C '/ where A D !FM

MD1=2.!/
: (2.25)

2.3.3 Excitation by a Sinusoidal Force Starting at t D 0

Consider now the particular case when the starting time of the source is taken
into account. Let us roughly suppose that it starts abruptly: the force is, for
example, f .t/ D FMH.t/ cos!t. We now calculate the velocity by using the Laplace
Transform. The transform of the force is F.s/ D FMs=.s2 C !2/, and that of the
derivative is FMs2=.s2C!2/� f .0C/ D �FM!

2=.s2C!2/. Since the initial velocity
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and the acceleration are zero (velocity is zero for all negative times), the transform
of the velocity is

V.s/ D �FM

M

!2

.s2 C !2/.s2 C 2˛0s C !20/
: (2.26)

The standard method for calculating the inverse transform is the partial fractions
expansion in terms of the form .s � sn/

�1, which leads to simple poles. It is actually
more efficient to group the conjugate poles (we expect to find the combination of two
signals of angular frequency ! and !p/. We are therefore looking to write V.s/ as:

V.s/ D as C b

s2 C !2
C a0s C b0

s2 C 2˛0s C !20
: (2.27)

The result is obtained, after identification and inverse transform, but the calcula-
tion remains heavy. A lighter approach is based on the observation that, given the
form of Eq. (2.27), the solution is of the type:

v.t/ D H.t/


A cos.!t C '/C Ape�˛0t cos.!pt C 'p/

�
; (2.28)

and thus only the first term remains when time goes to infinity. In other words, the
first term is equal to the solution (2.25), multiplied by H.t/. To find the other two
parameters, we can simply use the initial conditions (zero velocity and acceleration),
which gives

! tan' D ˛0 C !p tan'p ; A cos' D �Ap cos'P;

and, after some calculations, Ap D A!=!p.
The second term in the right-hand side of (2.28) is not negligible compared to

the first as long as the observation period is small compared to the characteristic
damping time ˛�1

0 . For some weakly damped structural modes of musical instru-
ments, this characteristic time can be of the order of magnitude of 0.1 ms or higher.
Therefore, assuming that the exponential becomes negligible after a time of five to
ten times larger, it appears that this second term cannot be neglected for 0.5 to 1 s
after the excitation has started, if we want to correctly estimate the average power
dissipated.

2.3.4 Excitation by a Sinusoidal Force Stopping at t D 0

What happens for a force stopping at t D 0, i.e., f .t/ D FMH.�t/ cos!t ? One can
use the Fourier Transform, with the necessary precautions concerning the function
H.�t/, but a simpler method exists. We use the principle of superposition applied
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to the previous problem, which gives a sinusoidal steady source, and we derive by
simple subtraction between (2.25) and (2.28):

v.t/ D AH.�t/ cos.!t C '/ � ApH.t/e�˛0t cos.!pt C 'p/: (2.29)

The form (2.29) is interesting because it exhibits the reverberation: after the
pulsation source ! stops, the oscillator vibrates at its eigenfrequency, with free
oscillations. The phenomenon that occurs when the source starts [see Eq. (2.28)] can
also be called reverberation: however, it overlaps with the oscillation produced by
the source. The reverberation is a phenomenon triggered by the non-stationarity of a
source: it is an oscillation whose frequency is the eigenfrequency of the system, and
which decreases because of damping. These results are qualitatively very general,
since they can be extended to any vibrating system with several degrees of freedom
(DOF). The only phenomenon that cannot occur with a single DOF (i.e., a single
mode) is the phenomenon of echo, due to delays: in a room, there is a very
large number of modes (or DOF), which combine together and produce successive
reflections on the walls. In Chap. 4 the relationship between modes and waves will
be presented.

2.4 Forced Oscillations: Frequency Response

Forced sinusoidal motions are often used in experimental devices, in order to
estimate the mechanical losses of a structure, in particular. It is therefore necessary
to understand their main aspects and their theoretical limitations. In a steady
sinusoidal regime, it is convenient to use the complex notation, what we adopt
hereafter. We wish to study the response of the displacement (Eq. 2.15), and, above
all, the velocity due to a sinusoidal force f .t/ D FM exp.j!t/, since the product of
force by velocity determines the power. We must therefore consider the response,
called mechanical admittance, when the frequency varies

Y.!/ D V.!/

F.!/
D 1

M

j!

�!2 C 2j!˛0 C !20
; (2.30)

the Fourier Transform of f .t/ being F.!0/ D FMı.!
0 � !/. A function of ! of

this form is often called “Lorentzian.” We are interested in the quantities: modulus,
argument (which is a phase difference), real and imaginary parts of the admittance,
for which the evolution versus frequency can be seen in Figs. 2.4 and 2.5. We
limit the study to the response in velocity, because in musical acoustics the input
admittance (or impedance) is the most useful response. However the responses in
displacement or in acceleration are interesting too, and show other variations with
frequency.

It will be shown in Chap. 3 that for any discrete or continuous system, under
certain conditions, the response is simply the sum of quantities of the type (2.30),
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Fig. 2.4 Oscillator’s admittance modulus and argument versus frequency, for Q0 D 18:85; f0 D
30Hz, M D 1

Fig. 2.5 Real (dotted line)
and imaginary part (solid
line) of the oscillator’s
admittance versus frequency,
for Q0 D 18:85; f0 D30 Hz,
M D 1
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each corresponding to a mode. For forced oscillations, we are interested in the
maximum of this quantity; for self-sustained oscillations, our interest is in the zeros
of the imaginary part (this will be explained in Chap. 9), the two kinds of frequencies
being very close. For the present case (single mode), they are identical.

To study the admittance variation versus frequency, the easiest way is to start by
considering the inverse quantity, i.e., the impedance

Z.!/ D j!M C R C K

j!
D M!0

�
j
!

!0
� j
!0

!
C 1

Q0

�
: (2.31)

Z is real when ! D !0, which implies that the admittance also is real. For ! >
!0, the leading term is the mass term, otherwise it is the stiffness term M!20=j!.
The real parts of Z and Y are always positive for a passive system, as explained in
Chap. 1. The imaginary part is either positive or negative.
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The modulus Z is minimum when ! D !0, the so-called resonance angular
frequency. For a given amplitude of excitation F (the cause), it corresponds to
the angular frequency for which the amplitude of the response V (the effect) is
maximum.4 It differs from the angular eigenfrequency !p, unless the damping is
low [large Q0, see Eq. (2.5)]. If Q0 is large, impedance and admittance are almost
purely imaginary at any frequency, except very close to the resonance.

Two other frequencies are interesting5: these are those for which the imaginary
part is equal or opposite to the real part (the argument of Z is then ˙�=4). This gives
the following values:

Q!˙

!0
D
s
1C 1

4Q2
0

˙ 1

2Q0

D 1˙ 1

2Q0

C O

�
1

Q2
0

�
: (2.32)

For very large Q0, they are very close to the resonance frequency. It is easy to show
that they correspond to extrema of the imaginary part of admittance, which can be
written as:

Y D 1

M!0
Q0

1 � j�Q0

1C �2Q2
0

where � D !

!0
� !0

!
: (2.33)

At these frequencies, the modulus of Y is thus equal to its value at the resonance
(� D 0), divided by

p
2. We note that

Q!C � Q!�

!0
D 1

Q0

s
1C 1

4Q2
0

: (2.34)

This quantity is the relative width of the peak of the quantity jYj2 at half maximum:
for large Q0, it is close to 1=Q0. This is a second definition of the quality factor, the
first one being the decay rate by period for free oscillations [see (2.7)]. However the
two definitions only coincide at the third order of Q�1

0 . We still have to examine the
variation of the real part of the admittance: Equation (2.33) shows that it reaches a
maximum at the resonance, and it is then equal to:

<e.Y/ D jYj D Q0

M!0
D 1

R
: (2.35)

4!0 is also the angular eigenfrequency of the undamped system, obtained for R D 0.
5They are called quadrantal frequencies.
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Fig. 2.6 Imaginary part of the admittance when Q0 tends to infinity: there is no zero-crossing. The
dotted curve represents the case Q0 D 18:85. The two curves merge far from resonances

2.4.1 Remarks on the Determination of the Resonance
Frequency

We notice that the resonance frequency !0 does not depend on the quality factor.
This is why in the case where we are only interested in resonance frequencies, the
quality factor can be taken to be infinite, i.e., the damping equal to zero. We then
have a purely imaginary admittance, which approaches ˙1 when the frequency
approaches the resonance. In this case, the shape of the curve of the imaginary part
of Y becomes very different, since the two extrema are infinite, and it does not cross
0 (Fig. 2.6). If we consider Eq. (2.33), we see that the limit of the imaginary part
of Y when Q0 �! 1 is not straightforward for small �. On the other hand, the
modulus of the impedance Z shows little change.

It turns out that the imaginary part of the impedance is a very good candidate for
determining the resonance frequency by interpolation. A simple calculation shows
that if =m.Z/ is known at two angular frequencies !1 and !2, the resonance is
given by:

!20 D !1!2 Œ!2=m.Z1/ � !1=m.Z2/	

!1=m.Z1/� !2=m.Z2/
: (2.36)

This method can be used even if other modes are present, since the admittance
is then the sum of terms of type (2.33). In the presence of modes, some of
them may have an amplitude such that the imaginary part of Y does not vanish
anymore. Nevertheless if we ignore the damping terms, each term goes to infinity at
resonance, and this problem does not arise. Ignoring damping to find the resonance
frequencies is therefore very usual and this approximation is very useful in musical
acoustics, regardless of the number of modes. Finally, what happens when damping,
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and therefore the quality factor depends on frequency (in this case, the initial
time-domain equation can be greatly modified)? If we look at the cancelation of
the imaginary part, the resonance frequency remains independent of the variation
of damping with frequency, as seen in the expression of the impedance (2.31).
Conversely if we look at the maximum of the modulus of Y for forced oscillations,
it is a bit more complicated but it can be shown that the variation of Q0.!/ leads
to a variation of magnitude 1=Q2

0 only, for both the resonance frequency and the
maximum.

Simplification of the response around the resonance: “simple” modes
We saw in Sect. 2.2.1 that a single-degree-of-freedom oscillator has two
complex eigenfrequencies denoted !0̇ [Eq. (2.5)]. These frequencies are the
(simple) poles of the admittance (2.30). We have

!2 � j!!0=Q0 � !20 D .! � !C
0 /.! � !�

0 /:

Hence if YM0 D Q0=M!0 is the maximum of the modulus of Y:

Y D 1

M

j!

!20 � !2 C j!!0=Q0

D � j

2

YM0

Q0ı0

"
!C
0

! � !C
0

� !�
0

! � !�
0

#
:

(2.37)

Each term can be seen as a mode that we will call “simple mode.”6 Around
! D !0, we can ignore the term of negative eigenfrequency (more specifically
the term with a negative real part), which gives, if Zm0 D 1=YM0 is the
minimum of the impedance:

ZD1=Y ' 2jQ0ı0Zm0

"
!�!C

0

!C
0

#
D 1

1Cj=.2Q0ı0/
Zm0

�
1C2jQ0

!�!0ı0
!0

�
:

(2.38)

If the quality factor Q0 is large enough, this reduces to:

Z ' Zm0

�
1C 2jQ0

! � !0

!0

�
' 2jZm0Q0

! � !C
0

!0
: (2.39)

(continued)

6One can also write s0 D j!C
0 D .j!�

0 /
�

Y D � j

2

YM0

Q0ı0

�
s0

j! � s0
� s�

0

j! � s�
0

�
;

hence Y.�!/ D Y�.!/ for ! real.
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This highlights that such an approximation is convenient for representing a
Lorentz resonance near its maximum, at the cost of a first-order approximation
in 1=Q0. A more direct approximation method is to write ! D !0.1 C "/

in Eq. (2.37) and expand it to the first order in ". This approximation is
justified as well as the truncation of a modal series to a single mode, under
the condition that the frequency is close to the resonance of this mode, with a
high quality factor.

2.5 Energy, Power, and Efficiency

2.5.1 Energy and Power

The instantaneous mechanical power pm.t/ of the oscillator is given by the scalar
product of f and v (see Chap. 1), which leads to:

pm D d

dt

�
1

2
Mv2 C 1

2
Ky2

�
C Rv2 : (2.40)

The three terms on the right-hand side of (2.40) represent the temporal variations
of the kinetic energy of mass M, the elastic energy of spring K, and the power
dissipated in the resistance R, respectively.

In most applications, the time average of pm.t/, i.e., its slow fluctuations, is more
interesting than its fine details and rapid evolution in time. In audible acoustics, for
instance, the human ear is sensitive to the sound level which is well correlated to the
average value of the sound power, after integration over a period of 50 ms. This is
typically the kind of information that can be read on a sound level meter. In room
acoustics, the reverberation time is defined in the same way as the decay of the slow
fluctuations of the energy density in the room after the excitation has stopped.

We define below an integration time T whose selection criteria will be discussed
later. Using Eq. (2.40) we calculate the average mechanical power Pm.T/:

Pm.T/ D 1

2T



Mv2.T/C Ky2.T/ � Mv2.0/� Ky2.0/

�C 1

T

Z T

0

Rv2.t/dt :

(2.41)
For free oscillations the average power Pm.T/ is zero. We derive

1

2



Mv2.T/C Ky2.T/

� D 1

2



Mv2.0/C Ky2.0/

� �
Z T

0

Rv2.t/dt; (2.42)
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which quantifies the average power Ps.T/ D R T
0

Rv2.t/dt dissipated during the
given time interval T. This power Ps.T/ is also the power needed by the system
to ensure a periodic motion of period T. We notice, in this case, that the quantity
between brackets in (2.41) vanishes.

2.5.1.1 Special Case: Steady Sinusoidal Movement

For an excitation force f .t/ D FM cos!t, it has been shown in Eq. (2.25) that the
velocity is given by v.t/ D VM cos.!t C'/. Therefore, the average power is written
as follows:

Pm.T/ D 1

T

Z T

0

FMVM cos!t cos.!t C '/dt (2.43)

The oscillation period is denoted � D 2�
!

. The integration time is then given by
T D n� C �o, where n is a positive integer. The average power becomes

Pm.T/ D 1

2
FMVM cos' C FMVM

4.2�n C �o!/
Œsin.2!�o C '/ � sin '	 : (2.44)

Discussion

• Equation (2.44) shows that the average power Pm.T/ is approximately equal
to 1

2
FMVM cos' only if the average integration period involves a sufficiently

large number n of oscillation periods. For the special case where T equals � ,
the equality is strict. In what follows, we consider that this condition is satisfied,
so that the dependence of the terms of the average power on the integration period
is suppressed.

• For a given force, the expression of the velocity was found (see Sect. 2.3.2). The
average power can be written using complex quantities:

Pm D 1

2
<e


f .t/v�.t/

� D 1

2
F2M<e.Y/: (2.45)

This result, which is consistent with Eq. (1.131), confirms the well-known result
that the maximum of dissipated power is obtained when the excitation frequency
is equal to the resonance frequency of the oscillator, namely for ! D !0. Then,
following Eq. (2.35) we can write:

Max fPmg D F2M
2R

: (2.46)

As a consequence, from Eq. (2.46), if FM is known, we can easily derive R by
power measurements.
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Fig. 2.7 Variation with time
of the average dissipated
power for an excitation
angular frequency ! close to
the angular
eigenfrequency !0
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• For forced oscillations with angular frequency !, the calculation of the power
Pm exhibits terms in ! C !0ı0 and j! � !0ı0j, where ı0 is defined in Eq. (2.5).
Consequently, the average power exhibits low frequency variations before the
steady state emerges (see Fig. 2.7). Experimentally, this transient state may take
some time if ! is close to !0, which might pose some difficulty for practical
measurements of the average power.

2.5.1.2 Third Definition of the Quality Factor

It is possible to link the average power supplied to the energy of the system, averaged
over a period, through the quality factor Q0. The total energy, which is the sum of
kinetic energy and potential energy, is given in Eq. (2.40). Using complex quantities
for force and velocity, we have f .t/ D FM exp.j!t/ and v.t/ D VM exp.j!t C '/.
Using the results of Chap. 1, the power and the total energy averaged over a period
are given by:

Pm D 1

2
R jvj2 et E D 1

4

h
M jvj2 C K jyj2

i
:

We get the ratio

E

TPm
D !

4�

M jvj2 C K jyj2
R jvj2 D Q0

4�

!

!0

�
1C !2

!20

�
:

This shows that at the resonance, it is equal to Q0=2� . This definition comple-
ments the definitions based on the decay rate (2.7) and on the relative width of the
resonance peak (2.34). These three definitions coincide for small damping values
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Fig. 2.8 Mechanical
single-degree-of-freedom
oscillator loaded by air r, c

M

K
R

S

only. When a more general response is considered, expressed as the sum of several
modes, the situation becomes even more complicated. Finally, at the resonance, the
average energy is equally distributed between potential and kinetic energy.

2.5.2 Mechanical Air Loaded Oscillator

The following example is the simplest model of acoustic radiation by a structure
with a single-degree-of-freedom. As in the previous paragraph, we examine its
properties in terms of energy, and we define its efficiency in terms of power.

To illustrate the model, imagine a mechanical single-degree-of-freedom oscil-
lator loaded by a semi-infinite tube of cross section S, filled with air of density �
and where the sound speed is denoted c (see Fig. 2.8). A wave travels in the tube
whose specific characteristic impedance �c was found in Chap. 1 (Sect. 1.2.4). The
pressure force is simply proportional to velocity. The equation of this oscillator is
written as:

f DM
dv

dt
C Rv C K

Z
vdt C Rav with Ra D �cS: (2.47)

The instantaneous power supplied to the system is written as follows:

pm.t/ D d

dt

�
1

2
Mv2 C 1

2
Ky2

�
C .R C Ra/v

2: (2.48)

Hence the average power (per period) is

Pm.T/ D 1

T

Z T

0

Rv2.t/dt C 1

T

Z T

0

Rav
2.t/dt D Ps.T/C Pa.T/; (2.49)
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where Pa.T/ is the average acoustic power radiated into the tube. We define the
acoustical efficiency by:

� D Pa.T/

Pm.T/
D Pa.T/

Ps.T/C Pa.T/
D Ra

R C Ra
: (2.50)

This last result requires some comments.

• We observe in (2.50) that the efficiency is independent of T.
• Although the form of � here appears to be very simple, its experimental deter-

mination is not straightforward because it requires to estimate R, for example,
through measurements in vacuo.

• In the academic example presented above, Ra is obtained analytically, which
is rarely the case for structures with complex materials and geometry such as
musical instruments. In the general case, Pa.T/ is obtained experimentally (or
numerically) by computing the flow of the acoustic intensity vector over a closed
surface surrounding the source.

• In general, the efficiency may depend on frequency, which is not the case here,
but when there are no losses (this corresponds here to setting R D 0) it is always,
by definition, equal to unity! Conversely, we have seen that the response of a
resonant system always depends on frequency, especially when the losses are
small (see, for example, Fig. 2.4). Efficiency and response are therefore quantities
whose physical meaning is very different.

2.5.2.1 Link Between Radiated Power and Damping Factor

For a radiating single-degree-of-freedom system, it is possible to estimate the sound
power from the measurement (or numerical simulation) of the damping factor, in
free oscillations. In Chap. 13, we will examine the conditions for extending this
result to systems with multiple DOF. The equation of the mechanical oscillator
loaded by air can be written in a reduced form:

d2y

dt2
C 2�!0

dy

dt
C !20y D 0 with � D R C Ra

2M!0
; (2.51)

for which it is known that the solution is written as (assuming � < 1):

y.t/ D exp.��!0t/
"

cos.!0
p
1 � �2t/C �p

1 � �2 sin.!0
p
1 � �2t/

#
: (2.52)
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Equation (2.52) shows that the damping factor (equal to the inverse of the time
constant) is equal to:

˛ D �!0 D R C Ra

2M
: (2.53)

In conclusion, considering the definition (2.3), we note that, for the simple case
of a single-degree-of-freedom oscillator, the acoustical efficiency can be estimated
in the time domain by using the expression:

� D ˛ � ˛0

˛
: (2.54)

Note It should, however, be emphasized that one of the damping effects is to
slightly modify the frequency of the oscillator, compared to the in vacuo case. This
effect has no consequence here because, concerning a “monochromatic” signal, the
determination of ˛ from the exponential envelope is independent of the oscillation
frequency. Furthermore, in the present example, the air load is considered as purely
resistive. If, however, we are in a situation where the fluid load also includes a mass
or elastic component, we could not obtain the efficiency from a formula as simple
as Eq. (2.54). This point of view will be developed in more detail in Chap. 13.



Part II
Waves and Modes

This second Part of the book is devoted to the linear vibrations of musical
instruments. The “modal” and “wave” approaches are described in Chaps. 3 and 4,
respectively, for non-dissipative structures of simple shapes. Dissipation phenomena
are presented in Chap. 5. Coupled systems are addressed in Chap. 6, whereas Chap. 7
is devoted to the resonators of wind instruments. For these instruments, the exact
shape of the bore (flaring, toneholes) has an essential function. Leaving aside the
radiation, which will be presented in the fourth part of the book, this part is aimed
at presenting a global approach of free linear oscillations, eigenfrequencies and
eigenmodes of musical instruments.



Chapter 3
Modes

Antoine Chaigne and Jean Kergomard

Abstract The concept of mode (or eigenmode) is ubiquitousin musical acoustics,
since the behavior of musical instruments, as many other mechanical systems, is
fairly described by boundary value models, for which the modes are the eigenso-
lutions, in the strict mathematical sense. In this chapter, the basic properties of the
eigenmodes are reviewed, for both discrete and continuous non dissipative systems.
The efficiency of the modal description is illustrated by numerous examples taken
from the physics of strings and percussive instruments. In addition, most of the
results presented in this chapter will be used in Chap. 7 devoted to wind instruments.
It is shown, in particular, to what extent the geometry, material, and conditions
of excitation determine the vibrational properties of the instruments. Fundamental
results on the vibrations of strings, beams, membranes, plates, and shells are
demonstrated, which will be used throughout the book. The links with experimental
modal analysis are also emphasized.

3.1 Introduction

The concept of modes is widely used in musical acoustics. Experimentally, one
can gain a visual appreciation of modes through the so-called Chladni patterns
(see Fig. 3.1). Such patterns are obtained by sprinkling sand on a plane or on a
slightly curved structure (plate and soundboard) which is being continuously excited
(using, for example, a bow, or a loudspeaker driven by a sinusoidal input signal).1

1Chladni patterns on drumheads were obtained by Worland [43].
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Fig. 3.1 Chladni patterns showing the modes of vibration of a guitar soundboard, at 117, 285 and
481 Hz, respectively. According to [41]. © Thomas Erndl

It is observed that the grains gather together on continuous lines, or nodal lines,
corresponding to points with zero amplitude of vibration. The resulting figure is
the mode shape corresponding to the excited eigenfrequency. One can clearly hear
the associated sound when the structure is weakly damped, as it is the case for a
metallic plate. In what follows, eigenmodes, or simply modes, designate the set of
eigenfrequencies and mode shapes of a continuous, or of a discrete, system for a
given geometry and material.

In the previously described experiment, different modes can be successively
excited if the excitation point, or the excitation frequency, is modified. If the
boundary conditions are changed, then the eigenmodes and eigenfrequencies also
change. This result has important consequences in lutherie: it shows that the violin
soundboard, once glued to the instrument, does not exhibit the same eigenmodes as
it did when it was free to vibrate at the edge.

From a theoretical point of view, the concept of modes is of great interest.
Because of their mathematical orthogonality, it is possible to expand any linear
solution of vibratory or acoustic phenomena onto a basis of eigenmodes. In Chap. 8,
it will be shown under which conditions such expansions can be applied to weakly
nonlinear systems.

Strictly speaking, the concept of eigenmodes can be applied to any undamped,
linear system of finite dimensions involving both kinetic and elastic energy, when
the dynamics of the system are observed over a time scale which is large compared
with the “characteristic time” of the system. The characteristic time corresponds to
the time taken by a wave to propagate from an internal excitation point to the edges
of the finite domain defined by the system. In Chap. 5 this notion will be extended
to damped systems by introducing the concept of complex modes.

In the present chapter, the discussion is restricted to real modes. The basic
mathematical properties of modes are presented, as well as general methods
to calculate them. We illustrate these concepts using some examples linked to
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string and percussion instruments. The acoustics of wind instrument resonators is
considered in Chap. 7, where some results of the present chapter are used, drawing
on the analogies outlined in Table 1.1 in Chap. 1.

3.2 Time Scale: Transition from Wave to Mode

When a continuous elastic medium (either solid or fluid), of finite size, is perturbed
by an external stimulus, then the disturbance propagates away from the excitation
point. The propagation speed of the disturbance depends on the inertial properties
(density) and elasticity (compressibility, Young’s moduli, and Poisson’s ratios) of
the medium. As long as the disturbance does not reach the boundaries of the
medium, a wave approach such as the one outlined in Chap. 1 and developed in
Chap. 4 is a suitable means of describing the phenomenon. Taking L as being a
characteristic dimension of the medium, and c as the propagation speed, we can
define a characteristic time tc D L=c, where this wave approach remains valid (see
Fig. 3.2). When the disturbance reaches the boundaries of the domain, part of the
energy is generally transmitted to the external medium, the remaining part being
reflected inside. Two situations can occur

1. The interference between incident and reflected waves at the boundaries is
constructive. This happens at frequencies for which the incident and reflected
waves are in phase. In this case, the total energy for these frequencies tends
to increase with time. Only energy losses due to absorption or transmission at
the boundaries, and during the propagation through the medium itself, limit this
growth. In the absence of dissipation, the energy increases indefinitely in the
medium.

2. The interference between incident and reflected waves at the boundaries is
destructive. In this case, the phase relationship is such that no energy growth
is possible over time in the medium. Because of absorption, the amplitudes of
the corresponding frequencies gradually decrease.

t < tc t >> tct ≈ tc

Fig. 3.2 Local vs. global approach of dynamic phenomena. tc is the characteristic time
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If the observation time is significantly larger than the characteristic time tc of the
medium, then the initial disturbance travels back and forth several times between
the excitation point and the boundaries of the domain. In this scenario, it is therefore
more useful to describe the phenomenon in a way that accounts for the fact that the
energy of the system is distributed over a set of discrete frequencies. In the absence
of dissipation, these frequencies are the “eigenfrequencies” of the finite medium.
In the following paragraph, a rigorous definition will be introduced. As stated in
the introduction, if a single eigenfrequency can be isolated (this can be achieved
with a monochromatic excitation spectrum), then the spatial profile of the medium
corresponds to an eigenshape.

It is always possible to describe the dynamics in terms of waves. We will
show some applications of this approach in the next chapter. However, this wave
approach quickly becomes very cumbersome and does not always provide a clear
understanding of the physics. It is worth noting, finally, that, strictly speaking,
the growth of an eigenmode needs a significant number of round-trips. Therefore,
there is a definite intermediate period of time (between one and “a number of” tc),
where both the “wave” approach and the “mode” approach are acceptable.

3.3 Definitions and Basic Properties of the Eigenmodes

An eigenmode, for a discrete system or for a continuous medium with finite
dimensions, is an eigensolution of a boundary value problem without a source
(in the mathematical sense). In practice, this means that they are solutions of
the equations describing the system without external excitation. If the system is
conservative, these solutions are sinusoidal in time and are in phase (or in anti-
phase): “standing waves” are obtained. The restriction to conservative media at this
stage may be surprising as dissipation is essential for musical instruments, but before
we consider musical instruments it is first important to understand the properties of
the eigenmodes for this limiting reference case.

3.3.1 Discrete System

A discrete system has a finite number of degrees of freedom. In linear dynamics, the
equations of motion of a discrete conservative system can be written in the general
form:

M R� C K� D 0; (3.1)

where � is a vector containing the variables which describe the motion of the system,
M is the mass matrix, and K the stiffness matrix. Each component of � is a function
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of time. Matrices M and K are symmetrical. The general form of Eq. (3.1) is the
same as that obtained for a discretized continuous medium, using finite element or
finite difference methods (see Chap. 1).

In Chap. 2, it was shown how the eigenvectors and eigenfrequencies of an SDOF
oscillator can be found. Let us now define the vector w and the matrix MK :

w D
�
�
P�
�

; MK D
�

0 I

�M�1K 0

�
, (3.2)

so that Eq. (3.1) becomes: Pw D MKw.
By definition, the eigenvectors of MK must fulfill the condition: MKw D �w, or

P� D �� I � M�1K� D � P� , from which K� D ��2M�: (3.3)

Denoting �2 D �!2, the eigenfrequencies are the roots !n of the characteristic
polynomial:

det

�!2M C K

� D 0 : (3.4)

The number of roots is finite. These roots are real for a conservative system [16].
The eigenvectors (or eigenshapes) ˚n are therefore the nonzero solutions of the
following equation: 
�!2nM C K

�
˚n D 0 : (3.5)

Important Property Since Eq. (3.5) is indeterminate, the components of ˚n are
defined up to a multiplying factor.

The set (!n;˚n) defines the eigenmodes of the system. The mathematical theory
of spectral analysis shows that the shapes˚n form an M- and K-orthogonal basis of
the vector space corresponding to the small motion of the system, which means

t˚mM˚n D 0 and t˚mK˚n D 0 for m ¤ n , (3.6)

where tV represents the transpose of vector V.

Demonstration

Let us write (3.5) for two specific eigenmodes n and m. We obtain

!2nM˚n D K˚n and !2mM˚m D K˚m . (3.7)

(continued)
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Multiplying both sides of the first expression by t˚m and, similarly, both sides
of the second expression by t˚n, we obtain

t˚m!
2
nM˚n D t˚mK˚n and t˚n!

2
mM˚m D t˚nK˚m . (3.8)

We now transpose the second expression, which leads to:

!2m
t
˚m

tM˚n D t˚m
t
K˚n . (3.9)

Given the symmetry properties of M and K, the last equality becomes

t˚m!
2
mM˚n D t˚mK˚n . (3.10)

By comparing the first expression of (3.8) with (3.10), we find�
!2n � !2m

	
t˚mM˚n D 0, (3.11)

from which the expressions (3.6) are derived, since the eigenfrequencies are
different.2

The orthogonality properties mean that the inertia and stiffness forces involved
in a given eigenmode do not develop energy in the motion of the other modes.
A mechanical independence exists between two distinct modes.

In theory, one can take advantage of this orthogonality to expand any solution of
this problem onto the eigenmodes of the system. Thus, if the system is excited by a
distribution of forces f , its motion is described as:

M R� C K� D f : (3.12)

The spectral theory shows that the eigenmodes form a complete system. As a
consequence any solution of Eq. (3.12) yields a unique projection on the eigenmodes
basis [15]. This projection can be written as:

� D
X

n

˚nqn.t/ . (3.13)

The functions qn.t/ are referred to as the generalized displacements or the modal
participation factors. By substituting (3.13) into (3.12), and by making a inner
product on both sides with any eigenvector ˚m, we find, (after eliminating the
zero products when m ¤ n):

h˚n;M˚niRqn C h˚n;K˚niqn D h˚n; fi , (3.14)

2It is shown, see, e.g., [18], that the orthogonality properties can be extended to the case of multiple
eigenvalues.
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where the notation h ; i represents the inner product: hx; x0i= txx0. Equation (3.14)
expresses the decoupling of generalized displacements. Each of these displacements
is described by the differential equation of an independent SDOF oscillator. The
quantity

mn D h˚n;M˚ni (3.15)

is the modal mass of the mode n. Like the eigenshapes, the modal masses are defined
up to a constant multiplicative factor. Similarly, the quantities

�n D h˚n;K˚ni (3.16)

are the modal stiffnesses. Note that:

�n D mn!n
2 . (3.17)

Finally, the quantity

fn D h˚n; fi (3.18)

represents the projection of the external forces onto the mode n. In practice, if the
inner product is zero, it is not possible to excite the corresponding mode. This
occurs, for example, if a string is attached at a position corresponding to a node
of a soundboard mode: in this case, the string cannot excite this mode.

In view of these definitions, we can rewrite the equation of each oscillator in the
following generic form:

Rqn C !2n qn D fn
mn

. (3.19)

The Fourier transform of � [Eq. (3.13)] becomes

� .!/ D
X

n

˚n
fn
mn

1

!2n � !2
: (3.20)

The right-hand side of this expression is a sum of resonant terms. Consequently,
if the system is forced at a frequency ! close to one particular eigenfrequency !n,
the amplitude of that term will tend to infinity. In such a situation, the assumption
of linearity for the system is no longer justified, and other tools for describing the
nonlinear phenomena must be used (see Chap. 8).

Note 1: Since the eigenvectors are defined up to a constant multiplicative factor
C, (3.15) shows that the modal mass is proportional to C2. Consequently, (3.18)
shows that fn is proportional to C and (3.19) indicates that qn is proportional
to C�1. In summary, (3.13) shows that the solution � is independent of C.
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Note 2: The expression normal mode is sometimes used to designate an
eigenmode normalized by an arbitrary constant. This constant can either be the
modal mass of the mode n, or any other appropriate constant (the total energy of
the system, the modal mass of the fundamental. . . ), depending on the physical
context.

3.3.1.1 Energy Approach

The total kinetic energy of the system is

Ec D 1

2
h P�;M P�i D 1

2
h
X

n

˚n Pqn.t/;M
X

m

˚m Pqm.t/i

D 1

2

X
n

X
m

h˚n;M˚miPqn.t/Pqm.t/

D 1

2

X
n

mn Pq2n.t/.

(3.21)

Similarly, the elastic potential energy is

Ep D 1

2
h�;K�i D 1

2

X
n

�nq2n.t/ : (3.22)

Therefore, the total energy of the system is the sum of the modal energies:

E D Ec C Ep D 1

2

X
n

mn Pq2n.t/C �nq2n.t/ D
X

n

En : (3.23)

3.3.2 Extension to Continuous Systems

Extending the results obtained for discrete systems to continuous (conservative)
systems, within the framework of linear approximation, shows that an infinite set
of eigenmodes exists with orthogonality properties related to mass and stiffness
operators. These eigenmodes form a complete basis for any linear motion of the
system. In this case, the eigenvectors ˚n defined for discrete systems become
continuous eigenfunctions of space ˚.x/ and the inner products are expressed in
the form of integrals over the entire structure.

The equation of motion for linear continuous systems can be written as:

L .y/C Ry D s.x; t/ , (3.24)
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where y.x; t/ is the displacement (or one of its derivatives), L .y/ a linear operator,
function of y and of its derivatives, and s.x; t/ a source term. It is necessary to add
boundary and initial conditions to define a well-posed problem.3

3.4 Application to Vibrating Strings

As the name suggests, the basic sound generation mechanism in any string
instrument is the vibration of the strings attached to the neck and soundboard.
The soundboard is set into motion by the strings, which act as vibratory sources,
and the vibrations of the soundboard are transformed into an acoustic pressure (see
Fig. 3.3).

Strings

Exciter

Soundbox

Soundboard

Radiation

Fig. 3.3 Basic principles of string instruments. An exciter (finger, plectrum, hammer, and bow)
sets one or more strings into vibration. This results in a string-exciter coupling which is either
limited in time (plucked or struck strings) or permanent (bowed). The vibrations of the strings are
transmitted to the soundboard via the bridge. The motion of the soundboard modifies the vibration
of the strings slightly, especially if it is light and flexible, since it provides a moving end for the
strings. The soundboard is usually coupled to an air cavity with sound holes (rose, f-holes). The
radiation of the instrument is primarily due to the soundboard and soundholes and, to a lesser
extent, to the back plate. The other parts of the instrument (neck, ribs) do not radiate much sound
in general

3One can also define a vector w D
�

y
Py
�

and separate time and space. Thus for the wave equation

L .y/ D �c2 @
2y
@x2 , the equation to be solved can be written:

Pw D Aw , where A D
 

0 1

�c2 @
2y
@x2 0

!
.

We therefore have a matrix operator A, for which we can determine the eigenvectors and
eigenvalues.
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The same basic principles apply for all string instruments, though a wide
variety of sounds and tone colors exist in this family. Variations in the excitation
mechanisms and the material properties of the body are largely responsible for this
diversity, although significant differences between the properties and regimes of
vibration of the strings themselves are observable from one instrument to another.
As an illustration, we will present some properties of bowed strings at the end of
this section. These properties will be discussed in more detail in Chap. 11.

The experimental study of vibrating strings is a hard task, mainly because it is
difficult to mechanically isolate them from their supporting frame: it is, for example,
extremely hard in practice to obtain perfectly fixed boundary conditions. Moreover,
the motion of a real string does not remain planar: there are always conditions of
excitation, heterogeneities, and/or coupling conditions at the fixed ends that induce
two polarizations and thus a resulting 3D motion. Finally, a coupling exists between
the (dominant) transverse vibration and the longitudinal vibration (see Chap. 8).

In what follows, the fundamental behavior of string motion is reviewed, in the
context of musical acoustics. The discussion is limited to the case of a planar
transverse motion.

3.4.1 Heterogeneous String

For a one-dimensional string with density �.x/, tension T.x/, length L, and cross-
section S.x/ (case of a heterogeneous string with variable diameter), the equation
that describes the transverse displacement y.x; t/ is [see Eq. (1.11)]:

�.x/S.x/
@2y

@t2
� @

@x

�
T.x/

@y

@x

�
D f .x; t/ , (3.25)

where f .x; t/ is a linear density of force applied to the string, which can even be
propagative, for example, in the case of a sliding finger. A variable tension T.x/ can
be obtained if, for example, one hangs a string vertically, because of gravity. We
deliberately choose this example of a heterogeneous string to highlight the general
properties of the eigenmodes.

We limit ourselves in this section to cases where the boundary conditions are
characterized either by a zero displacement or by a zero force. In Sect. 3.4.5 the
extension to more complex situations will be examined, such as the cases (important
in musical acoustics) of mass or elastic ends.

Let ˚n.x/ be the set comprising the eigenshapes of the string, for given boundary
conditions. We expand a solution onto this basis by writing

y.x; t/ D
X

n

˚n.x/qn.t/ . (3.26)
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Multiplying both sides of (3.25) by any mode ˚m.x/, and integrating over the entire
string, yields

X
n

Rqn.t/
Z L

0

˚n.x/˚m.x/�.x/S.x/dx

�
X

n

qn.t/
Z L

0

˚m.x/
d

dx

�
T.x/

d˚n.x/

dx

�
dx

D
Z L

0

˚m.x/f .x; t/dx , (3.27)

which can be rewritten in a symbolic form:

M .Ry; ˚m/C K .y; ˚m/ D hf ; ˚mi . (3.28)

Equation (3.28) is very general and can be applied to any continuous conservative
system. The symbol M designates the mass operator, and K is the stiffness
operator.

3.4.1.1 Orthogonality of the Eigenmodes

Consider a given eigenmode ˚n.x/. It must satisfy Eq. (3.25) for the case where the
source term f .x; t/ D 0:

� !2n�.x/S.x/˚n.x/ D d

dx

�
T.x/

d˚n.x/

dx

�
. (3.29)

Using a similar method as used previously for discrete systems, we multiply both
sides by ˚m.x/ and we integrate over the string’s length. This gives

!2n

Z L

0

˚n.x/˚m.x/�.x/S.x/dx C
Z L

0

˚m.x/
d

dx

�
T.x/

d˚n.x/

dx

�
dx D 0 . (3.30)

To simplify the working, the following notation is used:

PM.m; n/ D
Z L

0

˚n.x/˚m.x/�.x/S.x/dx (3.31)

and

PT.m; n/ D
Z L

0

T.x/
d˚m.x/

dx

d˚n.x/

dx
dx . (3.32)
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After integration by parts of the second term, the equality (3.30) becomes

!2nPM.m; n/ D PT.m; n/�
�
˚m.x/T.x/

d˚n.x/

dx

�L

0

. (3.33)

Writing the same equation for both indices .n;m/ yields

.!2m � !2n /PM.m; n/ D
�
˚m.x/T.x/

d˚n.x/

dx
� ˚n.x/T.x/

d˚m.x/

dx

�L

0

; (3.34)

and

.!2m � !2n/PT.m; n/ D
�
!2m˚m.x/T.x/

d˚n.x/

dx
� !2n˚n.x/T.x/

d˚m.x/

dx

�L

0

.

(3.35)
With the assumptions made on the boundary conditions (i.e., zero displacement
or zero force), the terms between brackets are zero. Therefore, if m ¤ n, the
orthogonality of the eigenmodes with regard to mass and stiffness can be written as:

PM.m; n/ D 0 I PT.m; n/ D 0 . (3.36)

The kinetic and potential energies can be expressed as functions of these quantities:

Ec D 1

2

X
n;m

PM.m; n/ Pqn Pqm ; Ep D 1

2

X
n;m

PT.m; n/ qnqm . (3.37)

Since the products PM and PT are zero for m ¤ n, the energy is thus the sum of
the energy of the modes (see Sect. 3.3.1.1).

Notes The orthogonality properties (3.36) are not related to any particular form
of the solutions ˚.x/ (sinusoidal or other). The demonstration here is valid for a
heterogeneous string, for which the eigenfunctions are not explicitly known.

The previous results are also valid for a mode with a zero eigenfrequency.
Equation (3.29) then shows that we must have Td˚=dx D constant, which occurs
when both boundary conditions are of “zero force” type. We then obtain ˚ D
constant as one of the solutions to the problem (this corresponds to a globally
undeformed displacement, also known as a rigid body mode). To achieve such
boundary conditions in the case of strings, we can think of rings sliding on rails
orthogonal to the string, but it is a little bit exotic in the context of musical
applications. However, an equation of the form (3.25) can be found in other contexts
(longitudinal vibrations of bars and sound pipes) where the present remark then
makes full sense.
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3.4.1.2 Generalized Displacements

As a consequence of the orthogonality of the eigenmodes, and by taking Eq. (3.29)
into account, (3.28) becomes

Rqn.t/C !2n qn.t/ D fn.t/

mn
, (3.38)

where the modal mass of the mode n is

mn D
Z L

0

˚2
n .x/�.x/S.x/dx; (3.39)

and where

fn.t/ D
Z L

0

f .x; t/˚n.x/dx (3.40)

is the projection of the force density on the mode n. The modal stiffness is equal to:

�n D mn!
2
n D

Z L

0

T

�
d˚n

dx

�2
dx : (3.41)

N.B. In general, finding the modal mass mn is easier than finding the modal
stiffness �n. Since !n is known, the modal stiffness is most often determined using
the first equality in Eq. (3.41).

A set of oscillator equations is obtained for the generalized displacement of a
continuous system, in the same way as for discrete systems. The main difference is
that, for a continuous system, the number of independent differential equations is
infinite in theory. In practice, however, a truncation of modes is made, depending
on the frequency range under examination. In musical acoustics, we are primarily
interested in the frequency domain corresponding to the audible range. This range
might be further restricted in view of other considerations, such as damping or the
spectral width of the excitation.

To solve the problem related to each generalized displacement, the methods
and results presented in Chap. 2 devoted to the oscillator are of direct relevance.
Damping phenomena will be introduced later in Chap. 5. The differential equations
to be solved require a knowledge of the initial conditions. In the broad sense, these
initial conditions include cases where the excitation is known starting from t D �1
(see Chap. 2).

Consider the case where the string is set into motion at a particular instant of time
(t D 0) with initial profile y.0; t/ and initial velocity Py.0; t/. We can write as:

y.0; t/ D
X

n

˚n.x/qn.0/: (3.42)
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A similar expression can be written for the initial velocity. The mass and stiffness
orthogonality of the modes yields the initial conditions for the displacements qn.t/:

qn.0/ D 1

mn

Z L

0

�.x/S.x/y.0; t/˚n.x/ dx

and

Pqn.0/ D 1

mn

Z L

0

�.x/S.x/Py.0; t/˚n.x/ dx .

(3.43)

This leads to the result:

qn.t/ D 1

mn!n

Z t

0

f .�/ sin!n.t � �/ d� C qn.0/ cos!nt C Pqn.0/
sin!nt

!n
. (3.44)

Denoting gn.t/ D sin!nt
!n

, the first term of qn.t/ is the convolution fn.t/ ? gn.t/, where
gn.t/ is the Green’s function of the oscillator corresponding to the nth-mode of the
string (Note: see Chap. 2 and compare (3.44) with (2.20)).

3.4.1.3 Impulse Response of a String

In the particular case where fn.t/ is a Dirac delta function of the form fn0 ı.t/, its
Laplace transform is a constant Fn.s/ D fn0. The expression (3.44) can then be
reduced to:

qn.t/ D fn0
mn

sin!nt

!n
C qn.0/ cos!nt C Pqn.0/

sin!nt

!n
. (3.45)

The impulse response for the nth-mode of the string is obtained. Some remarks can
be made

1. An equivalence exists between the expressions of qn.t/ obtained for the impulse
excitation and the initial velocity condition, respectively. In other words, the
string motion is identical, if the vibration is generated with an initial velocity
profile or with a spatial distribution of forces whose time dependence is a Dirac
delta function.

2. If the excitation also occurs at an infinitesimally small point in space, i.e., located
at the point x D x0, it is written f .x; t/ D Aı.x � x0/ı.t/. In this case, the result
is fn.t/ D hf .x; t/; ˚n.x/i D A˚n.x0/ı.t/. The magnitude of the the contribution
of the nth mode to the string motion therefore depends on the value of the mode
shape at the excitation point. In other words, the mode n of the string cannot be
excited if the force is applied on one of its vibration nodes.
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3. The Green’s function for Eq. (3.25) can be defined as the function for which the
applied force is4:

f .x; t/ D T.x0/ı.t � t0/ı.x � x0/ .

The solution is:

g.x; tjx0; t0/ D H.t � t0/T.x0/
X

n

˚n.x/˚n.x0/

mn

sin!n.t � t0/

!n
. (3.46)

This solution illustrates the reciprocity between the source (at position x0) and the
receiver (at position x). For the constant mode ˚.x/ D 1 (when it exists), one must
replace the last ratio with (t � t0/: In this case, the growth over time is compensated
in practice by the damping.

3.4.2 Ideal String Fixed at Both Ends

The simplest case to be considered is the so-called ideal string rigidly fixed at
both ends. An ideal string is homogeneous with density �, constant cross-section
S, and uniform tension T. It is assumed that vibrations occur without damping and
restricted to a single plane. This situation is far from a real string, but it can be
considered as a reference case. The transverse displacement y.x; t/ of the string is
then described by the wave equation:

1

c2
@2y

@t2
D @2y

@x2
, (3.47)

where c D
q

T
�S is the propagation speed of the transverse waves. For a har-

monic wave of the form y.x; t/ D ej.!t�kx/, Eq. (3.47) yields the dispersion
equation D.!; k/ which expresses the relationship between angular frequency !
and wavenumber k. We obtain

D.!; k/ D !2 � c2k2 D 0 , (3.48)

showing that the ratio between angular frequency and wavenumber is constant and
equal to c, a general property of non-dispersive medium. For a string of length L
rigidly fixed at both ends, the eigenmodes must fulfill the conditions:

d2˚n

dx2
C !2

c2
˚n D 0 with ˚n.0/ D ˚n.L/ D 0 . (3.49)

4The factor T.x0/ is written here in the applied force term to be consistent with other Green’s
functions which will appear in later chapters of this book.
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As a consequence, the solutions for the eigenfunctions are

˚n.x/ D sin knx , (3.50)

where the wavenumber values correspond to the discrete set:

kn D n�

L
: (3.51)

Using Eq. (3.48), the discrete set of angular frequencies is

!n D n�c

L
; i.e., for the eigenfrequencies: fn D nc

2L
. (3.52)

According to Eq. (3.39), the modal mass is mn D �SL
2

D Ms
2

, where Ms is the total
mass of the string. In this particular case, all modal masses are equal. It is worth
remembering that the value of the ratio mn=Ms D 1=2 is purely arbitrary, since
the modal masses are defined up to a multiplicative factor. On the contrary, the
multiplicative constants are suppressed in Eq. (3.21) showing that the kinetic energy
En D 1

2
mn Pq2n has a physical meaning.

3.4.3 Initial Conditions and Starting Transients

Traditionally, string instruments are divided into three main families: plucked strings
(guitar, harpsichord, harp, etc.), struck strings (piano, hammered dulcimer, etc.),
and bowed strings (violin, viola, cello, and double bass). This classification is based
directly on the different excitation mechanisms of the string. In Chap. 1, a detailed
physical description of the pluck was presented. In this chapter, the main focus is on
vibration modes, and we will thus restrict ourselves in Sect. 3.4.4 with a simplified
description of the pluck excitation.

In Sect. 3.4.7 there is some discussion on struck strings, with emphasis on the
interaction between piano hammer and string. Finally, in Sect. 3.4.9, some properties
of bowed strings are presented. The bow–string interaction is presented in detail in
Chap. 11, focusing on the violin.

3.4.4 Plucked String

When plucked by a finger or a plectrum, the string is moved away from its initial
equilibrium position. During the stick phase, a contact exists between the exciter and
the string. When the restoring force due to tension (see Fig. 3.4) becomes slightly
higher than the frictional force, the string slips under the finger (see Sect. 1.4.3.1 in
Chap. 1).
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Fig. 3.4 Balance of forces
for the plucked string. F is the
pulling force of the finger and
T is the tension of the string

F

TT

h

0 x0 L x

Fig. 3.5 Simplified model of initial profile for a plucked string without stiffness

A simplified model for the starting transient of the string is presented below. It is
assumed that the string leaves the exciter without initial velocity at string position
x0 with the initial profile (see Fig. 3.5):

y.0; t/ D
(

hx
x0

for 0 � x � x0;
h.L�x/
L�x0

for x0 � x � L :
(3.53)

Note The string shape here is a perfect triangle, which is not realistic because of
the intrinsic stiffness of the string. If stiffness terms are added to the string equation,
then this initial string shape will have to be revisited.

The modal method involves searching for solutions of the form indicated in
Eq. (3.26). This equation must be satisfied in particular at time t D 0, which leads to
Eq. (3.43). Since the initial string velocity is taken equal to zero, we get Pqn.0/ D 0,
and the remaining unknown variables of the problem are the initial generalized
displacements qn.0/. Using the orthogonality properties of the modes, we find

qn.0/ D 1

mn

Z L

0

�Sy.0; t/˚n.x/ dx D 1

mn

Z L

0

�Sy.0; t/ sin knx dx , (3.54)

from which we derive5

5In the particular case considered here, the constant term �S can be moved out of the integrals in
Eq. (3.54), and the orthogonality properties of the modes are reduced to:
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qn.0/ D 2hL2

n2�2x0.L � x0/
sin knx0 . (3.56)

The expression for qn.t/ is provided by the equation of an oscillator with no
applied force:

Rqn C !2n qn D 0 , (3.57)

which, given the initial displacement and velocity conditions, leads to qn.t/ D
qn.0/ cos!nt. In summary, the general expression of the transverse displacement
of the string is given by:

y.x; t/ D
X

n

2hL2

n2�2x0.L � x0/
sin knx0 sin knx cos!nt . (3.58)

Despite its simplicity, this last expression is very informative:

1. For an ideal plucked string rigidly fixed at both ends, the eigenfrequencies are
integer multiples of a fundamental frequency f1 D c=2L which corresponds to
the inverse of the period of vibration (Fig. 3.6). We obtain a harmonic spectrum.

2. The amplitudes of the modal components decrease as 1=n2 (see Fig. 3.7). As a
consequence of this rapid decrease with regard to the rank n of the mode, one
can consider representing the vibration with a limited number of components.
In fact, the modal truncation depends on the problem under examination. In
practice, a note played on the low E-string of the guitar (83 Hz fundamental)
may contain 60–100 audible components, whereas notes produced on the high
E-string (fundamental 330 Hz) only contain about 10–20 audible components.

3. The fact that the amplitude of mode n is proportional to sin knx0 shows that it
is possible to suppress a given spectral component !n by exciting the string at
points .x0/p D pL

n where p is an integer < n.
4. The respective roles of the excitation position x0 and observation position x

are exchangeable in (3.58). This property is a consequence of the principle of
reciprocity.

5. As x0 tends to 0, y.x; t/ tends to

y.x; t/ D
X

n

2h

n�
sin knx cos!nt : (3.59)

Z L

0

˚n.x/˚m.x/ dx D
(
0 for m ¤ n;
L
2

for m D n :
(3.55)

This expression is a particular case. The formulation (3.54) is more general and this is the
reason why we have kept it.
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Fig. 3.6 Waveform of the displacement for an ideal string plucked at 7/8th of its length and
observed at the same point. (a) One component; (b) three components; (c) ten components. As
the number of components increases, the solution converges to a piecewise linear function, which
corresponds to the exact solution (see Chap. 4)

The magnitudes of the components now vary as 1=n, which means that if
the excitation point is close to one end, then more harmonics are excited
with significant amplitude. The corresponding sound will be “brighter”.6 By
symmetry, the same argument can be made in the case where x0 tends to L.

6The brightness of a sound is one of the perceptual attributes that characterize its timbre. A number
of studies show that it is highly correlated to the spectral centroid, or SC, of the sound (indicating
the “center of gravity of the spectrum”). If Ak is the amplitude of the frequency spectral component

fk of a sound containing N components, the SC is defined by SC D
PN

kD1 fkAkPN
kD1 Ak

. This quantity

characterizes the balance between bass and treble: a dull sound has a low SC, whereas a bright
sound contains many high frequency components and therefore has a high SC.



120 A. Chaigne and J. Kergomard

Frequency (Hz)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

y 
 (

ar
bi

tr
ar

y 
u

n
it

)
5

0

–5

–10

–15

–20

–25

–30

–35
0 0.2 0.4 0.6 0.8 1.0 0 500 1000 1500

x /L

|Y
| (

dB
)

Fig. 3.7 Left: spatial shape of the string plucked at 7/8th of its length for a fixed time t. (Dotted)
One mode; (dashed) three modes; (solid line) ten modes. Right: spectrum of the displacement of
the string shown in Fig. 3.6 (ten components)

3.4.4.1 Force Transmitted by the String to the Bridge

As the string is moving, it exerts a time-dependent transverse force at both ends. To a
first-order, we can assume that this force is proportional to the spatial derivative of
the displacement, i.e., given the orientation of the x-axis (see Fig. 3.5):

F.0; t/ D T

�
@y

@x

�
xD0

and F.L; t/ D �T

�
@y

@x

�
xDL

: (3.60)

In what follows, the bridge is arbitrarily taken as being located at x D L. The force
transmitted by the string to the bridge can then be written as:

F.L; t/ D �T

�
@y

@x

�
xDL

D �T
X

n

2hL

n�x0.L � x0/
cos knL sin knx0 cos!nt :

(3.61)
The amplitudes of the spectral components of the force vary as 1=n, and tend
towards a constant value when the excitation position x0 gets closer to one of the
ends. Thus, they decrease less rapidly with n than the displacement components do.
Through sound synthesis, one can verify that the simulated sound of a “force” is
“brighter” than the sound of the corresponding “displacement.”

We will verify in Chap. 4 that, for an ideal string, the displacement waveform
is piecewise linear (exact solution). The force waveform is therefore piecewise
constant. Experimentally, it is observed that the force pulses are rounded, a
consequence of string stiffness, limited bandwidth of the excitation, and damping.
The truncation to ten modes shown here illustrates the resulting error on force and
displacement waveforms (see Figs. 3.6 and 3.8).
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Fig. 3.8 Force transmitted by the string to the bridge. (Left) waveform (ten components); (right)
corresponding spectrum. The force eigenfrequencies are identical to those of the displacement, but
the comparison with Fig. 3.7 shows that the amplitudes of the force components with high order
n (around 1000 Hz) are less attenuated compared to the components with lower order (around
100 Hz) than it is the case for the displacement component

3.4.5 String with a Moving End

In a string instrument, the strings do not radiate any significant acoustic energy,
because their diameter is small compared to the acoustic wavelength (see Chap. 12).
As an empirical proof, it is easy to carry out a simple experiment: stretch a string
between your fingers and pluck it. You will only hear a sound when the string is
brought close to your ear.

To radiate acoustic energy efficiently, the string needs to be coupled to a resonator
with a large surface. This is the main role of the soundboard. As a consequence, the
assumption of zero displacement at both ends of the string is unrealistic. It would
imply that the soundboard is rigidly fixed and does not produce any sound.

We shall therefore now consider that at least one of the string’s ends is moving.
This boundary condition corresponds to the coupling of two continuous systems
(string and soundboard), each of them presenting an infinite number of modes.
A comprehensive model of such coupled systems will be presented in Chap. 6. Here,
the effect of one particular mode (a single oscillator) of the soundboard on the string
will be examined.

It is well-known (see Chap. 2) that such an oscillator behaves either like a spring
or like a mass, depending on the ratio between the excitation frequency and the
eigenfrequency of the oscillator. These two limiting cases will be studied, leaving
the particular case where the oscillator behaves as a pure damper temporarily aside.
This latter case will be studied in detail in Chap. 5. In actual fact, the soundboard
itself is subjected to dissipation, because of internal losses and radiation, which we
will also ignore for the moment.
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Fig. 3.9 String fixed at one
of its ends (at position x D 0)
to a spring of stiffness K0

0 L x

K0

3.4.5.1 Purely Elastic End

Consider first the situation of a homogeneous string fixed to a spring of stiffness K0
at point x D 0 (see Fig. 3.9). The balance of forces yields the boundary condition:

T

�
@y

@x

�
xD0

D K0 y.0; t/ . (3.62)

It is assumed that the displacement of the string remains equal to zero at the other
end, i.e., y.L; t/ D 0. To calculate the eigenmodes, we search for solutions of the
form y.x; t/ D ˚.x/ cos!t. According to Eq. (3.47), the functions˚.x/must satisfy
the equation:

d2˚

dx2
C k2˚ D 0 (3.63)

and the two boundary conditions. Equation (3.63) with the condition ˚.L/ D 0

gives

˚n.x/ D sin kn.x � L/. (3.64)

The condition at x D 0 yields

tan knL D �knT

K0
. (3.65)

The index n in Eq. (3.65) shows that the condition is fulfilled for a discrete set of
values of the variable k only. Equation (3.63) is, in turn, only satisfied for a discrete
set7 of functions ˚n.x/. Using Eq. (3.65), we can write:

7The solution kn D 0 is excluded here, since it leads through (3.63) to the degenerate solution
˚n.x/ D 0 8x, because of the condition of zero displacement in x D L.
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Fig. 3.10 Graphical representation of Eq. (3.65) for the case of a moving end. Dotted line: elastic
end. Dashed line: string with a mass at one end

˚n.x/ D sin knx C knT

K0
cos knx . (3.66)

The graphical representation of (3.65) (see Fig. 3.10) shows that the roots kn are
no longer multiples of k1, as it was the case for the ideal string with fixed ends.
As a consequence, the motion of the string is not periodic. The roots depart more
and more from the ideal harmonic series as the rank n of the partial increases. The
presence of a spring at one end of the string systematically leads to a decrease in
the eigenfrequencies in comparison with the ideal case. This is not surprising as
it corresponds to introducing a finite stiffness into the system, compared with the
perfectly rigid case (equivalent to an infinite stiffness). Introducing flexibility in a
system leads to a lowering of its eigenfrequencies.8

8One can also consider the introduction of a spring as an apparent increase in the length of the
string, but with the condition that the length correction depends on the rank n of the partial. If one
writes kn�` D arctan ŒknT=K0	, the roots are solutions of the equation tan kn.L C �`/ D 0. For
the first modes, we have �` ' T=K0 . This approach is very convenient for wind instruments.
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Once the modes are determined, the initial values qn.0/ of the generalized
displacements can be derived from the integral expressed in Eq. (3.54). Equa-
tions (3.34) and (3.35) show that, for an isolated string, the modes are orthogonal
with respect to mass, but are no longer orthogonal with respect to stiffness. However,
one can generalize the concept of orthogonality to the whole system (string + spring)
by considering the total potential energy.9

According to Eqs. (1.124), (3.62), and (3.37):

Ep D 1

2

Z L

0

T

�
@y

@x

�2
dx C 1

2
K0y

2.0; t/

D 1

2

X
n;m

ŒPT.m; n/C K0˚n.0/ ˚m.0/	 qnqm :

However, according to Eq. (3.35), PT.m; n/ D �K0˚n.0/ ˚m.0/ for n ¤ m. So,
finally we get10

Ep D 1

2

X
n



�n C K0˚

2
n .0/

�
q2n where �n D PT.n; n/ . (3.67)

3.4.5.2 String with a Mass at One End

The case of a homogeneous string with a mass at one end is now examined. It is
assumed that the mass M0 is located at position x D 0. The following boundary
condition must then be satisfied11:

T

�
@y

@x

�
xD0

D M0

@2y

@t2
.0; t/ : (3.68)

9In (1.124), the term within the brackets corresponds to the input power at both ends. We get:

T
@y

@x

@y

@t
D K0y

@y

@t
D @e0

@t
where e0 D 1

2
K0y

2 in x D 0:

10A similar problem will be tackled in Chap. 4 for a pipe loaded by a radiation impedance at low
frequencies. We will see that, assuming kn�` << 1; where �` D T=K0 , the moving end can
be replaced by a fixed termination for the pipe with an end correction �` at the end x D 0.
The calculations of the modes are simplified, and we can recover the term K0˚2

n .0/, considering
the energy located between x D ��` and x D 0. This means that, instead of considering a
boundary condition corresponding to a lumped element at x D 0, we consider a longer medium,
with some particular parameters �, S, and T in the extension, and with a simple boundary condition,
y.��`; t/ D 0.
11We obtain identical results with the mass located at position x D L. In this latter case, there is a
change of sign in the boundary condition.
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It is assumed that the other end is fixed, i.e., y.L; t/ D 0. The condition (3.68)
involves time derivatives, which makes the resolution by Fourier transform difficult
(see below). The method used here is the separation of variables. It involves testing
the existence of standing waves of the form y.x; t/ D ˚.x/w.t/ and searching for
those conditions under which the equations of the problem are verified. Inserting
y.x; t/ in Eq. (3.47), we obtain:

˚

c2
d2w

dt2
D w

d2˚

dx2
: (3.69)

By grouping the terms involving the same variables, we derive

1

c2w

d2w

dt2
D 1

˚

d2˚

dx2
D �˛2; (3.70)

where �˛2 is a constant. The only way to satisfy the first equality of Eq. (3.70) is
for both sides of the equality to be set as constant, since they involve a different
variable (resp. t and x). Due to the boundary conditions, it will be now shown that
the constant ˛ is real.

The resolution of both differential equations in (3.70) yields the general solu-
tions:

w.t/ D A cos c˛t C B sin c˛t and ˚.x/ D C cos˛x C D sin ˛x : (3.71)

The boundary conditions for x D 0 and x D L imply that:

˚.L/ D C cos˛L C D sin ˛L D 0

and T
d˚

dx
.0/ D �˛2c2M0˚.0/ :

(3.72)

Thus ˛ must fulfill the condition:

tan˛L D �S

˛M0

; (3.73)

and is therefore real.
Figure 3.10 shows that this equality can be obtained for a discrete set of

wavenumbers only:

k1 < k2 < : : : < kn: (3.74)

This leads to the eigenvalue equation:

tan knL D �S

M0kn
. (3.75)
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The mass loading leads to an increase in the eigenfrequencies of the string and in
turn to an apparent decrease in its length (see Fig. 3.10). The ideal case is obtained
as M0 tends to infinity in Eq. (3.75).

In the case of a mass-loaded end, the modes of the string are orthogonal with
regard to stiffness, but not with regard to mass. For the string+mass system, the
orthogonality can be extended by considering the total kinetic energy:

Ec D 1

2

X
n



mn C M0˚

2
n .0/

� Pq2n where mn D PM.n; n/: (3.76)

Note The first consequence of the coupling between string and soundboard is
to modify its eigenfrequencies. This is one cause of inharmonicity in the sound
produced by the instrument. The coupling affects the lowest eigenfrequencies
primarily, i.e., those for which the amplitude of the soundboard motion is the
strongest, and thus where the assumption of perfect rigidity is the least satisfied.

Orthogonality Properties of a Heterogeneous String

Turning back to the general case of a heterogeneous string of length L (Eq. (3.25)
without an applied force term), the goal is now to find the orthogonality properties
of the eigenmodes when one end is fixed while the other end is connected to a mass
ML. With boundary conditions of the problem:

y.0; t/ D 0 and � T.x/
@y

@x
D ML

@2y

@t2
; at x D L , (3.77)

we obtain

PM.m; n/ D tn
!2n
ımn � ML˚m.L/˚n.L/; (3.78)

where

tn D PM.n; n/ D
Z L

0

T.x/

�
d˚n.x/

dx

�2
dx . (3.79)

This shows that the modes are orthogonal with regard to stiffness, but not with
regard to mass. In conclusion, Eq. (3.38) becomes

Rqn.t/C !2n qn.t/ D 1

tn

Z L

0

@

@x

�
f .x; t/

�.x/S.x/

�
T.x/

d˚n.x/

dx
dx

D 1

tn

�
f .L; t/

�.L/S.L/
ML˚n.L/C !2n

Z L

0

f .x; t/˚n.x/dx

�
.

(3.80)
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Fourier Domain Approach
Eigenmode decomposition can also be applied in the Fourier (or in the
Laplace) domain. To illustrate this, the case of a homogeneous string with
a mass at one end is presented. In the Fourier domain, the condition at the
mass-loaded end (3.68) is

T
dY

dx
D M!2Y . (3.81)

The Fourier transform of the wave equation (3.25) is the Helmholtz equation:

d2Y .!/

dx2
C !2

c2
Y .!/ D � 1

T
F.x; !/: (3.82)

Let us now examine the case of a localized excitation, e.g., a Green’s function
F.x; !/ D T.x0/ı.x � x0/. The solution is expanded onto the eigenfunctions
 p of the equation:

d2 p

dx2
C !2p

c2
 p D 0 , (3.83)

with the boundary conditions: .0/ D 0, and (3.81). In Eqs. (3.81) and (3.82),
! is a parameter. Thus the eigenfunctions and their corresponding eigenfre-
quencies !p depend on frequency: As a consequence, we do not get modes in
the strict sense. Finally, we write:  p D sin.!px=c/, where

tan
!p.!/L

c
D T

Mc

!p.!/

!2
: (3.84)

For a given !, there is an infinite set of values for !p. The solution can then
be expressed as a sum of functions  p.x/:

Y .!/ D
X

p

 p.x/Qp.!/: (3.85)

These functions are orthogonal with regard to the mass, i.e., for a homoge-
neous string: Z L

0

 p.x/ q.x/dx D �pıpq; (3.86)

(continued)
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where �p is a constant and ıpq the Kronecker symbol. All these functions
satisfy Eq. (3.81) with a fixed !. One can therefore write

Y .!/ D c2
X

p

 p.x/ p.x0/

�p


!2p.!/ � !2� . (3.87)

If (3.84) is solved for a given frequency, (3.87) enables the calculation of the
Fourier transform of y.t/, that is Y .!/ and, by inverse Fourier transform, y.t/
itself. This approach is often used in acoustics, especially in room acoustics
[27]. It is also systematically used in sound synthesis based on physical
models by Rabenstein and Trautmann [37].

Note 1: The previously described orthogonality is simple for this conser-
vative problem. In general, depending on the end impedances, one must
build an adjoint problem, with an adjoint modes basis denoted  p. The
bi-orthogonality between both families of modes is written:Z L

0

 p.x/ q.x/dx D �pıpq : (3.88)

It turns out that the adjoint family is the family of the conjugates,
which implies

R L
0
 p.x/ q.x/dx D �pıpq, even if the functions  p.x/ are

complex.
Note 2: Inverse transformation to the time domain, and therefore to
the modes, is possible in the case studied above, but it is subtle. In
the series (3.87), for a given frequency !, only two functions  p.x/ are
resonant, which means that some terms of the series may have a zero
denominator. Denoting their indices by n and �n, we have: !n D ˙!
and both correspond to the same shape  n.x/. By inserting !n D ˙!
in (3.84), it can be seen that the two values of !n satisfy Eq. (3.75). As
a consequence, both resonant terms of the series (3.87) have an infinite
number of poles. Finally, one can check that  n.x/ D ˚n.x/. The residues
theorem is used to return to the time domain (see the appendix at the end
of this chapter). First, the Taylor expansion of the denominator D.!/ D
�n.!

2
n � !2/ is written in the form D.!/ D D.!n/ C .! � !n/D0.!n/,

with:

D0.!n/ D
�

dD.!/

d!

�
!D!n

D �n

�
2!n

d!n

d!
� 2!

�
!D!n

D 2�n!n

"�
d!n

d!

�
!D!n

� 1

#
: (3.89)

(continued)
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To calculate d!n=d! in !n, one needs to derive Eq. (3.84) with respect
to !. It is also necessary to explicitly calculate �n. After some tedious
calculations, we get

�n

"�
d!n

d!

�
!D!n

� 1
#

D �Ln

2
with

Ln D L C �`

1C
�
!n�`

c

�2 where �` D M

�S
. (3.90)

In addition, we find tn D TLn!
2
n=.2c2/: By adding both terms with poles

of Eq. (3.87), we finally obtain Y .!/ D P
 n.x/Qn.!/, with:

� !2Qn C !2n Qn D 2c2 n.x0/=Ln D T n.x0/!
2
n=tn: (3.91)

This is in agreement with the expression (3.80), when f .x; t/ D Tı
.x � x0/ı.t/.

3.4.6 Influence of Spatial Width and Duration of the Excitation

In practice, the excitation of a string is distributed over a segment of finite length.
One can think, for example, of the width of a violin bow, of a piano hammer, or of a
player’s finger. Many string instruments (piano, guitar, harp, violin played pizzicato,
etc. . . ) are also excited over a finite time interval, corresponding to the duration of
the interaction with the exciter. In this section, the effect of both the spatial width
and finite duration of the excitation on the string’s response are examined.

Note For simplicity, only the example of the ideal string fixed at both ends
is treated here. In this case, we know that the eigenmodes are ˚n.x/ D sin knx.
Nevertheless, the method developed here remains valid in the general case.

We first consider the situation presented in Fig. 3.11 where the string is excited
by a force term comprising a Dirac delta function in time, and distributed over a
string segment of width 2a centered at position x0. We write12

f .x; t/ D Bı.t/g.x/ with g.x/ D
(
1 if x0 � a � x � x0 C a;

0 elsewhere :
(3.92)

12The coefficient B in this expression has the dimension of a mass divided by time (ŒM	ŒT	�1)
because of the presence of the Dirac delta function.
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Fig. 3.11 Spatial width of
the excitation of a string. The
force f exerted on a string by
a finger, a plectrum, a
hammer, or a bow, is
distributed over a finite width,
here denoted 2a
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Fig. 3.12 Low pass filtering of the string displacement due to the width 2a of the exciter

We derive the projection of the applied force term on the mode n:

fn D hf ; ˚ni D Bı.t/
Z x0Ca

x0�a
sin knx dx D 2aBı.t/ sin knx0

sin kna

kna
. (3.93)

Hence, for a string initially at rest, the displacement is

y.x; t/ D 2aB
X

n

sin knx sin knx0
mn

sin kna

kna

sin!nt

!n
. (3.94)

The expression (3.94) shows that, compared to the case of a point excitation, the
spatial width induces a low pass filtering of the string response, through the term in
sin kna

kna (see Fig. 3.12). The first cutoff frequency fc of this filter occurs when ka D � ,
i.e., fc D c

2a .

Numerical Example For a piano wire of length L D 62 cm, corresponding to
the note C4 (fundamental f1 = 262 Hz), the propagation speed of the transverse
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Fig. 3.13 Pulse of finite
duration

2τ

h

1

t

waves is c D 2Lf1 = 325 m/s. Taking 2a = 2 cm as an order of magnitude estimate
for the spatial window of excitation by the hammer, we find fc = 16 kHz, which
approximately corresponds to the upper limit of the audible spectrum.

• Now the effect of the finite duration of the interaction between string and exciter
is investigated. We assume a spatially localized force density of the form:

f .x; t/ D Cı.x � x0/h.t/ (3.95)

with

h.t/ D
(
1 for 0 � t � 2�;

0 for t > 2�;

where C has a dimensions ŒM	ŒL	ŒT	�2 , and where 2� represents the duration
of the interaction between string and exciter (see Fig. 3.13).

From Eq. (3.44), and under the assumption of a string initially at rest, the
generalized displacement of mode n is

qn.t/ D C˚n.x0/

mn!n

Z 2�

0

sin!n.t � �/d�; (3.96)

which gives the string displacement:8̂̂̂̂
<̂
ˆ̂̂:

For 0 � t � 2� y.x; t/ D 2�C
X

n

sin knx sin knx0
mn

1 � cos!nt

!2n�
;

For t > 2� y.x; t/ D 2�C
X

n

sin knx sin knx0
mn

sin!n�

!n�

sin!n.t � �/
!n

.

(3.97)
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As for the spatial width analysis, the finite duration of the interaction force results
in a low pass filtering of the response y.x; t/ through the term sin!n�

!n�
. Returning

back to the example of the piano wire, we notice that the calculation of the cutoff
frequency, defined by the first zero of the previous function, yields here fc D 1

2�
. By

taking 2� D 1ms as an order of magnitude typically observed on piano wires, (see,
for example, [3]), we find fc = 1 kHz. This cutoff frequency is significantly lower
than the one resulting from the spatial width of the excitation.

3.4.7 Struck String

The previous considerations give some understanding of the effects of finite width
and duration on the string spectrum. Returning now to a more accurate description
of the piano string, we must take the mass Mh of the hammer and its initial impact
velocity V0 into account. This description will be refined later with the introduction
of damping mechanisms both in the string and in the hammer’s felt, as shown in
Chap. 5.

During the contact phase between hammer and string, some of the initial kinetic
energy is transformed into elastic compression energy of the felt (see Fig. 3.14).

The resulting compression force is imparted to the string and gives rise to
transverse traveling waves. These waves are initiated on both sides of the impact
position. As a result of the magnitude of the propagation speed of the bending wave
on the string, and the small distance between the impact position and one of its ends
(the agraffe side), the waves propagating on this “shorter side” of the string reach the
hammer before it leaves the string (see Figs. 3.14 and 3.15). As a consequence, the
action of the wave modifies the compression force, resulting in a modulation of
the interaction force between hammer and string. These modulations can be intense
enough to cause the hammer to bounce back and, in turn, a discontinuity of the force
in the lower range of the instrument can be observed (see Fig. 3.16).

An abundance of literature on the analytical and numerical modeling of the
hammer–string interaction is available; see, for example, [7, 11, 22]. We will see
a similar 2-D example in Chap. 14: the mallet-membrane interaction in timpani.

3.4.8 Driving-Point and Transfer Admittance

The motion of the end of the string that is fixed to the bridge induces vibrations
in the soundboard. The modal approach is an appropriate tool to characterize this
transfer, both theoretically and experimentally. In order to study this coupling,
which is essential for the understanding of string instruments, we start by defining
the concept of mechanical admittance (or mobility) (see also Sect. 1.6 in Chap. 1),
before studying its frequency behavior in detail.
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Agraffe

To the bridge

V0

Fig. 3.14 Hammer–string interaction. (1) The hammer with initial impact velocity V0 comes into
contact with the string. The felt is compressed and a force is imparted to the string. Transverse
waves are developed on the string on both sides of the hammer. (2) As long as string and hammer
stay in contact, the waves developed on the shorter side of the string stay confined between
the agraffe and the hammer, which prevents propagation towards the bridge. (3) After a few
milliseconds, the reaction of the string pushes the hammer back and these waves are free to
propagate

Consider a continuous structure, a piano soundboard, for example, subjected
to forces and moments. In general, for numerical and/or experimental reasons, it
is necessary to work on a discretized version of this structure, i.e., on a mesh
containing a finite number N of areas whose dimensions are small in comparison
with the wavelength. These small areas are commonly referred to as“points.” This
amounts to considering the structure as a discrete system with N degrees of freedom
(see Fig. 3.17).

At each point of the mesh, the motion is characterized by three translation
components and three rotation components. In what follows, the velocity is treated
as a variable. Similarly, the external actions at each point reduce to three force
components and three moment components [9].

Admittances are defined in the frequency domain. At each point, the velocity
components of the motion (Vk) are linked through a 6�6 matrix to the force
and moment components, denoted Fl. The admittance matrix at one point Y is
defined as:

V D YF . (3.98)
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Fig. 3.15 Simulation of the
wave propagation on a piano
wire just after the hammer
impact. The letter H marks
the position of the hammer, A
is the agraffe, and B is the
bridge. For about 1 ms, waves
are “trapped” on the shorter
side (between A and H).
There are then released and
follow the main front which
propagates towards B. At
bridge B, the waves are
reflected and their sign
changes, according to [10]
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Consider now the complete structure, composed of N points. For each action
component at a given point j, denoted Fjjl, a motion is induced at any point i. If
Vijk represents one component of this motion, we define for the pair (Vijk;Fjjl) the
transfer admittance:

Yijjkl D Vijk
Fjjl

with 1 � i; j � N and 1 � k; l � 6 . (3.99)

In total, we obtain for the transfer admittance matrix a group of 6N�6N coefficients
such as Yijjkl to characterize the structural response to external stimuli.

As an application of the concept of transfer admittance, one can think of the
sympathetic excitation of the strings of an instrument through the bridge: the point j
refers to the attachment point at the bridge of the excited string, while the point
i refers to the attachment point of the sympathetic string (see Fig. 3.18). The
sympathetic string vibrates if some frequencies of the excitation signal in j are
close to eigenfrequencies of string i and, in addition, if the admittance coefficient
Yij at this frequency is sufficiently high and does not correspond, for example, to a
vibration node of the bridge at this frequency. The concept of admittance is essential
for understanding the behavior of coupled strings in the piano [39] (see Chap. 6).

Notation. In what follows, the indices (k; l) used for designating the components
of force and velocity are removed for simplicity. The coefficients of the transfer
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Fig. 3.16 Simulations of the
interaction force between
hammer and string. (Top)
String C7 (2093 Hz);
(Middle) String C4 (262 Hz);
(Bottom) String C2 (65.4 Hz).
The amplitude modulations
of the envelope are due to the
waves returning from the
agraffe to the hammer,
according to [11]
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admittance matrix are written Yij, which can be reduced to Yii (or simply to Yi

through index contraction) in the case of the admittance coefficients at the driving-
point. Emphasis is put on force and translation velocity, though the results can be
generalized to moments and rotations.

The frequency behavior of the transfer admittance coefficients Yij are now
examined. The force excitation is located at the coordinate xj. The displacement
at a given point xi on the structure is: �i D P

˚n.xi/qn.t/. To be consistent with
the notation used for a continuous medium, we write: �.xi/ D �i, f .xj/ D fj. The
corresponding vector component is written ˚n.xj/. According to (3.18), we derive:
fn D ˚n.xj/f .xj/. Equation (3.19) can be rewritten as:

Rqn.t/C !2n qn.t/ D ˚n.xj/f .xj/

mn
. (3.100)

In the frequency domain (using the convention of writing the variables in capital
letters), the generalized displacements Qn.!/ are



136 A. Chaigne and J. Kergomard

Vi

Fj

Fig. 3.17 (Left) Transfer admittance for a structure with N degrees of freedom. For each pair of
points 1 � i; j � N, the transfer admittance Yijjkl is the ratio between the velocity component
Vijk at point i and the force component Fjjl at point j. (Right) Vibratory and acoustic analysis of a
cello. We note on the cello soundboard the presence of circles marking positions of excitation or
response in modal analysis experiments (© A. Garcia, CNAM)

�
!2n � !2

	
Qn D ˚n.xj/F.xj/

mn
. (3.101)

Through modal projection, the displacement at point xi is

�.xi/ D
NX

nD1

˚n.xi/˚n.xj/

mn
�
!2n � !2

	F.xj/; (3.102)

where N corresponds to the number of discrete points on the structure (and thus to
the number of modes). The quantity �.xi/ in Eq. (3.102) represents the shape of
the structure (commonly referred to as the Operating Deflection Shape or ODS) for
a forced excitation with frequency ! located at point xj, from which the transfer
admittance between points xi and xj is derived:

Yij.!/ D j!
NX

nD1

˚n.xi/ ˚n.xj/

mn
�
!2n � !2	 . (3.103)
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i

j

Bridge

Fig. 3.18 (Left) Excitation of sympathetic strings. Several strings which have one end fixed to
a moving bridge are likely to vibrate in sympathy. Such a phenomenon requires two conditions:
the transfer admittance between i and j should not be zero, and the strings must have at least
one eigenfrequency in common. (Right) The harp is an example of instrument where sympathetic
vibrations are observed, because of the coupling of the strings through the mounting bar located
on the axis of the soundboard [24]

N.B. The symbol j in the previous expression refers to the complex root of
unity, and should not be confused with the index “j” which appears in the spatial
coordinates and the mechanical variables.

The driving-point admittance at point xi is

Yi.!/ D j!
NX

nD1

˚2
n .xi/

mn
�
!2n � !2	 . (3.104)

Note Both expressions (3.103) and (3.104) were obtained within the framework
of the modal theory for conservative systems, i.e., with no damping. In practice,
it is more realistic if account is taken of dissipation in the structure. It will be
shown in Chap. 5 that, under some particular assumptions, the modal shapes remain
unchanged in the presence of damping, so that one can write:

Yij.!/ D j!
NX

nD1

˚n.xi/ ˚n.xj/

mn
�
!2n C 2j�n!n! � !2

	 , (3.105)
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where �n is a one-dimensional modal damping coefficient, with the assumption
�n � 1. As a result, the admittance can be considered as being a sum of damped
SDOF oscillators (see Chap. 2).

3.4.8.1 Frequency Analysis of Admittances

The modulus of Yij.!/ reaches its maximum at frequencies close to the eigenfre-
quencies of the structure. These maxima are sometimes difficult to detect, especially
if the modes are closely spaced in frequency, and with significantly different
amplitudes. The imaginary part of the admittance vanishes for frequencies equal
to the eigenfrequencies of the structure, and the slope of the phase is maximum (see
Figs. 3.19 and 3.20). In the presence of modal damping, a better accuracy is often
obtained by using the imaginary part (rather than the magnitude) to determine the
eigenfrequencies from experimental admittance measurements.
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Fig. 3.19 Example of a typical admittance, highlighting the dependence of magnitude and phase
on frequency

0
0

1.0

2.0

−2.0

−1.0

0

1.0

2.0

3.0

4.0

100 200

F(HZ)

300 400 500 0 100 200

F(HZ)

300 400 500

R
e 

(y
)

Im
 (

y)

Fig. 3.20 Example of a typical admittance, highlighting the dependence of real and imaginary
parts on frequency
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• When ! ' !n, the main term of Yij.!/ is equal to j!
˚n.xi/ ˚n.xj/

mn
�
!2n � !2

	 .

• When ! 	 !n, the coefficients become

Yij ' j!
X
l>n

˚l.xi/ ˚l.xj/

�ml!2
' 1

jM!
with

1

M
D
X
l>n

˚l.xi/ ˚l.xj/

ml
. (3.106)

All modes with a rank higher than a given value n play the role of a mass M
whose value depends on the modal masses and modal shapes at points xi and xj.
The value of M depends on rank n.

• Similarly, considering the modes with rank lower than n, we find

Yij ' j!
X
l<n

˚l.xi/ ˚l.xj/

ml!
2
l

' j!

K
with

1

K
D
X
l<n

˚l.xi/ ˚l.xj/

ml!
2
l

. (3.107)

The contribution of these modes is equivalent to a stiffness K. In summary,
in the vicinity of a given mode n, the transfer admittance can be written
approximately as:

Yij.!/ ' j!
˚n.xi/ ˚n.xj/

mn
�
!2n � !2

	 C j!

K
C 1

jM!
. (3.108)

In summary, Eq. (3.108) shows that one cannot generally consider the term of
rank n only in the expansion of Yij; it is also necessary to take both the mass and
stiffness residues M and K into account. These two terms represent the influence
of the other modes in the vicinity of the n-th mode.

3.4.9 Strings of Bowed Instruments

Bowed strings are either single wires (like the E-string of a modern violin) or
wrapped strings, where a central wire core is overwound with some form of fine
wire. Pickering [29] and Schumacher [34] investigated the mechanical behavior of
strings for bowed instruments in detail. In the case of wrapped strings, the core can
either be made of a monofilament (steel, tungsten or aluminum) or made of many
threads (generally nylon, but sometimes also steel). The winding is a metallic ribbon
or a thread (different kinds of aluminum, silver, copper, or tungsten alloys) twisted
around the core.

Each string of the instrument is stretched with tension T during the initial tuning.
During normal playing, the length L is changed for each note. These two parameters
will be considered as constant in what follows, although this is not totally true in
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practice. In fact, the use of vibrato (a modulated motion of a finger, resulting in
four to eight oscillations per second) affects both the actual length of the string
and its tension, and probably also the mobility at the bridge. The amplitude of this
motion varies during a note interval, however, on average, it results in an increase in
tension.13

Three main types of waves are observed in a vibrating string.

• Longitudinal waves can generally be ignored in the motion of bowed strings.
• (Transverse) bending waves are predominant. Since the main component of the

bowed string motion occurs in the plane formed by the direction Ox of the string
at rest and the direction Oy of the bow velocity, only this polarization plane will
be considered for transverse waves in the following sections.

• Torsional waves involve the angular displacement  .x; t/ of each section of the
string, with regard to the string axis Ox. Since the bow excites the string at its
outer surface, these waves are always present in a bowed string.

3.4.9.1 Bending Waves

When a string is deflected from its rest position, it tends to return back under the
combined effects of two restoring forces oriented in the Oy-direction: one due to
the tension T and the other due to the intrinsic stiffness of the string. The restoring

force on a portion of string of length dx is T
d2�

dx2
, where � is the displacement along

Oy. For a single string with Young’s modulus E and geometric moment of inertia
of a cross-section Ig, the restoring force due to the finite elasticity of the string is

�EIg
d4�

dx4
(see Chap. 1).

Bowed strings are only single wires; most often they present very complex
wrapped structures. However, assuming that the structure remains invariant during
the deformation (which means that there is no aggregation of the threads in the
neutral plane, for example), we can homogenize the cross-section of the string and
consider an equivalent single string. The stiffness force then keeps the same formal

expression �hEIgid4�

dx4
, where hEIgi is an equivalent bending modulus. For a string

with linear density14 �, the equation of motion becomes

� hEIgid4�

dx4
C T

d2�

dx2
� �

d2�

dt2
D 0 : (3.109)

This equation is dispersive because of the presence of the stiffness term (see
the example of a prestressed bar in Sect. 3.5.1.4). The dispersion is low if the

13The period of a vibrato is typically 125 ms whereas the largest period of a violin note is only 5 ms
(up to 25 ms for the double bass). In view of this duration, it is justified to consider the average
tension increase in the string.
14� is denoted �S for a homogeneous single wire string.
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perturbation term " D hEIgi=TL2 is small compared with unity (see Eq. 3.138),
which is the case for bowed instruments. The important point here is that the
eigenfrequencies of the string are inharmonic. However, for a bowed string, we will
see in Chap. 11 that the motion is composed of self-sustained oscillations and is
thus quasi-periodic. As a consequence, the components of the bowed string motion
do not coincide with the eigenfrequencies of the string. In contrast, in the case of
free oscillations, like those resulting from a “pizzicato” pluck, the sound spectrum
consists of the eigenfrequencies predicted by Eq. (3.138).

One effect of string end mobility is a modification of the string’s eigenfrequencies
compared with the case where the ends are rigidly fixed (see Sect. 3.4.5). To a first-
order, the relative change is equal to (see Eq. 6.54):

ıfn
f1

� jZc;TY

�
; (3.110)

where Zc;T is the characteristic impedance of the bending waves and Y the mobility
at one end of the string (either in x D 0 or x D L) assuming that the other end
is fixed. The end mobility usually has a reactive component which modifies the
eigenfrequencies and a dissipative component which introduces damping in the
eigenmodes or, equivalently, a finite width in the resonance curve.

During the coupling with the bow, a transverse string mode can be excited if
the inharmonicity resulting from both the stiffness and finite end mobility remains
lower than the width of the resonance curve related to dissipation.

3.4.9.2 Torsional Waves

Like the bar of circular cross-section described in Chap. 1, the string has a torsional
stiffness GJ, so that the relationship between the moment M .x; t/ exerted on a
section and its angular displacement  is given by [see Chap. 1, Eq. (1.42)]:

M .x; t/ D GJ
d 

dx
: (3.111)

The string also has a rotational inertia with regard to its axis, with moment I per
unit length. The equation for torsional waves (see Chap. 1, Eq. (1.45)) can then be
written as:

d2 

dx2
� 1

c2R

d2 

dt2
D 0 ; (3.112)

where the propagation speed cR is
p

GJ=I. This speed is about five times higher
than the propagation speed for transverse waves. Torsional waves have an important
intrinsic damping: their associated Q-factor is typically a few tens, an order of
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Fig. 3.21 Transverse displacement � combined to the rotation  of a string section consecutive to
a horizontal force F applied at its surface by the bow. Right: string at rest; left: string in motion

magnitude below that for bending waves [20, 42]. Torsional waves also have a
characteristic impedance which links M and P for a traveling wave:

M D ˙p
JGI P : (3.113)

Finally, a force F applied at the string’s curved outer surface is equivalent to the
following combination (see Fig. 3.21):

• a force F applied at the center generating a bending wave and
• a moment M D aF (where a is the string’s radius) which generates the torsional

wave  .x; t/.

The expression of the velocity vc at the string’s surface combines together the
torsional and the bending waves:

vc D P� C a P ; (3.114)

It is generally more convenient to use the variables .vc;F/ for describing the
combination of both traveling waves:

vc D Yc;TF C a2
Fp
JGI

D YcF; (3.115)

where Yc D Yc;T C a2

I cR
(3.116)

is the resulting mobility of the string at its surface. In this expression, the
characteristic impedance of the torsional waves, seen from the outer curved surface
of the string, is

ZR D ˙ F

a P D I cR

a2
: (3.117)

The characteristic mobility Yc will be used to describe the dynamics of the string in
Chap. 11.
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3.5 Application to Percussion Instruments

Percussion instruments are characterized by a short excitation, followed by free
oscillations. In the linear range, the spectral content of the sound during decay is
composed of the eigenfrequencies of the excited system. In the first chapter of this
book, the basic equations describing the vibrations of elementary structures such
as bars, plates, membranes, and shells were presented. A number of percussion
instruments are made up of such structures. In Chap. 1, the main impact mechanisms
were also described. Using the general properties of modes, we are now able to
apply these results to percussive instruments.

3.5.1 Vibration of Beams

Beam models are well suited to the description of tuned mallet percussion instru-
ments with keyboard such as the xylophone, vibraphone, marimba, glockenspiel,
etc. For these instruments, the bending transverse vibrations are dominant, and
deserve careful attention. However, other modes, including torsional modes, can
also be excited. This is particularly true in the upper frequency range of these
instruments, when the length of the beam becomes comparable to the other
dimensions, and therefore treating the beam as a “slender solid” is no longer valid.15

In this section we restrict ourselves to the case of transverse bending vibrations.
We first examine the analytical reference solution provided by the case of bars
with constant cross-section. We then study the case of bars of variable cross-
section, which better correspond to real instruments. Finally, the particular case of
prestressed bars allows us to establish a comparison with the transverse vibrations
of strings discussed in Sect. 3.4.

As shown in Chap. 1, the basic equation describing the transverse bending
vibrations of bars, assuming Euler–Bernoulli assumptions and isotropic material,
is written:

@2

@x2

�
EI.x/

@2y

@x2

�
C �.x/S.x/

@2y

@t2
D 0 , (3.118)

where y.x; t/ is the transverse vertical displacement (in the ey direction). The
eigenmodes y.x; t/ D ˚.x/ cos!t are the sinusoidal solutions of (3.118) which
satisfy the equation:

15In musical acoustics, the word bar is often used to designate xylophone beams. Both terms are
used in this book. In structural dynamics, the term beam is used to designate slender solids in
bending regime, while the term bar is used in the context of longitudinal vibrations. We do not
make such a distinction here.
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Fig. 3.22 Geometry of a bar with a constant cross-section

d2

dx2

�
EI.x/

d2˚

dx2

�
� !2�.x/S.x/˚ D 0 . (3.119)

Equation (3.119) cannot be solved analytically, except in a small number of cases
such as a bar of constant cross-section, discussed in Sect. 3.5.1.1 below. For
variable cross-section bars, we must use approximate resolution techniques (see
Sect. 3.5.1.2).

3.5.1.1 Free-Free Bars of Constant Cross-Section

Consider the reference case of an homogeneous, isotropic bar of length L, width b,
thickness h, constant cross-section S D bh, whose moment of inertia with respect to
the neutral plane at z D h=2 (see Fig. 3.22) is I D bh3=12.

In this case, Eq. (3.118) reduces to:

EI
@4y

@x4
C �S

@2y

@t2
D 0 . (3.120)

Searching eigensolutions of the form y.x; t/ D ˚.x/ cos!t leads to [19]:

˚.x/ D A cosh kx C B sinh kx C C cos kx C D sin kx

with k D !
v

where v D p
! 4

q
EI
�S : (3.121)

This expression shows that the phase velocity v of the bending waves varies as the
square root of the angular frequency !. The waves are therefore dispersive, the high
frequencies propagating faster than the low frequencies. The associated dispersion
equation is

EIk4 � �S!2 D 0; (3.122)

from which we obtain v as a function of wavenumber k:

v D !

k
D k

s
EI

�S
: (3.123)



3 Modes 145

However, in terms of energy transportation, the appropriate velocity to consider is
not the phase velocity, but the group velocity (see, for example, [21]). For a “wave
packet” localized in time, the group velocity is the velocity of the envelope, which
can be calculated by:

vg D @!

@k
D 2k

s
EI

�S
D 2v D 2

p
! 4

s
EI

�S
: (3.124)

The group velocity here is twice the phase velocity. This result reveals a
paradoxical phenomenon, namely that the group velocity of elastic bending waves in
the bar tends to infinity with frequency. This is in disagreement with the basic laws
of physics since if would mean that some bending waves could propagate faster than
light! This apparent paradox is a result of the simplified model of Euler–Bernoulli
which ignores the effects of rotational inertia of the bar and the shear of the cross-
sections. Introducing these two corrections into the bar model (Timoshenko model
[18]), shows that the velocity of the bending waves actually varies as

p
! at low

frequencies and then tends to a constant asymptotic value as the frequency increases,
which is more realistic (see Fig. 3.23).

Continuing the calculation, we introduce the free boundary conditions
(Fig. 3.24), which amount to nullifying moments and forces exerted by the external
environment on the ends of the bar (see Chap. 1), which yields

@2y

@x2
.0; t/ D @2y

@x2
.L; t/ D 0;

and
@3y

@x3
.0; t/ D @3y

@x3
.L; t/ D 0 . (3.125)

Finally, the eigenfrequency equation for a bar of constant cross-section free at
both ends (see Fig. 3.26) is

cos kL cosh kL D 1 . (3.126)

Fig. 3.23 Group velocity of
bending waves in a bar, for
different models

Group
velocity

Frequency

Euler-Bernoulli

Timoshenko
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Fig. 3.24 On tuned keyboard percussion instruments, the “free-free” boundary conditions are
obtained by attaching the bars together with a light and flexible cord. The attachment points of
the cord on the bar are approximately located at the position of the nodes of the fundamental mode
in order to minimize damping. We see on this figure the example of a balafon or African xylophone

Fig. 3.25 Xylophone bar
with its suspension

Note 1: In (3.126), the solution k D 0 does not hold: it would correspond to the
case where the free bar goes to infinity after the impact. Imagine, for example,
striking a bar with a hockey stick on a frozen lake: it will take a rigid body motion
made of the combination of translation and rotation, and you will have to run far
away to recover it!
Note 2: In practice, the boundary conditions are satisfied by flexible suspen-
sions.16 These suspensions, combined with the total mass of the bar, provide an
extra rigid body mode (see Sect. 3.4.1.1). This mode usually has an eigenfre-
quency of a few Hz, which is very low as compared with the first eigenfrequency
of the transverse motion (see Fig. 3.25).

The graphical resolution of Eq. (3.126) in Fig. 3.26 shows that the roots are such
that knL ' .2n C 1/�=2. From the dispersion equation (3.122), we derive the
eigenfrequencies fn (in Hz):

16The arrangement of bars of ascending pitch is, for example, maintained by a thin cord which
passes through all bars.
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Fig. 3.26 Graphical solution
of the eigenfrequency
equation for a free
homogeneous bar of constant
cross-section: the solutions
are found at the intersections
of the curves cos kL and
1
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Fig. 3.27 Waveform and amplitude spectrum for a bar of constant cross-section. The waveform is
not periodic and the spectral components are not integer multiples of the fundamental
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s

EI

�S

�

8L2


32; 52; 72; : : : ; .2n C 1/2

�
. (3.127)

Unlike for the case of an ideal string, the bending eigenfrequencies for a bar
of constant cross-section are inharmonic, i.e., they are not integer multiples of a
fundamental. This property is apparent in Fig. 3.27 which shows the amplitude
spectrum for the vibration of a bar of constant cross-section. On the same figure,
an extra peak close to zero (a few Hertz) can be seen which corresponds to
the suspension resonance of the bars. This resonance, which is not predicted by
Eq. (3.126), does not produce any sound.

From a musical point of view, the major shortcoming of an inharmonic spectrum
is that the perceived pitch is not well defined. For this reason, the bars are cut on
their lower side. The eigenfrequencies of bars with an undercut can be calculated
from Eq. (3.119). In this case, there is no analytical solution and one has to use
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numerical approximations. It is possible to optimize the width and depth of the cut
(while respecting other criteria such as, for example, the non-appearance of torsional
vibrations and the elasticity limit of the bar) in order to ensure that the partials of
higher rank will be close to multiples of the fundamental.

3.5.1.2 Bars of Variable Cross-Section

The Galerkin method of solving the eigenvalue problem for the bending vibrations
in a bar of variable cross-section is now briefly explained [26]. This method applies
to conservative and non-conservative problems. It is an approximation method
where the eigenmodes˚.x/ are sought in the form of a finite sum of p terms:

˚.p/.x/ D
pX

jD1
aj
j.x/ , (3.128)

where the functions 
j.x/ are arbitrary with the restriction that they must fulfill
the boundary conditions: they are said to be kinematically admissible. Combining
Eqs. (3.128) and (3.119), and defining �.p/ D .!2/.p/ (the approximate eigenvalues
of order p), we obtain the Galerkin’s residue:

R


˚.p/.x/

� D d2

dx2

�
EI.x/

d2˚.p/

dx2

�
� �.p/�.x/S.x/˚.p/ , (3.129)

which can be written, given Eq. (3.128):

R


˚.p/.x/

� D
pX

jD1
aj

�
d2

dx2

�
EI.x/

d2
j.x/

dx2

�
� �.p/�.x/S.x/
j.x/



. (3.130)

The functions 
j.x/ are now used to obtain a weak formulation for the eigenvalue
problem, i.e., after multiplication by a function 
i and integration over the entire
length of the bar:

Z L

0


i.x/
pX

jD1
aj

�
d2

dx2

�
EI.x/

d2
j.x/

dx2

�
� �.p/�.x/S.x/
j.x/



dx D 0 . (3.131)

The problem is equivalent to searching those coefficients aj which cancel the residue
R


˚.p/.x/

�
. The formulation (3.131) can then be written as:

pX
jD1

kijaj � �.p/
pX

jD1
mijaj D 0 for i D 1; 2; ::; p , (3.132)
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Fig. 3.28 Bar with an
undercut

where the mass and stiffness coefficients are given by:

kij D
Z L

0


i.x/
d2

dx2

�
EI.x/

d2
j.x/

dx2

�
dx;

and mij D
Z L

0


i.x/�.x/S.x/
j.x/ dx . (3.133)

Equation (3.132) can be written in matrix form:

ŒK � �M	 a D 0 , (3.134)

where a is a vector of dimension p, and where K and M are matrices of dimensions
p � p. The method presented is thus equivalent to solving an eigenvalue problem
similar to those encountered for discrete systems.

A simple example of a bar of variable cross-section is depicted in Fig. 3.28
which shows a bar with reduced height in its central part. Removing material near
the center decreases the inertia (proportional to thickness), but also the stiffness
in higher proportion (since the stiffness is proportional to the third power of the
thickness), and therefore the eigenfrequencies whose corresponding eigenshapes
reach a maximum near the center decrease, which is the case for odd modes.
This simple example shows that it is possible to control the spacing of the
eigenfrequencies with an appropriate undercut.

3.5.1.3 Application to Xylophone and Keyboard Instruments

In practice, bar shapes similar to the one shown in Fig. 3.28 should be avoided
since high internal stress is concentrated near the sharp corners, which weakens
the structure. It is preferable to design bar profiles with a high radius of curvature
and without slope discontinuities.

Today, the design of bars for keyboard percussion instruments still remains
largely empirical. Cutting the bar near its center lowers the frequency f1 of the first
partial, while keeping the frequency f2 of the second partial approximately constant,
and lowering the frequency f3 of the third partial slightly. Instrument makers usually
adjust the ratios R1 D f2=f1 and R2 D f3=f1. In practice, it becomes difficult to
independently adjust the partials of higher rank, and so the focus usually remains
on these two parameters only. The depth of the undercut is limited by the resistance
of the bar to shocks and by the fact that, if the bar becomes too thin in the center,
torsional vibrations might become important. According to Eq. (3.127), the initial
values of the two frequency ratios (before starting the undercut) are
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R10 D 25

9
D 2:754 and R20 D 49

9
D 5:404 : (3.135)

From experience, it is known that the target for R1 usually lies between 3 and 4, and
between 6 and 10 for R2. The standard values used by makers are the following:

• R1 D 3 and R2 D 6,
• R1 D 4 and R2 D 8,
• R1 D 3 and R2 D 9,
• R1 D 4 and R2 D 10 .

On real tuned mallet percussion instruments, these ratios can only be obtained
for the lower notes. In the middle register, the second and third partials are not
in harmonic ratio with the fundamental anymore. This is due to the fact that the
assumption that a bar behaves as a 1D slender solid is less justified as the length of
the bars decreases. Orduña-Bustamante suggests to cutting parabolic profiles in the
bars [28]. The idea is to adjust the depth hc and width xc of the undercut to obtain
appropriate values for R1 and R2. This idea has been extended by Doutaut who
suggests polynomial profiles of order 4 and 8, enabling a larger range of possible
modifications for the eigenfrequencies (see Fig. 3.29) [12].

In order to tune the complete range of bars in a mallet percussion instrument,
it is necessary to adjust both the shape of the undercut and the length of the bars.
For an instrument with four octaves, the ratio between the higher and the lower
fundamental is fmax=fmin D 24 D 16. Since the eigenfrequencies of the bars vary
as the inverse of the square of the length [see Eq. (3.127)], in principle, it might be
considered that the length of the bars should be adjusted such that D D Lmax=Lmin D
4. However, measuring actual bar lengths on most real instruments shows that D is
close to 3. There are several reasons for this: the first reason is with respect to the
playability of the instrument; the player would encounter difficulties in playing on
very short bars in the high frequency range. At the other end of the instrument, long
bars at low frequencies would be more difficult to produce, would take more space
and would use more material. The second reason is linked to manufacturing, because
of the constraints associated with the attachment of the bars. Finally, as mentioned
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Fig. 3.29 Examples of undercut shapes for xylophone bars. (Left) Polynomial of order 8 for bar
C4 (f1 = 262 Hz); (Middle) Polynomial of order 4 for bar C5 (f1 = 524 Hz; (Right) Polynomial of
order 2 for bar C7 (f1 = 2093 Hz), according to [12]
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above, it is preferable to have longer bars at high frequencies for tuning reasons.
In practice, to make a chromatic instrument where fundamental frequencies vary by
6 % from one note to the next, about 5 % of the variations are obtained by modifying
the lengths of the bars and the remaining 1 % by adjusting the cuts. Makers tend to
start by using the most usable length of bar for the high frequency notes, and then
make greater and greater undercuts as they work towards the lower notes.

3.5.1.4 Prestressed Bars and Stiff Strings

Strings of musical instruments are made of elastic materials that have a finite
Young’s modulus. As a consequence, it is impossible to create any discontinuity
of slope by bending the string. This is particularly true for metallic strings, such as
piano wires. If such a string is fixed at one end, when undisturbed it remains almost
straight, like a bar. Therefore, it is necessary to refine the previous ideal string model,
to take both the axial prestress (due to tension T) and bending stiffness into account.
The equation that describes the transverse bending vibrations of a stiff string (or,
equivalently, of a prestressed bar), assuming an Euler–Bernoulli behavior, becomes

�S
@2y

@t2
D T

@2y

@x2
� EI

@4y

@x4
. (3.136)

For a traveling wave of the form y.x; t/ D ej.!t�kx/, we obtain the dispersion
equation:

!2 D k2c2
�
1C EI

T
k2
�

. (3.137)

For a string of length L, the usual orders of magnitude are such that it is justifiable
to define a dimensionless coefficient " D EI

TL2
, small compared to unity, so that

Eq. (3.137) becomes

!2 D k2c2
�
1C "k2L2

	
. (3.138)

For the case of a stiff string simply supported at both ends, the displacement
and moment are both zero at these points, which yields the condition for the
wavenumbers:

sin kL D 0 i.e. knL D n� . (3.139)

From Eq. (3.138), the eigenfrequencies of the stiff string are given by:

!n ' n�c

L

�
1C "

n2�2

2

�
. (3.140)
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Due to bending stiffness, the eigenfrequencies of the stiff string are higher than
those of the corresponding ideal string. This difference increases with the rank n of
the partial. This property is observed on piano wires [30]. The inharmonicity due to
stiffness for the nth-partial of the string is defined as:

in D !n � !no

!no
, (3.141)

where !no is the angular frequency in the case of no stiffness. The application of
this definition to the present case leads to:

in D "
n2�2

2
. (3.142)

In real instruments, the inharmonicity due to stiffness should be added to the
inharmonicity due to the coupling with the soundboard, as studied in Sect. 3.4.5.

Time Domain: Precursor

For stiff strings, the dispersion equation (3.138) shows that the phase velocity
v
 D !=k and the group velocity vg D d!

dk are both monotonic increasing functions
of frequency. In the time domain, rapidly varying oscillations preceding steep
wavefronts can be seen on force waveforms (see Fig. 3.30). These oscillations were
called “precursors” by Cuesta and Valette [38]. These authors also highlighted the
modifications of the precursor due to amplitude nonlinearity (see Chap. 8) and their
perceptual significance.

3.5.2 Vibrations of Membranes In Vacuo

A similar distinction can be made for 2D systems as it has been previously made for
strings and bars. In what follows, an ideal membrane refers to a thin structure, i.e.,
whose thickness is small compared with the other dimensions, and where the elastic

Fig. 3.30 Precursor due to
stiffness in linear regime

Amplitude

Precursor

Time
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restoring forces are due to prestress, i.e., to a surface tension applied at its periphery.
Conversely, a plate is a thin, two-dimensional structure where the restoring forces
are due to the intrinsic elasticity of the material. As for strings, real membranes have
a nonzero modulus of elasticity. Finally, we also find prestressed plates in musical
acoustics, such as the soundboard of a piano. For almost all string instruments, the
body of the instrument is prestressed by the tension of the strings. In membranes,
in addition, the presence of both the surrounding air and the cavity influences the
vibrations. This is due to both the large surface in contact with the fluid and the small
thickness of the membrane. In this section, only the case of membrane vibrations in
vacuo will be addressed, keeping in mind that this reference case has no practical
interest in musical acoustics. However, it will be used in Chap. 14 for building a
kettledrum model.

3.5.2.1 Transverse Free Vibrations of a Circular Membrane

Membranes are used in percussion instruments (timpani, drums, bass drum, etc.)
and in a number of string instruments (banjo [31], African kora, etc.). A circular
geometry is usually preferred so as to obtain homogeneous tension across the
membrane (Fig. 3.31). Membranes are usually excited by impact and therefore the
oscillations are free after the mallet (or stick) has left the membrane. The discussion
here is restricted to free oscillations. Assuming small displacements (which might
not be justified during the excitation phase in the case of strong impacts), one can
assume that the free transverse displacement z.r; �; t/ of a membrane in vacuo with
surface density 
 (in kg m�2) and tension per unit length � (in N m�1) is described
by the 2D wave equation (see Chap. 1):
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D ��z D �
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@2z

@r2
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r2
@2z

@�2

�
. (3.143)

A standard method of solving Eq. (3.143) is to use separation of variables [21]. A
condition of zero displacement at the edge z.r D a; �; t/ D 0 is imposed. In real
instruments (in a kettledrum, for example), energy losses occur at the edge of the
membrane because of both the presence of absorbing material (such as rubber) and
the transmission of vibrations to the kettle. Such dissipation will be ignored in this
chapter. For an ideal circular membrane, the transverse displacement can be written
as [21]:

z.r; �; t/ D
1X

mD1

( 1X
nD0

Zmn.r; �/ .Anm cos!mnt C Bnm sin!mnt/

C
1X

nD1
QZmn.r; �/

� QAnm cos!mnt C QBnm sin!mnt
	)

. (3.144)
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Fig. 3.31 Kora (African harp). The string vibrations are transmitted to a skin (or membrane)
coupled to a cavity (a gourd) with a hole on the back

In Eq. (3.144), the eigenshapes of the membrane are given by:

Zmn.r; �/ D Jn.ˇmnr/ cos n� and QZmn.r; �/ D Jn.ˇmnr/ sin n� , (3.145)

where the functions Jn are the Bessel functions of the first kind of order n [1]. Indices
m and n correspond to the number of nodal circles and diameters, respectively
(see Fig. 3.32). The discrete values of the wavenumber ˇmn are determined by the
boundary conditions at the edge. For a fixed edge, we get

Jn.ˇa/ D 0 . (3.146)

For each value of n, we obtain an infinite series ˇmn of roots of Eq. (3.146). For
n D 0, for example, we find that J0.ˇa/ D 0 yields the solutions ˇm0a D
2:405; 5:520; 8:654; 11:792; 14:931; : : :. Similarly, the roots of J1.ˇa/ D 0 are
given by ˇm1a D 3:832; 7:016; 10:173; 13:324; 16:471; : : :.

The first nodal circle (m D 1) corresponds to the edge of the membrane. The
symmetrical modes correspond to the cases where n D 0, i.e., with no nodal
diameter. In these cases, only the shapes of type Zmn.r; �/ remain. These modes
are excited for a membrane struck near its center. In all other cases, we get twin
modes with the same dependence with regard to r but which differ from each
other by an angular shift equal to �=2n. The modes m1 are strongly excited when
the player strikes near the edge, and are the most important from a musical point
of view (see Chap. 14). The eigenfrequencies !mn are derived from the 2D wave
equation (3.143):

!mn D cˇmn where c D
r
�



. (3.147)
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Fig. 3.32 Modal shapes of a circular membrane in vacuo. Each mode is designated by nm where
n is the number of nodal diameters and m the number of nodal circles. The corresponding
eigenfrequencies are indicated below each shape

In contrast to ideal strings, the eigenfrequencies of a membrane in vacuo are not
harmonically related. We will see in Chap. 14, however, that the first modes of
the m1 family can become almost harmonic under the combined loading effects
of surrounding air and cavity. As a consequence, in this situation, a defined pitch
can be produced when the membrane is struck near the edge.

3.5.2.2 Modal Density of a Membrane

The transverse vibrations of a membrane in vacuo can be viewed as a 2D
generalization of the vibrations of ideal strings. One main difference between these
two systems lies in the modal density (or number of modes per Hz) observed in their
respective spectra.

In this book, we will have several opportunities to discuss the concept of modal
density. This quantity influences linear and nonlinear couplings, acoustic radiation,
and the statistical representation of vibration phenomena at high frequencies.
The modal density of an ideal string stretched between two rigid supports is
compared below with the modal density of a rectangular membrane rigidly fixed
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at its edges. The rectangular geometry is chosen here only for the sake of simplicity,
but the results obtained can be generalized to other geometries. We start by
calculating the number of modes N.f / with eigenfrequencies lower than a given
frequency f . On a wavenumber scale, the successive modes of a string are equally
spaced with an interval equal to �=L. Therefore we have

N.f / D k
�
L

D 2Lf

c
: (3.148)

The modal density is, by definition:

D.f / D dN

df
D 2L

c
D 1

f1
: (3.149)

We find that the number of modes per Hz for an ideal string is equal to the inverse
of the fundamental, which is a fairly obvious result. A similar method is now used
for a rectangular membrane of length Lx and width Ly. The eigenfrequencies can
be obtained by the method of separation of variables. The wavenumbers are now
given by:

kmn D
q

k2m C k2n D
s

m2�2

L2x
C n2�2

L2y
with m; n � 1 : (3.150)

In the k-plane, each discrete wavenumber kmn with components (km; kn) is repre-
sented by a vector of origin O and whose end is one of the nodes of the mesh with
spatial steps �=Lx; �=Ly (see Fig. 3.33). The number N.f / is obtained by dividing
the area of the quarter circle of radius k by the area of one element of the mesh:

N.f / D �

4

4�2f 2

c2
LxLy

�2
D �

Sf 2

c2
; (3.151)

where S is the membrane surface area. We derive, in turn, the modal density:

D.f / D dN

df
D 2�S

c2
f : (3.152)

The modal density of a membrane is proportional to the frequency. We will see
in Chap. 5 that, for timpani membranes and for drumheads, the damping also
increases with frequency. This leads to a modal overlap, so that it is not possible
to discriminate the modes anymore. The spectrum becomes almost continuous.

3.5.3 Transverse Vibrations of Thin Plates

Flat plates can be viewed as two-dimensional bars, the third dimension (thickness)
being considered as small compared with length and width. A piano (or a guitar)
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Fig. 3.33 Determining the number of modes and modal density for a two-dimensional system

soundboard is fairly well represented by a plate model. This is also the case for
other string instruments, such as harps or lutes. Freely suspended metallic plates
can also be used as percussion instruments [33].

In what follows, the transverse plate displacement is assumed to be small enough
so that the equation of motion is linear. The thickness is also assumed to be small and
the frequency range under study is such that transverse shear and rotational inertia
can both be ignored. The transverse vibrations of the plates are then described by the
Kirchhoff–Love model (see Chap. 1). This model is a generalization of the Euler–
Bernoulli model (previously introduced for bars) to the case of plates.

The modes of simply supported rectangular plates are briefly reviewed below,
in the context of musical acoustics. Emphasis is put on orthotropic plates, since
most soundboards of string instruments are made of wood. Isotropic plates are thus
considered as limiting cases. The effects of boundary conditions are discussed. As
for membranes, we limit ourselves to the case of plates in vacuo. The structural-
acoustic coupling between vibrating plate and air will be studied in Chap. 13.

3.5.3.1 Simply Supported Rectangular Orthotropic Plates

For a homogeneous orthotropic plate in Cartesian coordinates, with the axes
oriented in the principal directions of orthotropy, and under Kirchhoff–Love
assumptions, the equation that describes the transverse bending displacement w is
(see Chap. 1):

�ph
@2w

@t2
C D1

@4w

@x4
C .D2 C D4/

@4w

@x2@y2
C D3

@4w

@y4
D 0 . (3.153)
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For a simply supported rectangular plate of dimensions a and b, the displacement
and bending moment are zero at the edges:

w.0; y; t/ D w.a; y; t/ D w.x; 0; t/ D w.x; b; t/ D 0

Mx.0; y; t/ D Mx.a; y; t/ D My.x; 0; t/ D My.x; b; t/ D 0 : (3.154)

The eigenmodes are

˚mn.x; y/ D sin
m�x

a
sin

n�y

b
; (3.155)

and the wavenumbers take the discrete values:

k2mn D k2m C k2n D m2�2

a2
C n2�2

b2
: (3.156)

Using the dispersion equation, the associated angular eigenfrequencies are obtained

!mn D �2

s
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�ph
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D1

m4

a4
C D3

n4

b4
C .D2 C D4/

m2n2

a2b2
. (3.157)

In these expressions, m and n are positive integers.17 As previously shown for
strings in Sect. 3.3.2, the eigenmodes ˚mn are orthogonal with respect to mass and
stiffness, which means here:

Z a

0

Z b

0

�ph˚mn.x; y/˚m0n0.x; y/dx dy D
(
0 if m ¤ m0 or n ¤ n0;
Mmn if m D m0 and n D n0:

(3.158)

where Mmn is the modal mass for the mode (m; n). The eigenfrequencies of the
orthotropic plate are distributed in an area located between two limiting dispersion
curves (see Fig. 3.34).

3.5.3.2 Isotropic Case

For an isotropic material, one needs to substitute in the previous equations:

D1 D D3 D D D Eh3

12.1� �2/ and

D4 D Eh3

6.1C �/
I D2 D 2D1 � D4 D E�h3

6.1� �2/
. (3.159)

17They can also be zero in case of free boundary conditions.
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Fig. 3.34 (Top) Example of dispersion curves for an orthotropic plate. The eigenfrequencies
(asterisk) are located between two limiting curves corresponding to the highest and lowest
elasticity modulus, respectively. (Bottom): The soundboard of an upright piano is an example of an
orthotropic plate. The ribs oriented perpendicularly to the fibers increase the transverse stiffness
significantly. (© Itemm)

Here, the elastic behavior of the material is entirely determined by two constants:
the Young’s modulus E and the Poisson’s ratio �. The equation of motion of the
plate becomes

�ph
@2W

@t2
C D

�
@4W

@x4
C 2

@4W

@x2@y2
C @4W

@y4

�
D 0 . (3.160)
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The mode shapes ˚mn.x; y/ have the same form as in Eq. (3.155). However, the
eigenfrequencies are now given by:

!mn D �2

s
D

�ph

�
m2

a2
C n2

b2

�
. (3.161)

Prestressed Isotropic Plate

For a prestressed plate, under the combined effects of a tension Tx applied in the
plane of the plate in the direction Ox and a tension Ty applied along Oy, then the
isotropic plate equation is modified in the following way [4]:

�ph
@2W

@t2
C D

�
@4W

@x4
C 2

@4W

@x2@y2
C @2W

@y4

�
� Tx

@2W

@x2
� Ty

@2W

@y2
D 0 . (3.162)

In this case, the eigenfrequencies become

!mn D
s

1

�ph

s
D

�
�2m2

a2
C �2n2

b2

�2
C Tx

m2�2

a2
C Ty

n2�2

b2
. (3.163)

3.5.3.3 Modal Density of a Plate

Because of their 2D geometry, plates show higher modal density than bars. As a
consequence of damping, especially in wood, a high density of modes leads to a
modal overlap (as in membranes), which means that it becomes difficult, or even
impossible, to isolate a particular mode.

The case of a simply supported isotropic plate is considered here as an example.
Its eigenfrequencies are given by (3.161). Taking the square root of this expression,

we obtain
p
!mn D p

C
q

m2

a2
C n2

b2
, where C D �2

q
D
�ph . In the k-plane (see

Fig. 3.33), the quantity
p
!mn=C is represented by a vector pointing from the origin

to the coordinates (m=a; n=b).
As previously done for membranes, the number of modes N.f / contained in the

interval Œ0; f 	 is calculated. For this purpose, a circle arc of radius R D p
!=C is

drawn in the k-plane. The number of discrete points contained in a quarter of this
circle of area �R2=4 D �!

4C is determined. Since the area of a single rectangular
element is 1=ab, the total number of modes below a given frequency f is given by:

N.f / D ab

2

r
�ph

D
f ; (3.164)
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from which we derive the modal density:

D.f / D ab

2

r
�ph

D
D ab

h

r
3�p.1 � �2/

E
: (3.165)

In summary, the modal density for a simply supported isotropic plate is constant.
This constant is a function of both the geometry and elastic properties of the
material. The modal density increases as the plate becomes more flexible, or thinner,
and when its surface area increases. For an orthotropic plate whose rigidity constants
have the property D2CD4 D 2

p
D1D3, we obtain the same expression as Eq. (3.165)

for the modal density, provided that D is replaced by D1 and b by ˇ D b
�

D1
D3

�1=4
.

For a given plate geometry and material, orthotropy leads to an increase in the modal
density compared to the isotropic case [32].

Particular Case of a Prestressed Isotropic Plate

The influence of prestress on the eigenfrequencies of a plate can be discussed with
the help of Eq. (3.163). In this equation, the terms of highest degrees in m and n are
modified by the respective factors 1C Tx

�2D
a2

m2
and 1C Ty

�2D
b2

n2
. If Tx and Ty are positive

(tensile case), the eigenfrequencies increase compared to the non-prestressed case.
If Tx and Ty are negative, the overall stiffness decreases, and the eigenfrequencies
decrease. The consequences in terms of modal density are not straightforward.
The analytical calculation was made by Wilkinson [40] who showed that the effects
of prestress are essentially noticeable on the lowest modes, and that the modal
density of the prestressed plate tends asymptotically to modal density of a plate
without tension as the frequency increases. In addition, the modal density is a
function of the squared tension, so that it is independent of its sign. As shown in
the PhD manuscript by Ege [17, p. 151], the modal density of a plate decreases
with the prestress, whatever its sign. One can also show that the modal density of a
plate under high tension becomes close to the modal density of a membrane: this is
coherent from a physical point of view.

3.5.3.4 Other Boundary Conditions for Plates

The general determination of eigenmodes for plates under complex boundary
conditions will not be discussed in this book. One can refer, for example, to books
by Yu [44] and Graff [21] for more information. Only the case of an isotropic
rectangular plate is briefly presented below. The standard method used is separation
of variables. It involves testing in Eq. (3.160) solutions of the form:

w.x; y; t/ D X.x/Y.y/ej!t : (3.166)



162 A. Chaigne and J. Kergomard

As a result X and Y must obey:

XivY C 2X
00
Y

00 C XYiv � ˇ4XY D 0 with ˇ4 D !2�ph

D
. (3.167)

The variables can be separated under the conditions:

Y
00 D ��2Y and Yiv D �4Y

or, alternatively

X
00 D �˛2X and Xiv D ˛4X .

(3.168)

In a third case, both conditions can be satisfied simultaneously. In Eq. (3.168), ˛2

and �2 are real positive numbers given by the boundary conditions. Let us suppose
that the conditions of the second group (those relating to X) are satisfied. We then
derive from Eq. (3.167) the condition for Y, for each value ˛n of ˛ defined by the
boundary conditions on X:

Yiv � 2˛2nY
00 � .ˇ4 � ˛4n/Y D 0 . (3.169)

Equation (3.169) has different types of solution, depending on the value of ˇ
compared to ˛. For ˇ > ˛, we get

Y.y/ D A sin k2y C B cos k2y C C sinh k1y C D cosh k1y

with k1 D
q
ˇ2 C ˛2n and k2 D

q
ˇ2 � ˛2n .

(3.170)

The constants A, B, C, and D are then determined by the boundary conditions in y.
For a plate clamped at y D 0 and y D b, for example, we have the conditions:

Y.0/ D Y 0.0/ D Y.b/ D Y 0.b/ D 0 . (3.171)

The eigenfrequencies are given by the roots of the determinant of the system of
equations that governs the constants, which yields

k1k2 Œcos k2b cosh k1b � 1	� ˛2n sin k2b sinh k1b D 0 . (3.172)

For each value of n, Eq. (3.172) provides the m successive values of ˇ (and, in
turn, the eigenfrequencies !). The same equations can then be used to calculate the
eigenshape associated with each mode.
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3.5.3.5 Piano Soundboard and Ribbed Structures

Ribbed plates and shells can be found in numerous vehicles (planes and ships)
and in architecture. The prime function of ribs is to increase the rigidity of a
given structure without increasing its mass too much. In Chap. 13, it will be shown
that such a property also is desirable for enhancing the radiation efficiency of
stringed instruments. For this reason, guitar and piano soundboards, for example, are
reinforced by ribs (see Fig. 3.34). Another reason follows from static considerations.
As mentioned in Chap. 1, wood is an orthotropic material. As a consequence,
wooden plates are more rigid in the direction of the fibers than in the direction
perpendicular to them, where they can break more easily. Therefore, if the purpose
is to globally stiffen the soundboard, for dynamical and acoustical reasons, as well
as to increase its breaking strength, then a good strategy consists is to glue the ribs
perpendicular to the fibers.

In the case of the piano, the soundboard is also stiffened by the bridges, which are
fixed on the upper side, where the strings are attached (see Fig. 1.1 in Chap. 1). The
combination of the ribs and bridges has pronounced effects on the sound quality of
a piano, as underlined by several studies and patents in the past decades [6, 14]. The
exact nature of these effects was identified and quantified more accurately in recent
studies [8, 13]. Let us consider, first, the simplified example of a ribbed plate whose
geometry and material are comparable to those of an upright piano soundboard. As
long as the modal frequencies remain lower than, say, 1 kHz, then the way the ribs
are spaced has little effect on the global patterns of the modal shapes (see Fig. 3.35).

Fig. 3.35 Influence of the
ribs on the modal shapes of
the lowest modes of a ribbed
soundboard. (Top) Regularly
spaced ribs; (Bottom)
Irregularly spaced ribs



164 A. Chaigne and J. Kergomard

For such an example, one can prove mathematically, with the help of homog-
enization techniques, that an equivalent homogeneous plate can be defined in this
frequency range, with similar properties to the ribbed plate [5]. However, above a
certain cutoff frequency (which is near 1.1–1.2 kHz for most upright pianos), the
elastic half wavelength becomes of the same order of magnitude as the mean inter-
rib distance. As a consequence, the soundboard zones between the ribs behave like
“waveguides” bounded by the ribs, as seen on the modal shapes (see Fig. 3.36).
At this stage, it is worth noting that the rib distance usually varies slightly on a
soundboard. The calculation of the modes then shows that, even for slightly irregular
rib spacing, the parts of the soundboard with significant amplitudes are restricted to a
few inter-ribs zones only (see Fig. 3.36). This is the so-called localization of modes.
Such localization effects resulting from small departures from exact periodicity
are frequently encountered in physics. They have been intensively studied by
Anderson [2]. These phenomena are often referred to as “Anderson’s localization
effects.” On a piano soundboard, the localization is further enhanced by the presence
of the bridges. As shown in Fig. 3.36d, only a section of one inter-rib spacing,
situated in the region above the main bridge, vibrates significantly. For the frequency
shown here (2149 Hz), the bridge appears to act as a supplementary boundary
condition. Thus, the vibrational energy is confined in a section of one inter-rib zone

Fig. 3.36 Influence of rib spacing and bridge on the localization of modes for an upright piano
soundboard. (a) Regular rib spacing; (b) Slightly irregular rib spacing; (c) Sketch of soundboard
with bridge and ribs; (d) Increased localization of modes due to the bridge
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only. It will be seen in Chap. 7 that the phenomenon is slightly different for wind
instruments. Finally, in Chap. 14, the effects of mode localization on piano radiation
and, particularly, on the directivity of the radiated field, will be presented.

3.5.4 Vibrations of Shells

As indicated for plates, a detailed study of the vibrations of shells is beyond the
scope of this book. The interested reader will find more information in specialized
books, such as [35].

3.5.4.1 Spherical Caps

In this section, the vibrations of a thin and shallow spherical cap are investigated.
This structure illustrates the effect of a finite radius of curvature, compared with the
case of thin circular plates. To a first approximation, it can be assumed that some
percussion instruments, such as cymbals and gongs, can be modeled by such shells.
We consider here that the vibrations are linear, so that we can use a modal approach.
As a consequence, the presentation is restricted to the case of low stress, low strain,
and small displacements compared with the shell thickness. As the displacement
field of the shell becomes comparable or larger than the shell thickness, nonlinear
vibrations will have to be considered, as developed in Chap. 8. In order to account
for cymbals and gongs, the particular case of free boundary conditions is treated
below. This problem is not commonly addressed in the literature [25].

We consider a spherical cap of thickness h, radius of curvature R, and whose
plane projection is a circle of radius a (see Fig. 3.37). The hypotheses of Donnell–
Mushtari–Vlasov (see Chap. 1) applied to the case of a thin (h � a) and shallow
(a � R) shell yield the equation describing the free transverse bending motion
w.r; �; t/ of the cap [35]:

Dr4w C Eh

R2
w C �h Rw D 0 , (3.173)

where E is the Young’s modulus, � the density, � the Poisson’s ratio, and D D
Eh3

12.1��2/ the rigidity factor. Equation (3.173) is equivalent to Eq. (1.88) shown in
Chap. 1, but with the force function F removed. It is convenient to express this
equation in a dimensionless form, through introduction of the reduced variables

w D w=wo, r D r=a and t D t=to with to D a2
q

�h
D . We get

r4w C �w C Rw D 0 where � D 12.1� �2/
a4

R2h2
. (3.174)
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Fig. 3.37 A thin shallow
spherical cap. R is the radius
of curvature, a is the radius of
the circle obtained by
projection of the cap on a
plane, and h is the thickness.
The assumption of thin shell
means h � a, and a shallow
shell is such that a � R

h

a

R

Note 1: In the linear case, wo can be chosen arbitrarily. This will not be the case
for nonlinear vibrations, as seen in Chap. 8.
Note 2: In what follows, only the dimensionless equation is solved, but the
overlines on the variables are omitted, for the sake of clarity.

3.5.4.2 Eigenmodes of a Spherical Cap with Free Edges

We look for solutions of Eq. (3.174) of the form w.r; �; t/ D ˚.r; �/q.t/. These
solutions must satisfy one of the following conditions [23]:(

If !2 � � D �4 > 0 then

r4 � �4�˚ D 0 case 1

If !2 � � D ��4 < 0 then

r4 C �4

�
˚ D 0 case 2

(3.175)

In case 1, the eigenfunctions are given by:

˚nm.r; �/ D ŒAnrn C BnJn.�nmr/C CnIn.�nmr/	

ˇ̌̌̌
cos m�
sin m�

. (3.176)

where An;Bn, and Cn are constants, �nm are determined by the boundary conditions,
Jn are the Bessel functions of the first kind, and In are the modified Bessel functions
of the first kind [1].

In case 2, the eigenfunctions are given by:

˚nm.r; �/ D ŒAnrn C Bnbern.�nmr/C Cnbein.�nmr/	

ˇ̌̌̌
cos m�
sin m�

. (3.177)
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where bern and bein are the Kelvin’s functions defined by [1]:

bern.x/C jbein.x/ D Jn.x exp .3j�=4// . (3.178)

For a free edge, the eigenvalues �mn are determined by the boundary condi-
tions (1.94) at r D a. Four different situations may occur [36]:8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

for n 2 f0; 1g; 8m � 1 !nm D
q
�C !

.0/2
nm

for n � 2; m D 0 and � < �lim
n !n0 D

q
�C �4n0

for n � 2; m D 0 and � > �lim
n !n0 D

q
� � �4n0

for n � 2; m � 1; !nm D p
�C �4nm

(3.179)

where !.0/nm are the eigenfrequencies of a circular plate with free edges of radius a,
corresponding to the limiting case of a cap with zero curvature (infinite radius of
curvature). Figure 3.38 shows how the different eigenfrequencies of the cap vary as
a function of the curvature parameter �.

The limiting value of the parameter � that makes the difference between “Bessel”
modes and axisymmetric “Kelvin” modes is given by Johnson and Reissner [23]:

�lim
n D .1 � �/.3C �/n2.n2 � 1/

1C 1
4
.1 � �/.n � 2/� n2.n�1/.1��/.4n��C9/

16.nC2/2.nC3/
. (3.180)

Appendix: Modal Decomposition Using the Residue Calculus

One often needs to expand a transfer function G.!/ in the frequency domain
onto a modal basis. In this case residue calculus is a powerful tool. It yields,
in turn, the inverse Fourier transform g.t/ as a sum of damped sinusoids. We
restrict ourselves to the simple, though frequently encountered, case where the
poles of the function G.!/ are simple. These poles !n are generally complex.
It is assumed here that their imaginary part is positive, so that the function
exp.j!nt/ is decreasing for t > 0. The poles are therefore located in the upper
complex half-plane. The result, shown below, is the following:

g.t/ D j
X

n

Rnej!nt for t > 0; (3.181)

with g.t/ D 0 for t < 0: The quantities Rn are the residues defined for simple
poles by:

Rn D lim
!�!!n

.! � !n/G.!/: (3.182)

(continued)
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Fig. 3.38 Variations of the eigenfrequencies for a spherical cap with curvature parameter �.
Notice that the eigenfrequencies increase with �, except for the modes !n0 which remain almost
unchanged

If G.!/ D N.!/=D.!/; in order to calculate the residues, one only needs
to write the denominator in the form18 D.!/ ' .! � !n/D0.!n/. As a
consequence, we get

Rn D N.!n/

D0.!n/
: (3.183)

For the proof, we start from the definition of g.t/ [see Eq. (1.116)] :

g.t/ D 1

2�

Z C1

�1
G.!/ej!td!: (3.184)

(continued)

18We make sure that the numerator N.!/ and the denominator D.!/ have only zeros and no poles.
Thus, the tangent function is written as the ratio sine/cosine.
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Fig. 3.39 Contour of the
integral (3.185), equivalent to
the integral on the real axis.
The equivalence applies when
the radius of the circle � tends
to infinity, since the
function to integrate on the
circle tends to 0

r  + ∞− ∞  

The integration is carried out for a real !, from �1 to C1, but we
can convert it to a contour integral: as a consequence the integral on the
contour presented in Fig. 3.39 is equal to the integral (3.184), when t > 0.
The coordinate of a point located on the semi-circle of the complex plane can
be written: z D � cos � C j� sin � , with sin � > 0: When t is positive, and
when the radius � of the circle tends to infinity, the quantity G.z/ejzt tends to
0, provided that the modulus of the function G.z/ tends sufficiently quickly to
0 as z tends to infinity (Jordan’s lemma). The value of the contour integral on
the semi-circle tends to 0, and this contour integral is the result that we were
searching for.

The residue theorem statesI
F.z/dz D 2�j

X
Residues.F.z//: (3.185)

In this formula, the contour goes counterclockwise. We obtain

g.t/ D j
X

Residues.G.!/ej!t/ D j
X

n

Rnej!nt:

For t < 0, we can use the symmetrical contour with regard to the real axis.
This contour is located in the lower half-plane, and since there are no poles in
this half-plane, it is equal to 0: Given the choice made for the poles of G.!/;
we find that g.t/ is causal.

In addition, since the function g.t/ is real, the poles are grouped by
pairs: the existence of terms of the form jRn exp.j!nt/ implies terms
�jR�

n exp.�j!�
n t/. Similarly, the existence of poles !n implies the poles �!�

n
(which are also located in the upper half-plane).

Finally, taking the Fourier transform of (3.181) yields

G.!/ D
X

n

Rn

! � !n
D
X

n

N.!n/

.! � !n/D0.!n/
: (3.186)

(continued)
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To prove this, we can apply the formula (3.181) to the function Rn=.! � !n/,
whose residue is Rn! When ! tends towards !n, only the nth-term of the series
is relevant, since we have: G.!/ D N.!n/= Œ.! � !n/D0.!n/	 D N.!/=D.!/:

A difficulty remains for the poles located on the real axis: the formula
given for the poles located in the upper half-plane is valid, but the proof is
more difficult (it uses the necessary causality of the function g.t/).
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Chapter 4
Waves

Antoine Chaigne and Jean Kergomard

Abstract Wave analysis of the acoustic pressure field is shown to be a useful
complement to modal analysis. In this chapter, many intuitive results are directly
obtained in the time domain, by considering an impulse source and successive wave
reflections at boundaries, for a one-dimensional medium. In the frequency domain,
it is shown that the concept of input impedance (or admittance), of current use in
musical acoustics, can be viewed as a generalized frequency response to a sinusoidal
source. Furthermore, it is shown how infinite series of modes (resp. waves) can be
avoided by using a closed-form of the responses, both in the time and frequency
domain. For the sake of simplicity, 2D and 3D media are not considered, but the
direct relationship between modes and waves is established for the particular case
of a 1D medium. The chapter is mainly based on the example of a cylindrical tube,
but all the results can be transposed to the case of a homogeneous string.

4.1 Introduction

Solutions of numerous differential equations encountered in musical acoustics have
been given as modes in Chap. 3. In a bounded medium such as those studied
(strings, pipes, bars, membranes, etc.), another way of studying the phenomena is
to decompose the variables into expressions featuring successive reflected waves.
Due to the very high number of reflections, such a decomposition would be heavy
in a general medium with 2 or 3 dimensions; that is why the present chapter deals
only with one-dimensional media. The aim of this chapter is to show how, for this
simple case, we can go from one decomposition to another, which is often useful in
musical acoustics. A particular case is that of periodic reflections, which correspond
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to modes with harmonically related eigenfrequencies. The emphasis will be put
on the time-domain representation. While it is less usual, it is essential for some
applications such as calculation by multi-convolution (see [1]), or, in its discrete
time version, for sound synthesis.

We still search for responses to a given source, with particular attention to two
types of idealized excitations: pulse and sine function. Acoustic waves are chosen
as illustrating examples. We limit ourselves to a homogeneous medium, keeping for
Chap. 7 some examples of heterogeneous media or non-cylindrical tubes like horns.
However, we will again take interest in the boundary conditions, which already lead
to a great variety of situations. These boundary conditions can be absorbing, but
the medium itself is supposed to be non absorbing (the case of absorbing media
will be treated in Chap. 5). Finally, in addition to both the modal expansion and the
decomposition into successive reflections, another general solution expressed in a
closed-form, i.e., not in the form of an infinite series, will be presented.

4.2 Solutions Without Source, First Reflection

In Sect. 1.2.4 (Chap. 1) the general solution of the equation without a source has
been written as the superposition of outgoing and incoming traveling waves:

p.x; t/ D f C.t � x=c/C f �.t C x=c/: (4.1)

Actually, the reality here is described only in a quite abstract way. Generally, there
is an infinity of incoming and outgoing waves because an infinity of reflections
appear in a bounded medium. Mathematically, the sum of outgoing waves is again
an outgoing wave, and similarly for the incoming waves. More precisely, it can be
written1 f C.t � x=c/ D f C.t/ � ı.t � x=c/ : thus every convolution of an outgoing
wave by a function of time, independent of x, always leads to an outgoing wave.
This is, for example, the case of a simple delay ı.t � �/, or of a delay followed by
two reflections, at each end.

• Conversely, a reflection at only one end (let us choose the right one, called `/
must transform an outgoing wave into an incoming wave (or vice versa for the
left one), and a reflection function r.x; t/ appears such as:

r.x; t/ � f C.t/ � ı.t � x=c/ D f �.t/ � ı.t C x=c/ 8x;

hence f �.t/ D r.x; t/ � f C.t/ � ı.t � 2x=c/: (4.2)

1The mathematically accurate notation would be f C.t � x=c/ D 

f C � ıx=c

�
.t/, but for numerous

successive reflections, it would be very heavy. Let us highlight also that the FT of this expression
is FC.!/ exp.�j!x=c/:
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If f C.t/ is a pulse ı.t/, the reflection function r.x; t/ is

r.x; t/ D f �.t/ � ı.t C 2x=c/ D f �.t C 2x=c/: (4.3)

We can define it as the response in incoming wave to a pulse of outgoing wave.

At the extremity x D `, the reflection function is known if the external medium is
passive (it is equivalent to the termination impedance, the relation between the two
quantities will be seen later): it will be denoted r`.t/. By definition:

f �.t C `=c/ D r`.t/ � f C.t � `=c/ 8t ; or (4.4)

f �.t/ D r`.t/ � f C.t/ � ı.t � 2`=c/ 8t . (4.5)

Thus, with (4.2), as the convolution integral is commutative:

r.x; t/ D r`.t/ � ı Œt � 2.` � x/=c	 : (4.6)

This result can be interpreted very easily: the outgoing wave in x propagates until
the extremity `, thus over the length .`� x/; where it is reflected according to r`.t/,
and propagates again in the other direction on the length .` � x/. This calculation
can be done again in the frequency domain as an exercise.

Finally, it can be noticed that the reflection function for the flow rate is the
opposite of the reflection function for the pressure. Actually, using the Euler
equation, we have to differentiate the pressure (4.1) with respect to x, then integrate
the result with respect to t: the general solution for the flow is linked to the one for
the pressure through

u.x; t/ D Z�1
c



f C.t � x=c/� f �.t C x=c/

�
: (4.7)

This expression is again written as a sum of incoming and outgoing waves, but
the incoming function is different, implying the difference in reflection functions for
pressure and flow. Thus, for a zero pressure at every moment at the end `, f � D �f C
at this point, and there is a (local) doubling of acoustic flow (and vice versa). Here
Zc D �c=S, because it is defined as the ratio of pressure/flow rate. It is the acoustic
impedance, which differs from the specific acoustic impedance defined in Sect. 1.2.5
of Chap. 1.
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4.3 Successive Reflections of Waves Produced by a Pulse
Source

4.3.1 General Expression

In Chap. 1 it has been seen that an impulsive point source of flow can be created
by a small piston placed on the pipe side in x D xs and moved suddenly at
t D 0 from a height h [Eq. (1.134)]. The piston location is hH.t/, and the flow
is us.t/ D Smhı.t/ D usı.t/ (see Fig. 4.1). We will see that this is the Green’s
function’s derivative with respect to time, and what its equivalent is for a plucked
string.

• In an infinite pipe, this piston creates a plane pressure wave Zcu.t/, where Zc D
�c=S (S is the section of the pipe); but as the piston sees both parts (right and left)
of the pipe indifferently, the flow is divided in two equal parts, and the pressure
created in the pipe is

pdir.x; t/ D 1

2
Zcusı.t � jx � xsj =c/: (4.8)

In this expression, the delay depends on the absolute value of the distance
to the source only. Obviously, on the right of the source (x > xs), this is an
outgoing wave. On the other side, (x < xs;) it is a “incoming” wave, with our
nomenclature linked to the direction of the x-axis. The two waves (4.8) will be
called direct waves.

0 x lxs

pdir

prr

prright

prleft
rlr0

Fig. 4.1 Source of flow rate us.t/ located on a pipe side; it produces two direct pressure waves
in opposite directions. These reflect at the ends characterized by the reflection functions, r0.t/
and r`.t/, linked to termination impedances, Z0.!/ and Z`.!/. The labeled arrows point out the
four “primary” waves, which form the pattern reflecting periodically at each back and forth on the
length `, and are linked to the spatial form of modes (see Sect. 4.6.2)
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• The direct left wave, pdir, reflects in x D 0 (see Fig. 4.1), with the reflection
function r0.t/, and creates a reflected wave, pleft, which comes back to x:

pleft.x; t/ D pdir.0; t/�r0.t/�ı.t�x=c/ D 1

2
Zcusr0.t/�ıŒt�.xCxs/=c	: (4.9)

• The direct right wave also reflects, in x D `, with the function rl.t/, and comes
back to x:

pright.x; t/ D pdir.`; t/ � r`.t/ � ıŒt � .`� x/=c	 D 1

2
Zcusr`.t/ � ıŒt � .2` � x � xs/=c	:

(4.10)
• All the delays included in the three previous waves are lower than the time of a

round trip in the pipe (� D 2`=c). Another wave remains, which reaches x before
this time � : the one that reflects at both ends. If x < xs, it is the wave traveling to
the right, and reflected first in x D ` then in x D 0. It is written:

prr.x; t/ D pright.x; t/ � r0.t/ � ı.t � 2x=c/ D 1

2
Zcusr`.t/ � r0.t/ � ıŒt � .2`C x � xs/=c	:

(4.11)

In the case where x > xs, the result is obtained by inverting x and xs, i.e., by
replacing (x � xs/ by its absolute value. All the other reflections are obtained
by considering each of these four “primary” waves, shifted by a round trip, two
round trips, etc. Now a complete round trip acts as a convolution by the following
function, independent of both the source and receiver positions,

gRT.t/ D r`.t/ � r0.t/ � ı.t � 2`=c/: (4.12)

Finally, for a finite pipe the response to a flow pulse is found to be:

p.x; t/ D pprimary.x; t/ � 
.t/ (4.13)

where


.t/ D ı.t/C gRT.t/C ŒgRT � gRT	 .t/C ŒgRT � gRT � gRT	 .t/C 
 
 
 (4.14)

and

pprimary.x; t/ D 1

2
ZcusŒı.t � jx � xsj =c/C r0.t/ � ıŒt � .x C xs/=c	

Cr`.t/ � ıŒt � .2` � x � xs/=c	

Cr`.t/ � r0.t/ � ıŒt � .2` � jx � xsj/=c		: (4.15)
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The symmetry between the source and receiver abscissae can be noticed. We will
see that it is possible to factorize the term of primary waves, resulting in the spatial
dependency of modes.

4.3.2 Reflections and Modes Periodicity

The infinite series of round trips in the function 
.t/ (4.13) corresponds to a
series of reflections occurring at periodic instants. For simple cases, we can deduce
harmonically related eigenfrequencies, which are multiples of the lowest one. For
example, for the case where r`.t/ D r0.t/ D �ı.t/, the pipe being open at both
ends,2 this series is periodic, and is written


.t/ D
C1X
nD0
ı.t � 2n`=c/:

For negative times, 
.t/ D 0, and the series can be written also:


.t/ D H.t/
C1X

nD�1
ı.t � 2n`=c/

as the function ı.x/ is null for strictly negative x. The infinite series is a Dirac comb,
which is a periodic function; the Poisson formula enables to develop it in Fourier
series:


.t/ D c

2`
H.t/

C1X
nD�1

exp.j!nt/ D c

`
H.t/

C1X
nD0

cos.!nt/: (4.16)

where !n D n�c=`. We converted from waves to modes, because, by convoluting

.t/ by the term of primary waves (i.e., the term between brackets, see Eq. (4.15)),
which depends on x and xs, the spatial dependency p.x; t/ can be found. Here is the
result:

p.x; t/ D c

2`
H.t/

C1X
nD�1

Pprimary.x; !n/ exp.j!nt/: (4.17)

The calculation of Pprimary.x; !n/ is not given here: we simply wanted to illustrate in
a simple way the change from waves into modes. We will see further more general

2 This means that radiation impedance is ignored. The equivalent is a string fixed on a perfectly
rigid support, acoustic pressure and string velocity being analogous.
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methods to realize this kind of change when there is no periodicity. Using the present
method, we see that Formula (4.17) remains valid for the case r`.t/ D r0.t/ D
ı.t/, which corresponds to a pipe closed at both ends, but with a different term
Pprimary.x; !n/.

• Regarding the case r`.t/ D �ı.t/, r0.t/ D ı.t/, which corresponds to a closed–
open pipe, we remark that the periodicity is different: the period is double, and
the infinite series in (4.14) must be written as:


.t/ D Œı.t/� ı.t � 2`=c/	 �
C1X
nD0
ı.t � 4n`=c/:

The following mode decomposition is deduced, if !n D n�c=2` :

p.x; t/ D c

4`
H.t/

C1X
nD�1

Pprimary.x; !n/ Œ1 � exp.�2j!n`=c/	 exp.j!nt/:

It appears that the term between brackets is cancelled for even harmonics, and
that again Formula (4.17) is found, but is limited to the odd harmonics. Let
us note that the round trip function gRT.t/ is important for the evolution of
the system: Eq. (4.12) exhibits that no essential difference exists between the
dissipation occurring at extremities, in the reflections, and the one occurring
during propagation, modifying the Dirac function.

What has just been studied is the impulse response in pressure (at a pulse in flow
rate); this is nothing other, more or less, than the Green’s function, which will be
studied now. This is a useful tool in many situations.

4.3.3 Remark on the Reflection Function (4.3)

If, at a given point, the excitation is a pulse of outgoing wave f C.t/ D ı.t/, this
means namely that the outgoing wave is null at this point for all positive times. This
pulse reflects, for instance, at x D `, and the reflection function (4.3) simply is the
incoming wave at the x point: there is only an incoming wave. No other successive
reflections occur, otherwise the outgoing wave would not be impulsive! In other
words, a termination without echo has been put at the pipe entry, which produces
the impedance of an incoming wave3(the acoustic impedance is �c=S/ .

3This impulsive outgoing wave cannot be realized with a small lateral piston, as the flow pulse
divides into two: an outgoing wave (or more generally right wave) and an incoming one (or more
generally left one). Thus the response to the outgoing wave must include the incoming wave
coming back from x D `, but also the incoming wave directly from the source (about this matter,
see [1]).
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4.4 One-Dimensional Green’s Function

4.4.1 Expression of the Green’s Function

Equation (1.134) has been solved, and can be written as follows:

@2p

@x2
� 1

c2
@2p

@t2
D ��

S
us

dı.t/

dt
ı.x � xs/: (4.18)

Now the Green’s function, the solution of the wave equation for an elementary
source, is solution of the following equation:�

@2

@x2
� 1

c2
@2

@t2

�
g.x; tjxs; 0/ D �ı.t/ı.x � xs/; (4.19)

if the source emission time is t0 D 0 (otherwise, t can just be replaced by t � t0 in
this equation). Up to the constant multiplicative factor �us=S, the solution for the
time derivative of the Green’s function in a finite pipe has been found above. In
order to obtain the Green’s function itself, Eq. (4.13) must be integrated, i.e., one of
the convolution integral factors must be integrated: thus the functions ı are replaced
by step functions H in (4.15). Doing this, a condition is imposed on the Green’s
function: it needs to be null for negative times as must its first derivative, as already
shown in Chap. 2. Its value can be written as:

g.x; tjxs; 0/ D gprimary � Œı.t/C gRT.t/C ŒgRT � gRT	 .t/C : : :	 ; (4.20)

where

gprimary D c

2
ŒH.t � jx � xsj =c/C r0.t/ � HŒt � .x C xs/=c	

C r`.t/ � HŒt � .2` � x � xs/=c	

C r`.t/ � r0.t/ � HŒt � .2` � jx � xsj/=c		: (4.21)

It is the one-dimensional Green’s function. Two other very useful expressions can
be found: the first one is a closed-form expression, see Sect. 4.6, and the second one
is the modal expansion, already studied above.

4.4.2 Approximated “Practical” Realization

An intuitive idea of the Green’s function, or at least of its first derivative, is easily
obtained with the excitation on the pipe side [Expression (4.13)]. Figure 4.2 shows
this derivative for the case x D xs D 0, which is the response of a cylinder-shaped
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Fig. 4.2 Example of a pressure response in a tube to a sudden closing at input; the pipe is open
at the output, where the pressure wave reflects with a change in sign, and closed at the input (after
excitation), where the pressure signal is received. Visco-thermal effects, studied in Chap. 5, are
taken into account for better realism, by replacing the functions ı.t/ in (4.13) by the functions
given by (5.148). The first pulse ı.t/ at t D 0, unaffected by dissipation, has been omitted.
The dotted line corresponds to (4.13); the solid line corresponds to the modal expansion, derived
from (4.53) when losses are ignored (the expression will be given in Chap. 5). The modal series
being truncated (to the first 200 modes), oscillations appear before each peak, corresponding to the
Gibbs phenomenon. This phenomenon is well known in the sum of Fourier series. It is even clearer
on the right figure, showing a zoom of the second peak, for a summation over ten modes only. The
pipe dimensions are: radius 4 mm and length ` D 50 cm

instrument to a sudden closing at the entry. This response is the inverse Fourier
transform of the input impedance. In order to make it more realistic, dissipation has
been taken into account. This kind of response can also be realized approximatively
at any point xs by closing suddenly a hole placed at this point: because of dissipation,
the obtained sound decreases quickly, but it is possible to hear the frequency clearly.
It is familiar to the instrumentalists, and is the equivalent of pizzicato for bowed-
string instruments. The obtained frequency corresponds roughly to c=4`eff, where
`eff is the pipe length upstream to the first open hole.

Turning our attention to strings, this intuitive idea is also very simple. The string
can be regarded as plucked by a force applied at point xs, and stopped at t D 0,
as shown before for a single- degree-of-freedom oscillator in Chap. 1. The only
difference is that the excitation now is a force per unit length. The equation of strings
with a source term can be used [see Eq. (3.25)]:�

@2

@x2
� 1

c2
@2

@t2

�
y.x; t/ D � h

`ˇ.1� ˇ/
H.�t/ı.x � xs/; (4.22)
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Fig. 4.3 The shape of a string plucked at the 7=8th of its length and released without initial
velocity is shown at successive times t D 0; T=16; 3T=16; 5T=16; 7T=16, and T=2 (left, top). To
obtain these lines in the interval Œ0; L	 bounding the string, at each chosen time, the contributions
of the two waves propagating in opposite direction from each others, and reflecting with a change
in sign at the ends, are added (see bottom figure). By plotting as a function of time the successive
values taken by the string at a given position (here in x D 7L=8), the shape of the displacement
wave is obtained for this position (right, top) and can be compared to Fig. 3.6 of Chap. 3

where ˇ D xs=` (in the static regime, the force must compensate for the unbalanced
tension force in xs). Thus, up to a constant, the string velocity is the Green’s function
in this problem, and the acceleration is the time derivative of the Green’s function:
the string-tube analogy (see Table 1.1) works here only up to a time derivative for
the source. Thus the acceleration is a succession of pulses, velocity is a succession
of steps, and displacement is a succession of corners (see Fig. 4.3).

The Case of an Infinite String: D’Alembert Equation
The above section is concerned with a string of finite length and an impulsive
excitation. An interesting calculation, due to d’Alembert, enables us to easily

(continued)



4 Waves 183

determine the displacement of an infinite string whose initial conditions, y0.x/
and v0.x/, are known. A method consists in putting the Green’s function into
an integral equation. Another simpler method is the following: when there is
no source, the displacement can be written as [see (4.1)]:

y.x; t/ D f C.x � ct/C f �.x C ct/:

hence, by differentiating with respect to time:

v.x; t/ D �cPf C.x � ct/C cPf �.x C ct/:

At time t D 0, the displacement is

y0.x/ D f C.x/C f �.x/ I v0.x/=c D �Pf C.x/C Pf �.x/:

The second relation gives

1

c

Z x

�1
v0.x0/dx0 D �f C.x/C f �.x/:

Hence:

2f ˙.x/ D y0.x/� 1

c

Z x

�1
v0.x0/dx0

and finally

y.x; t/ D 1

2

�
1

c

Z xCct

x�ct
v0.x0/dx0 C y0.x � ct/C y0.x C ct/

�
: (4.23)

4.5 Solutions Without Source in the Frequency Domain;
Transmission Lines

Before calculating the Green’s function in the frequency domain, some classical
notions and results, namely the concept of projected impedance from one point to
another, are reviewed. We start from Eq. (4.1) written in the frequency domain:

P.x; !/ D PC.!/e�jkx C P�.!/ejkx: (4.24)
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There are two complex coefficients, P˙.x/, depending on frequency, which will be
shown4 to be the Fourier transforms of f ˙.t/. The ratio between the two waves is
called reflection coefficient R.!/:

R.x; !/ D P�

PC e2jkx: (4.25)

This coefficient’s amplitude is independent of x, contrary to its argument. If each
member is multiplied by PC, this equation is none other than the Fourier transform
of Eq. (4.2): R.x; !/ is the transform of r.x; t/. The solution can also be written for
the velocity (which is itself the solution of the same equation as for the pressure), or
for the flow [see Eq. (4.7)]:

U.x; !/ D Z�1
c



PCe�jkx � P�ejkx

�
: (4.26)

Equivalently, general solutions for pressure and flow can be rewritten by replacing
PC and P� (which depend only on frequency and are constant in x) by the flow and
pressure values in x D 0, denoted P0 D P.0; !/ and U0 D U.0; !/, and using a
simple expansion of the exponential functions in sine and cosine:(

P.x; !/ DP0 cos kx � U0Zcj sin kx

U.x; t/ D � P0Z
�1
c j sin kx C U0 cos kx:

(4.27)

A generalization to x1 and x2 abscissae, with obvious notations, leads to the
following formula:�

P1
U1

�
D
�

cos Œk.x2 � x1/	 Zcj sin Œk.x2 � x1/	
Z�1

c j sin Œk.x2 � x1/	 cos Œk.x2 � x1/	

��
P2
U2

�
: (4.28)

This relation is of the “transfer matrix” kind: if the (flow, pressure) vector is known
at a point x2, it is known everywhere else. Instead of two constants for one scalar
quantity, there is only one constant for a vector quantity. This formalism is called
“transmission line” formalism: it is based upon first-order differential equations [see
Eqs. (1.109) and (1.110)], for a vector quantity. It will be used efficiently when the
damping in pipes is treated. In particular it allows us to write a relation for the
impedance:

Z1=Zc D j tan Œk.x2 � x1/	C Z2=Zc

1C j tan Œk.x2 � x1/	 Z2=Zc
D j tan Œk.x2 � x1/C �2	 (4.29)

where

4The Fourier transform of Eq. (4.1) is calculated by doing the following variable change in the
integral: t0 D t � x=c.
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�2 D � arctan.jZ2=Zc/, hence j tan �2 D Z2=Zc: (4.30)

The impedance at point x1 is called the impedance projected from point x2. If the
impedance is purely imaginary at a point, it is purely imaginary everywhere, because
of energy conservation: if there is no power at a point, there is power nowhere.
A similar equation is obtained for the admittance, replacing Z=Zc by Y=Yc. For a
cylinder-shaped pipe, the duality is perfect between pressure and flow rate (similarly
for a homogeneous string, duality is perfect between velocity and force exerted on
one side). Equations (4.24) and (4.26) also show that the impedance depends on one
constant only, which is none other than the reflection coefficient:

Z.x; !/

Zc
D 1C R.x; !/

1 � R.x; !/
: (4.31)

The inverse relationship is found to be:

R.x; !/ D Z.x; !/=Zc � 1

Z.x; !/=Zc C 1
: (4.32)

The result (4.29) is important: in a medium without source, if the impedance
is known at a point, it is known everywhere. Thus, for a wind instrument, whose
source is at the input, the impedance seen by the source is easily deduced when
the termination impedance is known. For instance, if the radiation impedance in
infinite space5 is simplified in Z` D 0, the input impedance is Zcj tan k`. The input
impedance of an open cylinder is shown in Figs. 4.4 and 4.5: because of losses
the maxima are not infinite; this will be explained in Chap. 5. If, as a first rough
estimate, the frequencies of a cylindrical clarinet can be said to correspond to the
input impedance maxima,6 they are found to be: .2n C 1/c=4`. For a cylinder-
shaped flute, they correspond to minima, and are nc=2`. For a closed flute, such
as bourdon pipes of organs or panpipes, the termination impedance is infinite, and
the frequencies are the same as for a cylindrical clarinet. It can finally be noted that
calculating the upstream reflection coefficient is very easy, thanks to (4.24):

R1 D R2e
�jk.x2�x1/: (4.33)

This section does not detail all classical results for pressure and velocity maxima
and minima, impedance measurement, especially using Kundt’s tube, Smith chart,
etc. (see, e.g., [5]).

5At the open end of a pipe, the impedance is set by the fact that the external medium is passive.
It is called radiation impedance. We will come back to this quantity in the fourth part of the book,
but for now it is supposed to be zero for the sake of simplicity: the external medium is so huge
compared to the pipe that the pressure does not vary much there.
6Actually, Chap. 9 will explain more precisely that there are frequencies canceling the imaginary
part of admittance.
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Fig. 4.4 Input impedance of a cylinder (the left plot shows the modulus and the right plot shows
the argument). Experimental (solid line) and theoretical (dotted line) results. The radius is 10:7mm
and the length is 92:8 cm
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Fig. 4.5 Input impedance of a cylinder: theoretical results, without radiation (Z2 D 0/. This figure
represents the Fourier transform of the response for the same pipe as this of Fig. 4.2. Dotted line
corresponds to the closed-form expression (4.29), visco-thermal effects being taken into account
(see Eq. (5.144) at first order). Solid line corresponds to the sum of ten modes [see Eq. (5.168)].
The left plot shows the modulus and the right plot shows the argument

4.6 Green’s Function in Sinusoidal Regime: the Particular
Case of the Input Impedance

4.6.1 Closed-Form Solution of the Green’s Function

Results presented in the previous section show that the pipe input impedance is
known thanks to the passive character of the pipe, and with the hypothesis that only
plane waves propagate in it, or more generally, that propagation is one-dimensional.
Using an impedance projected towards the source can seem to be odd, as causality
suggests the calculation of the acoustic quantities from the source, but it must
be recalled that the sinusoidal regime is a steady state, and not a transient one:
therefore, there is energy in the whole space. The impedance, and all transfer
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functions between input and output quantities, are known as soon as the termination
impedance is known, as it can be remarked by observing the matrix equation (4.28).
Then, if the input quantities are known, the output flow can also be calculated, and
it gives access to the sound radiated outside. All that is written here applies even if
the source is located upstream of abscissa x1; and whatever else is upstream of x1,
such as discontinuities or side holes: all the transfer functions between any pair of
abscissae are set by the fact that the pipe is passive, and the termination impedance
is set by the fact that the surrounding space is passive.

• A flow rate source is now considered on the pipe side at a point xs, as it has
been done for the impulse regime (see Fig. 4.1). For that purpose, the Fourier
transform of Eq. (4.18) is calculated

@2P.x; !/

@x2
C !2

c2
P.x; !/ D �j!

�

S
Us.!/ı.x � xs/: (4.34)

For the case where us.t/ D usı.t/, this gives Us.!/ D us (the source amplitude
is constant, independent of frequency): P.x; !/ is the Green’s function in the
frequency domain G!.x; xs/, apart from the multiplicative factor j!�S Us, and
G!.x; xs/ is the Fourier transform of g.x; tjxs; 0/ [Eq. (4.19)].

The flow Us is divided into two flows, Us D UC
s � U�

s , the minus sign coming
from the fact that the flows are calculated towards a surface whose outside normal
is in the positive x direction. These flow rates depend on the boundary conditions
at both ends, linked to the reflection coefficients R0.!/ and R`.!/, which are
the Fourier transforms of the reflection functions r0.t/ and r`.t/. In other words,
these coefficients are linked to the termination impedances, satisfying conditions
like (4.32). Using the matrix relation (4.28) between xs and x, for the case where
x > xs, and projecting the termination admittance back to x; then gives

P

UC
s

D Zc

j sin Œk.x � xs/	C cos Œk.x � xs/	 Y=Yc
with Y=YcD j tan Œk.` � x/	CY`=Yc

1Cj tan Œk.`�x/	 Y`=Yc
:

(4.35)

It remains to calculate the same ratio P=U�
s ; and to deduce P=Us, but the calculation

using impedances is stopped here, because it is easier to use reflection coefficients in
order to make the link to the time domain. On both sides of the source, the solution
is written as in (4.24), but the constants are different. For the sake of simplicity, the
constants are chosen as follows:

P.x; !/ D AC 
e�jkX C BCejkX
�
;

where BC D R`e
�2jk.`�xs/ if X > 0 ; (4.36)

P.x; !/ D A� 
B�e�jkX C ejkX
�
;

where B� D R0e
�2jkxs if X < 0: (4.37)
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where X D x � xs: At x D xs, pressure continuity and flow conservation Us D
UC

s � U�
s can be written. After some calculations7 the following result is obtained:

P D Pprimary

1� gRT.!/
, (4.38)

where gRT.!/ D R`R0 exp.�2jk`/ (4.39)

and Pprimary.!/ D 1

2
ZcUse

�jk`

� 
ejk.`�x/ C R`e
�jk.`�x/

� 

ejkxs C R0e

�jkxs
�

if x > xs: (4.40)

Similarly, it can be shown that inverting x and xs is sufficient to obtain the
result for the case where x < xs. It can be verified that Pprimary is the Fourier
transform of pprimary.x; t/ [see Eq. (4.15)] when Us.!/ D us. It may be noted
that a factorization of the square brackets involved in (4.15) has been found. This
factorization distinguishes two cases corresponding to the respective positions of
source and receiver.

• It remains to be checked that the result (4.38) is indeed the Fourier transform
of the result expressed in (4.13). gRT.!/ is the transform of gRT.t/. For the case
where jgRT.!/j is less than unity,8 the factor including gRT.!/ can be replaced by:

1

1 � gRT.!/
D 1C gRT.!/C g2RT.!/C g3RT.!/C 
 
 
 (4.41)

Reflections for a complete round trip are found again.
Another equivalent expression for Eq. (4.38) is useful:

P.x; xs/ D jZcUs
sin Œk.` � x/C �`	 sin Œkxs C �0	

sin Œk`C �0 C �`	
if x > xs; (4.42)

7At x D xs, it is written:

P.xs; !/ D AC
h
1C BC

i
D A� ŒB� C 1	 I ZcUC

s .!/ D AC
h
1� BC

i
I ZcU�

s .!/ D A� ŒB� � 1	 :

The total admittance at the source point is the sum of the upstream admittances on both sides:

Zc
US

PS
D 1� BC

1C BC
� B� � 1

B� C 1
:

This leads to the value of Ps D AC


1C BC

�
as a function of US. This yields AC, and the final

result thanks to (4.36).
8 This condition assumes that one of the ends is absorbing: thus, either jR0j or jR`j is smaller than
unity. Equation (4.38) remains valid when damping occurs during propagation (This is studied in
details in the next chapter), i.e., when jk is replaced by jk C ˛, where ˛ is positive. This is a third
case, where jgRT.!/j < 1. If there is an energy source at one extremity, or during propagation, this
condition implies that globally the round trip must be dissipative, damping prevailing over energy
supply.
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with

R` D �e�2j�` where Z`=Zc D j tan �` (4.43)

and R0 D �e�2j�0 where Z0=Zc D �j tan �0:

For a zero termination impedance, the quantity � is zero; for an infinite
impedance � D �=2. Generally � is real if the impedance is purely imaginary. If
both terminal impedances are purely imaginary (energy conservation), the ratio
P=Us is purely imaginary whatever x is. In other words all pressures are in phase
or in anti-phase. The waves are thus standing waves in the sense that they do not
transport any energy from one point to another: the power supplied by the source
1
2
<e


PsU�

s

�
is zero.

• It is also possible to deduce the Green’s function in the frequency domain, which
is the solution of the Fourier transform of Eq. (4.19):�

@2

@x2
C k2

�
G!.x; xs/ D �ı.x � xs/: (4.44)

Dividing the result (4.38) by j! �

S Us; yields9

G!.x; xs/ D G!;primary

1 � R`R0 exp.�2jk`/
; (4.45)

where

G!;primary D 1

2jk
e�jk`



ejk.`�x/ C R`e

�jk.`�x/
� 


ejkxs C R0e
�jkxs

�
if x > xs:

(4.46)
Finally, we get

G!.x; xs/ D 1

k

sin Œk.` � x/C �`	 sin Œkxs C �0	

sin Œk`C �0 C �`	
if x > xs: (4.47)

If both termination impedances are purely imaginary (energy conservation),
the Green’s function is real. This closed-form solution (4.47), which is not
decomposed in terms of modes or successive reflections, is very useful; it will
be used, for example, in the calculation of a modal expansion with absorbing
end conditions (through residue calculus), and its time domain version presented

9This calculation is equivalent to write the solution at both the right and left side of the source,
together with the continuity of the solution at x D xs, and the jump of the first spatial derivative
due to the function ı.x � xs/, as it has been done for the time variable of the single-degree-of-
freedom oscillator (Chap. 2 Sect. 2.2.2).
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in Sect. 4.6.4 will be used for the transient calculations of violins and wind
instruments (see Part III of this book). Unfortunately, this closed-form exists only
when the problem depends on a unique space coordinate.

4.6.2 Modal Expansion

Returning back to the modal expansion can be made in several ways: either using
mode orthogonality, when the modes are proved to be orthogonal (see Chap. 3), or
using the residue calculus (by calculating the inverse Fourier transform), or using
the Poisson formula, which will not be developed here. The present section will
be limited to three canonical cases for which the use of three methods is possible:
open–open pipe, closed–closed pipe, and closed–open pipe (or the equivalent for a
string).

4.6.2.1 Mode Orthogonality

This section begins with the use of mode orthogonality, as previously used to obtain
Eq. (3.46), however, considering the Fourier domain first (both are equivalent, as
the boundary conditions studied here are independent of frequency). Modes ˚n.x/
are solutions of Eq. (4.44) without the right-hand side member, and with the same
boundary conditions as the Green’s function, which are written according to the
Euler equation:

Z0
Zc

@G!

@x
D jkG! and

Z`
Zc

@G!

@x
D �jkG!: (4.48)

The differential equation and the condition at x D 0 impose

˚n.x/ D sin.knx C �0/ (4.49)

and the condition at x D ` implies that, if n is an integer, eigenfrequencies satisfy

kn` D ��0 � �` C n�: (4.50)

For the studied cases, only positive or zero values of n are considered.

• For an open–open pipe, �0 D �` D 0, and the mode �n is the same as the
mode n (it should be recalled that modes have an amplitude defined up to a
multiplicative factor!), and there is no mode 0 here (k0 D 0), because of the
boundary conditions implying the nullity of the studied physical quantity. For
that case, the eigenfrequencies are nc=2`.
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• For a closed–open pipe, �0 D �=2, �` D 0; the mode �n is the same as the mode
n C 1: the negative or zero indices give the same modes as the positive indices,
and the eigenfrequencies are .2n � 1/c=4`.

• For a closed–closed pipe, �0 D �=2, �` D �=2, modes �n and nC2 are identical,
the eigenfrequencies are the same as for the open–open case (this is due to the
symmetry of the problem) but here the constant mode exists (k1 D 0/.

The orthogonality of modes is very simple here, because the pipe is homoge-
neous: Z `

0

˚n.x/˚m.x/dx D `

2
ınm: (4.51)

(The norm is ` for the constant mode). Seeking the solution of (4.44) in the form
G!.x; xs/ D P

n
An˚n.x/, orthogonality gives, in a way similar to that of Chap. 3:

G!.x; xs/ D 2c2

`

X
n>0

˚n.x/˚n.xs/

!2n � !2
C
�
� c2

`!2

�
: (4.52)

The term in brackets corresponds to the constant mode that exists only in the
closed–closed case. In Chap. 2, the inverse transform of the Green’s function (2.16)
was given in (2.14), hence:

g.x; tjxs; 0/ D 2c2

`
H.t/

X
n>0

˚n.x/˚n.xs/
sin!nt

!n
C
�

c2

`
tH.t/

�
: (4.53)

which is indeed Eq. (3.46). For the constant mode, the method is the same, because
both the Green’s function and its first derivative vanish at negative times.

4.6.2.2 Residue Calculus

Starting from the closed-form formula (4.47), it can be noticed that the poles are
given by the denominator zeros, and indeed give the eigenfrequencies (4.50): but all
poles must be considered, with either positive or negative frequencies. If the zero
pole is discarded for now, all poles are simple. Residues are calculated by first-order
expansion of the inverse of the function G!.x; xs/ around the poles !n. This gives
without difficulties, for small .! � !n/:

G!.x; xs/ ' �c2

`

1

!n

sin.knx C �0/ sin.knxs C �0/

! � !n
: (4.54)
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The residue theorem indicates that the inverse Fourier transform is, for positive
times, j times the sum of the residues, hence [see Eq. (3.181)]:

g.x; tjxs; 0/ D �j
c2

`

C1X
nD�1

sin.knx C �0/ sin.knxs C �0/
ej!nt

!n
; (4.55)

To find Eq. (4.53), the two modes with the same shape ˚n.x/ must be added (the
reader can do this calculation, e.g., for the open–open case). It can also be deduced
that G!.x; xs/ is simply given by the sum of terms like (4.54):

G!.x; xs/ D �c2

`

C1X
nD�1

1

!n

sin.knx C �0/ sin.knxs C �0/

! � !n
: (4.56)

When the terms due to the poles !n and �!n are added, (4.52) is obtained. This
remark is important, because it can lead to another definition of the modes: in
Chap. 3, it has been said that they are real functions varying sinusoidally with time
(for a non dissipative system). Modes with a complex dependency ej!nt against time
could also be sought, which leads to two modes instead of one, with frequencies !n

and �!n. They are called “single” modes in Chap. 2 (Sect. 2.4.1 ).
The zero pole remains: the study of (4.47) for each studied case confirms that it

exists for the closed–closed case only (for the other cases the numerator vanishes
too), and that the pole is double: for ! near 0, G!.x; xs/ D �c2=.`!2/. It is indeed
the constant term of (4.52), and its inverse transform has already been calculated.

4.6.2.3 Transfer Impedances and Transfer Functions

As explained earlier, we do not need the Green’s function itself, but its derivative,
corresponding to impedances at one point and transfer impedances. Equation (4.42)
gives the transfer impedance P.x/=Us: Its modal expansion is written as [see
Eqs. (4.49) and (4.52)]:

P.x; xs/ D ZcUs
2c

`
j!
X
n>0

˚n.x/˚n.xs/

!2n � !2
C
�

ZcUs
1

j!

c

`

�
: (4.57)

Using the Euler equation, the transfer function for the flow rate can also be found:

U.x; xs/ D Us
cos Œk.` � x/C �`	 sin Œkxs C �0	

sin Œk`C �0 C �`	
if x > xs ; (4.58)

U.x; xs/ D �Us
sin Œk.` � x/C �`	 cos Œkxs C �0	

sin Œk`C �0 C �`	
if x < xs: (4.59)



4 Waves 193

It can be checked that U.xC
s ; xs/�U.x�

s ; xs/ D Us: For x ¤ xs, the modal expansion
of the flow transfer function is therefore written as:

U.x; xs/ D �Us
2c2

`

X
n>0

˚n.xs/d˚n.x/=dx

!2n � !2
: (4.60)

4.6.3 The Particular Case of a Source at the Input: Input
Impedance

What happens if the source position tends towards one of the limits, for example,
xs D 0, which is the most frequent case for reed instruments? All quantities at every
position in the pipe are thus perfectly determined, using the second equation of the
matrix relation (4.29), and with x1 D 0 and U1 D us. This consists in solving the
equation without source with the so-called inhomogeneous boundary condition, i.e.,
including a source term:

dP

dx
D �j!

�

S
Us: (4.61)

Can the general calculation of the Green’s function still be used? The answer is yes,
if Us D UC

s , thus U�
s D 0, hence R0 D 1, �0 D �=2, Z0 D 1. A boundary

condition must therefore be imposed, as well as a source term, and this gives the
right result (the justification demands long explanation, see [2]). The result will
easily be shown to be correct by inserting xs D 0 and �0 D �=2 into Eq. (4.47)

G!.x; 0/ D 1

k

sin Œk.` � x/C �`	

cos Œk`C �`	
;

thus

P.x; 0/ D ZcUsj
sin Œk.` � x/C �`	

cos Œk`C �`	
: (4.62)

It is sufficient to use a formula like (4.35) to check this result. It must be remembered
that the input impedance is a Green’s function, up to the multiplicative factor j!�=S
if an infinite impedance is imposed at the input, which is not intuitive. The flow rate
transfer function is also written:

U.x; 0/ D Us
cos Œk.` � x/C �`	

cos Œk`C �`	
: (4.63)
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4.6.4 Closed-Form Expression: Back to the Time Domain

It has been seen how, in the frequency domain, the closed-form expression leads
to successive reflections, using Eq. (4.41). A closed-form expression can also be
found in the time domain, which is useful for calculating the Helmholtz motion
for wind and bowed-string instruments (see Part III). It will be done here for the
transfer impedance P=Us. Equation (4.38) must be multiplied by the denominator
Œ1 � gRT.!/	, then expressed in the time domain. Thus for a source us.t/:

p.x; t/ � r0.t/ � r`.t/ � p.x; t � �/ D pprimary.x; t/; (4.64)

where

2Z�1
c pprimary.x; t/ D us.t � jx � xsj =c/C r0.t/ � usŒt � .x C xs/=c	

Cr`.t/ � usŒt � � C .x C xs/=c	

Cr`.t/ � r0.t/ � usŒt � � C jx � xsj =c	:

with � D 2`=c. This expression can be obtained directly in the time domain but the
calculation is less straightforward: the two terms of the left-hand side of (4.64) must
be replaced by their decomposition as successive reflections, and it can be checked
that infinite series disappear.

An interesting example is the Raman model (see [7]) for a bowed-string. It is
assumed that r`.t/ D r0.t/ D ��, hence � is a positive and real coefficient,
which represents a particular damping model (independent of frequency). This
model enables a stability study much more useful than the model without losses.
The situation where the source is at the same place as the receiver is considered,
x D xs D `a, where lies the nonlinearity that produces the oscillation. The equation
for the mechanical quantities is

v.t/��2v.t � �/ D Yc

2



fs.t/ � �fsŒt � 2`a=c	� �fsŒt � � C 2`a=c	C �2fs.t � �/� :

(4.65)
Let us suppose that the bow excites the string with a ratio a=b D `a=.` � `a/,
where a and b are integers such as a < b, and that the time step is defined as
� D �=N D 2`=cN, where N D a C b: Because `a D a`=N, a difference equation
is obtained (if we denote vn D v.n�/ and fn D f .n�/):

vn � �2vn�N D Yc

2



fn � �fn�a � �fn�b C �2fn�N

�
: (4.66)

This equation simplifies the calculation, avoiding the infinity of successive
reflections.
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Length Correction and Modal Decomposition
Chapter 3 has dealt with strings with moving ends or mass ends. This section
will discuss for the case where the termination impedance is the radiation
impedance of a pipe at low frequencies. The impedance is of mass type (this
will be studied in Chap. 12):

ZR D Zcjk�` where ZR D j!�S�1�`: (4.67)

where �` ' 0:6R, R being the radius. The real part has not been written, i.e.,
damping is ignored.

If the low frequencies assumption is still considered, k�` being small,
it can be written as: ZR ' Zcj tan k�`, where �` D k�` [see Eq. (4.43)].
This assumption is consistent with Eq. (4.67), obtained using a Taylor series
approximation. Everything that has been written previously can be applied,
and happens as if the pipe length was increased by a length correction
�`. This can be used for the closed-form expression, as for the modal
or successive reflection expansions, but only if low frequencies alone are
considered. Thus the transfer and input impedances are obtained using the
formulas

P.x; 0/ D ZcUsj
sin k.`C�` � x/

cos k.`C�`/
D ZcUsj!

2c

`C�`

X
n>0

cos knx

!2n � !2
(4.68)

Z0=Zc D j tan k.`C�`/ D j!
2c

`C�`

X
n>0

1

!2n � !2
; (4.69)

where

!n D
�

n � 1

2

�
�

c

`C�`
: (4.70)

For the flow rate transfer functions this leads to:

U.x; 0/ D Us
cos k.`C�` � x/

cos k.`C�`/
D �Us

2c2

`C�`

X
n>0

kn
sin knx

!2n � !2
: (4.71)

The former modal expansion is not valid at x D 0, at the source. However, for
x as small as wanted, the infinite series does not tend to 0, because quantities
knx are not small for higher modes.

(continued)
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Some Remarks

1. In the following, the assumption leading to Expressions (4.68)–(4.71) will
be used often, with the total pipe length equal to be L D ` C �`. This
poses a small problem at the end, because it should not be forgotten that at
the end, x D ` and not L. However for U` D U.`; 0/, which is the main
quantity for the radiation calculation, cos k�` can be approximated by 1 at
the same order of approximation. This is equivalent to writing x D L!

2. All these equations have been detailed to fully understand the meaning of
modal expansion. Now the approximation k�` ' tan k�` is not made
anymore. Then a boundary condition appears similar to the “moving end”
condition (see Chap. 3, Sect. 3.4.5): �`@p=@x D �p at x D `, which
does not depend on frequency (the quantity T=K0 can be seen as a length
correction). Since we are interested in the input impedance, the modes are
different from those calculated earlier: ˚n.x/ D cos knx, where cot kn` D
kn�`. Applying the method described in Sect. 4.6.2.1, the modal norm
being�n D 1

2



`C�`=.1C k2n�`

2/
�
, the following result is obtained:

P.x; xs/ D 2ZcUsj!c
X
n>0

1

`C�`=.1C k2n�`
2/

cos knx cos knxs

!2n � !2
(4.72)

hence for the input impedance:

Z0=Zc D j tan k`C jk�`

1 � k�` tan k`
D 2j!c

X
n>0

1

`C�`=.1C k2n�`
2/

1

!2n � !2
:

(4.73)

The comparison of this expression with Eq. (4.69) shows that the two
expressions are equivalent if k�` << 1: If kn�` << 1, the two modal
expansions are also identical (with the same eigenfrequencies), because
kn�` D tan kn�`. This can be explained as follows: in the low frequency
range, only the first terms for which the condition kn�` D tan kn�`

is valid intervene significantly. However making approximations in an
infinite series generally requires some precautions. It is better to make them
on the closed-form formula.

3. Modal expansions were written in the form of series. No details will be
given on the decomposition in terms of a product of modes. Nevertheless,
this decomposition is useful for the study of an elementary model of
singing voice, called the “source-filter” model (see [3, 4, 6]). In this model,
the glottis is a flow source at the input of the vocal tract. We are interested

(continued)
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again in the transfer function U`=Us. For the case where the vocal tract is
cylindrical, it can be shown that:

U.L; 0/ D Us

cos kL
D Us

2c2

L

X
n>0

.�1/nkn

!2n � !2 D UsQ
n
.1 � !2=!2n/

: (4.74)
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Chapter 5
Dissipation and Damping

Antoine Chaigne and Jean Kergomard

Abstract This chapter examines the dissipation of sound and vibration into heat,
which, in turn, yields a damping of the amplitudes. One consequence of dissipation
is that the quality factors of the resonances decrease. This decrease usually depends
on frequency. In addition, dissipative phenomena are likely to modify the nature
of the modes, which can become a combination of traveling and standing waves,
called complex modes. This happens if the internal damping is said to be “non-
proportional,” i.e., when the damping coefficients depend on space. It also occurs as
a consequence of acoustic radiation into an “infinite” space, outside the instruments.
Various causes of dissipation are examined in solid materials and in air. In solid
materials, thermoelasticity and viscoelasticity are the main mechanisms of internal
damping mechanisms. In some situations, air viscosity should also be considered as
a pertinent cause of energy loss, as in the case of thin strings. In wind instruments,
heat diffusion and viscosity are the main causes of damping. They appear near the
walls of a tube. The theory of Kirchhoff, following that of Stokes and simplified by
Zwikker and Kosten, is particularly relevant for describing these phenomena.

5.1 Introduction: Dissipative Phenomena in Musical
Acoustics

Like in any physical systems, dissipative phenomena are present in musical instru-
ments. This means that part of the mechanical energy imparted to the instrument
through impact, blow or air, or continuous excitation by a bow, is transformed
into heat. These losses result from viscous phenomena in fluids and solids, from
coupling between thermal and elastic properties in materials, or from dissipation at
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the boundaries imposed by the player. One can think, for example, of the dissipation
due to the finger on a string, or due to the lips at the mouthpiece of a saxophone. In
addition, and this is rather good news, a part of the mechanical energy is transformed
into acoustical energy which propagates to the far-field, thus allowing us to hear the
radiated sounds (see Part IV of this book).

For instruments generating free oscillations (plucked and struck strings, per-
cussion instruments), the dissipation phenomena have a damping effect on the
oscillations, which results in a decrease of the amplitude of the radiated sound.
From a theoretical point of view, if a modal expansion is made onto the basis of the
associated conservative system, then the damping is often responsible of an inter-
modal coupling. However, under some assumptions that will be detailed later in this
chapter, it is possible to use approximate modal descriptions of the system, and,
even in some cases, an exact modal description, though with extension of the modal
properties (see the next section devoted to complex modes).

For instruments generating self-sustained sounds (bowed strings and wind
instruments), dissipation phenomena are essential to ensure the stability of the
system. Here, the sounds produced strongly depend on the balance between input
and dissipated energies. For instruments based on free oscillations, the timbre of the
sound largely depends on its spectral distribution, i.e., on all excited eigenmodes
and eigenfrequencies. Experiences of sound synthesis carried out for more than 50
years have shown that the timbre strongly depends on the time history of the partials.
In short, the dissipation phenomena are not only essential from a physical point
of view, but are also critical in the context of musical sound perception (see, for
example, the book by Castellengo, with numerous sound examples [8]). Therefore,
these phenomena are of prime importance in musical acoustics.

In this chapter, the consequences of dissipation on the theoretical results related
to eigenmodes in Chap. 3 are presented. These general considerations are necessary
to understand the examples treated in subsequent parts of this book. The main
damping mechanisms encountered in musical instruments are also briefly reviewed.
For the sake of brevity, the important questions related to measurements of damping
are not reviewed here, and the reader is invited to consult the specialized literature
[3, 17].

5.2 Generalizing the Concept of Mode

Comment. Some developments presented in this section were directly inspired by
the book by Géradin and Rixen [19] to which the reader can refer for more details.

In continuity with Chap. 3, the consequences of damping mechanisms on the
eigenmodes obtained in the conservative case will be first examined. The advantages
and drawbacks of this formulation will be highlighted. A more general approach
leading to the definition of complex modes is then presented.
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5.2.1 Dissipative Discrete System

In a linear system with a finite number of degrees of freedom (DOF), the dissipated
energy can be written as a quadratic function of the velocity:

ED D 1

2
t P�C P�, (5.1)

where C is a symmetrical damping matrix whose elements are positive or null
(non-negative matrix). This class of functions corresponds to a large number of situ-
ations encountered in the physics of musical instruments. Under this assumption, the
equations of motion (3.12) obtained for a conservative system can be transformed
into the matrix equation:

M R� C C P� C K� D F . (5.2)

As in Chap. 3, !n and˚n are the eigenfrequencies and eigenshapes of the associated
conservative system. To take advantage of the orthogonality properties of the
eigenmodes, � is developed in this basis, as1:

� D
X

m

˚mqm.t/ . (5.3)

Through scalar multiplication of Eq. (5.2) by ˚n, we get

h˚n;M˚niRqn C
X

m

h˚n;C˚miPqm C h˚n;K˚niqn D h˚n;Fi, (5.4)

thus, using the conventional notations, and defining further:

h˚n;C˚mi D 2�nmmn!n, (5.5)

where �nm are the inter-modal damping coefficients, it is finally found that the
generalized coordinates satisfy the system of equations:

Rqn C 2!n

X
m

�nm Pqm C !2n qn D fn
mn

, (5.6)

which can be rewritten as:

Rqn C 2!n�n Pqn C !2n qn D fn
mn

� 2!n

X
m¤n

�nm Pqm, (5.7)

1Selecting n, or m, as index in the expression of � has no consequence, since they are dummy
indices.
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where �n is the modal damping coefficient for the mode n. In general, the matrix C

cannot be diagonalized, so that the �nm are not all equal to zero. As a consequence,
the generalized displacements are coupled. This is due to the fact that we are not
dealing here with the “true” eigenmodes. However, this method has the advantage
of showing the links with the modes of the associated conservative system. It can be
used in the case of weak damping, when approximated solutions are sufficient (see
the next section).

5.2.1.1 Systems with Weak Damping

It is, in fact, possible to simplify the formulation (5.7) for systems with weak
damping. In musical acoustics, this corresponds to the case of strings and metallic
percussion instruments. However, the condition of weak damping is generally not
fulfilled for wooden soundboards or timpani heads, especially in the high frequency
range.

In the case of weak damping, a first-order expansion of the eigenfrequencies and
eigenshapes can be done in the form:

!0
n D !n C�!n ; ˚ 0

n D ˚n C�˚n, (5.8)

where �!n, �˚n and all the coefficients of the matrix C are supposed to be of the
same order (i.e., in O."/). Inserting these expressions in Eq. (5.2) without right-hand
side, and ignoring the second-order terms, yields�

K � !2nM
	
�˚n C !n .�2�!nM C jC/˚n ' 0 . (5.9)

Through scalar multiplication of (5.9) by ˚n, we get

�!n ' j�n!n . (5.10)

This last expression shows two major results:

1. The correction in frequency due to damping is purely imaginary. As a con-
sequence, the eigensolution now becomes a damped sinusoid of the form
exp.j!nt/ exp.��n!nt/, which is slowly decreasing if the damping is weak.

2. Under the assumption of weak damping, the inter-modal damping coefficients
have no influence on the first-order frequency correction. This is equivalent to
the approximation of a diagonal matrix for C.

In a second step, Eq. (5.9) is used to determine the influence of damping on the
eigenshapes. This amounts to searching for the coefficients ˛m in the expansion
�˚n defined by:

�˚n D
X
m¤n

˛m˚m . (5.11)
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Injecting this expression in (5.9) and multiplying this quantity by any other
eigenshape, taking further the orthogonality properties of ˚m into account, yields
to first-order:

˛m D 2j�mn
mn!

2
n

mm
�
!2n � !2m

	 . (5.12)

Consequently, the eigenshapes with weak damping become, still to the first-order:

˚ 0
n D ˚n C 2jmn!

2
n

X
m¤n

˚m
�mn

mm
�
!2n � !2m

	 . (5.13)

The expression (5.13) shows that:

1. If the eigenfrequencies of the associated conservative system are sufficiently
separated from each other, the corrective terms on the shapes are of the order of
magnitude of the inter-modal reduced damping �mn. Otherwise, as a consequence
of the presence of the factor !2n � !2m in the denominator, the shapes can be
significantly modified.

2. As for the eigenfrequencies, the corrective terms of the eigenshapes are purely
imaginary. Therefore, these shapes are no longer in phase (or in anti-phase) as in
the ideal limiting case of the conservative system.

In summary, if the inter-modal damping coefficients �mn are sufficiently weak, and
if, at the same time, the eigenfrequencies of the associated conservative system are
sufficiently separated from each other, then it is legitimate to decouple the equations
of the generalized displacements, which are then written:

Rqn C 2!n�n Pqn C !2n qn ' fn
mn
: (5.14)

In addition, we can admit that the eigenshapes remain unchanged compared to the
conservative case.

5.2.1.2 Proportional Damping

Examining Eq. (5.2) carefully shows that a family of particular cases exists where
the damping matrix is diagonal and can be written in the form C D ˛M C ˇK,
where ˛ and ˇ are two real constants. In this case, (5.4) becomes

h˚n;M˚niRqn C ˛h˚n;M˚niPqn

Cˇh˚n;K˚niPqn C h˚n;K˚niqn D h˚n;Fi . (5.15)



204 A. Chaigne and J. Kergomard

Fig. 5.1 Example of a modal
damping factor as a function
of the frequency in case of
proportional damping
(˛ D 100, ˇ D 0:0001)
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This can be written in a reduced form:

Rqn C 2!n�n Pqn C !2n qn D fn
mn

with �n D ˛

2!n
C ˇ!n

2
. (5.16)

In this case, the eigenmodes have the same shapes as in the conservative case, but
the eigenfrequencies become complex. A modal damping factor is obtained, which is
a function of frequency (see Fig. 5.1). With positive values for ˛ and ˇ, the damping

decreases approximately as 1=! up to ! D
q

˛
ˇ

, and increases then linearly. This

type of damping rarely corresponds to a particular physical phenomenon. It is most
often selected for mathematical reasons of convenience, to allow the decoupling
of the differential equations of the generalized displacements. However, such a
frequency dependence can be reasonably used for approximating damping laws
observed experimentally, at least in a restricted frequency range. One example will
be presented later in this chapter, for the particular case of viscoelastic strings.

5.2.1.3 Discrete Systems: First Notions on Complex Modes

For more general damping laws, it has been shown in Sect. 5.2.1 that the matrix C

cannot be diagonalized with the matrices K and M only. The goal is now to obtain
exact solutions, and not approximated ones which are no longer valid, and a new
method is necessary. After defining v D P�, the matrix equation (5.2) is rewritten in
the form of a system of two first-order differential equations, as follows:� P�

Pv



C
�
0N�N �IN

M�1K M�1C

� �
�

v



D
�

0

M�1F



; (5.17)



5 Dissipation and Damping 205

where 0N�N is the null matrix and IN the identity matrix of dimension N. N is the
number of DOF in the system. If C D 0 in (5.17), the conservative solution is found.
The characteristic equation then yields purely imaginary conjugate solutions, and
the eigenmodes analysis made in Chap. 3 can be carried out.

In the general case, the roots of the characteristic equation solutions are complex,
with non-zero real parts. The general solution of the equation (without right-hand
side) is searched in the form:

�.t/ D 2 r e�˛t cos!t � 2 i e�˛t sin!t : (5.18)

This solution is real. However, it is convenient to do all calculations in the complex
space, and return to the real expressions of the results only at the end. It is the reason
why complex modes of the form:

 D  r C j i; (5.19)

are introduced, as well as complex generalized displacements:

q.t/ D e�˛t Œcos!t C j sin!t	 D est with s D �˛ C j! : (5.20)

The main results with regard to complex modes are now developed briefly, so that
differences and analogies with the real modes defined in Chap. 3 are enhanced.
Equation (5.17) is written in the form:

P� � A� D F with A D �
�
0N�N �IN

M�1K M�1C

�
: (5.21)

A is independent of time. Then, the eigenvalues problem corresponds to finding the
eigenvalues �n and the associated eigenvectors�n, such as:

A�n D �n�n: (5.22)

The orthogonality conditions for the complex modes can be simply obtained by
rewriting first Eq. (5.17) in the form:�

C M

M 0

� � P�
Pv



C
�
K 0

0 �M

� �
�

v



D
�

F
0



(5.23)

or, equivalently, in compact matrix form:

D
� P�

Pv



C B
�
�

v



D
�

F
0



: (5.24)
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The eigenvectors must then fulfill:

.�nD C B/�n D 0 (5.25)

which, in the case of distinct eigenvalues (�m ¤ �n) leads to the orthogonality
conditions:

t�mD�n D 0 and t�nB�m D 0 for m ¤ n: (5.26)

The solution of (5.17) is written:

� D
X

�nqn.t/ (5.27)

where the generalized displacements satisfy the differential equations:

An ŒPqn � �nqn	 D t�nAF with An D t�nA�n : (5.28)

Finally, the initial conditions yield

Anqn.0/ D t�nA� .0/ : (5.29)

The two components of the vector � are written explicitly:

� D
�
 e 
�
: (5.30)

With (5.22), the relations governing the eigenvectors are

e n D �n n I �2nM n C �nC n C K n D 0 : (5.31)

Expressing now the orthogonality conditions (5.26) explicitly yields

t mK n D �m�n
t mM n I t mC n C .�m C �n/

t mM n D 0 : (5.32)

Notice that the orthogonality conditions for real modes can be retrieved by canceling
the damping matrix C in (5.32). As soon as the eigenvalues and eigenvectors are
known, the displacement � and the velocity v are expanded onto this basis, yielding
finally:

�.t/ D
X

 nqn.t/ I v.t/ D
X

�n nqn.t/ : (5.33)



5 Dissipation and Damping 207

5.2.2 Continuous Systems

The results obtained for discrete damped systems can be generalized to the
continuous case, as it has been done for conservative systems in Chap. 3. The
example of a string vibrating is treated here (see also Sect. 3.3.2 in Chap. 3). As
for discrete systems, we consider the case of weak damping and start by looking for
solutions expanded onto the basis of the conservative modes of the form:

y.x; t/ D
X

n

˚n.x/qn.t/ : (5.34)

As a consequence, the equations for the generalized displacements can be written in
a symbolic form as2:

M .Ry; ˚m/C C .Py; ˚m/C K .y; ˚m/ D hf ; ˚mi (5.35)

where C represents the damping operator. Recall that Eq. (5.35) is obtained after
multiplication of both sides of the partial differential equations by an arbitrary
eigenshape ˚m.x/, followed by an integration on the string length. This operation
generalizes the scalar product used for discrete systems. This formulation has
the advantage to take the boundary conditions into account, due to the use of
integrations by parts, as it has been shown, for example, for moving ends in
Sect. 3.4.5 of Chap. 3.

One reason for expanding the solution in the basis of eigenmodes˚n.x/, even in
the case of damped systems, is to take advantage of their mathematical orthogonality
properties. As shown in the discrete case, the damping operator induces a coupling
of the generalized displacements qn.t/, except in some particular cases, such as the
proportional damping. These general ideas are now illustrated with some examples
of practical relevance in musical acoustics.

5.2.2.1 A Simple Example of Proportional Damping:
The Homogeneous String

i) Damping Independent of Frequency

A string with damping independent of space is considered. For simplicity, the study
is limited to the case of a homogeneous string. The unrealistic, though useful,
reference case of a damping independent of frequency is treated. We start with

2See Chap. 3, Sects. 3.3 and 3.4, for the definition of the notations .a; b/ used for a continuous
operator, and ha; bi for the scalar product.
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Eq. (3.25) in which a damping term is added in the form of a proportional force
with opposite sign with regard to velocity:

�S
@2y

@t2
C 2˛�S

@y

@t
� T

@2y

@x2
D f .x; t/; (5.36)

where, for convenience, the damping coefficient is written 2˛�S. The method
presented in Sect. 3.3.2 can be fully applied here, since ˛ does not vary with x, and,
therefore, no mode coupling exists. Again, the selected basis of modes here is that
of the conservative case. Searching for solutions of the form y.x; t/ D P

n
˚n.x/qn.t/,

a generalization of Eq. (3.38) is obtained

Rqn C 2˛ Pqn C !2n qn D fn=mn : (5.37)

The notations are identical to those used in Chap. 3. Similar equations were solved
in Chap. 2. Thus, for a Green’s function such as f .x; t/ D Tı.x � x0/ı.t/, we get
fn.t/ D T˚n.x0/ı.t/, and Eq. (2.14) is used

g.x; t/ D H.t/T
X

n

˚n.x/˚n.x0/

mn
e�˛t sin!pnt

!pn
;

where !pn D !n

p
1 � ˛2=!2n (in most usual cases, it can be written as !pn ' !n,

since damping is weak). For Dirichlet boundary conditions (fixed ends), we have
˚n.x/ D sin knx, kn D n�=L D !n=c, mn D �SL=2. Thus:

g.x; t/ D H.t/
2c2

L

X
n

sin knx sin knx0e
�˛t sin!pnt

!pn
,

that can be compared to Eq. (4.53). Here, the eigenfrequencies are complex.3

For a damped plucked string with no initial velocity, we derive from (2.11)
and (3.58) the expression of the displacement:

y.x; t/ D
X

n

2hL2

n2�2x0.L � x0/
sin knx sin knx0e

�˛t cos.!pnt C 'n/

ın
(5.38)

where tan'n D �˛=!pn and ın D !pn=!n. The Green’s function G.x/ in the
frequency domain is derived

3What is the connection between the present case and the proportional damping in discrete systems
seen in Sect. 5.2.1.2? To answer this question, assume that the string is discretized in small elements
of the same length, similar to the use of spatial finite differences. The mass and damping matrices
are diagonal, with equal elements: they are thus proportional, with proportionality coefficient 2˛,
from (5.36). By writing ˛ D !n�n for all elements, Eq. (5.16) is found again, up to a factor 2, since
we had C D ˛M, and not C D 2˛M:
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G.x/ D 2c2

L

X
n

sin knx sin knx0
!2n � !2 C j!!n=Qn

(5.39)

with Qn D !n=2˛. This formula can be compared to (4.52).

ii) Frequency-Dependent Damping

If the damping phenomena depend on frequency, the partial differential equa-
tion (5.36) can often take a very complicated form, as it will be seen later in
Sect. 5.4 in this chapter for the damping in tubes.4 It is thus more convenient to
return to the frequency domain, where a decomposition remains simple as long
as the boundary conditions do not depend on frequency. For boundary conditions
similar to the previous case of the string, Eq. (5.39) remains valid when ˛.!/

depends on !. Notice that we write !, which is a continuous variable, and not
!n which corresponds to the discrete series of the string modes. Thus we can
write Qn D !n=2˛.!/ for the quality factor. What changes here, compared to the
standard oscillator, is that the variations with frequency of the magnitude are not
given by a Lorentzian function anymore (see Chap. 2). However, it is often the case
that, since the effects of the damping are significant near ! D !n only, one can
approximately write Qn ' !n=2˛.!n/. Under this assumption, G.x/ in Eq. (5.39)
can be approximated by a series of Lorentzian terms, which enables us to return
to the time domain using (5.38). This question will be addressed again for tubes
(Sect. 5.6).

5.2.2.2 Example of Non-proportional Damping: Localized Damping

A vibrating string of length L is now considered with eigenfrequencies !n and
associated eigenshapes ˚n.x/ in the conservative case (no damping).5 A “fluid”
localized damping is introduced at a point of abscissa x D xo, with 0 < xo < L,
in the form of a mechanical resistance R (see Fig. 5.2). This simple model is a
rough, though relevant, description of the type of damping that occurs when a player
presses his (or her) finger against the fingerboard.

In terms of energy, the mechanical resistance yields a quadratic function of string
velocity. Its action is described by a force proportional to velocity, with an opposite
sign, of the form �RPy.x; t/ı.x � xo/. Using the notations of Sect. 3.3.2 in Chap. 3,
the equation of motion of the string becomes

4In some cases, it is possible to search for equivalent time-domain formulations of damping terms,
as shown later in this chapter for damping in plates (see Sect. 5.3). However, such formulations
usually are rather complicated.
5These assumptions are valid for heterogeneous strings with non-dissipative impedance-like
boundary conditions. The case of dissipative boundary conditions is addressed in Sect. 5.2.2.3.
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Fig. 5.2 String with a
localized damping,
represented by a mechanical
resistance R at a fixed point
x D x0

0 x0 L

R

�.x/S.x/
@2y

@t2
C R

@y

@t
ı.x � xo/� @

@x

�
T.x/

@y

@x

�
D f .x; t/ (5.40)

which, after standard use of the scalar product, leads to:

X
m

Rqm.t/
Z L

0

˚m.x/˚n.x/�.x/S.x/dx C
X

m

Pqm.t/
Z L

0

Rı.x � xo/˚m.x/˚n.x/dx

�
X

m

qm.t/
Z L

0

˚n.x/
d

dx

�
T.x/

d˚m.x/

dx

�
dx D

Z L

0

˚n.x/f .x; t/dx . (5.41)

As a consequence, taking advantage of the orthogonality properties of the eigen-
shapes ˚n.x/, the generalized coordinates satisfy the differential equations:

Rqn C 2!n

X
m

�nm Pqm C !2n qn D fn
mn

(5.42)

where the inter-modal damping coefficients are written:

�nm D R˚n.xo/˚m.xo/

2mn!n
: (5.43)

Again, it is observed that the damping leads to a coupling between the modes of the
conservative system. However, as it has been shown in Sect. 5.2.1.1, these equations
can be decoupled, using first-order approximations for weak damping, which leads
to the simplified equation:

Rqn C 2!n�n Pqn C !2n qn ' fn
mn

(5.44)

where the modal damping coefficient is now defined by:

�n D R˚2
n .xo/

2mn!n
: (5.45)
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Application To illustrate the practical importance of this example, the simplified
case of an homogeneous string fixed rigidly at both ends is taken, for which˚n.x/ D
sin knx and !n D ckn D n�c

L . The damper (finger) is supposed to be applied at the
middle of the string at position xo D L=2. In this case, Eq. (5.45) shows that the

modal damping coefficient is written �n D R sin2. n�
2 /

2mn!n
. Based on this expression, one

has to consider two cases:

1. For odd values of n, sin2. n�
2
/ D 1 and �n D R

2mn!n
.

2. For even values of n, �n D 0.

As a conclusion, we see that, in this particular example, only the odd modes of the
string are damped. In other words, the damper has no action on the modes if its
location corresponds to a nodal point. This result is coherent with the fact that the
damper cannot dissipate energy if the velocity of the string at its attachment point is
zero.

5.2.2.3 String with a Dissipative End

A string with a dissipative end is the simplest case for which the concept of complex
modes can be generalized to continuous systems. Such as system yields time-
varying modal shapes, among other results. Intuitively, one can easily imagine that
some difficulties may occur to maintain a stable eigenshape, since some energy is
dissipated at one end. This section presents the simple example of a homogeneous
string without a source term, rigidly fixed at one end, and attached to a mechanical
resistance at the other (see Fig. 5.3). The model is the following:

�S
@2y

@t2
� T

@2y

@x2
D 0; (5.46)

with boundary conditions:

y.0; t/ D 0 and T
@y

@x
.L; t/ D �R

@y

@t
.L; t/: (5.47)

Fig. 5.3 String with a
damper at one end

0 x0 L

R
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The method used here consists in searching for the general solution in separated
variables y.x; t/ D f .x/g.t/. This method will be detailed in Chap. 7, Sect. 7.6. Due
to the dissipative condition in x D L, it is convenient to search for the general
solution in the complex space.6 Thus, solutions are sought in C-space of the form:

g.t/ D Ae�st C Best; (5.48)

with A, B and s 2 C. The function f .x/ satisfies

d2f .x/

dx2
D s2

c2
f .x/ with c D

s
T

�S
: (5.49)

Using the boundary condition in x D 0, it is found that the spatial dependency f .x/ is

f .x/ D sinh sx=c: (5.50)

It can be shown (though not demonstrated here) that both terms in (5.48) give the
same modes. Thus, for the sake of simplicity, the resolution of the problem continues
from here with g.t/ D exp.st/ only. The boundary condition at x D L yields

cosh sL=c D �r sinh sL=c (5.51)

where r D R=Zc, with Zc D T=c the characteristic impedance of the string. With
s D j!C˛, two families of solutions are found, depending on whether the resistance
R is larger than Zc or not.

1. For r < 1, Eq. (5.51) gives the conditions:

cos
!L

c
D 0 ; tanh

˛L

c
D �r : (5.52)

2. For r > 1, Eq. (5.51) gives the conditions:

sin
!L

c
D 0 ; tanh

˛L

c
D �1

r
: (5.53)

In what follows, only the case r > 1 will be considered. This situation corresponds
to string instruments, where the real part of the impedance at the bridge is
significantly larger than the characteristic impedance of the strings. The angular
eigenfrequencies are complex. Their real parts !n D n�c=L are unchanged,
compared to the case of a string rigidly fixed at both ends. Denoting ˛C the positive
value of ˛, so that tanh˛CL=c D 1=r, then we get

6Nevertheless, as shown at the end of this section, the “physical” solution obtained after
considering the initial conditions will be expressed in the real space.
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g.t/ D exp


jn�c=L � ˛C� t:

where n can be either positive or negative. The general solution can be written as:
g.t/ D exp



j!n � ˛C� t. Finally, the following decomposition of y.x; t/ is obtained,

(denoting now ˛C D ˛) :

y.x; t/ D e�˛t
X

n

an sinh Œ.j!n � ˛/x=c	 ej!nt; (5.54)

which can be rearranged under the following form, where the factor 1=2 is inserted
in the amplitude an:

y.x; t/ D e�˛t

"
e�˛x=c

X
n

anej!n.tCx=c/ � e˛x=c
X

n

anej!n.t�x=c/

#
(5.55)

or in closed form:

y.x; t/ D e�˛t
h
e�˛x=cF

�
t C x

c

�
� e˛x=cF

�
t � x

c

�i
; (5.56)

with

F.t/ D
X

n

anej!nt : (5.57)

The complex constants an are determined by the initial conditions. It can be shown
that the result leads to a real function F.t/.

A number of interesting remarks can be derived from Eq. (5.56):

1. The presence of the resistance R results in an exponentially decreasing oscilla-
tion, with time constant � D 1=˛ independent of frequency.

2. The term between [ ] corresponds to two traveling waves in opposite direction
and with different amplitudes, except in x D 0 where both terms cancel at any
time, according to the boundary condition. Consequently, no standing wave can
exist on the string.

In conclusion, as shown in Fig. 5.4, traveling waves exist on the string with a
dissipative end. Strictly speaking, one cannot describe the phenomena in terms
of modes, nodes, and antinodes, since all these quantities are moving with time.
In the frequency domain, we will refer to such dynamics as “complex” modes.
Chapter 13 deals with a similar example, since the radiation in space can be viewed
as a 3D generalization of a string with a resistive end. The “complex” modes are
not orthogonal for the usual scalar products seen in Chap. 3, exhibiting mass and
stiffness orthogonality. However, we will present in Sect. 5.2.3 below another scalar
product with specific orthogonality properties. With this scalar product, the complex
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Fig. 5.4 Snapshots of a string with a dissipative end, at successive instants of time

modes form a complete basis for the solutions, which enables to solve general
problems with initial values and source terms [28].

For continuous systems, as for discrete systems, first-order approximations are
possible in the case of weakly dissipative systems, where the modal shapes are
almost stationary. In the particular case of the string with dissipative end presented
above, the problem gives an exact solution, and no approximations are necessary.
This solution shows, in the time domain, the consequences of phase shift due to
dissipation between the eigenmodes, as shown in Sect. 5.2.1.1.

5.2.3 Continuous Complex Modes

This section deals with the general case of continuous systems where the damping
operator cannot be diagonalized. For simplicity, only one-dimensional systems, such
as bars or strings, are considered for which the equation of motion is written in the
form [31]:

L .w/C C . Pw/C �S Rw D f .x; t/; (5.58)

where w.x; t/ is the displacement. As for the discrete case, the velocity variable
v D Pw is introduced, so that (5.58) can be written in state variables:
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�
L 0

0 ��S

� �
w
v



C
�
C �S
�S 0

� � Pw
Pv



D
�

f
0



: (5.59)

It is further assumed that the stiffness L and damping C operators are
self-adjoints. This property implies some restrictive conditions on the boundary
conditions, However, it is applicable to a large class of problems in dynamics. In
practice, it means that, given two displacements w and w

0
that fulfill the boundary

conditions, we can write [35]:Z
L
L w w

0? dx D
Z

L
wL w

0? dx; (5.60)

where the ? sign indicates the complex conjugate.

5.2.3.1 Solution of the Eigenvalue Problem

Defining

W D
�

w
v



I F D

�
0

.�S/�1f



and A D

�
0 1

�.�S/�1L �.�S/�1C

�
(5.61)

the system (5.59) is written in the same way as for the discrete case seen in
Sect. 5.2.1.3:

PW � AW D F : (5.62)

Consequently, the eigenvalue problem is written:

AWn D �nWn I �nwn D vn I L wn C �nC wn C �S�2nwn D 0 : (5.63)

The orthogonality relations can also be generalized. We obtain8̂̂<̂
:̂
Z

L
wr ŒL � �r�n�S	wndx D Anırn;Z

L
wr ŒC C �S.�r C �n/	wndx D Bnırn :

(5.64)

Notice that the constants An and Bn are not independent. In fact, combining the
two relations in (5.64) for r D n, we have An D ��nBn D �2�2nmn, where mn is
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the modal mass generalized to complex modes. This quantity can be equivalently
written:

mn D 1

2

Z
L

wn

�
�S � 1

�2n
L

�
wndx

D
Z

L
wn

�
�S C 1

2�n
C

�
wndx : (5.65)

Using both the orthogonality properties and the expressions of the modal masses
allows us to expand the solution in terms of the eigenmodes7:�

w.x; t/
v.x; t/

�
D
X

n

qn.t/

�
wn.x/
�nwn.x/

�
; (5.66)

where the qn.t/ are functions of time with complex amplitudes. Substituting
these expansions in the equation of motion (5.59), and taking advantage of the
orthogonality properties of the eigenmodes, the equations governing the generalized
coordinates are obtained:

Anqn C Bn Pqn D fn with fn D
Z

L
wnf .x; t/dx; (5.67)

which can be alternatively expressed in terms of modal mass mn and eigenvalue �n:

Pqn � �nqn D 1

2�nmn
fn : (5.68)

Finally, a set of first-order decoupled differential equations is obtained, that can
be compared to the system of second-order differential equations obtained in the
conservative case (see Chap. 3).

As for real modes, the integration constants are obtained through the introduction
of initial conditions for both the displacement and velocity:�

w.x; 0/
v.x; 0/

�
D
X

n

qn.0/

�
wn.x/
�nvn.x/

�
: (5.69)

Using again the orthogonality relations, we have

7Since L and C are self-adjoints operators, the adjoint operator of A is equal to its transpose and
its eigenvalues are the same as for A. It can then be shown that bi-orthogonality relations exist
between these two families of modes that guarantee the uniqueness of the solution. These very
technical considerations will not be developed further.
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qn.0/ D � 1

2�2nmn

Z
L

wn ŒL w.x; 0/ � �n�Sv.x; 0/	 dx

D 1

�nmn

Z
L

wn Œ.C C �n�S/w.x; 0/C �Sv.x; 0/	 dx : (5.70)

In contrast with the real mode case, qn.0/ depends on both displacement and
velocity conditions. To illustrate the method of complex modes, an example of
application is given in the next section.

5.2.3.2 Application: String with a Localized Damping

In Sect. 5.2.2.2, the example of a string with a localized damping has been presented
with details (see Fig. 5.2). It has been shown that the eigenmodes of the conservative
system are generally coupled, and that only a few particular cases can be found
where decoupling is possible. This example is used again below in order to show
how to tackle the problem when the damping operator C cannot be diagonalized,
and, in addition, when simplifying assumptions cannot be made. The following
example has been solved by Krenk [31]. In the particular case where the damper
is put at the end of the string, then the reader will recognize some of the results
obtained in Sect. 5.2.2.3. However, the method used below is by far more general.

The case of a homogeneous string with two fixed ends is investigated. It is
described by the well-known equations:8̂<̂

:T
@2y

@x2
� �S

@2y

@t2
D 0 for x ¤ x0;

y.0; t/ D y.L; t/ D 0 :

(5.71)

As shown in Fig. 5.2, a damper with resistance R is attached to the string at
position x D x0. In this point, the solution must satisfy the discontinuity relation:

T

�
@y

@x
jx0C � @y

@x
jx0�

�
D R

@y

@t
jxDx0 : (5.72)

Free vibrations are sought in the form y.x; t/ D Y.x/ exp.j!t/, where Y and ! are
complex. The dispersion equation then gives the complex wave number k D !=c.
Because of the discontinuity in x D x0, the general form of the complex modes is
given by:

Yn.x/ D

8̂̂̂̂
<̂
ˆ̂̂:

Yn.x0/
sin knx

sin knx0
for 0 � x � x0;

Yn.x0/
sin kn.L � x/

sin kn.L � x0/
for x0 � x � L;

(5.73)
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where the kn are obtained by the discontinuity condition (5.72):

cot knx0 C cot kn.L � x0/ D j
R

Zc
: (5.74)

where Zc is the characteristic impedance of the string. Using the general results
obtained in the first part of this section, the modal mass is found to be equal to:

mn D 1

2
�SY2n .x0/

�
x0

sin2 knx0
C L � x0

sin2 kn.L � x0/



: (5.75)

Finally, in the case of a forced regime with, for example, a force of amplitude F
applied at x D x1 for t � 0, the generalized coordinate is obtained

qn.t/ D �FYn.x1/

2�2nmn



1 � ejcknt

�
: (5.76)

From the knowledge of Yn.x/ and qn.t/, the solution y.x; t/ is obtained, using (5.66).

5.3 Damping Mechanisms in Solid Materials

5.3.1 Introduction

The analysis and modeling of damping in solid materials is difficult, due to the
existence of many different mechanisms. Any irreversible process in materials
dissipates energy. Figure 5.5 shown below illustrates three common processes:

• (a) A straight line is drawn in the stress–strain plane, consecutive to a traction
test on a sample made of elastic material. During the release, it it observed that

ε

σ

ε

σ

ε

σ

000

a b c

Fig. 5.5 Reversible and irreversible processes. (a) Elastic, non-dissipative behavior. (b) Anelastic
behavior. (c) Linear viscoelastic behavior
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the same line is drawn and that the final state corresponds to the initial state at the
origin of the axes. The process is said to be reversible and no energy is dissipated
during the experiments.

• (b) If the same test is made on a glass fiber, for instance, a curve is obtained
showing that a part of the mechanical energy is transformed into heat at each
cycle. This dissipation is due to an internal reorganization of the solid. As
a consequence, the particles do not go over the same equilibrium states, for
increasing and decreasing stress, respectively. The behavior is said anelastic.

• (c) Some materials exhibit reversible processes, provided that they remain in
the linear domain, but are sensitive to strain velocity. This is the case for
viscoelastic materials. Wood and polymers enter in this category of materials,
which are largely used in musical acoustics. The viscoelastic damping also
depends strongly on the temperature.

For metals, which are conductors of heat, it is necessary to also take the coupling
between elastic waves and heat diffusion into account. Everybody can easily
reproduce the experience of bending a metallic rod and noticing that a warm-up
occurs, especially in the zone of maximum strain. This mechanism is a consequence
of thermoelastic losses that also occur in metallic strings or in structures used in
percussion (bars, plates, and shells). Dislocations, i.e., motions of defects lines that
are hindered by impurities present in the crystal lattice, also occur in metals. These
motions induce losses whose amplitude and spectrum depend on the metallurgical
treatment undergone by the metal. In this context, Valette reports important results
with regard to losses in harpsichord strings [43].

In what follows, special consideration is given to the description of thermoelastic
and viscoelastic damping, which are the predominant dissipative mechanisms in the
materials used for making musical instruments. Hysteretic damping will also be
mentioned, since it is widely used in the context of structural dynamics. In addition,
the viscous damping of a string vibrating in the air will be briefly presented, and
the reader should refer to Valette for more developments [43]. For bars, plates, and
shells, these viscosity effects are often negligible compared to the other causes of
damping. The damping due to acoustic radiation will be presented in the fourth part
of this book.

5.3.2 String Damping Due to Air Viscosity

The main reference model of viscosity losses for a string vibrating in air was given
by Stokes in 1851 [41]. He shows that the mechanical resistance per unit length rm

for a cylinder with diameter d and oscillation frequency f in a fluid such as air with
viscosity coefficient � and density �, is equal to:
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rm D �2�f
d2

2

 p
2

M
C 1

2M2

!
with M D d

4

s
2�f

�a
; (5.77)

where �a D �=� is the fluid kinematic viscosity.
For air, we have � D 1:832 � 10�5 kg=m s and �a D 1:52 � 10�5 � m2=s.

For typical strings of musical instruments, in the medium frequency range, the
dimensionless coefficient M is of the order of unity.

The power Pv dissipated by viscosity is obtained by summing the scalar product
of the elementary viscosity forces df D �rmvdx and transverse string velocity v
over the total length of the string. The kinetic energy decreases as a consequence of
viscosity losses. In total, we can write

Pv D dEc

dt
D �rm

Z
L
v2dx : (5.78)

Denoting �s the string density, its kinetic energy is written

Ec D �sS

2

Z
L
v2dx; with S D �d2=4:

Equation (5.78) can be put in the form:

dEc

dt
D �Ec

�e
with �e D �s

2�f�

�
M2

2
p
2M C 1

�
; (5.79)

where �e is the time constant. The energy is proportional to the square of the
amplitude, therefore the viscosity time constant � of the string motion is equal to:

� D 2�e D �s

�f�

�
M2

2
p
2M C 1

�
: (5.80)

Equation (5.80) shows that the viscosity time constant decreases roughly as 1=
p

f
for f 	 �a=4�r2, which corresponds approximately to f 	 5Hz for the numerical
data shown in Fig. 5.6. Viscosity losses can be significant for high frequencies. They
can be reduced with the use of dense materials. One can also check that � increases
(hence losses decreases) with radius r.

5.3.3 Thermoelasticity in Orthotropic Plates

The thermoelastic damping is a consequence of the coupling between elastic strain
and heat diffusion. It affects the vibrations of solids with a noticeable thermal
conductivity, such as metals. This type of damping is adequately described by
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Fig. 5.6 Viscosity time constant for a Nylon string as a function of the frequency. Numerical
values: �s D 103 kg=m3; � D 1:29 kg=m3 ; d D 1:0 mm

a coupling between the dynamics of the structure under consideration and heat
diffusion [5, 44]. In this section, it will be shown how to represent this damping
by adding an imaginary part to the stiffness constants. The method is illustrated
by the example of orthotropic plates. The thermoelastic damping in isotropic plates
and bars is then deduced as particular cases. The case of thermoelastic damping in
prestressed bars (or stiff strings) was done by Valette and Cuesta [43].

The variations of temperature � in the materials are supposed to be reasonably
weak so that the constitutive equations relating stress 
ij and strain W;ij can be
linearized (the symbols ij represent here the partial derivative of the transverse
displacement W with respect to the coordinates). The symbol s is the Laplace
variable. In Cartesian coordinates, the three stress components in the plate are
written [10]:


xx D �12z
�
D1W;xx C D2

2
W;yy

	 � 
x�;


yy D �12z
�
D3W;yy C D2

2
W;xx

	 � 
y�;


xy D �6zD4W;xy ; (5.81)

where 
x and 
y are the thermal coefficients of the material. For the particular case
of an isotropic material, 
x =
y =
, and this coefficient is related to the thermal
dilatation coefficient ˛ by the relationship [39]:


 D ˛
E

1 � 2� : (5.82)
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Fig. 5.7 Thermoelastic plate.
The temperature � increases
from the stretched to the
compressed fibers

–h/2

h/2
z

θ

The system (5.81) is complemented by the heat diffusion equation, where it is
assumed that � depends on the coordinate z of the plate thickness only (see Fig. 5.7):

��;zz � �Cs� D �zT0s
�

xW;xx C 
yW;yy

	
; (5.83)

In (5.83), T0 is the absolute temperature, C is the specific heat for constant strain,
and � is the thermal conductivity. Following the method used by Cremer [15], �.z/
is supposed to be of the form:

�.z/ D �0 sin
�z

h
for z 2

�
�h

2
;

h

2

�
: (5.84)

This expression accounts for the fact that the thermal exchange between plate and
air is small. Integrating z
ij along the plate thickness h, one obtains the expressions
that connect the bending and torsion moments Mij to the spatial derivatives of the
transverse displacement W. After some calculations, it is found that the stiffness
factors are written [10]:

QD1.s/ D D1 C 
2x
s�

1C �s
;

QD2.s/ D D2 C 2
x
y
s�

1C �s
;

QD3.s/ D D3 C 
2y
s�

1C �s
;

QD4.s/ D D4: (5.85)

The thermal relaxation time constant � and the parameter � are defined as
follows:

� D �Ch2

��2
and � D 8T0h2

��6
: (5.86)
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Table 5.1 Thermal constants for some usual materials

Wood Steel Glass Aluminum Nylon

C ( J/kg ıC) 2000 460–625 700 900 1500

˛ (�10�6 K�1) 4 14 6–10 22 103

� (W/m K) 0.04–0.4 11–46 1.1 105–250 0.1–0.3

The thermoelastic losses are proportional to the imaginary part of the stiffness
constants QDi.j!/. From (5.85), these losses are shown to increase with frequency
and reach an asymptotic value proportional to �=�2. In practice, this means that the
thermoelastic losses increase proportionally to 1=h2.

It can also be noticed that D4 is real. As a consequence, the modes of the plates
subjected to a torsional strain, involving D4, are less affected by the thermoelastic
damping than the other modes. In fact, the thermoelastic damping depends on the
modal shapes, so that, from one mode to another, the graphs showing the evolution
of the modal damping factors in s�1 as a function of frequency have an apparent
erratic behavior (see Fig. 5.8). This behavior is a direct consequence of the theory
of thermoelasticity, and is not the result of errors in measurements.

In some cases, it might be appropriate to write the complex stiffnesses under the
following form:

QDi.s/ D Di


1C Qdit.s/

� D Di

�
1C sRi

s C c1=h2

�
; i D Œ1; 2; 3	

QD4.s/ D D4; (5.87)

in order to highlight their dependency upon thickness. Considering the order of
magnitude of the thermal constants for usual materials (see Table 5.1), the norm of
the term Qdit.s/ can be considered to be small compared to unity, so that it appears as
a perturbation term. In (5.87), the coefficients Ri are defined as:

R1 D 8T0
2x
�4D1�C

I R2 D 16T0
x
y

�4D2�C
I R3 D 8T0
2y

�4D3�C
: (5.88)

Thermoelastic damping is not the only dissipation mechanism present in vibrat-
ing structures. For non metallic plates and shells, the viscoelastic damping is
often predominant. The radiation damping must also be considered. However,
thermoelastic damping remains the primary cause of dissipation at low frequencies
for metals.
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Fig. 5.8 (Top) Damping factors (in s�1) of a rectangular aluminum plate, as a function of
frequency (in kHz). Comparison between theory (solid line) and experiments (open circle).
(Bottom) Zoom of the previous figure in the lower part of the spectrum, showing the apparent
erratic behavior of the thermoelastic damping due to the influence of the modal shapes. From [10]

5.3.4 Viscoelasticity

The viscoelastic models used in vibration theory are based on a macroscopic
approach to dissipation phenomena and are most often derived from experiments. In
their general form, these laws can be expressed as a function relating stress, strain,
time, and temperature, as follows [11]:

F .D1.
/;D2."/; t;T/ D 0 (5.89)
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where D1 and D2 are integral or differential operators that are assumed to be linear
throughout this section.

5.3.4.1 Preliminary Experiments: Viscoelastic String

Each string instrument player has experienced the fact that a newly stretched string
does not keep its tension, and that it is necessary to wait for a couple of days to get
stability of the pitch. This effect of stress relaxation is due to viscoelasticity, which
is the main cause of thermal dissipation in non heat conducting materials (such as
nylon, or catgut, which are materials largely used for strings). One approach for
modeling this phenomenon is to consider that if the string is abruptly subjected to
a variation of length (or of strain " D L�Lo

Lo
, where Lo is the initial string length),

then the tension divided by the section S of the string (or axial stress 
 D T
S ) is

described by the differential equation [16]:

P
 C 


�
D E P"; (5.90)

where E is the Young’s modulus of the string, and � a relaxation constant. By turning
the peg at one end of the string, a strain ".t/ D "1H.t/ is imposed, where H.t/ is
the Heaviside function. As a consequence, the axial stress decreases exponentially
with time: 
.t/ D E"1e� t

� . Therefore, the string tension also decreases with time,
which is confirmed by daily experiments (see Fig. 5.9).

During playing, the string is constantly subject to variations of tension, associated
with the flexural vibrations, and thus the viscoelasticity phenomenon is present.
Here, one can consider that these fluctuations of stress lead to variations of strain
according to the equation:


 D E ."C � P"/ : (5.91)
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Fig. 5.9 Relaxation of a stretched string, after a sudden variation of strain (arbitrary units)
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Introducing (5.91) in the vibrating string Eq. (3.47), we get

1

c2
@2y

@t2
D @2y

@x2
C �

@3y

@x2@t
: (5.92)

Consider now the propagation of a harmonic wave of the form y.x; t/ D ej.kx�!t/ in
this damped string. The string is supposed to be infinite in length (this is equivalent
to considering the propagation of the waves before they reach the ends). The
dispersion equation becomes

!2 D c2.1 � j!�/k2 : (5.93)

For an imposed wavenumber k, and considering further that � � 2
kc , the displace-

ment can be written as:

y.x; t/ D e� �k2c2
2 tejk.x˙ct/ : (5.94)

The large wave numbers are found to be damped faster than the small ones, which
induces a deformation of the wave during its propagation.

The solution of Eq. (5.92) is now expressed as an expansion onto the basis of
the eigenmodes of the ideal string. Using the orthogonality properties as shown in
Sect. 3.3.2, the equations satisfied by the generalized coordinates are obtained

Rqn C �!2n Pqn C !2n qn D 0 : (5.95)

With � � 2
!n

, a condition that is usually fulfilled for the strings of musical
instruments in their usual frequency range, and with zero initial velocity, we have

qn.t/ � qn.0/e
� �!2n

2 t cos!nt : (5.96)

In the time domain, the viscoelastic damping introduced in (5.92) consequently
leads to a time constant which is proportional to the square of frequency. This simple
model is in accordance with the phenomena observed in Nylon strings.

Remark. With the viscoelastic damping term introduced here in the string
equation, it is observed that the differential equations of the generalized coordinates
remain decoupled. This is a particular case of proportional damping presented in
Sect. 5.2.1.2, where the damping matrix is written here C D �K.

5.3.4.2 General Viscoelastic Models

Both examples (5.90) and (5.91) represent particular cases of a general differential
formulation of viscoelasticity combining stress, strain, and their time derivatives.
These simple examples provide a reasonable interpretation of some phenomena
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Fig. 5.10 Linear standard model (or Zener model). Variation of the real part E0 (dotted line),
and imaginary part E00 (solid line) of the complex Young’s modulus as a function of the angular
frequency !. Ordinate units are arbitrary

observed in stringed instruments. One generalization of these models is the so-called
standard viscoelastic linear model (or Zener model):


 C �1 P
 D E ."C �2 P"/ (5.97)

which includes three parameters (E; �1, and �2). If Eq. (5.97) is written in the
frequency domain, for solutions of the form 
 D 
0ej!t and " D "0ej!t, a complex
Young’s modulus can be expressed as:

E.!/ D 


"
D E

0
.!/C jE

00
.!/ D E

�
1C !2�1�2

1C !2�21
C j

!.�2 � �1/
1C !2�21

�
: (5.98)

Variations of real (E
0
) and imaginary( E

00
) parts of the complex Young’s modulus

vs. frequency are shown in Fig. 5.10. Even if it is conceptually and qualitatively
interesting, the main drawback of this model is that the commonly observed
variations of the Young’s modulus with frequency are less pronounced. As a
consequence, it is often difficult to adjust the constants of the model E, �1, and
�2 to fit the experimental data.

Because of these limits to this use, several authors have proposed to extend the
standard model to a generalized differential formulation such as:


 C
nX

iD1
ai

di


dti
D E

 
"C

nX
iD1

bi
di"

dti

!
: (5.99)
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This formulation enables a better fit to observed phenomena, compared to the Zener
case. The price to pay is that a larger number of parameters need to be adjusted,
which implies to collecting a larger number of measured data. In the frequency
domain, the complex Young’s modulus becomes

E.!/ D E
1CPn

iD1 ai.j!/i

1CPn
iD1 bi.j!/i

: (5.100)

In (5.100), n is an integer, which limits the model to moduli exhibiting flat slopes
vs. frequency. For that reason, recent developments use fractional values of n for
representing smoothly varying frequency dependence [34].

5.3.4.3 Integral Formulation

The previous section has shown some limits of the differential models for describing
linear viscoelasticity. In some cases, an integral continuous formulation is preferred,
such as [11]:


.t/ D
Z t

�1
E.t � �/d".�/; (5.101)

where E.t � �/ is a relaxation function. Physically, this formulation, in the form of a
convolution integral, means that the stress depends on the history of material strain.
With E.t/ D E0 C Er.t/, and assuming further that Er.t/ tends to zero as time t
tends to 1, an equivalent formulation is found


.t/ D E0".t/C
Z t

�1
Er.t � �/

d".�/

d�
d� : (5.102)

The obtained formulation can be easily handled with Fourier or Laplace analysis.

5.3.5 Hysteretic Damping

Hysteretic damping accounts for energetic losses observed in phenomena with
hysteresis loops. It is frequently encountered in the dynamics of structures. By
defining the loss factor as the ratio between the energy dissipated in the system
during one period of oscillation, and the maximum of the potential energy [13], the
hysteretic damping is shown to represent a loss factor independent of frequency.
The equation of motion of a one DOF oscillator with hysteretic damping is written
in the frequency domain:

Œ�M!2 C K .1C j� sgn.!//	�.!/ D F.!/ : (5.103)
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Such a formulation accounts for stationary oscillations of the system. However,
its dual formulation in the time domain is not causal. In fact, the inverse Fourier
transform of the damping term Fd.!/ D j!R.!/�.!/ D jK� sgn.!/�.!/ is
written [13]:

fd.t/ D jK�

2�

Z C1

�1
sgn.!/ej!td!

Z C1

�1
�.�/e�j!�d� : (5.104)

The mass displacement expression is then:

�.t/ D 1

2�K�

Z C1

�1
ej!t

jsgn.!/
d!

Z C1

�1
fd.�/e

�j!�d�: (5.105)

As an example, let us impose fd.t/ D ı.t/. Equation (5.105) yields

�.t/ D 1

�K�

1

t
� 1 < t < C1: (5.106)

The expression (5.106) is clearly non causal, since the response precedes the
excitation. As a conclusion, this calculation shows that hysteretic damping does not
constitute an appropriate formulation for losses in the time domain, and that other
strategies should be then used to model a loss factor independent of frequency.

5.4 Damping Mechanisms in Cylindrical Pipes

5.4.1 Introduction

There are several types of attenuation mechanisms for an acoustic wave in air,
and their relative importance varies significantly with both the frequency and
limits of the spatial domain. In pipes, two mechanisms clearly dominate at audible
frequencies: viscosity and thermal conduction effects. Both occur primarily near the
walls. This means that the plane waves that are assumed to occur in a pipe cannot
be truly plane, because the velocity tangential to a wall must be zero. Physical
arguments have been found from experimental observations (a theory based on the
analysis of molecular motion would be very complex): then if the velocity parallel
to walls is zero at the wall, and non-zero near the walls, friction occurs because of
air viscosity (see Fig. 5.11).

The complete theory of attenuation and dispersion (the dispersion is the variation
of the phase velocity with frequency) is due to Kirchhoff [30]. It takes the viscosity
and thermal conduction effects into account, and is valid both in free space and near
the walls.

In free space, attenuation increases as the square of frequency: it is the mech-
anism responsible for the dissipation by radiation (this is true for all musical
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Fig. 5.11 Axial velocity profile in a cylindrical pipe, for a Stokes number equal to 21: the velocity
is zero on the walls and uniform in the central part of the pipe. The ordinate axis shows the radial
coordinate r, normalized by its value R on the wall

instruments!). The radiated energy is never reflected in free space, because it is
dissipated before reaching any obstacle; nevertheless, it is not needed to know the
dissipation mechanism precisely as it is sufficient to write that no wave returns back
from infinity (see Chap. 12).

Near the walls attenuation increases as the square root of frequency. It is the
dominant attenuation mechanism in pipes, and thus needs to be well understood.
At the wall, Kirchhoff suggested to add two supplementary conditions to the
model with zero velocity perpendicular to a rigid wall: the vanishing of both
tangential velocity and acoustic temperature. A first method consists of simplifying
Kirchhoff results to observe what occurs near the walls. However, this approach
can be cumbersome, and here a simple theory is preferred: it is a simplification
of Kirchhoff’s theory, and it enables a better understanding of the phenomena
encountered in wind instruments. This approach due to Zwikker and Kosten [45],
forms the basis of the theory of absorbing materials with rigid skeleton, seen as a
set (or bundle) of narrow rigid pipes. Its knowledge is useful for wide pipes (it is
defined later what is meant by “wide”), and for very narrow pipes such as a small slit
leading to leaks. This theory is largely sufficient for the study of wind instruments.
Let us add that damping is essential for the sound production, as it determines the
threshold of self-sustained oscillations (see Chap. 9).

The Zwikker and Kosten theory enables replacing the propagation equations of
a plane wave by one-dimensional equations obtained by averaging the acoustic
quantities over a pipe cross section. A great advantage is that it separates the
viscous effects and the thermal conduction effects, and leads to a transmission line



5 Dissipation and Damping 231

Fig. 5.12 Geometry of a ring
in a pipe slice

x  x+ dx

x
r

r + dr

formulation for averaged quantities. The case of a cylindrical pipe of radius R is
chosen, and polar coordinates will be used. Similar results have been obtained for
rectangular pipes [2, 27].

N.B. If readers prefer to skip the proof, they can continue to read this chapter from Sect. 5.5.

5.4.2 Viscous Effects

5.4.2.1 Simplified Navier–Stokes Equation

The equation of momentum conservation is now written including viscosity. By
doing so, the Navier–Stokes equation is obtained, that replaces Euler Equation [see
Eq. (1.101)]. In fact, this equation is simplified straightaway, assuming that there is
no average flow, and making some other assumptions, such as axisymmetry. Let us
consider a fluid slice between abscissae x and xCdx; and in this slice, a ring between
radius r and r C dr (see Fig. 5.12). Without viscosity, the force equilibrium is

� .2�rdr/
@p

@x
dx D �.2�rdr/dx

@vx.r; x/

@t
: (5.107)

where vx.r; x/ is the axial velocity. The pressure difference between x and x C dx;
on the surface 2�rdr is on the left-hand side. The friction forces, linked to the
viscosity coefficient �, must be added to the pressure force. They are, by definition,
proportional to �, to the wall surface area, and to the derivative of the axial velocity.
On the internal and external faces of the ring, their values are respectively:

��.2�rdx/
@vx.r; x/

@r
and �Œ2�.r C dr/dx	

@vx.r C dr; x/

@r
:

The choice of signs can be explained as follows: the axial velocity must decrease
from r D 0 to r D R, where it is zero, thus @vx=@r is negative, and the force must
speed up the slower fluid layer, and slow down the faster fluid layer. On the internal
face, the layer outside of the ring (radius lower than r) moves faster than the layer
inside the ring, and thus the latter should speed up (positive force); it is the opposite
for the external face. Dividing by .2�rdxdr/; the force equilibrium yields
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�

r

@

@r

�
r
@vx

@r

�
� @p

@x
D �

@vx

@t
: (5.108)

It can be verified that this is the linearized Navier–Stokes equation, for the x
direction, i.e.:

�
@v

@t
C gradp D ��vC

h
�C �

3

i
graddivv

where the leading term of the axial velocity Laplacian is assumed to be the radial
one. Furthermore, the velocity divergence is assumed to be essentially longitudinal
(@vx=@x 	 r�1@ Œrvr	 =@r/. Moreover, second viscosity effects have been neglected
(linked to rotation and vibration movements of molecules, coefficient �) relative to
shear effects (linked to the translation movements of molecules, with coefficient �).
It can also be shown that the velocity v can be decomposed as the sum of an
irrotational component and a solenoidal one, with zero divergence. Thus, for the
x-component, vx D vxa C vxt, and, with the approximations leading to Eq. (5.108),

@p

@x
D ��@vxa

@t
and�vx ' 1

r

@

@r

�
r
@vxt

@r

�
D �

�

@vxt

@t
: (5.109)

The term vxa corresponds to the acoustic velocity of a plane wave, which is known
to be a solution of a propagation equation, whereas velocity vxt is a solution of a
diffusion equation (the time derivative term is a single derivative with respect to
time, as for the heat equation): this term is crucial near the wall, as it must have
equal magnitude and opposite sign to the plane wave at the wall, and very be small
far from the wall, as it is seen below.

5.4.2.2 Solving of the Equation

Equation (5.108), is solved in the frequency domain,8 and an additional assumption
is made, that is legitimated by a comprehensive calculation of the Kirchhoff
theory. The assumption is that the pressure remains plane, the term @p=@x being
independent of r. The following equation can be solved in r:

1

r

@

@r

�
r
@Vx

@r

�
C k2vVx D 1

�

dP

dx
where kv D

�
� j!�

�

�1=2
. (5.110)

kv is the wavenumber of the diffusion wave for viscous effects. The general solution
of this equation is the sum of a particular solution and of the general solution of the
equation without a right-hand side member:

8 In fact, terms in
p

j! will be found, that correspond to a derivative of time order 1=2: about this
topic, the reader should refer to [7, 20, 21, 37].
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Vx D AJ0.kvr/C BN0.kvr/C 1

�k2v

dP

dx
;

where A and B are two constants. J0 and N0 are the Bessel functions of first and
second kinds, respectively. Considering that N0 tends towards infinity for r D 0, the
boundary condition is B D 0 since the field must be finite in r D 0. It remains to
write the condition on the wall (vx D 0 in r D R), from which the coefficient A is
derived, which gives

Vx D � 1

j!�

dP

dx

�
1 � J0.kvr/

J0.kvR/

�
: (5.111)

Figure 5.11 shows the velocity profile obtained. rv D jkvRj is an essential parameter
(as well as the parameter r=R/ representing the ratio of the radius to the boundary
layer thickness, where the axial velocity decreases quickly towards zero. It is called
the Stokes number. Using the asymptotic expansion for large9 pipes near the walls,
the following result is obtained (for large values of kvr):

Vx D � 1

j!�

dP

dx
Œ1 � exp Œjkv.r � R/		 : (5.112)

The exponential term, corresponding to the solenoidal velocity, has an argument
proportional to .1C j/.r � R/, which has a real negative part as r < R: It decreases
therefore quickly as r decreases away from the wall, as is expected for the solution
of a diffusion equation. If the boundary layer thickness Ev is defined as the value of
.R � r/ for which the modulus of the exponential is 1=e, it is equal to

Ev D p
2�=!�: (5.113)

The boundary layer thickness is inversely proportional to the square root of
frequency, because attenuation increases with frequency. When the Stokes number
is large, the total velocity linearly increases from the wall:

Vx ' 1

!�

dP

dx
kv.r � R/ : (5.114)

Conversely, if the boundary layer thickness is the same order of magnitude as the
radius, which occurs at low frequency, then the two boundary layers on opposite
sides of the pipe overlap and phenomena change. Writing J0.x/ D 1�x2=4CO.x4/,
this leads to

9 To calculate the Bessel function, it should be noticed that it is function of an argument of type
z
p�j, where z is real: it is a Kelvin function, denoted ber0.x/ C jbei0.x/; already met for shell

vibrations in Chap. 3, and for which asymptotic expansion can be found in tables [1].
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Vx D � 1
�

dP

dx

R2 � r2

4
: (5.115)

The velocity profile becomes parabolic. For this case, the flow is laminar and is
called Poiseuille flow. For (low) audible frequencies, this behavior is met only
for pipes with a very small diameter (less than a tenth of a mm) that are called
capillaries. This is also true for very narrow slits, e.g., leak interstices in a wind
instrument. Musicians want to avoid such leaks, because they strongly disturb the
input impedance. This behavior is also met in static regime for a viscous fluid flow,
for which the viscosity effects overcome the convection effects (which are zero
in linear acoustics without mean flow). In fact it should not be forgotten that in
Eq. (5.108), the convection terms of the Navier–Stokes equation have been ignored
(as done for Euler Equation (1.101)). As a dimensionless number, the Stokes number
is the ratio of the unsteadiness term to the viscosity term.10

5.4.2.3 Averaged Axial Velocity

Going back to a one-dimensional system, the average of Eq. (5.111) remains to be
calculated, which is equivalent to calculating the axial flow rate u D 2�

R R
0
vxrdr.

This provides the first of the two required equations. It replaces the one-dimensional
Euler Equation, with a kind of effective density, that we will denote �v.!/, which
depends on both viscosity and frequency. Its behavior will be studied further. AsR

xJ0.x/dx is equal to xJ1.x/, it is written as:

U D � S

j!�v

dP

dx
where

1

�v.!/
D 1

�

�
1 � 2

kvR

J1.kvR/

J0.kvR/

�
: (5.116)

5.4.3 Thermal Conduction Effects

Thermal conduction effects are responsible for a temperature profile which is very
similar to that of the axial velocity. An equation giving the effective compressibility
and linking pressure and velocity can be established. Here, we start from four

10When a convection term exists, the Reynolds number (�vR=�/ is defined as the ratio of
the convection term to the viscosity one, and the Strouhal number (!R=v/ as the ratio of the
unsteadiness term to the convection one. It can be checked that the square of the Stokes number is
the product of the Reynolds and Strouhal numbers.
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equations with five acoustic unknowns (temperature � , density �0, entropy s,
pressure p, and velocity v). In order to obtain one single equation for two unknowns
p and v, three unknowns must be eliminated.

5.4.3.1 Thermodynamics Equations

i) Statement of the Equations

The problem with four thermodynamic variables (P;T; �; and S) can be reduced to
two variables for a bivariant gas, depending on only two variables. T is the absolute
temperature, expressed in Kelvin degrees (ıK), S is the mass entropy, which is a state
function. The variations d� and dS are expressed as functions of dP and dT: four
coefficients are needed, searched as functions of usual “measurable” coefficients.
By definition [see Eq. (1.95)]:

c2 D
�
@P
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�
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:

Then the isothermal and isentropic compressibilities are used

�T D 1
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;

as well as the specific heats at constant pressure and volume:
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and the coefficient of bulk thermal expansion:
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P

:

Therefore, by definition:

d� D ��T dP � �ˇdT: (5.117)

This is the first equation needed. It is classically shown that:11
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It remains to use, for (�; S; T) and (S;P; T/, the following relationship valid for any three variables�
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�T D ��s hence ��T D �=c2: (5.118)

In a similar way to (5.117), this gives

d� D 1

c2
dP C

�
@�

@S

�
P

dS: (5.119)

Eliminating d� between (5.117) and (5.119), yields

dS D
�
@S

@�

�
P

�
��ˇdT C � � 1

c2
dP

�
:

Finally, using coefficients Cp and ˇ, the second equation is found:

dS D Cp

T

�
dT � 1

�ˇ

� � 1

c2
dP

�
: (5.120)

Back to the Isentropic Approximation (Chap. 1)

Under the assumption of isentropic transformation, Eq. (5.120) gives the
proportionality coefficient between acoustic temperature and pressure (see
Chap. 1):

� D 1

�ˇ

� � 1
c2

p where � D ˇT

�Cp
p;

the second expression being obtained using Maxwell law .@S=@P/T D �ˇ=�.
If the gas is now supposed to satisfy a law p=� D f .T/; by using the definition
of �T , the equilibrium coefficients are found:

�T D 1

p0
hence �S D 1

p0�
and c2 D p0�

�0
: (5.121)

If, finally, f .T/ is the ideal gas law, MP D RT�, the sound speed is

c2 D �
RT0
M

I (5.122)

this formula is widely used for sound speed calculation (see a discussion in
[36], and for numerical values of some useful constants, in Sect. 5.5.2): it is
thus proportional to the square root of the absolute temperature. Moreover
ˇ D 1=T, and the acoustic temperature � is also given by:

(continued)
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�

T0
D � � 1

�

p

p0
:

Finally, with Eqs. (1.95) and (5.121), the well-known formula for isentropic
motion is also found: dP=P D �d�=�, or, after integration:

P��� D constant D P0�
��
0 . (5.123)

ii) Linearization

It remains to linearize Eqs. (5.117) and (5.120). We write dS D s, d� D �0, dT D � ,
dP D p, and for averaged quantities, we again use � instead of �0. This gives

s D Cp

T0
.� � ˛sp/ with ˛s D 1

�ˇ

� � 1

c2
; (5.124)

and

�0 D �

c2

�
p � ˇ�c2

�
�

�
: (5.125)

5.4.3.2 Heat Equation and Solution

We start from the Fourier-Kirchhoff heat equation, (see for instance [36]), linearized
for a fluid at rest:

��� D T0�@s=@t,

where � is the thermal conductivity coefficient, T0 and � being the average values
of temperature and density. Using the state relationship for entropy (5.124), it gives
in the frequency domain (for the temperature, �! is the transform of �.t// :

��! C k2t �! D �j!
˛s�Cp

�
P; where (5.126)

kt D
r

�j!�
Cp

�
: (5.127)
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kt is the thermal diffusion wavenumber. Assuming P to be plane, and, again, that
the Laplacian is almost radial, an equation very similar to (5.110) is obtained. The
boundary conditions are given by the requirement to have a finite solution at r D 0,
and by a condition proposed by Kirchhoff: � D 0 on the wall. This imposes that the
temperature does not vary at the wall. Therefore a heat flow exists inside the wall.
Furthermore the product of the heat capacity by the thermal coefficient needs to be
larger in the wall than in the fluid [6]. The solution is written:

�! D ˛sP

�
1 � J0.ktr/

J0.ktR/

�
: (5.128)

Therefore the temperature profile is similar to that of the axial velocity, since
the wavenumber kt is very close to kv . The temperature is the sum of the acoustic
temperature, which is planar, and of a temperature linked to the entropy variation,
the sum of these two temperatures vanishing at the wall.

It remains to find the relationship between temperature and axial velocity; to
achieve this, both the state equation (5.125) and mass conservation (1.108) are
used, assuming again that the term of axial velocity variation is predominant in
the divergence

�
@Vx

@x
D �j!�0; (5.129)

and in the state equation (5.125). Finally:

@Vx

@x
D � j!

�c2
P

�
1C .� � 1/ J0.ktr/

J0.ktR/

�
:

It remains to calculate the average of Vx on the section, or the flow U. We obtain the
equation giving an effective compressibility, noted �t.!/, completing Eq. (5.116):

dU

dx
D �j!S�tP where �t.!/ D �s

�
1C .� � 1/

2

krR

J1.ktR/

J0.ktR/

�
: (5.130)

5.4.4 Radiation Dissipation at the Open End of the Pipe

A detailed presentation of the radiation is proposed in the 4th part of this work.
However, an approximated formula of the radiation impedance ZR is needed from
now in order to determine the field in the pipe. The effect of a length correction to
the imaginary part of ZR has already been seen in Eq. (4.67). Dissipation adds a real
part to it. Restricting ourselves to the case of low frequencies (transverse dimension
very small compared to the wavelength, i.e., kR � 1), the radiation impedance is
written:
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ZR D Zc

�
jk�`C 1

4
.kR/2

�
, (5.131)

where R is the radius, and �` Š 0:6R. This formula is satisfactory as long as
kR < 1. Although smaller in relative value than the imaginary part, the real part
is qualitatively the most important, because it ensures the energy radiation all the
way to our ears.

5.5 Transmission Line Equations

5.5.1 General Equations and Solutions

The description of the cylindrical pipe has been previously obtained in the form:

dP

dx
D �ZvU and

dU

dx
D �YtP (5.132)

where

Zv D j!�

S

�
1 � 2

kvR

J1.kvR/

J0.kvR/

��1
; (5.133)

Yt D j!�sS

�
1C .� � 1/ 2

ktR

J1.ktR/

J0.ktR/

�
. (5.134)

Equations (5.132) are of the transmission line type, and are called telegraphist’s
equations. Zv and Yt are the impedance in series and the admittance in parallel, both
being expressed per unit length, corresponding to viscous and thermal conduction
effects, respectively (J0 and J1 are the Bessel functions). The terms “series” and
“parallel” are justified as follows: if one of these quantities does not vary, integrating
on x, the Ohm’s law is obtained (see Chap. 1, Sect. 1.5) as

either p1 � p2 D .x2 � x1/Zv u;

or u1 � u2 D .x2 � x1/Yt p : (5.135)

By analogy between electric voltage and current, and acoustic pressure and flow
rate, the impedance Zv per unit length is said to be in series, and admittance Yt per
unit length in parallel. It is convenient to use two characteristic lengths, `v and `t,
in order to define the viscous and thermal diffusion wavenumbers kv and kt:

`v D �

�c
; `t D �

�cCp
; kv D

s
� j!

c`v
; kt D

s
� j!

c`t
: (5.136)
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In air, these lengths are very small,12 as `v is equal to 4 � 10�8 m, and their ratio,
called Prandtl number : `v=`t D Pr, is equal to 0:71.

For sinusoidal signals, assuming without proof, that the acoustic intensity in each
segment at every time is given by the product Spv, the average intensity over a period
is I D 1

2
<e.PU�/, and its derivative is

dI

dx
D �1

2
<e.Yt/ jPj2 � 1

2
<e.Zv/ jUj2 : (5.137)

Energy must be dissipated. Thus <e.Yt/ and <e.Zv/must be positive. Thus viscous
effects are important when flow rate is large, while thermal effects are important
when the pressure is large. Standard solutions of line equations are written as:

P D PCe�� x C P�e� x and U D Yc


PCe�� x � P�e� x

�
(5.138)

where � D p
ZvYt and Zc D 1=Yc D p

Zv=Yt: (5.139)

� is the propagation constant (� D jkc, where kc is the wavenumber) and Zc is the
characteristic impedance. Notice that when boundary layers are taken into account,
the characteristic impedance differs slightly from the lossless value, that we used in
Chap. 4 or in Eq. (5.131). Both are complex, and the chosen square root is such that
the real part is positive: for � , this is due to the fact that waves must be attenuated
when they propagate, and, for Zc, this is due to the fact that they must carry energy
in their propagation direction.13

Another expression of these solutions is obtained using transfer matrices [see
Eq. (4.28)]:�

P1
U1

�
D
�

cosh� .x2 � x1/ Zc sinh� .x2 � x1/
Yc sinh� .x2 � x1/ cosh� .x2 � x1/

��
P2
U2

�
: (5.140)

The projected impedance formula can be deduced immediately, and will not be
reproduced here [see Eq. ( 4.29)].14

12 The validity of these formulas is very broad: solving completely the Kirchhoff theory, the
following conditions are found: `v � R, and !`v=c � 1, which is not cause for concern
for audible frequencies and for musical instruments. Another condition enables to be sure that
attenuation effects in the volume are very weak: Œ!R=c	

p
!`v=c � 1, and which, again, does not

pose any problem [24, 40].
13In fact, the first expression of Zc, when � is chosen, is Zv=� and thus the choice of � implies
the choice of Zc.
14Notion of wall admittance: in 1948, another simplification of the Kirchhoff theory has been
proposed by Cremer [14]. He dealt with the reflection of a wave incoming to a wall with an
incidence angle � with respect to the normal. He has shown that the boundary layer effect can
be replaced by an equivalent admittance:
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5.5.2 Numerical Values of Main Constants in Air

The numerical values of the main constants useful to calculate propagation in a
pipe filled with air are given, with indication of the uncertainty. t is the temperature
in Celsius degrees, and T the absolute temperature. Thus for t0 D 0 ıC : T0 D
273:16 ıK. It should be noticed that the three last quantities do not vary substantially
with temperature (see for instance [9]). Finally, air humidity plays a role that has
received little attention so far [12].

Sound velocity: c D 331:45
p

T=T0 ms�1 ( ˙ 0:015%)

Density: � D 1:2929 T0=T kg m �3 ( ˙ 0:01%)

Viscosity: � D 1:708 � 10�5.1 C 0:0029t/ kg m�1 s�1 ( ˙ 2%)

Thermal conductivity: � D 5:77 � 10�3.1 C 0:0033t/ Cal/(m s ıC) ( ˙ 2%)

Specific heat with constant pressure: Cp D 240 Cal/(kg ıC) ( ˙ 0:1%)

Ratio of specific heats: � D Cp=Cv D 1:402 ( ˙ 0:1%)

Prandtl number: Pr D `v=`t D .rt=rv/2 D 0:71: (5.142)

5.5.3 “Wide” Pipes

5.5.3.1 Expression of Parameters

The expression of the parameters Zv and Yt involves the Stokes number rv D jkvRj,
which is the ratio of the radius to the boundary layer thickness. When pipes are

Yp D �v?

p
D 1

�c

r
j!

c

h
sin2 �

p
`v Cp

`t

i
: (5.141)

This quantity is the specific admittance; v? is the velocity projected on the outgoing normal of
the wall. The thermal effects do not depend on incidence, in contrast to viscous effects: for a wave
coming perpendicularly to the wall, there can be no shear effects. A new problem can be solved
for a large pipe considering a propagation without losses with wall admittance, and the former
results would be obtained again. To this end, as plane waves in a pipe propagate parallel to the
wall, � D �=2 must be chosen. Conversely this formula is also useful at the end of a stopped
pipe (i.e., an organ pipe closed at its passive end), with this time � D 0, and Yp will be used as
a termination admittance. In fact it can be shown that the total dissipation is linked to the total
surface, and the terminal surface of a stopped pipe is clearly smaller than the surface of the side
walls, which legitimates to ignore this effect, considering further that only thermal effects occur
then.

It can be finally added that this notion can be generalized to a porous wall. The Cremer
theory assumes that the wall is perfectly smooth, but experimental results show that this is very
satisfactory.
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wide, i.e., when the Stokes number is large (typically larger than 10), the asymptotic
expansion of the Kelvin functions is made. The second-order approximation is
largely sufficient for musical instruments, and even the first order is often useful
(see [22] for more general formulas). The following expressions are obtained:

Zv D j!�

S

�
1C 2

p�j

rv
� 3j

r2v

�
and Yt D j!�sS

�
1C .� � 1/

�
2
p�j

rt
C j

r2t

��
(5.143)

with
p�j D 1 � jp

2
I rv D jkvRj D R

r
!

c`v
I rt D R

r
!

c`t
D �rv where � D

p
Pr:

Thus, expanding again to the second-order, the propagation constant is

� D j
!

c

�
1C ˛1

p�2j

rv
� j
˛2

r2v

�
; (5.144)

with: ˛1D 1p
2

�
1C � � 1

�

�
D1:044 and ˛2D1C � � 1

�
�� � 1

2�2
� .� � 1/2

2�2
D1:080:

For numerical values, the properties for air have been used, i.e., � D 0:843 and
� D 1:402; which vary very little with temperature. Exhibiting the damping ˛ and
the phase velocity v' , it is obtained

� D ˛ C j!

v'
where ˛ D !

c

�
˛1

rv
C ˛2

r2v

�
and

!

v'
D !

c

�
1C ˛1

rv

�
: (5.145)

Finally:

Zc D �c

S

�
1C ˛1.1 � j/

rv
� ˛2j

r2v

�
(5.146)

where

˛1 D 1p
2

�
1 � � � 1

�

�
D 0:370 I ˛2 D 1� � � 1

�
C � � 1

2�2
C 3.� � 1/2

2�2
D 1:147:

Some comments on the values obtained are useful:

• The damping ˛ increases with the square root of frequency, and with the inverse
of the radius; visco-thermal losses are generally much higher than radiation
“losses,” except at high frequencies. The wind instrument efficiency is therefore
quite low. This enables, as a first approximation, to study their functioning
independently of their radiation, as the sound production mainly depends on low
frequencies (see Chaps. 9 and 10).

• The phase velocity v' slightly decreases from the isentropic value c when
frequency decreases, and all the more that radius is small. For a low note of
a narrow instrument, such as the bassoon (a conical instrument), the variation
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of low resonance frequencies can reach 4 %, which is nearly to a semitone.
This variation of sound speed with frequency yields inharmonicity and has some
significant consequences on the functioning, as it will be seen in the third part.

• For the characteristic impedance Zc, as viscous and thermal effects are subtracted
from each other, the first-order coefficient is weak; this is a first reason for which
the characteristic impedance is often assumed to keep the isentropic value. A
second reason is that, at resonances, there is equipartition of total energy in the
pipe, i.e., equality between kinetic and potential energies (see [26]).

A simple approximated formula for a pipe is often needed; it is thus chosen:

� D j
!

c
C .1C j/3 � 10�5

p
f

R
; Zc D �c

S
; (5.147)

where f and R are frequency and pipe radius expressed in MKS units. In the present
work, the dispersion effect will often be ignored, replacing factor .1 C j/ by 1 in
Eq. (5.147).

5.5.3.2 Propagation of an Impulse

The propagation constant � (or the complex wavenumber) depends on frequency.
Thus a monochromatic wave is attenuated and distorted because of dispersion. Let
us consider the case of an impulse. Using the result (5.144), the inverse transform
of the following quantity can be calculated

exp.�� x/ D exp

�
�
�

j
!

c
C B

p
j! C ˛2

`v

R2

�
x

�
where B D ˛1

1

R

r
2`v

c
:

The first term in the exponential corresponds to propagation, the second to a pure
diffusion (wave in

p
j!), the third to a simple attenuation independent of frequency.

In the time domain, the first is a delay of x=c; the second is the impulse response of
the diffusion equation (such as the heat equation), which is known analytically. The
inverse Fourier transform can thus be calculated and it gives [32, 38]:

TF�1 Œexp.�� x/	 D H.t � x=c/
D

�1=2

exp

�D2=.t � x=c/

�
.t � x=c/3=2

exp

�
�˛2 x`v

R2

�
:

(5.148)

D D Bx=2 has the same dimension as
p

t. This function replaces the simple delay
ı.t � x=c/ when there is no dissipation. For a fixed x, the maximum is 0:2313=D2

and is obtained for t D x=c C 2D2=3: It takes place thus just after the signal arrival
at t D x=c, and is large. The longer the traveled distance, the more attenuated
the wave, the rise being decreasingly steep [29]. Figure 5.13 shows the reflection
function at the input of an open cylindrical pipe. If we assume that radiation does
not occur because the pipe is quite narrow, the reflection function is nothing else
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Fig. 5.13 Reflection function for a long open cylindrical pipe of radius 4 mm and length 15 m
[Eq. (5.148), first-order calculation (˛2 D 0)]. The second-order calculation would multiply the
curve by a factor 0:93: The slow decrease after the maximum can be observed

that this transfer function for x D 2`, with a negative sign for the reflection at
the output. Two facts are essential: no signal is arriving quicker that the sound
(the arrival time is thus exactly 2`=c/, and the rate of decrease is very slow. We
notice that the dimensionless parameter is ``v=R2, where ` is the traveled distance,
corresponds to the inverse of the Stokes number jkvRj, in which the wavelength has
been replaced by the propagation distance. It can also be seen in Fig. 4.2 how the
different reflections are added for the response in pressure to a flow rate impulse.

5.5.3.3 Input Impedance of a Cylinder

In the previous chapter, it was seen that the input impedance characterizes the wind
instrument response. The calculation can now be made precisely for a cylinder:

Ze D Zc tanhŒ� `C arg tanh.ZR=Zc/	 . (5.149)

If Formula (5.131) is used, to the second-order in kR, arg tanh.ZR=Zc/ can be
replaced by ZR=Zc; and this gives

Ze ' Zc tanh .� `C ZR=Zc/ D Zc tanh

�
j
!

v'
L C ˛`C 1

4
.kR/2

�
. (5.150)

where L D ` C �` (the sound speed on the length �` is considered to be v' ,
instead of c, which is a small approximation). If the quantity tanh



˛`C 1

4
.kR/2

�
,
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which is smaller than unity, and the phase velocity are assumed to slowly vary
with frequency, the maxima can be shown to be obtained for an infinite value of
tan


!L=v'

�
, and the minima for zero tan



!L=v'

�
. The extrema of the modulus are

therefore obtained for

fn D .2n � 1/v'=4L and fn D nv'=2L; (5.151)

respectively (v' is calculated for the value of frequency without dispersion), and are

jZejmax ' Zc= tanh


˛`C 1

4
.kR/2

�
and jZejmin ' Zc tanh



˛`C 1

4
.kR/2

�
:

(5.152)

Nothing forbids the numerical calculation of the exact formula, but these
approximations are convenient. For the extrema, the impedance is real, as for a one-
degree-of-freedom oscillator. The term ˛` C 1

4
.kR/2 corresponds to dissipation, as

previously shown. When dissipation is large, extrema tend towards the characteristic
impedance. At low frequencies, maxima decrease as the square root of frequency,
while minima increase as the square root of frequency. These calculations can
be shown to be valid to the first-order of the Stokes number. The second-order
calculation can be found in [23], but the differences with the previous result are
quite small for wind instruments.

The property that the first peaks are proportional to !� 1
2 is important. If rules

for pipe ranks are desired (for an organ or a panpipe for instance), the first idea that
comes to mind to keep a similar behavior is to maintain the same dimensionless
parameter ˛.fn/`, i.e., the inverse of the Stokes number written as

p
``v=R. In other

words, if the pipe length is multiplied by 2, its radius is multiplied by
p
2. This

rule was used by the Chinese in very ancient times. In practice, this question is
very complex, and organ makers have quite different rules. To go further, radiation
[18] and excitation parameters must be taken into account. Nevertheless, a first very
simple approach of the problem is obtained here.

Figure 5.14 shows an input impedance curve, in modulus, calculated at the first-
order of the Stokes number. This is the same curve as the one given in Fig. 4.5, but
in a log-log scale. The logarithmic scale exhibits in ordinate the symmetry between
peaks and dips, and in abscissa the relative width of the peaks, which decreases
with frequency. As a consequence, the quality factor increases with frequency. Its
calculation is done in Sect. 5.6.

Approximated Calculation of the Radiated Power: Boundary Conditions
Corresponding to a Weak Coupling

In Chap. 4, the successive or closed-form reflection formulas were found
to be valid for arbitrary boundary conditions, which can be absorbing, and

(continued)
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Fig. 5.14 Input impedance modulus of a cylinder terminating in a zero impedance, in a log-log
scale. It is the same curve as in Fig. 4.5. For higher notes, peaks are lower, but sharper (their relative
width decreases, in other words their quality factor increases)

therefore can be in particular a radiation impedance condition. The next
section will focus on the difficult question of modal expansion.

At low frequencies, the real part of the radiation impedance and therefore
the radiated power are very weak. In other words, the coupling between pipe
and surrounding space is very weak. This is why calculating the radiated field
by perturbation is legitimate, beginning by ignoring it, then deducing it from
the obtained flow rate.

We consider a termination corresponding to an impedance Z`, which is
small or at least has a small real part. The condition is sought for which the
output flow rate U` can be calculated as if the impedance was zero (implying
P` D 0), then the approximated value P` D Z`U` can be deduced. For
stringed instruments, this will also be the case for a small bridge admittance,
when the coupling between a string and the soundbox is weak. This kind of
reasoning can be iterated, enabling convergence to the exact result. For the
particular case of a homogeneous one-dimensional medium, the limits of this
method can be exactly determined. If a source Us is given, it is known that it
can be expressed as a function of two constants.15 It can be written as:

Us D YtP` C FtU` (5.153)

where Yt and Ft are two coefficients depending on frequency. In the case
where the source is at the input, they are easily deduced from the transfer

(continued)
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matrices (4.28) or (5.140). In the most general case, Eqs. (4.42) and (4.58)
can be used, and a zero output impedance is obtained (it is recalled that �0
corresponds to the input boundary condition):

Yt D �j
1

Zc

cos.k`C �0/

sin.kxs C �0/
; Ft D sin.k`C �0/

sin.kxs C �0/
: (5.154)

The iterative calculation is done by writing successively:

P.0/` D 0 ; U.0/

` D Us=FtI (5.155)

P.1/` D Z`U
.0/

` ; U.1/

` D
h
Us � YtP

.1/

`

i
=Ft ; etc. (5.156)

This calculation is equivalent to expanding the exact result in series:

U` D Us

Ft.1C Z`YtF�1
t /

; (5.157)

the validity condition being Z`YtF�1 < 1. In fact, when there is no
dissipation, the resonance frequencies are indeed given by Eq. (5.157), when
the denominator vanishes. Consequently, in this case this method has no
practical interest, because then Z`YtF�1

t D �1 ! On the contrary, if there
is some dissipation, the situation can be quite different. Losses are considered
during propagation and at both ends, which means that the wavenumber and
coefficients �0 and �` are complex. As the considered domain is the Fourier
one, there is no limit to this reasoning, as all coefficients can depend on
frequency without additional complexity.

Let us consider the case where the impedance Z` is real, thus �` D
�j'`, where '` is real (and positive, if the output impedance is passive).
jZ`j <

ˇ̌
Y�1

t Ft

ˇ̌
is wanted, i.e., tanh'` < jtan.k`C �0/j. Expanding complex

quantities into real and imaginary parts, it can be written as: k` C �0 D
k` � ja` C �0

0 � j�00
0 , and if .˛` C �00

0 / is small (weak losses) and does not
vary too much with frequency, quantity jtan.k`C �0/j is a classical resonance
term, which minimum is about ˛`C�00

0 . As a result this perturbation reasoning
has a meaning provided that '` < ˛` C �00

0 , which simply means that output
losses in ` are smaller than other losses. In order to stop the perturbation at
the first-order, these losses in ` must be much smaller than other losses. This
is the case for a cylindrical pipe, except at very high frequencies: radiation
losses at an open end are smaller than losses during propagation.

As a conclusion, in this case, it is valid to calculate the transfer function
U`=Us ignoring losses at the pipe output (or at the string end), then deducing
losses using the calculation of the power 1

2
<e.Z`/ jU`j2. This is quite general

(continued)
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because often the power radiated by an instrument is very small, although it
is essential! The previous analysis could be generalized when the impedance
Z` also has an imaginary part. This means that the real part can be ignored to
calculate the transfer function, but obviously the imaginary part cannot. The
difficulty would be the same as the previous one, i.e., the shift of resonance
frequencies, resulting in a great change of the results around the resonances.
The case of a strong coupling will be studied in Chap. 6.

15As a matter of fact Eq. (4.34) is a second-order equation; taking into account dissipation
does not change the formulas of the frequency domain of Chap. 4, except for the complex
character of the wavenumber.

5.5.4 “Narrow” Pipes

We will not fully develop the case of narrow pipes, i.e., of capillary pipes at very low
frequencies. However, the main results will be given, corresponding to the results
of Eq. (5.143) and following. They are obtained by doing the series expansion with
respect to the Stokes number of Eqs. (5.133) and (5.134) that are valid for jkvRj < 1.
At the fourth order this gives

Zv D �c

S

8`v

R2

�
1C 1

6
jr2v

�
D �c

S

�
8`v

R2
C j

4

3

!

c

�
and (5.158)

Yt D j!�
S

�c2

�
1 � � � 1

8�
jr2t

�
D j!�tS

�
1 � � � 1

8�
jR2

!

c`t

�
: (5.159)

It is noticed that there is no thermal dissipation here as Yt is purely imaginary.
At lower frequencies, the motion is isothermal. Conversely viscous dissipation is
significant, because it is proportional to the real part of Zv , inversely proportional
to the fourth power of the radius. It can be shown that frequency variations of
reactive terms are very weak throughout the audible frequency range (the acoustic
mass decreases monotonously from a coefficient 4=3 at low frequencies to 1 at
higher frequencies, and the compliance from � D 1:4 to 1). The calculation of
the propagation constant � shows that a diffusion wave occurs, as it is proportional
to

p
j! . In the time domain, this leads to a shape of the kind (5.148), but without

delay of the signal arrival. An impulsive diffusion wave is immediately spread out
in the entire space. In fact taking the higher order terms into account includes the
delay, no signal propagating with a speed faster than sound speed [29].

The main conclusion is that a small open pipe behaves as a resistance equal to
8``v�c=�R4, if its length ` is small enough with respect to the diffusion wavelength
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(j� `j � 1, see Chap. 1, Sect. 1.5 for the behavior of lumped elements systems). For
other slit shapes, the coefficients are different, but the behavior is the same: pressure
and velocity fields obey the Poiseuille law (5.115).

When the frequency increases, it is possible to find a continued fraction
expansion for the equations of Zwikker and Kosten (5.132) [4, 25, 42]. This can
avoid the use of the asymptotic expansion at high frequencies, which involves terms
with square roots of frequency.

5.6 Modes of a (Reed) Cylindrical Instrument

5.6.1 Presentation

The modal expansion is now given for the input impedance of a pipe with visco-
thermal effects and radiating into infinite space. The Green’s function is calculated
considering a flow rate source for reed instruments. The different case of instruments
with a flute mouthpiece will be addressed in Chap. 7. There it will be seen that
radiation by the mouth, with a section smaller than that of the pipe, complicates the
problem.

We start again in the frequency domain: damping during propagation depends
on frequency, which is not really a cause for concern, as seen in Sect. 5.2.2.1.
Conversely the fact that radiation impedance does depend on frequency is a
difficulty: exact solutions have been found if this impedance is equivalent to a mass
termination [see Eq. (4.73)], or to a resistive one (see Sect. 5.2.2.3). But the radiation
resistance is proportional to the square of frequency.

The advantage of modal expansion for self-oscillating instruments is to largely
simplify the oscillation analysis (see third Part). As mostly low frequencies are
involved in self-oscillation production, some low-frequency approximations can
be made, especially for the radiation impedance. In fact, even this basic problem
requires a numerical approach or tedious analytical calculation. In the following,
the essential phenomena will be highlighted using a method that could be easily
generalized in the case of non-cylindrical instruments.

To simplify the calculation, we study first the approximation for which radiated
power is ignored (and thus also the real part of ZR), and where the pipe length
` includes the length correction �`: that is, L D ` C �`. This simplifies the
understanding of the boundary layer effects: the dependency on frequency is a
problem that is significantly simplified by the nature of the boundary conditions
considered. The method used is that of Sect. 5.2.2.1. Then the result taking the
radiated power into account is given.
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5.6.2 Modes Orthogonality Method (Without Radiation)

For reed instruments, a flow rate source is considered. For any position xs we can
write (see Chap. 4, Sect. 4.6.1):

Us D UC
s � U�

s D � 1

Zv

"�
dP

dx

�C
�
�

dP

dx

�_
#
:

For the propagation, � D jkc.!/ is given by (5.144); for the sake of simplicity,
visco-thermal effects will be limited to the first-order:

kc.!/ D !

c

�
1C ˛1.1 � j/

rv

�
: (5.160)

Remembering that rv depends on frequency, the equation to be solved and the
boundary conditions are written as:�

d2

dx2
C k2c

�
P D �ZvUsı.x � xs/, (5.161)

dP

dx
D 0 for x D 0 ; P D 0 for x D L: (5.162)

The input condition is necessary to calculate the input impedance as the limit
when the source tends towards the input (see Chap. 4, Sect. 4.6.3). The modes on
which the solution is projected are solutions of:�

d2

dx2
C k2n

�
˚n D 0

and of the boundary conditions (therefore modes do not depend on damping during
propagation). Thus:

˚n.x/ D cos knx ; (5.163)

cot kn` D 0, hence kn` D .2n � 1/
�

2
; (5.164)Z `

0

˚n.x/˚m.x/dx D `

2
ımn. (5.165)

Using this relation as in Sect. 4.6.2.1, we obtain a formula that generalizes Eq. (4.72)
of Chap. 4:

P D 2

`
ZvUs

X
n>0

cos knx cos knxs

k2n � k2c.!/
where (5.166)
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k2n � k2c.!/ D k2n � !2

c2

�
1C ˛1.1� j/

rv

�2
: (5.167)

This expression is not exactly a modal decomposition, because of the variation
of rv with frequency. We will show later how to obtain this decomposition. For
now, knowing that visco-thermal effects vary slowly with frequency, rv can just be
calculated for frequency!n in each term of the series, and the boundary layer effects
in Zv can be ignored: Zv D j!�=S: Then to first order in rv :

k2n � k2c.!/ ' k2n � !2

c2

�
1C 2

˛1.1 � j/

rv.!n/

�
' k2n � !2

v2'n

�
1 � 2j

˛1

rv.!n/

�

with
1

v'n
D 1

c

�
1C ˛1

rv.!n/

�
:

The expression of phase velocity v' is indeed the same as the one given by (5.145).
It remains to approximate each term as a one-degree-of-freedom oscillator:

P D 2c

`
Zcj!Us

c

v2'n

X
n>0

v2'n

c2
cos knx cos knxs

!2n C j!!nQ�1
n � !2 where (5.168)

!n D knc

�
1 � ˛1

rv.!n/

�
and

1

Qn
D 2

˛1

rv.!n/
' 2

˛1

R

s
`v

kn
: (5.169)

Expressions (5.166) and (5.168) give similar numerical results, except for frequen-
cies lower than the first resonance. In Fig. 4.5, the latter is compared with the
compact formula. The truncation at 10 modes highlights the effect of higher order
modes even at low frequencies. The value of peak maxima is

ZM;n ' Zc
2c

`

Qn

!n
: (5.170)

The quality factor is proportional to the square root of frequency, in contrast to the
impedance peaks, which are inversely proportional to it. Finally the quality factor is
proportional to the radius R, and impedance peaks are inversely proportional to R16

(because of the characteristic impedance factor). Some practical consequences have
been discussed in Sect. 5.5.3.3 (see in particular Fig. 5.14).

16A wide pipe has impedance peaks lower than a narrow one: this explains why the vocal tract has
not much influence on the playing of reed instruments, at least for low notes.
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5.6.3 Residue Calculus (Taking Radiation into Account)

Still in the frequency domain, the closed form (4.47) is used to deal exactly with the
problem including radiation. The boundary conditions are written as �0 D �=2 and

j�` D arg tanh.zR/ D h.s/ (5.171)

where s D j! and zR D ZR=Zc D s
�`

c
� 1

4

�
sR

c

�2
: (5.172)

P.x/ is the solution of (5.161). After some calculations, it gives, for x > xs :

P D Us
Zv
�

sinh Œ� .` � x/C h.s/	 cosh� xs

cosh Œ� `C h.s/	
, (5.173)

where � .s/ is given by (5.160). As � and h vanish at s D 0, there is no constant (or
“rigid”) mode. Poles sn, and thus the eigenfrequencies are a priori complex and are
given by:

cosh Œ� .sn/`C h.sn/	 D 0, i.e., � .sn/`C h.sn/ D j�n where �n D .2n � 1/
�

2
.

(5.174)

Near the poles, the denominator is written as:

D D .s � sn/


� 0.sn/`C h0.sn/

�
sinh Œ� .sn/`C h.sn/	 ;

where the symbol 0 represents the derivative with respect to the variable s.
Considering expressions of � and h, the poles sn occur as complex conjugate pairs.

The application of the residue theorem and some further calculations give the
expansion of P.!/ as a sum of terms:

Pn D Us
Zv.sn/

� .sn/

cosh Œ� .sn/x	 cosh Œ� .sn/xs	

.s � sn/ Œ� 0.sn/`C h0.sn/	
, where h0.sn/ D z0

R

1 � z2R
: (5.175)

It should be noted that Zv=� D Zc: Considering (5.174), the eigenmode shapes
are complex, and the dependency on s is the one of a generalized Lorentzian
corresponding to complex modes. This was previously seen for a resistive end (for
that case h.s/ was a real constant). The question of the orthogonality of the modes
will not be discussed here.

The relation with the particular case zR D 0, treated in the former section, is
sought now. If the terms corresponding to sn and s�

n are added, an equation similar
to Eq. (5.166) is found; in fact the two equations differ because of the frequency
variation of � . However, the modes are the same. There can thus be several kinds of
expansion in the frequency domain on the same modes. It can be shown that (5.166)
corresponds to the following formula, when h.s/ D 0:
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Pn D Us
Zv.s/

� .sn/

cosh Œ� .sn/x	 cosh Œ� .sn/xs	

Œ� `C h	 .s/� j�n
. (5.176)

Expressions (5.175) and (5.176) are different, but because each term has the same
residue, the inverse Fourier transform is identical. In fact the residues are unchanged
if Zv.sn/ is changed in Zv.s/; as for the denominators, they are, thanks to (5.174),
equivalent to first-order in .s�sn/. Obviously the time expression must be calculated
directly with (5.175)! The fact that they are exact should be highlighted,17 and this
is true whatever are the frequency dependencies of Zv , � , and h.

Approximated Expression of the Modal Expansion
In order to have an approximated formula in an analytical form, Eq. (5.176) is
calculated ignoring losses (in boundary layers and by radiation), except in the
resonance term. For the effects of boundary layers to first-order, Eq. (5.144)
is used; in addition the imaginary part of the radiation impedance is supposed
to be much larger than its real part. Given

C.s/ D � .s/`C h.s/ D C0.s/C C1.s/, (5.177)

with � .s/ D s

c
C ı

p
s where ı D ˛1

R

r
2`v

c
:

where C0.s/ is the term without losses and C1.s/ the term with losses that are
assumed to be small. These terms are

C0.s/ D s`

c
C ı`j=m.

p
s/C arg tanh

s�`

c
;

C1.s/ ' ı`.<e
p

s/� 1

4

�
sR

c

�2 "
1 �

�
s�`

c

�2#�1
:

Without losses, [if Eq. (5.145) is used] the eigenfrequencies, denoted !n0 D
�jsn0 verify

C0.sn0/ D sn0`

v'
C arg tanh

sn0�`

c
D j�n

hence
!n0�`

c
D tan

�
�n � !n0

v'
`

�
D cot

!n0

v'
`. (5.178)

(continued)

17This question can be quite complicated when visco-thermal effects occur: Equation sn C"
p

sn D
j�=2 can have two solutions in

p
sn; but one of them can be ignored, when the problem is stated

completely [33]. Thus we know that only the solution near the case " D 0 is interesting.
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This equation, whose solutions !n0 are real, is similar to the one written in
Sect. 4.6.4 of Chap. 4, when v' D c. Now C.s/ D j�n D C0.sn0/ will be
solved assuming sn � sn0 to be small. It gives

C.s/ D C0.sn0/C .sn � sn0/C
0
0.sn0/C C1.sn0/, hence

sn � sn0 D �C where C D C1.sn0/

C0
0.sn0/

. (5.179)

If the variation with frequency of the phase velocity v' is ignored, the quantity
C0
0.sn0/ which appears in the denominator of (5.175) is written:

C0
0.sn0/ D `

v'.!n0/
C �`

c

�
1C !2n0�`

2

c2

��1
:

With the assumptions made, and assuming the characteristic impedance
independent of the boundary layer effects, thanks to (5.175), the sum of terms
in sn and s�

n can be calculated:

P D UsZc

X
n>0

cosh Œ� .sn0/x	 cosh Œ� .sn0/xs	

C0
0..sn0/

�
1

s � sn
C 1

s � s�
n

�
, (5.180)

where cosh Œ� .sn0/x	 D cos!n0x=v' . Denoting C D 1
2
!n0Q�1

n and neglecting
the second-order terms in Q�1

n , the term in brackets can be written as:

2
s C C

s2 C 2sC � s2n0
D 2

j! C 1
2
!n0Q�1

n

!2n0 C j!!n0Q�1
n � !2

: (5.181)

This expression has the form of a generalized Lorentzian of complex modes:
the denominator is the one of a usual Lorentzian, however, the numerator
differs by the constant term. To second-order in Q�1

n , the resonance frequency

is given by !n0

h
1C 1

8Q2n

i
, and the value of the maximum of the bracket

modulus is then 2Qn=!n0: It remains to express the quality factor:

1

Qn
D 2C1.sn0/

!n0C0
0.sn0/

D
2˛1`

R

q
!n0`v

c C 1
2

�
!n0R

c

	2 h
1C !2n0�`

2

c2

i�1

!n0

�
`

v' .!n0/
C �`

c

h
1C !2n0�`

2

c2

i�1�
:

(5.182)

(continued)
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The inverse of the quality factor is proportional to the sum of terms of visco-
thermal and radiation losses. They could be compared to the terms obtained
by the closed-form formula of the projected impedance (Sect. 5.5.3.3).
Simplification of the Approximated Expression

Formulas (5.178) to (5.182) are valid for large quality factors. This
supposes among other things that radiation remains weak (knR � 1/. If
needed, it is better to numerically calculate Expression (5.175). However, the
formulae can be substantially simplified by assuming that the radius is small
with respect to wavelength (!2n0�`

2=c2 � 1), and, ignoring the dispersion
(v' D c). Then this gives, if L D `C�`, kn D �n=L:

P D 2

L
j!
�c2

S
Us

X
n>0

cos knx cos knxs
j! C 1

2
!n0Q�1

n

!2n0 C j!!n0Q�1
n � !2 where

!n0 D ckn ;
1

Qn
D 2˛1

R

r
`

L

s
`v`

�n
C 1

2

.knR/2

�n
: (5.183)

where �n D .2n � 1/�=2: In practice, the term in Q�1
n can be ignored in

the numerator. When radiation is negligible, this formula is very close to
Formula (5.168), which takes the dispersion into account. It can also be shown
that the three definitions of the quality factor approximately coincide for a
cylindrical pipe, as for a one-degree-of-freedom oscillator (see Chap. 2).

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, with Formulas, Graphs,
and Mathematical Tables. Dover, New York (1972)

2. Backus, J.: Acoustic impedance of an annular capillary. J. Acoust. Soc. Am. 58(5), 1078–1081
(1975)

3. Balmès, E.: Methods for vibration design and validation. Course notes, Ecole Centrale Paris
(2006)

4. Bilbao, S., Harrison, R., Kergomard, J., Lombard, B., Vergez, C.: Passive models of viscother-
mal wave propagation in acoustic tubes. J. Acoust. Soc. Am. 138, 555–558 (2015)

5. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27(3), 240–253
(1956)

6. Bruneau, M.: Fundamentals of Acoustics. Wiley-ISTE, London (2006)
7. Bruneau, M., Herzog, P., Kergomard, J., Polack, J.: General formulation of the dispersion

equation in bounded viscothermal fluid, and application to some simple geometries. Wave
Motion 11, 441–451 (1989)

8. Castellengo, M., Musical listening and acoustics (in French). Eyrolles, Paris (2015)



256 A. Chaigne and J. Kergomard

9. Caussé, R., Kergomard, J., Lurton, X.: Input impedance of brass musical instruments -
comparison between experiment and numerical models. J. Acoust. Soc. Am. 75(1), 241–254
(1984)

10. Chaigne, A., Lambourg, C.: Time-domain simulation of damped impacted plates. I. Theory
and experiments. J. Acoust. Soc. Am. 109(4), 1422–1432 (2001)

11. Christensen, R.M.: Theory of Viscoelasticity, 2nd edn. Dover, New York (2003)
12. Coltman, J.: Acoustical losses in wet instrument bores (l). J. Acoust. Soc. Am. 114, 1221

(2003)
13. Crandall, S.H.: The role of damping in vibration theory. J. Sound Vib. 11(1), 3–18 (1970)
14. Cremer, L.: On the acoustic boundary layer outside a rigid wall. Arch. Elektr. Uebertr. 2, 235

(1948)
15. Cremer, L., Heckl, M.: Structure-Borne Sound, 2nd edn. Springer, Berlin (1988)
16. Davis, J.L.: Mathematics of Wave Propagation. Princeton University Press, Princeton (2000)
17. Ewins, D.J.: Modal Testing, Theory, Practice and Applications, 2nd edn. Research Studies

Press Ltd, Baldock (2000)
18. Fletcher, N.: Scaling rules for organ pipes ranks. Acustica 37, 131–138 (1977)
19. Géradin, M., Rixen, D.: Mechanical Vibrations: Theory and Application to Structural Dynam-

ics. Wiley, Chichester (1999)
20. Hélie, T., Matignon, D.: Diffusive representations for the analysis and simulation of flared

acoustic pipes with visco-thermal losses. Math. Models Methods in Appl. Sci. 16(4), 503–536
(2006)

21. Hélie, T., Matignon, D.: Representations with poles and cuts for the time-domain simulation
of fractional systems and irrational transfer functions. Signal Process. 86, 2516–2528 (2006)

22. Keefe, D.H.: Acoustical wave propagation in cylindrical ducts: transmission line parameter
approximations for isothermal and non-isothermal boundary conditions. J. Acoust. Soc. Am.
75(1), 58–62 (1984)

23. Kergomard, J.: Quasi-standing waves in horns with wall visco-thermal losses: calculation of
the impedance (in French). Acustica 48(1), 31–43 (1981)

24. Kergomard, J.: Comments on wall effects on sound propagation in tubes. J. Acoust. Soc. Am.
98, 149–155 (1985)

25. Kergomard, J.: General equivalent circuits for acoustics horns. J. Audio Eng. Soc. 36, 948–955
(1988)

26. Kergomard, J.: Elementary considerations on reed-instrument oscillations. In: Weinreich,
A.H.J.K.G. (ed.) Mechanics of Musical Instruments. CISM Courses and Lectures, vol. 335,
pp. 229–290. Springer, Wien (1995)

27. Kergomard, J., Caussé, R.: Measurement of acoustic impedance using a capillary: an attempt
to achieve optimization. J. Acoust. Soc. Am. 79(4), 1129–1140 (1986)

28. Kergomard, J., Debut, V., Matignon, D.: Resonance modes in a one-dimensional medium
with two purely absorbing boundaries: calculation methods, orthogonality and completeness.
J. Acoust. Soc. Am. 119(3), 1356–1367 (2006)

29. Kergomard, J., Polack, J., Gilbert, J.: Propagation velocity of a plane impulse wave in a sound
pipe (in French). J. Acoust. 4, 467–483 (1991)

30. Kirchhoff, G.: Ueber die Einfluss der Warmeleitung in einem Gase auf die Schallbewegung.
Annalen der Physik Leipzig 134, 177–193 (English translation 1974. In: Lindsay, R.B. (ed.)
Physical Acoustics. Dowden, Hutchinson and Ross, Stroudsburg) (1868)

31. Krenk, S.: Complex modes and frequencies in damped structural vibrations. J. Sound Vib. 270,
981–996 (2004)

32. Martinez, J., Agulló, J., Cardona, S.: Conical bores. Part II: multiconvolution. J. Acoust. Soc.
Am. 84(5), 1620–1627 (1988)

33. Matignon, D., D’Andréa-Novel, B.: Spectral and time-domain consequences of an integro-
differential perturbation of the wave PDE. In: Third International Conference on Mathematical
and Numerical Aspects of Wave Propagation Phenomena, Mandelieu, France, pp. 769–771.
INRIA, SIAM (1995)



5 Dissipation and Damping 257

34. Matignon, D., Montseny, G. (eds.): Fractional Differential Systems: Models, Methods and
Applications (in French). European Series on Applied and Industrial Mathematics, vol. 5.
ESAIM, Paris (1998)

35. Meirovitch, L.: Computational Methods in Structural Dynamics. Sijthoff and Noordhoff,
Alphen aan den Rijn, The Netherlands (1980)

36. Pierce, A.D.: Acoustics: An Introduction to its Physical Principles and Applications. Acousti-
cal Society of America, Melville (1989)

37. Polack, J.: Time domain solution of Kirchoff’s equation for sound propagation in viscothermal
gases: a diffusion process. J. d’Acoust. 4, 46–67 (1991)

38. Polack, J.D., Meynial, X., Kergomard, J., Cosnard, C., Bruneau, M.: Reflection function of a
plane sound wave in a cylindrical tube. Rev. Phys. Appl. 22(5), 331–337 (1987)

39. Salençon, J.: Handbook of Continuum Mechanics: General Concepts, Thermoelasticity.
Springer, Berlin (2001)

40. Scheichl, S.: On the calculation of the transmission line parameters for long tubes using the
method of multiple scales. J. Acoust. Soc. Am. 115(2), 534–555 (2004)

41. Stokes, G.G.: On the effect of internal friction of fluids on the motion of pendulums. Trans.
Camb. Philos. Soc. 9, 8 (1851)

42. Thompson, S., Gabrielson, T., Warren, D.: Analog model for thermoviscous propagation in a
cylindrical tube. J. Acoust. Soc. Am. 135, 585–590 (2014)

43. Valette, C., Cuesta, C.: Mechanics of the Vibrating String (in French). Hermès, Paris (1993)
44. Zener, C.: Internal friction in solids - I. Theory of internal friction in reeds. Phys. Rev. 32,

230–235 (1937)
45. Zwikker, G., Kosten, C.: Sound absorbing materials. Elsevier, Amsterdam (1949)



Chapter 6
Coupled Systems

Antoine Chaigne and Jean Kergomard

Abstract As a natural continuation of the previous chapters, this chapter is devoted
to the description of some important coupling phenomena in musical acoustics. The
presentation starts with the basic coupling between a SDOF oscillator and a one-
dimensional pipe. This example illustrates the modifications of the eigenfrequencies
due to coupling, and allows fundamental concepts to be introduced such as added
mass and stiffness. It is then generalized to the coupling between soundboard and
cavity observed in stringed instruments. As a second example, the coupling of piano
strings at the bridge is examined extensively. It is shown, in particular, how the
tuning of the strings and the bridge admittance affect the temporal evolution of
piano tones. Another example of coupling between a damped string and a dissipative
soundboard yields useful light on the effects of “strong” and “weak” coupling
observed in violins and guitars, respectively. The chapter ends with a description of
the soundboard–bridge coupling in violins, and on its consequence on the observed
input admittance.

6.1 Introduction

String and percussive instruments can be viewed as the assembly of different
elementary structures. Some of these are designed to vibrate and, in turn, to radiate
acoustic energy into the surrounding air, while others are not. In the case of
timpani, for example, the objective is to control and enhance the vibrations of the
membrane while minimizing those of the bowl. In most cases, these instruments
show a closed, or semi-open, air cavity whose acoustic function is essential.
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For these instruments, a number of different couplings can be exhibited, with
variable proportions, depending on the instrument:

1. Multiple degrees of freedom structural coupling between two elements (e.g.,
string–soundboard coupling);

2. Coupling between a mechanical structure and an air cavity (e.g., timpani
drumhead–cavity, or soundboard–soundbox coupling in a violin);

3. Coupling between a structure and an infinite or semi-infinite space filled with
air: this is the case for almost all instruments, if room (bounded space) effects
are ignored;

4. Coupling between a vibrating structure and a passive resonator located in its
vicinity: case of keyboard percussive instruments (marimba, xylophone, and
vibraphone).

General structural–acoustic coupling with applications to musical instruments,
including the effect of passive resonators in the sound field, is presented in the fourth
part of this book. The acoustical coupling between resonators of simple form is
treated in Chap. 7. The present chapter is limited to the description of some selected
simple coupling situations between structural elements, with or without a closed
cavity, in order to emphasize their physical meaning. The consequences of these
couplings are of several kinds:

• The coupling between attached structures modifies the natural frequencies and
damping factors of the constitutive parts of the system.

• In the case of a vibrating structure coupled to a cavity, structural-acoustic modes
can be observed. In addition, for some frequencies, the cavity affects the structure
either as an added mass or as an added stiffness.

• When the cavity is open (which is generally the case of stringed instruments),
radiation through the holes can extend the frequency range in which radiation is
efficient.

• When a vibrating structure is surrounded by air, the reaction of the fluid changes
the structural modes: the in vacuo modes of the structure are coupled together.

• A concert hall also is an acoustic cavity whose modes are coupled to the
instrument.

• Finally, the sound field that reaches the ears of a listener can be modified by the
presence of other vibrating structures, typically passive resonators, placed in the
vicinity of a given instrument and excited by its radiated field.

6.2 Structure–Cavity Interaction

6.2.1 Mechanical Oscillator Coupled to a Pipe

The simple example presented in this section aims at illustrating the influence
of the coupling between an air cavity and an elastic structure. This situation is
encountered in almost all stringed instruments and can also be found in a significant
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number of percussion instruments, as the membranophones (drums and timpani).
To simplify the presentation, the structure is modeled here by a single-degree-of-
freedom oscillator, while the cavity is assumed to be one-dimensional. The system
is composed by a pipe with cross-section S and length L excited at one end by a
mechanical oscillator of mass M, angular frequency !0, and reduced damping �o

(see Chap. 2). The term f .t/ is the excitation force of the oscillator. Visco-thermal
losses are ignored in the pipe, for simplicity (Fig. 6.1).

It is further assumed that the pipe is closed at the other end by a mechanical
impedance ZL, defined in the Laplace formalism as SP.L; s/ D ZL.s/V.L; s/, where
P.L; s/ and V.L; s/ are the Laplace transforms of sound pressure and acoustic
velocity, respectively (for more details on the properties of the Laplace transform,
see, for example, [11]). The other equations of the problem, written in the time
domain, are 8̂̂̂̂

ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

1

c2
@2p

@t2
D @2p

@x2
for 0 < x < L;

�
@v

@t
D �@p

@x
;

M
� R� C 2�o!0 P� C !20�

�
D �Sp.x D 0; t/C f .t/;

v.0; t/ D P�.t/ :

(6.1)

This system can be solved in terms of the oscillator displacement � and pipe
pressure p. The goal is to show, in particular, the influence of the coupling on the
eigenfrequencies.

6.2.1.1 Oscillator Displacement and Pipe Pressure

The Laplace formalism is used here. Using the continuity of the displacement at
x D 0, and the formula for the transfer impedance (4.29) leads to the expression for
the input impedance of the pipe acting on the oscillator:

P.x D 0; s/ D s�c�.s/z.s/ where z.s/ D tanh sL
c C zL

1C zl tanh sL
c

(6.2)

K

f
R

ZL

M

0 L x

Fig. 6.1 Single-degree-of-freedom oscillator coupled to a tube of finite length loaded at one end
by an impedance ZL
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with zL D ZL=�cS, and where �.s/ is the Laplace transform of the displacement �.
The equation of motion of the oscillator is written:


s2 C 2�o!0s C !20
�
�.s/ D F.s/

M
� s

�cS

M
�.s/z.s/: (6.3)

The displacement of the oscillator can be written in the form:

�.s/ D F.s/

M

1

s2 C 2!0 Œ�o C �az.s/	 s C !20
; (6.4)

with

2�a!0 D �cS

M
:

6.2.1.2 Discussion

A number of particular cases now deserve consideration:

• If the loading of the pipe at position x D L is ZL D �cS, there is no reflection,
and z.s/ D 1. This also corresponds to the case of an infinite pipe. Acoustic
propagation in the pipe has the effect of increasing the damping of the oscillator
through radiation (see also Chap. 2, Sect. 2.5.2).

• If the pipe is closed at x D L, then ZL tends to infinity and z.s/ D 1= tanh ŒsL=c	.
In addition, if the length L of the pipe is assumed to be small enough so that the
approximation tanh ŒsL=c	 � sL=c can be made, then the displacement of the
oscillator becomes

�.s/ D F.s/

M

1

s2 C 2!0�os C !20 C 2!0�ac=L
: (6.5)

The pipe thus becomes a lumped element system. It acts here as an added stiffness

Ka D 2!0M�ac

L
D �c2S2

V
; (6.6)

where V is the volume of air enclosed in the pipe. This stiffness has an influence
on the oscillator only if Ka is comparable to, or greater than, K (K D M!20 is the
stiffness of the oscillator). The effect is therefore significant for flexible structures
(K < Ka).

• If the pipe is open at x D L, and if the radiation at the open end is ignored to
a first approximation, then ZL D 0 and z.s/ D tanh ŒsL=c	. For a pipe of short
length or, more generally, for sL=c � 1 it leads to:

�.s/ D F.s/

M

1

s2 C 2!0�os C !20 C 2!0�as2L=c
; (6.7)
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which means that the pipe acts now as an added mass

Ma D 2M!0�aL

c
D �V ; (6.8)

which corresponds to the total mass of air enclosed in the pipe. As a consequence,
light structures (M < Ma) are significantly affected by this coupling.

6.2.1.3 Eigenfrequencies of the Coupled System

Let us now consider the case of the pipe closed at x D L. The eigenfrequencies of the
system are obtained by setting s D j! and looking for the poles of the displacement,
given by the roots of the real part of the denominator D.!/:

<e fD.!/g D .�!2 C !20/ sin
!L

c
C 2!0!�a cos

!L

c
D 0 : (6.9)

Recall that dissipation is ignored in this case (see Chap. 2). Notice that the roots
of <e fD.!/g also yield the poles of the pressure. Equation (6.9) is now written
in a dimensionless form, in order to show the different behaviors of the system,
depending on the reduced values of the parameters. The reduced driving frequency
is written X D !L=c, where L=c is the characteristic time of the pipe corresponding
to the traveling time of a longitudinal acoustic wave between both ends. Finally,
we define the dimensionless quantities X0 D !0L=c and " D Ka=K. Equation (6.9)
becomes

X2

X20
D 1C "

X

tan X
or equivalently tan X D "XX20

X2 � X20
: (6.10)

The following situations can be identified, which depend on the frequency domain
in which the system operates:

• If X 	 X0, or, in other words, if the frequency ! is large compared to the
reduced frequency !0 of the mechanical oscillator, then (6.10) shows that tan X
is positive. The mechanical oscillator is of mass type. Due to the presence of the
oscillator, the resonances of the tube closed at both ends are increased, compared
to the isolated closed tube. This increase of frequency can be easily understood
considering that, compared to the limiting case of an “infinite mass” at the end for
the closed tube, the presence of the oscillator, of finite mass, corresponds to a
decrease of the overall inertia of the system. The eigenfrequencies increase even
more if " is large. This corresponds to the case where the equivalent stiffness of
the closed tube is large compared to that of the oscillator. However, for higher
eigenfrequencies, the modifications are smaller. Similar results are found for a
stringed instrument: the higher the frequency, the lesser the eigenfrequencies of
the string are modified by the modes of the soundboard (see Chap. 3).
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• Conversely, if X � X0, tan X is negative. In this case, the eigenfrequencies of
the tube are reduced because of the presence of the oscillator, compared to the
tube closed at both ends. In fact, below its resonance frequency, the oscillator is
governed by its stiffness. This stiffness is always smaller than those of perfectly
rigid ends. Here again, this effect is more pronounced if " is large.

• If X � 1, meaning that the frequency is much smaller than the characteristic
frequency of the tube, there is no resonance inside the tube, and the only
eigenfrequency of the system is given by X D X0

p
1C " (which implies that

X0 � 1). Like in the previous case, the tube acts as an additional stiffness which
has the effect of increasing the eigenfrequency of the mechanical oscillator.

• Suppose now that X is close to X0, and, in addition, that these two quantities are
close to a resonance of order n of the tube. In this case, the eigenfrequencies
of the tube given in Eq. (6.10) are strongly modified in comparison to the
solutions Xn D n� obtained for the isolated tube (see Fig. 6.2). The difference
between structural modes (S) and acoustic modes (A) cannot hold any longer.
The modes are strongly coupled and are sometimes referred to as structural-
acoustic modes (SA).

6.2.2 Soundboard–Cavity Coupling in Stringed Instruments
at Low Frequencies

The coupling between soundboard and soundbox in stringed instruments is an
example of structure–cavity interaction which has been extensively treated in the
literature. The first models were published in the 1980s [3]. They are often limited
to the interaction between the first (lowest) mode of the soundboard and the
lowest acoustic mode of the cavity. Traditionally, these two modes are called T1
(soundboard) and A0 (air), respectively, when coupled together on the complete
instrument. A simplified model with two degrees of freedom fairly reproduces
the behavior of real instruments at low frequencies, i.e., below T1. It has been a
source of inspiration for Hutchins in the realization of her violin octet, among other
things [9].

Today, the main limitations of such models are well known: the soundbox is not
only coupled to the soundboard, but also to the back plate and neck [6]. In addition,
the coupling to the radiated field and the presence of holes also contribute to form
a complex system: this will be discussed in detail in Chap. 14. The study is limited
here to a simplified system with two degrees of freedom where the soundboard
is represented by a rigid body with mass mp of area Ap and intrinsic stiffness kp

subjected to the vertical force F of the strings. Its vertical displacement is denoted
�p which can be seen as the mean displacement of the attached soundboard vibrating
near its first mode (see Fig. 6.3).

In this model, the soundbox is represented by a Helmholtz resonator (see Chap. 1,
Sect. 1.5) with one moving wall (the soundboard). The inertial part of the resonator
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Fig. 6.2 Graphical solution for the eigenfrequencies of a 1-D acoustic tube loaded by a mechanical
oscillator; " D 0:1; X0 D � . The intersections of the tan function (solid line) with the X-axis
yield the eigenfrequencies X D n� of the tube closed at both ends. The intersections (o) of the
tan function with the expression "XX20=.X

2 � X20/ (dashed line) yield the eigenfrequencies of the
coupled system. The first eigenfrequency of the tube and the frequency of the mechanical oscillator,
both equal to � in the decoupled case, are strongly modified by the coupling. Higher frequencies
of the coupled system increase only slightly in comparison to the isolated tube
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Fig. 6.3 (Left) At low frequencies (approximately f < 300Hz), the Soundboard–cavity coupling
of the classical guitar is reasonably modeled by a system with two degrees of freedom.
(Right) Experimental vibroacoustical study of a guitar (© LAUM)
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is the mass of air mh oscillating through the holes of total area Ah, with the overall
displacement �h. During the motion, the change of volume in the cavity is equal to
�V D Ap�p C Ah�h. Because of the compressibility of the air, the resulting change
of pressure is�p D ��c2�V =V D ��.Ap�p C Ah�h/ (see Chap. 1). For simplicity
the damping matrix of the system is assumed to be diagonal. The losses are modeled
as resistances which remain constant over frequencies, and are here denoted Rp and
Rh, respectively. Under these assumptions, the equations of motion for this system
are written:�

mp 0

0 mh

� � R�pR�h



C
�

Rp 0

0 Rh

� � P�pP�h



C
"

kp C �A2p �AhAp

�AhAp �A2h

#�
�p

�h



D
�

F
0



: (6.11)

This is a system coupled through the stiffness terms �AhAp, and the matrix K is not
diagonal. In what follows, the eigenfrequencies of the coupled system are compared
to some specific frequencies:

• Without an aperture in the soundboard (closed hole: Ah D 0), it can be seen
from (6.11) that the box acts on the board as a spring of added stiffness �A2p. Its

angular eigenfrequency (without damping) becomes !p D
q
.kp C �A2p/=mp.

• If, in addition, the board has no stiffness (kp D 0), this angular frequency

becomes !a D
q
�A2p=mp.

• If now the board with an open hole is rigidly maintained, a classical case of

Helmholtz resonator is obtained with angular eigenfrequency !h D
q
�A2h=mh.

In what follows, the coupled system will be conveniently expressed in terms of these
three particular frequencies (!p, !a, and !h).

The eigenfrequencies of the associated conservative system are obtained from
detŒK � !2M	 D 0 which can be written as:

D D .!2p � !2/.!2h � !2/ � !4ph D 0 where !4ph D !2a!
2
h : (6.12)

With typical numerical values for a classical guitar (see Fig. 6.4), the eigenfrequen-
cies of the coupled system are equal to f1 = 86 Hz and f2 =206.5 Hz. The frequency
f1 corresponds to the coupled acoustic mode A0, while f2 is the eigenfrequency of
the coupled mode T1. A main effect of the coupling is to move the frequencies
apart compared to the uncoupled case (here fh = 100 Hz and fp = 200 Hz).1 These
frequencies also have the following mathematical property:

!21 C !22 D !2p C !2h ; (6.13)

1Unfortunately, f1 is often referred to as the Helmholtz frequency, however, this is an error that
should not be made. Although f1 and fh are usually close in frequency, they correspond to opposite
physical facts: the first frequency is related to a maximum, whereas the second is related to a
minimum displacement for a given force. The latter is obtained by replacing the flow rate excitation
of the cavity (upper Fig. 1.27) by a force excitation.
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Fig. 6.4 Model of structure–cavity coupling with two degrees of freedom. (Left) Characteristic
equation D as a function of frequency. (Right) Amplitude of soundboard displacement j�pj as a
function of frequency. fh D 100Hz; fp D 200Hz; mp D 0:2 kg; Ap D 0:3 m2; V D 0:014 m3;
�h D 1 s�1; �p D 2 s�1

which is of particular interest, for example, in order to estimate the parameters of a
given instrument experimentally.

The eigenvectors˚i (i D 1; 2) are obtained from the equation ŒK � !2i M	˚i D 0.
Whatever the parameters values, the two components of ˚1 are opposite in sign,
which means that the respective displacements of soundboard and hole have
opposite signs, at the lowest coupling frequency f1. Conversely, they are in phase
at frequency f2.

The interested reader can pursue this modal approach, using the method pre-
sented in Chap. 3. The modal projection � D

X
i

˚iqi.t/ is written here:

�
�p

�h



D
�
˚11
˚12



q1.t/C

�
˚12
˚22



q2.t/; (6.14)

where qi.t/ are solutions of the system of uncoupled equations:

mi Rqi C kiqi D 0 with mi D t˚iM˚i and ki D t˚iK˚i D !2i mi : (6.15)

The displacements obtained from (6.15) are approximate since the damping
terms are ignored. These approximations may be sufficient in some situations, for
example, when the goal is to predict acoustic or structural modifications required to
modify the eigenfrequencies of the system (see Sect. 6.2.2.1 below).

However, the approximations (6.15) are not accurate enough if the evolution of
the displacements with frequency needs to be known and, in particular, when one has
to estimate their maximum (resp. minimum) values. In these cases, it is necessary
to take the damping terms into account. One can use, for example, the method



268 A. Chaigne and J. Kergomard

of complex modes explained in Chap. 5. In the present simple example, with two
degrees of freedom only, another relatively straightforward (and equivalent) solution
is to solve the linear system (6.11) directly. This gives8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

�p D F

mp

!2h � !2 C j!�h

Dc
;

�h D F

mp

Ap

Ah

!2h
Dc

with Dc D .!2p � !2 C j!�p/.!
2
h � !2 C j!�h/� !4ph;

(6.16)

where �h D Rh=mh and �p D Rp=mp.
Figure 6.4 shows the amplitude j�pj of the soundboard displacement versus

frequency. Considering the low values chosen for �p and �h in our example, the
maxima for j�pj are obtained for frequencies very close to the eigenfrequencies
f1 and f2. It is found that the minimum is obtained for f D fh D 100 Hz, which
corresponds exactly to the frequency of the Helmholtz resonator. This is consistent
with the fact that fh corresponds to the case of a resonator with fixed walls, when
the displacement of the soundboard is equal to zero. It can be noted that the
determination of this minimum is a very good way to experimentally estimate the
Helmholtz frequency of a string instrument.

6.2.2.1 Structural Modifications of the Instrument: The Art of the Maker

A model of soundboard coupled to the soundbox like the one shown in (6.11) allows
estimating the effects of structural modifications (mass of the board, soundbox
volume, hole area, stiffness of the board,. . . ) on the eigenfrequencies of the system.
Such a procedure is similar to the skilled practice of a maker. However, the model
presented above is elementary, and one should keep in mind that the requirements
that govern the making of an instrument are not limited to the prediction of
eigenfrequencies. Within this restrictive framework, the approach proposed below,
inspired by French [7], illustrates a good example of the use of physics in instrument
design.

As a starting point, we use the eigenvectors equation ŒK	˚ D �ŒM	˚ where
� D !2. The matrices K and M are symmetric. Mathematically speaking, we are
interested in the so-called sensitivity @�=@a of the eigenvalues � with respect to a
physical or a geometric parameter of the system, denoted a. Through derivation,
we get



@K
@a

�
˚ C K



@˚
@a

� D @�

@a



M
�
˚ C �



@M
@a

�
˚ C �M



@˚
@a

�
: (6.17)
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Multiplying by the transposed eigenvector and using the symmetry properties of
the matrices yields

@�

@a
D

t˚


@K
@a

�
˚ � �t˚



@M
@a

�
˚

t˚


M
�
˚

: (6.18)

To illustrate the use of this general formula, some examples of structural changes
are presented below.

Effect of Variation of the Soundboard Mass

In this case a D mp. Equation (6.11) gives�
@M

@mp

�
D
�
1 0

0 0

�
: (6.19)

Since the vectors˚i are known, the resulting changes of the eigenvalues are derived
from (6.18):

@�i

@mp
D � �i˚

2
1i

mp˚
2
1i C mh˚

2
2i

: (6.20)

It can be seen that if the mass of the soundboard is increased, then the eigenfrequen-
cies of the system are lowered. The effects of such changes on the acoustic radiation
will be examined in Part IV of this book.

Effect of Soundbox Volume Modification

The previous method is again applied, by setting now a D V . Only the stiffness
matrix is affected by a change in volume, which gives�

@K

@V

�
D �c2�

V 2

"
A2p AhAp

AhAp A2h

#
; (6.21)

from which the sensitivity can be obtained

@�i

@V
D

t˚


@K
@V

�
˚

t˚


M
�
˚

D � .c
2�=V 2/.A2p˚

2
1i C 2ApAh˚1i˚2i C A2h˚

2
2i/

mp˚
2
1i C mh˚

2
2i

: (6.22)

It can be seen that an increase of the soundbox volume lowers the eigenfrequencies.
This corresponds to one major structural changes in guitar making at the end of the
nineteenth century, when the romantic guitar has evolved to the Torres guitar, which
is still a reference model today for classical guitars [14].
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Modification of the Hole Area

The average thickness of the hole is denoted h, taking the end corrections into
account.2 The mass of air in the hole is written: mh D �hAh. Therefore a perturbation
of Ah induces changes both in stiffness and mass matrices. It gives�

@K

@Ah

�
D �

�
0 Ap

Ap 2Ah

�
and

�
@M

@Ah

�
D
�
0 0

0 �h

�
: (6.23)

which leads to:

@�i

@Ah
D 2�.Ap˚1i˚2i C Ah˚

2
2i/ � �i�h˚2

2i

mp˚
2
1i C mh˚

2
2i

: (6.24)

Thus, an increase in the area of the openings induces an increase of the eigenfre-
quencies, while an increase in thickness causes the opposite effect.

Modification of the Soundboard Stiffness

The makers modify the overall stiffness of the soundboard either by varying the
thickness or by adding stiffeners (bracing), or both. When the thickness e of the
board is modified, the mass varies in proportion to it, but the stiffness varies as e3,
so significantly more strongly (see Chap. 1). For simplicity, it is assumed here that
only the stiffness kp is changed, but not the mass mp whose effects were studied
above. We obtain

@�i

@kp
D ˚2

1i

mp˚
2
1i C mh˚

2
2i

: (6.25)

It can be seen that a decrease of the soundboard thickness lowers the eigenfre-
quencies. To be more rigorous, the model should be refined by writing mp and
kp as functions of the thickness e and recalculating the sensitivities @�

@e in order to
simultaneously show the influence of mass and stiffness matrices, as it was done for
the area Ah of the holes.

2The thickness to be considered is the sum of the geometric height and length corrections due to
radiation, at both sides of the hole. The origin of these corrections is due to the radiation impedance
of the hole. See Chaps. 7 and 12.
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Fig. 6.5 Comparison between (a) a romantic guitar (René Lacote 1828) and (b) a contemporary
guitar (Fleta 1977). The dimensions of the second one, including soundboard thickness, are larger
than those of the first one. (c) The spectral balance shows a clear shift of the average spectrum of
the second guitar in the direction of low frequencies: the spectral envelopes above were obtained
by averaging over the same piece of music (Ejercicio by Jose Ferrer) played by the same musician
(Bruno Marlat) successively on both guitars. These changes correspond to an aesthetic evolution
due to the repertoire, the art of playing and musical taste between the nineteenth and the twentieth
century. (d) shows the romantic guitar in real playing situation around the year 1820. (a) and (b):
© Bruno Marlat; (d) Danielle Ribouillaut
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6.3 Coupling of Piano Strings

Except at low frequencies, piano notes are obtained by striking a doublet or a triplet
of strings. The listening experience shows that the sound is significantly changed
if one string (of a doublet) or two strings (of a triplet) are damped, with only
one vibrating string left. There are many coupling phenomena between strings that
contribute to characterize the piano sound strongly. These properties are confirmed
by experiments: the beat phenomenon3 and double decay4 have been highlighted by
several authors [5].

The first theoretical and experimental comprehensive study on coupled piano
strings is due to Weinreich [16]. The model developed in his study uses the
formalism of dynamic matrices, which is a standard tool in solid-state physics,
especially for studying the vibrations of atomic chains [4]. In order to make the
link between this approach and the physics of strings described in this book, a
detailed presentation of the problem studied by Weinreich is made below, starting
from general equations, and discussing then the approximations made by this author
systematically.

Fig. 6.6 Inside view of a piano showing string doublets (far left) and string triplets struck by the
same hammer. © Pleyel

3A beat is a pronounced amplitude modulation at low frequency (less than a dozen Hz) due to the
juxtaposition of very close frequencies f1 and f2.
4The double decay characterizes free oscillations where the temporal evolution of the amplitude
shows two successive parts with different time constants. In piano tones, the amplitude decay most
often shows first a short time constant followed by a longer one.
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Fig. 6.7 Two strings coupled
to the bridge of a piano. For
simplicity, the motion of the
string is assumed to be
vertical only Bridge

To the agraffe

L x

VB

y
1

y
2

N.B. For consistency with other chapters in this book, some notations have been
changed below compared to the cited paper by Weinreich. All changes are indicated
in the text.

6.3.1 General Equations of the Problem

In what follows, the problem is simplified by considering the coupling between two
strings of identical length, mass, and cross-sectional area, and differing by their
tensions only. We consider the linear transverse vibrations of both strings only,
in vertical polarizations y1.x; t/ and y2.x; t/ with regard to bridge and soundboard
plane (see Fig. 6.7). The lateral and longitudinal components are ignored, as well as
dissipative and intrinsic stiffness effects. The free regime is considered, immediately
after the interaction with the hammer. Therefore, the action of the hammer is ignored
in the equations. With �S the mass per unit length of both strings, the equations of
motion are written: 8̂̂̂<̂

ˆ̂:
�S
@2y1
@x2

� T1
@2y1
@t2

D 0;

�S
@2y2
@x2

� T2
@2y2
@t2

D 0 :

(6.26)

Both strings are assumed to be rigidly fixed at the one end, at the agraffe side,
so that we can write y1.0; t/ D y2.0; t/ D 0. At the other end (at x D L),
the strings are attached to the bridge, which is here symbolically represented by
the impedance ZB (or, equivalently, by the admittance YB). The validity of this
representation is justified in Sect. 6.3.1.2. At the attachment point, the displacements
of both strings are equal to the displacement qB.t/ of the bridge, so that we have
y1.L; t/ D y2.L; t/ D qB.t/. Finally, the total force exerted by the strings on the
bridge is written:

fB D f1 C f2 D �T1

�
@y1
@x

�
xDL

� T2

�
@y2
@x

�
xDL

: (6.27)
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6.3.1.1 Two-Mode Approximations

Assuming the linearity of the problem, the transverse displacements of the strings
can be expanded onto their eigenmodes:

y1.x; t/ D
nX

iD1
˚1n.x/q1n.t/ and y2.x; t/ D

nX
iD1

˚2n.x/q2n.t/ : (6.28)

The bridge mobility is assumed to be small, which is consistent with experiments. In
this case, it is justified to expand the string displacements onto the series of modes
obtained for strings fixed at both ends: ˚n.x/ D sin knx with knL D n� . As a
consequence, all perturbation terms resulting from departure from the ideal case are
found in the expressions of generalized displacements qn.t/.

Since the fundamental frequencies of the strings of a given doublet are very
close to each other in a piano, the general system can be represented as a set of
modes coupled by pairs (one mode per string). Our study is then restricted to the
coupling between one pair of two modes, without loss of generality. We focus
below on the coupling between the fundamental frequencies, but the results are
generalizable to any pair of modes of higher rank. This corresponds to seeking
solutions to the following problem:

y1.x; t/ ' ˚1.x/q1.t/ and y2.x; t/ ' ˚2.x/q2.t/; (6.29)

where ( Rq1 C !20q1 D g1.qi/;

Rq2 C !20q2 D g2.qi/ :
(6.30)

In (6.30), the left-hand side terms represent the temporal evolution of the
oscillators, without coupling, loaded by an infinite impedance, and in unison. The
perturbations of the system are grouped in the terms g1.t/ and g2.t/ on the right-hand
side: detuning (departure from unison) and finite impedance at the bridge. These are
functions of qi and of their time derivatives.

6.3.1.2 Complex Notation

The goal is now to determine the oscillation frequencies and damping rates of the
freely vibrating strings coupled at the bridge and slightly detuned. The mechanical
quantities are defined as the real part of complex quantities. The solutions are
of the form ejˇt where the variable ˇ is complex, and where the imaginary part
represents the attenuation of oscillations in time, resulting from damping at the
bridge. As in the paper by Weinreich, the displacements are denoted: qi D <e f ig.
Equation (6.30) becomes
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(
.!20 � ˇ2/ 1 D �1. i/;

.!20 � ˇ2/ 2 D �2. i/
(6.31)

where �1 and �2 are the complex quantities associated to g1 and g2. For the strings,
the notations vi.t/ D <e fVig and fi.t/ D <e fFig, are used, where Vi and Fi

are the complex quantities associated with velocities and forces at the bridge,
respectively. Since the detuning between the two strings is assumed to be small, the
angular frequencies of the coupled system are close to the fundamental frequency
!0 D p

T=�S corresponding to tuned strings in unison. Over this small frequency
range, the complex impedance of the bridge at the attachment point ZB can therefore
be regarded as constant (ZB.!/ ' ZB.!0/), and the following equation can be
written as:

FB D F1 C F2 D ZBVB: (6.32)

This yields the admittance matrix at the bridge:�
V1
V2

�
D
�

YB YB

YB YB

��
F1
F2

�
: (6.33)

This admittance matrix is not invertible since its determinant is zero. Still following
Weinreich’s approach, YB is normalized with respect to the characteristic impedance
of the strings in unison, denoted Zc D Z0 D p

�ST (T1 D T2 D T), so that the
following expression is obtained:

YB D �

j!0Z0
� D �

jZ0
� D �

jZ0
.� C j�/ ; (6.34)

where � and � are dimensionless quantities.5

Because of the presence of dissipative phenomena at the bridge, � is always
positive or null. The case � D 0 corresponds to a purely reactive bridge. The
motion of the bridge has the effect of shifting the eigenfrequencies of the strings (see
Chap. 3). The particular case � D 0 corresponds to a string with purely dissipative
ends (see Chap. 5).

Example of a Simplified Model of a String

In order to illustrate the expression of gi in (6.30) with a practical example,
one can see the fundamental mode as the oscillation of a mass M concentrated

(continued)

5Warning! In Weinreich’s paper [16] these quantities have the dimension of a frequency. Here, they
are divided by !0.



276 A. Chaigne and J. Kergomard

Fig. 6.8 Simplified scheme
of a string vibrating at its
fundamental frequency and
loaded by a finite impedance
at the bridge

M1
K1

qB

q1

YB

in the middle of the string of stiffness K. In the case of two oscillators, we
write M D M1 D M2 and K2 D K1.1 C 2"/, which accounts for a slight
difference of tension between both strings. With the assumptions of small
mobility at the bridge, the displacement qB.t/ is small compared to q1 and q2
(see Fig. 6.8).

With !20 D K1=M, the equations are written:( Rq1 C !20q1 D !20qB;

Rq2 C !20q2 D !20.1C 2"/qB � 2"!20q2;
(6.35)

where the displacement at the bridge qB is linked to q1 and q2 by the boundary
condition:

f1 C f2 D K1.q1 � qB/C K2.q2 � qB/ ; (6.36)

or, equivalently, in terms of impedance:

F1 C F2 D KBQB ; (6.37)

where KB represents the dynamic stiffness of the bridge defined by ZBVB D
KBQB. With the previous notations, Eq. (6.36) is rewritten:

QB D  1 C  2.1C 2"/

2.1C "/C KB

M!20

: (6.38)

The model can be further simplified, taking the small detuning between both
strings into account (" � 1). Equation (6.35) becomes

(continued)



6 Coupled Systems 277

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

.!20 � ˇ2/ 1 D !20
 1 C  2

2C KB

M!20

;

.!20 � ˇ2/ 2 D !20

24 1 C  2

2C KB

M!20

� 2" 2

35 ; (6.39)

where the expressions for g1 and g2 are exhibited.

6.3.2 Formulation of the Problem in Terms of Forces

The model presented in Sect. 6.3.1 has direct applications in sound synthesis and
in experimentation. However, the formulation in terms of displacements is not
convenient for obtaining the dynamical matrices. Another elegant method to obtain
the equations whose solutions are the (complex) eigenfrequencies of coupled strings
is to formulate the problem in terms of forces. The assumption is based primarily on
the calculation of the transfer impedance Z in x D L of a string with characteristic
impedance Zc D p

T�S D T=c fixed at x D 0. From (4.29), the transfer impedance
is equal to:

Z D jZc cot kL : (6.40)

At this stage, it is interesting to use the series expansion of the cotangent
function [1]:

� cot�z D 1

z
C 2z

1X
nD1

1

z2 � n2
; (6.41)

from which we derive

Z D j
T

!L
C j

2!T

L

1X
nD1

1

!2 � !2n
; (6.42)

where !n D ckn D n�c=L are the eigenfrequencies of the string rigidly fixed at
both ends. One can here recognize some expressions seen in Chap. 4. If the angular
frequency ! is close to one eigenfrequency !n, Eq. (6.42) can be simplified as:

Z ' j
2!T

L

1

!2 � !2n
D F

VB
: (6.43)
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and we have

�
!2n � !2

	
F D �2T

L
j!VB : (6.44)

Returning now to the time domain, the equations that describe the string forces fi.t/
at the bridge are obtained

Rfi C !2i fi D �2Ti

L
PvB with i D Œ1; 2	 : (6.45)

With the notations defined above, this yields8̂̂<̂
:̂
.!21 � ˇ2/F1 D �2T1

L
jˇYB.F1 C F2/;

.!22 � ˇ2/F2 D �2T2
L

jˇYB.F1 C F2/ :

(6.46)

The detuning of the strings is modeled by setting !1 D !0 and !2 D !0.1 C 2"/,
where " � 1 (notice that " is here a dimensionless quantity, whereas in Weinreich’s
paper [16], this term has the dimension of an angular frequency). In terms of tension,
we have T2 D T1.1C 4"/. A first-order approximation of (6.46) then gives(

j Œˇ � !0	F1 D j�.F1 C F2/;

j Œˇ � !0	F2 D j�.F1 C F2/C 2j"!0F2;
(6.47)

where � is given by (6.34). These equations can be further simplified if the variables
are defined as differences, compared to the unison reference case, and if the
admittance at the bridge is written in dimensionless form [see Eq. (6.34)]. Thus,
we write ˇ D ˛ C !0 and a D ˛

!0
. After calculations, the following differential

system is obtained:

ja

�
F1
F2

�
D j˝

�
F1
F2

�
D j

�
� �

� �C 2"

��
F1
F2

�
: (6.48)

where˝ is the dynamical matrix of the coupled system.

6.3.3 Eigenvalues of the Strings-Bridge Coupled System

The forces F1 and F2, solutions of the system (6.48), are linear combinations
of expfjaCtg and expfja�tg, where aC and a� are solutions of the characteristic
equation:

a2 � 2.�C "/a C 2"� D 0; (6.49)
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from which we get the following roots:

a˙ D �C "˙ � with � D ."2 C �2/1=2 : (6.50)

6.3.3.1 Discussion

To illustrate this result, Fig. 6.9 shows the variations of the coupled frequencies with
respect to string detuning " for some selected values of the bridge admittance.

• When the admittance is purely reactive [� D �, see Eq. (6.34)], we have a˙ D
� C "˙ .�2 C "2/1=2. Figure 6.9a shows the representative curve of b˙ D a˙ � �
with respect to !0". When " is large, the eigenfrequencies of the strings are close
to those obtained in the uncoupled case. As " tends to zero (unison), the bridge
coupling is important and moves the eigenfrequencies apart from each other.
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Fig. 6.9 Eigenvalues of the system of strings coupled to the bridge. (a) Reactive end (!0� D 1,
� D 0); b˙ D a˙ � �. (b) Resistive end (!0� D 1, � D 0): real part. (c) Particular case (!0� D
1=2, !0� D 1): real part. Solid lines: solutions of the coupled system; dashed lines: uncoupled
case. (d) End with nonzero resistive part: imaginary part. Solid line: !0� D 1=2, !0� D 1; dashed
line: !0� D 1, � D 0
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• When the bridge admittance is purely resistive (� D j�), two cases must be
discussed depending on whether � is smaller or larger than ". The first case yields
a˙ D " C j� ˙ p

"2 � �2. The real part of the solution is represented by two
branches of hyperbola in Fig. 6.9b. The imaginary part is represented by two
segments =m.a˙/ D �= cst (see Fig. 6.9d).

In the case where � > ", we get a˙ D " C j� ˙ j
p
�2 � "2. The real part is

represented by the line segment <e.a˙/ D ", and the imaginary part is the circle
with center C D .0; �/ and radius �.

• In the general case (� D � C j�), one can observe intermediate situations
compared to the previous particular cases (see Fig. 6.9c, d). The eigenfrequencies
and damping factors of the strings are modified by the coupling, essentially for
small values of ". In this case, one string of the pair is damped much faster than
the other: it can be observed on Fig. 6.9d, for !0" between C1=2 and �1=2, that
!0=m.a/ is close to 2 for one string, which corresponds to a damping rate twice
as high as for an isolated string, while for the other string !0=m.a/ is less than
0.1. For the particular case " D 0, it can be seen that one string is no longer
damped at all. Everything happens as if the energy dissipated in the bridge is
fully “pumped” by one string of the doublet.

6.3.4 Bridge Motion

The expressions for the forces are obtained by solving the system (6.47). The values
of the integration constants are given by the initial conditions. Setting, for example,
f1.0/ D f2.0/ D F0 and using dimensional quantities for the frequencies, we get8̂̂<̂
:̂

F1 D F0
2�



.� � "C �/ejaC t C ." � �C �/eja�t

�
;

F2 D F0
2��



."C �/.� � "C �/ejaCt C ." � �/." � �C �/eja�t

�
;

(6.51)

where � D p
"2 C �2 D p

"2 C �2 � �2. From these expressions, the bridge
velocity is derived [see Eq. (6.32)]:

VB D YB.F1 C F2/ D 2�F0�

�Z0
ej."C�/!0t Œ� cos�!0t C j� sin�!0t	 ej!0t : (6.52)

The temporal evolution of forces and velocities is obtained by taking the real parts
of Expressions (6.51) and (6.52).
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Fig. 6.10 Temporal envelope of the bridge velocity. (a) Coupling of strings with a purely resistive
admittance at the bridge and " > �. (b) Same situation with " < �. (c) Coupling of strings with a
complex admittance at the bridge and "2 C �2 > �2. (d) Same case with "2 C �2 < �2

6.3.4.1 Discussion

Figure 6.10 shows the envelopes of the bridge velocity for some special cases of
bridge admittance and string detuning.

• The case (a) corresponds to a coupling with a purely resistive admittance where
" > �. A single decay of the velocity is observed with a time constant 1=� with
superimposed beats of frequency � D p

"2 � �2.
• The case (b) again corresponds to a purely resistive coupling, but with " < �. In

this case, the velocity modulus is written:

jVBj D 2�F0�

j�jZ0 ej."C�/!0t Œj�j cosh j�j!0t � � sinh j�j!0t	 : (6.53)

The beats disappear and the velocity envelope shows a double decay: a rapid
initial decay followed by a slower decay that arises after a strong minimum.

• The case (c) corresponds to a bridge admittance with both a resistive and a
reactive part, and where the detuning between the strings is such that the quantity
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� is real, or, equivalently, "2 C �2 > �2. As for case (a), oscillations are
superimposed to a single decay. However, the amplitude of the beats is less
pronounced here.

• Finally, the case (d) also corresponds to a common admittance, but with the
condition "2 C �2 < �2, which implies � D jj�j. As for the case (b), a double
decay is observed, though with a less pronounced minimum.

All these regimes are commonly observed on real pianos. We are now able to
better understand the role of the piano tuner, who does not only adjust the pitch, but
also the temporal envelope of sound.

6.3.4.2 Limiting Case of a Single String

In the particular case of a single string coupled to the soundboard, Eq. (6.47)
becomes

ˇ � !0 D � D j
YBZ0!0
�

: (6.54)

Setting YB.!0/ D GB C jBB, Eq. (6.54) gives the frequency shift and the damping
factor of the string due to coupling, which is

ˇ D !0 C ı!0 C ˛;

with
ı!0

!0
D �BBZ0

�
D �Z0=mfYBg

�
;

and ˛ D !0GB

�
D !0Z0<efYBg

�
:

(6.55)

These are the classical formulas established by several authors [12]. They are
similar in form to those obtained for a lossless tube loaded by a radiation impedance.

6.4 String–Soundboard Coupling

In Sects. 6.2 and 6.3, two examples of coupling were studied and illustrated by
simple models with two degrees of freedom. In this section, the purpose is extended
by considering the more general coupling between Ns string modes and Nb board
modes. The damping coefficients are still considered as small, which allows for
some approximations (see Chap. 5). The approach presented below is based on a
study by Woodhouse in the case of the guitar [17]. In a first step, both string and
soundboard kinematics are formulated. Then the mass and stiffness matrices are
derived, using energetic considerations. The eigenvalues and eigenvectors of the
associated conservative system are obtained using the general method described in
Chap. 3.
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For real systems, it has been seen in Chap. 5 that the dissipation matrix is
generally not diagonal, and that an exact resolution requires the calculation of
complex modes. Here, the presentation is simplified by assuming that this matrix is
diagonal. In what follows, complex eigenfrequencies are thus considered, but with
real mode shapes.

6.4.1 Determination of Mass and Stiffness Matrices

The string of length L is assumed to be fixed at x D 0 and moving at x D L with
y.L; t/ D q0.t/ (see Fig. 6.11).

Only the vertical displacement of the string is considered. The amplitude of q0
is assumed to be small compared to the transverse displacement of the string, so
that its eigenmodes ˚n.x/ (with n � 1) are assumed to be given by sin n�x

L with
knL D n� . Finally, the string displacement is written in the form:

y.x; t/ D q0.t/
x

L
C

NsX
nD1

qn.t/ sin
n�x

L
; (6.56)

where q0 appears as the generalized displacement of the rigid mode (case n D 0),
corresponding to an overall rotation of the string around the end x D 0, whereas qn

(for n � 1) are the eigenmodes of a string simply supported at both ends.
The modal displacements of the Nb soundboard modes at the attachment point

of the string are denoted rm.t/. The continuity of displacement at this point imposes
the condition:

q0.t/ D
NbX

mD1
rm.t/ : (6.57)

In what follows, B D EI is the string’s bending stiffness, T its tension, and km D
mm!

2
m the modal stiffness of the soundboard mode m. The elastic potential energy

of the coupled system is written (see Chap. 1):

Ep D 1

2

"
NbX

mD1
kmr2m C T

Z L

0

�
@y

@x

�2
dx C B

Z L

0

�
@2y

@x2

�2
dx

#
: (6.58)

0 L x

y(x,t) q0(t)

Fig. 6.11 Kinematics of a string coupled to a soundboard. N.B. For better clarity, the displacement
q0.t/ of the soundboard at one end of the string is intentionally drawn with an amplitude
comparable to the transverse motion of the string y.x; t/, although it is much smaller in reality
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Given (6.57) and (6.56), Eq. (6.58) can be rewritten as:

Ep D 1

2

24 NbX
mD1

kmr2m C T

L

 
NbX

mD1
rm

!2
C T�2

2L

NsX
nD1

n2q2n C B�4

2L3

NsX
nD1

n4q2n

35 :

(6.59)

The vector X of the generalized coordinates is defined as:

X D t Œq1; : : : ; qNs ; r1; r2; : : : ; rNb 	 (6.60)

so that the stiffness matrix K is given by:

Ep D 1

2

t

XKX : (6.61)

Finally K is written in the form:

K D
�
K11 0

0 K22

�
; (6.62)

with

K11 D �2

2L
diag

�
T C B�2

L2
; 4T C 16

B�2

L2
; : : : ;N2

s T C N4
s B�2

L2



; (6.63)

and

K22 D

2664
k1 C T=L T=L : : : T=L

T=L k2 C T=L : : : T=L

 
 
 
 
 
 
 
 
 
 
 


T=L T=L : : : kNb C T=L

3775 : (6.64)

Similarly, the mass matrix M is obtained from the kinetic energy of the system:

Ec D 1

2

"
NsX

nD1
mnPr2m C �

Z L

0

Py2dx

#
; (6.65)

where � D �S. Ec is written in the quadratic form:

Ec D 1

2

t PXM PX; (6.66)

from which M is derived in the form

M D
�
M11 M12
tM12 M22

�
: (6.67)
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The reader will check that the different sub-matrices defined in (6.67) are written:

M11 D �L

2
diag f1; 1; : : : ; 1g ; (6.68)

M22 D

2664
m1 C �L

3

�L
3

: : :
�L
3

�L
3

m2 C �L
3
: : :

�L
3

: : : : : : : : : : : :
�L
3

: : :
�L
3

mNb C �L
3

3775 ; (6.69)

M12 D �L

�

2664
1 1 : : : 1

�1=2 �1=2 : : : �1=2
: : : : : : : : : : : :

.�1/NsC1=Ns : : : .�1/NsC1=Ns .�1/NsC1=Ns

3775 : (6.70)

The coupling affects here the mass matrix only, through the sub-matrices M12 and
M21 Dt M12 (inertial coupling). The stiffness matrix remains diagonal.

6.4.2 Mode Crossing

In order to illustrate the previous results by a particular case, the coupling between a
string mode and a soundboard mode is solved below analytically. Special attention
is paid to the damping coefficients of these modes, which determine the temporal
evolution of the free system. Using the results obtained in Sect. 6.4.1, the reduction
of the system to two modes leads to the following mass matrix:

M D
�

m11 m12

m21 m22

�
D
��L
2

�L
�

�L
�

m1 C �L
3

�
: (6.71)

The reduced stiffness matrix becomes

K D
�

k11 0

0 k22

�
D
"
�2

2L

�
T C B�2

L2

�
0

0 k1 C T
L

#
: (6.72)

In stringed instruments, the quality factors of the string modes are generally higher
(significantly much higher, most of the time) than those of the soundboard (see
Chap. 2). In what follows, all quality factors are also assumed to be significantly
larger than unity, which means Qi D 1=2�i 	 1 where �i are the damping
coefficients. The damping matrix, which is assumed to be diagonal, is written:

C D
�

c11 0

0 c22

�
D
�
2�1!1m11 0

0 2�2!2m22

�
; (6.73)
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where !1 D p
m11=k11 and !2 D p

m22=k22 are the uncoupled eigenfrequencies of
string and soundboard, respectively. Altogether, this reduced coupled system takes
the standard form:

MRq C CPq C Kq D 0 : (6.74)

The (complex) eigenfrequencies of the uncoupled system are given by the roots of
the characteristic equation:�

!21 C 2j!�1!1 � !2	 �!22 C 2j!�2!2 � !2
	 D !4�2 : (6.75)

where �2 D m12m21
m11m22

is the mass coupling coefficient. It is explicitly written here:

�2 D 2�L

�2.m1 C �L=3/
: (6.76)

It is easy to show that its generalization to the coupling between the p-th string mode
and the n-th board mode is given by:

�2 D 2�L

p2�2.mn C �L=3/
: (6.77)

We restrict ourselves to the frequency range where the angular frequency! remains
close to !1, itself close to !2, or, in other words, when string and soundboard
resonances are comparable. As a consequence, the calculations can be simplified
by setting !�1!1 ' !21�1 and !�2!2 ' !22�2 in (6.75). With � D .!2=!1/

2, the
roots of Eq. (6.75) are given by:

!˙
!1

D ˝1=2 with ˝ D 1C � C 2j.�1 C ��2/˙ p
�

2.1� �2/
and � D Œ1C � C 2j.�1 C ��2/	

2 � 4.1� �2/�Œ1 � 4�1�2 C 2j.�1 C �2/	 :

(6.78)

Figure 6.12 shows that for fixed values of �i, either the real part or the imaginary part
of the eigenfrequencies cross each other, depending on the values of the coupling
parameter �.

These figures show, among other things, that crossing can occur in the vicinity of
!2 D !1. As a consequence, the value � D 1 will be now imposed in the following
equations. Thus, the frequencies are written:

!˙ D ˝1=2 with ˝ D 1C j.�1 C �2/˙ p
�0

1 � �2
and �0 D �2Œ.1C 2j�1/.1C 2j�2/	 � .�1 � �2/2 : (6.79)
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Given the fact that �i � 1 (nearly 10�2 for the board modes and 10�3 for the string
modes), one can write:

�0 ' �2 � .�1 � �2/
2 : (6.80)

Discussion

• For �2 > .�1 � �2/
2, the determinant �0 is positive and its square root is real.

In this case, both values of ˝ have the same imaginary part, and differ only by
the real part. To the first order, the same result applies to the eigenfrequencies
!˙ since their imaginary parts are small compared to their real parts. For quality
factors such as Q1 D 3500 and Q2 D 100, and with � D 0:01, this leads to
the results shown in Fig. 6.12a, b where a crossing exists for the imaginary part
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Fig. 6.12 Real and imaginary parts of the eigenfrequencies of the coupled system as a function of
!2=!1 for two different values of the mass coupling parameter � between string and soundboard,
exhibiting crossing and non-crossing situations for the modes. Q1=3500; Q2=100. (a) and (b):
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2; (c) and (d): �2 < .�1 � �2/
2
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only in the vicinity of � D 1. This situation occurs when the modal mass of
the soundboard mode is comparable to the total mass of the string, or lower
[see Eq. (6.76)]. The coupling moves the eigenfrequencies of string and board
apart from each other, compared to the uncoupled case. However, the two modes
oscillate with the same damping rate.

• For �2 < .�1 � �2/
2, the determinant is negative and its square root is purely

imaginary. Both values of˝ have now the same real part and different imaginary
parts. It is also the case, to the first order, for the eigenfrequencies !˙. With the
same quality factors, and with � D 0:0035, the situation shown in Fig. 6.12c, d
occurs, characterized by a crossing of the real part only, in the vicinity of � D 1.
From a physical point of view, this is a situation where the modal mass of the
soundboard mode is large compared to the total mass of the string. The main
consequence of this property is that even if the eigenfrequencies of string and
soundboard are close, the string has a low damping and therefore oscillates for a
long time while the vibration of the soundboard is damped more rapidly.

Figure 6.13 illustrates both regimes, when the quality factor of one of the two
modes varies, the real parts of the uncoupled eigenfrequencies remaining equal
(!1 D !2). This figure shows that, as long as the ratio Q1=Q2 remains small (less
than nearly 7 in our example, see Fig. 6.13b), the imaginary parts of both coupled
modes are comparable. This means these two modes have the same decay time.
However, within the same range, the real part (the oscillation frequencies) of the
modes are moved apart from each other because of the coupling.

Conversely, if the ratio Q1=Q2 is larger than the threshold value defined by
�0 D 0, the real parts (and thus the oscillation frequencies) of the modes coincide.
In this range, their imaginary parts differ significantly. The string damping remains
significantly smaller than the board damping. This is a remarkable and not really
intuitive result: in fact, one might think (but it is wrong!) that a string mode tuned
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a b

= 0.0035

5 10 15 20 25 30

X 10-3
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4

5
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Q1/Q2 -> Q1/Q2 ->

Fig. 6.13 Variations of the eigenfrequencies of the coupled string-soundboard system as a
function of the ratio between the quality factors of both elements. (a) Real part and (b) Imaginary
part
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to a soundboard mode always contributes to increase the energy transfer from string
to soundboard, and thus increase the damping coefficients. One can see, through the
example presented above, that it is by no means the case: the quality factors of both
elements must be taken into account, showing two clearly different behaviors.

6.4.3 Musical Consequences of the Coupling

In the case of the guitar, Woodhouse has shown experimentally that only a few
modes, below 300 Hz approximately, fulfill the condition �2 > .�1��2/2 [17], which
Gough earlier describes as a “strong” coupling condition [8].6 The upper range of
the guitar corresponds to the opposite case (or “low” coupling). String modes are
not strongly coupled to the board, which ensures a sufficient duration of sound.

The comparison with the violin case is instructive: a strong coupling at low
frequencies for the violin comparable to the one observed in guitars would cause
significant problems, due to the possible apparition of the “wolf tone”.7 Conversely,
with a strong coupling between string and board as for the violin, the guitar notes
would be too short, and the instrument would sound like a “pizzicato” violin. Why
do these differences exist between these two instruments? It is essentially because
the violinist, unlike the guitar player, can continuously introduce mechanical power
to the instrument with the bow. As a consequence, the primary problem here is
to allow an efficient acoustic radiation, and thus it is preferable to ensure a good
impedance matching between string and board.

In contrast, because of sound duration, the guitar string should not be too strongly
coupled to the instrument body. The energy must be confined long enough in the
string and this is why, in turn, the radiated sound power of this instrument is small
compared to a violin or a cello. To ensure a weak coupling, the impedance ratio
between the string and the board (at the attachment point) must be high. It can
be seen from Eq. (6.77) that increasing the mass of the bridge helps in decreasing
the coupling, since this leads to increase mn while keeping other parameters
unchanged. One exception can be made for jazz guitars and mandolins, since for
these instruments the sound power during the attack transient is musically more
important than the sound duration. Conversely, the bridge mass of a violin has to
remain small.

6In general, a strong coupling is expressed by a large coefficient C=D, where C is a coupling
coefficient, and D is a coefficient that characterizes a difference between specific parameters of
two elements of the system.
7Bowed string players know (and do not like!) this phenomenon. It can lead to an abrupt jump of
one octave for a given note, or even give rise to an uncontrolled rough and pulsating sound. Several
authors, including Raman [13] and Schelleng [15], have shown that this phenomenon occurs when
the fundamental of the string is close to a resonance with high quality factor of the instrument
body; see, for example, the discussion of Benade [2] on this problem.
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6.5 Soundboard–Bridge Coupling in Violins

The bridge of bowed string instruments is the component that realizes the coupling
between strings and soundboard. Players and makers are aware of its particular
significance. A number of admittance measurements at the bridge were carried
out by several authors, on violins in particular (see, for example, the work by
Jansson [10]). All measurements show a relatively wide “peak” between 2 and
3 kHz, and most authors agree that this peak is due to the bridge: this is why it
is usually referred to as the bridge hill. This observation is well known, however,
its theoretical explanation is more recent. The presentation below is largely inspired
by Woodhouse [18]. The general idea is that the board and the bridge can no more
be considered globally, in contrast to what has been implicitly done in the previous
examples treated in this chapter. This refinement is aimed at clarifying the filtering
performed by the bridge between string and soundboard.

In fact, the term bridge hill can be misleading since the shape of this peak on
the admittance curve not only depends on the bridge itself, but also on the coupling
between bridge and body. This property is identical to that of a filter whose input
impedance (or admittance) depends on the load at the output. The simplified model
that serves here as a guideline is drawn in Fig. 6.14. The string action is represented
by a force F exp j!t applied to a mass-spring system .m; k/ representing the bridge,
itself loaded by the admittance Y.!/ of the board at the attachment point on the
body. Denoting by Vb the bridge velocity at the junction with the string, and Vt the
velocity of the vertical translation of the board, the equations of motion are written:8̂<̂

:
� m!2Vb C k.Vb � Vt/ D j!F;

Vt D YFt D kY

j!
.Vb � Vt/ :

(6.81)

The equivalent circuit with “impedance” notations for this system is shown in
Fig. 6.14. When the bridge is fixed on its base (mobility Y D 0, or infinite board
impedance Z D 1=Y), there is a series resonant circuit corresponding to the bridge
eigenmode. In all other cases, the input admittance Yb D Vb=F seen from the string
depends on Y. From (6.81), the input admittance of the system can be derived:

Yb.!/ D kY.!/C j!

k � m!2 C j!kmY.!/
: (6.82)

Figure 6.15 shows a comparison between an arbitrary board admittance Y and
the corresponding input admittance Yb for a bridge of mass m D 1:5 g with a
resonance tuned to f D 3 kHz. The admittance Y is simply described as the sum
of a few identical and regularly spaced modal contributions. The parameters chosen
to calculate Y as shown in Fig. 6.15 are based on the paper by Woodhouse [18] and
are such that fn D n � 500Hz, Qn D 1=2�n D 50, mn D 0:1 kg. The eigenvectors
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Fig. 6.14 Simplified model of a violin bridge coupled to the body (model 1). From [18]
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Fig. 6.15 Comparison between the modulus of a simplified board admittance Y and the modulus
of a bridge input admittance Yb for the case of the simplified model 1 presented in Fig. 6.14.
From [18]

are normalized to unity. The filtering effect of the bridge can be seen on the graph
of the admittance modulus Yb, which shows a peak around 3 kHz, similar to the one
observed in measurements on a violin.

In the cited paper [18], the author develops several successive models to improve
the description of the coupling between bridge and soundboard. Here, we restrict
ourselves to the model described in Fig. 6.16 which is more realistic than the model
1 shown in Fig. 6.14. The model 2 takes the bridge rotation due to the horizontal
force F resulting from the action of the bow into account. This system also serves
as a good example of a coupled system in rotation and translation, which illustrates
a number of concepts discussed in previous chapters.

In this model, our interest is first focused on the rotational admittance defined as
the ratio between the angular velocity of rotation � of the bridge and the momentum
M D Fa of the horizontal force applied by the string during its motion Yr D �=M .
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Fig. 6.16 Advanced model of a violin bridge coupled to the board, taking the bridge rotation into
account (model 2). From [18]. m is the bridge mass and C its torsional stiffness. d is the distance
between the two legs of the bridge, and a is the mean lever arm between the attachment point of
the string and the base of the bridge

The parameter a is the mean lever arm and C is the torsional stiffness of the bridge
(see Fig. 6.16). The equation of motion for the bridge fixed at its feet is

M D ma2 R� C C�; (6.83)

showing the angular eigenfrequency !b D
q

C
ma2

. The bridge is connected to the

board by two feet separated from each other by a distance d. Under the action of the
transverse forces F1 and F2, these feet take the velocities V1 and V2 defined by the
admittance matrix (see Chap. 3):�

V1
V2

�
D
�

Y11 Y12
Y21 Y22

��
F1
F2

�
: (6.84)

Consider now the second foot (right foot, over the soundpost) as fixed. Under the
action of a moment M applied to the bridge, Foot 1 (left foot, on the bass bar side)
takes the rotational velocity P�1. Reciprocally, P�2 is the rotational velocity of the right
foot, when Foot 1 is fixed (see Fig. 6.16). Given (6.84), this yields the following
matrix: � P�1P�2

�
D
�

Y11 Y12
Y21 Y22

� M
d2

�M
d2

!
; (6.85)

where Y12 D Y21. The rotational velocity of the system is P� D P�1 � P�2, and thus the
bridge rotational admittance is written:

Yr D
P�

M
D Y11 C Y22 � 2Y12

d2
: (6.86)
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It has been shown in Chap. 3 that all terms of the admittance matrix can be written
as a modal expansion:

Yij.!/ D
X

n

j!
˚n.xi; yi/˚n.xj; yj/

mn.!2n C 2j!!n�n � !2/
; (6.87)

where ˚n is the eigenshape associated to the mode of frequency !n, mn the modal
mass, and �n the modal damping. The coordinates of the bridge feet on the board
are denoted (x1; y1) and (x2; y2). From (6.86) and (6.87), we get

Yr.!/ D j!

d2
X

n

Œ˚n.x1; y1/ �˚n.x2; y2/	
2

mn.!2n C 2j!!n�n � !2/ : (6.88)

Finally, the balance of moments around the axis of rotation of the bridge loaded by
the board is written: 8̂<̂

:
Mb D Fa D ma2 R�b C C.�b � �t/;

Mt D C.�b � �t/ D
P�t

Yr
;

(6.89)

where �b and �t are the rotation angles of bridge and soundboard, respectively, and
where Mb and Mt are the applied angular momenta. From these relations, the input
admittance at the string is derived:

Yb.!/ D Vb

F
D a2 P�

Mb
D a2 ŒCYr.!/C j!	

C � ma2!2 C j!Cma2Yr.!/
: (6.90)

This model is significantly more accurate than the previous one. In addition to
its more refined kinematics, it can be seen that (6.90) allows taking significant
manufacturing parameters, such as the bridge height a and the distance d between
the feet, into account. In the cited paper, Woodhouse pursues the calculation further
using the expressions obtained in the case of simply supported rectangular plates
for the eigenshapes ˚n and eigenfrequencies !n [18]. The values of the elastic and
geometrical parameters correspond to typical values (see Chap. 13). This model can
be further improved by taking not only the upper board into account, but also the
back of the instrument coupled to the soundboard by the soundpost. The reader will
find in Chap. 7 the analysis of a similar problem: a trumpet mouthpiece coupled to
a pipe.
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Chapter 7
Wind Instruments: Variable Cross Section
and Toneholes

Jean Kergomard

Abstract Wind instruments are studied in two steps. In the first step, one-
dimensional models are presented. The horn equation is equivalent to the heteroge-
neous string studied in Chap. 3. It can either be used for tubes with discontinuities,
such as chimney pipes, flutes, or trumpet mouthpieces, or for tubes with a
continuous change in cross section, such as conical instruments or bells of brass
instruments. The natural modes are calculated with some approximations for several
basic shapes of wind instruments. The geometry has an important and complex
effect on eigenfrequencies and on amplitudes of input impedance peaks. The role
of dissipation is more simple, because it can be averaged over the length of the
instrument. However, it depends on the radius, and this yields non-proportional
damping. In the second step, it is investigated how to reduce three-dimensional
geometric elements, such as toneholes or bends, to lumped elements. For this
purpose, the definition of duct modes is given, and the mode-matching method is
presented. The basis is a general formulation of the junction of several waveguides
at low frequencies. Useful formulas are given for many elements of this kind.
The chapter ends with the use of the theory of periodic media in order to analyze the
tonehole lattice, with the explanation of important features that distinguish baroque
from modern instruments. Attempt is made to give the most recent formulas of use
for designing the resonators of wind instruments.

7.1 Introduction

In Chap. 3 we already have dealt with inhomogeneous media, in particular with
strings. A whole chapter is dedicated to pipes of varying cross section, possibly
with toneholes, because what most distinguishes the wind instruments among
themselves is their geometry (along with their excitation system). Several sections
are devoted to what does not require three-dimensional theory: the approximation
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called matched planar waves, applied to cross section discontinuities and to horns,
as well as the study of cones, for which an exact solution of the sound equation
exists.

Then the limits of this approximation are studied, by treating the step discontinu-
ities, and the generalization to the essential issue of toneholes. Finally the problem
of periodic media is treated, leading to an analogy between pipes with open holes
and pipes with bells.

This chapter is concerned with linear effects only, therefore by low levels of
sound. It focuses on eigenfrequencies and response to a given excitation, assuming
that this latter is known: we will focus on excitation in the third part. For a
given fingering, the input impedance gives a useful approximation of the playing
frequencies, even if losses are ignored, as well as a good approximation of the ease
of emission.

7.2 Pipes with Variable Cross Section: General Equations

7.2.1 Horn Equation

Early work on pipes with varying cross section (see Fig. 7.1), or with sharp cross
section discontinuities, goes back to the eighteenth century, according to Bernoulli
and Lagrange. The basic idea is that when a change in cross section area occurs,
both flow rate and pressure, once averaged over the cross section, are continuous:
this will be discussed in Sect. 7.6. We first give the general equations that will be
useful later, although their presentation seems a bit tedious at first glance. Then we
focus on important features for wind instruments.

In Chap. 1, two possible analogies between pipes and strings have been estab-
lished. In Chap. 3, Eq. (3.25) describes inhomogeneous string vibrations when
continuity of forces and displacements is assumed. The validity of such an
approximation will be discussed below: for now the flow rate and (average) pressure
are assumed to remain continuous at a change of cross section. This implies that the

Fig. 7.1 Pipe of variable
cross section S.x/

x
S(x)
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two equations of the transmission line (see Table 1.1, Chap. 1) remain valid when
the parameters depend only slowly on x:

@p

@x
D ��.x/

S.x/

@u

@t
C �.x/F ;

@u

@x
D �S.x/ �s

@p

@t
C q, (7.1)

where �.x/F D fext=S.x/ (fext is an external force per unit length and q a flow rate
per unit length). The temperature can vary within the pipe, and so does the density
�.x/, which is inversely proportional to the absolute temperature. On the other hand,
the spatial dependence of the compressibility can be ignored, because it is nearly
temperature independent. Retaining only the flow source for the equation of pressure
(useful for reed instruments) and the force source for the equation of flow (useful
for flutes), the wave equations are obtained as follows:

�sS
@2p

@t2
� @

@x

�
S

�

@p

@x

�
D @q

@t
; (7.2)

�

S

@2u

@t2
� @

@x

�
1

S�s

@u

@x

�
D �

@F

@t
: (7.3)

In the case of a uniform temperature, one obtains, respectively:

S

c2
@2p

@t2
� @

@x

�
S
@p

@x

�
D �

@q

@t
; (7.4)

1

S

@2u

@t2
� c2

@

@x

�
1

S

@u

@x

�
D @F

@t
: (7.5)

In the absence of sources, Eq. (7.4) is often called the “Webster’s horn equation”
because of an article published in 1919 [84], even if it is much older [28]. We will
call this equation the horn equation. One can also write:

@2p

@x2
C S0

S

@p

@x
� 1

c2
@2p

@t2
D �1

S
�
@q

@t
: (7.6)

Another expression of Eq. (7.1), often useful, consists in replacing the pressure
and flow rate variables by the pR and vR variables, where R.x/ is the radius (we
consider the case without sources only):

@.pR/

@x
D ��@.vR/

@t
C R0

R
.pR/ ;

@.vR/

@x
D ��s

@.pR/

@t
� R0

R
.vR/: (7.7)

We can derive from (7.6) another form of the horn equation with no source:

@2.pR/

@x2
� 1

c2
@2.pR/

@t2
� 1

R

@2R

@x2
.pR/ D 0 . (7.8)
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In the Fourier domain, if R00 D @2R=@x2, it can be written as:

@2.PR/

@x2
C
�

k2 � R00

R

�
.PR/ D 0 (7.9)

Literature on horns is extremely abundant (see [28]). It concerns in particular the
solving of the (approximate) plane wave equation, written in one of the forms (7.6)
or (7.8): it can be solved either analytically for some geometries defined by the area
function S.x/, or numerically. Many other studies of the literature are concerned with
the possibility of increasing the validity range of the horn equation. This question
will be studied in Sect. 7.6.3.5.

7.2.2 Orthogonality of Modes

There is no need to consider all the properties of these equations. One can simply use
the analogy with the string equation (3.25). Thus, for simple boundary conditions
(Neumann or Dirichlet conditions), assuming that � and �s remain uniform, the
modes ˚n.x/ exp.j!nt/ are orthogonal for the following scalar product:Z `

0

S.x/˚n.x/˚m.x/dx D 0 for n ¤ m, (7.10)

for Eq. (7.4). For Eq. (7.5):Z `

0

S�1.x/˚n.x/˚m.x/dx D 0 for n ¤ m: (7.11)

These relationships remain valid when there are discontinuities in cross section.
This can be verified by integrating by parts and using the continuity conditions. Pyle
[71] noted that all properties which are valid for the pressure in a pipe with cross
section area S.x/ are valid also for the flow rate in a pipe with cross section area
S0.x/ D 1=S.x/: This duality is useful for certain reasoning. We finally note that if
we consider the modes ˚R.x/ D ˚.x/R.x/ corresponding to the quantity .pR/, the
scalar product (7.10) does not contain the factor S.x/.1

1This simple result follows the fact that, mathematically, the Fourier transform of Eq. (7.6) is
a Sturm-Liouville equation, i.e., an ordinary differential second-order equation with variable
coefficients. Making the change of variable p �! pR to obtain the transform of (7.8) is equivalent
to make canonical the Sturm–Liouville equation by eliminating the term containing the derivative
of order 1 with respect to x. This is a general result.
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7.2.3 Horn Equation with Boundary Layer Effects

We can generalize these results when the effects of boundary layers are taken
into account. In harmonic regime, we assume that the changes in cross section do
not influence these effects, which implies that they are slow enough. Thus, using
Eq. (5.132) to replace Eq. (7.1), the following equation is obtained:

@2P

@x2
� Z0

v

Zv

@P

@x
� ZvYtP D 0; (7.12)

as well as a similar equation for the flow rate. We can make use of the concepts of
effective density �v (5.116) and effective compressibility �t (5.130), that vary with
respect to the radius:

�v D �
h
1C 2

p�j=rv
i

; �t D �s

h
1C 2.� � 1/

p�j=rt

i
: (7.13)

(these expressions, derived from (5.143), are limited to the first order of the ratio
boundary layer thickness/radius). We then modify Eq. (7.12) as follows:

@2P

@x2
C
�

S0

S
� �0

v

�v

�
@P

@x
� � 2P D 0 (7.14)

where the propagation constant � is given by (5.144). Two ideas come from this
equation: the first one is that if the effects of boundary layers do not strongly vary
with the radius, or if the effects are calculated for a kind of average radius, we
can solve the horn equation with losses as soon as we know the solution without
losses (we just need to consider the effective density and effective compressibility
for this average radius). The second idea is that a rigorous solution of this equation
is hampered by the problems of non-proportional damping, i.e., damping varying
with the space coordinate (see Chap. 5). Illustrations are given for chimney pipes
(Sect. 7.3.3) or conical tubes (Sect. 7.4).

7.2.4 Lumped Elements of Horns

We now consider pipes shorter than the wavelength, with “lumped elements” (see
Sect. 1.5 in Chap. 1). We will ignore the sources and assume a uniform temperature,
and we will start by ignoring losses. If in Eq. (7.1) the flow rate (in the first equation)
and the pressure (in the second one) are assumed to be uniform between two
abscissae x1 and x2 D x1 C `, we obtain

p.x2/ � p.x1/ D �Ma
@u

@t
; u.x2/ � u.x1/ D �Ca

@p

@t
; where (7.15)

Ma D �

Z x2

x1

1

S.x/
dx I Ca D �s

Z x2

x1

S.x/dx: (7.16)
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The expression of the acoustic compliance Ca involves the volume; this expression
is exact, i.e., the same result is obtained when starting from the equations in three
dimensions, due to the law of mass conservation [Eq. (1.154)].

What happens when losses are considered? In harmonic regime, ignoring disper-
sion, (only the imaginary part of

p�j in (7.13) is retained, see remark (5.147)), we
can write after some calculations:

p.x2/ � p.x1/ D �.Ra C j!Ma/u ; u.x2/� u.x1/ D �.Ga C j!Ca/p, where

Ra D �
p
!`vc

Z x2

x1

1

�R3.x/
dx I Ga D �s.� � 1/

p
!`tc

Z x2

x1

�R.x/dx: (7.17)

This applies to pipes we called “wide.” The resistance Ra and the conductance Ga

are not “pure” in the sense that they vary with frequency, which would not be the
case for “narrow” pipes or capillaries.

7.2.5 Modal Expansion of the Input Impedance

In Chap. 3, we derived in the frequency domain, the shape of the modal expansion
for the driving-point admittance of a general structure. For a tube with varying cross
section, we have to use the analogy between tubes and strings given in Table 1.1
in Chap. 1. Then we can use the formulas (3.105) and (3.39) for the driving-point
impedance,

Zij.!/ D j!
NX

nD1

˚n.xi/˚n.xj/

mn.!2n C j!!nQ�1
n � !2/ ;

mn D
Z L

0

˚2
n .x/�.x/S.x/dx: (7.18)

We have directly added the damping term, where Q�1
n D 2�0: As we learned

in Chap. 5, this formula is valid for certain boundary conditions, and under the
condition that the damping is proportional, so that the mode shape is real. For
simple boundary conditions, if we ignore damping, and if in addition we consider a
cylindrical tube with uniform parameters �.x/ and �.x/, we obtain Eq. (4.57).

In the present chapter, we are often interested in the input impedance, denoted
Z.!/, and for that case, Eq. (7.18) becomes

Z.!/=Zc0 D j!
NX

nD1

Fn

!2n C j!!nQ�1
n � !2

; with

Zc0 D �c

S.0/
; Fn D c

˚2
n .0/S.0/R L

0
˚2

n .x/S.x/dx
: (7.19)
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For a cylindrical tube, Fn D 2c=` for all modes. However, the visco-thermal
losses depend on the radius, therefore in horns the damping is not proportional.
Nevertheless we will see for the example of a conical tube that this formula is
sufficiently accurate if we use the average value of damping, i.e., the average value
of the inverse of the radius.

Now, what happens when the damping is not proportional and/or when the
boundary conditions are not of simple kind, in particular when they are dissipative,
such as the radiation condition? We saw in Chap. 5 that we can use the residue
calculus see Eq. (5.175), and therefore may write the following general formula:

Z.s/=Zc0 D
X

n

�
Cn

s � sn
C C�

n

s � s�
n

�
; (7.20)

where s D j! and sn D je!n �˛n: The complex natural frequencies are e!n C j˛n. The
coefficients Cn are complex, because the modes are complex. In order to compare
Eqs. (7.19) and (7.20), we write

Z.s/=Zc0 D
X

n

s.Cn C C�
n /� .Cns�

n C C�
n sn/

s2 C 2˛ns C jsnj2 (7.21)

The identification yields

Fn D 2<e.Cn/ ;
!n

Qn
D 2˛n ; !2n D jsnj2 D e!n

2 C ˛2n : (7.22)

However, it is observed that the identification can be done only if <e.Cns�
n / is small

enough, or:

jsj >> ˇ̌<e.Cns�
n /=<e.Cn/

ˇ̌
. (7.23)

We will often use the simple formula (7.19), but it is important not to forget that
difficulties can occur at very low frequencies.

7.3 Pipes with Cross Section Discontinuities:
First Approximation

7.3.1 Elementary Model: Example of the Eigenfrequencies
Equation: the Helmholtz Resonance

Discontinuities in cross section were treated in an approximated way by Bernoulli,
who studied chimney organ pipes: these pipes, consisting of two consecutive
cylinders, are used to obtain formants in the spectrum, i.e., some strengthened
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R
x

L
1 1 1 20 = +

Fig. 7.2 Chimney pipe, consisting of tube 1 (length `1 and cross section area S1) and a tube 2
(length `2 and cross section area S2). 
 D S2=S1. The superscripts C and � refer to the quantities
on either side of the discontinuity

frequency ranges. This is a simple interesting case, because it allows an easy
understanding of the effect of a deviation from the cylindrical shape. This can also
regarded as an example of a coupled system, such as those studied in Chap. 6. An
example is the effect of a brass instrument mouthpiece. Moreover this study allows
finding a simple formula for the study of a cylindrical flute, the mouthpiece hole
being considered as a small pipe.
We will study the eigenfrequencies, then the successive reflections, and finally the
modes, for the following boundary conditions: zero pressure at the output, and zero
velocity at the input.

• Let us consider a sequence of two pipes with different cross sections
(see Fig. 7.2). We will examine this example in detail, but many conclusions will
remain valid for other configurations. Bernoulli admitted that at the discontinuity,
at any time, one could write the flow conservation, at x D `1, uL

1 D uR
1 . In

Sect. 7.6.3.2 we will show that, because of the mass conservation, this equation is
rigorous. Bernoulli also considered that the pressure is continuous, i.e., pL

1 D pR
1 :

this is an approximation, which we will also discuss. In fact the pressure is
not plane near the discontinuity, but this approximation is quite satisfactory for
the pressure averaged over the section, especially if one takes a small length
correction to the pipe into account, as discussed further in Sect. 7.6.3.3. For the
moment, we ignore this correction.

Under these conditions, the acoustic impedance is continuous at the cross section
discontinuity: this is the reason why pressure and flow rate are preferred as basic
variables, and this choice implies the definition of the acoustic impedance. In
order to find the eigenfrequencies of such a pipe, we use the projected impedance
(ignoring losses). Let us consider a pipe closed at x D 0 and “open” at x D ` D
`1 C `2 (the length ` includes the radiation length correction). We have, taking
carefully the direction in which we project the impedances into account:

ZR
1 D j�cS�1

2 tan k`2 ; ZL
1 D j�cS�1

1 cot k`1: (7.24)

Hence the equation for the eigenfrequencies is given by ZR
1 D ZL

1 :

tan k`1 tan k`2 D 
 where 
 D S2=S1: (7.25)
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Notice that another method, similar but heavier, is to project the impedance from
x D ` to x D `1; then to deduce ZR

1 , then project ZR
1 until x D 0 where the

impedance is infinite. The transcendental equation (7.25) can be solved in several
ways, e.g., using a graphical method. Furthermore if the length `2 is small, and
the ratio 
 is large, we can write cot k`1 ' k`2=
 ' tan.k`2=
/, which yields
an approximate analytical solution: k.`1 C `2=
/ D .n � 1=2/� . Nevertheless we
wrote: “if the length `2 is small,” without giving any reference length. The latter is
actually the wavelength 2�=k, corresponding to the frequencies obtained, and we
see that the condition implies `2 � `1, and n should be not too large. Similarly if
the two lengths are “small,” we get

k2 D 
=`1`2: (7.26)

The corresponding frequency is nothing else than the resonance frequency of a
Helmholtz resonator (see Chap. 1, Sect. 1.5 and Chap 2). The conditions on the
lengths imply:


`1=`2 � 1 ; 
`2=`1 � 1:

This requires that 
 is small: thus the resonance frequency is very low, much
lower than the frequencies for which the wavelengths are related to the geometric
dimensions. A (more or less) sudden cross section discontinuity is therefore
necessary to build a Helmholtz resonator, which has the behavior of a system
with lumped elements for its (first) resonance. If the discontinuity is small, this
behavior is not possible at resonance, and the resonance wavelength is of the order of
magnitude of the lengths. A more complete (linear) model of a Helmholtz resonator
is discussed in Sect. 7.6.3.4.

• A general method to solve Eq. (7.24) is the iterative one (or perturbation method):
let us try to determine the length �` to be added to the total length ` so that the
resonances are those of a closed/open tube of length `C�`with no discontinuity.
We must have

tan k`2 D cot k.`1 C�`/ , hence cot k.`1 C�`/ D 
 cot k`1:

Using tan k�` as unknown, and denoting 
 D 1 � 2"; the following result is
derived:

�` D 1

k
arctan

�
" sin 2k`1

1 � 2" cos2 k`1

�
: (7.27)

For this problem, the two lengths are playing the same role in (7.25), and
we might equivalently have written cot k`1 D tan k.`2 C �`/: therefore
Formula (7.27) remains valid by just interchanging the two lengths (but without
changing 
). So the formula with the shortest length will be preferred, so that
the arguments of the trigonometric functions are smaller. This yields a simple
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result for the first order in " (weak discontinuity): �` ' ."=k/ sin 2k`1 '
."=k/ sin 2k`2. In addition we notice that �` depends on frequency, which
induces an iterative method of calculation: we first determine k for " D 0,
resulting in k.0/ D .n � 1=2/�=`. We therefore deduce �`.0/, then k.1/ D
.n�1=2/�=.`C�`.0//, etc. The method converges even more quickly for smaller
values of ". This method can be used for any type of discontinuity in a pipe, and
obviously it is very interesting when there are N small discontinuities. In this
case, the total correction length is simply the sum of the corrections due to each
one of the discontinuities.

• The fact that �` depends on frequency implies that the eigenfrequencies are
not harmonically related, which has several consequences on the produced
sounds. First, this raises tuning problems during a register change, and then
this implies that the playing frequency evolves with the excitation level, which
is problematic for the musician, as discussed in Chap. 9. Finally the sound
spectrum is strongly affected. For the case of a small perturbation (" small),
where `1 � `2, we may perform a series expansion of the function sin k`1,
in order to know the direction of inharmonicity: �` D 2"`1.1 � 2k2`21=3/. If
S2 > S1, " is negative, the lengths corrections also are negative, and the first
resonance frequency increases. Moreover the absolute value of�` decreases with
frequency, so the second resonance increases less than the first one, resulting in
negative inharmonicity. On the other hand, if S2 < S1, " is positive, the length
corrections are positive and the first resonance frequencies become smaller;
otherwise, �` decreases with frequency, so the second resonance decreases less
than the first one, which results in positive inharmonicity.

7.3.2 Waves: Successive Reflections

We could generalize all the results in Chap. 4 to a chimney pipe. We simply look at
what is new, i.e., the equations at the cross section discontinuity, and treat a simple
example, that of the reflection function at the entrance of such a pipe. Instead of
writing the equations at the discontinuity in terms of pressure and flow rate, we
describe them using the incoming and outgoing waves [see Eqs. (4.1) and (4.7)].
Thus we can write for Pipe 1, at any time, at x D `1:

p D pC C p� ; u D .S1=�c/.pC � pL/:

When the wave pC reaches the discontinuity, it is partly reflected and partly
transmitted into Pipe 2 as if it was infinite, before other reflections arrive. So at
the time of arrival, we have: p=u D �c=S2. This gives the very simple following
results, valid until the arrival of other reflected waves:

p�

pC D S1 � S2
S1 C S2

D R1 ,
p

pC D 1C R1 D 2S1
S1 C S2

D T1: (7.28)
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Fig. 7.3 First reflection
p� D R1pC and transmission
p D T1pC at the
discontinuity for a pressure
wave pC coming from Pipe 1

p+

R1p+
T1p+

R1 is the reflection coefficient at the discontinuity, and T1 the transmission
coefficient into Pipe 2 (see Fig. 7.3). Of course, we check that if the sections are
equal, R1 D 0, T1 D 1. If S2 is smaller than S1, the reflection occurs with no sign
change, as in the case of a closed pipe (at x D `1); however, if S2 is larger than S1,
reflection occurs with a sign change, as if Pipe 1 was opened on a large space (very
small pressure).

When Pipe 2 is finite, we can follow the successive reflections of the reflected
and transmitted waves at both ends of the chimney pipe, and obtain expressions
generalizing Expression (4.13). Consider the simple example of the reflection
function, which is the value of the returning pressure p� when considering an
impulse of pressure pC (see Chap. 4). The round trip of the wave transmitted in
Pipe 2, with reflections at the open end of Pipe 2, yields an incoming wave arriving
at x D `1, which is T1rL.t/, where rL.t/ D �ı.t � 2`2=c/. This incoming wave
is partially reflected back into Pipe 2 at x D `1 and is partially transmitted into
Pipe 1, with the reflection and transmission coefficients obtained when Pipe 1 is
infinite, i.e.,

R2 D S2 � S1
S1 C S2

; T2 D 2S2
S1 C S2

: (7.29)

Finally, for an incident impulse wave pC, there are the following incoming waves in
Pipe 1: R1, then T1rLT2, then T1rLR2 � rLT2, then T1rLR2 � rLR2 � rLT2, etc. There
is no outgoing wave in Pipe 1, since the incoming wave is an impulse, so it is zero
for positive t; and the incoming waves in Pipe 1 are the waves having already done
some round trips in Pipe 2.

• Let us go now in the Fourier domain. The incident wave PC is equal to unity. The
Fourier transform of rL.t/ is RL.!/ D � exp.�2jk`2/. Hence, paying attention to
the terms in chronological order:

P� D R1 C T1RLT2 C T1RLR2RLT2 C T1RLR2RLR2RLT2 C 
 
 
 ;

that we can factorize as follows:

P� D R1 C T1RL.1C R2RL C .R2RL/
2 C 
 
 
 /T2 D R1 C T1RLT2

1 � R2RL
, (7.30)
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l1 ct /2

–1/3

–8/9

–8/81

8/27

8/243l1 + l2

l1 + 2l2

l1 + 3l2

l1 + 4l2

Fig. 7.4 Reflection function (response in incoming wave to an impulsive outgoing pressure wave)
for a chimney pipe [Eq. (7.30)]. The calculation is done at the entrance of the pipe 1, for the case
S2 D 2S1 and RL D �1, `2 D 2`1: One can easily check the sign of each reflection, knowing that
a widening (or radiation) requires a change of sign, while a narrowing does not imply a change
in sign

provided that jR2RLj is smaller than unity (the latter expression is what we call a
closed-form expression).

We can multiply this kind of calculations to switch from the closed-form to
successive reflections, or vice versa. Some concluding remarks:

• What we calculated is the reflection in Pipe 1 at x D `1; of course, to get the
reflection at the entrance (x D 0), we have to multiply the result (7.30) by
exp.�2jk`1/; Fig. 7.4 schematically shows the result of the reflection function
at the entrance of Pipe 1, for an impulsive excitation, both pipes being lossless.

• The absolute value of quantity R2 D .S2 � S1/=.S2 C S1/ is always smaller
than unity, which ensures the convergence of the series, and validates the closed-
form (7.30).

• The amplitude of the reflected waves rapidly decreases with time, since the
modulus of each reflection is obtained from the previous one by multiplying it
by R2.

• Furthermore, we could be interested in the input impedance, but this requires
reflections at the entrance of the instrument to be taken into account, and thus the
formulas quickly become cumbersome: the reflection function is much simpler.

• The successive reflections corresponding to the input impedance would decrease
much more slowly. This can be understood as a simple exercise (notice that this
observation is obvious in the case of a simple cylindrical pipe, see Chap. 4,
because there is only one reflected wave for the reflection function!). This
property makes the reflection function very useful for calculating oscillations in
a self-sustained oscillations instrument (bowed strings or woodwinds), as shown
by Schumacher [76]. However, for certain kinds of pipes, the reflection function
can last a very long time, more than the impulse response corresponding to the
input impedance [33].
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• Measuring successive reflections can allow the inverse problem to be solved
[4, 24, 32], i.e., deducing the geometry from the measured impulse response for
horns of any kind.2

7.3.3 Modes of a Chimney Pipe: The Case
of a Reed Instrument

7.3.3.1 General Expression

We continue to treat the example of a chimney pipe (Fig. 7.2), an archetype of
tube with variable cross section. It is easy to obtain a closed-form formula using
transfer matrices, but the modal expansion can also give an expression of the
height of impedance peaks (input or transfer impedance). To do this, we seek the
Green’s function (or transfer impedance) for the case studied above (closed/open
pipe), taking into account the dissipation in boundary layers, and using the mode-
orthogonality method of the lossless problem.3

A pressure mode ˚n.x/ satisfies: (1) the Helmholtz equation in the two pipes;
(2) the two boundary conditions; (3) the condition of continuity at x D `1; (4) the
flow rate continuity condition, which is written, according to the Euler equation4:

S1
d˚n.x/

dx
.lL1/ D S2

d˚n.x/

dx
.lR1 /: (7.31)

We choose in Pipe 1:˚n.x/ D cos knx (to take into account the infinite impedance at
x D 0), so the amplitude will be 1 at x D 0, at the reed location. The exit condition
x D ` and continuity at x D `1 impose

˚n.x/ D cos knx if x � `1 (7.32)

˚n.x/ D an sin kn.` � x/ , where an D cos kn`1

sin kn`2
if x � `1: (7.33)

2An alternative method is the optimization in the frequency domain [13, 39, 40]: it is sought to
minimize the error between the impedance of a target shape and an estimate thereof, based on a
number of geometrical parameters.
3For the sake of simplicity, radiation will be ignored, thus results are limited to not too high
frequencies. Dispersion is ignored as well. One difficulty is that the modes of the problem with
losses are not quite orthogonal, because damping is varying with the radius. This can be avoided
by applying the residue calculus (see Chap. 4, Sect. 4.6.2) to the closed-form expression, which
exists, but this leads to heavier calculations.
4We will assume that there is no influence coming from boundary layers (Zv D j!�=S.x/ on both
sides), although this is not strictly true.
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Using the flow rate continuity (7.31), we again obtain the eigenfrequencies equa-
tion (7.25):

tan kn`1 tan kn`2 D S2=S1 D 
: (7.34)

Now consider the Helmholtz equation with source (5.161), assuming Zv D j!�=S
(as explained in Chap. 5, Sect. 5.6) and:

kc D !

c

"
1 � j˛1

1

R.x/

r
c`v
!

#
: (7.35)

[see (5.160), (5.144)]. What is new compared to a simple cylindrical pipe is the
variation of the wavenumber with the space coordinate. We denote

kc D !

c
� j

�

R.x/
where � D ˛1

r
!`v

c
: (7.36)

The injection of P.x/ D P
n

An˚n.x/ in Eq. (5.161) gives at the first order of losses:

X
n

An

�
k2n � !2

c2
C 2j

!

c

�

R.x/

�
˚n.x/ D j!�

1

S.x/
Usı.x � xs/:

In order to use orthogonality, we need to calculate two quantities:

�nm D
Z `

0

S.x/˚n.x/˚m.x/dx and �0
nm D �

Z `

0

R.x/˚n.x/˚m.x/dx. (7.37)

�nm is zero for n ¤ m [see Eq. (7.10)], but this is different for�0
nm (here the notation

0 does not represent the derivative), which corresponds to the term �=R.x/: This is
due to the non-proportional damping (see Chap. 5, Sect. 5.2.1.2): in the computation
of inter-modal scalar products, the term R.x/ prevents the mode separation. But as
shown in Chap. 5, Sect. 5.2.1.1, for discrete systems, the equations can be decoupled
at the first order of damping, and we can ignore the cross terms. Thus, we obtain

P D j!�c2Us

X
n>0

1

�n

˚n.x/˚n.xs/

!2n C j!!n
1

Qn
� !2 (7.38)

where
1

Qn
D 2�

�0
n

�n

c

!n
, (7.39)

where �n D �nn, and similarly for �0
n. For each mode, the transfer impedance is

the product of a factor, ˚n.x/˚n.xs/=�n, related to geometry, i.e., related to wave
reflections, and a factor, related to dissipation, which is the response of a single-
degree-of-freedom oscillator. For the input impedance ˚n.x/˚n.xs/ D 1: we find
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a formula similar to that for a cylindrical pipe, but the quantities �n and �0
n vary

with the eigenfrequency number n. We will show below that the ratio�0
n=�n varies

much more slowly than �n. It can be concluded that the peak height of the input
impedance5 is approximately the product:

• of factor Qn=!n, which decreases as the square root of n, because of the
coefficient �.!n/, and depends little on the geometric shape;

• and the factor ��1
n , which heavily depends on the geometrical shape, because of

the reflections at cross section changes: it is constant only for a cylinder, and does
not depend on dissipation.6 In other words, the height of the input impedance
peaks is approximately that of a cylinder modulated by a purely geometric factor,
��1

n . This result would be exact if damping was independent of the radius;
• in order to calculate the factor �n, taking into account the conditions at both

ends, we use the equivalent of Eq. (3.33), which means nothing else than the
equipartition of energy:

!2nPM.n; n/ D PT.n; n/

where PM.n; n/ D �s�n and PT.n; n/ D 1

�

Z `

0

S.x/

�
d

dx
˚n.x/

�2
dx;

thus 2�n D
Z `

0

S.x/


˚2

n .x/C k�2
n ˚ 02

n .x/
�

dx: (7.40)

This equation, in which we use the notation 0 for the derivation with respect
to x, is valid when the boundary conditions are of Neumann or Dirichlet type
(zero or infinite impedance). Apart from a factor, the integral represents the total
energy. Because in both pipes the function ˚n.x/ is a sine function, the function
to integrate is a constant in each cylinder. (This is due to the fact that the total
energy density of a plane wave, either traveling or standing, is constant in space.)
Using (7.25), it is found:

2�n D S1`1 C S2a
2
n`2 (7.41)

where a2n D cos2 kn`1= sin2 kn`2 D cos2 kn`1 C 
�2 sin2 kn`1: (7.42)

Depending on the application to be studied, we can use the eigenfrequency
equation (7.25) in order to remove one of the terms tan kn`1 or cot kn`2. Here we
have eliminated cot kn`2. Indeed, we consider a long pipe of length `2, perturbed
by a small pipe of length `1; the quantity tan kn`2 varies much faster than the

5Remember that strictly speaking, as the peaks are finite, all modes have to be taken into account
at a given resonance frequency. However, we will consider that dissipation is low enough in order
to consider in the infinite series only the mode whose eigenfrequency is the considered resonance
frequency.
6More accurately, only �n occurs far from the resonances, and �0

n occurs near the resonances.
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quantity tan kn`1 in the frequency interval considered. Eliminating the rapidly
varying quantities therefore gives access to an envelope of the input impedance
curve, with rich information. Thus, if V D S1`1 C S2`2 is the total volume:

2�n D V C `2S2 sin2 kn`1



�2 � 1� : (7.43)

Therefore, if 
 D S2=S1 < 1, �n varies between minima equal to V=2, as for a
cylinder, and maxima given by

min�n

max�n
D
�
1C `2

`1



�
W
�
1C `2

`1

1




�
: (7.44)

The interpretation of the frequencies corresponding to the extrema is simple: for the
case where 
 tends to 0, the input impedance (without dissipation) is proportional
to cot k`1. The maxima of the input impedance are obtained for sin k`1 D 0

(eigenfrequencies of Pipe 1 closed at its two ends), and the minima occur for
sin k`1 D ˙1 (Pipe 1 open at the entrance, closed at x D `1). The maxima and
minima are achieved at the same frequencies as those of��1

n , but their values differ
from these of ��1

n .7 However, it is remarkable that in Eq. (7.43) the frequencies of
Pipe 1 only appear, whatever the ratio of the cross sections: this can be regarded
as a kind of “decoupling” of the two pipes, although it is obviously false for the
eigenfrequencies of the whole system.

• Studying variations of �0
n, if S2 < S1; bounds can be found, starting from:

�n D �

Z `

0

R2.x/˚2
n .x/dx > �R2

Z `

0

R.x/˚2
n .x/dx D R2�

0
n:

Using this, and doing a similar calculation with R1, it is obtained

1

R1
<
�0

n

�n
<

1

R2
: (7.45)

Variations of �0
n=�n are much smaller than those of �n, especially if one pipe

is much longer than the other one, which justifies the result (7.39). Figure 7.5
shows the input impedance of a chimney pipe, compared to the same pipe without
discontinuity at the entrance (S2 D S1), as well as the same curve multiplied by the
factor 1=�n calculated above.

7The extrema of these two curves are different, as those of the input impedance of Cylinder 1
depend on dissipation, while the modulation factor �n is “reactive,” independent of dissipation.
The result cannot be the product of the input impedances of two cylinders: we can never have the
product of two damping factors. The simple sentence “the first cylinder impedance modulates that
of the second” is therefore improper.
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Fig. 7.5 Input impedance
(divided by of �c=S1) of a
chimney pipe and its
envelope. Dimensions are
`1 D 5 cm; r1 D 6mm;
`2 D 70 cm; r2 D 7:5mm,
Pipe 2 ends in a zero
impedance. The maximum of
the envelope corresponds to
sin2 k`1 D 1. We
superimposed the curve of a
cylinder of the same length
and its envelope, which is
simply decreasing
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7.3.3.2 Discussion on the Effects of a Discontinuity in Cross Section

In Sect. 7.3.1 we examined the effects of inharmonicity. What about the changes
in peak height of the input impedance? We will see in Part III that playing a note
whose fundamental corresponds to a given peak is easier when the peak is higher.
Moreover what is primarily relevant is the height of the peak, not its quality factor.

It may also be interesting to consider the spectrum of the radiated sound, whose
pressure is roughly proportional to the time derivative of the output flow rate. We
therefore calculate the ratio between output flow rate and input pressure. In the
studied case, it is for the mode n:

U.`/

P.0/
D � S2

�c

1

˚n.0/

1

jkn

d

dx
˚n.`/ D �j

S2
�c

an: (7.46)

where an is given by (7.42). The transfer function has a maximum value for
frequencies for which the input impedance of Pipe 1 has a minimum value, and
has a minimum value for the opposite case. The existence of formants in the sound
around these frequencies could be deduced, but it is not so simple, because a part of
the spectrum of the inlet pressure itself depends on the input impedance, and thus
on the same coefficient an. Moreover inharmonicity plays an important role, and
radiation depends on frequency in a complicated way. The question is in general
very intricate, since harmonics of the fundamental frequency can be very far from
a resonance frequency. Nevertheless this study reveals that the geometry influences
the notes which can be played (both their frequency and ease of playing). These
ideas will be developed in the third section (see also a study on chimney organ
pipes in [50]). The present study may apply to the role of a clarinet mouthpiece or
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of the saxophone, which correspond respectively to a cross section expansion and
narrowing (but the shape of the saxophone is conical).8 We discuss later a similar
case for a trumpet mouthpiece.

7.3.4 Brass Instrument Mouthpiece

7.3.4.1 General Approach: Effect of Pipe with Variable Section Located
at the Entrance of a Cylinder

An example of generalization of the chimney pipe is a brass instrument with a
mouthpiece (see Fig. 7.6). Pipe 1 (Fig. 7.2) is replaced by a resonator consisting of a
cavity with a large enough volume, on which the lips come to rest, and a backbore.
The backbore is a rather narrow pipe which fits into the instrument, which is at
first cylindrical for a trumpet or trombone. As the backbore does not have the same
section as that of the instrument pipe, a decoupling effect can be found as described
above. A resonance of the mouthpiece, whose backbore would be open into an
infinite space, produces a modulation of the pipe input impedance. One can hear
this frequency when hitting with a flat hand on the cup: the resulting sound is “pop,”
hence the name given to this frequency by Benade, the popping frequency. We will
now study how the mouthpiece acts on the resonance frequencies, and on the input
impedance curve, making easier emission of certain notes. We use the same method
as for the chimney pipe. For the sake of simplicity, we still do not take dissipation
by radiation into account and, as well, we do not take the existence of the bell into
account, which will be discussed later.

• Consider first the general problem of a Pipe 1 of length `1 and variable cross
section area S.x/: we return to the problem described in Sect. 7.3.3. There is a
cross section discontinuity at x D `1, which is SL on the left and SR D S2 on
the right. We assume for the moment that the mode shapes ˚n.x/ are known,
for 0 � x � `1; and that they satisfy ˚ 0

n.x/ D 0 at the opening, i.e., zero flow,
because we are looking again for the input impedance maxima of the whole
instrument. For the Pipe number 2, between `1 and ` D `1 C `2, we have

˚n.x/ D an sin kn.` � x/ for `1 � x � `: (7.47)

The conditions at the discontinuity give

˚n.`1/ D an sin kn`2 ; SL˚ 0
n.`1/ D �anS2kn cos kn`2: (7.48)

8An interest of the above-discussed problem is that it can be treated as a limiting case of the
mass-type or compliance-type termination, while maintaining simple boundary conditions (zero
or infinite impedance). The idea has already been touched on when considering the radiation
impedance of a pipe as a length correction (see Chap. 4). This can be advantageous for the sake of
simple calculations.
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The eigenwavenumbers are solutions of:

j
�c

S2
tan kn`2 D ��c

SL
jkn
˚n.`1/

˚ 0
n.`1/

: (7.49)

The right-hand side of the equation is the input impedance at x D `1 of the pipe
with variable cross section, seen from Pipe 2. At lower frequencies, because
the condition at input is a zero flow condition, the impedance is that of a volume
with lumped elements, ��c2=.j!V1/, where V1 is the total volume of Pipe 1. We
search for the eigenfrequencies using a length correction for Pipe 2, writing the
second member of (7.49) as [72]:

j
�c

S2
cot kn�` D ��c

SL
jkn
˚n.`1/

˚ 0
n.`1/

: (7.50)

This is not the definition adopted for chimney pipes, because here the correction
is the length to be added to the length of Pipe 2, and not to the total length. At
low frequencies, we have �` D V1=S2, which is the length of a section of Pipe
2 of volume V1: For the eigenfrequency fr of the “closed/open” Pipe 1, with zero
impedance at x D `1, we have �` D �=2kr D c=4fr.

Considering the modes, they are orthogonal since the flow vanishes at x D 0,
and:

2�n D
Z `1

0

S.x/


˚2

n .x/C k�2
n ˚ 02

n .x/
�

dx C S2a
2
n`2 (7.51)

[see Eq. (7.40)]. Using Eq. (7.48), the rapidly varying functions can be eliminated
(since we suppose `2 	 `1; they are functions of kn`2), and we obtain

a2n D ˚2
n .`1/C

�
SL

S2

�2
1

k2n
˚ 02

n .`1/: (7.52)

Equation (7.38) remains valid, and for the same reasons as above, we assume that
�0

n D �n=R2 [see Eqs. (7.37) and (7.45)]. The input impedance envelope curve
is approximately given by the ratio En D ˚2

n .0/=�n, multiplied by the damping
function, Qn=!n, decreasing as

p
!: At lower frequencies, the pressure field must

be constant throughout the pipe, so we simply have

2�n D V1 C V2,

which is the total volume of the instrument. The frequency variation of the quantity
given in Eq. (7.51) is difficult to analyze in general, but if the ratio SL=S2 is small,
we can simplify Expression (7.52), ignoring the second term. On the other hand,
when Pipe 2 is narrower, we could ignore the first term. If SL=S2 is small, the
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“amplification” effect is maximized when, roughly, ˚2
n .`1/ is minimized, i.e., for

frequencies corresponding to the eigenfrequencies of Pipe 1, closed at the entrance
x D 0 and open at the end x D `1: This “amplification” of the input impedance
(the quotations marks are essential here, because of course the mouthpiece does not
create energy, but simply strongly reflects energy at its resonance) facilitates the
playing of the notes near the mouthpiece resonance. If the volume increases, the
peak is shifted to lower frequencies and low notes are enhanced.9

7.3.4.2 Case of a Mouthpiece Similar to a Helmholtz Resonator

The previous study holds for an arbitrarily shaped Pipe 1. We suppose now (see
Fig. 7.6) that Pipe number 1 is a Helmholtz resonator, the dimensions of which
being small compared to the wavelength, with a uniform pressure in the cup10

(0 � x � `0/, of volume V0, and a constant flow rate in the backbore (`0 � x � `1/.
So, the backbore length is equal to `1 � `0. We will discuss below the validity of
this model for a trumpet mouthpiece. We must calculate the function ˚n.x/ in the
mouthpiece, by integrating Eq. (7.1) in their version without source and with lumped
elements (7.15). For the cup, we obtain

˚n.x/ D 1 for 0 � x � `0 and Un.x/ D �jknc�s

Z x

0

S.x/dx, (7.53)

Fig. 7.6 Scheme of a brass
instrument mouthpiece and
notations. The mouthpiece is
Pipe 1, with variable cross
section, and with total
length `1

0 0 1 1 2= +
x

V0

S(x) SL S2

9We can presume that enhancing the impedance peaks also enhances the harmonics of lower notes
whose frequency is close to the mouthpiece resonance: this is a delicate issue, because resonance
inharmonicity explains why the frequencies of the harmonics rarely coincide with those of the
peaks, and consequently why their impedance can be small (with a large imaginary part compared
to the real part).
10Notice that if the cup is cylindrical, Eq. (7.32) yields a pressure uniform within the cup if
kn`1 << 1. Moreover notice that we choose to consider here the pressure as dimensionless;
therefore the flow rate has the dimension of an admittance.
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where Un.x/ is the flow rate, and then Un.`0/ D �jknV0=�c. For the backbore we
obtain

˚n.x/ � 1 D �jkn�cUn.`0/

Z x

`0

S�1.x/dx , for `0 � x � `1, or (7.54)

˚n.x/ D 1 � k2nV0M1.x/ where M1.x/ D
Z x

`0

S�1.x/dx: (7.55)

The quantity �M1.x/ is the acoustic mass11 located between `0 and x. So in the
backbore, if we denote M1 D M1.`1/:

˚ 0
n.x/ D �k2nV0=S.x/ and ˚n.`1/ D 1 � k2nV0M1 . (7.56)

For k2n D k2r D 1=V0M1, there is a resonance of the mouthpiece. We first consider
the length correction, given by (7.50):

cot kn�` D S2


.knV0/

�1 � knM1

�
: (7.57)

We have already given the low frequency value, V1=S2: here we get V0=S2, which is
consistent, provided that the backbore volume is small compared to that of the cup,
and that the flow rate is constant in the backbore. When the frequency increases,�`
also increases, which produces negative inharmonicity: the resonance value was
given above (c=4fres/. Beyond this frequency, we can write

kn�` D �

2
C arctan S2



knM1 � .knV0/

�1� , (7.58)

and show, using a Taylor expansion around the resonance, that the length correction
continues to grow to a maximum, before decaying. We do not detail this aspect
here, when the lumped elements model loses its validity; we will see later how this
correction can compensate for that due to the bell shape.

• In order to calculate the impedance maxima, we calculate the envelope En D
1=�n for the input impedance, according to (7.51). We obtain, if �M2 D �`2=S2
is the acoustic mass of Pipe number 2:

2�n D V0 C k2nV2
0 .M1 C M2/C V2.1� k2nV0M1/

2: (7.59)

At low frequencies this quantity is V0 C V2, the total volume of the instrument,
because the volume of the backbore has been ignored. The minimum of this
function is obtained for a frequency very close to the resonance frequency,
because the volume V2 of Pipe number 2 is very large:

11Remember that the dimension of an acoustic mass is kg m�4.
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k2max D k2r

�
1 � 1

2

V0
V2

�
1C M2

M1

��
' k2r

with 2�n ' V0 C V0

�
1C M2

M1

�
: (7.60)

It turns out that the ratio M2=M1 is in practice around 3 for a trumpet. The
“amplification” factor is therefore about V=4V0, i.e., the total volume V of the
instrument divided by four times that of the cup.12 Of course, this conclusion
is mainly qualitative. It is also not certain that the maximum of the envelope is
reached, because for that there must be a resonant frequency of Pipe 2 coinciding
with the resonance of the mouthpiece, which depends on the length `2, see
Eq. (7.49).

• It turns out that the above model is very approximate: it neglects the potential
energy in the backbore with respect to that of the cup. And this is exaggerated,
because in practice the backbore has a volume larger than that of the cup.
We therefore do not really have a Helmholtz resonator. An easy correction
can be made: at low frequencies, this consists in retaining the total volume of
the mouthpiece for the calculation of both the length correction and the peaks
envelope curve. It can be shown [54] that a satisfactory approximation of the
peak curve is obtained simply by adjusting the volume in the first term of (7.59),
after the determination of M1 from the knowledge of the resonance frequency of
the mouthpiece and the volume of the cup:

2�n D V C k2nV2
0 .M1 C M2/C V2.1 � k2nV0M1/

2: (7.61)

The minimum of this quantity is: 2�n ' V CV0 Œ1C M2=M1	, which reduces the
amplification factor found above. Figure 7.7 shows the corresponding envelope
curve, the mode expansion obtained with the same approximation, and the
numerical calculation of the impedance curve of the instrument (as explained
below in Sect. 7.5.2), for a trumpet without bell. The figure shows that the
approximations are quite satisfactory. At higher frequencies, the envelope is
steadily decreasing, but formula (7.61) becomes less and less acceptable, which
shows the limits of the model.

To conclude, we refer the reader to detailed discussions found in [8, 52].
Recall that the instrument studied here consists of a cylindrical Pipe (2) open at
x D `, which is obviously far from a real brass instrument, since the bell has
an important role. However, it is easily verified that the results remain valid for

12If Pipe 2 had a large section, the ratio M2=M1 could be neglected with respect to unity, and this
would lead to V=2V0 . In this ratio, the value of the numerator comes from the fact that at zero
frequency, there is only potential energy in the entire instrument, since the flow is zero at the input,
and therefore everywhere! Otherwise the value of the denominator arises from the fact that at the
mouthpiece resonance, we have equipartition of energy (hence the factor 2) in the mouthpiece, and
very low energy in the main part of the instrument.



7 Wind Instruments: Variable Cross Section and Toneholes 317

0 500 1000 1500 2000

1

2

3

4
× 108

In
pu

t 
im

pe
da

n
ce

 (
a.

u
.)

Frequency (Hz)

Fig. 7.7 Input impedance of a cylinder with a brass mouthpiece: the dashed curve is the
approximate mode expansion; both the envelope and the numerical curve are in solid lines
(according to [54])

a closed cylindrical Pipe (only the equation of resonances (7.49) is changed), and
we show that, concerning the resonance frequencies, the role of the bell, except at
lower frequencies, is close to that of a closed cylinder. The numerical results show
that the shape of the envelope is preserved.

7.3.5 Cylindrical Instrument with Flute Mouthpiece

For reed instruments, we considered a flow rate source, Us, at the entrance of the
instrument.13 For instruments with a flute mouthpiece, we consider the dual of the
previous problem: on both sides of the edge, the flow rate produces a pressure
difference, �P, which in the linear view can be seen as a source (see Chap. 10).
The important point is to actually know the flow responses to this source. As in the
previous sections, we study the eigenfrequencies, then the modes.

We limit ourselves to the case of open flutes, leaving aside the closed flutes
(stopped pipes, Pan flutes, slide flutes, . . . ). Concerning open flutes, at least two
radiating openings exist: the hole of the mouthpiece and the passive end of the pipe.

13Considering this source as the one that produces the sound is adopting a linear point of view,
which is wrong. Actually, it is not the player who sets this source because we are dealing with a
closed loop system, which will require knowledge of another equation. The important thing for
reed instrument is to know the ratio P=Us; in particular at the entrance.
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The knowledge of the modes enables us to find the amplitude ratio between these
two openings, a key element regarding directionality, which will be studied in the
fourth part.

7.3.5.1 The Model: Closed-Form of the Response

We restrict ourselves to the basic shape, the cylindrical one. We consider the
mouthpiece as a lumped element system, with a uniform flow rate, denoted U.0/.
The change in cross section between the mouthpiece hole, of area Sm, and the pipe,
of area S; is an important parameter. The mouthpiece hole is parallel to the axis
of the pipe: this represents a bend effect, the effect of which will be studied in
Sect. 7.6.3.2: We will show that it is the effect of an added mass, equivalent to a
cross section discontinuity. Therefore for the sake of simplicity we can represent
the mouthpiece by a small tube in the axis of the main pipe (see Fig. 7.8), i.e., by a
kind of chimney pipe [82].

We are searching for the response in flow rate to an excitation force, i.e., a source
of pressure difference, denoted by �P D PC

s � P�
s , placed at the location of the

edge, in x D 0 (ignoring the thickness of the edge, i.e., the length of mouthpiece
hole). At low frequencies, the radiation impedance of the mouthpiece hole can be
written as [see Eq. (5.131)]:

Zm D �c

Sm

�
j
!

c
�`m C 1

4
.!Rm=c/2

�
, (7.62)

where Rm is the equivalent radius (the hole has often a roughly rectangular shape).
For the sake of simplicity we assume that �`m D 0:7Rm: The real part of Zm is
in fact independent of the size (and shape) of the hole: this will be discussed in

Labium

Flow

S

Sm

Sm
S

x
0

ΔP

Fig. 7.8 Diagram of an instrument with a flute mouthpiece and equivalent representation. The
opening of the mouthpiece is represented by a small pipe of cross section area Sm. Although this
pipe has a very small length, its presence causes significant length corrections due to radiation
and cross section discontinuity. The flow arrives almost facing the edge, and produces a source of
pressure difference, �P
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the fourth part. If we consider the “incoming” flow rate in the pipe,14 we write:
P�

s D �ZmU.0/. On the other side, the small pipe opens into a pipe of cross
section S and length `: if Zp is the input impedance of this pipe,15 we can write
PC

s D ZpU.0/: The response we seek is the flow rate response U.x/ at point x of the
main pipe to the excitation �P. At the input x D 0, the response is the following
admittance:

U.0/=�P D .Zp C Zm/
�1: (7.63)

In the main pipe, we must solve the dual equation of (5.161), the source being
included in the boundary condition (7.63):�

@2

@x2
C k2c

�
U D 0. (7.64)

The ratio U.x/=U.0/, as well as the input impedance Zp, only depends on the main
pipe and its radiation impedance, denoted Z` D Zcj tan �`, where Zc D �c=S:

U.x/

U.0/
D cos Œkc.` � x/C �`	

cos Œkc`C �`	
; Zp D Z.0/ D Zcj tan Œkc`C �`	 . (7.65)

These relationships are obtained, e.g., by using the transfer matrix of the pipe.
Knowing the ratio U.0/=�P, the sought response is found in closed-form, if
Zm D Zcj tan �0:

U.x/

�P
D �jYc

cos Œkc.` � x/C �`	 cos �0
sin Œkc`C �` C �0	

. (7.66)

7.3.5.2 Resonance Frequencies

The resonance frequencies are sought by ignoring dissipation (kc, �0, and �` are
real), and also, for the sake of simplicity, dispersion: then kc D k D !=c. At
resonances the denominator of (7.66) vanishes, implying the relationship:

n� D k`C�0C�` ' k`Carctan�0Carctan �` D k

�
`C�`C S

Sm
`m

�
, (7.67)

14Of course the flow oscillates and thus goes in and out of the pipe, but we define it as the volume

flow rate through the pipe surface, the vector d
�!
S being here oriented to the right.

15The discontinuity between the mouthpiece hole and the pipe requires adding a series impedance
of acoustic-mass type, denoted by Zd D j!��`dm=Sm at the input impedance of the pipe Ze. This
will be explained in Sect. 7.6.3.2. The order of magnitude of the length �`dm is similar to that of
�`m. Since in the mouthpiece hole there is flow rate continuity (the fluid being considered to be
incompressible), we can simply add this acoustic mass to the radiation acoustic mass, and replace
in the radiation impedance Zm the length �`m by the equivalent total length of the mouthpiece
hole, `m, whose order of magnitude is 1:5 times the radius Rm:
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where �` is the radiation length correction for x D `, and `m the total equivalent
height of the mouthpiece hole. Therefore at low frequencies:

fn ' nc=2L , where L D `C�`C `mS=Sm: (7.68)

As a matter of fact, overblowing in an open flute gives an octave (the first
two resonances are distant by an octave): the frequencies of the main regimes
correspond to the frequency c=2L and its harmonics. The length correction due to
the mouthpiece hole, `mS=Sm, is larger than that of the end ` because the mouthpiece
hole has a smaller area than the pipe. Approximation (7.68), however, is not valid
at high frequencies and the frequencies of higher regimes are shifted upwards. To
verify this, Eq. (7.67) can be solved using the length correction method: we assume
that k�` � 1, and write (7.67) in the form tan k.`C�`/ D � tan.k`eff/, where `eff

is unknown. The latter is

`eff D 1

k
arctan

�
S

Sm
k`m

�
D `m

S

Sm

"
1 � 1

3

�
S

Sm
k`m

�2#
. (7.69)

The second expression, obtained from a Taylor expansion to the third order, shows
that the length correction decreases with frequency, and hence the resonance
frequencies are higher than those given by (7.68), the discrepancy increasing with
n. A simple interpretation is the following: if the surface of the mouthpiece hole
gradually decreases and tends to 0, the frequencies tend to those of a closed–open
pipe, in a succession 1; 3; 5 : : : instead of 1; 2; 3 : : :: so the interval between two
successive frequencies increases.

7.3.5.3 Modal Expansion

We use the method used for the reeds (see Chap. 5, Sect. 5.6.3). We write
again (7.66), with obvious notations (hi D j�i, where i D 0 or `/:

U.x/

�P
D Yc

cosh Œ� .` � x/C h0 C h`	 cosh h0
sinh Œ� `C h0 C h`	

:

The poles and the modal expansion can be written as:

.� `C h0 C h`/.sn/ D j�n, where �n D n� ; (7.70)

U.x/

�P
D Yc

X
n

cosh Œ� .sn/x C h0.sn/	 cosh h0.sn/

.s � sn/


� 0`C h0

0 C h0̀ � .sn/
. (7.71)

In contrast to what happens for reed instruments, the zero-frequency pole exists
here, s0 D 0, which is a constant mode: � .s0/ D 0. Indeed, for this mode, it is
obvious to show that the differential equation is satisfied, as well as the boundary
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conditions, which are close to Neumann conditions for the flow rate (see Eq. (4.57)
for the dual case, this of pressure in a closed–closed pipe). The constant mode needs
to be taken into account.

It has no physical meaning because the model used is certainly not valid at zero
frequency, but it is essential to ensure the series convergence to the right result for
nonzero frequencies. Nevertheless it is certain that there is a zero-frequency flow
rate (as in reed instruments!), but it has been ignored in the wave equation (7.64). We
have already encountered a similar issue in Chap. 6, to treat the coupling between
a string and a resonant cavity (for this case we had chosen a mode ˚ D ax=L to
reflect the fact that one end of the string might move).

We do not comment further on the result (7.71): it could be possible to simplify
it as was done in Chap. 5 for reed instruments, with very similar calculations.

7.3.5.4 Relationship Between the Two Radiating Apertures of a Flute

Assuming that near the eigenfrequencies a single mode contributes to the response,
we derive from Eqs. (7.70) and (7.71) the (complex) ratio of the two radiating
aperture flow rates. Assuming that these openings have small dimensions compared
to the wavelength, the ratio is simply16 �U.`/=U.0/. We therefore find:

� U.`/

U.0/
D �cosh Œ� .sn/`C h0.sn/	

cosh h0.sn/
D .�1/nC1 cosh h`.sn/

cosh h0.sn/
: (7.72)

The last expression is obtained using (7.70). If we had the same terminal
impedances, so h0 D h`, the ratio would be ˙1, because the field would be
perfectly symmetrical or anti-symmetric. This result could be considered in detail:
we only note that for the first modes, the functions h0.sn/ and h`.sn/ are small, and
the amplitude ratio is very close to unity.17 Regarding the phase difference between
the two openings, the following result is obtained: for mode n D 1; the two openings
are in phase, while for n D 2, they are opposite in phase. n D 1 corresponds to the
first playing frequency, and n D 2 to the second playing frequency, or to a frequency
near the second harmonic of the first playing frequency. The consequences of these
phase differences on the directivity are important: we will analyze them in the
fourth part.

16Why the � sign? In order to find the phase difference of the radiated pressures, we must consider
the flow rate “outgoing” from the instruments (see fourth Part).
17Actually it can be shown that the ratio increases with frequency, because, if jkn D sn=c:

� U.`/

U.0/
' 1C k2n`

2
m.S=Sm/

2

1C k2n�`
2

.

We have seen that the mouthpiece-hole length correction is significantly larger than that of the
end `.
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7.4 Conical Instruments

Conical instruments play a major role in music, and, for the case of reed instruments,
conical instruments have taken the biggest rise before cylindrical instruments. The
reason is that overblowing gives octaves, instead of twelfths for clarinets. Therefore
fewer holes and keys are required: the first register contains 12 semitones only
(i.e., one octave) instead of 18 (i.e., one twelfth). This issue is discussed at the end
of this chapter, in Sect. 7.7.5.5. The conical shape, although basic, gives rise to a
number of complicated behaviors compared to that of the cylindrical shape.

7.4.1 Equations and Solutions for a Lossless
Conical Resonator

Let us consider a truncated cone, for example, a saxophone without toneholes. At
low frequencies, only planar waves can propagate in a cylindrical pipe with perfectly
reflecting walls (see below Sect. 7.6.2). Similarly only spherically symmetrical
waves can propagate in a cone. The spatial coordinate is denoted r, and is
counted from the apex (see Fig. 7.9). The waves are solutions of the 3D wave
equation (1.111); the operators are written in spherical coordinates and if spherical
symmetry is assumed, the particle velocity has only a radial component, vr, denoted
v for the sake of simplicity. In order to later introduce dissipation by simply
making the density and compressibility complex, we start from the two Eqs. (1.109)
and (1.110):

1

r2
@.r2v/

@r
C �s

@p

@t
D qV.r; t/ (7.73)

@p

@r
C �

@v

@t
D �Fr . (7.74)

The spherical wave equation is deduced

@2p

@r2
C 2

r

@p

@r
� 1

c2
@2p

@t2
D �

�
1

r2
@.r2Fr/

@r
� @qV

@t

�
. (7.75)

Using the variable pR, which was already used for (7.8), or better here the variable
pr, since the radius R is proportional to the distance r, the equation becomes

@2.pr/

@r2
� 1

c2
@2.pr/

@t2
D �r

�
1

r2
@.r2Fr/

@r
� @qV

@t

�
:

The equation for pr with no source is simply the planar wave equation, the solution
being written as:

p D f C.t � r=c/C f �.t C x=c/

r
(7.76)
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The factor 1=r is the geometrical divergence factor, ensuring that the average
power of a wave through a surface defined by constant r is independent of r. Apart
from this factor, the propagation is similar to that of a planar wave. But the reflection
of pressure waves is modified, because the acoustic velocity does not verify this
simple equation. It is solution of the Euler equation:

�
@v

@t
D �@p

@r
D 1

rc
Œf C0.t � r=c/� f �0.t C x=c/	C p

r
(7.77)

where f 0.x/ is the derivative of f .x/: The first term is similar to that of a planar wave,
but the second is new, and we see that an impulsive pressure wave gives rise to an
acoustic velocity that is spread over time. In the Fourier domain, we have

P D aCe�jkr C a�ejkr

r
; (7.78)

V�c D � 1

jk

@P

@r
D aCe�jkr � a�ejkr

r
C P

jkr
: (7.79)

Specific admittances of outgoing and incoming waves therefore are (we define in the
propagation direction YC

c D V=P, and Y�
c D �V=P ):

Yċ D 1

�c

�
1˙ 1

jkr

�
(7.80)

(for the acoustic admittance, we multiply by S.r/). The two admittances vary with r,
and moreover they are different, which is characteristic of asymmetric transmission
lines (it is obvious that in a truncated cone, unlike in a cylinder, the input and output
cannot play the same role!). A key point is the appearance of the parameter kr, i.e.,
the ratio of distance to the apex to wavelength. If it is large, spherical waves are
similar to planar waves: a sphere with large radius is locally similar to a plane, and
if the wavelength is small, the wave does not “see” the curvature.
In Expression (7.79), the term p=jkr is large near the apex at low frequencies,
and thus velocity and pressure are almost in quadrature, regardless of boundary
conditions. There is no average power: we can say that the energy is stationary and,
in addition, it is primarily kinetic since the velocity/pressure ratio is quite large. This
phenomenon is characteristic of flow rate sources of dimensions small compared to
the wavelength, when they radiate into a large space (here the truncated cone).

Finally, if we change the variable V and the admittance Y in

QV D V � P

jkr�c
; QY D Y � S.r/

jkr�c
, (7.81)

all calculations valid for planar waves (transfer matrices, projected impedances, etc.)
can be extended to the pair P and QV (one can call the velocity QV the “symmetric”
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Fig. 7.9 Geometry of diverging and converging truncated cones. We carefully notice the choice
used to define directions. We denote: ` D r2 � r1; tan � D R1=x1 D R2=x2 ' .R2 � R1/=` ;
sin� D R1=r1 D R2=r2 D .R2 � R1/=`

velocity, and the admittance QY the “symmetric” admittance). Thus, if r1 is the input
coordinate of the truncated cone, and r2 D r1 C ` that of the end [see, (4.28)], the
following result is obtained:�

Pr
QVr�c

�
1

D
�

cos k` j sin k`
j sin k` cos k`

��
Pr

QVr�c

�
2

: (7.82)

7.4.2 Validity of the Horn Equation for a Truncated Cone

It is interesting to compare Eqs. (7.75) and (7.6). On one hand qV D q=S (because
qV is the flow rate per unit volume) and, on the other hand, S.x/ D �R.x/2 is
proportional to x2: Both equations are identical, but the space coordinate is not the
same. For (7.6), it is the distance r from the apex of the cone to the portion of the
sphere that limits it, while x is the projection of r on the cone axis, with x D r cos � ,
where � is the apex half-angle (see Fig. 7.9).

The horn equation is derived by matching planar waves, thus the spherical
wavefront is assimilated to a plane wavefront. Intuitively this is valid if the distance
between these two surfaces is small compared to the wavelength. More specifically,
for a traveling (pressure) wave, the amplitude ratio between the output and input
of the truncated cone is independent of the choice made: r1=r2 D x1=x2 D R1=R2.
However, there is a phase difference, i.e., if � is small: k.r2 � r1/ � k.x2 � x1/ D
k`�2=2 D k.R2 � R1/2=2` (in this expression, ` D r2 � r1 ' x2 � x1). For conical
instruments, we can show that this quantity is actually small for audible range
frequencies. Therefore, what follows is valid for r as well as for x. We choose, for
the sake of simplicity, the coordinate x, so the planar wave approximation. Unlike
a cylindrical tube, the origin of the x-axis is fixed here (at the apex of the cone).
Moreover, for a convergent cone, it is convenient to choose the direction to the apex,
so that if the input and output keep the same subscripts, there is always the relation
` D r2 � r1, with ` positive: we therefore have negative r2, r1; x2; x1 (see Fig. 7.9).
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7.4.3 Transfer Matrix of a Truncated Cone

We want to derive from (7.82) the pressure/flow transfer matrix by replacing the
lengths r by lengths x. After some tedious calculations, we get, between the two
abscissae of index 1 and 2:�

P1
U1

�
D
�

A B
C D

��
P2
U2

�
where

A D R2
R1

cos k` � sin k`

kx1
; B D j

�c

�R1R2
sin k` ; D D R1

R2
cos k`C sin k`

kx2
;

C D �R1R2
�c

�
j sin k`

�
1C 1

k2x1x2

�
C cos k`

jk

�
1

x1
� 1

x2

��
. (7.83)

We easily check the result for a cylinder (R1 D R2; x1 and x2 infinite). It can
be shown that the determinant of this transfer matrix is always equal to 1, which
corresponds to the reciprocity property. This property is equivalent to the symmetry
of the Green’s function (the equivalence is standard, and we will not prove it here).
This kind of calculation can also be done using equivalent electrical circuits [9].18

7.4.4 Eigenfrequencies: Elementary Approximations

• As a first application of the obtained solutions, we look for eigenfrequencies.
Consider an “open–open” pipe, with a zero-impedance condition at both ends,
which is the extreme simplification of a flute. The symmetric admittance QY is
infinite, so there is no effect of the taper: to a first approximation, a convergent or
divergent conical flute has the same eigenfrequencies as cylindrical flute of the
same length.

Let us more precisely consider a pipe terminated in the radiation impedance,
assuming that the taper does not affect the previously used value (5.131). For
the calculation of the eigenfrequencies, we can simply take the imaginary part of
the impedance into account, and write ZR D �cS�1

2 jk�`, where S2 is the output
section, and�` D 0:6R2, R2 being the output radius. For the symmetric acoustic
admittance we get

eYR D S2
�c

�
1

jk�`
� 1

jkx2

�
: (7.84)

18If the frequency tends to 0 in (7.83), we find, (after some calculations): A D D D 1, B D j!La,
C D j!Ca, where La and Ca are the mass and the acoustic compliance found in (7.16), respectively.
We find that the cross section of the cylinder equivalent to a truncated cone of length ` is: for the
acoustic mass S D �R1R2; and for the acoustic compliance: S D �.R21 C R1R2 C R22/=3: This type
of result is useful, e.g., for sizing a conical tonehole, by calculating the equivalent cylindrical hole.
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We derive the effective correction to the radiation length that can be used
in (7.82): �`�1

eff D �`�1 � x�1
2 . The effect of the taper is negligible if x2 	

�`, which is a condition often satisfied for a diverging truncated cone; the
length correction is therefore the same as for a cylindrical pipe. For a truncated
converging cone, however, the radiation length correction may be substantially
modified by the taper.

• Let us now consider a (diverging) conical reed instrument, such as an oboe, a
bassoon, or a saxophone. The frequencies played by the instrument are close to
the eigenfrequencies of a “closed–open” (conical) pipe. The input admittance
is zero, therefore the admittance after symmetrization is eYe D �S.x1/=jkx1�c,
where x1 is the input radius. By projecting the symmetric admittance from the
output to the input, we obtain, as for a cylinder,

eYe D � S1
�c

j cot k` (7.85)

where the length ` includes the radiation length correction. We can therefore infer
the eigenfrequency equation:

tan k` D �kx1: (7.86)

This type of equation is familiar in musical acoustics and was encountered for
certain cases of vibrating strings. If the distance from the apex of the cone to the
entrance of the truncated cone, x1, is small compared to the wavelength, we can
write

kx1 ' tan kx1 therefore (7.87)

f D nc=2.`C x1/: (7.88)

Thus the eigenfrequencies of conical reed instruments are thus nearly harmoni-
cally related, and are multiple of the fundamental frequency corresponding to a
wavelength equal to twice the length of the instrument, extended up to its apex.
At low frequencies, the cone can be seen as a cylinder of length ` C x1 with
two zero-impedance conditions at the ends. A soprano saxophone with a length
comparable to that of a clarinet cannot produce notes that are so low. Notice that
Eq. (7.86) remains valid for a cylinder (x1 infinite!); however, this it not the case
for Formula (7.88).

Actually, the approximation (7.87) is equivalent to the approximation of the
conical instrument by a “cylindrical saxophone,” which would be a cylinder of
length ` C x1, with the mouthpiece located at a distance x1 from the input (see
Fig. 7.10). This gives a number of qualitative ideas, that we will use and discuss
(in Sect. 9.4.8, Chap. 9), in analogy with a bowed string [65], when excited at a
given location. The ratio x1=.`C x1/ is often written ˇ.
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x1 x1

Fig. 7.10 Cylindrical saxophone equivalent, at low frequencies, to a conical saxophone: the
mouthpiece is placed on the side of a cylindrical pipe. The eigenfrequencies of the two pipes
are the same

Conical reed instruments therefore present overblowing conditions which
differ from those of a clarinet (they play octaves and not twelves). Actually, the
validity of the approximation decreases when the frequency number increases: as
is gets larger, the frequency spacing approaches a series 1; 3; 5; ::.2n C 1/ : : : [as
for a cylinder, see Eq. (4.50)]. So the second frequency is higher than two times
the first, and the shift from the series 1; 2; 3 : : : n : : : increases with the frequency
number. And of course the more x1 increases, the more the shift increases, until
we find the behavior of the cylinder.

• To be more accurate, we can use a method similar to that which led to
Formula (7.27), and slightly complicate the problem to take into account the
existence of a mouthpiece, of volume V , whose dimensions are small compared
to the wavelength. Since at the origin the input admittance is zero, the admittance
at the output of the mouthpiece is: Y D �j!V=�c2 [see Eq. (1.154)]. So, we have
at x1, QY D �j!V=�c2 � S1=jkx1�c; that must match the value (7.85), hence:

cot k` D kV

S1
� 1

kx1
: (7.89)

If we write that the second member is � cot k�`, we deduce that at the third
order in kx1:

�` D 1

k
arctan

�
kx1

1� k2x1V=S1

�
' x1

�
1C k2x21

�
V

x1S1
� 1

3

��
: (7.90)

If the mouthpiece volume is zero or small, we conclude that the length
correction due to the finite length of x1 decreases with frequency, so that high
frequencies are indeed too high compared to the series 1; 2; 3 : : : n : : : To improve
the harmonicity of the eigenfrequencies, we see that it is desirable to have a
mouthpiece volume equal to x1S1=3, which is the volume of the missing part of
the truncated cone. Indeed, the surface S1 is �R2e and the volume of a cone�R3e=3;
in spherical coordinates, we would have 2�r2.1� cos�/ and 2�r3.1� cos �/=3,
respectively.
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This mouthpiece volume is what is approximately found for the saxophones,
but the real volume may be smaller due to the effects of the reed (see Chap. 9).
For an oboe, it was shown that the makers had also introduced a change in
taper in the upper part of the instrument. This further improves harmonicity of
eigenfrequencies and offsets the effect of the 5th order in kx1 [12, 22].

• Which parameters characterize a conical instrument? The input and output radii,
and the length. However, as the actual length depends on the note, and on
the effective output radius, a better choice is the apex angle 2� and the input
radius R1: The distance from the apex, x1, can be employed to evaluate the
inharmonicity (this distance is close to R1=�). There are dimension data in [60],
for several woodwinds. It may be noticed that, for an oboe, the angle 2� is about
0:026 radians (1:5ı/, much less than for a soprano saxophone, of comparable
range, for which it is about 0:07 (4ı). For a bassoon, a much lower pitched
instrument, the angle 2� is 0:014 (0:8ı); for a tenor saxophone, 0:054 (3ı). The
apex angles of the instruments of the same family are larger for a high-pitched
instrument than for a low-pitched instrument. It is also noticeable that in the
modern saxophone family, the angle is wider than that of the family created by
Sax. The choice of dimensions is even more complicated than for a cylindrical
instrument family, and remains to be elucidated (Fig. 7.11).

7.4.5 Equations with “Averaged” Losses, Transfer Matrices

A rigorous treatment including boundary layers would take us far. Solving equations
with boundary layers in spherical coordinates is possible [19], but because the apex
angle is low, we accept the validity of Eq. (7.12), which is based on the planar
waves matching. This equation has no analytical solution. Before showing that an
approximate calculation method is the calculation of the modes, we first investigate
an even more approximate solution: we calculate the transfer matrix of a conical
tube in which losses are calculated for an “average” radius, denoted rm, assuming
that the quantities rv and rt involved in (7.13) are independent of x, and calculated
for this radius rm.

Equations (7.83) remain valid if � is replaced by �v , given by (7.13) and, as well,
�s by �t. This gives a new value of the sound speed and therefore of the wavenumber
[see, (5.144)]:

k D !

c

�
1C ˛1

p�2j

rv

�
: (7.91)

We can further simplify the result by assuming that, as well as for cylinders, the
characteristic (specific) impedance �c, given by (5.146) is not affected by losses.
When there are no losses, the coefficients of the transfer matrix have the following
properties: A and D are real, and B and C are purely imaginary. This is due to the
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Fig. 7.11 Soprano, tenor, and baritone saxophones. Notice that the apex angle is higher for high-
pitched instruments than for low-pitched instruments

fact that the incoming power must be equal to the outgoing power whatever the end
conditions. When there are losses the 4 coefficients are complex, but the determinant
remains equal to unity.

The use of the transfer matrix (7.83) with constant losses is discussed for the
numerical calculation of horns, in Sect. 7.5.2.

7.4.6 Modal Expansion for a Conical Reed Instrument

After the determination of the eigenfrequencies, we seek the modal decomposition
as for the other geometries, in order to know the impedance peaks. Because
losses vary with the radius, a closed-form solution of (7.12) is not available.
Perturbation methods have been employed [44, 60]. Before showing that the modal
decomposition is also a method to solve this problem, we study the cylindrical
saxophone, which provides interesting qualitative information.
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7.4.6.1 Modes for a Cylindrical Saxophone

We have solved a similar problem in Chap. 5, with the simplified formula (5.183).
This time the source is not located at the entrance, but at x D x1, and both ends are
open: the calculation is exactly the same, but there is a zero-impedance boundary
condition at x D 0: This gives for the impedance at x D x1; excited at the same
point:

P D 2

L
j!
�c2

S
Us

X
n>0

sin2 knx1
j! C 1

2
!n0Q�1

n

!2n0 C j!!n0
1

Qn
� !2

: (7.92)

The eigenfrequencies !n0 have already been studied, while the modal factor is
proportional to: sin2 knx1: Using the approximation (7.87), this quantity can be
written as:

tan2 knx1
1C tan2 knx1

D 1

1C 1=.knx1/2
: (7.93)

Consequently, at low frequencies, the input impedance is much lower than for
a cylinder excited at the entrance. Therefore the lowest notes of the saxophone are
difficult to play, especially since the second peak is higher than the first one, which
causes a tendency to overblow. Actually, there is competition between the evolution
of this factor and the damping factor, proportional to Qn=!n, which decreases asp
!. For notes corresponding to a shorter length, the first peak becomes larger

than the second one (we will analyze the sound production in Chap. 9). How to
choose the length of x1 when designing a conical reed instrument? At first, by
maintaining the same pipe (with same length, apex angle, and output radius), it
is possible to extend the length of the truncated cone without changing the total
length ` C x1, thus without changing the playing frequency. This means reducing
the length x1, and thus reducing the input impedance at low frequencies, which will
certainly not benefit the emission of low notes. Conversely, reducing the length of
the truncated cone may seem like a good solution, but this implies an enlargement
of the mouthpiece, and thus an increase of inharmonicity. There is probably a good
compromise, which to our knowledge remains to be investigated more deeply. The
parameter knx1 D �x1=.` C x1/ for the fundamental frequency of the lowest note
is probably an important parameter for making the instrument: for a bassoon, it is
approximately 0:3; for a bass saxophone, of comparable range, it is about the double
of this value. Consequently low notes are more easily played on an oboe or bassoon
than on high taper instruments such as saxophones.



7 Wind Instruments: Variable Cross Section and Toneholes 331

7.4.6.2 Equation to be Solved

Now we seek the input impedance without using the approximation of the cylindri-
cal saxophone. We use the same method as the one used for chimney pipes, ignoring
the dispersion and the radiated power (for the sake of simplicity), but we will see
how to add them at the end. The equation for the pressure response to a source of
flow rate yields [compare with (5.161)]:

@2P

@x2
C
�
2

x
� �0

v

�v

�
@P

@x
C k2cP D � j!�

S
Usı.x � xs/ (7.94)

where

k2c D k2s
h
1 � j˛1

�

x

i
where k2s D !2

c2
; �v D �

�
1 � j

1p
2

�

x

�
: (7.95)

� is a length proportional to the thickness of the boundary layer:

� D 2

tan �

r
c`v
!
: (7.96)

7.4.6.3 Modes and Modal Expansion

The modes ˚n.x/ are solutions of the equation without losses, and are therefore of
the form: (sin knx C B cos knx/=x. For a complete cone, the condition at the apex
would be to have a field of finite pressure, or B D 0 (see on this subject [6]). For a
truncated cone (with reed!), we write: @˚n.x/=@x D 0 at x D x1 (see Fig. 7.9). The
other boundary condition is: ˚n.x/ D 0 at x D x2. We therefore have:

˚n.x/ D sin kn.x2 � x/

x
: (7.97)

The input condition gives Eq. (7.86) for the eigenwavenumbers kn. We now search
for the solution of (7.94) written as: P.x/ D P

n
An˚n.x/. This gives

X
n

An.k
2
s � k2n/˚n.x/ � j

�˛1

x
k2s
X

n

An˚n.x/

� j
�p
2x2

X
n

An
d˚n.x/

dx
D � j!�

S
Usı.x � xs/: (7.98)

To use the mode orthogonality, we start from (7.10), up to the factor � tan2 � . Since
S.x/ D �R2 D �x2 tan2 � , we multiply both members of (7.98) by x2˚m.x/, and
integrate over the length. With orthogonality, the first term on the left involves
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�n D
Z x2

x1

x2˚2
n .x/dx D

Z x2

x1

sin2 kn.x2 � x/dx D 1

2

�
`C x1

1C k2x21

�
: (7.99)

This result is achieved by eliminating the trigonometric functions, using the
eigenfrequency equation (7.86). But for other terms, proportional to x�1 and x�2,
there is no orthogonality, because, as for the chimney pipe, damping depends on
the radius. It is not proportional (see Chap. 5, Sect. 5.2.1.2). We shall use again the
approximation consisting of forgetting the inter-modal coupling terms. We obtain
two other integrals:

�0
n D

Z x2

x1

x˚2
n .x/dx D

Z x2

x1

sin2 kn.x2 � x/

x
dx (7.100)
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1 � cos 2kn.x2 � x/
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dx D 1

2
ln

x2
x1

C 1

2
In (7.101)

where In is an integral involving the functions cosine integral and sine integral [1].
The last integral to calculate reads

�
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n D
Z x2
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˚n.x/
@˚n.x/
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dx D 1
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n .x2/ �˚2
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k2n
1C k2nx21

: (7.102)

The expression is not simple, but if the expression of kn is taken into account,
it is found that the sum of terms corresponding to In and �

00

n can be ignored (for a
detailed analysis, see [44]). We extract from this the An coefficient, and obtain the
following expression:

P.x/

Us
D j!�

�R.x/R.xs/

X
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sin kn.x2 � x/ sin kn.x2 � xs/
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C 1

4
.knr2/

2

�
: (7.103)

In the expression of the quality factor, we write ks D kn, since the corresponding
term occurs only near the resonance frequencies; and radiation has been taken into
account, without proof [44]. For the input impedance, we derive the expression:

Z1 D j!�

�R21

X
n

k2nx21
`.1C k2nx21/C x1

1

k2n � k2 C jkkn=Qn
: (7.104)

Unlike the cases discussed above for a chimney pipe with pipe of length `2 much
longer than pipe of length `1, we cannot separate the reactive and dissipative effects,
because the quality factor Qn depends on the geometry. Indeed it has a complicated
form, involving the norm �n. In other words, the factor k2n=



`.1C k2nx21/C x1

�
represents well enough the effect of the geometry away from resonances, but near
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the resonances the envelope curve of the impedance peaks is related to another
factor. For the peaks (ks D kn/, we obtain after some calculations:

Z1Max D �c

�R21

k2nx21
1C k2nx21

W
�
˛1

x1
R1

p
kn`v ln

x2
x1

C 1

4
.knr2/

2

�
: (7.105)

The term of visco-thermal losses is equal to that of a cylinder of equal length and
equivalent radius of Req satisfying

`

Req
D x1

R1
ln

�
1C `

x1

�
: (7.106)

At the limit of a cylinder (x1 tends to infinity), we find the result obtained for a
cylinder [see Eq. (5.183) in Chap. 5]. We can deduce important results from this
analysis:

• the factor Fn D k2nx21=.1 C k2nx21/ is what most distinguishes a truncated cone
and a cylinder. An approximation was found in the approximate model of
the cylindrical saxophone [see Eq. (7.93)]. At low frequencies, it significantly
reduces the peak height, because of reactive effects (i.e., because of the wave
reflection due to changes in cross section). For a trumpet mouthpiece, we had
an “amplification,” here we observe a reduction. It could be shown that the
presence of the mouthpiece does not essentially change this result. The factor F�1

n
is simply the squared modulus of the characteristic (specific) impedance (7.80)
at the entrance of the truncated cone, divided by �c: the kinetic energy at the
entrance of the truncated cone is so large compared to the potential energy that
the impedance can never be very large.

• As the radius is much larger than that of a cylinder, the radiated power is much
greater in a conical instrument than in a cylindrical instrument, and since the
power dissipated in the boundary layers is of the same order of magnitude, the
radiation of a cone is very efficient at high frequencies. This could be shown
directly from a power analysis. The term of visco-thermal losses is simply what
we would have obtained using a constant damping, calculated for average losses,
i.e., the average of the inverse of the radius.

• The same analysis was done for the impedance minima [44]. It was shown that
the dissipative term is complicated, but the factor Fn is does not depend on
frequency. This explains why the tapered flutes have a behavior similar to that
of cylindrical flutes, as opposed to reed instruments (we already saw that a first
approximation is that the flute eigenfrequencies are not influenced by the taper).

About mode expansion, we already know that truncating the series and keeping
only one mode in the modal series, for frequencies close to its natural frequency,
makes sense only for frequencies which are very close to it. As soon as the frequency
is closer to impedance valleys, all other modes are involved. This is even more
true for a truncated cone with a reed, as we see in Fig. 7.12: the first peak is very
asymmetrical, the frequency of the first valley being very close to that of the first
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Fig. 7.12 Input impedance modulus of a truncated cone similar to a soprano saxophone (r1 D
4:6mm; r2 D 24:7mm; ` D 61 cm). The solid line curve is calculated using transfer matrices,
taking dissipation in the wavenumber k [Eq. (7.83)] into account. The dashed curve is the modal
calculation truncated at 11 modes. The envelope is calculated by (7.105), and the dashed envelope
by the same formula without radiation

peak. The valley frequency is c=2`, while the peak frequency is c=2.`C x1/. The
ratio between the two is often close to 1:1, instead of 2 for a cylinder! Such an
asymmetry shows the importance of higher modes near the valleys. It can be shown
that adding only the second peak would be largely insufficient.

Figure 7.12 shows these results for a truncated cone of the size of a soprano
saxophone. The calculation of wavenumbers kn has been done taking radiation into
account, by solving Eq. (7.86), with a length including the correction 0:61r2. Then
dispersion has been taken into account using Eq. (5.169) for the average radius. The
envelope curves with and without radiation show the importance of radiation above
the second peak (we remind that in principle the values of kn are not needed to
calculate the envelope curve).

7.4.7 Changes in Conicity

We have treated discontinuities of cross section areas. What happens when there is
a discontinuity in the derivative of the section, for example, between two truncated
cones of different tapers—a case that is usually found?

If we choose the exact solution in spherical waves for each cone, there is a
junction volume (see Fig. 7.13) between two spherical surfaces. In order to built a
model, we can take the flow rate conservation between the two surfaces into account.
A question remains: how can the pressure on those two surfaces be matched?
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Fig. 7.13 Matching of two
truncated cones (case of an
increasing flare). Between the
two spheres of radii ra and rb

the junction zone, in gray, has
a nonzero volume, and the
spherical wave description is
insufficient. In order to avoid
this problem planar waves can
be chosen, but, a priori the
validity of this model is not
improved (see Sect. 7.6.3.5)

xa

ra

xb

rb

This question is difficult [48], and is similar to the question of the exact solution of
the field in a horn. At low frequencies, we can assume that the pressure is uniform
in the cavity between the two surfaces. In order to go further we can use the same
type of assumption as the one made so far, i.e., plane wave matching. This avoids
the necessity to consider the volume of the junction cavity. The calculation of a
complete instrument can then be done by multiplying matrices of the type (7.83),
as explained in Sect. 7.5.2.1. To project the impedances, it can be even easier to use
the symmetric admittances, defined by Eq. (7.82). If we call xa the distance of the
transition point to the apex of the cone on the left, and xb to the apex of the cone to
the right (see Fig. 7.13), the continuity of the admittance can be expressed in term
of symmetric admittances, as follows:

QYa C S=jkxa�c D QYb C S=jkxb�c (7.107)

where S is the cross section at the junction (for the sake of simplicity, we ignore here
viscous effects). Everything happens for the symmetric admittance as if an acoustic
mass was inserted in parallel, between the two admittances:

QYa D QYb C 1

j!M
where M�1 D S

�

�
1

xb
� 1

xa

�
: (7.108)

For the case shown in Fig. 7.13 (xa > xb/, the mass is positive, and plays
approximately the same role as that of an open tonehole, which will be studied
below (Sect. 7.7.5.3). On the other hand, if the cone with index b is less open than
the cone with index a, the mass is negative, which raises causality issues [2, 34].
This makes the computation difficult, especially in discrete time (discrete time
computation will be presented in Sect. 7.5.2.2 using cylinder sections).

We treat here the particular problem of the reflection function of a cylinder (xa

infinite) ending in an infinite flared cone. Since the cone b is infinite, the symmetric
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admittance at the entrance is QYb D S=�c. The symmetric admittance QYa is simply the
admittance for a cylinder, which is

QYa D S=�c C S=jkxb�c:

Using Eq. (4.32), we derive the reflection coefficient in the cylinder and, using the
Fourier transform, we find the reflection function:

R D � ˛

j! C ˛
where ˛ D c

2xb
I

r.t/ D �H.t/˛e�˛t : (7.109)

What would happen for a converging cone? A first observation is that it would be
finite, and thus multiple reflections would exist. For the first of them, it can be shown
that Formula (7.109) remains valid, the coefficient ˛ becoming negative. There is
therefore a growing exponential function, but the pressure never goes to infinity
because the successive reflections are limiting the effect of the first one. This issue
has prompted a number of works [2, 34] because, since each term tends to infinity,
it is not possible to calculate the Fourier transform of such a reflection function by
isolating the different reflections. A method is to determine an appropriate Laplace
transform in order to avoid having a growing exponential function in the integral.
Thus one can make calculations of multiple reflections in the Laplace domain, as
we have done in the Fourier domain for the reflections in a cylinder (see Eq. (4.38)
and after).

7.5 Tubes with Variable Cross Section

We will now analyze bells of brass instruments, for which an analytical solution
exists, and later we will explain some numerical methods for the treatment of shapes
of any kind.

7.5.1 Bells of Brass Instruments: Analytical Solution

The shape of brass bells is fairly complicated. We will discuss later a simple
numerical-solving method. However, Benade noticed that their shape was close
to a power function of x, which allows an approximation using Bessel functions.
This allows us to understand some basic phenomena, in particular the resonance
frequencies of brass instruments. The interest is in impedance maxima, since they
are reed instruments. The radius R.x/ can be written as [52]:

R.x/ D b

.xa � x/�
(7.110)
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Fig. 7.14 Geometry of a
“Bessel horn,” for different
values of �: xi and xo are the
abscissae of the input and
output, while xa is that of the
asymptote
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where the three constants b; xa, and � are obtained by a fitting procedure. The
abscissa xa is therefore outside the bell, at a distance of about a few centimeters [see
Fig. 7.14], and the flare grows rapidly when x approaches the exit.

The coefficient � lies between 0:5 and 0:65 for trumpets and trombones, which
corresponds to a very rapid widening of bell extremity. For some instruments, such
as French horns or cornets and saxhorns, the widening of the bell is more gradual,
and � can be larger than unity. The shape is indeed very different from that of a
cylinder (� D 0) or of a cone (� D �1).

We use Eq. (7.8), in harmonic regime. It is written, if we denote X D xa � x to
simplify the expressions, as:

d2.PR/

dX2
C
�

k2 � �.� C 1/

X2

�
PR D 0: (7.111)

With a change in variable z D kX, the equation is reduced to a Bessel equation for
q.X/ D PR=

p
X, hence the general solution is19

PR D p
Xq.X/ where q.X/ D

h
a1J�C 1

2
.kX/C a2Y�C 1

2
.kX/

i
: (7.112)

From Eq. (7.7), the velocity can be derived, after some calculations:

VR D Qq.X/pX where j�cQq.X/ D dq

dz
C q

z

�
� C 1

2

�
:

Using the derivation relation between Bessel functions

J��1.z/ D J0
�.z/C �J0

�.z/=z;

we find that the function j�cQq.X/ satisfies the same expression as q.X/, changing
� C 1=2 in � � 1=2. Moreover, the functions of the 2nd kind can be written as a
combination of functions of the first kind (the proof not being given here). Hence
the expression of the impedance at the point X is

Z D j
�c

S

J�C 1
2
.kX/C BJ��� 1

2
.kX/

J�� 1
2
.kX/� BJ��C 1

2
.kX/

: (7.113)

19In the case of a cylinder or a cone, these functions can be expressed using trigonometric functions.
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The coefficient B can be obtained using the radiation impedance Zo at x D xo:

B D
bZoJ�� 1

2
.kXo/ � J�C 1

2
.kXo/bZoJ��C 1

2
.kXo/C J��� 1

2
.kXo/

wherebZo D ZoS

j�c
:

It turns out that kXo D k.xa � xo/ is small, because the output is close to the
asymptote, and the Bessel function J�.z/ is proportional to z�.1 C O.z2// when z
tends to 0. Therefore B is proportional to Zo.kXo/

2� , and for � > 0, the coefficient B
tends to 0 when Xo tends to 0 W it can be approximated by 0 when the frequency is
not too high, provided that � > �1=2 for a given Xo. This means that the impedance
in the bell does not depend on the exact position of the output, provided that it is
fairly close to the abscissa of the asymptote x D xa (X D 0). At the entrance of the
bell, we therefore have

Zi D j
�c

Si

J�C 1
2
.kXi/

J�� 1
2
.kXi/

: (7.114)

This expression is exact for Xo D 0, i.e., for strongly flared bells. Nevertheless
for that case the plane wave model is not valid at higher frequencies, therefore
these results must be handled with caution. As all the types of losses (either near
the walls or by radiation) have been ignored, the input impedance Zi is a purely
imaginary number. If kXi is large enough, we can use the asymptotic expansion of
Bessel functions: Jn.z/ ' p

2=
p
�z cos



z � .n C 1

2
/ �
2

�
, valid if arg.z/ ¤ �: For

sufficiently high, and positive frequencies, the final result is

Zi D j
�c

Si
tan
h
kXi � �

�

2

i
: (7.115)

For many brass instruments, the bell is attached at the end of a long cylinder,
whose length ` can be modified, using either a slide (for trombones) or pistons
(e.g., for trumpets). The impedance given by Eq. (7.114) can be projected to the
instrument input [Eq. (4.29)]. If the simplified formula (7.115) is used, the result at
the instrument input is

Z0 D �c

S
j tan

h
k.`C Xi/� �

�

2

i
, (7.116)

where the length `C Xi is fairly close to the total length of the instrument (without
mouthpiece), since Xi D xa � xi is apart from a few centimeters the length of
the bell. The approximated resonance frequencies, corresponding to the impedance
maxima are

fn D c

2.`C Xi/

�
n � 1 � �

2

�
: (7.117)
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Remind that this equation, derived from Eq. (7.115), is valid for sufficiently high
frequencies. At the input of the bell (i.e., if ` D 0), it is rather satisfactory, but at
the instrument input, the first resonance frequencies are very low, and this formula
becomes less satisfactory.20

Equation (7.117) can be further discussed. For a bell with a flare such as � D 1, a
series corresponding to that of a closed–closed pipe is obtained. Notice that the
horn with � D 1 is simply the dual of the cone, as defined in Sect. 7.2.2 [see,
Eq. (4.50)]. For an instrument with a low exponent (for example, � D 0:63 for
a trombone), the series is close to the same series for high frequencies (n large).
For this example, the series is 0:815; 1:815; 2:815, etc. After dividing by the first
frequency, we obtain the ratios 1; 2:23; 3:45; 4:68, etc. This series seems to be very
far from a harmonic series, but this comparison is not very relevant. Considering
the ratio between successive frequencies, we have: 2:23 instead of 2 for a closed
cylinder (or a full cone !); 1:55 instead of 1:5; 1:35 instead of 1:33, etc. So the
harmonic series of a closed cylinder is quickly approached.

To summarize the previous discussion, let us look at the impedance curve
of a complete trombone (Fig. 7.15): apart from the first, the spacing between
resonance frequencies is quite regular. It can be shown that the low value for the
first resonance is explained by the validity limit of Eq. (7.114). The resonance

50
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a b

Frequency (Hz)

|Z
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| /

 ρ
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Fig. 7.15 Input impedance of a trombone, (a) experiment (b) theory. On the experimental curve,
the input impedance curve of the mouthpiece alone is superimposed (dashed curve, from [20])

20Moreover let us not forget that is only an approximation, because Eq. (7.114) does not depend on
the termination of the bell, and the geometrical shape is not an exact power law.
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Fig. 7.16 Effect of a trumpet bell on the resonances of a cylinder (see [8, p. 398]). (a) Cylinder
alone; (b) Cylinder + bell. We can notice that the bell approximately transforms the odd resonance
series in a complete series, while the higher impedance peaks collapse

frequencies above the first one are close to a series 2; 3; 4; : : :. We can say that the
gap between the first and second, much larger than 2, is a secondary consequence
of the fact that the pipe is cylindrical over most of its length. We will see in Part
III the consequences on the various possible oscillation regimes. Compared to the
series 1; 2; 3; 4; : : :, for the cylinder plus bell there is positive inharmonicity, and it
turns out that the mouthpiece, below its Helmholtz resonance, compensates for this
effect: we saw in Sect. 7.3.4.2 that it produces negative inharmonicity.21 For a tuba,
the frequencies are fairly harmonically related, and the same type of results is found.
However, the first resonance frequency is higher than half of the second one [20].

Now let us go back to the role of the bell, which is primarily to increase
the radiation efficiency of higher frequencies (see Fig. 7.16). Beyond a certain
frequency, about 1500 Hz, there are no more significant impedance peaks, because
dissipation by radiation becomes very important. This is due to the size of the
terminal cross section, as we will see in the fourth part. A bell, with a gradual
transition of cross section, improves the transfer of higher frequencies to the outside:
this property is called impedance matching. At low frequencies, peaks have a
significantly reduced height compared to those of a single cylinder, because of both
losses near the walls inside the bell and radiation losses, that are added to the losses
inside the cylinder.

In practice it is important to estimate the frequency above which resonances
disappear. This frequency is related to both the bell shape and the value of the output
radius: here its order of magnitude is kRo D 1 for the output radius. The theoretical

21One can say that everything is for the best: the mouthpiece, used to improve the emission of
quite high notes, offsets the effect of the bell. A more human point of view is that makers have
succeeded after years of trials and errors to find well-adapted shapes for the mouthpiece and the
bell. However, Bouasse [15, p. 308] noted that in any case, at higher frequencies, the ratio between
successive harmonics for the two basic series (odd or complete) tends towards the same values!
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determination would require an accurate calculation of both the propagation inside
the bell and the outside radiation. For higher frequencies, the calculation is beyond
the theory we develop here.

The above described behavior is interesting for the two frequency ranges of
wind instruments, because low frequencies are essential for the sound production
(see third Part). The high impedance peaks at lower frequencies allow sustaining
oscillations, while effective radiation at higher frequencies is important so that the
ear has a perception of loud sound power.

7.5.2 Numerical Solution of the Horn Equation for Woodwinds
and Brass Instruments

Analytical calculation of some archetypal pipe geometries can be used to under-
stand some basic phenomena. In practice, we often need to perform numerical
calculations. For most shapes, there are no exact analytical solutions to the horn
equation. For instruments with a shape that is mainly cylindrical or conical, one
may use perturbation methods, such as length corrections, to describe the small
deviations from a perfectly cylindrical or conical shape. Instruments with this type
of shape, however, almost always feature short bells and/or toneholes. For brass
instruments, the “Bessel” shape is an approximation, and it is better to use a
discretization calculation to take into account the profile as accurately as possible.
As this equation is one-dimensional, numerous numerical methods are available,
starting with the most general ones, like the finite difference or finite element
methods [7]. Nevertheless these methods are especially interesting for 2D or 3D
problems [14, 51].

We present below the most usual methods: the product of matrices in the
frequency domain, and delay methods in the time domain.

7.5.2.1 Matrix Products

We can consider that a horn is a succession of small portions of cylinders. The
solution of the Helmholtz equation is correct for each of them: it is a discretization
method which gives an exact result for a perfect cylinder, unlike the finite difference
method, for example (except for certain specific choices). If we choose a succession
of portions of cones, we simply have to multiply the transfer matrices of the type
set out in Eq. (7.83). This method has been used for a long time (see, e.g., [69]), and
when there are toneholes, we just insert a special matrix that will be defined later.22

22We can improve the convergence by dividing the instrument into small cone portions, but then,
because of the variation of boundary layers thicknesses with the radius, analytical solutions exist
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At the limit of a division into infinitely small segments, the method converges to the
correct result. We therefore calculate�

P
U

�
input

D T

�
P
U

�
output

where T D
Y

i

�
Ai Bi

Ci Di

�
(7.118)

This system with an input and an output port is named two-port. If required, the
product of matrices can be calculated. Alternatively, an output impedance and an
output vector of the type t.Z; 1/, where t indicates the transpose of the vector, can
be set and ratios of input values to the output flow rate can be deduced: this reduces
the number of calculations by a factor 2. A less advantageous variant is to project
impedances using homographic relations (like .AZ C B/=.CZ C D/), but this only
gives the impedances, and cannot provide the transfer functions.

The inverse of a transfer matrix is written, because of reciprocity (the determinant
is unity):

�
Ai Bi

Ci Di

��1
D
�

Di �Bi

�Ci Ai

�
:

There are a large number of matrix types related to the transfer matrices, allowing
equivalent calculations. For example, an admittance matrix Y can be defined for the
segment (i � 1; i) of cross section Si (assigning the index 0 to the horn entrance, and
N to the end). If Pi and Ui are the pressure and flow rate at the output of the segment
(similarly for the input with the subscript i � 1), it can be expressed as:�

Ui�1eUi

�
D
�

Yi Y�;i
Y�;i Y 0

i

��
Pi�1
Pi

�
(7.119)

where Yi D Di=Bi; Y 0
i D Ai=Bi; Y�;i D �1=Bi; eUi D �Ui. The sign � before Ui

symmetrizes the input and output, and thus the coefficients of the second diagonal
of the admittance matrix are equal, which corresponds to reciprocity.23 It can be
deduced, considering two consecutive segments, that this corresponds to a kind of
second-order equation:

Y�;iC1PiC1 C .Y 0
i C YiC1/Pi C Y�;iPi�1 D 0 (7.120)

only when calculating the visco-thermal effects for a fixed equivalent radius [see Eq. (7.106)]. This
method has been used for the calculation in Fig. 7.12.
23Changing Ui in eUi is equivalent to consider the flow rate at the output along the axis opposite
to that of the input, and thus to consider the two ends of a two-port in a symmetrical way.
Conversely the orientation chosen for a transfer matrix distinguishes input and output, and is
obviously essential in order to juxtapose a sequence of cascaded two-ports.
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which can be put in matrix form:�
Pi�1
Pi

�
D
�

ai bi

1 0

��
Pi

PiC1

�
(7.121)

where the writing of the coefficients ai and bi is obvious. Again, matrix products can
be used to switch from the output to the input or vice versa, starting from known
boundary conditions.24

Another type of matrix that can be used operates on the incoming/outgoing waves
pair, instead of the pressure/flow rate pair. It allows using of successive reflections,
simplifying the calculation in the time domain, as we will see in Sect. 7.5.2.2.
However it is easier to use for cylindrical portions than for conical portions (see
Sect. 7.4.7).

Riccati Equation for the Impedance and Continued Fractions

Another expression of the horn equation is an equation for the impedance.
This is a first-order differential equation (once we know the impedance at
a point, it is known everywhere), but it is also nonlinear. Starting from
Eq. (5.132), and calculating the derivative of P=U D Z, or of U=P D Y,
one obtains

dZ

dx
D �Zv.x/C Yt.x/Z

2 ;
dY

dx
D �Yt.x/C Zv.x/Y

2: (7.122)

This type of equation, called Riccati equation, can be solved very simply by
a numerical method for first-order equations, e.g., the Runge–Kutta method.
We note first that if the impedance at a point is very small, the equation for
Z becomes linear, and the same happens if the impedance is very large for
the equation for Y: we find the same results as when using the system with
lumped elements (see Sect. 7.2.4). Moreover a remarkable property of the
Riccati equation is that it can be solved using another method, the method of
continued fractions expansion [46]. This method consists in finding a series
of functions of the geometry, gn.x/, according to a very particular recurrence
law: g0

n.x/ D 1=g0
n�1.x/: increasing the index n corresponds to increasing the

frequencies, as for a series expansion. We give a simple example of continued
fraction result for an open cylinder:

(continued)

24Note: for a segment without losses, it is easy to show that the coefficients A and D are real
numbers, and B and C purely imaginary. Furthermore the coefficients of the admittance matrix are
all purely imaginary numbers.
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tan kx D 1

1

kx
C 1

� 3

kx
C 1

5

kx
C etc : : :

(7.123)

At the order 3, this result is equivalent to:

tan kx D kx

1 � k2x2

3

' kx

�
1C k2x2

3

�
: (7.124)

This shows the relationship with the series expansion. The formula
is equivalent to the series expansion to the third order: tan kx D
kx


1C .kx/2=3

�
, at the same approximation order. Its domain of validity in kx

is much wider, however, and includes a pole that the series expansion cannot
have (as the latter cannot be valid above the resonance �=2). This pole is
obtained when kx D p

3. We can compare it to the exact value of the first
pole of the tangent function, �=2. Valid approximations beyond the poles can
be found. They converge rapidly when the number of terms taken into account
increases. The numerical calculation for any shape of horn is very rapid, even
when losses are taken into account [46]. This type of expansion can be put in
the form of electrical circuits with lumped elements (equivalent to masses and
springs). The convergence is faster than that of a modal expansion.

7.5.2.2 Discrete-Time Computation

The purpose of discrete time computing is numerical calculation in the time domain,
especially in real time. Let us restrict ourselves to the calculation of the lossless
horn equation using a succession of cylinder portions.25 All calculations reduce to a
series of operations involving simple delays, as we did in Chap. 4 for the successive
reflections (see also Sect. 7.3.2 of current chapter). A significant simplification is
to choose portions whose length is a multiple of an elementary length, equal to
` D c=fe, (fe being the sampling frequency). Delays appear in the incoming and
outgoing wave variables [see Eq. (4.1)], i.e., the eigenvectors of the transfer matrices
of planar waves.

The problem to be solved is that of a cross-section discontinuity, since the
corresponding equations are written for the values of pressure and flow rate.

25To take visco-thermal effects (losses and dispersion) into account, we replace the delays ı.t � T/
by digital filters, which represent these effects in an approximate way.
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Fig. 7.17 Horn divided in
cylinder portions. The
considered cell goes from the
input of Portion i � 1 to the
input of Portion i

Cell i-1

vi-1 vi
Si-1

Si

x

We consider a discontinuity between the pipes of subscripts 1 and 2 in Fig. 7.17
(here i D 2, so that the chosen elementary cell goes from the entrance of the Pipe 1
to the entrance of the Pipe 2, just after the discontinuity). In terms of incoming and
outgoing waves (we choose x D 0 at the discontinuity), continuity of pressure and
flow rate is written as (see Sect. 7.3.2):

pC
1 C p�

1 D pC
2 C p�

2 ; (7.125)

S1.p
C
1 � p�

1 / D S2.p
C
2 � p�

2 /:

Using a simple causal logic, we seek the outgoing waves of a system with respect
to the incoming waves. Here pC

1 and p�
2 are incoming, and p�

1 and pC
2 are outgoing

(considering the chosen orientation);

pC
2 D p�

2 C .1C K/.pC
1 � p�

2 / where K D S1 � S2
S1 C S2

; (7.126)

p�
1 D pC

1 C .K � 1/.pC
1 � p�

2 /: (7.127)

This arrangement of variables gives rise to the scattering matrix method. For sound
synthesis, this arrangement leads to the so-called Kelly-Lochbaum junction [37,
43, 55, 74, 75, 78, 79, 81]. One just needs to juxtapose such schemes to treat the
whole horn. The use of outgoing and incoming waves in the discrete time domain is
called the waveguide technique, and gave rise to an abundant literature [78], for the
synthesis of both speech and musical instruments.26

Furthermore, in order to minimize the number of multiplications, we prefer to
write another kind of relationship:

pC
2 D p�

2 C .1C K/.pC
1 � p�

2 / ; (7.128)

p�
1 D pC

2 � .pC
1 � p�

2 /. (7.129)

26We should pay attention to notations: we use the symbol K for the reflection coefficient, while
Smith [78] uses k (he uses R for the characteristic impedance, inversely proportional to the cross
section area).
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At any time there is only one multiplication to be done, to switch from incoming
waves to outgoing waves, by solving the first equation and then the second one.

In order to connect the input of Cell 1 to the input of Cell 2 (which is the
output of Cell 1), we consider propagation in the Pipe 1 over the length `, then the
discontinuity, expressing the incoming and outgoing waves at the input of cylinder 1
with respect to the same quantities at the discontinuity. At x D 0, the outgoing wave
is delayed by a time T D `=c D f �1

e from its value at the input of the cell at x D �`.
It is a function of t � x=c, so it has the same value in x D �` at time t � T as in
x D 0, at time t: Conversely the incoming wave is a function of x C ct, and has the
same value in x D �` at time t C T as in x D 0 at time t: In order to find the desired
result, these expressions are simply used in Eqs. (7.128) and (7.129). In the cascade
of segments (or cells) including a length ` and a discontinuity, we denote i � 1 the
index of the input of Pipe 1 (x D �`) and i the entrance of Pipe 2 (x D 0/:

pC
i .t/ D p�

i .t/C .1C Ki/


pC

i�1.t � T/ � p�
i .t/

�
; (7.130)

p�
i�1.t C T/ D pC

i .t/ � 

pC

i�1.t � T/ � p�
i .t/

�
. (7.131)

Ki D .Si�1 � Si/= .Si�1 C Si/ is the reflection coefficient of a wave in segment
i � 1 incident on segment i. To proceed to the time discretization, we denote the
time domain sample number at time t as n such that n=pm1 corresponds to t=pmT.
Finally:

pC
i .n/ D p�

i .n/C .1C Ki/


pC

i�1.n � 1/� p�
i .n/

�
; (7.132)

p�
i�1.n C 1/ D pC

i .n/� 

pC

i�1.n � 1/� p�
i .n/

�
. (7.133)

7.5.2.3 How to Measure the Input Impedance of a Wind Instrument?

The input impedance is the ratio of two quantities of a linear passive system, i.e.,
a transfer function, which depends only on the properties of the passive system
downstream from the source. In principle, to obtain the input impedance of a pipe,
one just has to excite it using any source, and to measure both the pressure with
a microphone and the average particle velocity (or the acoustic flow rate) using a
velocity sensor. In practice this solution is rarely used because the acoustic velocity
or flow rate sensors are sometimes difficult to use.27

For this reason an indirect determination of the velocity is generally preferred.
For instance, two microphones located one next to each other make a pressure
gradient sensor from which the velocity can be deduced. This method has the

27One solution is the hot wire anemometer, which, however, implies that there is a mean flow, or
better the Microflown probe that was developed to measure low particle velocity. More complex
methods, such as the Laser Doppler Anemometry can also be considered.
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drawback of being usable over a limited range of frequencies,28 necessitating the
use of more than one pair of microphones. The signal from the source can also be
used directly, because it is connected to the velocity: a condenser microphone used
as a source produces, as a first approximation, a displacement proportional to the
applied voltage. The reader will find summaries on this topic in several articles (see
especially [21, 26], and also [83]). A general difficulty is the calibration, which can
be done from theoretical knowledge, either of the measurement system itself or,
better, of the input impedance of particular test objects, such as cylindrical pipes.

7.6 Duct Modes and Simple Discontinuities

So far we have treated modes in one-dimensional systems, and rarely in systems
with multiple dimensions, with the exception of material on from membranes and
plates (See Chap. 3). In resonators, there are discontinuities such as toneholes that
require three dimensions to be taken into account: that is the purpose of this section.
We first define the cavity modes, which make use of concepts seen before, then the
concept of duct modes. We will see that duct modes are a generalization of one-
dimensional waves: they are waves in one direction, and modes in the two others.
They allow writing the formulas in closed-form (See Chap. 4) in one direction, and
to expand into modes in the other two. These concepts are more easily introduced
in Cartesian geometry. We then discuss the cylindrical geometry, which is of course
the most usual.

We do not consider any dissipation or mean flow effects: this limits the validity
of our analysis, but still yields quite useful results, especially for calculating the
effect of toneholes on the resonance frequencies. Flow effects, which are nonlinear,
are discussed in Chap. 8.

7.6.1 Cavity Modes and Duct Modes: Cartesian Geometry

7.6.1.1 Cavity Modes: The Example of a Closed Cavity

For an acoustic cavity (in three dimensions), a triple infinity of modes is found. They
are solutions of the wave equation without sources, for given boundary conditions.
We can then show that any solution of the wave equation (with sources) can be
written as a linear combination of modes, which are valid solutions apart from a
multiplicative constant.

28On the one hand, at lower frequencies, the gradient is small and, on the other hand, at higher
frequencies, the gradient can vanish when the distance is equal to one half wavelength. In both
cases, accuracy is poor.
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Let us consider the simple example of a closed, rectangular, perfectly reflective
cavity with rigid walls, of dimensions Lx, Ly, Lz. The corresponding modes can
be easily calculated by using the separation of variables. We look for solutions of
the wave equation with no source in the form p.r; t/ D X.x/Y.y/Z.z/T.t/; with the
vector r D .x; y; z/: Dividing the wave equation by p.r; t/, we obtain

1

X

@2X

@x2
C 1

Y

@2Y

@y2
C 1

Z

@2Z

@z2
D 1

c2
1

T

@2T

@t2
:

The left-hand member depends on space only, and the right-hand member on time
only, therefore both must be equal to a constant (i.e., a space and time independent
constant). We write it �k2 D �!2=c2. Both notations are convenient, especially for
conservative boundary conditions, for which we find that k and ! are real numbers.
The time solution of the equation is T.t/ D exp.˙j!t/. Then we particularize the
direction x; writing:

1

X

@2X

@x2
D � 1

Y

@2Y

@y2
� 1

Z

@2Z

@z2
� k2 D �k2x :

Similarly, the constant (independent of x on one side, and of y and z on the other)
is denoted �k2x (in the present case, it is positive, but we will see a case where it is
negative). Neumann boundary conditions are assumed for x D 0 and x D Lx. The
x equation has the solution X.x/ D cos kxx, where kx D nx�=Lx. nx is an integer.
One can do a similar operation for the coordinate y, which is separated from z, and
we obtain for Neumann conditions at y D 0 and y D Ly: Y.y/ D cos kyy, where
ky D ny�=Ly: Finally for z, we made a last operation, but this time the constant,
denoted �k2z , is already fixed:

1

Z

@2Z

@z2
D �k2 C k2x C k2y D �k2z : (7.134)

This equation is the dispersion equation. Also for Neumann conditions in z D 0 and
z D Lz: Z.z/ D cos kzz, where kz D nz�=Lz: Eventually, for our rectangular cavity,
we have the following solutions, written apart a multiplicative constant:

p.r; t/ D cos kxx cos kyy cos kzz ej!t, with (7.135)

!2=c2 D .nx�=Lx/
2 C .ny�=Ly/

2 C .nz�=Lz/
2: (7.136)

Solutions using exp.�j!t/ would produce the same real quantities, and are therefore
excluded. The functions given by (7.135) are the modes of the cavity, which are
consistent with the entirety Chap. 3. As the medium is limited, the eigenfrequencies
are quantized: they can only take a number of values corresponding to the integers
nx; ny; nz; satisfying (7.136). For the particular case of the boundary conditions
chosen, there is a uniform mode of zero frequency, such as nx D ny D nz D 0: it is
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obvious that p.r; t/= constant is a solution of the wave equation, satisfying Neumann
conditions on the walls, since its gradient vanishes. We can finally show that the
modes we found are orthogonal in the case of conservative walls, whose admittance
is purely imaginary, the conditions of Neumann or Dirichlet being a special case.

7.6.1.2 Duct Modes (Rectangular Geometry)

The separation of variables can also be done for an infinite medium. This was the
case in one dimension for the general decomposition in the form of outgoing and
incoming waves in sinusoidal regime [see Eq. (4.24)]. Hence all frequencies can
exist. Compared to the modal expansion for a finite domain, this formulation has the
advantage of avoiding the infinite series, thanks to the closed-form solutions. If we
take the three dimensions of a duct into account, we still have the choice between
the modes of the duct regarded as a cavity, and a different kind of modes, called
duct modes or waveguide modes, which are the solutions for a bounded medium
in the directions transverse to the axis of the duct and unbounded in this axis. So
let us suppose that the rectangular cavity is unbounded along the x-direction. The
solutions for separate variables are written as:

p.r; t/ D 

aCe�jkxx C a�ejkxx

�
˚ny;nz.y; z/e

j!t (7.137)

where ˚ny;nz.y; z/ D cos kyy cos kzz ; k2x D !2=c2 � k2? (7.138)

with k2? D .ny�=Ly/
2 C .nz�=Lz/

2: (7.139)

The modal shape ˚ny;nz.y; z/ is solution of the Helmholtz equation:

.�? C k2?/˚ D 0; (7.140)

where �? is the two-dimensional Laplacian on y and z. The values of k? are the
eigenwavenumbers of a specific problem in two dimensions, which are quantified
by (7.139).

• The mode discussed in Chap. 4 is the planar mode, denoted .0; 0/, for which
ny D nz D 0. It is the equivalent of a uniform mode .0; 0; 0/ for a cavity.
This property exists whatever the geometry, provided that the conditions on the
walls are Neumann conditions. Acoustic quantities are uniform, or “planar,” in a
section of the duct perpendicular to the x-axis.

• The other modes depend on the geometry, and present an important feature:
depending on the sign of k2x , they can be either propagating (real kx) or
evanescent (purely imaginary kx). In this case waves are exponentially decreasing
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or increasing in the x direction.29 The frequency at the limit kx D 0 is called
the “cutoff frequency,” and is simply a eigenfrequency of the two-dimensional
problem on y and z. It satisfies !=c D k?, and its values are given by (7.139).
Therefore, for a given frequency, there are a finite number of propagating modes.

Thus, at lower frequencies, when !=c is smaller than any nonzero value of
k?, only the planar mode propagates. Suppose that the section of the duct is such
that Ly � Lz. The lowest non-planar modes of wavenumber k? are obtained for
ny D 0 and nz D 1; 2; 3 : : : For nz D 1, ˚0;1.y; z/ D cos.�z=Lz/: this is an anti-
symmetric mode with respect to z D Lz=2. For nz D 2,˚0;2.y; z/ D cos.2�z=Lz/:
this mode is symmetrical with respect to z D Lz=2. If the instrument under
consideration (including the excitation) is fully symmetrical, the mode (0; 1/
cannot exist, and therefore the first non-planar mode is .0; 2/ and appears for
kLz D 2� . Below this frequency, only the planar mode can propagate, and,
because evanescent modes are located near the cross section changes, this is a
justification for the approximation of plane waves, widely used so far. In practice,
the instrument is not symmetrical, and the frequency given by

kLz D � , or Lz D �=2, (7.141)

is the limit of validity (corresponding to the so-called half-wavelength reso-
nance). As the transverse dimensions are small compared to the wavelength
(Lz < �=2), the waves are assumed to be planar. This is a very common situation
for wind instruments. However some mouth organ pipes have a section large
enough for the appearance of modes called “upper modes” at audible range
frequencies, which are important in the spectrum. A similar phenomenon exists
at higher frequencies in the vocal tract, when the transverse dimensions are
large compared to the wavelength [67]: a dimension of 4 cm gives a first cutoff
frequency at approximately 4000 Hz, a high though significant frequency for the
voice. In addition, near the transverse resonance, we can understand intuitively
that the air can excite the walls in a non-negligible way, which can cause coupling
phenomena.

• As for the cavity modes, the duct modes are orthogonal when the wall conditions
are conservative (i.e., purely imaginary normal impedance). To show this we use
the divergence theorem for the two-dimensional Helmholtz equation in the case
of a constant section, (See [18]):Z

S
˚ny;nz.y; z/˚my;mz.y; z/dS D 0 if ny ¤ my or nz ¤ mz: (7.142)

29Physically, the modes can only decrease on both sides of a discontinuity or of a source, the
existence of growing modes is thus linked to a choice of orientation of the x axis. Such modes are
typically found near the open end of a tube.
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This allows, if the pressure profile on a section is known, the coefficients of the
modal expansion to be determined. We deduce in particular that since the planar
mode exists, all non-planar modes have averages equal to zero. In other words,
the planar mode represents the average field pressure.

• The (specific) characteristic impedance of a mode traveling in the x-direction is
obtained from the Euler equation:

Zx D p

vx
D �j!�

p

@p=@x
D �c

k

kx
: (7.143)

For an evanescent mode this is a purely imaginary number: the mode does not
transport energy.30 Moreover, at very low frequencies, such as

jkx D 

.ny�=Ly/

2 C .nz�=Lz/
2
�1=2

;

the impedance is mass-like: energy of evanescent modes is kinetic. We will later
study their role near a change in cross section: the field is far from being plane,
thus all modes, whether propagating or evanescent, exist. Notice that if the first
higher mode is obtained for ny D 0, nz D 1, the mode in a long enough pipe
decreases as exp.��x=Lz/ at lower frequencies, so we can ignore it as long as
x reaches the order of magnitude of the transverse dimension Lz; and since the
higher modes decrease more quickly, this gives an intuitive idea of the distance
over which the evanescent modes can be significant close to an obstacle or a
discontinuity (this type of reasoning is only qualitative, because it covers an
infinity of modes, but numerical calculations confirm the correctness of this
assertion).

7.6.2 Cylindrical Duct Modes

Circular cross sections are the most common in wind instruments. Everything we
have written above can be transposed by replacing the coordinates .y; z/ by the polar
coordinates (r; �/. The equation we need to solve, (7.140), is written as:�

@2

@r2
C 1

r

@

@r
C 1

r2
@2

@�2

�
˚.r; �/C k2? D 0, (7.144)

which is similar to the Fourier transform of the membrane equation (3.143). The
separation of variables can be done by requiring that the field is finite at r D 0 (first
boundary condition); and therefore the solutions only involve the Bessel functions
of the first kind:

30The superposition of increasing and decreasing modes, which occurs, for example, between two
close discontinuities, can transport energy if they are not in phase, which is equivalent to the
tunneling effect in quantum mechanics.
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˚mn.r; �/ D Jn.�mnr/ cos n� and ˚mn.r; �/ D Jn.�mnr/ sin n� ,

where �2mn D !2=c2 � k2x and m and n are positive integers. (7.145)

These solutions are written apart from a multiplicative constant. The values of
�mn are given by the other boundary condition, i.e., the condition at the wall r D R:
this distinguishes these modes from those of membranes, because here the condition
is a Neumann condition and not a Dirichlet condition. We must therefore have

J0
n.�mnR/ D 0: (7.146)

For n D 0 (modes of radial symmetry), it is found: �m0R D 0 (this is the planar
mode!); 3:83; 7:02; 10:17, etc. (to 2 decimal points). For n D 1, it is found �m1R D
1:84; 5:33; 8:54, etc. Figure 7.18 shows the shape of the nodal lines (zero pressure)
for the first modes.

Among the modes without radial symmetry, only the cos n� modes are shown. If
the instrument had a radial symmetry, only modes such as n D 0 would exist, and
the first cutoff frequency would be given by kR D 3:83. In practice this is not the
case, and the first cutoff frequency is given by:

kR D 1:84: (7.147)
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Fig. 7.18 Nodal lines for the first modes of a cylindrical tube; for modes without radial symmetry.
Modes with cos n� are chosen
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Fig. 7.19 Potential flow in the presence of a zero-thickness diaphragm (on the left) or at a change
in cross section (on the right) (the calculation is made by a conformal mapping of the complex
plane for a rectangular geometry, see [59])

Writing the same expression with the diameter D D 2R reads: kD D 3:68. This
is the same order of magnitude as for the rectangular geometry, when compared to
Eq. (7.141), replacing the transverse dimension Lz by the diameter.

7.6.3 Cross Section Discontinuities and Diaphragms

7.6.3.1 Problem Statement

The theory we used for chimney pipes is a simplification, because pressure
continuity of the planar mode is not satisfied. Since Bernoulli’s work, the theory has
been employed for the analysis of many situations, starting with the case of a horn.
A difficulty when using this approximation clearly appears for a diaphragm without
thickness (see Fig. 7.19): assuming continuity of both the planar mode pressure and
flow rate, we cannot “see” the diaphragm, whereas when the opening goes to 0, the
impedance must tend to infinity, and therefore strongly disturbs the field!

Actually, even at very low frequencies, the field is not uniform near the
discontinuity, i.e., higher modes are present: they are evanescent and disappear
when the distance from the junction increases. At very low frequencies, the field
is a solution of the Laplace equation. Assuming that there is a compact region of
space, i.e., a region small compared to the wavelength, we can consider the flow
as incompressible. Moreover it is irrotational (we are still considering the linear
approximation, without mean flow or dissipation); the problem to be solved is that
of a potential flow. At any times the velocity is parallel to the streamlines shown in
Fig. 7.19.

When the streamlines become narrower, there is an increase of the total kinetic
energy due to the presence of the diaphragm. Therefore there is an additional
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Fig. 7.20 Notations for a
discontinuity between a small
guide (1) and a large guide (2) x

w

S1

S2

acoustic mass.31 It can be shown that this extra mass tends to infinity when the
radius of the diaphragm tends to zero, which is equivalent to closing the pipe.

However, this type of discontinuity does not induce any additional compressibil-
ity effect, as we will show later: this is because the mass conservation equation
is scalar, and the acoustic compliance of a volume V of any shape is always
�sV D V=�c2 [Eqs. (1.154) and (1.96)]. The volume to be considered is that of
a certain portion of the pipe, but the exact shape does not affect the result.

7.6.3.2 Solving the Problem of a Discontinuity in Cross Section

There are many methods for solving the problems of discontinuities [57]. The only
analytical method for solving the Laplace equation is that of conformal mapping,
but it is limited to the rectangular, two-dimensional geometry [27, 59]. We present
below a quite natural method, based on the modal expansion in each of the guides,
by treating the simple case of a discontinuity in cross section (see Fig. 7.20).
A numerical calculation yields the solutions for some geometries.

We have to solve the three-dimensional sound equation exactly. For this purpose,
we decompose the field in each waveguide in modes of the form (7.137) and use
a matrix notation. (x;w) are the coordinates in a guide: w is a 2D vector, denoted
(y, z) and (r, �) for the two above-discussed geometries. An index refers to each of
the Pipes (1 or 2), and the origin is at the discontinuity. The modal decomposition
is known for certain geometries for which coordinates are separable. We assume
here that there is a (double) infinity of modes that are solutions of (7.140).32 In
the general case, however, we sort modes using a single index, for example, using
increasing cutoff frequencies. For each of the guides, the field is decomposed as
follows, preferably using a vector notation for the pressure and the projection of
velocity along the x-axis, defined below:

31This mass is added to that due to the planar mode, which is �`=S for a small tube of length `
and section S, and we will see that its order of magnitude is the mass of air in a pipe whose cross
section is that of the diaphragm and the length is that of the radius.
32If the guides have a common symmetry, the double infinity can be reduced to a simple infinite:
in the circular case, if both guides are concentric, we have a radial symmetry, and the azimuth
� is not relevant. Similarly for the case of a 2D rectangular geometry, if the two guides have
a common transverse dimension, the discontinuity cannot create any higher order modes in the
common dimension.
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Scalar notation Vector notation

p.x;w/ D
C1P
iD0
˚i.w/Pi.x/ p.x;w/ D t�.w/P.x/

v.x;w/ D S�1C1P
iD0
˚i.w/Ui.x/ v.x;w/ D S�1 t�.w/U.x/

R
S˚i.w/˚k.w/dS D Sıik

R
S �.w/

t�.w/dS D SI

Pi.x/ D S�1 R
S˚i.w/p.x;w/dS P.x/ D S�1 R

S �.w/p.x;w/dS

Ui.x/ D R
S˚i.w/v.x;w/dS U.x/ D R

S �.w/v.x;w/dS

where I is the identity matrix. The normalization chosen for the modes is such that
they are dimensionless (so that the planar mode is ˚i.w/ D 1). Vectors P, U, and
�, are column vectors, and are therefore of infinite dimension for the first step.
We omit the time dependence exp.j!t/. For the velocity, the vector U.x/ (given the
factor S�1) is chosen to obtain the flow rate in the case of a uniform velocity. We
can write for Pipe 2, according to Eq. (7.137) and Euler’s equation, apart from a
multiplicative constant:

P2;i.x/ D A2


e�jk2;ix C R2;ie

jk2;ix
�

;

U2;i.x/ D A2Z
�1
2;i



e�jk2;ix � R2;ie

jk2;ix
�

, (7.148)

with, according to (7.143), Z2;i D �ck=.k2;iS2/. The reflection coefficient R2;i
depends on the conditions at the end. Similarly for the Pipe 1, we have

P1;i.x/ D A1


ejk1;ix C R1;ie

�jk1;ix
�

U1;i.x/ D �A1Z
�1
1;i



ejk1;ix � R1;ie

�jk1;ix
�

, (7.149)

with Z1;i D �ck=.k1;iS1/: The reflection coefficient R1;i depends on the conditions
at the entrance of the Pipe 1. A1 and A2 are complex amplitudes. Considering the
set of two pipes shown in Fig. 7.20 between two given abscissae, we have what
is called a multi-port system with two infinities of ports. A port is defined by two
scalar quantities: pressure and velocity (projected on the axis). For a unique mode
in a tube of given length, we therefore have a two-port, see Sect. 7.5.2.1. For n
modes, we have 2n ports. In order to find the field everywhere, we have to find a
characterization of the multi-port that enables us to move from the left to the right
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of the cross section discontinuity. Between two given abscissas of a straight guide,
the relationships are well known, each mode being characterized by a transfer matrix
of order 2.

• The problem is to find the relationship between the vector pressures, P1.x/
and P2.x/; and the velocity vectors, U1.x/ and U2.x/; on the two sides of the
discontinuity (the approximation made in Sect. 7.3 was the truncation of these
vectors to a single component, considering only the planar mode, with continuity
of average pressure and flow rate). The first step is to find a matrix to represent
this multi-port with two infinities of ports. To do this, we use the continuity
conditions at each point w of the matching section. At every time and every point
continuity of the pressure and particle velocity on the common section needs
to be satisfied (i.e., the section S1 of the small duct). Furthermore the normal
velocity vanishes on the vertical wall surface S2 � S1. This is written as follows:

p1.0;w/ D p2.0;w/ and v1.0;w/ D v2.0;w/ if w 2 S1 ;

v2.0;w/ D 0 if w 2 S2 � S1: (7.150)

The projection of these conditions on the modes allows us to find the desired
relationship. This is called the method of mode matching: since there is a surface
where the two modal decompositions are possible, we can therefore match them.

• The second step is based on the fact that among the infinity of modes, there are a
finite number that propagate (and at low frequencies only one, the planar mode).
We assume that the discontinuity is sufficiently far from any other discontinuity.
Thus the two pipes are infinite for the evanescent modes (i.e., the exponentials
decrease on both sides of the discontinuity, because growing exponentials could
appear only if there were a second discontinuity close to the first one). With
this hypotheses, the coefficients R1;i and R2;i are zero for all subscripts i
corresponding to evanescent modes and the impedances of evanescent modes
are known to be given by their characteristic impedances Z1;i and Z2;i. This
means that all corresponding ports are closed on a known impedance (one can
eliminate the pressure and flow rate vectors of evanescent modes), and that
the multi-port dimension is reduced to the number of propagating modes. The
only condition is that on each side there is a long enough pipe length without
discontinuity. In practice, it is sufficient that, for each duct, this length has the
order of magnitude of the transverse dimensions, as we intuitively explained at
the end of Sect. 7.6.1.2.

Now, projecting the conditions (7.150) on both modal bases, we have

t�1.w/P1.0/ D t�2.w/P2.0/ for w 2 S1;

hence projecting on the basis of the Pipe 1 (and from now on omitting abscissa
x D 0):

P1 D FP2 where F D S�1
1

Z
S1

�1.w/t�2.w/dS: (7.151)
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For the velocity, we get

S�1
1

t�1.w/U1 D S�1
2

t�2.w/U2 for w 2 S1Z
S2

�2.w/v.0;w/dS D
Z

S1

�2.w/v.0;w/dS

since the velocity vanishes on S2 � S1. The projection on the basis of the Pipe 2 is
used to take into account these conditions, and we obtain

U2 D tFU1: (7.152)

The appearance of the transpose matrix of F is due to reciprocity: this is not
explained here. Equations (7.151) and (7.152) are used to represent the change in
cross section by a generalized transfer matrix:�

P1
U1

�
D
�
F 0

0 tF�1
��

P2
U2

�
. (7.153)

Unfortunately this writing is valid only formally, and is not usable: the inverse
of the matrix F is difficult to obtain numerically. In particular it is assumed that F is
square, and that the vectors are truncated to the same number of modes on the two
sides (of course the actual calculation assumes a vector truncation!). In theory this
means that the field is more “detailed” on the left than on the right, as the guide on
the left is smaller and therefore the above description of the singularity (the right
angle) is not satisfactory. This issue is complicated. We notice that in general for a
large number of modes, if the large guide is q times larger than the smaller one, we
must take q times more modes in the large guide [57].

Formally, the first step is achieved. Now, using Eqs. (7.151) and (7.152) at low
frequencies, we ensure that the evanescent modes in the two guides obey the relevant
characteristic impedance. To do this, we decompose the vectors and matrices into
sub-vectors and sub-matrices, corresponding to the propagating mode(s) and to the
evanescent modes. For the calculation of products, the sub-matrices will be used as
ordinary matrices. If only the planar mode propagates, one of the sub-vectors is a
scalar, and for each of the ducts it can be written as:

P D
�

p
P0
�

; U D
�

u
U0
�

I� D
�
1

�0
�
: (7.154)

The matrix F can be written as:

F D
�
1 tf
0 F0

�
: (7.155)



358 J. Kergomard

The first column has a very particular form, because of the existence of a
mode common to the two guides, i.e., the planar mode (1 is a scalar, 0 a zero
column vector). This is an essential feature of acoustic waveguides with Neumann
conditions. f is a vector of the following form: f D S�1

1

R
S1
�0
2.w/dS; and the

matrix F0 is the reduction of the matrix F once the planar mode is removed. The
decomposition of Eqs. (7.151) and (7.152) gives

p1 D p2 C tfP0
2 ; P0

1 D F0P0
2, (7.156)

u2 D u1 ; U0
2 D fu1 C tF0U0

1:

We have seen that because of the existence of the planar mode, it is the only mode
to have a nonzero average: this means that only the planar mode contributes to the
flow rate. As the vertical wall does not contribute to the flow, a key equation, used
since the beginning of this chapter up to the horn equation, is verified: this is flow
rate conservation (u2 D u1/ at a change in cross section, due to the fact that the
matching occurs on a surface of zero volume. Now we need to force the evanescent
modes to obey the relevant characteristic impedance, using (7.148) and (7.149):

P0
1 D �Z0

1U
0
1 ; P0

2 D Z0
2U

0
2, (7.157)

where the matricesZ0 are the characteristic impedance matrices, which are diagonal.
Then, after a simple calculation, using the characteristic admittance matrices Y0 D
Z0�1, we obtain

p1 D p2 C Zdu ; u D u1 D u2 where (7.158)

Zd D tf .Y0
2 C tF0Y0

1F
0/�1f : (7.159)

Here we mention only what is relevant to the planar mode. Zd, which is scalar, is
called the discontinuity impedance. To obtain it, we have to find the inverse of a
matrix. But an excellent approximation is often used: evanescent modes in the small
pipe are ignored (P0

1 D U0
1 D 0), and thus at the discontinuity the pressure field is

plane, which yields

Zd D tfZ0
2f , (7.160)

This gives the single infinite series, and is the well-known plane piston approx-
imation.33 It is best when the guide 1 is small. However, when the guide 1 is not

33The approximation of the plane piston can be generalized. We write in (7.159):

Y0
2 C tF0Y0

1F
0 D Y0

2.I C Q/ where Q D Z0
2

tF0Y0
1F

0,

and we use the Neumann series expansion, valid if the matrix norm of Q is less than unity .I C
Q/�1 D I � Q C Q2 � Q3 C : : : The characteristic impedances are inversely proportional to the
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small, i.e., for a small discontinuity, the impedance Zd is small, and it is not very
significant to make a relatively large percentage error on a small quantity. This
is the reason for the success of the approximation. The next section yields the
values obtained by a numerical calculation for the cylindrical geometry. Because the
matrix F is independent of frequency, the frequency dependence of the discontinuity
impedance Zd is related to that of the characteristic impedances. For evanescent
modes, when the frequency tends to zero, these impedances are of the acoustic-mass
type, i.e., proportional to j!. The discontinuity impedance is therefore an added
acoustic mass: Zd D j!Md.

7.6.3.3 Results for a Discontinuity in Cross Section and a Diaphragm:
Added Mass

We will not give further detail on calculation methods. For rectangular and
cylindrical geometries, approximate results can be found in [47], which depend on
frequency: indeed the characteristic impedances of evanescent modes are frequency
dependent, especially near their cutoff frequency. A useful formula for cylindrical
geometry, valid at lower frequencies for concentric ducts of radii R1 and R2, with
˛ D R1=R2, is

MdR1=� D 0:26164� 0:353˛ C 0:0809˛3 C O.˛5/; (7.161)

when ˛ � 0:55. When ˛ � 0:55, the following formula can be used if " D 1 � ˛:

MdR1=� D 4"2��2 
�0:49198 ln."/C 0:50349� 0:376246"2 � 0:852222"2 ln."/
�

(7.162)

Regarding the approximation of the plane piston, when ˛ � 0:55 we have

MdR1=� D 8=3�2 � 0:3525˛C 0:0643˛3 C O.˛5/: (7.163)

These formulas are valid both for an enlargement and a constriction. For a
diaphragm without thickness, which can be seen as a double discontinuity, we can
also use modal matching, but paying attention to some subtleties. Of course the
approximation of the plane piston is the same, apart from a factor 2. The exact
result was obtained using an analytical method by Fock [31]:

MdR1=� D 2


0:25� 0:3523˛C 0:0848˛3 C O.˛5/

�
: (7.164)

sections, so Q is proportional to S1=S2: intuitively, we therefore understand that the convergence
is even better when this ratio is small. The plane piston approximation is the zeroth order of the
expansion.
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The similarity of these results can be explained by utilization of variational
principles, example of which is the method due to Rayleigh (see [68]).34 We note
that the acoustic mass is always of the order of magnitude of the planar mode in the
small waveguide, extended with a length equal to the radius: �R1=S1 D �=.�R1/.
In this regard, we often write Md D ��`=S1, where �` is called length correction,
as is done for the acoustic mass of radiation in infinite space.35

However, this notion of length correction needs to be discussed. Suppose that
the planar mode in the guide 2 has an input impedance equal to Z2. According
to (7.158), the output impedance of the guide 1; near the left side of the discontinuity
is: Z1 D Z2C j!Md. If the discontinuity plays exactly the role of a length correction
to the guide 2, we must find, using the reduced impedance formula:

Z1S1
�c

D j tan k�`C Z2S1=.�c/

1C .Z2S1=.�c//j tan k�`
: (7.165)

If k�` is small, in addition to Z2S1=.�c/, we do obtain j!Md D j�ck�`=S1, and
so, for a strong discontinuity (7.163):�` D 0:26164�R1 ' 0:822R1. This concept
of length correction is of great practical interest,36 but we see that here it is only
valid if Z2 is not too large compared to the characteristic impedance of the small
tube, which may not be the case if the large tube 2 presents resonances at its input.
It is worth noting this when incorporating the length correction in the length of the
small tube, as we did earlier in this chapter, more or less explicitly37! Notice that
when the frequency increases, the mass Md increases up to a very high value at
the cutoff frequency of the first higher mode, which produces a kind of transverse
resonance. However, the nature of this resonance is very different from a classical
resonance of a single-degree-of-freedom oscillator, especially since the Md value is
finite, even when there are no losses.

In conclusion, for the assessment of orders of magnitude, we can say that the
effect of the acoustic mass is a simple length correction of the small pipe, such
as �` D 0:822R1 for a strong cross section discontinuity (and �` D 0:85R1 D
8R1=3� for the plane piston approximation). These values were already given by

34The value of 0:25 for a zero-thickness diaphragm instead of 0:26164 for a discontinuity reveals
the (weak) interaction effect between the input and output of the diaphragm. This interaction is that
of decreasing and increasing evanescent modes in the diaphragm, when the latter has a very small
thickness.
35When the radius R2 tends to infinity, the discontinuity mass is the same as that of the low
frequency radiation, provided that the pipe radiates in an infinite screen. The case of tube radiation
is covered in Chap. 12.
36We can also mention that we could have chosen to find a length correction for guide 2, assuming
that the input impedance of guide 1 is not too large. If we label it�`.2/; where obviously �`.2/ D
�`S2=S1; we see that it has a more complicated relationship with the radii, particularly for large
discontinuities, where �` is simply proportional to the radius of the small guide.
37A simple way to summarize the discussion is as follows: a short length of pipe corresponds to the
effects of a mass and a spring. Assimilating a mass added to a length correction therefore yields
the addition of a spring that does not exist.
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Rayleigh for a pipe radiating into an infinite flange. For a numerical calculation,
however, it is better not to use the length correction approximation, but rather to use
an added mass in series with the input impedance of Pipe 2 [Eq. (7.158)].

7.6.3.4 Linear Model of a Helmholtz Resonator: An Attempt of Overview

We have treated the Helmholtz resonator in several places. Let us try to give an
overview, because now we do have almost all the ingredients for a satisfactory
model, at least in a linear regime. From a geometrical point of view, it is the
assembly of a cavity and a neck. As explained in Sect. 7.3.1 (when both elements
are cylindrical), the first resonance is such that the corresponding wavelength is
large compared to the dimensions: this essential property could be the definition
of a Helmholtz resonator, as the expression “resonant acoustic circuit with lumped
elements.” A condition for achieving this property relates to the discontinuity in
cross section between cavity and neck: it must be strong (see Sect. 7.3.1).
The resonator can be excited by two types of sources [See Chap. 1, Eq. (1.156)]. We
still have to describe as precisely as possible the acoustic elements that compose it.
The acoustic compliance Ca is very simple, since it is given by the volume of the
cavity. More complicated is the value of the acoustic-mass Ma. It can be written as
the sum of:

• the mass of the planar mode in the neck, given by Eq. (7.55):

Mp D �

Z
neck

S�1.x/dx ; (7.166)

• the mass of the internal discontinuity, which is roughly:
Mint D 0:26�=Rint D 0:82�Rint=Sint, if the cavity/neck discontinuity is strong,

where Rint is the radius of the neck on the side of the cavity;
• the radiation mass, which is roughly:

Mext D 0:19�=Rext D 0:61Rext=Sext, if the neck has no thickness, or Mext D
0:26�=Rext if the neck radiates into a thick flange (we will be more precise when
considering radiation).

These expressions are often used as length corrections and apply to cylindrical
ducts; for other geometries, a simple approximation is to calculate the equivalent
radii. If the neck is very short, the total mass slightly decreases because of the
interaction between input and output [see Eq. (7.164)]. Finally, when there are
several necks, which is the case of an ocarina, we just consider that they are in
parallel, so if they are identical, the equivalent mass is the mass of a neck divided
by the number. However, the internal and radiation masses can be modified by the
interaction between the necks. For instance, considering the case of two identical
necks side by side, the mass Mint is inversely proportional not to the surface, but to
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the square root of it. In practice, one can consider that the interaction is negligible
when the distance between two necks is much greater than their radius.38

We still have to consider dissipation: as the neck is much narrower than the cavity,
dissipation is preponderant in it, and because the inertial effect is predominant in
the neck, we just add a resistance in series with the mass Ma . Its value is given by
Eq. (5.143) with an integration over the length of the neck:

Rv D �c

r
2!`v

c

Z
neck

S.x/�1R.x/�1dx: (7.167)

Finally at high amplitudes, nonlinear effects can appear in the neck (Fig. 7.21). They
are discussed in Chap. 8.

Fig. 7.21 The ocarina is a flute made of a Helmholtz resonator with several holes. Different notes
are obtained by closing of one or more holes. (Instrument made by Charlie Hind, South Carolina,
United States, www.hindocarina.com)

38We can refine the effect of the compliance and mass using continued fraction expansions
(Sect. 7.5.2.1). Let us take the example of a cylindrical cavity of length ` and of section S. Its
resonance frequency is given by �cS�1 cot k` D !Ma. We can always write Ma D �La=Sint,
where La is a length. Expanding the function cot k` to the third order, the approximate solution is
written:

k` D 1=

s
SLa

Sint`
C 1

3
:

www.hindocarina.com
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7.6.3.5 Discussion About the Validity of the Horn Equation:
Exact Methods

The error made when assuming continuity of the average pressure at a cross section
discontinuity is due to ignoring the acoustic mass. It is the same kind of error
as the one made for the horn equation when we indicate plane wave matching.
Indeed if we consider a horn as a series of stepped cylinders whose length tends
to zero, an exact representation must take the mass associated with the discontinuity
into account. In fact since the length tends to zero, the masses of two successive
discontinuities interact: we cannot treat a discontinuity as if it was far from another
(as it was our hypothesis in stating that the evanescent modes were terminated on
their characteristic impedance). A formulation exhibiting this approximation was
performed by the method of matched asymptotic expansion [73].

It is possible to find an exact modal formulation based on segmentation into
cylinder sections, provided that we do not make the assumption of average
pressure continuity: the calculation is done numerically by truncating the number
of evanescent modes [66]. Instead of projecting scalar impedances, an impedance
matrix is defined whose order is the number of modes considered, and then a Riccati
matrix equation is solved. It is shown that taking into account a single evanescent
mode can satisfy the condition of a zero velocity perpendicular to the wall (which is
not horizontal) and to approach the exact result. This numerical method is of course
in competition with all the discretization methods, such as the boundary elements
method. It can also be coupled with the numerical calculation of radiation [5]; a
great difficulty for understanding the validity of the horn equation arises because
the radiation impedance is not known except in the simplest cases.

Another approach to solve the problem of horns is to find a coordinate system
appropriate to yield a one-dimensional equation. For a truncated cone, the exact
solution of the wave equation is based on spherical waves. We can look for other
geometries for which an exact solution exists [70], using the mathematical results
on separable coordinate systems. One can also seek a coordinate system that
approximately satisfies the sound equation [36, 38, 56] or try to solve the problem
by matching spherical waves [3, 10, 62].

Finally, it is interesting to know what the validity condition is for the horn
equation based on plane waves. For a cone, a condition is that the phase shift
between a planar wavefront (which is approximate) and the spherical wavefront
(which is exact) should be small compared to the wavelength. This is written, using
the notations of Sect. 7.4.2: k.R2 � R1/2=` � 1. If this result is integrated for any
horn shape by writing ` D dx, R1 D R.x/, R2 D R.x C dx/, the equation yields

1

2

Z `

0

kR02.x/dx � 1: (7.168)

This condition, though very approximate, seems quite satisfactory for instruments
like the trombone (the validity limit being 750 Hz), as shown by the comparison
between experiment and theory for the input impedance [20] (see also [29, 38]).
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7.7 Generalized Junction of Waveguides: Application
to Toneholes

7.7.1 Overview

After considering a simple junction of two guides, we go one step further in
the generalization, to treat the case of toneholes, fundamental elements of the
instruments called “woodwind instruments.” Toneholes can be seen as small ducts,
and therefore we consider a junction between three guides. We could start as for
chimney pipes through intuitive results with conservation of flow rate in a small
junction volume where the pressure is uniform, and we could then apply a length
correction to the small pipe of the hole towards its junction with the main pipe (the
other end of the pipe being described by a radiation impedance). Many results could
then be shown, but in fact the problem of side holes is a little more complicated.
We prefer using a more complete theory, taking into account the three-dimensional
effects, without giving all the milestones.

Let us consider any junction between n guides (see Fig. 7.22 for n D 3). We set
straight pipe sections as close as possible to the junction, on which the expansion
of the field in duct modes is possible. What follows is also valid away from the
connection, but it is better to choose a connection volume as small as possible, with
dimensions small compared to the wavelength. The straight sections of pipe, as well
as the rigid walls of the connection, define a volume V bounded by a total surface S.
The system is a multi-port with n infinities of ports. The calculation is based upon
the same steps we used for two ducts:

1. Modal expansion for each duct;
2. Connection of all the modes [see Eqs. (7.151) and (7.152)] defining a super-

matrix of n infinities of dimensions; for two pipes, there is a transfer
matrix (7.153), but in general it is more convenient to seek an impedance matrix

Fig. 7.22 Example of
junction of several guides.
For each of them, we know a
cross section beyond which
there is a straight duct, and
the orientation of abscissa X
is chosen towards the
junction. A tonehole is a
special case of a junction
between three guides. V is the
volume of the cavity of the
junction

X

X

X

V
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linking the vectors Pi to vectors Ui (in the case of a cross section discontinuity,
such a matrix does not exist: it would have infinite elements, because the transfer
matrix has two zero elements).

3. The impedances of all evanescent modes are set equal to the characteristic
impedances, provided that the junction is not close to another discontinuity in one
of the guides, assuming that each guide has a length greater than its transverse
dimensions;

4. Separation of the propagating modes from evanescent, and reduction of the
super-matrix impedance to a matrix with a finite number of ports. The number
corresponds to that of the propagating modes in each of the guides. So at least
n ports are considered if there are n guides with perfectly reflecting walls, since
the planar mode exists in each of them.

The difference with the previously studied case lies in the second step: since
there is no common surface where one can perform the modal decomposition
corresponding to different guides, one should use an integral equation (that we
will write in Chap. 12) involving an appropriate three-dimensional Green’s function.
Details can be found in [48]. We decompose the Green’s function according to
increasing frequencies,39 and we obtain the following final result, written for the
case of three guides, generalizing Eq. (7.158):0@p1

p2
p3

1A D
24 �c2

j!V

0@1 1 11 1 1

1 1 1

1AC j!

0@M11 M12 M13

M21 M22 M23

M31 M32 M33

1AC O.!3/

350@u1
u2
u3

1A (7.169)

where pi and ui are the pressure and flow rate going out of the guides into the cavity
(for the planar mode of the guide i). We denote the second matrix by M (multiplied
by j!). The first two terms of this expansion are particularly interesting:

• The first term is the approximation valid at the lowest frequencies. The pressure
is uniform across the junction and the flow rate is conserved (the pressure
uniformity yields the flow conservation, see Chap. 1). This term is also the result
we would have for a compressible but massless gas, since the matrix M is
proportional to �;

• the second term corresponds to the inertial effects. The Green’s function symme-
try leads to the symmetry of the matrix M (reciprocity). The matrix M does not
depend on frequency.

In general the above scheme is not a calculation method because the Green’s
function of the cavity is not known. This is only a proof of the impedance matrix

39In the case where we can use a Green’s function expanded in the modes of the cavity volume
V, we can get an idea of the method. The shape of this function is given by (4.52), replacing the
simple sum by a triple sum. The expansion can be done on the increasing frequencies: the term of
lowest order is in brackets, corresponding to the uniform mode of the cavity, which explains the
simplicity of the first term of Eq. (7.169).



366 J. Kergomard

shape for a general junction. How can the result for a cross section discontinuity,
studied in detail in the previous section, be deduced? This is a special case where the
junction volume can be chosen as zero. It follows that the compliance corresponding
to the first term of the expansion vanishes, therefore, in order for the pressure to be
finite, the sum of the flow rates u1 C u2 C u3 needs to vanish. This gives a new
equation, which replaces one of the three Eqs. (7.169). We must rewrite the two
others by subtracting Eq. (7.169) two by two, which gives, for example:

u1 C u2 C u3 D 0�
p1 � p3
p2 � p3

�
D j!

�
M11 � M31 M12 � M32 M13�M33

M21 � M31 M22 � M32 M23 � M33

�0@u1
u2
u3

1A : (7.170)

Using the zero sum of the flow rates, we see that the mass matrix has only three
independent elements, instead of 6 in the general formulation.40 In the case of a
cross section discontinuity, Eq. (7.170), written for two guides only, this can be
simplified as:

p1 � p2 D j! Œ.M11 � M21/ � .M12 � M22/	 u1 ; u1 D �u2 . (7.171)

As a consequence there is a single term of acoustic mass to calculate, and this is
consistent with the result (7.158).

7.7.2 Two Waveguides Converging Into a Third

Now consider the case of two guides converging into a third, without junction
volume (see Fig. 7.23). By eliminating u3, Eq. (7.170) can be written as follows:

Fig. 7.23 Two waveguides
converging into a third 1

2

3

40This simplification can be applied to a cavity of zero volume, but also to an incompressible fluid.
The various elements of the new mass matrix can be calculated using the incompressible fluid
approximation simply verifying the Laplace equation. In particular for two-dimensional geometry,
this allows the conformal mapping technique to be used in different termination cases to obtain the
various terms of the matrix [17, 49].
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�
p1 � p3
p2 � p3

�
D j!

�
m11 m12

m21 m22

��
u1
u2

�
(7.172)

u3 D �u1 � u2 .

where the relationship between the masses m and masses M is easy to determine.
Thus, m12 D M33 � M13 C M12 � M32 D M33 � M23 C M21 � M31 D m21. The two
masses are equal because of reciprocity. We therefore can write

p1 � p3 D j! Œ.m11 � m12/u1 � m12u3	 ,

and a similar relationship for p2 � p3, or

p1 � j!.m11 � m12/u1 D p3 � j!m12u3 D p2 � j!.m22 � m12/u2 . (7.173)

This expression is interpreted as follows: in addition to the flow rate conservation,
the pressure are equal, up to the length corrections, corresponding to the masses
.m11 � m12/ for guide 1, .m22 � m12/ for guide 2, and m12 for guide 3. For instance,
for the guide 1, we obtain ��`1=S1 D m11�m12. It can be shown that it is sufficient
to offset the guides junction by �`1 in order to write the pressure continuity, which
generalizes the length correction notion for a cross section discontinuity. Such a
problem is a schematization of the U-shaped pipe encountered in the boot of a
bassoon of French type, to connect the ascending and descending branches of the
instrument (if the taper of the branches is ignored).

7.7.3 Right-Angle Bends

Now consider another configuration: that of a right-angle bend (see Fig. 7.24).
The matching volume V D `S1 a priori is not zero, and we must use the
expressions (7.169). However it can be shown quite generally that it is possible to
use a zero matching volume, leading to much simpler expressions, of type (7.171).
We demonstrate this here within the low frequency approximation. Suppose that
the surface of guide 1 defining the junction volume is extended from x D �` to
the vertical wall x D 0, so that this volume vanishes. In principle it is not possible
to use our general result, because the modal expansion in guide 1 is not valid in
the extension of the volume V , since there is no wall. Nevertheless it is possible,
by using the quantities (p1; u1/ known at the entrance of volume V (x D �`/ as
a function of .p2; u2/; to determine the values (p0

1; u
0
1/ which are at the other end

of this volume (x D 0/, and which would correspond to the plane propagation
over the length `. These are quantities whose physical meaning is not direct, but
which are then used to calculate the planar mode in guide 1 as we would have
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m

Fig. 7.24 Geometry of a bend; equivalent electrical circuit (see Fig. 7.23), and its approximation
with a zero matching volume

done with (p1; u1/; but for another abscissa. If the length ` is small compared to the
wavelength, the transfer of values (p0

1; u
0
1/ to (p1; u1/ is done by using an acoustic

mass in series, �`=S1 and an acoustic compliance, �s`S1:

p0
1 D p1 � j!�`S�1

1 u1 ; u0
1 D u1 � j!�s`S1p1:

For the proof, one can calculate the transfer matrix equivalent to the relation (7.169)
reduced to two guides and then multiply the transfer matrix with the one we just
found: this allows us to verify that the compressibility effect disappears at the same
order in the frequency expansion.
However, this type of calculation is cumbersome, despite the simplicity of its
principle, and it is more convenient to use an equivalent circuit diagram, as shown
in Fig. 7.24. We can move the branch where the compliance is to the other side of
the mass m11 � m12: to invert an impedance in series and an admittance in parallel,
it is sufficient that their product is much lower than unity. At low frequencies, this is
verified by the product j!�s`S1j!.m11�m12). Then we can calculate the admittance
sum for the two adjacent branches in parallel, one with ��s`S1 and one with �s`S1,
which is in series with the mass m12. This sum yields a term featuring !3, that we
ignore, and therefore the two branches disappear. Finally, we obtain a result with a
simple acoustic mass in series for the junction:

p0
1 � p2 D j!m u

u0
1 D �u2 D u; (7.174)

where m D ��`=S1 C m11 � m12 C m22 � m12: This result greatly simplifies
the description of such a junction, since there is only one mass to determine, for
example, with the incompressibility hypothesis. The calculation of the right-angle
bend effect can be done by calculating the planar mode on the vertical wall x D 0,
and taking into account a single acoustic mass, which may be viewed as a length
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correction, either for guide 1 or guide 2. Of course the same treatment is possible by
extending the planar mode of waveguide 2 instead of that of waveguide 1. Values of
m are given in the next section, since it is twice the mass ms of a side hole. Other
types of bends have been studied with other methods [61] and also give rise to added
masses.

7.7.4 Bends in Cylindrical Tubes

The effect of bends is rather weak, but it cannot be ignored. It is often encountered
in brass instruments, as well as in saxophones or bass clarinets. As explained
above, at low frequencies a right angle acts as an added acoustic mass. For a bend
in a cylindrical tube, the effect is also of inertial type, modifying the density �,
which becomes �eff. The effect on compressibility is weak. But the effect on the
density is frequency dependent and distributed over the length of the bend. It is
equivalent to a temperature increase at low frequencies and a temperature decrease
at high frequencies. Recent works have allowed the determination of an approximate
formula which is very satisfactory (see [30]).

We denote R0 the radius of curvature and a the radius of the cylinder, with
K D a=R0. The formula is as follows:

�eff

�
D 1C ˇ2K2 C 1

2

"s��10
ka

�4 � 8ˇ2K2

���10
ka

�2 � 2

�
�
��10

ka

�2#
(7.175)

with k D !=c, �10 D 1:8412 and

ˇ D 1

�10

s
2

�210 � 1 ' 0:5: (7.176)

The effect vanishes for �eff D �, or:

f D �10

4�a
c

r
1 � ˇ2K2

4
: (7.177)

The sound speed ceff is equal to c
p
�=�eff and the bent tube is equivalent to a

straight tube with a modified wavenumber keff and a characteristic impedance Zeff

given by:

keff

k
D Zeff

Zc
D
r
�eff

�
: (7.178)
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Fig. 7.25 Tonehole on a cylindrical pipe, and electrical circuit equivalent to an open hole at low
frequencies. The field is matched at the median plan of the hole, with a zero matching volume (at
least in rectangular geometry). For the circular geometry, a and b are the radii of the main duct and
the hole, respectively, h the height of the chimney, S1 D S2 D S D �a2I S3 D �b2

7.7.5 Toneholes and Derivations

7.7.5.1 General Model

Now consider the problem of toneholes (see Fig. 7.25). We generalize, without
proof, what we wrote concerning right-angle bends. The modes of the main pipe,
calculated on the median plane of the hole (assumed to be symmetrical; for a non-
symmetrical hole, see [27]), can be linked to the planar mode in the pipe made
by the hole, which is called the chimney. This is again a 3 port. If the main pipe is
rectangular, its upper wall perpendicularly intersects the chimney in a surface where
we can decompose the field into modes of the chimney: the matching volume is zero,
which is a strong simplification. However, in the most common case, the main pipe
and the chimney are cylindrical, and the matching surface has a saddle shape: if we
cut the hole chimney as close as possible to the pipe, we will still have a very small
matching volume, with a complex shape.

We will first ignore this problem. If index 3 is assigned to the chimney, and
subscripts 1 and 2 to the two sides of the hole axis, Eq. (7.172) apply. By choosing
the outgoing axis (rather than the incoming one) for the hole chimney, we have:
u1Cu2 D u3. The hole being symmetrical, it is deduced that: m11 D m22. Expressing
u1 and u2 as a function of their half-difference and half-sum, the first two equations
can be rewritten as:

p1 � p3 D 1

4
j!ma.u1 � u2/C j!ms.u1 C u2/

p2 � p3 D 1

4
j!ma.u2 � u1/C j!ms.u1 C u2/ (7.179)

where ma D 2.m11 � m12/ and ms D .m11 C m12/=2: Notations ma and ms are
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chosen to be consistent with existing literature. This shows the contributions of the
anti-symmetric and symmetrical velocity field, in the midplane of the hole (taking
care not to confuse the symmetry of the geometry and that of the field!).

– When the field is anti-symmetric, we have u1 D �u2, and u3 vanishes (there
cannot be any flow rate in the chimney), and the element ma is characteristic of
the anti-symmetric field. This corresponds to the interaction of anti-symmetric
modes in the chimney with the modes of the main pipe. But, in the chimney, the
planar mode is symmetrical, so if we seek an approximation similar to that of
the plane piston, we will not find this element. As for a discontinuity between a
small pipe (here the hole) and a larger pipe, the planar piston approximation is
quite satisfactory, therefore it is expected that ma is small.

– When the field is symmetrical, u1 D u2 D u3=2, and the important element is
ms: This corresponds to the interaction of symmetrical modes in the chimney,
including the planar one, with the modes of the main pipe. We will see that it
acts as a length correction to the chimney, and we expect it to be of the order of
magnitude of the radius of the hole.

When calculating the elements using a modal method, the elements ma and ms

are found, separately. A numerical approximation of these elements is given below.
An electrical circuit equivalent to a hole is given in Fig. 7.25. This corresponds to
Eq. (7.173), that are written here as:

p1 � j!u1ma=2 D p2 � j!u2ma=2 D ŒZ3 C j!m12	 .u1 C u2/, (7.180)

where m12 D ms � ma=4 and Z3 D p3=u3. These various representations have the
disadvantage of not directly revealing the pressure-flow rate duality. However, this
duality is clearly exhibited if we write (7.179) as:

p1 � p2 D 1

2
Za.u1 � u2/

p1 C p2 D 2.Zs C Z3/.u1 C u2/, (7.181)

where Za D j!ma and Zs D j!ms. In doing so, we reduced the three-port to a two-
port device, replacing the chimney with a known impedance. The known impedance
is the chimney input impedance, Z3, which depends on the termination, either open
or closed.

This theory assumes that the chimney of the hole is long enough for evanescent
modes at the input and output (which is radiating when the hole is open) not to
interfere. Actually, this is not always the case, and we can take the finite length
of the chimney into account along with the type of termination (open or closed).
However, the effect is not very strong, especially concerning the impedance Zs. The
following results are extracted from the publications [23, 27, 63], (see also the first
article on this topic [41]), which give very similar results, valid at low frequencies,
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i.e., roughly up to half of the first cutoff frequency of the main pipe (ka D 1:8/.
Below are the formulas, [for symmetry reasons, the mass ms is half of that found for
a right bend (7.174)]:

ms D �
ts
�b2

with
ts
b

D 0:82 � 0:193ı � 1:09ı2 C 1:27ı3 � 0:71ı4 (7.182)

ma D �
ta
�a2

with
ta
b

D Œ�0:37C 0:087ı	 ı2, (7.183)

where ı D b=a is the radius ratio (b and a are the radii of the hole and the main
duct, respectively). For the case of a rectangular geometry, i.e., a rectangular hole
of width b located on a rectangular duct of height a, with a common dimension
denoted d, calculations by a conformal mapping gives the following results [27], if
ı D 2b=a:

ms D �

�d

�
ln
1C ı2

ı
C 1

ı

�
1� ı2

	
arctan ı

�
' �

�d

�
� ln ı C 1 � ı2

3
C O.ı4/

�
;

ma D 2�

�d



ln
�
1C ı2

	 � 2ı arctan ı
� ' � 2�

�d



ı2 C O.ı4/

�
:

7.7.5.2 Closed Chimney

If the chimney is closed, with a length h, the impedance of the planar mode in the
chimney pipe is written as:

Z3 D �j�cS�1
3 cot Œk.h C tw/	 , (7.184)

where the wavenumber k may include visco-thermal effects in the chimney [see, for
example, Eq. (5.147)] and tw is the length corresponding to the matching volume
between the surfaces on which the modal expansions are known. We find that the
length is equal to [63]:

tw D bı

8



1C 0:207ı3

�
. (7.185)

i) Low Frequencies

If the chimney is short, its input impedance verifies Z�1
3 D j!V=�c2, with

V D S3.h C tw/. In this case the expression (7.184) is exact since the effect of
compressibility is exactly proportional to the total volume of the hole. The effect of
the mass ms � ma=4 D m12 in Eq. (7.180) can be neglected and we obtain a transfer
matrix from the right to the left of the hole. Keeping only the terms corresponding
to low frequencies, we get
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p1 D p2 � j!mau2 ;

u1 D p2j!V=�c2 � u2. (7.186)

Within the incompressibility hypothesis, only the element ma exists, and this
helps to explain why it is negative: the streamlines do not follow straight lines in
the main pipe to enter the closed chimney, and therefore there is a kinetic energy
decrease. In practice, for a compressible gas, the effect of compressibility of the
enclosed volume is predominant, and thus should be taken into account when
calculating the effect of toneholes. The effect of the negative mass is often ignored
because it is very low [42]; however, it was shown that the cumulative effect of many
closed holes could significantly shift the resonance frequencies [25]. The reader
familiar with the use of equivalent circuits (electric or mechanical) may prefer them
to equations, because they allow a more direct relative evaluation of elements.

ii) High Frequency and Rejection

When the frequency increases, the wavelength may be comparable to the height
h of the chimney, and another consequence of the closed holes is the production
of a filtering effect. Suppose that we have a “quarter wavelength” resonance of
the chimney (very small value of Z3, f ' c= Œ4.h C tw/	), or rather that we have
a resonance of the parallel branch of the circuit, Z3 C j!m12. It follows that the
resonance frequency is given by (f ' c= Œ4.h C tw/	C�`/, where m12 D ��`=Sh

and m12 is equivalent to a length comparable to the magnitude of the hole radius.
So if the part 1 of the main pipe is upstream and contains the source (a reed, for
example), the impedance p2=u2 is determined by the geometry of the downstream
part 2, and, necessarily, p2 is very small. Let us calculate the impedance upstream
of the hole, according to the electrical circuit of Fig. 7.25, or to Eq. (7.180), writing
Y 0
3 D 1=.Z3 C j!m12/ and Y 0

2 D 1=.Z2 C j!ma=2/; with Z2 D �p2=u2 (the minus
sign being due to the orientation in the Pipe 2):

Z1 D j!ma=2C .Y 0
2 C Y 0

3/
�1: (7.187)

If the admittance Y 0
3 becomes very large, the impedance Z1 is small regardless of

the admittance of the branch 2, which is in short circuit. Transmitted power is very
low at the corresponding frequencies. This is what happens for an instrument like
the bassoon: in order to allow closer finger holes to compensate for the large size of
the instrument, the makers produced oblique and long chimneys, of about 4 cm in
length. This results a rejection in the emitted sound spectrum around 2000 Hz. This
frequency belongs to the more sensitive range for the ear. The rejection is all the
more marked when there are many closed chimneys, and disappears for note F#3,
obtained when all holes are open, as seen on the spectrogram of Fig. 7.26. Thus
there is an “anti-formant,” i.e., a very attenuated frequency range whatever the note,
which is a characteristic of the spectrum of this instrument.
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Fig. 7.26 Spectrogram of a chromatic scale of a bassoon (three reference times corresponding to
B[1, F#3, and F4 are indicated). The abscissa is time and the ordinate is frequency. It can be noticed
that there is a hole in the spectrum around 2000 Hz produced by the quarter wavelength resonance
of the closed tonehole chimneys. This is an anti-formant. For note F#3, in the middle of the range,
all holes are open, and we note that there is no rejection

iii) Mutes

The principle of brass mutes is first to limit the radiation by limiting the output
surface of the bell. The most common mute, called the “straight” mute, is a closed
truncated cone [77], which has some input admittance maxima in the frequency
range of the spectrum, typically between 1000 and 5000 Hz. As for the closed
chimney above, the duct formed by the remaining space between the bell and the
mute is in parallel with the mute itself. There is therefore a rejection in the spectrum
of the radiated sound, which is highly modified. For low frequencies, the mute
should be designed so as not to change the input impedance too much, so as not
to disturb the production of sound.

7.7.5.3 Open Chimney

When they are open, the chimneys have of course their key role, for which
they are designed: to change the pitch. A rejection phenomenon exists also, but
for a half-wavelength resonance, since the extremity of the hole radiates, and
thus this happens at frequencies around two times higher than when chimneys
are closed. For an open hole,41 the input impedance of the chimney is: Z3 '
j�cS�1

3 tan


k.h C tw C�`ray/

�
/. In general this phenomenon is not very important,

and moreover, the rejection is effective for the sound radiated by the main pipe, but

41The calculation is similar to that of a closed pipe [See. Eq. (7.184)]. Here, we focus on the
resonance frequencies, and therefore ignore the real part of the radiation impedance.
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the hole itself radiates42! When a quarter wavelength matches the effective length
of the pipe, Z3 goes to infinity and thus the open hole behaves like a closed wall.
The behavior at low frequencies is essential. It can be shown that the effect of
the “anti-symmetric” masses is very low [25], and the effect of an open hole is
essentially the effect of a mass in parallel, which is obtained using (7.180):

p1 D p2 D .u1 C u2/j!�L3=S3, with L3 D h C tw C�`ray C�`int, (7.188)

where ��`int=S3 D ms: We will discuss the value of the correction due to radiation
in the fourth part; the total effective length L3 of a hole is around h C 1:6b.
At very low frequency, the effect of the open hole is to impose a short circuit to
the downstream part of the instrument (see the circuit in Fig. 7.25). The pressure
value is close to zero near the location of the hole, and therefore it is as if the pipe
was cut at this location. This approximation is very useful, and has been used by
many makers (see, for example, [53]), and is even more satisfactory when the cross
section of the hole, S3, is large (but it is bad for the so-called register holes, see
below in Sect. 7.7.5.5). A better approximation is to consider the role played by
the downstream portion of the main pipe: if the main pipe with cross section S is
terminated in the radiation impedance (including the radiation length correction into
the total length `2 of the tube between the hole and the end), we write

Y1 D Y2 C Y3 D �j
S

�c
cot Œkl2	 � j

S3
!�L3

. (7.189)

We seek the length correction due to the tone hole compared to the pipe cut at the
location of the hole, writing Y1 D S=.j!��`/. This yields, using the expansion of
the cotangent function:

1

�`
D 1

`2.1C k2`22=3/
C S3

SL3
. (7.190)

The length correction is therefore positive at lower frequencies, and it increases
with frequency, because the downstream pipe plays an increasingly significant role.
Two parameters are the key: the height of the chimney and the ratio of its cross
section to that of the main pipe. An important consequence is that, unexpectedly
for the uninitiated, the effect of a long chimney pipe is smaller than that of a short
chimney! Of course, there is rarely a simple cylinder portion after a hole, since there
are several holes. This issue is discussed below.

42Similar phenomena are encountered in connection with speech production, with the effect of the
nasal tract: for producing the nasal vowels, the velum is lowered to connect the nasal and vocal
tracts, thereby producing rejections in the sound radiated from the mouth.
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The previous discussion applies to an open hole placed on a cylinder. On a cone,
without lengthy developments, we will just be making the following observation:
many phenomena that exist in a cylinder still exist in a cone provided we consider
the symmetric admittance. As a tonehole essentially acts as a derivation, it has the
same consequences on the symmetric admittance as on the admittance itself if there
is no taper change at the location of the hole. So, basically, the valid reasoning for a
hole on a cylinder remains valid for a hole on a cone.

7.7.5.4 Hole with Variable Cross Section

The holes do not always present a perfect cylindrical shape. One reason is that the
instrument makers chamfer the edges to avoid any flow separation phenomena that
would produce nonlinear losses (see Chap. 8). We can keep most of the results, using
equivalent masses and compliances of a pipe with variable cross section to replace,
at low frequencies, those of a cylinder (see Sect. 7.2.4).

7.7.5.5 Fingerings for Instruments with Toneholes

Without going into details of the making of instruments with toneholes, it is useful
to give here the main principles of their construction.

• The basis of a baroque instrument is a diatonic scale: for each note a hole can
be opened. For a given note, there are consequently, starting from the entrance
of the instrument, first a number of closed holes, then a number of open holes.
Semitones are obtained either by holes controlled by “closed” keys, i.e., that are
closed except for a given note, or by fork fingerings43; or else by the use of
half-holes.

The instruments called Boehm instruments44 have a basis of the same type,
but some semitones are obtained by additional open holes, like the notes of the
diatonic scale: the basis is therefore almost chromatic. Another key feature is that
the Boehm instrument holes are large, and require the use of keys to be closed by
the fingers.
The instrument basis provides a given scale, e.g., C for the flute or oboe, or F for
the bassoon. Some instruments are transposing, such as the saxophone, whose
basis is a C-scale for the player, but actually a scale of B[ or E[ for the listener.
The clarinet is also normally a transposing instrument, but as the second modes

43They are made by not only closing the holes upstream of the first open hole, but also by closing
one or two holes downstream. The case of the recorder is typical.
44Theobald Boehm (1794–1881) redesigned the flute, now often called the Boehm flute, and his
invention had repercussions for many “woodwind instruments,” including the saxophone, invented
by Adolphe Sax in 1846.
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correspond to the frequency triple of the fundamental one, the basis has a longer
compass, of an octave and a fifth, instead of an octave for the other instruments.

• The basis is the essence of what we call the first register, this register being
defined as a set of notes whose fundamental corresponds to the first pipe mode.
Thanks to register holes, playing the frequency set whose fundamental frequency
corresponds to the second mode of the pipe is made easier. Taking the example
of the Boehm flute, the basis goes from D4 to C#5, and when opening a small
hole, the production of notes an octave higher than those in the basis becomes
easier: this point will be discussed in Chap. 9, concerning reed instruments. In
principle there should be a register hole for each note, but this is not useful,
because a single hole can act for several notes, even if this imposes slight
corrections in the lower octave fingering. However, saxophones have two register
holes which, thanks to a mechanical system, are driven by a single key, the
change from one to the other being automatic, depending on the fingering. On
the bassoon, there are four register holes for an octave, including the hole located
on the crook (i.e., the top of the instrument), but it is the player who directly
controls them with the thumb. It is all the more remarkable that an instrument like
the clarinet has a single register hole. However in order to play the twelfths of the
higher notes of the first register, one instead uses the third mode (corresponding
to fingerings of lower notes of the first register, but with corrections nonetheless).

• Notice that the register hole is often also used as a tonehole, and for certain
instruments like the recorder, a half- closed hole (half-hole) is used as a register
hole. It remains to mention two other types of holes: those of the “extension,”
corresponding to very low notes of the first register whose octave or twelfth are
not used (this is the case for C3 and C# 3 for the Boehm flute), and those designed
for trills. These correspond to a higher extension of the first register: the sound
is not very good but acceptable for very fast passages like trills (it is difficult to
produce trills between the last note of the first register and the first of the second
one, because then alternately opening and closing all the holes would be needed).

This set of holes, either closed or open, needs to be optimized in a refined manner
to obtain a satisfactory precision, even though the musician may adjust the pitch of
a note using their playing parameters.

7.8 Lattice of Toneholes

When observing a quasi-cylindrical instrument with toneholes, one notices a certain
regularity of the holes in their size and spacing. But when looking more precisely,
we see that on a clarinet the holes away from the reed are slightly larger and more
spaced, and on a Boehm flute slightly further spaced. Because the equal tempered
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scale is logarithmic, we can expect to find this increase in the position of the holes45;
concerning their diameter, it affects radiation [35], and for low notes, one can expect
to have larger holes for a similar radiation. The problem of optimal position and size
is actually very complex [64].

To study their effect, Benade [8] proposed to study a pipe with a tonehole
lattice as an approximation of a periodic medium. To some extent, the idea of
periodicity allows an interesting qualitative analysis, which remains valid under
certain conditions. When a deviation exists from the exact periodicity, as noted by
Benade, one can distinguish the acoustic regularity and geometric regularity, which
is discussed later. For a conical instrument, the ratio of the diameter of a hole to
that of the pipe at the hole location varies little. If also the chimney height remains
constant, the relevant parameter of an open hole varies little on a conical instrument.
This, using the idea of symmetric admittance [Eq. (7.81)], allows an analysis similar
to that which follows for a cylindrical pipe.

7.8.1 Generalities About the Waves in a Periodic Medium

Let us consider a periodic lattice of symmetrical cells made of a cylinder with
identical and equally spaced holes, as shown in Fig. 7.27. The length between
holes is denoted L D 2`. The basic idea is that only discrete points in the lattice
are considered.46 Between two adjacent points, the field may undergo complicated
variations, but we assume the variations are known.

The basic calculation is done using the transfer matrix of a cell, which is the
product of three matrices: that of a cylindrical section of length `, that of a hole, and

L

S

S3

Fig. 7.27 Cell of a periodic lattice of open tone holes

45This reasoning is based on the first approximation of the model of a hole, which assumes
equivalence with the effect of cutting the pipe where it is located, and ignores the effect of closed
holes.
46One might just as well choose either another symmetrical cell, of length 2`, ended by two half-
holes or an asymmetrical cell.
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that of a cylindrical section of length `. We used already the products of matrices in
Sect. 7.5.2.1. For the cell corresponding to the nth hole we write47

�
pn

un

�
D
�

A B
C D

��
pnC1
unC1

�
(7.191)

from which we derive an equation equivalent to (7.120) for two successive cells:

pnC1 C pn�1 D .A C D/pn D 2Apn (7.192)

(the selected cell is symmetrical, A D D, therefore the lattice is “symmetrical”). This
equation looks like a difference equation, but the coefficient A may possibly vary in
complicated ways with frequency. Using the classical theory (see, e.g., [16, 80]), we
seek solutions for pn as a superposition of two propagating waves:

p˙ exp.�n� /, hence cosh� D A . (7.193)

� is called the propagation constant: apart from the j factor, � is a wavenumber,
which is dimensionless. In the simplest case of a pipe without toneholes, it is:
� D 2jk`. Using the transfer matrix, the characteristic admittance Yc of the outgoing
wave, such that unC1 D YcpnC1, is given by:

Yc D sinh� =B , or (7.194)

Y2c D A2 � 1
B2

D C

B
D C2

A2 � 1
: (7.195)

For the incoming wave, the characteristic admittance is the same (provided the
reverse orientation is chosen), due to the symmetry of the cell. In what follows,
limited to a lossless two-port, the coefficients A and D are real, and B and C are pure
imaginary numbers (see Sect. 7.5.2.1). We deduce that:

• either jAj < 1: � is a pure imaginary number, and Yc is real;
• or jAj > 1: if A > 1, � is real; if A < �1, � =realCj� . Yc is a pure imaginary

number.

This kind of behavior has been observed for modes in a duct (Sect. 7.6.1.2),
which are propagating (first case) or evanescent (second case). The cutoff frequen-
cies are given by A D cosh� D ˙1, either � D 0 or j�; hence exp.� / D ˙1. To
study them, we can calculate the evolution of the coefficient A with frequency, or
calculate the frequency values for which there is a change of sign in the square of
the characteristic admittance. A more interesting method is to exploit the symmetry

47To multiply the transfer matrices, we use the same orientation for both ends of the two-port,
un and unC1; we must be careful when using the results for a tonehole, obtained with the other
orientation convention (see Fig. 7.25).



380 J. Kergomard

of the lattice (A D D/. Using the definition (7.191), and the relation A2 � BC D 1

(reciprocity), we have for the cutoff frequencies, A D ˙1, hence BC D 0:

• either C D 0;Yc D 0, so un D 0 8n; and pn D ˙pnC1: If the pressure value
is nonzero and equal at both ends of the cell, the pressure field in the cell is
symmetrical; if the pressure value is nonzero and opposite at the two ends of the
cell, the field pressure in the cell is anti-symmetric. In both cases the flow rate is
zero at the ends.

• or B D 0, Yc D 1, therefore pn D 0 8n; and un D ˙unC1: because of duality, it
is enough to replace the flow rate by the pressure (and vice versa) in the previous
sentences.

The cutoff frequencies therefore correspond to the frequencies for which we
impose Dirichlet or Neumann conditions at both ends of the cell. All this is perfectly
general for a symmetrical lattice.

7.8.2 Periodic Lattice of Open Holes

7.8.2.1 Cutoff Frequencies

For our particular case of a pipe with toneholes, the four kinds of cutoff frequen-
cies are

(a) If the impedance is infinite at the ends (case C D 0/, we can deduce the
impedance of both sides of the hole: on the right, Z D �j�cS�1 cot k`. On
the left, the value is the same but opposite. To use Eq. (7.181), written with a
symmetrical orientation convention for the flow rates, we change the impedance
sign on the right, and therefore the two impedances on both sides of the
hole are: Z D j�cS�1 cot k`. If the pressure field is symmetrical, the first
Eq. (7.181) confirms that the flow rate field is symmetrical too (for this choice
of orientation), and we therefore have

j�cS�1 cot k` D 2.Zs C Z3/ D 2j!mt with cosh� D 1; (7.196)

where Zs C Z3 D j!mt D j!�L3=S3 [L3 is the total effective length of the hole,
see (7.188)]. If the pressure field is anti-symmetric, we similarly have

j�cS�1 cot k` D Za=2 D j!ma=2 with cosh� D �1: (7.197)

(b) If the impedance is zero at the ends (case B D 0/, the same type of reasoning
gives the two other cases:

� j�cS�1 tan k` D 2j!mt with cosh� D �1: (7.198)

�j�cS�1 tan k` D j!ma=2 with cosh� D 1: (7.199)
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Fig. 7.28 Equivalent circuit for a cell of a periodic array of open toneholes, when the length is
small compared to the wavelength. The description of the hole is given by Fig. 7.25, and the mass
mt is given by (7.196)

These equations involve one of the two masses only, either the “symmetrical”
mass or the “anti-symmetric” one, but not both. This is consistent with the
use of symmetry in our reasoning. To find the frequencies where the waves
are propagating or evanescent, we must study the variations of cosh� with
frequency, distinguishing the case of open or closed chimneys. We start with
the behavior at low frequencies.

7.8.2.2 Low Frequency Behavior

At low frequencies, the length `, half of the distance between two holes, is small
compared to the wavelength, and we therefore have the circuit shown in Fig. 7.28.
To make the following easier, we ignore the “anti-symmetric” masses, as for an
isolated open hole. The hole has an admittance 1= Œj!mt	, and the pipe is represented
by two masses m D �`=S and a compliance Ca D 2`S=



�c2
�
: The coefficients of

the transfer matrix of a cell can be written as:

A D D D 1C Yj!m ; B D j!m.2C Yj!m/ (7.200)

C D Y where Y D j!Ca C 1= Œ!mt	 : (7.201)

At lower frequencies, we have seen that the parallel branch has a very high
admittance (Y ' 1= Œj!mt	); so each portion of the main pipe acts only as a mass,
the effect of compressibility being negligible. We only have inertia effects, in series
and in parallel, and this prohibits any wave propagation (since there is no spring
effect). The coefficient A D 1 C m=mt is greater than unity. Waves are therefore
evanescent: we again find that at very low frequencies, an open hole produces a
strong attenuation, by strongly reflecting the energy (the phenomena considered
here are without dissipation). For an infinite lattice of open holes, waves attenuate
exponentially, but the effect of finite size (i.e., the existence of an exponentially
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increasing wave near the end) is very low, and just two open holes are sufficient so
that the amplitude at lower frequencies is negligible downstream of these holes. We
will see in the fourth part what this means in terms of radiation.

To show that the lattice effect is a simple length correction, we calculate the
characteristic impedance at these frequencies, using (7.194):

Zc D .A2 � 1/1=2
C

D j!m

r
1C 2mt

m
:

Assuming that the lattice is infinite, Zc is the input impedance of the array, i.e., the
terminal impedance of the upstream pipe portion without open holes. It is mass-like,
as for other types of evanescent waves and one can therefore set a length correction
to the main pipe at the location of the first open hole:

�` D `

s
1C 2L3

`

a2

b2
� `: (7.202)

This result differs from that obtained for a single tonehole (7.188). At low
frequencies, and apart from this length correction, it is as if the pipe was cut at
the first open hole.

7.8.2.3 Pass Bands and Stop Bands

When the frequency increases, the coefficient A decreases until it reaches C1, at
the first cutoff frequency. The remaining question is which cutoff it is, either the
first given by (7.196) or the first given by (7.199): to compare the frequencies given
by Eqs. (7.196)–(7.199), we can graph (as a function of frequency), the functions
cot k` and � tan k`; a straight line !ma=2, having a negative slope; and a straight
line 2!mt, having a positive slope. It appears that the first is a solution of (7.196),
which will get our full attention in the next section. The two following frequencies,
depending on the value of the slopes, are those for which A D �1. Actually, the
function A.!/ is continuous, and after it crosses the value �1 for the first time when
decreasing, it must re-cross the same value in the other direction before finding the
value A D 1, and we can continue this reasoning further.

Considering (7.197), as ma is very small (in absolute value), the second cutoff
frequency is very close to the half-wavelength resonance of the interval between
two holes (2k` D �/. For most high-pitched instruments, this corresponds to a
fairly high frequency, typically 5000 Hz. However, this is not the case of low-pitched
instruments such as the bassoon or the bass clarinet.

Let us focus on the first cutoff that separates the first two frequency bands: below
the first cutoff the waves are evanescent (the corresponding band is called the stop
band, or the forbidden band by analogy with the problem of conduction in solids).
Above the first cutoff the waves propagate (the band is called the pass band, or the
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Fig. 7.29 Measured dimensionless input impedance (modulus and argument) for a clarinet, for
the lower note B (corresponding to A4 440 Hz; 4 open holes). Above about 1300 Hz a significant
change in behavior can be noticed, when the waves reach the end of the pipe

Fig. 7.30 First cutoff
frequency of a periodic lattice
of open toneholes: it is the
eigenfrequency of the
resonator formed by a cell
closed at its both ends

S

S3

allowed band). In the pass band, waves propagate to the end of the instrument,
where they are reflected. The instrument therefore comprises two sections with
different wave phase velocity v' : the upstream section, with no toneholes (or with
closed toneholes, of fairly small influence), where the speed is the regular sound
speed in tubes, and the downstream section, where the phase velocity is very
large just above the cutoff, when � D j!=v' is very small, then decreases when
frequency increases. As with the case of a chimney pipe, the resonance frequencies
are irregular and, as dissipation occurs over a greater length, the impedance peaks
are smaller (Fig. 7.29). In fact, we see that because of radiation, they are often very
small, with the impedance being close to the characteristic impedance of the pipe.

7.8.2.4 Study of the First Cutoff Frequency

The first cutoff frequency, given by (7.196), is none other than the the eigenfre-
quency of a cell closed at both ends (see Fig. 7.30). If the length ` is small compared
to the wavelength, it is the eigenfrequency of a Helmholtz resonator and is

fc D c

2�`

1p
2.L3=`/.a=b/2 C 1=3

' c

2�

b

a

1p
2L3`

(7.203)

The term 1=3 comes from a refinement of the calculation, by expanding the
cotangent function to the third order, but the second expression is often sufficient.
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Notice that for a periodic lattice, the cutoff frequency shown in Fig. 7.29 does not
depend on the number of open holes, unless there are only one or two, in which case
this theory is meaningless. The cutoff frequency must be identical when measuring
the input impedance for several fingerings. This can be a cause for the existence of
formants in the sound, characteristic of the timbre independent of the note played.
This also explains another essential feature of toneholes instruments: their compass.
Above the cutoff, it is difficult to produce sounds at frequencies corresponding to
the impedance peaks, primarily because they are very small, and secondly because
the resonances are highly inharmonic. The resonance of a Helmholtz resonator is
highest if:

• the neck is wide,
• the neck is short,
• the volume is small (and therefore the spacing between holes is small).

Thus an instrument designed to play a diatonic scale has a cutoff frequency lower
than an instrument designed to play a chromatic scale; it is the same difference for
an instrument with narrow holes compared to an instrument with wide holes, which
need to be closed with keys. These two effects combine when comparing “baroque”
and modern instruments, such as the recorder and the Boehm flute, respectively.

Another comparison is interesting: that of fingerings of the diatonic scale on a
baroque instrument, with fingerings of the flat and sharp notes, which use forks
(see Sect. 7.7.5.5): a fork means a great distance between two open holes, which
produces a very low cutoff. The inhomogeneity of sound is also a feature of baroque
instruments. All of this is schematic and simplified (see in particular the following
section), but gives an idea of general trends (Fig. 7.31).

We also understand why it is much easier to play higher notes whose fundamental
is a resonance frequency of an instrument with all finger holes closed than for the
same instrument with one or more holes open. Thus for a bassoon, it is very easy to
get a long harmonics series of the lowest note, B[1, which is 59Hz (three octaves,
or eight quasi-harmonics, which are almost well tuned,48 because the resonances are
very harmonic due to the lack of open holes). On the contrary, for a fingering with
many open holes, a maximum of 2 or 3 notes may be sounded, and the help of a
register hole is still required, as well as small fingering adjustments to ensure fine
tuning.

48However, these notes are not used because they are too isolated. Raising the pitch by a tone, for
example, requires some complicated movements, and furthermore a register hole would still be
required to completely remove the fundamental frequencies from the sound. We will discuss this
issue in the third Part.
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Fig. 7.31 The holes of the Boehm flute (below) are larger and closer together than those of the
baroque flute

7.8.2.5 Deviation from Periodicity

Let us summarize and specify what we have learned on the periodic media: if a
lattice is periodic, lossless, and finite, the waves either exponentially attenuate from
the entrance (and grow again towards the exit), or propagate until the end where
a reflection happens. When dissipation is taken into account, the cutoff frequency
cannot be defined precisely (the propagation constant is always complex), but there
is still a significant change in behavior around the cutoff frequency of the lossless
lattice. Moreover, for the pass band, dissipation, including radiation, becomes so
large that the waves are attenuated and are very weak when they reach the end. This
attenuation is due to dissipation, while in the stop band, it is related to the wave
reflection at the holes.49

However, we must try to have a less simplistic approach, since obviously the
toneholes are neither identical nor equidistant.50 Can we suppose that the ideal
behavior discussed above can be generalized thanks to a concept of averaging? We
will see that another interpretation holds.51

49In the latter case the attenuation is called “reactive” attenuation, which does not correspond to
dissipation. This is the type used in automotive mufflers, where the aim is essentially to prevent
the source from emitting power by presenting to it a purely imaginary impedance, rather than to
dissipate energy.
50In addition there are bore deviations from perfectly cylindrical or conical shapes, and the effect
of the closed holes.
51A general theoretical result is known for random lattices, that can be obtained by randomizing,
for example, the diameters of the holes or their spacing. It has been shown that when the number of
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For all notes, except those where only one or two holes are open, two frequency
bands can be distinguished on the input impedance curve (see Fig. 7.29): for one
band the resonances are fairly harmonic and well marked, while for the other,
resonances are very inharmonic, and very slightly marked, because of dissipation
due to radiation through the toneholes. Benade proposed a practical definition of the
cutoff frequency using the input impedance, and showed that in practice the cutoff
frequency depends very little of the played note, even for an instrument as irregular
as the bassoon (the cutoff occurs around 500 Hz). This practical definition is global
and it is not accurate, and must be distinguished from a local definition which would
be based on the eigenfrequencies of successive cells of an almost periodic medium.
For a truly periodic medium, the two definitions coincide (see Sect. 7.8.2.4). We will
see that they can coincide also for a non-periodic lattice, if the lattice is composed
of cells with the same eigenfrequency, provided that the cells are small compared to
the wavelength.

Using the transfer matrix of a cell [Eqs. (7.200) and (7.201)], and exhibiting the
cutoff frequency for which Y D 0, we can write

Y D j!Ca


1 � k2c=k2

�
, (7.204)

where k�1
c D c.mtCa/

1=2 corresponds to the approximate formula (7.203). Using
cosh� D A D 1C j!mY, we obtain

sinh2.� =2/ D �`2.k2 � k2c/, (7.205)

from which :

� ' 2`jk1 and Zc D
r

B

C
' �c

S

k

k1
, where k1 D

q
k2 � k2c . (7.206)

These results assume k1` � 1, as well as the initial assumption k` � 1. The
transfer matrix of our cell may ultimately be written, using (7.193) and (7.194), as
follows: �

A B
C D

�
D
�

cos.k1L/ Zcj sin.k1L/
Z�1

c j sin.k1L/ cos.k1L/

�
; (7.207)

if L D 2`. Now consider several cells with the same cutoff frequency !c:
they have the same characteristic impedance and wavenumber. The product of the
corresponding transfer matrices has the same form as that of a single matrix, by
changing the length L of a cell to the total length. Thus we have generalized the
behavior of a periodic medium, with a stop band followed by a pass band (for higher
frequencies, the restrictive assumptions are no longer satisfied).

cells (i.e., of holes) increases to infinity, there are no longer any pass bands, all frequencies being
exponentially attenuated. But in practice this result does not apply for wind instruments, because
the deviation from periodicity (the “disorder”) is too low.
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Consequently, the global cutoff frequencies measured via the input impedance
are independent of the notes, although the geometry is irregular. Two cells of
different lengths must have different hole diameters to have the same cutoff
frequency [see Eq. (7.203)]. It is a trend we find for the real instruments: the hole
spacing increases with the distance from the entrance, and this is compensated by
the hole size, which increases so that the cutoff frequency remains independent of
the notes. It would certainly still remain to interpret this (coarse) observation, by
examining the work of makers, who have many constraints, in particular finding the
correct tuning over several registers.

In any case the assumptions necessary to have a (first) global cutoff frequency
independent of the played note have been greatly expanded. This validates the
theorized possibility of an acoustical regularity (at low frequency) more general
than the geometrical one [58].

7.8.2.6 Toneholes and Bells

To conclude, let us compare a pipe with toneholes and a pipe ending with a bell.
In both cases, above a certain frequency, resonances are strongly attenuated (see
Figs. 7.16 and 7.29). However, for a “Bessel horn,” the resonances below this
frequency are quite regular, without being harmonics of a fundamental, while for
a pipe with open holes, the resonances are harmonics of a fundamental, because at
low frequencies there is very little energy in the open hole lattice.

However, a thorough analogy can be found between an open-hole periodic lattice
and an exponential horn. Let us consider Eq. (7.9). For a particular type of horn,
R00=R is a constant, and an evident analytical solution can be found. If R00 > 0, such
horns are flared, of exponential or catenoid type (the function being a hyperbolic
cosine); if R00 < 0 the horns are of the sinusoidal type, and if R00 D 0, we find a
conical horn.52

Let us study flared horns, with positive curvature. A horn can be seen as a
succession of small truncated cones whose length tends to zero (see, Sect. 7.5.2.1).
Each change of taper is equivalent to a mass in parallel (see Sect. 7.4.7), as well as
an open hole (when we forget the effect of the anti-symmetric mass). In order to find
an analogy, the masses must be positive, and the conicity changes must be flaring.
Now it is easily shown that an exponential horn is the limit, when the length tends
to 0, for a horn consisting of truncated cones with the same length, and presenting
taper changes with the same mass. Therefore the exponential horn is analogous to a
cylindrical pipe (or tapered pipe!) drilled with identical and equidistant, open holes.

52Some horn shapes, which are duals of the previous ones, also give rise to an analytical
solution [71], such as .1=R/00=.1=R/ D constant, for which the flow rate is easily calculated (see
Sect. 7.2.2).
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We could write this analogy in great detail, but we simply examine the solution
for the exponential horn: R.x/ D R.0/ exp.mx/. The general solution is written:

PR D aCe�jk1x C a�ejk1x where k1 D
p

k2 � m2: (7.208)

A key point is that k1 is independent of x. The first term corresponds to an outgoing
wave and the second to an incoming wave. If k > m;waves are propagating, while if
k < m, the exponential functions are real, and there is a superposition of a decreasing
exponential and a growing exponential (see the analogous situation of the modes in
a duct, Sect. 7.6.1.2).

We can now calculate the velocity from (7.208), which satisfies

eVR D VR � 1

j!�

R0

R
.PR/ D k1

k�c



aCe�jk1x � a�ejk1x

�
: (7.209)

Defining Zc D k�c=Sk1, we obtain a transfer matrix identical to (7.207) for the
vector defined by the quantities PR and SeVR: The difference between the two
systems lies in the difference between the velocity V and the velocity eV , which
we call the “symmetric” velocity for a cone. This difference lies in the fact that the
horn has a nonzero slope at the entrance. But its behavior is identical to that of the
tonehole lattice with a constant cutoff frequency, and when located at the end of a
cylindrical pipe, it has the same behavior. And the analogy goes quite far, because
thanks to the flare, the radiation is strong above the cutoff, resulting in low and
irregular peaks.

To compare the bells of brasses to acoustically regular open hole lattices, for
which we noted a difference in behavior, we can compare these horns to an
exponential horn. Looking at the horn equation (7.9), applied to Bessel horns
[Eq. (7.110)], we might think of determining a local cutoff frequency defined as
(see [10]):

k2 D R00

R
D �.� C 1/

.xa � x/2
:

This frequency is very low at the horn entrance, because the denominator is
large, and very high at the end. We intuitively understand that for this medium
the regularity is qualitatively very different from that of an exponential horn.
Therefore it is very difficult to define a relationship between these local frequencies
and the global cutoff frequency, that we can measure on the input impedance
curve.53 The problem is further complicated by the fact that the models that would
be useful to us are necessarily very complicated, i.e., three-dimensional!

53Strictly speaking, the existence of a cutoff frequency between propagating waves and evanescent
waves is a global limit property of a medium with uniform characteristics, like an exponential,
infinite, and lossless horn. The only thing that is easy to show in the case of a horn of arbitrary
shape, is that for the horn alone, there will be no resonance below the lowest local cutoff,
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The comparison between tonehole lattices and bells, that both favor the emission
of higher frequencies, also explains one of the roles of the (short) bell of a clarinet:
without bell, the note for which all holes are closed may have a sound quite different
from that of other notes. One way to make this note homogeneous with others is to
lengthen the pipe, and to drill other holes that will always be open: this solution
is encountered in some traditional instruments. Another option is flaring the pipe
termination, in order to form a bell which will play the same role [11], the higher
frequencies being strengthened.

Another role of this flare is to compensate for the inharmonicity of resonances.
We can succeed, by various means, to make the resonances of individual notes
rather harmonic, correcting the effect of open holes. In doing so we also increase the
resonance inharmonicity of the lowest note, and there is a choice in terms of what
to correct.
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Part III
Nonlinearities and Self-Oscillations

This third Part is devoted to nonlinear oscillations. In Chap. 8, an overview of the
domain is given, with application to free nonlinear oscillations of gongs, cymbals
and strings, and on the nonlinearities in wind instruments due to propagation
and dissipation. A number of general methods used for the analysis of nonlinear
systems are detailed. In the following chapters, the production of sound due to
self-oscillations both in wind and bowed strings instruments is analyzed. These
oscillations are intrinsically nonlinear. Thus, the three main families of self-
oscillating musical instruments are presented: the reed instruments (in Chap. 9), the
flute-like instruments (in Chap. 10) and the bowed string instruments (in Chap. 11).



Chapter 8
Nonlinearities

Antoine Chaigne, Joël Gilbert, Jean-Pierre Dalmont, and Cyril Touzé

Abstract In the previous chapters, it was assumed that the amplitude of both air
and structural oscillations in musical instruments were sufficiently small so that
the assumption of linearity for their underlying models was fulfilled. However, this
assumption is no longer valid in a number of situations encountered in musical
acoustics, and a nonlinear approach becomes necessary for describing the observed
phenomena. This chapter starts with the presentation of a simple example of
nonlinear oscillator, the interrupted pendulum, whose aim is to introduce some
fundamental properties of nonlinear systems, such as the dependence of resonance
frequency on amplitude. The generic Duffing equation, which is found in many
areas of nonlinear physics, is then examined. Musical applications are found first
in piano strings, where the transverse-longitudinal coupling and the presence of
additional partials in the spectrum (or “phantom” partials) are the consequence
of nonlinearity due to high amplitude motion (geometric nonlinearity). In brass
instruments, high values of the acoustic pressure induce nonlinear propagation
which, in turn, might give rise to shock waves. In gongs and cymbals, a strong
excitation produces the so-called bifurcations materialized by the emergence of new
frequencies in the spectrum, which ultimately can lead to chaos. Specific methods
are used for characterizing chaotic signals, such as the Lyapunov exponents. New
emerging tools, such as the nonlinear normal modes (NNMs), appear to be very
efficient for describing the dynamics of nonlinear systems with a reduced number of
degrees of freedom. Self-sustained oscillations of reed, flute-like and bowed string
instruments are treated in the three following chapters.
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Most of the concepts on waves and modes presented in Parts I and II imply that the
basic conditions of linearity are fulfilled. This requires first that the perturbations of
the physical quantities involved in the models remain “small”: there will be many
opportunities to clarify what is meant by “small” in the following sections. The
present chapter intends to show how to analyze and model the phenomena observed
when the assumption of linearity is not valid anymore, which implies, in turn, that
the effects of finite amplitude need to be considered (geometric nonlinearity). It is
also important to know whether or not the constitutive equations of the materials
remain linear. When stretching a rubber ribbon, for example, the relation between
stress and strain significantly depends on the amplitude, even for a small tensile
strength. This property is referred to as material nonlinearity.

Finally, and this is fundamental for the physics of musical instruments, the
conditions for maintaining permanent oscillations in bowed stringed and wind
instruments can be fulfilled only if a nonlinear element is introduced in the system
loop. In fact, it would not be possible otherwise to transform a continuous source
of energy, such as a static blowing pressure for the flute player, or a constant bow
velocity for the violin player, into periodic oscillations. In this context, the purpose
of the three following chapters is to give a detailed analysis of the instruments
governed by self-sustained oscillations.

This chapter starts with the illustration of some fundamental concepts of geo-
metric nonlinearity. Usual methods for studying nonlinear equations are introduced,
including harmonic balance, iteration method, and the multiple scales method.
Using simple examples, basic phenomena observed in nonlinear systems are intro-
duced, such as eigenfrequencies depending on the amplitude, jumps, and hysteresis.

8.1 An Example of Asymmetry: The Interrupted Pendulum

First, a simple example of asymmetrical system is studied: the interrupted pendulum
(see Fig. 8.1). The system is composed by a point mass m suspended on a massless
string of length L at rest, attached to a pulley, and subjected to the action of gravity g.
When the pendulum is set into motion, the string length changes over time: it
increases when the weight moves away from the pulley of radius R, and it becomes
shorter in the opposite case, when the string is wrapped around it. This elementary
system illustrates several situations of asymmetry encountered in musical acoustics,
for example, scrolling of the reed on the clarinet mouthpiece, boundary condition
of a string on the tambura,1 or geometric nonlinearity in gongs and cymbals (see
Sect. 8.5). In the latter case, the curvature can be viewed as a stiffness asymmetry,
where the rigid pulley adds some “stiffness” to the system during the time interval
when the string is wrapped around it, compared to the free string case. This example
is not only relevant in musical acoustics but also in other domains of physics.
It has been used, for example, to understand complex nonlinear systems such as
the propagation of compressional waves in rocks [22].

1The tambura is an Indian plucked stringed instrument.
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Fig. 8.1 Interrupted
pendulum (from Denardo
[22]). A point mass m is
suspended to a massless
string, forming a pendulum
with a varying length during
the motion due to the
presence of the pulley which
forms an obstacle

L

R

m

g

θ < 0 

θ > 0 

8.1.1 Equation of Motion

The equation of motion for the interrupted pendulum can be derived from the
Lagrange equations [6]. The main variable is the angle � made between the
pendulum and the vertical axis. The instantaneous kinetic energy of the system is
written Ec D 1

2
m.L � R�/2 P�2. After some calculations, the equation of motion is

found to be

R� C !20 sin � D �
d

dt
.� P�/; (8.1)

where!2o D g=L and � D R=L. As R tends to zero in (8.1), the well-known equation
of a simple pendulum is found where the unique nonlinear term is sin � . The right-
hand side of the equation represents the nonlinearity introduced by the obstacle.
Equation (8.1) is valid for � 2 Œ0; �max	 where �max D min .1=�; �=2/. In what
follows, the pendulum is assumed to be released at the initial time (t D 0) from a
position �0 with zero initial velocity.

8.1.2 Solution by a Perturbation Method

For low and medium amplitudes, and with � less than or equal to unity, it is observed
experimentally that the solution is periodic (see Fig. 8.2) and that the period of
the oscillation depends on the amplitude. It is also observed that the oscillation
increasingly departs from the linear sinusoidal reference solution as the amplitude
increases.
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Fig. 8.2 Oscillations of the interrupted pendulum (from Denardo [22]). Displacement waveform
of the mass m. Solid line: exact solution. Dashed line: perturbative solution to the third order

These observations incite us to look for solutions under the following form:(
� D "A cos!t C "2B cos 2!t C "3C cos 3!t C 
 
 
 D "�1 C "2�2 C "3�3 C 
 
 
 ;
!2 D !20 C "!21 C "2!22 C "3!23 C 
 
 


(8.2)
In Eq. (8.2), the solution is written in terms of a Fourier series where the amplitudes
of the respective coefficients are arranged in increasing powers of the dimensionless
parameter " � 1. Similarly, the oscillation frequency ! is expanded as a series
of terms of increasing powers of " to account for variations with amplitude. The
principle of the calculation consists in substituting the expansion (8.2) into (8.1)
and in calculating the unknowns of the problem (A, B, C, !1, !2, !3) separately
[22]. For the sake of simplicity, the expansion is limited here to the third order in ".
In order to deal with dimensionless equations, the change of variable � D !t is
made.

Since the problem is of the third order, it is justified here to replace the term
in sin � in (8.1) by the first two terms of its Taylor expansion: sin � ' � � �3=6.
Equation (8.1) becomes

!2
d2�

d�2
C !20

�
� � �3=6	 D �!2

d

d�

�
�

d�

d�

�
: (8.3)

Inserting (8.2) in (8.3) and making the term " equals to zero, leads to

d2�1
d�2

C �1 D 0; (8.4)
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which has a solution of the form �1 D A cos � , in view of the initial conditions.
Setting the term in "2 to zero, we have

d2�2
d�2

C �2 D !21
!20
�1 C �

d

d�

�
�1

d�1
d�

�
: (8.5)

By replacing the angular variables by their approximate expressions, one finds that
Eq. (8.5) provides the following relation between the parameters:

� 3B cos2� D !21
!20

A cos � � �A2 cos 2�: (8.6)

The basic principle of the method is then to set to zero the respective terms of each
harmonic n� (harmonic balance), which gives here:

!1 D 0 and B D �A2

3
: (8.7)

At this stage, one can check that Eq. (8.1) suggests that the obstacle formed by the
pulley of radius R causes a quadratic nonlinearity since an harmonic of order two is
exhibited. This effect disappears if � D 0, i.e., without any obstacle. However, this
nonlinearity causes no change in the angular frequency, at least at the first order.
Continuing further by eliminating the terms of power 3 in ", we get

d2�3
d�2

C �3 D !22
!20
�1 C �31

6
C �

d2

d�2
.�1�2/: (8.8)

Replacing, as previously, the angular variables by their approximate expressions
in (8.8), and eliminating further the terms in n� , leads to:

C D A3

192

�
36�2 � 1

	
and

!22
!20

D A2

24

�
4�2 � 3

	
: (8.9)

Finally, defining �10 D "A as the fundamental amplitude of the oscillation, the
solution to the problem is written at the order 3:8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

� D �10 cos!t C ��210
3

cos 2!t C .36�2 � 1/
�310
192

cos 3!t;

and

!2 D !2o

�
1C �210

24

�
4�2 � 3	� :

(8.10)
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This result suggests the following comments:

• At the third order, the fundamental amplitude is linked to the initial condition by
the relation:

�0 ' �10 C ��210
3

C .36�2 � 1/ �
3
10

192
: (8.11)

• Figure 8.2 shows that the third-order approximation yields a fair estimation of
the oscillation period and waveform when � is positive, i.e., when the string is
in contact with the obstacle. However, it is necessary to expand the solution to
higher orders in order to account for the observed oscillation when � is negative.

• When � D 0, we have ! ' !0.1 � �210=16/, and the term in cos 2!t is equal to
zero. This yields a case of cubic nonlinearity due to gravity, through the term in
sin � . The tension of the string decreases as the amplitude of the motion increases,
and it vanishes when the string reaches the horizontal plane, which corresponds
to a decrease in the overall stiffness of the system.

• For 0 < � <
p
3=2, the frequency decreases with the amplitude of the oscillation.

The oscillator is said to show a softening behavior.
• For � >

p
3=2, the oscillator is of the hardening type. The stiffness provided by

the obstacle becomes larger than the increase in softness due to gravity.
• When � D p

3=2, the period of the oscillation is independent of the amplitude.
This gives the particular case of an isochronous pendulum. This result remains
true to the fourth order, since !23 D 0 in the series expansion of !2. Both
softening and hardening effects are compensating one another.

In conclusion, it can be noticed that most nonlinear phenomena exhibited in this
simple example also occur in more complex systems: frequency dependence with
regard to the amplitude, softening or hardening behavior of some structural modes,
etc. The method presented to solve this particular case is also applicable to other
nonlinear systems. Gilbert et al. used a similar approach, for example, to predict the
steady-state amplitude of sound pressure in a clarinet [29]. Before studying specific
nonlinear phenomena of musical acoustics in subsequent sections more closely, the
Duffing equation will first be examined in detail, as it is an equation frequently
encountered in nonlinear dynamics.

8.2 Duffing Equation

Duffing equation is a generic nonlinear equation of an oscillator which includes
a cubic term. It is found in many areas of physics, and therefore it has been the
subject of extensive study. In mechanics, it is a good model for phenomena that
occur for large amplitude oscillations when the elastic restoring force can no longer
be considered as proportional to the displacement. In musical acoustics, this model
is used for explaining the presence of phantom partials in the spectrum of piano
strings, and the enrichment of spectrum due to increasing amplitudes in gongs and
cymbals, as it will be seen later in this chapter.
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The main properties of the Duffing equation will be first illustrated from the
example of the elastic pendulum. This example can be considered as a simplified
case, with one degree of freedom, of the increase in stiffness due to the extension of
length in vibrating strings (see Sect. 8.3).

Another type of nonlinear equation frequently encountered in physics is the Van
der Pol equation. It differs from Duffing equation by the fact that the nonlinearity
is included in the dissipative term, and not in the stiffness term. It can lead to
self-sustained oscillations, which correspond to oscillations that occur without an
oscillating forcing term. The Van der Pol equation is not studied in this chapter, but
it will serve as a basic simplified model of some instruments, such as the clarinet,
and treated in detail in Chap. 9.

8.2.1 Example

Let us now consider the oscillator drawn in Fig. 8.3. The rigid mass M is moved
horizontally apart of a distance x from its initial equilibrium position, under the
effect of a sinusoidal force F cos˝t. This mass is attached to two springs of stiffness
k, with free length L0. This length becomes equal to L after stretching at rest. We
denote � D L0=L < 1 and y D x=L.

During the motion, the spring length becomes `.y/ D L
p
1C y2 and the elastic

potential energy stored in each spring is Ep D 1
2
k.` � L0/2. Differentiating this

expression with respect to y, the expression of the elastic restoring force exerted on
the spring is obtained, from which the equation of motion is derived:

M
d2y

dt2
C 2ky

"
1 � �p

1C y2

#
D F

L
cos˝t: (8.12)

Under the assumption of “small” displacements (y � 1), and setting !20 D 2k=M,
we obtain a first-order approximation:

Fig. 8.3 Elastic pendulum

M

F

x

L
L0
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d2y

dt2
C !20.1 � �/y C !20�

2
y3 D F

ML
cos˝t; (8.13)

or, equivalently, in dimensionless form, with � D !t, !2 D !20.1 � �/ and � D
˝=!:

d2y

d�2
C y C �y3 D ˛ cos ��; (8.14)

where � D �
2.1��/ and ˛ D F

ML!2
. Equation (8.14) is a Duffing equation with a

forcing term. In the example above, the coefficient � is positive. An equation similar
to the case of the interrupted pendulum is obtained (with R D 0 and � small), though
with a change of sign for �.

8.2.2 Solutions for the Forced Duffing Oscillator

In what follows, both coefficients � and ˛ defined in (8.14) are assumed to be small
compared to unity. In addition, � is positive (equivalent to � � 1 in the previous
example), which corresponds to the case of an hardening oscillator. The Duffing
equation is solved by the iteration method, whose principle is to look for step-by-
step refined approximations of the solution. Considering the solution obtained in the
case of the linear oscillator (see Chap. 2), the solution y1.t/ D A cos �� is selected as
a starting approximation, where A is the unknown. The coefficient A can be positive
or negative, depending on whether the solution is in phase or in antiphase with the
force. The approximation of order 2 is sought in the form:

y2.�/ D A cos �� C B cos 3��: (8.15)

Now, y2 is inserted in (8.14). Using the trigonometric identity

4 cos3 �� D 3 cos �� C cos 3��; (8.16)

and writing down the condition for which the amplitude of the term cos �� is equal
to zero, we have

.1� �2/A C 3�A3

4
D ˛: (8.17)

Note To obtain the amplitude B of the term cos 3�� , the calculation must be
continued with an approximation of order 3, and so on.

If the nonlinearity coefficient � is equal to zero in (8.17), then the resonance curve
of the linear oscillator in forced oscillations is found: A D ˛

1��2 , or, equivalently,
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Fig. 8.4 Backbone curve for
the Duffing equation with
� > 0; � D ˝=!
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the result (8.17) will be presented later in this chapter. To plot the resonance curves
in the general case, it is convenient to write (8.17) under the form

�2 � 1 D 3�A2

4
˙ ˛

jAj : (8.18)

• When ˛ D 0, the limiting case (the so-called backbone curve) is obtained (see
Fig. 8.4). In the quarter plane (˝2 > 0; jAj > 0), this curve is parabola with its
concavity facing upwards, which corresponds here to the hardening case, i.e., to
an increase of frequency with amplitude.

• When ˛ ¤ 0, two branches of solution are obtained depending on whether A is
positive or negative. In the first case, the resonance curve is located above the
parabola. In the second case, it is located below.

To find the standard resonance curves, the x-axis and y-axis need to be reversed,
after calculating the square root of ˝2. If � < 0, the limiting curve of free
oscillations in the quarter plane (˝2 > 0; jAj > 0) is a parabola of concavity
facing downwards, which corresponds to the case of a softening oscillator, where
the eigenfrequency decreases with amplitude. With ˛ ¤ 0, both branches of the
curve are obtained with (8.18). If a viscous damping is introduced in the Duffing
equation, it can be written in dimensionless form:

d2y

d�2
C ˇ

dy

d�
C y C �y3 D ˛ cos ��: (8.19)
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Fig. 8.5 (Left) Resonance curves of the damped Duffing equation for different values of the
damping: the bending of the curves is more pronounced for low damping. (Right) Hysteresis loop:
when � increases, the operating point jumps from B to C; when � decreases, the operating point
jumps from D to E

With a similar approach as above, it is found that the resonance curves are governed
by the equation:

�
.1 � �2/A C 3�A3

4

�2
C ˇ2A2 D ˛2 (8.20)

which corresponds to the curves shown in Fig. 8.5.

8.2.2.1 Jump and Hysteresis Phenomena

The resonance curves of the nonlinear Duffing oscillator are bent to the left or to
the right (see Fig. 8.5). As a consequence, a frequency domain exists (delimited by
dotted lines in the figure) where one value of � may correspond to three values of
jAj. Through a rigorous mathematical reasoning, it can be shown that the extreme
values obtained for jAj are stable, while the states corresponding to the middle curve
portion are unstable. In Sect. 8.5.4.1, a general method for determining the stability
of oscillators will be studied. Experimentally, the consequences of these stability
properties are the following:

1. If the frequency increases (resp. decreases) regularly, the intersection point in
the middle curve does not stay fixed, and it “jumps” from one stable curve to the
other as soon as the point on one stable curve reaches its limit (see Fig. 8.5).

2. The closed curve built up by the two jumps and the two stable portions of both
upper and lower curves forms a hysteresis loop.
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8.2.2.2 Secular Terms

Let us now return to the generic Duffing equation under forced oscillations, written
in dimensionless form as follows:

Rq C q C "q3 D F cos˝t; (8.21)

with

F D "F0; ˝
2 D 1C "!21 : (8.22)

Note With these notations, all quantities q (and its derivatives), F, ˝ are
dimensionless. Thus, the eigenfrequency of the linear oscillator is now denoted 1
instead of !0. The dimensionless parameter !1 quantifies the difference between
the oscillator’s eigenfrequency and the forcing frequency. The expressions (8.22)
indicate first that the study is restricted here to forcing frequencies close to the
oscillator’s eigenfrequency and, secondly, that the forcing amplitude is low.

Let us look for solutions in the form of an expansion in ", as in the case of free
oscillations for the interrupted pendulum:

q.t/ D q0.t/C "q1.t/C 
 
 
 (8.23)

By replacing the quantity q by its first-order expansion, we have

Rq0 C "Rq1 C �
˝2 � "!21

	
.q0 C "q1/C " .q0 C "q1/

3 D "F0 cos˝t: (8.24)

At zero order, this yields immediately

Rq0 C˝2q0 D 0; (8.25)

from which we derive q0.t/ D A cos˝t. At the order one, we have

Rq1 C˝2q1 D
��
!21 � 3

4
A2
�

A C F0

�
cos˝t � 1

4
A3 cos 3˝t: (8.26)

Here, the important point to consider is that an equation is obtained where the
frequency of one forcing term (at the right-hand side) is equal to the oscillator
eigenfrequency˝ . As shown in the first part of this book, this resonance case leads
to an continuous increase of the amplitude of the solution with time, in t cos˝t.
These terms, called secular terms,2 must be eliminated here, since stationary

2The origin of this denomination is due to the fact that these terms were highlighted as first in
the field of celestial mechanics, where the time scales are of the order of centuries rather than of
milliseconds!
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solutions are sought. The amplitude of the term cos˝t in the right-hand side is
thus put equal to zero, which leads to the condition�

!21 � 3

4
A2
�

A C F0 D 0; (8.27)

and, in turn, to the relation between amplitude and forcing parameters

3

4
"A3 � A.˝2 � 1/ D F: (8.28)

In conclusion, the result obtained for the forced spring pendulum in Eq. (8.17) is
found again here, though with another method. For a forcing amplitude equal to
zero (F D 0), the case of free oscillations is recognized. With " D 0, we obtain the
linear case.

8.2.3 Generation of Subharmonics

Nonlinear oscillators have the property to generate spectral components which
are not included in the excitation spectrum. This section examines under which
conditions a Duffing oscillator subjected to forced oscillations can generate sub-
harmonics, i.e., spectral components of frequency equal to a submultiple of the
excitation frequency or, equivalently, whose period is a multiple of the forcing
period. Let us consider the forced Duffing equation with a source term of reduced
frequency 3� :

d2y

d�2
C y C �y3 D ˛ cos 3��; (8.29)

with � � 1. We look for the solutions that can be expanded in the form:

y.�/ D y0.�/C �y1.�/ with �2 D 1C ��21 : (8.30)

Inserting the expressions (8.30) in (8.29), and eliminating the terms of order 2 in �
(and higher), we get

d2y0
d�2

C �2y0 � ��21 y0 C �
d2y1
d�2

C ��2y1 C �y30 D ˛ cos 3��: (8.31)

The linear solution (term of order 0) is obtained by setting � D 0 in (8.31) which
yields

d2y0
d�2

C �2y0 D ˛ cos 3��; (8.32)
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which, under the additional assumption of zero initial velocity, leads to a solution
of the form y0.�/ D A cos �� C C cos 3�� . Finally, inserting the latter expression
in (8.32) leads to C D � ˛

8�2
.

In the next step, the term in � is set to zero in (8.31), to ensure compatibility of
the equation, which provides the term of order 1 of the solution:

d2y1
d�2

C �2y1 D �21 y0 � y30: (8.33)

Now, by substituting in (8.33) the expression for yo.�/, and after some trigonometric
calculations, it is found that y1.�/ must satisfy the equation:

d2y1
d�2

C �2y1 D A

�
�21 � 3

4

�
A2 C 3˛2

64�4
� A˛

8�2

��
cos ��

C terms in 3�; 5�; 7�; 9�:

(8.34)

Equation (8.34) shows that if the forcing amplitude of the � term is not equal to
zero, then we again face a situation where the amplitude of an oscillator, excited
at its eigenfrequency, increases continuously in time. After removing the secular
terms, we get

�21 D 3

4

�
A2 C 3˛2

64�4
� A˛

8�2

�
: (8.35)

After some algebraic rearrangement, Eq. (8.35) provides the condition of existence
for subharmonics of order 3 in the form of a relation between the amplitude A and
the reduced frequency � , for a given cubic nonlinearity coefficient �:

�6 � �4 � 3�

256

�
64A2�4 � 8A˛�2 C 2˛2

	 D 0: (8.36)

Finally, let us indicate that any oscillator governed by the Duffing equation may also
exhibit harmonics of higher order. To demonstrate this, the previous calculation
must be carried out again, with an forcing term in � , and with the objective of
obtaining conditions of existence for solutions in 3� (or higher).

8.3 Nonlinear Vibrations of Strings

The models of strings presented in the previous chapters do not take the variations
of tension consecutive to length fluctuations during the motion into account.
This assumption is not justified anymore when the ratio between the transverse
displacement and the string’s length becomes large. In several stringed instruments
(electric guitar, gypsy guitar, double bass played pizzicato,. . . ) such variations of
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tension are responsible for perceptually and musically relevant nonlinear effects:
pitch glide (think of the well-known initial “twang” in the attack!), coupling between
modes, and elliptical polarization of the string. One particular effect of nonlinear
coupling between modes lies in the ability to excite a string at a fraction L=n of
its length without canceling the harmonics of order n, in contradiction with the
linear theory. The elliptical polarization of a string also is a consequence of the
nonlinearity due to variations of tension.

The forced vibrations of an elastic string are examined below for large amplitude
oscillations. These will be focused on two transverse components of the string’s
motion, denoted y.x; t/ and z.x; t/. Torsional vibrations and longitudinal vibrations
are ignored [49, 73]. One may refer to the paper by Watzky for a more complete
description of the nonlinear dynamics of a vibrating string [75].

8.3.1 Simplified Equations of Motion

Let T0 be the initial tension of the string at rest. During the string motion, the relative
increase in length � of a small element of initial length dx is given by:

ds � dx D �dx; (8.37)

where ds is the current length (at time t) of the element (see Fig. 8.6).
For an elastic string of Young’s modulus E and cross-section A (in m2), the

tension at time t during the motion becomes

T D T0 C EA�: (8.38)

x

y

z

dx

dy

dz

ds

Fig. 8.6 Geometry of a nonlinear string element
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It is assumed that the components of the strain tensor (see Chap. 1) remain small
compared to unity so that it can be written that ds D Œdx2Cdy2Cdz2	1=2. A second-
order Taylor expansion of this equation gives

ds D dx

8<:1C 1

2

"�
@y

@x

�2
C
�
@z

@x

�2#
� 1

8

"�
@y

@x

�2
C
�
@z

@x

�2#2
C 
 
 


9=; :
(8.39)

Inserting this expression in (8.38) and assuming also that EA 	 T0, it can be
shown that the potential energy of the string of length L fixed rigidly at both ends is
written [49]:

Ep D
Z L

0

8<:T0
2

"�
@y

@x

�2
C
�
@z

@x

�2#
C EA

8

"�
@y

@x

�2
C
�
@z

@x

�2#29=; dx: (8.40)

The kinetic energy is written:

Ec D �

2

Z L

0

"�
@y

@t

�2
C
�
@z

@t

�2#
dx: (8.41)

By using the Hamilton’s principle, and considering that a sinusoidal force
f .x/ cos!t is applied to the string in the transverse direction y, the following coupled
equations are obtained (where the subscript letters refer to partial derivatives):8̂̂̂<̂

ˆ̂:
ytt � c2oyxx D c21

2

�
3yxxy

2
x C @

@x
.yxz2x/

�
C f .x/

�
cos!t;

ztt � c2ozxx D c21
2

�
3zxxz2x C @

@x
.zxy2x/

�
;

(8.42)

where co D p
T0=� and c1 D p

EA=� are the transverse and longitudinal velocities
in the linear case, respectively. In Eq. (8.42) the left-hand sides correspond to the
linear case, while nonlinear terms are the terms in brackets on the right-hand
side. These terms can be ignored as long as the gradients yx and zx remain weak.
Otherwise, they are responsible for a coupling between y and z. Thus, a force applied
in the direction y is likely to generate a motion in the perpendicular direction z. This
explains why an initially plane motion of the string does not remain plane during
the motion.3

3Let us recall (see Chap. 6) that the boundary conditions at the bridge are another cause of coupling
between y and z in the linear case. In the general complex case of a real stringed instrument during
normal playing, these two factors coexist and it is often difficult to separate them.
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8.3.2 Forced Vibrations

As a result of the large amplitude displacement of the string, it is usually not justified
to neglect the nonlinear terms in (8.42) close to resonances. In what follows, it is
assumed that the forcing frequency! is close to one particular eigenfrequency!n D
n�c0

L of the string. It is further assumed, for simplicity, that the mode n is not coupled
to other modes, which is not the case in practice. In fact, if the modes are close
together and/or if there are some algebraic relations between the eigenfrequencies
(see below, Sect. 8.5), then intermodal coupling must be taken into account. To a
first approximation, let us consider the two transverse components of the string for
the mode n:

y.x; t/ D any sin
n�x

L
cos!t and z.x; t/ D anz sin

n�x

L
sin!t: (8.43)

Inserting the expressions (8.43) in (8.42), the amplitudes any and anz satisfy the
following relations:8̂̂̂<̂

ˆ̂:
.!2n � !2/any C 9c21

32

�n�

L

�4
a3ny C 3c21

32

�n�

L

�4
anya2nz D ˛n

�
;

.!2n � !2/anz C 9c21
32

�n�

L

�4
a3nz C 3c21

32

�n�

L

�4
anza

2
ny D 0;

(8.44)

where ˛n is the projection of the excitation force on the mode n of the string.

8.3.2.1 Planar Motion

The case of a planar motion is obtained by setting anz D 0 in (8.44). In this case, the
amplitude in the y-direction is governed by the nonlinear equation:

.!2n � !2/any C 9c21
32

�n�

L

�4
a3ny D ˛n

�
; (8.45)

which is similar to Eq. (8.17) obtained for a Duffing oscillator under forced
oscillations. Therefore, all results presented in Sect. 8.2.2 for Duffing oscillators of
“hardening” type are valid here, including bending of resonance curves, jumps, and
hysteresis.

8.3.2.2 Out-of-Plane Motion

Eliminating anz between both Eq. (8.44), yields for any:

.!2n � !2/any C 3c21
8

�n�

L

�4
a3ny D ˛n

�
: (8.46)
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This expression is similar to (8.45), though the nonlinear term is now multiplied by
a factor 4=3, compared to the case of a planar motion. The second equation becomes

a2nz D a2ny � 16

3

˛n

�c21
�

n�
L

	4
any

: (8.47)

It proves that the string is likely to have an elliptical motion at a given point of
abscissa x, under the condition:

any > acrit
ny D

"
16˛n

3�c21
�

n�
L

	4
#1=3

: (8.48)

The condition (8.48) shows that increasing the forcing amplitude facilitates the
emergence of such motion. For plucked, and struck, string instruments, the elliptical
polarization has important consequences on the sound. In fact, each polarization
is “loaded” by a specific impedance at the bridge. Consequently, the detuning
and damping of both polarizations, due to these boundary conditions, are slightly
different. This, in turn, induces beats and complex decay history, which are
particularly sensitive to the attack time, when the amplitude is the largest. In the
spectral domain, these nonlinear phenomena take the form of “double peaks” of
very close frequencies.

In conclusion, it has been shown here that a single nonlinear string shows
some characteristics observed in the case of linear coupled strings in pianos (see
Chap. 6). However, it is important to notice that the underlying physical phenomena
at the origin of these temporal and spectral properties are fundamentally different:
amplitude nonlinearity in the first case, moving end in the linear case. Both
phenomena exist in the vibrations of real piano strings, so that it is sometimes hard
to separate them experimentally.

8.3.3 Transverse-Longitudinal Coupling: Simplified Approach

In the previous section, the coupling between transverse and longitudinal motion
of the string is ignored. However, in many string instruments and, in particular,
in pianos, such coupling is clearly visible and has a perceptual relevance [15].
To illustrate this, Fig. 8.7 shows the recorded acceleration at the bridge of a
piano. It highlights the existence of the so-called precursor, that precedes the
transverse vibration. Spectral analysis of this precursor shows that it is mainly due
to longitudinal vibration of the string, caused by its elongation during the attack [2].

This section is dedicated to the analysis of this coupling. It is restricted to the
description of the coupling between one transverse polarization y.x; t/ and the
longitudinal (or axial) motion �.x; t/. The string is assumed to be homogeneous,
lossless, and rigidly fixed at both ends. Finally, it is assumed that both transverse
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Acceleration
at the bridge

t (ms)

m–––
s2

Hammer-string contact

0
1

20

( )

Precursor

Fig. 8.7 Acceleration at the bridge of a piano. A precursor is clearly visible in the initial part of the
waveform. It is due to the longitudinal vibration of the string struck by the hammer. The duration
of hammer-string contact is indicated by a black rectangle, for comparison. From [2]

and longitudinal modes are integer multiples of their respective fundamentals. The
proposed approach used below is close to the one used by Bank [7], and inspired
by Morse [46]. We start from Eq. (8.38) where the extension ds, for a given axial
displacement �.x; t/, is written:

ds D dx

s�
1C @�

@x

�2
C
�
@y

@x

�2
; (8.49)

from which a first-order expression of string tension is derived

T D T0 C EA

"
@�

@x
C 1

2

�
@y

@x

�2#
: (8.50)

Thus the longitudinal force exerted on the string element ds is written:

Fx D @T

@x
dx D EA

"
@2�

@x2
C 1

2

@

@x

�
@y

@x

�2#
dx: (8.51)

This yields the equation that governs the longitudinal displacement of the string:

�
@2�

@t2
D EA

"
@2�

@x2
C 1
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�
@y

@x

�2#
: (8.52)
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The equation that governs the transverse string component y is written:

�
@2y

@t2
D T0

@2y

@x2
C EA

@

@x

(
@y

@x

"
@�

@x
C 1

2

�
@y

@x

�2#)
: (8.53)

It should be noticed in Eq. (8.52) that the coupling term due to transverse motion is
quadratic in y, while in (8.53) the coupling term due to longitudinal motion is cubic
in y. Under the assumptions of fixed boundary conditions and homogeneous string,
the transverse motion is expanded in the form:

y.x; t/ D
1X

nD1
yn.t/ sin

n�x

L
: (8.54)

At this step, the goal is to define the conditions of existence for longitudinal motion
of the string and quantify it (this will be referred to as transverse-longitudinal, or TL,
mode coupling). The inverse problem, namely the generation of a transverse motion
induced by a longitudinal motion (longitudinal-transverse, or LT, mode coupling)
is intentionally left aside. Both couplings exist simultaneously in reality, but the
description of the TL coupling is sufficient to bring out the essential principles.
Starting from (8.54), the longitudinal force per unit length of the string is written,
from (8.51)

fTL.x; t/ D EA
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C.m � n/ sin
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L

�
: (8.55)

Under the assumptions of fixed boundary conditions and no dissipation, the
longitudinal displacement becomes

�.x; t/ D
1X

kD1
�k.t/ sin

k�x

L
D

1X
kD1

�k.x; t/: (8.56)

The component �k.x; t/ will be excited under the condition that the projection of fTL

on this component is not equal to zero. This is checked by calculating the scalar
product:

fTL;k.t/ D
Z L

0

fTL.x; t/ sin
k�x

L
dx: (8.57)
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The calculation (8.57) then shows that the only cases where fTL;k ¤ 0 are obtained
under the following conditions:

m C n D k or jm � nj D k: (8.58)

In the first case (or “C” case), we have

f C
TL;k.t/ D �EA�3

8L2

k�1X
nD1

yk�n.t/yn.t/k.k � n/n; (8.59)

and, in the second case (or “�” case):

f �
TL;k.t/ D �EA�3

4L2

1X
nD1

ykCn.t/yn.t/k.k C n/n: (8.60)

From a spectral point of view, the previous equations yield the conditions that
govern the occurrence of frequencies due to longitudinal vibrations of the string.
For harmonic spectra, it can be checked (8.59) and (8.60) that these conditions are
written: (

for f C
TL;k.t/ W fn C fk�n D fk and fn � fk�n D fj2n�kj;

for f �
TL;k.t/ W fn C fkCn D f2nCk and fn � fkCn D fk:

(8.61)

Such selection rules were applied successfully by Valette and Watzky to account
for the generation of longitudinal modes in harpsichord strings [73]. They also
account for “phantom partials” observable in piano sounds [17]. In the case of
the piano, Bank and Sujbert made systematic measurements of real sounds that
helped in enlarging the validity of relations (8.61) to the case of slightly inharmonic
signals [7].

8.3.4 Exact Geometrical Model of Piano Strings
with Intrinsic Stiffness

The general considerations on the nonlinear properties of strings presented in
Sects. 8.3.1–8.3.3 above were based on simplified models of geometric nonlinearity
and, in particular, on first-order approximations of the nonlinear terms in the
wave equations. However, it has recently been demonstrated that the numerical
simulations based on these approximate models can lead to errors, and even to
instabilities [12]. In addition, as mentioned in several chapters of this book, and,
particularly, in Chap. 3, the intrinsic stiffness of strings is an essential property, with
significant audible consequences for the piano [26]. As shown below, the association
of nonlinearity and stiffness is necessary in order to obtain a realistic model of piano
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string. It is also preferable to use a geometrically exact model of string vibrations.
Such a model has recently been developed by Chabassier et al., who write the
nonlinear piano string’s equations [13]:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
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(8.62)

In this system, us is the transverse component of the string’s displacement, vs is the
longitudinal component, and 's is the angle of rotation of the cross-sections (see
Fig. 8.8).4 � is the density of the string. For an homogeneous steel string, the string
density is equal to the density of the material �c, where the index “c” means “core.”
Similarly, the area of the cross-section is A D Ac. For the wrapped bass strings,
where the wrapping (usually in copper) is aimed at increasing the mass without
altering too much the stiffness, the density can be written � D �cF, where F is the
wrapping factor defined as [15] :

F D 1C �wAw

�cAc
: (8.63)

4Strictly speaking, the model should contain an additional horizontal component. In fact, it is
observed experimentally that the polarization of most piano strings changes with time. It is often
almost vertical during the initial transient, due to the action of the hammer, and is then evolving
progressively towards a horizontal motion, even for small amplitudes. It can be demonstrated
mathematically that such a polarization change can only occur if some asymmetry exists in the
system that allows a transfer of energy from one component to the other. If the string is assumed
to be homogeneous and perfectly rectilinear, with ideal boundary conditions (assuming a vertical
motion of the bridge, for example), then the string will keep the initial polarization induced by
the hammer during its motion. In [13], the authors made such assumptions, with a vertical initial
motion of the hammer, and this is the reason why only one transverse component of the string
is considered here. Revisiting the bridge model would be necessary for allowing a horizontal
component.
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Fig. 8.8 Variables for the
nonlinear planar motion of a
stiff string: us is the
transverse component, vs is
the longitudinal component,
and ' is the angle of rotation
of the cross-section due to
shear stress

x

us(x)

js(x)

vs(x)

In this expression, Aw is the cross-sectional area and �w the density of the wrapping.
The other parameters (Young’s modulus E, tension at rest T0, torsional modulus G,
and shear coefficient �) are related to the core. The stiffness model in Eq. (8.62)
is a Timoshenko model. Its main property follows from the coupling between
transverse and shear waves. Accounting for shear yields accurate estimation of the
string’s eigenfrequencies in the audible range. In addition, the Timoshenko model
has desired mathematical properties for the simulations. As shown in Chap. 3, for
example, the transverse velocity in a Timoshenko beam tends to an asymptotic value
as the frequency increases, whereas it tends to infinity for an Euler–Bernoulli beam,
which is unsatisfactory from both a physical and numerical point of view. The
source term S in (8.62) accounts for the action of the hammer. To be complete,
the model must also contain damping terms, which are not written here for the sake
of simplicity.

The motion of the string imparts transverse and longitudinal forces at the bridge
(see Fig. 8.9). These forces are transmitted to the soundboard, as a result of the
particular geometry of the system and, also probably, because of the complex
motion of the bridge. This motion is left aside here, since it is still not completely
understood today, and subjected to some controversy. Considering then the angle
between the string and the horizontal plane, only, then the two components of the
string force at the bridge (in x D L) can be written as:

Fb.t/ D cos ˛

"
EA @xus C AG�

�
@xus � 's

	� .EA � T0/
@xusp

.@xus/2 C .1C @xvs/2

#
.x D L; t/

C sin ˛

"
EA @xvs C .EA � T0/

�
1� 1C @xvsp

.@xus/2 C .1C @xvs/2
/

#
.x D L; t/:

(8.64)

The nonlinear string force (8.64) is the exact expression to be used in simulations.
However, it is interesting to examine lower-order expansions of this force for the
purpose of a physical interpretation. We get
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Fig. 8.9 String–soundboard coupling at the bridge, allowing the transmission of the transverse
and longitudinal components of the string force
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In (8.65), the term .T0 C AG�/@xus contains the linear components of higher
magnitude. The following term refers to the shear wave, and has no effect on the
piano sound since the corresponding spectrum is beyond the audible range. The
term .EA � T0/@xus @xvs shows the possible existence of spectral combinations

between transverse and longitudinal modes. The term .EA � T0/
.@xus/

3

2
accounts

for cubic transverse nonlinearities. The term EA @xvs accounts for the longitudinal

components. Finally, the term .EA � T0/
.@xus/

2

2
accounts for quadratic transverse

nonlinearities. This last term is comparable to the one discussed in Sect. 8.3.3.
This shows that the nonlinear expression of the force transmitted from string to
soundboard accounts for the richness of piano sounds. In addition to transverse and
longitudinal partials, which are easily seen on real piano spectra because of their
relative high amplitudes, the spectral analysis of piano tones show many other peaks
due to combinations of order 2 or 3 between all components. These combinations
are nothing but the famous phantom partials, as designated in the literature [16].

The experimental identification of these phenomena is shown in Fig. 8.10. The
transverse partials are the peaks of highest amplitude: they are designated by a single
number. On the top figure, the spectral peaks of smaller amplitude located between
the transverse partials are the result of quadratic nonlinearity: they are designated
by the sum of two numbers. The frequency of the phantom partial “14+16,” for
example, is equal to the exact sum (within 1 Hz, which corresponds to the accuracy
of the spectral analysis) of the respective frequencies of partials 14 and 16. Here,
one can realize the importance of inharmonicity: with a perfect harmonic transverse
series of partials, it would be impossible to detect the phantom partials. In the
previous example, the phantom partial “14+16” would be then superimposed to the
30th harmonic component. As shown in Chap. 3, the inharmonicity (due to stiffness)



418 A. Chaigne et al.

–10

–20

–30

–40

–50

–60

28 29
30

31
32

33

34
35 36

14+16

14+18

17+18 18+19

18+20 19+20

1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6

Frequency (kHz)

A
m

pl
it

u
de

 (
dB

)

Spectrum of the bridge acceleration (fortissimo)

–10

–20

–30

–40

–50

–60

13 14 15

2+5+6

1+6+7

1+7+8

0.8 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1

Frequency (kHz)

A
m

pl
it

u
de

 (
dB

)

Fig. 8.10 Experimental identification of phantom partials due to quadratic (top) and cubic
(bottom) nonlinearities in the bridge acceleration spectrum, at the attachment point of string C2
(fundamental f D 65:4Hz) of an upright piano

increases as the square of the partial’s rank. Thus, the 30th transverse partial has a
frequency higher than the “14 C 16” phantom partial. Similar comments can be
made for the bottom figure where the added phantom partials are due to cubic
nonlinearity. As a consequence, their frequencies are the combinations of three
different frequencies of transverse partials. Zooming on other parts of the spectrum
(not shown here) would illustrate other types of combinations, where the frequencies
of some phantom partials are the sum of transverse and longitudinal frequencies, for
example.

The issue of frequency combinations and added partials due to geometric
nonlinearity will be addressed again in Sect. 8.5 devoted to gongs and cymbals. The
mechanisms of instability at the origin of these new frequencies and the conditions
for their existence will be analyzed and discussed.
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8.4 Nonlinearities in Wind Instruments Resonators

In the previous chapters, the propagation of sound in wind instruments was based
on the wave equation (cf. Chap. 1) obtained from basic equations (conservation
equations, adiabatic behavior of ideal gas), through linearization of acoustic quan-
tities with regard to the fluid at rest, considered as a reference state. The so-called
small perturbations hypothesis is no longer justified in situations with high levels
of sound, as the acoustic pressure amplitude inside the tube can reach 1–10 %
of the atmospheric pressure. In this case, the phenomena must be analyzed with
nonlinear propagation equations. The purpose of this section is to present basic
tools of weakly nonlinear acoustics applied to one-dimensional waveguides (case
without source, fluid at rest), and to discuss one particularly impressive wave
distortion phenomenon, the so-called brassy sounds, observed in brass instruments.5

In addition to brassy sounds, the nonlinear localized dissipation found in side-hole
instruments, will also be examined (Sect. 8.4.5).

8.4.1 Nonlinear Propagation

8.4.1.1 From Basic Equations to the Weakly Nonlinear Wave Equation

A criterion for evaluating the relevance of the linear approximation consists in
checking that the (dimensionless) acoustic Mach number M D va=c is small
compared to unity (va is the amplitude of the acoustic velocity, whereas c is the
speed of sound). Reciprocally, in the case of very intense sound level (with M of the
order of unity), which corresponds to highly nonlinear acoustics, the basic equations
cannot be linearized anymore! In fact, even for small acoustic Mach number, it is
possible to observe pronounced nonlinear distortion phenomena. These effects are
negligible on a small spatial scale: for distances small compared to the wavelength,
it is possible to assume p D �cv (as for a simple traveling wave). However, these
effects are cumulative in space, for distances corresponding to a significant number
of wavelengths, and can then generate highly distorted waves, and even shock
waves.6 This area of study is referred to as “weakly nonlinear” acoustics.

Nonlinear Equation of Wave Propagation

In the simple case of 1D linear acoustics, the propagation equation can be put in
the form of two traveling wave equations of order 1, without a source: @p=@t ˙

5For a more detailed study of fundamental nonlinear acoustics, the reader may refer, for example,
to the following authors: [18, 34, 54, 57].
6A shock wave is a pressure field which has an abrupt, and almost discontinuous, transition.
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c@p=@x D 0. To generalize this, one can start from the basic equations of mass
conservation (1.107) and momentum conservation (1.101), so that the quadratic
nonlinear terms appear

@�

@t
C @.�v/

@x
D 0 ; �

�
@v

@t
C v

@v

@x

�
D �@P

@x
: (8.66)

Here, the initial symbols of the basic acoustic equations are used (i.e., before
linearization), where � and P are the density and total pressure, respectively. Under
the assumption of adiabaticity, � depends only on P, or vice versa (adiabaticity is
defined in Chap. 1). In addition, the velocity v is also assumed to be a function of
pressure P. The following system of equations is derived

d�

dP

@P

@t
C d.�v/

dP

@P

@x
D 0

�
dv

dP

@P

@t
C
�
�v

dv

dP
C 1

�
@P

@x
D 0:

(8.67)

It has nontrivial solutions for @P=@t and @P=@x if the determinant associated with
the system of these two equations is equal to zero, which gives

d�

dP

�
�v

dv

dP
C 1

�
� d.�v/

dP
�

dv

dP
D 0 , equivalent to

d�

dP
D �2

�
dv

dP

�2
:

By definition, we have c2 D dP=d�. This leads to two solutions: “outgoing” and
“incoming” traveling waves, respectively, corresponding to dP=dv D ˙�c. In
the particular case of the outgoing wave, using the first Eq. (8.67), the so-called
nonlinear propagation equation of the simple wave [24] is obtained

@P

@t
C .c C v/

@P

@x
D 0: (8.68)

This equation, obtained without any approximation, is nonlinear. Now, the speed of
sound has to be expressed. In Chap. 5 the following nonlinear state equation was
established in the case of an ideal adiabatic fluid:

P

P0
D
�
�

�0

��
from which c2 D dP

d�
D �

P0
�0

�
�

�0

���1
:

Weakly Nonlinear Acoustics Assumption

Under the assumption of weakly nonlinear acoustics, an approximate version of the
simple wave equation (8.68) is now derived. Restricting the study to quadratic terms,
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it is sufficient to write a first-order approximation of the speed of sound as a function
of density, which gives

c ' c0

�
1C � � 1

2

�0

�0

�
with c20 D �

P0
�0
: (8.69)

�0 is still the acoustic density: � D �0C�0. The pressure is also assumed small, using
the following notation (see Chap. 1): P D P0 C p. Thus, we have p=P0 D ��0=�0:
Again to the first order, we have p D �0c0v, which yields

c0
�0

�0
D c0
�

p

P0
D v, and then c D c0 C � � 1

2
v: (8.70)

Finally, the nonlinear equation (8.68) is approximated as follows:

@p

@t
C .c C v/

@p

@x
D @p

@t
C
�

c0 C � C 1

2
v

�
@p

@x
D 0: (8.71)

This wave equation also remains valid, if we replace p by v or �0. In summary,
Eqs. (8.68) and (8.70) account for the causes of nonlinearity present in both the
conservation and the state equations:

• the convection effects (due to flow velocity). For a fixed observer, each point of
the wave, instead of moving at the same speed c0 is moving in fact at speed cCv,
so faster at the maxima of the acoustic velocity, and slower at the minima.

• variations in the sound pressure induce compression and expansion zones that
increase and decrease with temperature, respectively. Since the local speed of
sound c depends on temperature, it is also a function of the acoustic velocity.

As discussed in Sect. 8.4.2, the nonlinear traveling wave equation obtained above
can be solved accurately by the method of Riemann invariants, also called the
method of characteristics. The wave equation can also be established in the general
case (non-traveling wave case), but it cannot be solved accurately. Notice that losses
were not considered in the previous developments. If losses are taken into account,
approximate methods, using perturbation calculus, should be used. Burgers equation
mentioned in the following Sect. 8.4.1.2 is the result of such methods.

8.4.1.2 Burgers Equation

The exact solution of nonlinear acoustics including losses is not possible. An
approximate way to tackle the problem is to use a perturbation method: the method
of “multiple scales”.7 This method is based on the presence in the equation of a

7This method is detailed in Sect. 8.5 devoted to nonlinear vibrations of gongs and cymbals.
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small parameter, compared to unity: in our case, the selected parameter is the Mach
number defined in the vicinity of the acoustic source of the system. This number
serves as a basis for the definition of different scales: a short spatial scale (or “fast”
scale) that describes the wave propagation locally, and a long spatial scale (or “slow”
scale) that represents the cumulative effects of nonlinear distortion and losses. After
some mathematical operations, that will not be detailed here, the weakly nonlinear
lossless wave equation (8.71) is approximated by the following so-called Burgers
equation:

@q

@

� q

@q

@�
D 0; (8.72)

where q is a dimensionless velocity, 
 is a long spatial quantity, and � is a
dimensionless delayed time quantity. For more details, the reader may consult [57]
or [19]. If the Burgers equation above is valid for the speed of sound, it is also
applicable to other acoustic quantities, such as density and pressure. Equation (8.72)
has an exact solution for 
 < 1. For the particular case of a sine wave at the input
(
 D 0), Fubini has obtained the solution [25]:

q.
; �/ D 2

1X
nD1

Jn.n
/

n

sin.n�/; (8.73)

where Jn is the Bessel function of order n. “Generalized” Burgers equations exist,
that take additional physical phenomena into account. As a consequence, the
nonlinear differential equation that follows has two terms on the right-hand side, the
first corresponding to volume visco-thermal phenomena, and the second to visco-
thermal losses localized near the walls8:

@q

@

� q

@q

@�
D A

@2q

@�2
C B

@1=2q

@�1=2
, (8.74)

where A and B are constants depending on the thermodynamic constants of both
the gas and geometric characteristics of the system under study. In practice, the
volume losses term can be ignored almost everywhere (i.e., outside the shock
zone9) in the “sound pipes” application. Nevertheless, it is possible to separate and
measure the relative influence of all these effects, using dimensional analysis (see,
for example, [44]).

8So far, the volume visco-thermal losses, proportional to !2, were ignored because in a wind
instrument they are very low compared to losses in the boundary layers, proportional to

p
!.

However, volume losses are essential in free space. Equation (8.74) including only the volume loss
term (B D 0) is the equation called “Burgers equation,” referring to the similar nonlinear equation
used by the Dutch physicist J.M. Burgers in his work on turbulence.
9The shock zone is the zone where sudden changes of pressure, acoustic velocity, and temperature
may occur.
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8.4.2 Nonlinear Distortion and Shock Waves, Method
of Characteristics

The nonlinearity of Burgers equation allows us to understand the origin of abrupt
changes in pressure, which will be assumed to be discontinuous to a first approxi-
mation, although strictly discontinuous phenomena do not exist in real life.

To build simple analytical solutions to this equation, the mathematical method
known as the method of characteristics (or Riemann invariants method) is used
(however, this method will not be detailed here [34]). In what follows, we restrict
ourselves to a qualitative description. Notice that this method is applicable to other
discontinuous phenomena such as road traffic or the formation of tidal bores.

Losses are ignored in a first step. From the weakly nonlinear equation (8.71), it
is derived that the velocity of a signal point propagating along the x-axis for a fixed
observer is c D c0 C 1

2
.� C 1/v. The maximum of the acoustic wave propagates

faster than the minimum. The wave becomes distorted during the propagation (see
Fig. 8.11). Under the assumption of weak nonlinearity, any signal (plane wave) is
necessarily transformed into a shock wave, even if the sound level at the source is
low, as long as the dissipative phenomena are not taken into account, as is done
here. The higher the amplitude of the wave at the origin, the faster the wave is
distorted, and the shorter is the distance xc where the shock wave grows [54]. Using
the method of characteristics, one can show that this distance is written:

xc D 2�P0c0
.� C 1/ Œdp=dt	max

where Œdp=dt	max at x D 0: (8.75)

From (8.75), it turns out that xc also depends on the shape of the signal, through
the term Œdp=dt	max. Thus, for an initially sinusoidal signal, xc is a decreasing
function of frequency.

position

Velocity
or pressure

(   + 1) vc0+ Δt =

x x+Δx

Δx
1––
2

Fig. 8.11 Wave distortion: evolution of a sinusoidal signal for a traveling plane wave (pressure or
velocity) governed by the weakly nonlinear equation. Each point of the waveform travels with a
given characteristic velocity that depends of the amplitude, which distorts the signal
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Equation (8.68), with (8.70), implies that the acoustic velocity v is constant
over time (dv=dt D 0) along some lines (the so-called characteristics) of slope
c D c0 C 1

2
.� C 1/v in the .x; t/-plane. The method of characteristics illustrates

the “cumulative” effect of the nonlinear distortion during wave propagation. The
intersection of two characteristics in this plane corresponds to two possible values of
sound pressure at the same point simultaneously: this corresponds to the formation
of a shock wave. The first intersection yields an estimation for the shaping distance
of the shock wave xc. Beyond this point, the method of characteristics implies
the existence of multivalued solutions, which is non-physical! It becomes then
necessary to introduce a new condition to describe the shock. This condition is
given by writing the conservation of mass across the shock wave, the so-called law
of equal areas. It follows that the structure of the wave has a “sawtooth” shape, with
a decreasing amplitude in the subsequent propagation. This wave is also called the
“N-wave” (see, e.g., [54]).

The distortion of an initially sinusoidal wave is shown in the frequency domain
as an energy transfer from the fundamental component of the signal to higher order
harmonics [this is illustrated quantitatively by the Fubini equations (8.73)].

8.4.3 Competition Between Nonlinear Effects and Dissipation

In the absence of losses, the model systematically predicts wave distortion and
N-wave formation. The amplitude of this wave decreases, regardless of the intensity
of the source signal (even if it is very low), and whatever the shape of the signal, as
long as the wave propagates far enough! This is in contradiction with experiments
showing that the initial amplitude of the source signal influences the nature of the
produced sound. The model is therefore incomplete.

Taking the losses into account helps in obtaining a model which is closer to
reality. The goal here is to a priori estimate the order of magnitude of competing
phenomena: nonlinear effects and visco-thermal losses. As a consequence, losses
may damp the signal before it has time to distort. In this case, the context of linear
acoustics is sufficient to model the phenomena. For strong nonlinear phenomena, a
possibility exists when the amplitude of the N-wave becomes low enough so that
the dissipative effects are dominant. Since the visco-thermal losses at walls are an
increasing function of frequency, the N-wave is damped and deformed over time
to tend ultimately to a sinusoidal signal of very low amplitude. Notice that, during
the formation of the shock wave, both the volume visco-thermal losses (usually
ignored in the pipe) and visco-thermal losses in the boundary layer describe the
shock wave shape correctly. In practice, the angles of the shock wave are “rounded”
by dissipation.
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8.4.4 Shock Waves and Brassy Sounds

The sound levels inside wind instruments can be very high (about 130–170 dB), and
only a small part of the acoustic energy is transmitted to the external air. One way
to a priori notice the presence, or the absence, of nonlinear phenomena, consists in
estimating the distance of shock formation from the source signal. This procedure
has been used for pressure signals measured inside a trombone mouthpiece [35]. The
measured distance is of the order of magnitude of several meters, which suggests the
presence of spectacular nonlinear effects in the instrument (recall that the length of
the cylindrical part of the trombone, the main slide, is between 2 and 3 m).

Internal acoustic pressures corresponding to a high F (F4—frequency 350 Hz)
were measured at the input of a trombone slide and at the slide end, for various
sound levels (see Fig. 8.12). It is observed that the input signal is slightly distorted
for increasing amplitudes, and that a spectacular distortion is visible on the signal at
the output of the slide. If a note is played at the sixth position (for a slide near
its maximum length, 2.8 m, which enhances the cumulative effect of nonlinear
propagation), the distortion is such that shock waves are visible. The resulting
spectral enrichment of the higher harmonics is also found in the sound radiated
by the instrument. These sounds with a specific tone color are often called “brassy
sounds” by the players.

The question of the propagation in bells is not discussed here (see Chap. 7).
Outside the instrument, the radiated sound looks like a series of pulses generated
at the frequency of the played note (it is calculated in the model by deriving the flow
rate at the output). These high frequencies are totally transmitted to the external
air and do not return to the lips of the player. Thus, they are not involved in the

10 000

–15 000
3 000

–6 000
600

–300
0.010.0050

t(s)
0.010.0050

t(s)

p
(P

a)
p

(P
a)

p
(P

a)

10 000

–15 000
3 000

–6 000
600

–300

p
(P

a)
p

(P
a)

p
(P

a)

Fig. 8.12 Shock waves in a trombone illustrated by pressure signals measured at the input of the
instrument, at the slide output, and 20 cm outside the bell, respectively (from top to bottom on the
figure). The note F4 (350 Hz) is played fortissimo in first (left) and in sixth position (right), the
length of the cylindrical part being 1.80 and 2.80 m, respectively
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self-sustained oscillations. This is an additional argument to justify the use of a
linear propagation model (input impedance) for the analysis of sound production,
which is the topic of the next chapter. In addition, this also justifies the following
simplification currently used for synthesized sounds: in a first step, the synthesized
sounds are obtained from a model of linear resonator, in a second step the sounds
obtained at the input of the instrument propagate nonlinearly and radiate [47, 65, 74].
Such synthesized sounds simulate “brassy sounds” in a very realistic manner.

Only trombone brassy sounds were presented here, but in fact these “brassy
sounds” are characteristics of all brass instruments, including those with predomi-
nantly conical bore. Nevertheless, the nonlinear distortion phenomenon is less
pronounced in cones than in cylinders. We can probably see there an explanation
for the distinction used by musicians between “bright brass” with a preponderant
cylindrical bore (trumpet and trombone), and “soft brass” with a preponderant
conical bore (cornet, flugelhorn, French horn, and tuba) (see Fig. 8.13) [50].
Another distinction between these types of instruments is due to the shape of the
mouthpiece [28].

Woodwind instruments do not produce “brassy sounds,” and it seems also that
they are not subjected to, even small, nonlinear distortion effects [30]. However,
nonlinear phenomena of a different nature can be seen, which are located at open
holes, as it will be discussed in the next section.

Fig. 8.13 Two examples of brass instrument families, each having one cylindrical bore instrument
and another with a conical bore. Left: trumpet (cylindrical) and bugle (cone). Right: trombone
(cylindrical) and low saxhorn (cone)
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8.4.5 Localized Nonlinear Dissipation

When the particle velocity is high, jet separation phenomena at geometric sin-
gularities, like openings, may occur (see, for example, Chap. 10, Sect. 10.3.1.2).
These phenomena, which are standard in fluid mechanics, occur less frequently
in acoustics since they only appear for velocities larger than or equal to nearly
1 m/s, which corresponds to very intense sound levels.10 However, these velocities
correspond to a rather weak acoustic Mach number, which explains why these
separation phenomena, when they occur, are generally more pronounced than the
nonlinearity due to propagation. The phenomenon of jet separation may be of little
consequence if it sticks quickly back to the wall. Otherwise, the interaction of the
jet with the external fluid at rest generates vortices, because of shear effects. Part
of the kinetic energy of the jet is absorbed by the vortices and further dissipated as
heat by friction. This effect will be discussed in the next chapter where the output
jet of a reed canal is examined. Finally, dissipation of acoustic energy exists, and
the nonlinearity can be reasonably modeled as a nonlinear resistance.

8.4.5.1 Simple Quasi-Static Model for the End of a Pipe

Consider the end of a tube, assuming zero impedance, in which a periodic flow
has the form v D v0 sin!t. Assuming that a proportion of the kinetic energy is
dissipated, the required pressure ps to maintain the flow is written:

ps D cd
1

2
�v jvj : (8.76)

In fact there is no reason for the coefficient cd to be independent of speed.
Atig et al. [5], in particular, have shown that this coefficient is larger when v > 0

(outgoing jet) that when v < 0 (incoming jet) and the value of this coefficient
becomes larger as the radius of curvature at the pipe output decreases (see Fig. 8.14).

The same authors have shown elsewhere [4, 10] that considering either cd as
a constant value, or two different values for the outgoing and incoming flows,
respectively, has little influence on the oscillation of a clarinet, the relevant
parameter being the average value of the coefficient. Therefore a model with one
constant parameter, though very approximate, may lead to satisfactory results. In
this case, we have

ps D cd
1

2
�v20 sin!t jsin!tj D cd

1

2
�v20

8

3�
sin!t; (8.77)

10For a pure traveling plane wave, a particle velocity of 1 m/s corresponds to a level of 400 Pa, or
146 dB SPL.
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Fig. 8.14 Real part of the normalized end impedance Zt=Zc as a function of the velocity v0 at the
output of the pipe, for various radii of curvature r: open circle r D 4mm; triangle symbol: r D
1mm; asterisk symbol: r D 0:3mm; square symbol: r D 0:01mm. The inclined straight dashed
line corresponds to the model of pressure losses for the outgoing jet with cd D 13=9, and the
two horizontal dashed lines correspond to the linear losses with and without screen, respectively.
From [3]

if only the first term of the Fourier series is kept (first harmonic approximation). The
power dissipated over a period is then:

P D psvS D 2cd

3�
�v30S: (8.78)

Within the framework of the first harmonic approximation, assuming that the end
impedance is real, it is found equal to:

Zt D 4cd

3�
MZc; (8.79)

where M D v0=c is the acoustic Mach number. Experiments show that this simple
model reflects the asymptotic behavior of nonlinear impedance fairly well (within
the context of the first harmonic method). In practice, it is valid for high velocities
(typically v0 > 10m/s, see Fig. 8.14). The definition of impedance in a nonlinear
regime would deserve much more care, but if one satisfies with a perturbation
approach (the linear speed is calculated, and injected in the “nonlinear” impedance
expression), the validity of (8.79) can be assumed. The value of the coefficient cd is
difficult to predict theoretically and it is easier to determine it experimentally.
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8.4.5.2 Side Hole

In the case of a side hole one can expect to see nonlinear resistances both in
series and in parallel branches of the tube model (see Chap. 7). Dalmont et al.
were able to highlight these resistances, however, they also have shown that the
resistance in series could reasonably be neglected when the diameter of the side
hole is significantly smaller than the diameter of the main guide [20]. Again here,
the parameters are highly dependent on the radii of curvature at the junction and
at the output of the hole. The use of nonlinear impedance in a calculation of
input impedance, or of reflection impedance, can be done simply with perturbation
methods.

The influence of high sound level (up to 10 kPa, or nearly 174 dB) on the self-
sustained oscillations of a clarinet type instrument has been investigated ([4], see
Chap. 9, Sect. 9.4.6) for a cylinder. It shows the importance of nonlinear losses at
the end on sound pressure level. One can also show that losses in a side hole reduce
the playing frequency, which is easily understood: if the, even real, impedance of a
side hole, increases notably, it may eventually act as a closed end for the hole! The
conventional calculation of playing frequency that ignores the losses and uses purely
imaginary impedances, shows here an obvious limit. Debut et al. [21] proposed an
approximate formula to account for this.

8.5 Geometric Nonlinearities in Gongs and Cymbals

Gongs and cymbals perfectly illustrate a number of fundamental properties of
nonlinear systems: sensitivity to initial conditions, bifurcations, hysteresis, and
routes to chaos. Geometric nonlinearities are also present in other instruments, such
as the steelpan [45].

By striking an orchestral gong (also called a Chinese tam-tam, see Fig. 8.15)
gently near its center with a mallet, one can clearly hear the excited modes and their
extinction. The vibration is then adequately described by a linear model. If one hits
harder, other frequencies appear, and a simple linear analysis does not account for
them.

The vibration spectrum (and, consequently, that of the produced sound) can
only be explained with the help of nonlinear theories that predict the existence of
combinations of resonances. These combinations contribute to enrich the number of
emitted frequencies considerably.

Finally, if one hits even stronger, this yields a continuous spectrum. In other
words, the excited frequencies are no longer separable from one another. A detailed
analysis performed on the obtained signals shows that chaotic oscillations are
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Fig. 8.15 Orchestral gong,
or Chinese tam-tam. Courtesy
© Rythmes et Sons

obtained (see Fig. 8.16).11 The strict definition of this term will be specified later.
Notice that, although the spectrum of the sound obtained at strong impact is
continuous, it is not that of a random noise.

In this section, the nonlinear phenomena that are the origin of the specific
sounds of those instruments are described. We show, in particular, that they
are due to the geometric nonlinearity caused by large amplitude motion of the
structure, when subjected to a strong impact. To facilitate the understanding, a
simplified mathematical description of a subsystem composed of a small number
of nonlinearly coupled oscillators will be conducted. Finally, the generalization to
nonlinear continuous systems with a large number of degrees of freedom will be
made. Spherical shells subjected to large amplitude oscillations will serve as an
example of a structure for which an analytical description of such phenomena is
possible.12

11The definition of chaos, as well as the method used for analyzing and quantifying such
oscillations, will be presented throughout this chapter (see Sect. 8.6, in particular). Here, we can
see some first properties of chaotic oscillations: irregularity in the time-domain, and a broadband
spectrum where it is not possible to discriminate individual spectral peaks anymore. Sensitivity to
initial conditions is another essential feature of chaotic oscillations, which will be discussed later
in detail.
12An important part of the topics presented in this section are the results of new insights on the
nonlinear vibrations of thin structures which were published during the last 15 years. See, in
particular, the Ph.D. thesis by O. Thomas, and his joint work with colleagues [8, 11, 60, 61, 64, 68].
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Fig. 8.16 Vibration waveforms and spectra of a gong struck with increasing impact force. The
three upper figures show the vibration signals delivered by an accelerometer glued to a gong excited
near its center with a mallet. The three figures at the bottom show the corresponding spectrograms,
which represent the spectral content of these signals over time. The dark lines corresponds to
high level, the light gray lines to low level. For a “soft” impact, the vibration signal is almost
sinusoidal, the spectrum shows an intense spectral line around 90 Hz, and only a few lines at
higher frequencies, at a lower level. For a “medium” impact, the intensity of the 90 Hz component
decreases, whereas the level of higher frequencies increases. Simultaneously, new components
with a significant energy appear in the higher range of the spectrum. For a “strong” impact, the
energy is still increasing in the high frequency range (between 200 and 500 Hz in the spectrogram),
the spectrum becomes continuous, and it is no longer possible to separate the spectral lines. The
waveform loses its periodic nature and becomes chaotic (see Sect. 8.6)

8.5.1 Sinusoidal Forced Excitation

Impact clearly corresponds to the standard use for gongs and cymbals. However, it is
difficult to analyze the phenomena, because of the large bandwidth of the excitation
spectrum. For this reason, it is preferable to observe the phenomena experimentally
with a forced sinusoidal excitation. This procedure has the advantage of presenting
the main phenomena, and thus allowing easier modeling. Nevertheless, recall that,
unlike the case of linear systems, one cannot conclude here that the oscillations
obtained through normal impact are the superposition of the oscillations obtained by
summing the results obtained for each frequency of the excitation spectrum, since
the superposition principle is not anymore valid for nonlinear oscillations.

Figure 8.17 shows an example of experiments where the amplitude of the excita-
tion force gradually increases at a given point of a gong. Similar experiments were
conducted on cymbals. An excitation frequency close to one natural frequency of the
structure is selected, in order to generate high amplitude. The vibration velocity is
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Fig. 8.17 Forced sinusoidal excitation of a gong. (See [60] and Sect. 8.5.1 in the text for a detailed
description of this experiment)
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Fig. 8.18 (Top) Vibration acceleration at a given point of the gong for increasing amplitude of
the sinusoidal excitation force. (Bottom) Corresponding spectrogram. One can see an increasing
distortion of the wave and an enrichment in harmonics in the spectrum over time. For reasons
of clarity, the frequency scale on the spectrogram is intentionally reduced and does not show the
higher harmonics 2˝, 3˝, 4˝,. . . which are nonetheless present in the vibration spectrum

measured at a point on the structure with the help of a laser vibrometer. It is observed
that the obtained waveform is, first, a sine wave. Some harmonics gradually appear
as the amplitude of the excitation further increases (see Fig. 8.18). For a particular
value of this amplitude (or threshold), additional frequencies suddenly appear in the
spectrum and are inserted between the harmonics. A detailed examination of the
values of these frequencies shows that they are algebraically related to the harmonic
excitation. Moreover, they correspond to other eigenmodes of the structure than the
one initially excited (see the next section). The emergence of these new frequencies
is characteristic of what is called a bifurcation. Mathematically, we will see in the
next sections that such a bifurcation corresponds to a loss of stability for the system,
and that the stability domain depends on both the amplitude and frequency of the
excitation.

When the amplitude of the exciting force continues to increase, there is a
new threshold that causes a second bifurcation. For slightly damped systems,
such as metallic percussion instruments, one reaches a chaotic regime on this
second bifurcation. It can be seen in Fig. 8.17 that the vibration spectrum beyond
this threshold is so dense that there it is almost continuous. When listening, the
characteristic shimmering sound of a gong (or a cymbal) is easily recognized,
although the instruments are excited with a single frequency.
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8.5.2 Internal Resonances

To explain these phenomena, a brief return back to the linear case presented in
Chap. 3 is necessary, where it was established that the vibrations of a conservative
finite structure can be represented as a projection onto a eigenmodes basis. In what
follows, we will see that the nonlinear behavior of gongs can be described with
the help of their linear modal properties. As seen in Chap. 3, the linear motion of
a structure, which is assumed to be non dissipative so far, can be written in the
following generic form:

L .�/C R� D 0

+ boundary conditions; (8.80)

where L is a linear operator involving the displacement field � of the structure and
its spatial derivatives. Then, this motion can be decomposed on the basis of its own
eigenmodes, each mode being characterized by an eigenfrequency and an associated
eigenshape.

Thus, for a given material, geometry (thickness, curvature, size,. . . ) and bound-
ary conditions, the eigenfrequencies and eigenmodes of the structure are fully
determined. If some algebraic relations exist between the eigenfrequencies, such as:

LX
iD1

mi!i D 0; (8.81)

where mi is an integer (positive or negative), the structure is said to have internal
resonances. Some relations of the following types, for example:

!1 C !2 D !3 or 2!3 � !1 D !5: (8.82)

can be exhibited.
In the case of structures with a circular geometry, some other interesting

properties are observed: one can discriminate between the asymmetric modes, and
the axisymmetric modes which show a symmetry with regard to the revolution axis
(see Fig. 8.19).

In fact, the asymmetric modes are grouped by pairs, whose mode shapes
are identical, showing only a phase shift of �=2p, where p is the number of
nodal diameters. If the structure is perfectly homogeneous, the eigenfrequencies,
denoted here, for example, !n1 and !n2, are theoretically identical. In practice,
measurements show that these frequencies differ slightly, as a result of some
unavoidable imperfections in the structure (which may include residual stresses),
and because of the attachment system. For inhomogeneous structures (such as
gongs), one can observe some important differences between both frequencies of
a mode pair. An important subset of the relations (8.81) are those where:

mk!k D mi!i C mj!j with jmij C jmjj D 2; (8.83)

This type of internal resonance is of prime importance in the case of quadratic
nonlinearities, which govern the physical behavior of gongs and cymbals.
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8.5.3 Weakly Nonlinear Regime

Structures such as gongs, cymbals, and thin spherical shells, show an asymmetry due
to curvature. In fact, the transverse motion is easier in the direction of the hollow
side than in the rounded one. This is an example of geometrical nonlinearity, which
is comparable to the case of the interrupted pendulum seen in Sect. 8.1. Another
qualitative interpretation of such a geometrical nonlinearity can be made for a simple
system of two articulated rods oscillating around a position defined by an initial
angle ˛0 that represents the curvature (see Fig. 8.20) [62].

Let E be the Young’s modulus of the rods, A their cross-sectional area, and L0
their length at rest. It can be shown that, under the action of a vertical force with
amplitude F, the transverse displacement y of the joining point of the rods is linked
to the force by the relation:

F D 2EA

(
y

L0
sin2 ˛o C 3

2
sin ˛0

�
y

L0

�2
C 1

2

�
y

L0

�3)
: (8.84)

Quadratic terms in y2 are seen in Eq. (8.84). This equation also shows the presence
of cubic terms: this result can be generalized to more complex curved structures,
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something that we will admit here without proof.13 Let us now return to the
experiments of the gong excited at its center by a sinusoidal force of frequency
˝ close to the eigenfrequency of one particular axisymmetric mode. As shown in
Fig. 8.18, the increase of the excitation amplitude results in an asymmetry in the
vibration waveform where the oscillations are more distorted for positive values of
the acceleration than for negative values. It is an example of quadratic nonlinearity,
which, in the spectral domain, is characterized by the presence of even harmonics
(2˝ , 4˝ ,. . . ).

Beyond the first bifurcation, a fine frequency analysis shows that the new
frequencies arising in the spectrum are related to the driving frequency by the
following combination rules, also called combination of resonances:

mk˝ D mi!i C mj!j with jmij C jmjj D 2: (8.85)

where mk is a positive integer, and mi and mj positive (or negative) integers. These
combination rules are the result of both the internal resonances of the structure
(particular relationships between eigenfrequencies) and quadratic nonlinearity. One
practical consequence of the excitation of such frequencies is, for example, the
possibility of exciting asymmetric modes with a shaker attached at the center of
symmetry of the structure. This would never be possible in the linear regime (see
Chap. 3) since this point corresponds to a node for asymmetric modes. A nonlinear
coupling only can explain such a phenomenon. An experimental illustration of these
resonances is described in Sect. 8.5.5.

8.5.4 Energy Transfer Through Combination of Resonances

To analyze the phenomena described above, a simple example of nonlinear quadratic
coupling between two discrete oscillators will be used. The method of multiple
scales is used for solving the problem [51]. The system under consideration is the
following: ( Rx1 C !21x1 D " Œ�ˇ12x1x2 � 2�1x1	 ;

Rx2 C !22x2 D "

�ˇ21x21 � 2�2x2 C P cos˝t

�
:

(8.86)

The variables x1 and x2 are the displacements of the oscillators. The frequencies
!1 and !2 are the eigenfrequencies of each oscillator in its linear regime. In the
absence of driving force, damping and nonlinearities, the system (8.86) reduces to
the free oscillations of two independent linear oscillators. The right-hand sides of

13In this example, the terms in y2 and y3, respectively, are comparable as long as ˛o is not supposed
to be small. We will see later that the quadratic terms are predominant in thin shells.
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the differential system (8.86) represent the perturbation terms with regard to this
ideal linear case. The dimensionless quantity " � 1 indicates that these terms are
small. The quadratic nonlinear coupling is ensured by the terms ˇ12x1x2 and ˇ21x21.
It can be shown, and this will be assumed here, that these two terms are sufficient for
guaranteeing the generality of quadratic coupling. In other words, it is not necessary
to add a term in x22, for instance, in the first equation, since an appropriate change
of variables would yield a formulation similar to (8.86) (see a justification for this
property in Sect. 8.7 devoted to nonlinear normal modes). As an example, a system
with an internal resonance !2 D 2!1 C "
1 is studied, where 
1 is the parameter
of internal detuning. The driving frequency˝ is chosen close to !2 so that one can
write ˝ D !2 C "
2 where 
2 is the parameter of external detuning.

8.5.4.1 Solution by the Method of Multiple Scales

In this section, we want to obtain the expressions of both amplitudes a1 and a2 of
x1 and x2, respectively, as a function of frequency, or, equivalently, in terms of the
external detuning parameter 
2. We also want to determine the threshold values for
which bifurcations occur. In the example presented here, this implies, in practice, to
calculate the amplitude of the forcing term for which a subharmonic of order two of
the driving frequency˝ just appears.

Principle and Main Steps of the Calculation

The example presented here is very rich, since it contains the essential concepts
and methods used in the study of nonlinear oscillators. To assist the reader, we start
by presenting a summary of the main steps of the calculation with their respective
goals.

1. Definition of the time scales, and general form of the solution.
2. Solvability conditions. Elimination of the secular terms.
3. Autonomous system and fixed points.
4. Stability of the system.
5. Amplitudes and phases of the solution.

Time Scales and General Form of the Solution

The time scales are defined as:

Tj D "jt with j � 0; (8.87)
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and the solutions are expanded in increasing power of "(
x1.t/ D x10.T0;T1/C "x11.T0;T1/C O."2/;

x2.t/ D x20.T0;T1/C "x21.T0;T1/C O."2/;
(8.88)

In what follows, the expansion is limited to the first order in ". In (8.87), notice that
the differentiation operators with respect to time are such that:8̂̂̂<̂

ˆ̂:
@

@t
D @

@T0
C "

@

@T1
;

@2

@t2
D @2

@T20
C 2"

@

@T0

@

@T1
:

(8.89)

From here, we use the notation Dj D @
@Tj

. Inserting (8.89) in (8.86), and identifying
the terms of identical power in ", yields

• to order "0 D 1: (
D2
0x10 C !21x10 D 0;

D2
0x20 C !22x20 D 0;

(8.90)

• to order ":(
D2
0x11 C !21x11 D �2D0D1x10 � ˇ12x10x20 � 2�1D0x10;

D2
0x21 C !22x21 D �2D0D1x20 � ˇ21x210 � 2�2D0x20 C P cos˝t:

(8.91)

The solutions of the system (8.90) are written in general form:(
x10.t/ D A1.T1/e

j!1t C A?1.T1/e
�j!1t;

x20.t/ D A2.T1/e
j!2t C A?2.T1/e

�j!2t;
(8.92)

where the exponent .?/ indicates the complex conjugate.

Solvability Conditions

The complex quantities A1.T1/ and A2.T1/ are functions of T1 D "t, and are still
unknown at this stage of the solving. To determine them, the expressions (8.92) are
inserted in (8.91), and we derive the conditions for avoiding secular terms in the
solution. This yields the so-called solvability conditions which are written here:
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8̂̂̂<̂
ˆ̂:

�2j!1

�
@A1
@T1

C �1A1

�
� ˇ12A

�
1A2e

j
1T1 D 0;

�2j!2

�
@A2
@T1

C �2A2

�
� ˇ21A21e�j
1T1 C P

2
ej
2T1 D 0:

(8.93)

These Eqs. (8.93) are usually solved in the following polar form:8̂<̂
:

A1.T1/ D a1
2

ej�1 ;

A2.T1/ D a2
2

ej�2 ;

(8.94)

where both the amplitudes ai and phases �i are functions of T1. Substituting these
expressions in (8.93), we get the dynamic system that governs the evolution of
amplitudes and phases of the oscillators at the time scale T1, corresponding to slow
changes in the system. It is written here:8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

@a1
@T1

D ��1a1 � ˇ12a1a2
4!1

sin.
1T1 C �2 � 2�1/;

a1
@�1

@T1
D ˇ12a1a2

4!1
cos.
1T1 C �2 � 2�1/;

@a2
@T2

D ��2a2 C ˇ21a21
4!2

sin.
1T1 C �2 � 2�1/C P

2!2
sin.
2T1 � �2/;

a2
@�2

@T2
D ˇ21a21

4!2
cos.
1T1 C �2 � 2�1/� P

2!2
cos.
2T1 � �2/:

(8.95)

Autonomous System and Fixed Points

In order to determine the conditions for obtaining solutions to the nonlinear coupled
system (8.86), it is necessary to express first Eq. (8.95) as an autonomous system or,
equivalently, in the form PX D F.X/ where the time variable T1 is no longer present
in the right-hand side. In practice, this procedure is equivalent to using the variables
�1 D 
2T1 � �2 and �2 D 
1T1 C �2 � 2�1, which yields
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8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

@a1
@T1

D ��1a1 � ˇ12a1a2
4!1

sin �2;

@�1

@T1
D 
2 � ˇ21a21

4!2a2
cos �2 C P

2!2a2
cos �1;

@a2
@T2

D ��2a2 C ˇ21a21
4!2

sin �2 C P

2!2
sin �1;

@�2

@T2
D 
1 � ˇ12a2

2!1
cos �2 C ˇ21a21

4!2a2
cos �2 � P

2!2a2
cos �1:

(8.96)

The so-called fixed points are obtained by eliminating the time derivatives in (8.96).
This corresponds to the stationary solutions of the system, i.e., those of interest in
the case of a forced oscillations. We get8̂̂̂̂

ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

a1

�
�1 C ˇ12a2

4!1
sin �2

�
D 0;


2 � ˇ21a21
4!2a2

cos �2 C P

2!2a2
cos �1 D 0;

��2a2 C ˇ21a21
4!2

sin �2 C P

2!2
sin �1 D 0;


1 C ˇ21a21
4!2a2

cos �2 � P

2!2a2
cos �1 � ˇ12a2

2!1
cos �2 D 0:

(8.97)

Note Setting a1 D 0 in (8.97) gives the expression for the amplitude a2 of the
second oscillator:

a2 D P

2!2

q

22 C �22

: (8.98)

Recall that 
2 is here the difference between the loading frequency and the
oscillator’s frequency, and that �2 is the “fluid” damping parameter. Thus, the
variation of amplitude with frequency of a forced linear oscillator is obtained (see
Chap. 2).

Stability of the Nonlinear Coupled System

Intuitively, the concept of instability can be represented by a physical system,
slightly pushed aside from its equilibrium position, that continues to increasingly
depart from equilibrium instead of returning back to it. In the case of gongs and
cymbals, it is observed that, under a sufficient level of excitation, new frequencies
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appear and, through a process of instability cascade (previously called nonlinear
coupling), may lead to other components to form the richness of the sound.

From a mathematical point of view, the departures from equilibrium for a system
of equations of several variables similar to (8.97) are calculated from the partial
derivatives of each equation with respect to each variable. This yields what is called
the Jacobian matrix or, more simply, the Jacobian of the system. Let f1; f2; f3; f4 be
the four equations and a1; �1; a2; �2 the four variables of interest. The Jacobian is
written:

J D

266666664

@f1
@a1

@f1
@�1

@f1
@a2

@f1
@�2

@f2
@a1

@f2
@�1

@f2
@a2

@f2
@�2

@f3
@a1

@f3
@�1

@f3
@a2

@f3
@�2

@f4
@a1

@f4
@�1

@f4
@a2

@f4
@�2

377777775
: (8.99)

Each term of the Jacobian represents a small deviation from equilibrium. In order
to calculate the stability of the equilibrium at point a1 D 0, which corresponds
to the conditions of appearance for oscillator 1, a standard method is used,
where the eigenvalues �i of J are calculated. These eigenvalues are the roots
of the determinant J � �I , where I is the identity matrix. The following four
eigenvalues are found:8̂<̂

:
�1 D ��2 C j
2; �2 D ��2 � j
2;

�3 D �ˇ12a2
4!1

sin �2 � �2; �4 D ˇ12a2
2!1

sin �2:
(8.100)

The system will be unstable if the real part of at least one root is positive, since, in
this case, the general solution includes an exponential term that grows with time.
Notice that �1 and �2 always have a negative real part, due to the presence of
the damping term �2 > 0 of the oscillator 2. These two roots are independent of
oscillator 1, and correspond to the case of oscillator 2 in linear forced oscillations.
It is therefore natural to have conditions of stability for these two roots. However, if
one calculates the product of the other two roots:

�3�4 D ��2ˇ12a2
2!1

sin �2 � ˇ212a
2
2

8!21
sin2 �2; (8.101)

and considering the first equation in (8.97) we see that some situations may occur
where the product �3�4 is strictly less than 0, i.e., where at least one of these two
(real) roots is positive. A detailed calculation shows that this instability condition is
satisfied if:
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a2 >
2!1

jˇ12j
q
4�21 C .
1 C 
2/2: (8.102)

The instability zone corresponding to (8.102) is shown in gray color in Fig. 8.21.
Notice that the amplitude threshold increases with the damping of oscillator 1, and
as the frequency moves away from !2 (
2 D 0).

Amplitudes and Phases of the Solution

After this analysis, we are now able to complete the study by calculating the
amplitudes a1 and a2, and the phases �1 and �2. As a result, the zero-order solution is
obtained, whose general form was specified in (8.92). Combining (8.92) with (8.94),
and considering the definitions of T1, 
1, 
2 �1 and �2, we get8̂<̂

:
x10 D a1 cos.!1t C �1/ D a1 cos

�
˝

2
t � �1 C �2

2

�
;

x20 D a2 cos.!2t C �2/ D a2 cos .˝t � �1/ :

(8.103)

By solving the system (8.97) corresponding to stationary solutions, the amplitudes
are finally obtained as a function of the input parameters:
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8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

a2 D 2!1

jˇ12j
q
.
1 C 
2/2 C 4�21;

a1 D 2

"
��1 ˙

s
P2

4ˇ221
� � 2

2

#1=2
;

with �1 D 2!1!2

ˇ12ˇ21
Œ2�1�2 � 
2.
1 C 
2/	 ;

and �2 D 2!1!2

ˇ12ˇ21
Œ2�1
2 � �2.
1 C 
2/	 :

(8.104)

The expressions (8.103) show an important result, as expected: for steady-state
oscillations, the frequency of the oscillator 2 is equal to the excitation frequency
˝ , and the frequency of the oscillator 1 is exactly ˝=2. This result is in accordance
with the properties of internal resonance of the structure.

Figure 8.21 shows the curves of the amplitudes a1 and a2 of the coupled
oscillators, as a function of the external detuning parameter 
2, all other parameters
being assumed to be constant. If the driving frequency increases (from left to right
on the frequency axis), the following phenomena are observed:

1. First, the amplitude a2 of oscillator 2 is examined. As long as the operating point
is below the zone of instability, there is no subharmonic.

2. For the threshold value corresponding to the instability limit given by (8.102), the
oscillator 1 suddenly appears. In the example shown, the amplitude a1 is larger
than a2, and this remains true as long as the running point stays above the limiting
instability curve.

3. As the maximum of the oscillator 1 curve is reached, the running point jumps
back to the oscillator 2 curve, and the oscillation at˝=2 disappears.

4. If the frequency axis is described in the opposite direction by gradually reducing
the excitation frequency, one observes qualitatively similar phenomena, but, in
this case, the threshold values for which oscillator 1 appears are different. This is
a characteristic hysteresis phenomenon.

8.5.5 Nonlinear Mechanical Model

8.5.5.1 Introduction

The purpose of this section is to show that the fundamental properties of gongs
and cymbals can be described by a set of nonlinearly coupled oscillators, similar to
the above-presented example. To do this, the study starts by examining a nonlinear
model of flexural vibrations for a spherical shallow shell. In fact, almost all gongs
and cymbals show a rotational symmetry, and a more or less pronounced curvature.
A spherical cap has similar properties and is a suitable approximation of real shapes
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observed in gongs and cymbals. Compared to real instruments, some discrepancies
will be observed on modal frequencies and shapes, but the general results will be
preserved. In addition, the spherical shape has the advantage of providing an analytic
reference model.

The case of thin spherical shallow shells is considered here in the context of large
amplitude oscillations. The same notation as in Sect. 3.5.4 of Chap. 3 is used. These
assumptions form the basis of the Von Kármán equations (also called, sometimes,
equations of Marguerre or Koiter in the specialized literature) [1, 63]. Hamdouni
and Millet, in particular, have shown that these equations can be obtained from an
asymptotic method applied to the general equations of elasticity [33]. As in the
linear case (see Sect. 3.5.4 in Chap. 3), the equations of motion are written in polar
coordinates, where (r; �) are the coordinates of one current point of the shell, after
projection on the horizontal plane. These equations are written [63]:8̂̂<̂

:̂
r4w C r2F

R
C �h Rw D L.w;F/ � � Pw C p;

r4F � Eh

R
r2w D �Eh

2
L.w;w/;

(8.105)

where F is the Airy stress function, and L a bilinear quadratic operator, written in
polar coordinates:

L.w;F/ D wrr

�
Fr

r
C F��

r2

�
C Frr

�wr

r
C w��

r2

�
� 2

�wr�

r
� w�

r2

��Fr�

r
� F�

r2

�
:

(8.106)

In Eq. (8.105), F contains both linear and quadratic terms in w. As a consequence,
L.w;F/ contains quadratic terms and cubic terms in w. Finally, the equation of
flexural motion contains linear terms, quadratic terms and cubic terms in w. When
R ! 1, Eq. (8.105) represents the nonlinear flexural vibrations of a flat plate.
In this case, the quadratic terms disappear, and only the cubic terms remain. To
examine the relative significance of the different terms in these equations, it is
necessary to write them in dimensionless form using the following variables [63]:

r D ar ; t D a2
p
�h=Dt ; w D h3=a2w ; F D Eh7=a4F ;

� D Œ2Eh4=Ra2	
p
�h=D� ; p D Eh7=Ra6p:

(8.107)

Thus Eq. (8.105 ) becomes14

14For the sake of clarity, the overlinings are now removed from the equations.
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8̂<̂
:

r4w C "qr2F C Rw D "cL.w;F/C "q Œ�� Pw C p	 ;

r4F � a4

Rh3
r2w D �1

2
L.w;w/:

(8.108)

Equations (8.108) contain a quadratic perturbation coefficient "q D 12.1 � �2/h=R
and a cubic perturbation coefficient "c D 12.1 � �2/h4=a4. Within the framework
of “thin shell” approximations, i.e., h � a and hR � a2, one can see that the cubic
terms are significantly smaller than the quadratic terms. In practice, this means that
even a very small curvature of the structure allows the quadratic nonlinearities to
dominate. This may explain why it is extremely difficult, or even impossible, to
experimentally exhibit the phenomena of cubic nonlinearity on a plate: even the
slightest flatness defect has such effect that the cubic nonlinear term is masked by
the quadratic one.

The nonlinear solution is now expanded onto the basis of the eigenmodes, taking
advantage of their orthogonality properties15:

w.r; �; t/ D
X

n

˚n.r; �/qn.t/: (8.109)

As a consequence, all nonlinear terms will appear in the time functions (generalized
displacements). These functions form a system of coupled differential equations:

Rqn C !2n qn D "q

"
�
X

p

X
q

˛npqqpqq � �Pq C pn

#
C "c

X
p

X
q

X
r

ˇnpqrqpqqqr;

(8.110)

which highlights the simultaneous existence of cubic and quadratic coupling terms.
For a plate, the coefficients ˛npq are all equal to zero. For a shell, we note a formal
analogy between these results and those obtained for the pendulum (see Sect. 8.1).
The quadratic nonlinearity here results from the asymmetry due to the curvature.

The expansion of the shell motion in terms of eigenmodes is only one possible
way of representing the solution, and this does not imply any linearity of the
problem. In contrast to the linear case, it is not possible to decouple the differential
equations that govern the time functions qn.t/. In addition, this representation does
not imply at all that the deflection shape of the shell for ! D !n is the (linear)
mode shape ˚n.r; �/. This can be seen, for example, by rewriting Eq. (8.110) under
forced oscillations at this frequency. In general, the vibratory motion of the shell
for a given frequency depends on the amplitude. Because of intermodal couplings
(see Sect. 8.5.4), the deflection shape of the shell, for given loading frequency and
amplitude, is a complex combination of several mode shapes (see Fig. 8.24 in the
next section).

15Details on numerical methods for solving the von Kármán plate equations can be found in [8].
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8.5.5.2 Truncation

If the nonlinearities are weak, and if the forcing frequency is close to one particular
eigenfrequency, it is legitimate to truncate the system (8.110) by keeping only the
equations that govern the main excited modes, and those associated with them
through internal resonances. Let us illustrate this by the example of a thin spherical
shell shown in Fig. 8.22. This example shows a situation where the structure is
excited at its center with frequency f ' f3 D 224Hz, corresponding to the

Fig. 8.22 Examples of some particular modes of a spherical shell subjected to internal resonance
(see also [64])
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symmetric mode (0,1).16 For this particular shell, it turns out that the frequency
of the mode (0,1) corresponds to twice the asymmetric modal frequencies (6,0),
approximatively: f1 D 111Hz and f2 D 112Hz.

In order to observe the phenomena caused by a forcing in the vicinity of f01, then
it can be assumed that the displacement is written in the approximated form:

w.r; �; t/ ' ˚60.r/ Œq1.t/ cos 6� C q2.t/ sin 6�	C ˚01.r/q3.t/: (8.111)

where q1 and q2 are the generalized displacements corresponding to the two
configurations in quadrature for the asymmetric modes (6,0), and where q3 governs
the temporal evolution of the axisymmetric mode (0,1). As a consequence of the
modal truncation, the system (8.110) is written in reduced form as follows:8̂̂<̂

:̂
Rq1 C !21q1 D "q Œ�ˇ13q1q3 � 2�1 Pq1	 ;
Rq2 C !22q2 D "q Œ�ˇ23q2q3 � 2�2 Pq2	 ;
Rq3 C !23q3 D "q


�ˇ11q21 � ˇ22q
2
2 � 2�3 Pq3 C P3.t/

�
:

(8.112)

where P3.t/ represents the forcing term, and where terms of modal damping of
the form �2�i Pqi are added. The cubic terms are ignored because of the “thin
shell” assumptions, as discussed previously. The intermodal coupling coefficients
ˇij depend on both the geometrical and material properties of the shell. These
parameters can be calculated explicitly [63]. The resolution of the nonlinear
system (8.112) can be made using the method of multiple scales presented in
Sect. 8.5.4.

Figure 8.23 shows the stability curve obtained for the truncated system (8.112).
The theoretical results are represented by solid lines (where the states are stable) or
dotted lines (when unstable). The experimental points are represented by triangles
and circles. One sees at the center of the figure the classical resonance curve of a
forced isolated oscillator close to its eigenfrequency. This is the curve that would
have been obtained for an isolated oscillator (0,1), with no internal resonances
related to other modes. By changing the driving frequency, one obtains different
coupling situations of this mode with one configuration of the two asymmetric
modes (6,0). Figure 8.24 illustrates these nonlinear couplings for a spherical shell
excited at its center: in each case, one can see the simultaneous contributions of the
axisymmetric mode and an asymmetric mode.

16As shown in Chap. 3 for the circular membrane (see Fig. 3.32), a mode .n;m/ of a structure with a
circular geometry is characterized by n nodal diameters and m nodal circles. However, in contrast
to the case of stretched membranes described in Chap. 3, the outer edge of the spherical shells
considered here are free, so that the lowest number of nodal circles is zero.
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Fig. 8.23 Stability curve for a thin spherical shell excited close to the frequency of mode (0,1).
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Fig. 8.24 Examples of large amplitude deflection shapes of a spherical shell driven at its center.
This figure shows two situations of coupling between the axisymmetric mode (0,1) and one
configuration of the asymmetric modes (6,0) shown in Fig. 8.22. See also [64]

8.5.5.3 Generalization and Musical Interest

The previous section allows us to understand a key aspect of sound generation
in gongs and cymbals where the spectrum shows new components above a given
threshold of amplitude, as a consequence of geometric nonlinearity. At the end of
the Sect. 8.5.5 the presentation was deliberately focused on the interaction between a
small number of modes. However, these results can be quantitatively generalized to
a non-sinusoidal periodic forcing, which is coherent with the reality as one observes
in practice the distortion of the response even for low excitations (see Sect. 8.5.1).
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In this case, the enrichment of the spectrum is due to combinations of modes around
each harmonic of the driving signal. Sound synthesis of gongs and cymbals based
on these methods were made by Ducceschi and Touzé [23].

As said earlier, the normal excitation of a cymbal or a gong is a force impulse,
communicated to the structure by the impact of a mallet (or a stick). The spectrum of
the impact force is analogous to that of a low pass filter, whose bandwidth increases
with the hardness of the mallet’s head. For a pulse excitation, the system (8.112)
can only be solved numerically, since the nonlinearities do not obey the principle of
superposition. At this stage, one can imagine that each component of the excitation
spectrum gives rise to a local spectral broadening and that, in total, there is an energy
transfer to the high frequencies, beyond the initial spectrum. That is what is audibly
observed, and confirmed by experiments.

8.6 Chaotic Regime

Let us now return to the fundamental experience described in Fig. 8.17. In the
previous sections, the phenomena observed between the two bifurcations were
studied. Beyond the second bifurcation, the observed acceleration of the gong (or
of the cymbal) shows a broadband spectrum where it is no longer possible to
discriminate between the discrete frequency peaks. The Fourier transform is not
the right tool to describe the dynamics of the system properly, and other methods of
analysis must be considered. Details of the transition to chaos in thin structures can
be found in [69].

Among the possible strategies, observing the signal in the phase space is an
effective and recognized method for analyzing the dynamics of nonlinear systems
[27, 48]. Starting from a given time series s.t/, the phase space trajectory is obtained
by representing the set of points with coordinates [x1 D s.t/; x2 D s.tCT/] where T
is a time delay whose value obeys selection criteria that are beyond the scope of the
present book. One can remember that a widely used method consists of choosing
T as equal to the first zero of the autocorrelation function of the signal. Another
possibility is to select the first minimum of the mutual information function. The
reader interested in these questions can see for instance [40].

Figure 8.25 shows a comparison between a standard spectral representation and
a phase space representation, for a cymbal vibration signal, where the instrument is
excited by a sinusoidal force, for three different forcing amplitude, successively. As
long as the amplitude remains weak, the spectrum is harmonic, and the trajectory
takes the form of a closed curve. When the forcing amplitude increases, one can
see an inharmonic spectrum due to the multiple combinations of resonances whose
origin has been described earlier in this chapter. Here, the phase space trajectory
shows typical foldings, which are known to indicate a possible route to chaos.
Finally, after a second bifurcation, the spectrum is almost continuous, and the phase
space representation takes the form of a blurring structure, which is difficult to
analyze visually. We will see below how to draw valuable information from this
signal.



450 A. Chaigne et al.

−1 000 0 1 000
s (t)

s 
(t

+
T

)

1 000 2 000 3 000
Frequency  (Hz)

−2 000 0 2 000
s (t)

s 
 (

t+
T

)

1 000 2 000 3 000

−60

−40

−20

0

Frequency  (Hz)

−4 000 0 4 000
s (t)

s 
 (

t+
T

)

1 000 2 000 3 000

−60

−40

−20

0

Frequency  (Hz)

−1 000

0

1 000

−5 000

0

5 000

−5 000

0

5 000

−60

−40

−20

0

A
m

pl
it

u
de

  (
dB

)
A

m
pl

it
u

de
  (

dB
)

A
m

pl
it

u
de

  (
dB

)

Fig. 8.25 Phase space and spectrum of a sound for a cymbal under sinusoidal forcing excitation
at 440 Hz. Top line: quasi-linear oscillations. Medium line: weakly nonlinear oscillations. Bottom
line: chaotic regime

8.6.1 Degrees of Freedom

The erratic structure of the cymbal vibrations at the bottom of Fig. 8.25 looks like a
random signal. However, random signals are characterized by a lack of correlation
between successive time windows of the signal. Therefore, it is of interest to check
whether or not such a correlation exists here. For this purpose, the signal s.t/ is
sampled at regular intervals tn D nTe (where n is a positive integer), and the obtained
time series is denoted s.n/. N indicates the length of s.n/. Then, a set of vectors y.n/
is built, defined by:

y.n/ D Œs.n/; s.n C nT/; s.n C 2nT/; : : : ; s.n C .d � 1/nT/	

with n D 1; : : : ;N � .d � 1/nT ;
(8.113)

where the parameter d is called the embedding dimension of the vectors y.n/, and
where the index nT corresponds to the time delay T used for representing the signal
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and P are neighbors in dimension 2, but are no longer neighbors in dimension 3. (Right) Percentage
of false neighbors as a function of the dimension d of the space for cymbal vibrations, at different
excitation frequencies

in phase space. In total, the length of s.n/ required for the construction of each
vector y is equal to dnT . If we want to explore s.n/ entirely, it is necessary to make
n varying within the interval 1 to N � .d � 1/nT . Figure 8.26 illustrates the partition
of the initial series s.n/.

This partition might seem arbitrary at first sight. In practice, it will be used to
check whether s.n/ is random or deterministic. We will also derive a first estimate
of the number of degrees of freedom of the underlying mechanical system from this
analysis.

A first method is presented, called method of false nearest neighbors. To illustrate
it, let us examine the case d D 2. This corresponds to the case of the phase space
shown in Fig. 8.25, where the components of vector y.n/ are s.n/ and s.n C nT/.
These components are the coordinates of a point M on the trajectory (see Fig. 8.27).
Let us consider this point and another neighbor point P on the same trajectory.
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Imagine now that we examine the case d D 3: for that purpose, the cymbal motion
is now represented in a three-dimensional space, where the vector y.n/ has three
components s.n/, s.nCnT /, and s.nC2nT/. One can see this procedure as unrolling a
2-D “ball of wool” into 3D! The central question is to know if, during this operation,
M and P will remain close neighbors or not. In the case of a random signals, it can
be shown that close neighbors in dimension d never stay close in dimension d C 1.
This is a property of false nearest neighbors. With a deterministic signal, similar to
those we are interested in here, the number of false neighbors regularly decreases as
d increases (see Fig. 8.27).

Figure 8.27 shows that the percentage of false neighbors is practically zero
beyond a certain value of d (d D 8 here). This means that, for this dimension,
the trajectory is completely unrolled, and that the projection into a space of higher
dimension does not provide any additional information: for d > 8, all neighbors
are “true neighbors” which stay close if d increases. This is also the case for a
mechanical system of finite dimension m: if one attempts to use m C 1 variables to
describe this system, it necessarily leads to a set of equations where one variable is
expressed as a function of the m others, and we have only m independent equations.
To sum up, the method of false nearest neighbors described here gives an upper
boundary for the dimension of the system from which the time series s.n/ was
extracted. According to this estimation, we would derived here m � 8 for the cymbal
dynamics.

An estimation of the lower boundary of m can be obtained by calculating the
correlation dimension. This is obtained by determining the number of pairs of points
whose mutual distance is smaller than a certain quantity ". For a series of points N,
the discrete formulation of the correlation integral is written:

C."/ D 1

N.N � 1/

X
i¤j

H ." � ky.i/ � y.j/k/ ; (8.114)

where the vectors y of dimension d are calculated like as the method of false
neighbors described above. H is the Heaviside function.

Figure 8.28b represents, in logarithmic coordinates, the correlation integral C."/
depending on " for increasing values of the dimension d, in the case of cymbal
vibrations. It can be seen that the slope of this curve increases, and tends to a limiting
value from a given value of d (around d D 6 in this figure). This is a general result,
which is also valid for other dynamical systems [31]. This property means that,
beyond this limiting value, the number of pairs of points increases exponentially
with a constant exponent dc (C."/ � "dc), regardless of the value of d. This also
means that the relative increase ddC=C is proportional to the relative increase of the
“radius” dd"=". The asymptotic value dc of the slope is the correlation dimension
of the system.

This behavior characterizes a deterministic dynamical system with a finite
number of degrees of freedom. In the case of a random signal, a white noise, for
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example, we would observe that the slope of ln ŒC."/	 continues to increase with
increasing values of d. This would mean, in practice, that the relative increase in the
number of pairs of neighboring points within a hypersphere of radius " continues
to grow faster than the relative increase of the radius when the signal is observed in
spaces of increasing dimensions.

Figure 8.29 shows a range of estimates of dc obtained from multiple vibration
recordings of the same cymbal, for various forcing frequencies and excitation
positions. We note that the correlation dimension converges for all signals, which is
a clear indication of a deterministic process governed by a small number of degrees
of freedom (DOF). However, we note that dc is not identical in all cases, suggesting
that the number of DOF depends on both the driving frequency and excitation
position. This result is in accordance with the mechanical analysis of the problem
made earlier in this chapter.

In conclusion, is has been shown in this section that some analysis tools exist
for extracting information from signals governed by highly nonlinear process, for
which conventional spectral analysis is no more applicable. From a practical point
of view, the quality of the estimates can be rapidly affected if the signal is corrupted
by noise. In addition, it is often necessary to analyze signals of long duration (N
large) in order to obtain results with a sufficient accuracy. In any case, the estimation
of the dimensions should be connected to a physical analysis of the phenomena, in
order to avoid hazardous interpretations.
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8.6.2 Characterization of Chaos: Lyapunov Exponents

In the previous sections, the term “chaotic” was used to characterize the vibratory
oscillations of cymbals and gongs subjected to strong nonlinear oscillations. This
concept will be now made clearer and a method will be presented for quantifying
the chaos.

A chaotic system is mainly characterized by its sensitivity with regard to
the initial conditions. For a deterministic system, one can exactly reproduce the
temporal variations of a variable, provided that the same initial conditions are given.
With a chaotic system, even a small perturbation of these conditions is sufficient for
the system to operate on a completely different trajectory in the phase space. The
Lyapunov exponents, which are calculated from measured samples of a time series
s.n/ (see the next section), are quantities that measure the divergence rate of small
perturbations around a given trajectory in phase space accurately, and are recognized
as pertinent to quantify the chaos. Only one positive exponent is sufficient for the
trajectory to diverge, which proves the sensitivity of the system to initial conditions.

8.6.2.1 Calculation of the Lyapunov Exponents

The presentation below is inspired by Manneville [43]. As for the estimation of
dimensions discussed above, we start from a time series s.n/ (with n D 1; : : : :;N)
from which a set of vectors y.n/ is constructed, using the procedure described
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in (8.113). At a future time TF D nFTe, which is assumed to be small, the vectors
y.n/ are transformed into another set y.n C nF/. The calculation of the Lyapunov
exponents is then made on the function F which characterizes the evolution of y.n/
to y.n C nF/, which can be written symbolically17:

y.n C nF/ D F fy.n/g : (8.115)

As an illustration, let us consider the simple case of a single variable with initial
condition y0. First, we choose nF D 1. Introducing a small initial perturbation, we
obtain the adjacent trajectory Qy0 D y0 C ıy0. From (8.115) it gives

Qy1 D y1 C ıy1 D F.Qy0 D y0 C ıy0/

D F.y0/C F
0
.y0/ıy0:

(8.116)

Thus, the distance jıy1j between two trajectories is given by jıy1j D jF0
.y0/jjıy0j.

Pursuing the same calculation to the next iteration gives

jıy2j D jF0
.y1/jjF0

.y0/jjıy0j: (8.117)

Finally, after nF iterations, we get

jıynF j D
 

kDnF�1Y
kD0

jF0
.yk/j

!
jıy0j: (8.118)

It can be seen in (8.118) that the required quantity is obtained, namely a measure
of the evolution of the perturbation. This evolution can be quantified by a global
coefficient � defined as follows:

�nF D jıynF j
jıy0j : (8.119)

Finally, the Lyapunov exponent � is defined as the logarithm of � , which yields

� D ln.�/ D 1

nF

nF�1X
kD0

ln jF0
.yk/j (8.120)

for an estimation on nF iterations. If the exponent � defined in (8.120) is positive,
this means that, for different initial conditions, the trajectories diverge as e�n, or,
equivalently, as e�t using the dimensional quantities.

17The choice of TF determines the accuracy of the estimated Lyapunov exponents. These very
technical considerations will not be detailed here, and we invite the interested reader to refer to the
specialized literature [40, 43]. We simply recommend to choose T=2 � TF < T, where T is the
time interval chosen for the construction of the vectors y [see Eq. (8.113)].
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The previous calculus can be generalized to higher values of the dimension d
(dimension of vectors y) without any difficulties. In this case, several Lyapunov
exponents are obtained. This is known as the Lyapunov spectrum. These exponents
are calculated from the Jacobian of the transformation F [43, 67]. Only one
Lyapunov exponent needs to be positive for the trajectories to diverge, and one can
then conclude that the system is chaotic. Such properties are observed in the case
of cymbals and gongs, and this result comes in addition to other analysis methods
(mechanical model, phase space, bifurcations,. . . ) to explain the scenario of routes
to chaos for these instruments, subjected to large amplitude oscillations [14].

Finally, since the transformation for vibrations to acoustic waves is linear for
percussion instruments, all nonlinearities are contained in the vibrations. In other
words, the considerations presented in this chapter remain valid to explain the
observations made on the sounds of cymbals and gongs. On the experimental point
of view, it is preferable to perform the analysis on the vibration of one particular
point of the structure rather than on the radiated sound. In fact, the combinations
of modes and the number of degrees of freedom vary from one point to another
of the structure. As the sound pressure results from an integration over the whole
geometry, it is understandable that the corresponding signals are therefore more
difficult to analyze.

8.7 Nonlinear Normal Modes

8.7.1 Introduction

As soon as the nonlinearities are considered in a physical problem, then the
evolution equations of the variables are coupled together. This has been seen on
several occasions in this chapter, as, for example, in Eq. (8.110) for gongs and
cymbals. The superposition theorem, which enables us to solve several simple
problems independently, and then to reconstruct the overall response by summing
individual responses, is no longer valid. As a consequence, it becomes also difficult,
or even impossible, to make truncations in the system. Terms that would be
otherwise neglected could be responsible for major changes in the evolution of
the system, whereas such simplifications are perfectly justified in the linear case.
Direct solving of nonlinear problems is often impossible analytically. It thus implies
long and heavy numerical calculations, which are very demanding in terms of
computational resources. However, in many situations, the dynamics observed in
real cases seem to be relatively simple. This is, for example, the case for a structure
forced near its resonance frequency, at moderate amplitudes. Even if nonlinearity
is present, yielding higher harmonics and bending of resonance curves like those
shown in Sect. 8.2, the dynamic behavior remains rather simple to describe.

In order to propose effective methods to reduce the nonlinear dynamics in
specific cases, the concept of nonlinear normal mode, or NNM, was introduced.
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This concept is briefly presented below, for the particular case of a vibrating
structure under large amplitude, i.e., for geometric nonlinearities. It is assumed that
the modes of the system were calculated in a previous step, and that the equation of
motion was projected onto these modes, so that the starting point of this presentation
is a dynamical system of the form shown in (8.110), i.e., an infinite number of
nonlinearly coupled oscillators. Damping and forcing terms are left aside in this
presentation.

8.7.2 First Approach of Nonlinear Normal Modes

To make the reader understand the interest of NNMs, we will present this concept on
a simple case. The selected example is the dynamics of a mass subjected to elastic
restoring forces by two springs whose extensions are not considered as small, so
that linear approximations are not justified here (Fig. 8.30).

l0 is the length of the springs at rest. The coordinates of the point mass m at
time t are l0 C x1 and l0 C x2, respectively. The problem is expressed in terms of
the dimensionless variables X1 D x1=l0 and X2 D x2=l0. We denote !21 D k1=m
and !22 D k2=m the square of the natural angular frequencies of the system,
corresponding to purely horizontal and vertical motions in the physical space
(X1;X2), respectively. The elastic potential energy W of the system is given by:

W D m

�
1

2
!21

�
X1 C 1

2

�
X21 C X22

	�C 1

2
!22

�
X2 C 1

2

�
X21 C X22

	�

: (8.121)

The equations of motion are then obtained by:

m RXi C @W

@Xi
D 0; for i D 1; 2: (8.122)

Fig. 8.30 A point mass m is
fixed at two springs of
stiffness k1 and k2,
respectively. Each spring is
rigidly fixed to the other end
of the walls, which are
perpendicular to each other
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Finally, the equations governing the dynamics of the system are written:

RX1 C !21X1 C !21
2
.3X21 C X22/C !22X1X2 C !21 C !22

2
X1.X

2
1 C X22/ D 0;

RX2 C !22X2 C !22
2
.3X22 C X21/C !21X1X2 C !21 C !22

2
X2.X

2
1 C X22/ D 0:

(8.123)

Notice that both equations are decoupled in the linear regime, which is due to the
fact that the modal variables, X1 and X2 were chosen to describe the system.

Truncation problems mentioned in the previous section can be easily illustrated
with these equations. Suppose that we want to study the motion of the first mode,
simplifying the system (8.123) by writing X2 D 0. The dynamical problem that
governs X1 then yields an inconsistent result. In fact, if X1 ¤ 0, the term in X21 of
the second equation of (8.123) yields energy to the second oscillator, so that we no
longer have X2 D 0 !

However, if the system is linear, a motion initiated with the first eigenmode,
taking as initial conditions X1 ¤ 0 and X2 D 0, is such that X2 remains equal to
zero. This is the property of invariance of eigenmodes for a linear system. This is
no longer true for nonlinear systems, because of the presence of terms such as X21 in
the second equation of (8.123). We are now able to define NNMs more accurately,
but before that we need to specify the general framework.

8.7.3 Invariant Manifolds

Consider the dynamics of the system in phase space. For that purpose, the
system (8.123) is written in first order, by using the velocities Y1 D PX1 and Y2 D PX2
as additional independent variables. The phase space thus is four-dimensional, and
the dynamics can be rewritten as:8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

PX1 D Y1;

PY1 D f1.X1;Y1;X2;Y2/;

PX2 D Y2;

PY2 D f2.X1;Y1;X2;Y2/:

(8.124)

The eigenmodes correspond to two hyperplanes defined by: X2 D Y2 D 0 for the
first mode, X1 D Y1 D 0 for the second mode. These are two-dimensional subspaces
of the phase space. These subspaces are not invariant (see the end of the previous
section), this property being true if the dynamics is linear, only. This is illustrated
in Fig. 8.31, where the system (8.123) is solved numerically for three different
initial conditions on the first eigenmode, respectively: X1 D 0:01, X1 D 0:025,
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and X1 D 0:05, respectively (all other coordinates being equal to zero), and for an
integration time T corresponding to 12 times the period T1 D 2�=!1 of the first
oscillator.

It is found that the first orbit (or periodic solution) is almost included in the plane
defined by the first eigenmode. This trajectory was calculated for a small amplitude,
X1 D 0:01, the nonlinearities do not appear and the loss of invariance is almost not
visible. This is not the case for the other two orbits, which are no longer included
in the plane. The significant contribution that can be observed on the coordinate X2
is entirely due to the coupling term in X21 on the second equation that induces an
energy transfer from the first to the second mode.

Let us now observe the computed trajectories for other initial conditions, selected
at well-chosen locations in phase space. Figure 8.32 shows three trajectories,
computed for the same observation time T, and which initial conditions are:
.X1;X2/=(0.01,0) ; (0.025, 2:3�10�5) and (0.05, 1:8�10�4), respectively. Selected
values of X2 are small compared to those of X1, and appear as small corrections
brought for recovering out closed periodic orbits. These initial conditions have been
selected onto the first NNM, and this allows us to define the NNM by two equivalent
formulations. First, they can be defined as the family of periodic orbits existing in
the vicinity of the origin. Existence of these periodic orbits are guaranteed by a
theorem due to Lyapunov [42], and one can see in Figs. 8.31 and 8.32 that they
are not confined into the linear eigenspaces but are slightly aside. This definition is
however limited to the conservative case, as periodic orbits are no longer solutions
of the dynamical system as soon as dissipation comes into play. To overcome

–0.050 –0.025 0 0.025 0.050
–0.05

0
0.05

–15

–10

–5

0
2

–0.050 –0.025 0.0250 0.050

1 32

1 2 3

X1

X2

Linear eigenmode

X1

X2

Y1

–15

–10

–5

0

4

Phase space
Mass motion

in the physical spacex 10−4

x 10−4

Fig. 8.31 Non-invariance of the first eigenmode. The figure on the left shows the trajectories of
the system in phase space .X1; Y1;X2/. The plane X2 D 0 corresponds to the first eigenmode. Three
initial conditions were taken (numbered 1, 2, and 3), for X1 D 0:01, X1 D 0:025, and X1 D 0:05.
We see that the corresponding trajectories are located out of the plane defining the first eigenmode.
The figure on the right shows the motion of the mass in the physical space .X1;X2/. Here, we have:
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Fig. 8.32 First nonlinear normal mode. On the left: representation in phase space, showing the
invariance property of the nonlinear normal mode. For three different initial conditions (numbered
1, 2, and 3) taken on the manifold, the periodic orbits are entirely contained within the nonlinear
normal mode. On the right: representation of the mass motion in the physical space .X1;X2/. The
consequence of the invariance is that the motion of the mass occurs along a line and not on a
blurred trajectory

this limitation, an NNM can be defined as the set of initial conditions giving
rise to trajectories that are contained in a two-dimensional surface, or manifold
in mathematical terms. By doing so, one introduces the fundamental notion of
invariance. For a conservative system, the NNM can be viewed as the manifold
generated by all the periodic orbits. This manifold is invariant because any initial
condition taken on it will give rise to a trajectory that will stay on the manifold, for
any time. This definition in terms of invariant manifold is more general and will be
retained in the following.

We are now able to define an NNM:

Definition. An NNM is an invariant manifold (a surface) in the phase space, which
is tangent to the corresponding eigenspace at the origin (corresponding to the
position at rest). This definition ensures the following properties:

• Imposing that the manifolds be tangent at the origin to the eigenmode can help
in recovering the linear results. The nonlinear modes are thus defined as an
extension of the eigenmodes, where the invariance property is retained.

• The invariant manifolds are in fact minimal surfaces that allow us to capture
existing trajectories of the phase space: making projections on these surfaces is
therefore a priori the best possible reduction, which is their fundamental interest.

• With this notion, we are able to compute reduced-order models that retain the
essential properties of the observed dynamics. We thus find the issue raised in
the introduction: the apparent complexity of the equations, which needs to retain
a large number of oscillators, is included in the curved geometry of the manifold.
Now, the dynamics of that manifold is relatively simple, since it is governed by
a single oscillator, that we will specify in the next section.
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8.7.4 Calculation of Nonlinear Normal Modes

Several methods exist to calculate the NNMs. In this presentation, two of them
are selected, that use powerful mathematical tools (encountered elsewhere in many
other areas of physics) and that fully exploit the notions of invariance. The first
work introducing the concept of NNM is due to Rosenberg [56], although without
the more general interpretation in terms of invariant manifolds that was introduced
here.

One first approach consists in calculating the geometry of the invariant manifold
in the phase space, and then to project the equations of motion onto the manifold.
To do this, a very general theorem of dynamical systems is used: the center
manifold theorem. The results given by this theorem are of great significance,
since it provides the best means of reducing nonlinear dynamics. The basic idea
is to separate the very damped modes, which have a very short lifetime and have
therefore little influence on long-term dynamics, from the lightly damped modes,
which are primarily responsible for the dynamics over long duration. Once these
two families are separated, it is shown that the center manifold of the phase space,
which contains the amplitudes of the master (lightly damped) modes only, exists.
The theorem then provides an explicit method for calculating it [32, 43]. Applying
this method to vibrating systems with nonlinear geometries is discussed in numerous
papers [9, 38, 39, 53, 58, 59]. In the conservative case considered here, one can use
the center manifold reduction method without making references to slightly and
little damped variables. We then simply choose an eigenmode for which we want to
extend the invariance property to the nonlinear regime.

Let us now examine the first NNM of the system (8.124): .X1;Y1/ is chosen
arbitrarily as the pair of master variables, while .X2;Y2/ is the so-called pair of
slave variables. The equation that defines the geometry of the manifold in phase
space is obtained through a functional link between master and slave variables. We
therefore write:

X2 D u.X1;Y1/;

Y2 D v.X1;Y1/;
(8.125)

where u.X1;Y1/ and v.X1;Y1/ are the unknown functions to be determined. Equa-
tion (8.125) defines a two-dimensional manifold in phase space, and the invariance
is ensured by expressing X2 and Y2 as functions of X1 and Y1. To find the unknowns
u and v, Eq. (8.125) is differentiated with respect to time:

PX2 D @u

@X1
PX1 C @u

@Y1
PY1;

PY2 D @v

@X1
PX1 C @v

@Y1
PY1:

(8.126)
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Finally, all time derivatives in (8.126) are replaced by their expressions given
in (8.124). This leads to a nonlinear equation where the time variable has been
removed, and which describes the geometry of the first NNM in phase space:

v.X1;Y1/ D @u

@X1
Y1 C @u

@Y1
f1.X1;Y1; u.X1;Y1/; v.X1;Y1//;

f2.X1;Y1; u.X1;Y1/; v.X1;Y1// D @v

@X1
Y1 C @v

@Y1
f1.X1;Y1; u.X1;Y1/; v.X1;Y1//:

(8.127)

Solving these two partial differential equations yields u.X1;Y1/ and v.X1;Y1/, and
thus the position of the invariant manifold. The major issue is that the analytical
solution of these equations is never known in the general case. Thus, asymptotic or
numerical methods are used to determine u and v. The dynamics on the manifold is
given by replacing u and v by their expressions in (8.124). It can be written with a
single oscillator equation, hence giving rise to a reduced-order model. The efficiency
of the method might seem relatively insignificant in the particular example treated
here, where the reduction of complexity is of only one equation. However, this
method yields appreciable results if dynamical systems with a large number N of
oscillators can be reduced to one, which is the case when dealing with continuous
structures.

The second method is based on the normal forms theory. Again, the mathematical
tool that is used is very powerful, and is used in almost all branches of physics.
The basic ideas of normal forms were developed by Henri Poincaré [55]. The
goal is to simplify the dynamics of a system as much as possible, using a well-
chosen nonlinear change of variables. In fact, one can show that some nonlinear
terms of a dynamical system are essential for obtaining the main features of the
dynamics (number and nature of the fixed points, bifurcations), while others can
be eliminated without changing its characteristics. These terms, or the so-called
non-resonant terms, can be thus eliminated with an appropriate change of variables.
Finally, the normal form of the system is obtained, that contains the resonant terms
only.18 Returning to our example, we therefore look for a change of variables of the
form:

X1 D R1 C P1.R1; S1;R2; S2/;

Y1 D S1 C Q1.R1; S1;R2; S2/;

X2 D R2 C P2.R1; S1;R2; S2/;

Y2 D S2 C Q2.R1; S1;R2; S2/:

(8.128)

.R1;R2; S1; S2/ are the new variables, having dimensions of displacements and
velocities, respectively. The change of variables is chosen as tangent to the identity:

18New results on the use of normal form theory can be found in [41].
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the first term indicates that, for small displacements, R1 D X1, R2 D X2, S1 D Y1,
and S2 D Y2, which allows the recovery of the linear results. P1;Q1;P2;Q2 are
unknown functions that are determined iteratively: these quantities are expressed
as polynomial functions with unknowns .R1; S1;R2; S2/, whose coefficients are
found at each iteration, by eliminating non-resonant terms [37, 66, 70, 71]. Replac-
ing (8.128) in (8.123), one obtains the dynamics expressed in .R1; S1;R2; S2/, i.e.,
in a curved reference frame generated by the invariant manifolds. In the next step,
the appropriate truncations can be made since the invariance is recovered. To study
the first NNM, for example, the coordinates corresponding to the second NNM are
set equal to zero: R2 D S2 D 0. After substitution into the last two equations
of (8.128), the geometry of the first invariant manifold in phase space is found,
which corresponds to Eq. (8.125). Finally, it is found that the dynamics of the first
NNM, up to order three, is governed by:

RR1 C !21R1 C
�
!21 C !22

2
C A1

�
R31 C B1R1 PR21 D 0; (8.129)

where A1 and B1 arise from the elimination of the non-resonant terms. These
coefficients account for the effect of the second linear mode that would have been
otherwise abruptly neglected by imposing X2 D 0 in (8.123). These two coefficients
are written explicitly:

A1 D �3!
2
1

2
C !22.2!

2
1 � !22/

2.!22 � 4!21/
;

B1 D �3C !22
!22 � 4!21

:

(8.130)

In total, the nonlinear dynamics is described by a single oscillator, which is able to
predict the behavior of the entire system with a good accuracy. It can be shown,
for example, that the hardening, resp. softening, behavior of the system, (i.e.,
the dependence of the frequency with amplitude), is correctly predicted by the
dynamics on the manifold (8.129), whereas an erroneous result is obtained if the
system (8.123) is simplified in a crude manner by putting X2 D 0 [70].

8.7.5 Conclusion

The derivations presented here with the help of a simple system with two degrees
of freedom naturally extend to N degrees of freedom, with N arbitrarily large. The
influence of damping terms has not been treated, but this question is addressed,
for example, in [39, 59] and [66]. Taking also external forces for the calculation
of invariant manifolds into account is a more difficult problem, since the invariant
manifold then depends on time. One can find an example of such cases in [39].



464 A. Chaigne et al.

A nonlinear normal mode (NNM) was defined as an invariant manifold of phase
space, tangent at the origin to the corresponding eigenmode, which allows us to
consider it as an extension of the eigenmode for which the invariance property is
maintained. This property is a key point to adequately reduce nonlinear dynamics.
Using NNMs, one can derive reduced-order models, with a small number of degrees
of freedom, that contain the main properties of the original dynamics. These
methods can be applied to the sound synthesis of nonlinear percussion instruments,
in particular. Notice also that the computation of NNMs with application to self-
sustained oscillations of the clarinet was made by Noreland et al. [52].

Finally, recent results show that the dynamics of nonlinear thin structures can
gain in being examined in light of the wave turbulence theory [36, 72].
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Chapter 9
Reed Instruments

Jean Kergomard

Abstract This chapter deals with self-sustained oscillations created by reed
instruments. Single, double, and lip-reed instruments (lip reeds are encountered
in brass instruments) are presented. A basic model is proposed, the reed being
regarded as a single-degree-of-freedom oscillator. Single and double reeds are
shown to be inward-striking reed, while for the simplest model of lips the reeds
are striking outward. The consequences of this difference are analyzed at the
end of the chapter, when the effects of the reed dynamics, especially the role of
the reed damping, are investigated. Because these effects are complicated, focus
is given to the oscillation threshold (frequency and mouth-pressure thresholds).
However, for single and double reed instruments, many useful results can be
obtained with a simpler model, by ignoring the reed dynamics, i.e., equating the
reed with a spring without mass. A large part of the chapter is devoted to this
model. This is relevant because the resonance frequency of the resonator, and
therefore the playing frequency, is much smaller than that of the reed. The different
regimes for cylindrical and conical resonators are analyzed, with the nature of
bifurcations. Playing frequencies, amplitudes, and spectra are found to depend on
the excitation parameters, which are mainly the mouth pressure, the reed opening at
rest and the reed compliance. In order to obtain insights in the behaviors, cylindrical
resonators with single reed can be simplified to archetypes of nonlinear systems,
either iterated map systems or Van der Pol oscillators. Simple conclusions can
be drawn. Unfortunately, this is not possible for a lip-reed instruments because,
for outward-striking reeds, the playing frequency is slightly higher than the reed
resonance frequency.

This chapter deals with reed instruments. Single, double, and lip-reed instru-
ments (lip reeds are encountered in brass instruments) are presented. This
chapter and the following chapter, dedicated to flutes, will therefore encompass
most types of wind instruments.
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9.1 Background on Self-Sustained Oscillations

The first study related to wind instruments was carried out by Mersenne [80] and
Bernoulli [15] who focused on the resonance frequencies of the tube. This topic,
which is still being investigated nowadays, led to a fundamental understanding of
several manufacturing parameters related to the resonator: cross-section variations,
location and diameter of the toneholes, height of the chimney, etc. This was
developed in detail in Chap. 7. For bowed-string instruments, a seminal work was
also carried out by Mersenne. Following Mersenne’s work, the next step was to
understand the excitation of the system. The first attempts appeared at the end of the
nineteenth century (Helmholtz [68] and Rayleigh [93]) and were further investigated
during the twentieth century. Today, many questions remain open concerning this
complex subject.

Self-sustained oscillations were introduced in Chap. 8. They are encountered in
three kinds of instruments: reed instruments (including brass instruments), flutes,
and bowed-string instruments. It is noteworthy that the last family can also produce
sound with free oscillations (pizzicati). The fundamental research question is the
understanding of the sound production, and therefore the oscillation regimes, as
well as the conditions at which they can be obtained. For wind instruments, it is
well known that several regimes with different frequencies can be obtained for a
given fingering.

The study of musical instruments does not deal only with the conditions for
oscillations to emerge, but deal mainly with the kind of oscillation which can
exist. This differs from problems of practical interest such as Larsen effect, or
oscillations of piping systems: the problem is not to product these oscillations, but to
prevent them. Self-sustained oscillations are produced by an energy source, which
is continuous, or rather slowly varying, a linear resonator, such as a tube or a string,
and a feedback mechanism (Fig. 9.1). The feedback is very rapid, because it happens
at the playing frequency, which in general is related to the reflections in the resonator
(if no reflections occur in the resonator, the playing frequency cannot be related to
the resonator length). The feedback mechanism is therefore much more rapid than
the control loop of the energy source by the instrumentalist, via the force feedback
and the sound hearing.

Fig. 9.1 Elementary block
diagram of the loop of a
self-sustained oscillation
instrument

Energy source
Nonlinear
element

Linear, passive
resonator
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The simplest models assume that the nonlinearity, which is essential for the
conversion of a continuous excitation into steady oscillations, is localized at the
input of the resonator. This input is the entry of the tube for reed instruments,
and the contact between the string and the bow for bowed-string instruments. This
assumption markedly simplifies the analysis. In a well-known 1983 paper, Mc Intyre
et al. [79] attempted to unify the three kinds of self-sustained instruments by using
two elements only: the localized nonlinearity and the resonator. Obviously this
assumption implies some simplifications (and is questionable for flute-like instru-
ments), but provides initial elements of understanding. The authors demonstrated in
particular the utility of the reflection function instead of the impulse response (which
corresponds in the frequency domain to the input admittance or impedance of the
resonator, see Chap. 4). However, for certain purposes, it is necessary to consider
a non-localized nonlinearity. Moreover the models describing the transients can
slightly differ from the models for the steady-state regime: this remark demonstrates
the complexity of the phenomena. The following three chapters are of unequal
length: a “preferential” treatment has been given to reed instruments, because today
we have a model both simple and rather reliable. This allows presenting different
approaches, in both time and frequency domains, for both transient and steady-state
regimes. These methods help explain how the sound is produced, even if several
problems remain open. Some analogies given by the table of Chap. 1 can sometimes
be used, but obviously this is not always possible, because important differences
exist between the nonlinearities.1 The physics of reed instruments is based on the
effect of a valve, which is a solid element (of the wall) modulating a flow, and the
playing frequencies are close to the maxima of the input impedance. On the contrary
the sound production of flute-like instruments is based on the instability of an air
jet, without significant wall vibration, and the playing frequencies correspond to the
maxima of the input admittance. In addition a significant broadband noise due to
turbulence exists in flue instruments.

The outline of the present chapter is as follows: the models are first described
in Sect. 9.2. Models without reed dynamics are then explored in Sects. 9.3 and 9.4
with a focus on emergence and stability of regimes. Finally the effect of the reed
dynamics is investigated in Sect. 9.5.

1The bowed-string instruments can be compared to cylindrical reed instruments with an excitation
at a certain distance of the extremities; it is well known that the harmonics whose number is
multiple of n disappear in the spectrum when the string is excited at a distance equal to the nth part
of the length. The clarinet is equivalent to the string bowed at its middle: the two parts of the string
play the same role, and are equivalent to a unique string, with a double characteristic impedance.
The excitation parameters can also be compared: the bow velocity is equivalent to the mouth
pressure, while the bow force is equivalent to the reed-mouthpiece parameter defined hereafter.
Nevertheless the nonlinearity of reed instruments and bowed strings is extremely different, and
that of the bowed string poses very difficult problems concerning stability.
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9.2 Reed Instruments Models

9.2.1 Introduction

A reed is a type of valve, capable of modulating the air flow rate produced by
a pressure difference between the upstream (the instrumentalist mouth) and the
downstream (the instrument mouthpiece). This principle is common to all kinds of
reed instruments, either with a (single or double) cane reed, a metallic reed, or a lip
reed. The main distinction between this different instruments is based on the shape
of the resonator, and the ratio between the natural frequencies of the reed and those
of the resonator. Similar types of sources can be found in an industrial setting, such
as electro-pneumatic loudspeakers with an electrically controlled valve. Their main
advantage lies in the capacity to produce very loud sounds. Converting a static (dc)
pressure into an alternating (ac) one with the same energy can produce extremely
loud sounds, which are difficult to generate with linear sources.

In the case of reed instruments, the energy source is the flow itself, and
the measurement of acoustic pressures within the mouthpiece requires particular
microphones (170 dB is rather usual!). Fortunately the radiation has a very low
efficiency and cannot damage our ear. The external sound is much less loud, because
of the strong reflection at the end of the tube (which allows the sound production).
A reed can be modeled as a flexible structure, such as an elastic beam, with a
pressure difference acting of the two faces. The real boundary conditions can be
rather complicated. As a first approximation, the beam can be considered as a
cantilever beam with one fixed end and one free end, but its displacement can be
limited by another reed (for double reeds) or by the mouthpiece (for single reeds).
This kind of boundary conditions exists also for stringed instruments: it is called
“conditional” [111], and produces strong nonlinearities. When the reed closes the
mouthpiece, it is called a “beating reed.” When no obstacle stops the displacement,
the reed is “free”; it is the case of the accordion and harmonica. For cane reed,
the lips strongly damp the reed vibration, and limit the amplitude of the vibration
between lip and the ligature (but this amplitude does not vanish). In Chap. 5 an
example of localized damping has been studied; to produce an accurate model for
the reed is not easy. In particular the lips have complex geometrical and mechanical
characteristics. For organ reeds, the tuning wire plays the role of the lower lip of the
clarinettist. Its position allows the tuning of the pipe, and this fact demonstrates the
weak coupling between reed and pipe in reed organs.

Some instruments have (single or double) reeds which are encapsulated and this
causes difficulties in playing: the damping and vibrating length of the reed cannot
be controlled during playing. This is the case of crumhorns and bagpipes. The
difficulty of creating a model is even greater for lip reeds. Often a simple, global
model is used, based on an experimental modal expansion of the reed vibration. To
take into account one vibration mode only gives very useful information, even if it
is not sufficient at higher frequencies (some authors proposed more precise models
[5, 40, 44]). In what follows, we consider a single mechanical reed oscillation mode.
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In order to understand the fundamental physical features, which are essentially
nonlinear, it is necessary to introduce major simplifications, even if details related to
sound quality are lost. For single reed instruments, we therefore first assume that the
reed is a spring without dynamics (without neither mass nor damping), and obtain
first results concerning the sound production.

9.2.2 Mechanical Response of a Reed: Experimental Data

9.2.2.1 General Considerations

A major obstacle to the study of the characteristics of a reed instrument is the
number of parameters that influence sound production. Moreover when carrying
out a measurement involving an instrumentalist, it is not easy to be sure that he
or she does not influence, either consciously or not, the result of a given task. For
this reason, the artificial mouth is a very useful device: it acts as a good surrogate
for an instrumentalist.2 Using artificial blowing it is possible to measure the reed
mechanics in the form of a mechanical response to a pressure excitation (see, e.g.,
[47]). If this pressure is assumed to be almost uniform on each of the two sides of
the reed (see discussion hereafter), the frequency response is defined as follows:

Hmr.!/ D Y .!/

�P.!/
, (9.1)

where Y .!/ is the reed displacement at low excitation level and�P.!/ the pressure
difference across the reed. The subscript m stands for mechanical, and the subscript
r for reed. Obviously the reed displacement is not uniform, thus the response
measurement should be completed by the measurement of the reed deformation.
However, we assume that the displacement of the reed extremity represents the
reed displacement, at least when the reed does not beat. Another difficulty of
the measurement lies in the control of the pressure difference �P.!/ (see [29]).
Figures 9.2 and 9.3 show two examples of responses for a single reed and lips,
respectively.

Concerning a single reed, the support of the lip plays a significant role for
reducing the vibrating length of the reed, and mainly a role of reed damping. For
the example shown in Fig. 9.2, it can be seen that the first reed resonance lies close
to 2000 Hz. The response argument is C�=2 at the resonance; this is evident in
particular for the reed without lip of Fig. 9.2. Consequences will be analyzed in
Sect. 9.2.3.2. For the lips of a trombonist, a precise analysis of the figure shows the

2This kind of device is based upon an old idea. For instance during the eighteenth century the
Kempelen machine imitated the voice. There are also numerous more recent works: we cite [6, 70,
109] for the clarinet, and [58, 114] for brass instruments. The organ obviously is a kind of artificial
mouth!
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Fig. 9.2 Response of a single clarinet-like reed of to an oscillating pressure differences: without
support of the lip (gray curve) and for two lip forces pressing on the reed (black curves). The
amplitude scale is arbitrary, the argument is in radians (after [66])
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Fig. 9.3 Mechanical response of human lips (modulus and argument) to an oscillating pressure
difference for three different notes of a tenor trombone: Bflat1 is the “pedal” tone. Its harmonics
correspond to a series of impedance peaks, but the fundamental of the note does not correspond
to a peak. The playing frequency is noted with a small vertical dash on the amplitude curve. For
clarity the amplitude curves of the two highest pitches are shifted by 3 dB and 6 dB, respectively.
The amplitude scale is arbitrary. The two horizontal lines on the argument curve at ˙90ı indicate
the resonances (after [88])

existence of two resonances which are close together. The argument is ��=2 for the
first one while for the second, which is strongly damped, it is C�=2.
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9.2.2.2 Single Reed of Clarinet–Reed Kind

The response shown in Fig. 9.2 corresponds to a given “embouchure” of the player.
What we call embouchure corresponds to a particular setting of both the lip position
and the force applied by the lips on the reed. Several resonances appear. Recent
theoretical or experimental works analyzed these resonances, either without or with
lip [92, 102, 106, 112]. From the first resonance of the response, it is possible to
extract several parameters, which will be important for our simple model: (1) the
static stiffness (per unit area), Ks, depending of the reed “hardness” (reeds are
commonly classified using a single parameter, the “hardness,” given by the reed
makers); (2) the first resonance frequency, fr , which allows deducing the modal
mass (per unit area) of the first mode, ms D Ks=!

2
r (see Chap. 3, Sect. 3.3.1). So

we obtain a single-degree-of-freedom model:

d2y

dt2
C qr!r

dy

dt
C !2r y D fs

ms
, (9.2)

where y.t/ is the tip displacement of the reed (at low excitation level), the origin
being the value of y at rest (when fs D 0), qr!r is the damping coefficient, qr D 1=Qr

is the inverse of the quality factor of the reed, which depends on the positioning
of the lips (qr is equal to 2�0, as defined in Chap. 2). !r is the resonance angular
frequency and fs.t/ is the force per unit area due to the acoustic pressure. For a
clarinet reed, this force can be written as:

fs D ��p, where�p D pm � p: (9.3)

�p is the difference of the pressure applied on the two faces (pm is the mouth
pressure, p is the pressure on the other face). The minus sign is explained as follows:
if �p increases, the reed will be closed (see Fig. 9.4).

The fundamental frequency of the played notes is assumed to be very close to the
natural frequencies of the resonator and much lower than the resonance frequency of
the reed, fr. This is not true for very high notes and even wrong for the squeaks, but
this assumption allows large simplifications for the study of this kind of instruments.
Ignoring the reed dynamics leads to the simple equation:

Ksy D ��p: (9.4)

The quantity Ks can be measured, via the measurement of the ratio �p=y.
The “closure pressure” pM , is the mouth pressure for which the reed remains
closed in the static regime (then y D �H, and the mouthpiece pressure vanishes)3:

pM D KsH: (9.5)

3The stiffness of the reed depends on the closure of the reed, and therefore varies with the pressure
difference, because of the curvature of the mouthpiece lay. However, the closure pressure pM varies
very little [30].
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Fig. 9.4 Schematic representation of a clarinet mouthpiece with a single reed, and choice of
orientations. The lower lip restricts the vibrating length and provides its damping. The model
assumes a two-dimensional geometry, with a rectangular reed of width w. The definition of the
flow rates is given in Sect. 9.2.4

Figure 9.5 shows simultaneous signals for the mouthpiece pressure and the reed
displacement. On the left part, it is observed that the two signals are in phase and
almost proportional: this justifies the assumption (9.4). Nevertheless an asymmetry
is more noticeable for the displacement signal than for the pressure one. This
indicates the presence of even harmonics. Here the spectra are not shown, but they
exhibit a maximum of the response close to the harmonic 21, i.e., 2800 Hz: this
frequency is the first resonance of the reed. On the right part of the figure, a limit
of the displacement can be seen: it corresponds to the beating state of the reed. This
is a nonlinear phenomenon. The linear frequency response (9.1) loses significance,
because Eq. (9.2) needs to be completed by the following nonlinear condition:

y > �H: (9.6)

9.2.2.3 Lip Reed

For instruments with a cane reed, the playing frequency is mainly controlled by
one of the natural frequencies of the resonator, and the influence of the reed is
small. This is different for lip-reed instruments. The lip resonances of a “brass”
instrument player are crucial in order to obtain correct playing frequencies, which
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Fig. 9.5 Reed displacement (gray curve) and mouthpiece pressure (black curve) for a non-beating
reed (on the left) and for a beating reed (on the right): for the latter case, a plateau of the
displacement signal is visible, when the reed closes the mouthpiece. The scale is arbitrary. The
instrument is a cylindrical tube with a clarinet mouthpiece (From [89])

are also related to the resonator natural frequencies. As a consequence, the coupling
between reed and resonator is strong. The instrumentalist has to learn the control
of his lips to get the correct mechanical resonance frequency which allows using
a given resonance of the resonator. Thus the learning curve to obtain a “correct
sound” is arduous. It requires a significant muscular training. Some instruments
have a range of four octaves! In contrast to skilled players, the artificial mouths are
similar to a beginner: it is difficult to dynamically control the artificial lip tension,
and the compass is limited to two octaves.

It is therefore impossible to ignore the lip dynamic when trying to explain the
brass instrument properties. Equation (9.2) with one reed mode is the simplest model
and allows obtaining rather realistic synthesized sounds [64, 116]. Nevertheless it is
sometimes better to take two modes into account, by using the so-called two-mass
model. This is often done for the modeling of the vocal folds (the main difference
between brass instruments and the voice lies in the degree of coupling between
the “lips” and the resonator; the coupling between the folds and the vocal tract is
weak).4 Figure 9.3 shows that the two-mode model probably is more realistic for
brass instruments, because two resonances appear: they are close together, with a
strong attenuation for the second one. These twin resonances can be sharper with an
artificial mouth, as reported in [88].

4In singing it is possible to continuously change in notes without changing the length and the shape
of the vocal tract. The skilled brass instrument players can also play without instrument, but the
timbre is strongly modified.
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9.2.3 Dynamic of the Fluid Passing the Reed

9.2.3.1 Pressure Field, Flow Separation, Valve Effect (Single Reed)

Now we need to find a relationship between the pressure and velocity of the fluid,
by investigating the properties of the flow which enters the resonator. Figure 9.4
shows a schematic representation of the mouthpiece of a single reed instrument.
We remark the localized constriction at the extremity of the reed. Its length has an
order of magnitude of 1 mm. The constriction can be regarded as a channel located
between a “pressure reservoir” (i.e., the player mouth) and the entry of the clarinet
mouthpiece (for lip-reed instruments, the channel consists of the space between the
lips of the musician). The cross section of the channel is time-varying, and it is
controlled by the reed (or lips) position during an oscillation. The flow at the entry
of the instrument has the form of a jet at the channel exit: for a detailed description
of the jet and the underlying hypotheses, the reader is referred to the Chap. 10 about
flute-like instruments (see Sect. 10.3.1). The main result is that for �p > 0 the
velocity vj at the end of the constriction (i.e., of the channel) is given by:

vj D p
2�p=�: (9.7)

�p is defined by Eq. (9.3). The pressure at the instrument inlet is assumed to
be equal to that in the channel. The above result is based upon a very simplified
description of the flow separation, which is assumed to be localized at the channel
exit. However, the precise determination of the separation point is not easy. It
depends on the detail of geometry of the channel exit, i.e., on the channel flare and
on the flow rate. The higher are the flare and the flow rate, the more upwards is the
separation point (see [43, 69], pp. 311 and the following). An air jet is intrinsically
unstable (see Sect. 10.3.2 in Chap. 10 on flutes), and becomes turbulent. Turbulence
implies a fast mixing of the jet with the surrounding air, and consequently an abrupt
deceleration happens without pressure recovery at the mouthpiece inlet. Without
dissipation, it could be possible to apply the Bernoulli law, and a pressure increase
would result from the velocity decrease. Actually dissipation “compensates” for the
non-recovery of pressure in the mixing zone. When the turbulent mixing is over,
the decelerated flow is assumed to be spread over the complete cross section of the
mouthpiece (typically 15 mm in diameter) and to be almost uniform. Finally the
nature of the acoustic source in reed instruments can be summarized as follows: it
is a flow source using the valve effect. The fluctuating volume flow entering the
instrument is the product of a velocity and a fluctuating cross-section area. The flow
rate is mainly controlled by the pressure difference �p, and the cross-section area
by that of the channel exit.

Each quantity is the sum of an average part (over time) and a fluctuating part.
The mouth pressure is assumed to be constant, i.e., the input impedance of the vocal
tract at non-zero frequencies is negligible compared to that of the instrument. This
will be discussed in Sect. 9.4.7 of this chapter. Conversely, the time-average static
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pressure at the inlet of the instrument is assumed to be negligible compared to the
mouth pressure. In other words the input impedance of the resonator is very small
at zero frequency. Indeed an order of magnitude of the time-average flow resistance
of the pipe can be estimated by ignoring the inflow effect and assuming a Poiseuille
flow [Eq. (5.115)]. It is found to be less than 1% of the characteristic impedance of
the clarinet tube at the playing frequency [73, p. 251]. Concerning the estimation
of the flow velocity at the inlet of the tube, the use of the previous model leads to
a Mach number (the ratio of the velocity to the sound speed) significantly lower
than 1%: Such a value for the Mach number allows neglecting convective effects on
wave propagation. This is valid as long as nonlinear propagation is not considered
(see Chap. 8).

9.2.3.2 Inward- and Outward-Striking Reeds

For the last two centuries many authors have tried to characterize the reeds according
to the effect of the pressure difference across the reed. For inward-striking reeds
an increase in the pressure difference �p tends to close the reed channel, while
for outward-striking reeds, it tends to open the reed channel. The behavior of the
two kinds of reeds is very different, as demonstrated by the differences in playing
frequencies. This will be explained in Sect. 9.5 of this chapter. Figure 9.6 gives
a schematic representation of this difference [50]. The clarinet reed therefore is an
inward-striking reed, and is described by Eq. (9.3): for a positive pressure difference,
the force is exerted upward5 (see Fig. 9.4). Fletcher [49] proposed a finer distinction
for the reeds, by distinguishing the mean pressure on the two faces of the reed. We
do not go further on this difficult subject.

Fig. 9.6 Principle of an
inward-striking reed (a) and
an outward-striking reed; (b)
after Fletcher [50]. A positive
pressure difference
�p D pm � p tends to close
the reed for the case (a) and to
open the reed for the case (b)

pm p

pm p

a

b

5This is consistent with the value of the response argument Hmr.!/ around the resonance, as given
by Eq. (9.1). We saw that it is equal to C�=2: using Eq. (9.2), the argument of the ratio Y .!/=F.!/
is ��=2, thus that of the ratio Y .!/=�p.!/ is C�=2.
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Fig. 9.7 Lip reed seen as a swinging door. The two lips are assumed to be symmetrical. The point
y D �H corresponds to the closure of the lips

9.2.3.3 The Case of the Lip Reed

The case of the lip reed is more complicated than that of the single reed with
a mouthpiece. The geometry and the mechanical structure of the lips and their
surrounding (the “embouchure”) are complex. A drastically simplified geometry is
often considered in order to describe the valve effect. It is possible to use a model of
a “swinging door” (see Fig. 9.7), for each lip, assuming a perfect symmetry between
the two lips.

The lips are again approximated by a one-degree-of-freedom oscillator: a rotation
abound an equilibrium position defined by an angle � , with respect to the vertical
axis [1]. For this simplified geometry, there is a localized constriction at the end
of the lip, and it is possible to apply the air flow description used for cane reeds.
We assume rather arbitrarily that flow separation occurs at the neck of the channel
formed between the lips, with a jet velocity given by Eq. (9.7). After a certain
distance into the mouthpiece, the jet rapidly expands and produces a zone of
turbulent mixing. After this zone, the velocity field is supposed to be uniform over
a cross section of the mouthpiece, and the pressure in the lip channel is equal to
the pressure in the mouthpiece. For a trombone, the diameter of the mouthpiece is
around 30 mm, and it is much larger than the lip opening.

Therefore at the extremity of the lip, the upstream pressure is the mouth pressure,
pm, and the downstream pressure is the mouthpiece pressure. Thus it is reasonable
to consider that the force exerted on the lip is proportional to the pressure difference,
�p. With this model, the lip enters the mouthpiece for an increasing pressure
difference, and this corresponds to an outward-striking reed. With an orientation
convention similar to that used for the clarinet reed, the force projection on the axis
can now be written as:

fs D C�p: (9.8)
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There is a great similarity with the model of a clarinet reed, but the force is
given by the previous equation. Figure 9.7 depicts a very simplified schematic
representation. A static closure pressure can again be defined, but it is now negative,
because we should inhale to close the lips. For the sake of simplicity, the closure
pressure will be denoted �pM, where pM is given again by Eq. (9.5).

Other models can be found in the literature. Some of them take into account both
the vertical and the horizontal movements of the lips. A review is given in [24], with
a discussion of the link to the models of singing voice and speech. Some models can
also consider an inward-striking behavior under certain conditions.

Figure 9.8 shows an example of lip movement [22, 23]. We will not go further in
the discussion of the model. We conclude that it is difficult to develop an accurate
and reliable model. In fact the first resonance probably corresponds to a mode of an
outward-striking reed. In this chapter, we limit our study to the latter case.

Fig. 9.8 Movement of the
upper lip during one period
[21]
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9.2.4 Reed Opening Area and Flow Rate

9.2.4.1 Outgoing Channel Flow Rate

Let us first estimate the flow rate u entering the resonator. The jet velocity is assumed
to be equal to that at the output of the reed channel. The flow rate can therefore be
simply expressed with respect to the cross-section area of the jet Sj, i.e., that of the
reed channel:

u D vjSj: (9.9)

Sj plays a major role for the control of the flow valve effect. In a two-dimensional
flow, we get a very simple linear relation between the opening area and the channel
height:

Sj D .y C H/w, (9.10)

where w is the effective width (see Fig. 9.4 for the definition of y and H). This
linearity was experimentally verified by Dalmont et al. [34]. However, Backus [7]
experimentally found an area depending on the height with a power q, Sj / .yCH/q,
where q D 4=3, and this dependence has been used by many authors. For reasons
that will be explained soon, we keep the linear dependence for the single reed.

A similar debate exists for the double reed. If the shape to the reed end is seen as
two circle arcs, it should be found a power q D 1:5 or more (see [8]), but authors
found [117] a linear dependence on the reed opening. For lip reeds, many authors
investigated this issue, and they found a power between 1 and 2, for instance, by
graphical inspection (see, e.g., Fig. 9.8).

9.2.4.2 Flow Rate Due to the Reed and Total Flow

Equation (9.9) gives the flow rate passing through the reed channel. However,
another source of flow, of secondary importance, exists: it is the flow produced by
the reed vibration, which is similar to the flow produced by any vibrating surface,
such as a loudspeaker membrane. The reed pushes and pulls out air inducing a flow
rate ur equal to:

ur D �Sr
dy

dt
; (9.11)

where Sr is the effective area of the reed. The sign � comes from the orientation
choice in Fig. 9.4: the reed produces a flow entering the resonator when y decreases
(in the figure it is not obvious that this displacement flow enters the resonator,
however, it might be clearer that an equivalent flow induced by the top of the reed
“leaves” the mouth, which surrounds the mouthpiece! There is actually no creation
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of volume by the reed movement). The total flow rate entering the instrument is
therefore:

uin D u C ur. (9.12)

If plane waves are assumed at the instrument inlet, this flow rate is related to the
input impedance, or, in time domain, to the impulse response h.t/, which is the
inverse Fourier Transform of the input admittance (this has been largely studied in
Part II):

uin.t/ D Œh � p	 .t/:

It is often convenient to choose the flow passing through the channel as the
unknown u, which is related to the impulse response h.t/ by the following equation:

u D Œh � p	 .t/C Sr
dy

dt
: (9.13)

The flow created by the reed movement is responsible for the added term. The
effect of this term was studied in [86]. For frequencies much lower than the reed
resonance, there is a simple interpretation to this term. The reed stiffness Ks is
equivalent to a small volume Veq added at the input of the instrument. For a constant
mouth pressure pm and a non-beating reed:

dy

dt
D � 1

Ks

d.�p/

dt
D 1

Ks

dp

dt
D H

pM

dp

dt
: (9.14)

Combining Eqs. (9.11) and (9.14):

ur D � Veq

�c2
dp

dt
where Veq D �c2

pM
SrH; (9.15)

u D uin C Veq

�c2
dp

dt
: (9.16)

Thus the flow due to the reed is equivalent to adding a compliance in parallel to
the pipe input impedance, Veq. It is that of an air volume localized at the instrument
input if the frequency is sufficiently low [see Chap. 1 Sect. 1.5, Eq. (1.154)].6 In
general it is easy to correct the mouthpiece volume by the volume Veq: This
correction is independent of the fingering, and can be measured.

6Veq differs from the air volume displaced by the reed, SrH. Furthermore this description assumes
that the stiffness by unit area Ks does not vary with the pressure level. In practice when the reed
progressively closes the mouthpiece, the stiffness varies, as well as Veq, and consequently the
playing frequency.
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If the mouthpiece is almost cylindrical, the addition of a closed volume in parallel
with the pipe input impedance implies a shift of the impedance maxima which
corresponds to an extension of the cylinder by a length �`. This length is defined
such as Veq D S�`, where S is the cross-section area of the tube, therefore:

�` D �c2

pM

Sr

S
H: (9.17)

Measurement results give a length of about 10 mm added to that of a clarinet
mouthpiece [32].

9.2.5 Basic Model (Clarinet-Like Reed)

9.2.5.1 Three-Equation Model

By gathering the different equations discussed above one obtains a basic model. We
use the length correction defined by Eq. (9.17).7 in the general Eq. (9.13):

u D Œh � p	 .t/C S�`

H

pM

�c2
dy

dt
: (9.18)

When using the closure pressure pM, Eq. (9.2) becomes

d2y

dt2
C qr!r

dy

dt
C !2r y D �H!2r

�p

pM
: (9.19)

Now we can suppose that the flow separation situation is reversible when the
pressure difference is inverted,8 and that the area of the reed channel depends
linearly on its height. Equations (9.7) and (9.10) yield

u D uA

�
1C y

H

�s j�pj
pM

sign.�p/ if y > �H (9.20)

and u D 0 if y < �H (beating reed), (9.21)

7Here it is a notation only, because the interpretation as a length correction is limited to low
frequencies and cylindrical mouthpieces.
8All above-mentioned hypotheses are satisfied again, but in the reverse sense: the cross section of
the tube is much larger than that of the reed channel, then there is a jet formation at the output
of the channel (in the mouth), and there is no pressure recovery. This is somewhat arbitrary, but
the situation with a flow entering the mouth seems to be quite extreme, and was never observed
experimentally.
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where the flow rate uA is given by:

uA D wH

s
2

�
pM D wH3=2

s
2

�
Ks: (9.22)

Equations (9.18)–(9.20) form a system of three equations with three unknowns,
u, the flow rate going out to the channel into the resonator p, the pressure at the input
of the resonator and y the vertical displacement of the reed. The two first equations
are linear, and can be described in the frequency domain, while the third is nonlinear
(remember that a necessary condition for the production of steady self-sustained
oscillations is the existence of a nonlinearity which limits the amplitude).

9.2.5.2 Simplified Two-Equation Model

A useful approximation consists in approximating the reed with a simple static
spring. This is a good approximation when the natural angular frequency !r is
much higher than the (angular) playing frequency. In this case y D �H�p=pM,
and Eq. (9.19) can be eliminated together with the unknown y:

u D uA

�
1 � �p

pM

�s j�pj
pM

sign.�p/: (9.23)

For a non-beating reed, the condition (9.6) needs to be added. This condition can be
also written as: �p < pM . For a beating reed, when the channel is closed, the flow
rate vanishes

u D 0 if �p > pM: (9.24)

Such a model is not completely satisfactory because it implies a discontinuity of
the flow rate derivative. It should be completed by a transition with a very narrow
channel and, for instance, a Poiseuille flow [115]. The curvature of the mouthpiece
lay should be also taken into account. These subtle phenomena are not investigated
in this book. Furthermore the discontinuity in derivative yields difficulties in the
numerical treatment [16, 72].

These simplifications lead to a characteristic function u.�p/, which has been
measured for a stationary flow [34], with positive pressure differences only.
Figure 9.9 shows the result, which is perfectly in accordance with the law (9.23),
except for the highest pressures. For these pressures, there is no abrupt transition
to a beating reed, and the flow does not vanish completely, because the reed does
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Fig. 9.9 Nonlinear
characteristic measured (thick
line) and calculated (thin line)
based on (9.23) and (9.51).
The increasing portion of the
curve is close to a square root
of the pressure difference,
because the displacement of
the reed is very small. In the
decreasing portion the
progressive closure of the
reed becomes dominant. The
experiments do not exhibit
any beating of the reed,
because the flow does non
vanish for large pressure
differences
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not entirely closes the mouthpiece.9 The measurement of the characteristic function
leads to the values of two essential excitation parameters, pM and uA: however, their
values obviously cannot satisfy all our hypotheses. As an example, if the jet cross
section is not strictly equal to that of the reed channel, the formula (9.23) remains
identical, but the value of uA can be changed based on experiments.10

The global shape of the curve is rather intuitive: the flow rate first increases
when the pressure difference increases, but it is expected to almost vanish for
high pressure differences. Hence a saturation occurs, then a decrease. If the mouth
pressure pm does not depend on time, it is possible to write a function u D
F.p/ which does not depend on the parameter pm, deduced from the function

9In the two-dimensional model we ignored that the air can pass through the sides of the reed,
because the mouthpiece lay is curved, and the reed does not perfectly wrap the lay. Moreover
the extremity of the mouthpiece is not planar. The air can also flow between the reed and the
mouthpiece; the reed does not remain perfectly planar, and twisting can occur. For a double reed,
such as a bassoon reed, the way the reed is pressed by the fingers at its extremity is a quality
criterion for instrumentalists, which are sanding their reed. When the reed closes linearly (the
sides are closed simultaneously with the center), the closure is rather sudden, and the spectrum
is rich in harmonics; on the contrary if the sides are closed before the center, the closure is more
progressive, and the spectrum is poorer [67].
10A validation of the dynamic model can be obtained from a simultaneous measurement of the
flow rate and the pressure. For instance it has not been proved that taking into account an unsteady
term in the Bernoulli equation would improve the model; however, because of the effect of the reed
dynamic, such a simultaneous measurement cannot give a quasi-static curve, as shown by Meynial
[81]. He compared experiment and theory by measuring the velocity with a hot wire anemometer at
several places in order to deduce the flow rate, and by measuring the pressure with a microphone.
Another method could consist in measuring the pressure at several places in the tube, then deducing
the input quantities from the knowledge of theoretical transfer functions. Similar ideas have been
utilized for bowed strings [123], but it is tedious for a reed instrument, because the input impedance
for the even harmonics is highly sensitive to the mouthpiece shape.
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u.�p/ (9.23): the modification of pm leads to a simple translation of the curve. The
other parameter of the function, uA, which is a composite parameter, characterizes
the amplitude of the curve. It depends on both the reed opening, that the musician
can adjust when playing, and the reed stiffness, which is chosen a priori by the
musician. This parameter is related to the maximum flow rate that can enter the
tube: the maximum of the function u.�p/, obtained for�p D pM=3, is

umax D uA
2

3
p
3
: (9.25)

Experiments compare very well with the model for the non-beating reed of
a clarinet [30]. For an oboe reed, there is a significant difference between
measurement and model, because the increase of the curve at low �p is steeper.
This observation was related to the jet behavior in the conical part which is the
channel output of the double reed [3, 34, 61].

9.2.5.3 Dimensionless Equations

In order to draw general conclusions, it is convenient to make the three basic
equations dimensionless. It is logical to divide the reed displacement by the height
of the opening at rest, H, and the pressures by the closure pressure pM . The flow rates
are divided by pM=Zc, where Zc D �c=S is the characteristic impedance of the tube.
Thus the following definitions are chosen for the unknowns and the parameters:

Qy D y=H; Qp D p=pM; Qu D uZC=pM; x D Qy C �

� D pm

pM
; � D Zc

uA

pM
D ZcwH

s
2

�pM
D wH

S

s
2

Cp

Cv

p0
pM
:

In the last expression of �, the compressibility 1=�c2 has been replaced by its
value with respect to the atmospheric pressure p0 [see Eq. (1.98)]. Typical values
of the reed parameter � are of the order of 0:3–0:4 [52, 89]: it will be seen that
this parameter has a strong influence on the attack transients, while the mouth
pressure dictates the amplitude and the spectrum of the sound. The input admittance,
and therefore the function h.t/, is multiplied by Zc. Introducing dimensionless
variables and removing the superscripts (for the sake of simplicity), Eqs. (9.18)–
(9.20) become

u D Œh � p	C �`

c

dx

dt
; (9.26)

1

!2r

d2x

dt2
C qr

!r

dx

dt
C x D p; (9.27)
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u D �.1C x � �/p� � p if 1C x � � � 0 , or (9.28)

u D 0 if 1C x � � � 0: (9.29)

(One can assume that �p is positive, because in practice the mouth pressure is
almost always higher than the mouthpiece pressure, at least for quasi-cylindrical
instruments). Using this hypothesis the two-equation model (9.23) is given by:

u D F.p/, where (9.30)

F.p/ D �.1� � C p/
p
� � p if � � p � 1I (9.31)

F.p/ D 0 if � � p � 1. (9.32)

9.2.6 Basic Model (Lip Reed)

9.2.6.1 Three-Equation Model

The basic model for a lip reed (or more precisely for an outward-striking reed) is
now given. Obviously we cannot reduce the 3-equation model to 2-equation model,
because the reed dynamics play an essential role.

u D Œh � p	 .t/C S�`

H

pM

�c2
dy

dt
; (9.33)

d2y

dt2
C qr!r

dy

dt
C !2r y D H!2r

�p

pM
; (9.34)

u D uA

�
1C y

H

�s j�pj
pM

sign.�p/, (9.35)

where the coefficient uA is given by:

uA D wH

s
2

�
pM D wH3=2

s
2

�
Ks: (9.36)

9.2.6.2 Dimensionless Equations

All dimensionless parameters are defined in the same way. Nonetheless here the
closure pressure is negative, equal to �pM, and we write

x D y � �:
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This yields

u D Œh � p	 .t/C �`

c

dx

dt
; (9.37)

1

!2r

d2x

dt2
C qr

!r

dx

dt
C x D �p; (9.38)

u D �.1C x C �/
p
� � p: (9.39)

Here the flow rate is assumed to always enter the resonator. Moreover, the reed
is assumed to be not beating, because this would imply that the mouth pressure �
should be negative (more exactly � C x < �1/. Brass instruments are played by
blowing and not by inhaling!

9.3 Behavior of the Two-Equation Model (Regimes,
Existence and Stability, Transients) Without
Reed Dynamics

9.3.1 Introduction

For a reed instrument such as a clarinet or a saxophone, the playing frequencies and
their first harmonics are lower than the first reed resonance frequency, except for
the highest notes. This allows using the two-equation model. This approximation is
considered to be valid in Sects. 9.3 and 9.4, and its limitations will be discussed in
Sect. 9.5. Moreover, we assume that the reed displacement yields a simple correction
to the length of the resonator, included in the total length, as well as the radiation
length correction. The equation to be solved is Eq. (9.26) with �` D 0:

u D Œh � p	 .t/ or (9.40)

U.!/ D Y.!/P.!/: (9.41)

With Eq. (9.30), this is the two-equation model. Figure 9.10 shows the nonlinear
function (9.30) for several values of the mouth pressure � . For some approaches,
we will further simplify this function. Several versions of the model of resonator
can exhibit different aspects of the main phenomena. In some calculations, it will
be assumed to be purely cylindrical, for other purposes it will be sufficient that it
is quasi-cylindrical; for certain calculations, losses will be taken into account, but
not always. Starting from the two-equation model, we first solve a system for the
input variables only, then investigate the transfer functions, which allow deducing all
quantities in the tube and outside. In the present analysis the control parameters are
supposed to be time-independent: this obviously is far form real playing conditions,
when the player modify these parameters at every time for expression purposes.
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Fig. 9.10 Examples of flow curves [Eq. (9.30)] with respect to the pressure p in the mouthpiece for
three values of the static pressure in the mouth. The variables are dimensionless: from left to right
�=0.22; 0.42; 0.62. When the pressure p is very low (and negative), the reed closes the mouthpiece.
The limit points of the lossless approximation correspond to the two states of the square signal (see
Sect. 9.3.3); they are denoted by circles. For the static regime, they coincide. The regime is static
for � D 0:22, while it is oscillating and non-beating for � D 0:42, and oscillating and beating for
� D 0:62, with a zero flow rate. Here the flow rate has been divided by �, and the maximum value
is 2=.3

p
3/

9.3.2 Static Regime and “Ab Initio” Method

9.3.2.1 Static Regime

A trivial solution for the system of Eqs. (9.40) and (9.30) can be found for the static
regime, when the unknowns do not depend on time. If the pipe input impedance is
assumed to be zero at zero frequency, the input pressure is zero as well at every time
t, and the flow rate is F0 D F.0/ D �.1 � �/

p
� . For this situation, no sound is

produced (when the reed closes the mouthpiece, if � > 1, F0 D 0). However, even
for this regime, a transient exists if the mouthpiece pressure is not zero when the
musician blows. Moreover the excitation pressure � does not change instantaneously
from 0 to a finite, stable value. After the transient, if the input pressure converges to
0, the regime is stable. In order to study the stability, one can imagine a deviation
from the equilibrium, which yields a variation of the acoustic quantities. The outline
of the study is as follows: if we are searching for a periodic steady-state regime,
which is called “limit cycle” for dynamical systems (for the static regime the limit
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cycle is a fixed point), the problem can be greatly simplified, e.g., by the use of the
Fourier series. However, if we are searching for either the shape of a transient or the
stability of the regime, the problem is much more complicated. In what follows, we
present the most general method for solving the problem, including the transient;
the solution is called “ab initio” and depends on known initial conditions.

9.3.2.2 “Ab Initio” General Method of Calculation

The system of Eqs. (9.30) and (9.40) can be solved by starting from the initial
conditions. The impulse response h.t/ can be used, but its duration is very long,
as explained in Chap. 4. It is better to modify the system, choosing as variables the
outgoing and incoming pressure waves instead of the pressure and flow rate [99].
Using dimensionless variables, in the case of a perfect cylinder we have

p D pC C p� ; u D pC � p� with (9.42)

pC D 1

2
.p C u/ ; p� D 1

2
.p � u/: (9.43)

One can relate pC and p� through a nonlinear function G:

pC D G Œ�p�	 : (9.44)

It is obtained by a rotation of the function F by 45ı (see [78] and Fig. 9.11).
Equations (9.40) and (9.41) become, respectively:

p�.t/ D 

r � pC� .t/

P�.!/ D R.!/PC.!/, (9.45)

where R.!/ is the classical reflection coefficient and r.t/ is the reflection function
defined in Chap. 4. This formulation is possible whatever the shape of the resonator:
the reflection function r.t/ is in general much shorter than the impulse response
h.t/, and it can be used also for a numerical computation. Starting from Eqs. (9.43)
and (9.45), the following useful equation is obtained

p.t/ D u.t/CŒr � .p C u/	 .t/ D u.t/C
Z t

0

r.t0/


p.t � t0/C u.t � t0/

�
dt0: (9.46)

The integral corresponds to the past time, which is known, and the use of
the nonlinear equation (9.30) leads to the variables p.t/ and u.t/ when the initial
conditions are defined. The integral is limited to 0 and t because the functions r.t/,
p.t/, and u.t/ are causal. In general, in order to solve Eq. (9.46), time needs to be
discretized.
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Fig. 9.11 The function G [see Eq. (9.44)] links the outgoing and incoming waves. The figure
shows the principle of the iterative calculation of an ab initio solution when no losses are taken
into account. Circles are the limit points. The values of the parameters are: � D 0:6; � D 0:42.
Signals of pressure and flow rate are shown in Fig. 9.13a

Fig. 9.12 Periodic signal for
the internal pressure of a
clarinet note, and its
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The problem can be simplified, considering two types of approximations for the
resonator: (1) the lossless approximation, (see Sect. 9.3.3), which leads to square
signals for a cylinder (the pressure oscillates between two values, called “states”),
and (2) the one-mode approximation for the resonator (Sect. 9.3.4), which leads to a
Van der Pol equation. These approximations do not give all useful information: for
instance, the spectrum of a square signal is not realistic compared to a real spectrum
(Fig. 9.12). Nevertheless, essential conclusions related to sound production are
reached.
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9.3.3 Lossless Approximation for a Cylinder:
Helmholtz Motion

9.3.3.1 Ab Initio Solution

For a perfect cylinder, the reflection function has a very short duration, because it
corresponds to a simple delay of one round trip in the tube, with a convolution due
to the visco-thermal losses and radiation effect. As a first approximation the latter is
reduced to a change in sign and losses are ignored:

r.t/ D �ı.t � �/, (9.47)

where � D 2`=c is the time of a round trip in the tube. Therefore:

p�.t/ D �pC.t � �/. (9.48)

Equation (9.46) can now be written in the form:

p.t/ D u.t/� p.t � �/ � u.t � �/: (9.49)

If the pressure pC deviates from 0 at t D 0 and has the value pC.0/ D pC
0 ;

the problem is that of a sequence of unknowns when the time is discretized by
intervals � . Denoting for each variable p.n�/ D pn, the following system is obtained

p�
n D �pC

n�1I (9.50)

pC
n D G.�p�

n / D G.pC
n�1/: (9.51)

This very simple sequence allows determining the solution at each time step n� .
It corresponds to an elementary dynamical system called “iterated map.” Each value
of the sequence is obtained from the previous one by the iteration of a function. This
implies that pC suddenly deviates from 0 at a point instant, because we consider
a discrete time. This is not realistic, but allows finding basic solutions, with a
steady-state regime having two states.11 This shape is a particular case of the so-
called Helmholtz motion, which was discovered experimentally by Helmholtz in the
context of the bowed string, and will be discussed in Sect. 9.4.8.3. Notice that during
the first round trip, from 0 to � , the incoming wave is necessarily zero, because no
wave comes back faster than the speed of sound. The solution of Eq. (9.51) can
be found using a graphical method [78], as shown in Fig. 9.11. Starting from the

11In this section we implicitly assume that the mouth pressure suddenly goes from 0 to a non-
zero value, then remains constant: p D pC

0 until � > t. Thus the mouthpiece pressure is
constant during the first round trip, and consequently, constant as well during every successive
half-periods, resulting in a square signal shape, with two states. Other kind of initial conditions
will be investigated further.
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value p�
0 D 0, the value of pC

0 corresponding to the imposed control parameters
is deduced using Eq. (9.44). The next value �p�

1 D pC
0 is determined, then the

nonlinear function is applied, and so on. After a transient, the signal converges to
two limit points, opposite in sign, which are the values of the two states of the
square signal. Figure 9.13 shows the corresponding signals p.t/ and u.t/, as well
as the result for other values of the parameters: the convergence can occur to the
static regime (a unique limit point), or even to other regimes. This is studied in the
following sections.
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Fig. 9.13 Transients in square signals for two values of the reed parameter and the mouth pressure.
In gray, the pressure; in black, the flow rate. (a) � D 0:6, � D 0:42; (b) � D 0:6, � D 0:2; (c)
� D 0:2, � D 0:42; (d) � D 0:2, � D 0:2. The larger is the parameter �, the shorter is the transient.
When � is small, the signal converges to the static regime
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9.3.3.2 Stability of the Static Regime; Start of the Transient

We continue the analysis of the solutions, and examine the stability of the regimes,
the transients and the steady-state regime. Consider first an idealized attack, when
the mouth pressure suddenly jumps from zero to a finite value, � . Starting from the
static regime, the pressure p.t/ remains small for the first time intervals and it is
possible to linearize [Eq. (9.30)]:

un D F0 C Apn ; with F0 D �.1� �/p�; A D �
3� � 1

2
p
�
: (9.52)

where F0 D F.0/ and A D dF=dp at p D 0: Equation (9.49) gives

pn � un D �.pn�1 C un�1/. (9.53)

It is the equation of the resonator, and it yields:

pn D �pn�1
1C A

1 � A
; pn D p0.�1/n

�
1C A

1 � A

�n

, (9.54)

where p0 D pC
0 D F0=.1�A/. Expression (9.54) is obtained from Eq. (9.52) because

p�
0 D 0:

If the factor raised to the power n is smaller than unity, the pressure pn tends to
0 when n increases, otherwise it increases exponentially. The two cases correspond
to a coefficient A which is negative or positive, respectively. If A is negative, the
pressure converges to the static regime, which is stable; otherwise the static regime
is unstable, see Fig. 9.13, and the pressure grows exponentially. Maybe the nonlinear
terms of the function will produce a saturation to a stable oscillating solution. Given
the expression of A, the threshold corresponds to a mouth pressure � D 1=3. The
larger is the reed parameter � (i.e., the wider is the reed opening at rest, or the
smaller is the reed stiffness), the faster is the transient. From the perception point
of view, this is an important characteristic of the sound.12 Considering variables
with dimensions, it can be shown that this linear problem up to a factor F0=c stated
corresponds for the tube to the calculation of the Green’s function with an input
admittance boundary condition: Y D �AS=�c, which is real. If the admittance Y
is positive (negative A), the boundary is absorbing and the signal decreases, while
if it is negative, the boundary is active and acts as a source, and the oscillation can
start. Thus the problem involves a resistive termination, added to dissipation during
propagation. The modal expansion shows that the complex natural frequencies are
such that their real part, which is the instantaneous frequency during the transient, is
higher than the frequency of the steady-state regime, which will be further studied.
Thus there is a shift of the instantaneous frequency during the transient [36].

12For large values of �, and therefore for large pressure p0, the validity of the expansion to the first
order (9.52) is limited to the first values of the pressure, see, e.g., Fig. 9.13a
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9.3.3.3 Simplified Model for the Non-beating Reed

For the sake of simplicity, we assume again that the pressure p does not deviate
too much from the zero value (and we still assume Z.0/ D 0; the more general
case was investigated in [73]). We assume a non-beating reed which is typically
obtained for a mouth pressure � that is lower than 0:5, (see Sect. 9.4.6). A third
order approximation of the flow rate gives (see [60, 124]):

u D F.p/ ' F0 C Ap C Bp2 C Cp3, where (9.55)

F0 D �.1� �/
p
�; A D �

3� � 1

2
p
�
; B D �� 3� C 1

8�3=2
C D �� � C 1

16�5=2
.

(9.56)

In the normal range of variation for the parameter � , the variation of the
coefficient A is mainly due to the numerator, which varies almost linearly, while
the parameters B and C only slightly vary. The parameters B and C are negative;
this property will be shown to be essential in order for the oscillation to be saturated
after the initial grow. All coefficients are proportional to the “reed opening” �; we
conclude that A varies almost linearly with the mouth pressure; the other parameters
are almost constant and negative. The series expansion allows simplifying calcula-
tions, but limits the validity of the results. However, the polynomial model can be
used for a wide class of physical problems.

9.3.3.4 Existence of the Periodic Steady-State Regime

The steady-state can now be investigated if we assume a periodic behavior. The
period is unknown, therefore it will be empirically determined (more straightfor-
ward methods will be further explained). It is first assumed to be equal to the round
trip duration, � D 2`=c. Thus the variables are equal at times t and t � � :

p.t/ D pC.t/C p�.t/ D pC.t/ � pC.t � �/ D 0.

With this assumption, there is no non-zero periodic solution. This can be easily
interpreted as follows: if a flow rate at the input of the instrument produces a positive
pressure in the mouthpiece, this pressure travels to the end, then changes in sign and
cannot recover the initial value after a single round trip.13 It is easy to imagine that

13This kind of reasoning requires some care. For instance, why can’t the same reasoning be valid
for a flute-like instrument (see Chap. 10)? The reason lies in the nature of the source: for a flute,
pressure and flow rate have to be inverted at the open end, and the flow-rate wave is reflected
without change in sign at the end: thus the period 2`=c is possible. On the contrary a closed flute
is similar to a clarinet.
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with two round trips, a periodic regime is possible: if we search for a period equal
to 2� , the variables are equal at times t C � and t � � , thus:

p.t C �/ D pC.t C �/� pC.t/ ; p.t/ D pC.t/ � pC.t � �/: (9.57)

Therefore p.t/ D �p.t C �/: (9.58)

A two-state signal is obtained, and the two values are opposite in sign. Thus the
period 2� is a solution. In order to find the two values, it is noticed that the flow rate
is periodic with the period � , because:

u.t C �/ D pC.t C �/C pC.t/ D pC.t � �/C pC.t/ D u.t/: (9.59)

In steady-state regime, the flow rate is constant, as shown in Fig. 9.13. The limit
points ˙p1 are solutions of:

F.p1/ D F.�p1/, thus A C Cp21 D 0; and: (9.60)

p1 D ˙
r

� A

C
: (9.61)

If C is negative, this oscillating solution exists for positive A, when the static
regime becomes unstable. If C were positive (it is not the case of the present
model), solutions would exist when A is negative, i.e., when the static regime is
stable. It is possible to theoretically show that in general the oscillating regime
would be unstable, using either a perturbation method [71] or the theory of the
topological degree [96]. A proof will be provided for our case in the following
section. Concerning the square shape of the pressure signal and the constant value
of the flow rate, it is possible to link these results to a reasoning in terms of input
impedance. For a lossless cylindrical resonator open at the end, the input impedance
has infinite maxima for frequencies which are odd multiple of the frequency c=4`,
which corresponds to the period 2� , and zero minima for frequencies which are even
harmonics of this frequency. Consequently the pressure involves odd harmonics
only, while the flow rate involves even harmonics only. Moreover the studied signals
are constant during one half-period (see Sect. 9.3.3.1). Therefore during the steady-
state regime, the flow rate can involve odd harmonics only, and a continuous
component; finally it is constant, with neither odd nor even harmonics! These
calculations can be easily generalized to the nonlinear function (9.30) [73, 76]; the
two values of the pressure remain opposite, and the flow rate is constant. Figure 9.10
shows the limit(s) point(s) for three values of the pressure �: The result is written as:

p1 D ˙ Œ.3� � 1/.1 � �/	1=2 if � < 1=2;

p1 D ˙� if � > 1=2: (9.62)
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9.3.3.5 Stability of the Periodic Oscillation Regime

How can be investigated the stability of the periodic oscillation regime? Similarly
to what we did for the static regime [see Eq. (9.54)], the function F is linearized
around the limit points. This time there are two limit points:

un D F.p1/C .pn � p1/F0C

unC1 D F.�p1/C .pnC1 C p1/F0�,

where F0˙ is the derivative of F at ˙p1. Using the equation of the resonator (9.53),
we deduce

.1 � F0�/.pnC1 C p1/ D �.pn � p1/.1C F0C/, and

.1 � F0C/.pnC2 � p1/ D �.pnC1 C p1/.1C F0�/,

then

.pnC2 � p1/ D .pn � p1/
.1C F0�/.1C F0C/
.1 � F0�/.1 � F0C/

: (9.63)

Stability is ensured if the factor multiplying .pn �p1/ has an absolute value smaller
than unity. Squaring this factor, we obtain

.F0C C F0�/.1C F0CF0�/ < 0: (9.64)

And using Eq. (9.61):

A


1C 4A.B2=C C A/

�
> 0: (9.65)

When A is small, the stability condition A > 0 is opposite to that of the static
regime, QED. If A increases, considering the first order term in A in the bracket, it
can be seen that:

– either C is negative, and the sign of the bracket can change for a non-zero,
positive value of A. Beyond this threshold, it can be shown that a periodic regime
exists with a double period. This kind of regimes is discussed hereafter. The most
important result is that the bifurcation is direct. As a consequence the clarinet
can play pianissimo. We already considered bifurcations for free oscillations
(see Sect. 8.5 of Chap. 8); “direct”14 means that after a threshold, A D 0, there

14In the literature the adjectives “normal” or “overcritical” or “supercritical” can be found instead
of “direct.” The contrary is “inverse,” or “undercritical,” and implies a discontinuity between two
regimes, with a hysteresis, as it will be seen hereafter.
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A

p  C < 0

A

C > 0p

0

0

Fig. 9.14 Schematic bifurcation diagram in A D 0 for the two cases positive C (inverse
bifurcation) or negative C (direct bifurcation). Solid, black line: limit values of stable regimes,
either static .p1 D 0/, or oscillating (the positive value only is indicated). Dotted, black line:
unstable regimes. Beyond the cases of calculation that are presented by the inequality (9.65), the
hypotheses are as follows: for C > O, the unstable oscillation regime becomes stable, and for
C < 0, there is a new bifurcation to a stable regime with four values (lower octave)

is continuity from a stable regime (here the static one) to another (here the
oscillating one), when the control parameter (here A, or more precisely the mouth
pressure) increases.

– or C is positive (this is not the case of the present model), and the solution of
Eq. (9.61) exists for negative A only. It is unstable for small values of A. For
a non-zero, negative value of A, it is possible to find a new periodic, stable
regime, and the bifurcation is said “inverse.” Figure 9.14 shows the two cases.
No investigation concerning phenomena far from A D 0 is presented yet.

9.3.3.6 Period Doubling and Chaos: Discussion

What happens when the condition (9.65) is not fulfilled? It is possible to investigate
the case when the bracket in Eq. (9.65) is negative: (1) either by computing the
solution ab initio (stable regimes are obtained, but it is not sure that they are all
possible regimes, because they depend on initial conditions, which are certainly not
unique); (2) or by calculating the periodic steady-state regimes with a pre-supposed
frequency, as above explained (but it is not possible to know whether these regimes
are stable!). It is possible to try a period double, 4� , and to confirm that the threshold
of existence for the solutions is A



1C 4A.B2=C C A/

� D 0, but the calculation is
tedious. For the model (9.30), without series expansion around the static solution,
the ab initio study, which corresponds to the graphical solution of Fig. 9.11, was
done in [73, 105]. Frequency divisions by 2, 4; 6, 12,. . . are obtained, and the
thresholds appearing for the mouth pressure (� ) depend of the reed parameter �.
The weaker is the reed (large �), the earlier these regimes appear. When � continues
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to raise, the solution comes back to the “normal” frequency for � D 1=2. This
will be studied when looking at the beating reed behavior. For a fixed value of � , it
was possible to obtain with the same model, a complete scheme of period doubling
toward a chaotic signal [77]. This scheme is called “subharmonic cascade,” and
was already studied for the case of a clarinet [20, 70, 78, 104, 105]. The chaos
is a non-periodic regime (we could say with an infinite period), and it is called
“deterministic chaos” because it is solution of a deterministic equation, while it is
extremely sensitive to the initial conditions and for this reason it is unpredictable.
This concept was presented in Chap. 8.

The reader can be surprised by this result of a frequency division, because this
phenomenon is not common, while the frequency multiplication by a factor 3 is.
This issue is treated hereafter. Actually, if realistic losses are taken into account in
the model, the period doubling can disappear [35]. However, period doubling can be
encountered for other reed instruments, such as the crumhorn or the bassoon [55]:
the notes of a contrabassoon can be played with a bassoon.15

9.3.3.7 Other Types of Regimes: Twelfths

This section investigates regimes with triple frequency, also known as twelfth
regimes. Equations (9.50) and (9.51) do not make any assumption concerning the
variation of the signals during the time � D 2`=c. If the frequency is an odd multiple
of f1 D c=4`, which corresponds to the period 2� (see the previous paragraphs),
it is easy to find Helmholtz regimes (two-state signals) which satisfy Eqs. (9.58)–
(9.61). It is sufficient to choose different initial conditions in order to initiate the
triple frequency: we impose a non-zero value to the outgoing wave pC not only at
t D 0, but also at t D 2�=3, and a zero-value at t D �=3. Therefore this regime
has the same threshold than the “fundamental” regime. When it is reached it is
not more difficult to sustain than the fundamental regime. A practical solution for
imposing these initial conditions is easy: a small “register hole,” located at the third
of the length is opened, and allows emitting the twelfth. If we ignore the losses, after
initialization, when closing this hole, the twelfth regime should remain stable.16

15In practice the frequency division is possible for very narrow ranges of parameters (� or �/,
especially when approaching the chaotic regime. Consequently it is easy for an instrument maker
to avoid these phenomena.
16In practice this is not always possible when playing a clarinet, because when closing the register
hole, it is also possible to retrieve the fundamental regime. The reason is not simple. We will see
that when losses are taken into account, the threshold pressure for the triple frequency is higher than
that for f1. This is not a sufficient reason, because beyond the threshold for the triple frequency, both
regimes should be reachable by choosing the appropriate initial conditions. Notice that for other
instruments, such as a flute or a bassoon, it is often easy to play the higher registers even without
the opening of a register hole. Moreover baroque oboes have no register holes for overblowing.
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9.3.4 One-Mode Approximation

The Helmholtz motion is an interesting approximation for the study of the transients,
the regime stability, their frequency and their amplitude, but do not give insights
into the real shape of the signal, i.e., of the spectrum: fortunately the signal is
not perfectly square. In the next section (Sect. 9.4) the steady-state regime will
be examined, taking losses into account. But beforehand it is interesting to make
a study similar to the previous one for another approximation of the resonator,
when this response is reduced to that of a single mode. This is also a rough
approximation of the resonator, but it allows considering realistic losses and their
frequency dependence.17 In contrast, the previous model, “lossless model,” took into
account an infinity of modes with harmonically related frequencies.

9.3.4.1 Differential Equation for the Mouthpiece Pressure

In the second part of the book, the modal expansion of the dimensionless input
impedance was obtained [see in particular Eq. (7.19)]:

Z.!/ D j!
X

n

Fn

!2n � !2 C j!!n=Qn
, (9.66)

where !n is the frequency of the nth resonance, Qn is the quality factor, and Fn

the modal factor. The value of the (real) maximum of the impedance modulus is
ZMn D FnQn=!n.18 For a cylinder Fn D 2c=` and ZMn D 2cQn=.`!n/ D kn=2˛

(in dimensionless quantities) when radiation losses are ignored and ˛ is given by
Eq. (5.147). A great simplification is obtained by truncating the series after the
first mode. For a cylinder, using a first order approximation of the losses, this is
allowable near the resonance !1: starting from expression Z.!/ D j tan.k � j˛/`,
the following equation is exact: Z.!1/ D .˛`/�1 D 2Q1=k1` (for the study of
a resonance peak, see Chap. 2). However, far from the resonances, the truncation
strongly modifies the predicted response of the resonator. For the first register of the
clarinet, the truncation is not as consequential as for conical instruments, because the
second resonance frequency is far from the first one, and the first peak is dominant.
Nevertheless one should not expect correct results for the spectrum.

17Meynial [81] studied a “monochromatic” resonator, by considering a tube with axial chimney,
so that all the resonances, but the first, are strongly attenuated. Also the frequencies of the higher
order modes are not multiple of the frequency of the first mode. The present model is close to
this experimental realization, which produced a spectrum dominated by a single frequency, even at
higher levels.
18We used Eq. (5.183) in dimensionless quantities, simplifying it by including the radiation length
correction into the length `.
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Using Eq. (9.66), and truncating it to the first mode, we obtain

.!21 � !2 C j!!1=Q1/P.!/ D j!F1U.!/:

Its inverse Fourier Transform is written as:

d2

dt2
p.t/C !1

Q1

d

dt
p.t/C !21p.t/ D F1

d

dt
u.t/, (9.67)

or, after the attack, if Eq. (9.55) is used

d2

dt2
p.t/C F1

d

dt



.Ym1 � A/p.t/� Bp2.t/ � Cp3.t/

�C !21p.t/ D 0. (9.68)

Ym1 D 1=ZM1 is the value of the (real) minimum of the admittance. This equation
is a Van der Pol equation. It is now possible to consider the successive steps of
the study of the Helmholtz motion (see Sect. 9.3.3). For the transient, approximate
solutions of the Van der Pol equation can be found in the literature (see, e.g., [36]),
but are not simple. We limit this section to the stability of the static regime, the early
transient, and the existence of the periodic regime.

The solution of Eq. (9.68) is not sinusoidal, because of the nonlinear terms. The
modal method can be generalized to an arbitrary number of modes in order to solve
the exact problem; a system of nonlinear, ordinary differential equations has to be
solved, and numerical methods are available for this purpose. This method is an
alternative solution to the ab initio method [9, 36].

9.3.4.2 Stability of the Static Regime, Early Transient

A trivial solution is the static regime p.t/ D 0. In order to study its stability,
we linearize Eq. (9.68), by ignoring the terms with B and C. This equation becomes
the equation of a linear oscillator with one degree of freedom. The damping
can be negative, if A is larger than Ym1. For A smaller than Ym1, the oscillation
is exponentially damped, and the oscillator returns to the static regime. On the
contrary, the oscillation can grow exponentially, and the nonlinear terms will allow
the saturation of the amplitude. This study of stability is similar to the one that leads
to Eq. (9.54). The instability threshold of the static regime is now given by: A D Ym1,
instead of A D 0. In order to produce a sound, it is necessary to blow sufficiently
hard to compensating for the losses. Notice that radiation losses have been neglected
compared to the visco-thermal losses: but if they are large, the threshold is high.
Paradoxically the radiation of a self-sustained oscillation instrument should not to
be too efficient in order for the sound to exist (see also Chap. 7, Sect. 7.5.1).

• In the case of a cylindrical tube, by using the value of A given by Eq. (9.56),
a simple result can be obtained. We simply consider that the perturbation due to
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the losses is small, and replace � by 1=3 in the denominator of A. This yields the
pressure threshold:

�th D 1

3
C ˛`

�

2

3
p
3
: (9.69)

A typical order of magnitude for this threshold is 0:38: It is possible to derive
the solution of the linearized equation (9.67), by assuming19 p.t/ D 0 at t � 0,
and u.t/ D F0H.t/C Ap.t/:

p.t/ D 4

�
F0H.t/e

�˛ot sin!1t where ˛0 D .Ym1 � A/c=`: (9.70)

in the classical hypothesis of an oscillator which is either weakly damped of
weakly excited, satisfying jYm1 � Aj << !1`=c (see Chap. 2). If losses are
ignored, this solution can be compared to that in square signals (9.54), and the
two agree in both amplitude and phase.

• For a tube with an arbitrary profile, two observations can be made when looking
at Eq. (9.68):

• The general expression of the modal expansion obtained in Chap. 7 [Eq. (7.38)]
shows that the modal factor F1 satisfies

F1 D cS.0/
˚2
1 .0/

�1

where �1 D
Z `

0

S.x/˚2
1 .x/dx:

It depends on the geometry only, and is independent of losses. As a consequence,
for a non-cylindrical instrument, it can strongly vary with frequency. Beyond the
threshold, the amplification factor is the product of the modal factor by A [see
Eq. (9.68)], and does not depend on losses. On the contrary, for free oscillations,
the duration of the transient is determined by the quality factor (see Chap. 2).
Similarly it is possible to show that the extinction transient when the mouth
pressure decreases is not primarily linked to losses.

• The relevant quantity for the determination of the threshold is the minimum Ym1,
which is inversely proportional to the quality factor, but is also proportional to
the modal factor. Consequently if the geometry imposes a very large impedance,
it is possible to diminish the minimum Ym1 and therefore to lower the threshold
without reduction of losses, by using the reactive effects due to reflections at
cross-section changes. Thus the threshold is not only linked to losses, but mainly
to the height of the impedance peak. This explains why the mouthpiece of brass
instruments makes the attacks easier without reducing losses (this sentence is a

19The solution satisfies p.t/ D p.t/H.t/, and the flow rate u D H.t/ ŒF0 C Ap.t/	 hence u D
F0H.t/ C Ap.t/: Thus it exists a source term in Eq. (9.68), which is equal to 2c`�1F0ı.t/: The
solution is proportional to the Green’s function of this equation, which was studied in Chap. 2, see
Eq. (2.14).
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simplified explanation, because it ignores the reed dynamic, essential for these
instruments). These remarks fully justifies the importance that Benade [10] gave
to the height of the impedance peaks (see Chap. 7 of the present book for a
detailed study of the role of the brass instrument mouthpiece).

9.3.4.3 Negative Resistance and Energy

The term �A in Eq. (9.68) can be interpreted as the energy source of the self-
oscillating system: it corresponds to a negative resistance when sound is produced,
i.e., when its absolute value is large enough to overcome the positive resistance of
term Ym1 (A is the first derivative of the nonlinear function du=dp near p D 0).
Figure 9.10 shows that for values of � larger than 1=3, the slope of the curve is
negative and an oscillation regime with two states exists, while for � D 0:22, the
slope is negative.20

Extending this idea to the nonlinear operation range, we can rewrite the time
derivative term of Eq. (9.68), up to the factor !1ZM1=Q1:

dp

dt



Ym1 � A � 2Bp � 3Cp2

�
:

Thus the source resistance is R D �.A C 2Bp C 3Cp2/. Its instantaneous value
oscillates because of the term Bp, but its absolute value diminishes with increasing
p because the coefficient C is negative. Intuitively we understand that the oscillation
does not continue to grow exponentially, but saturates and converges to a stable
amplitude in the steady-state regime.

9.3.4.4 Existence of the Periodic Regime

In order to obtain an analytical expression for the periodic regime, we can seek
an approximated solution of the nonlinear equation. To assume that the solution
is sinusoidal is not rigorous, but often gives very good results. This is the simplest
application of the harmonic balance technique (see the next paragraph). The result is

p.t/ D 2

r
1

3

Ym1 � A

C
cos.!1t C '/: (9.71)

20The previous comment comes from the study of the function F.p/, where pm (�) is a parameter.
Another way of thinking [50] considers the function F.�p/ (see Fig. 9.9), with the following
property: .du=dp/pD0 D �.du=d�p/�pDpm . This curve demonstrates that the oscillation threshold
is obtained at the maximum of the curve, and that the increasing and decreasing parts of the curve
correspond to a stable and an unstable static regime, respectively.
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The phase ' of the oscillating factor is unimportant in a periodic, steady-state
regime. The existence of this solution is ensured under the same condition as the
instability of the static regime, A > Ym1, because the coefficient C is negative. This
confirms the direct behavior of the bifurcation. This solution can be compared to that
of the lossless model, when Ym1 D 0. Starting from the square signal solution (9.61),
the amplitude of the first harmonic of a square signal is calculated and the same
result is obtained, up to the factor 2

p
3=� . This explanation will be detailed further.

Let us summarize the present section. We compared the robustness of two
approximated models: the lossless resonator and the one-mode resonator. This was
easy for several features of the behavior of reed instruments, but the calculation of
the stability of the oscillation regime leads to an intricate computation for the latter
model [113] and is not presented here.

9.4 Away from the Reed Resonance (Two-Equation Model):
Steady-State Regimes

9.4.1 Principle of the Harmonic Balance Method: First
Harmonic Approximation

In order to study the spectra, we need to take into account the losses, which depend
on frequency. The ab initio method (see Sect. 9.3.2.2) allows solving the problem
numerically. Nevertheless another method, called “harmonic balance,” is possible,
at least for the steady-state regime. It was already presented in Chap. 8. It can be
used numerically, but very useful analytical approximations can also be obtained. It
is based upon the periodicity of the signal, which implies that it can be written in
the form of a Fourier series:

p.t/ D
nDC1X
nD�1

Pnejn!1 t; (9.72)

where P�n D P�
n since the signal is real, and !1 is the fundamental frequency,

which is a priori unknown. P1 can be chosen for instance as a positive, real quantity,
because the phase of the signal has no significance in the steady-state regime. As
a matter of fact, the relative phases are to be determined for the harmonics only
(a periodic signal is invariant with respect to a temporal translation). The d.c.
component P0 is real as well. With this choice, the square signal ˙p1 has the
following spectrum:

P2�C1 D 2.�1/�p1
.2� C 1/�

; P2� D 0: (9.73)
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The even harmonics are zero, while the phase of the odd harmonics is alternately
0 and � . For the Helmholtz motion, the spectrum of the mouthpiece pressure is that
of a square signal, and therefore it decreases with increasing frequency. When losses
are taken into account, this spectrum decreases as well, but more rapidly, especially
near the oscillation threshold. This allows seeking simple approximations. The
simplest one is the so-called first harmonic approximation (also called in textbooks
on dynamical systems the “describing function” method), for which the series (9.72)
is truncated to n D ˙1. Using this, we can investigate the existence of solutions,
their frequency and their amplitude, by solving Eqs. (9.41) and (9.55):

u D F0 C Ap C Bp2 C Cp3; (9.74)

U.!/ D Y.!/P.!/: (9.75)

The reed is assumed not to beat. The flow rate is also expanded in harmonics, and
their amplitudes are YnPn, where the Yn are the values of the input admittance Y.!/
for the frequencies which are multiple of the frequency !1 (remember that this
frequency is unknown). In Eq. (9.55), we keep the terms of frequency !1 only. The
term of order 0 (a constant) and the term of order 2 of the polynomial cannot involve
terms with frequency!1. Notice that the calculation of the powers in the polynomial
is much easier with complex exponential than with trigonometric functions. If we
“balance” the terms of frequency !1 on the left and the right of the nonlinear
equation, we get

Y1P1 D AP1 C 3CP21P
�
1 D AP1 C 3CP31: (9.76)

The balance for the frequency �!1 would not give any supplementary information,
because we would obtain the complex conjugate equation. A trivial solution is P1 D
0; it is the static regime. The other solution is

P21 D 1

3

Y1 � A

C
: (9.77)

• P1 is chosen as a real quantity, therefore the imaginary part of this equation
yields: =m.Y1/ D 0. Solutions exist if Y1 is real, therefore the oscillation
frequency can be calculated from =m.Y1/ D 0. As a first approximation (if
the influence of visco-thermal effects on the sound speed is ignored), the first
possible playing frequency for an open cylinder is f1 D c=4`. A result of
great musical importance is that the playing frequency does not depend on the
amplitude. If higher harmonics are taken into account, this result is marginally
modified, as explained further.21

21The oscillation condition is not given by the maximum of the input impedance modulus, but by
the zero value of the imaginary part of the admittance. In Chap. 2 the difference between these two
conditions was shown to be very small.
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Fig. 9.15 Experimental bifurcation scheme (with artificial mouth) for a clarinet note, for two
values of the reed parameter �. The ordinate is the root mean square (RMS) pressure. The
bifurcation at the oscillation threshold is direct for both curves, while at the extinction threshold,
it is inverse for the black curve (normal reed opening �), and direct for the gray curve (small �):
beyond a certain value, which is called the “closure” pressure, there is no more oscillation, because
the reed eventually closes the mouthpiece. This will be explained in Sect. 9.4.6, when studying the
beating reed

• The real part of Eq. (9.77) gives the solution for the other unknown of the
problem, i.e., the amplitude of the first harmonic. Replacing Y1 by Ym1, which
is the real part of Y1 at frequency !1, we found the result (9.71). Because C is
negative, the solution exists only if A is larger than Ym1. It is the same threshold
as the instability threshold of the static regime. A diagram showing the measured
amplitude for a clarinet-like instrument can be seen in Fig. 9.15: for rather weak
amplitudes, the curve is similar to a square root curve. Notice that it is very
delicate to measure small amplitudes near the threshold. At moderately high
amplitudes, the reed begins to beat: this will be investigated in Sect. 9.4.6.

If we consider the case Ym1 D 0, we can compare the amplitude with that of a
square signal [Eq. (9.61)]. The two values differ slightly. Indeed if the Eqs. (9.61)
and (9.73) are combined, the following value is obtained for the Helmholtz motion:
P21 D � A

C
4
�2
: The ratio between these two values is 2

p
3=�; or 1:102 (i.e., less

than 1 dB). The error is due to the truncation of the series of harmonics, and can be
accepted for most applications.22

22This feature is related to the modulus of the input impedance for the different harmonics: for
a cylinder, when losses are taken into account, the input impedance for the harmonic 2 is very
small, and for the harmonic 3, it is approximately

p
3 times smaller than that of the fundamental.
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9.4.2 Characteristic Equation and Instability Threshold of the
Static Regime

For square signals, the instability threshold of the static regime and the threshold of
the oscillation regime (stable or not) were distinguished. With the harmonic balance
method, or more precisely with Eq. (9.77), the existence threshold of the oscillation
regime was found. It is characterized by specific values of the frequency and of the
excitation parameter A. More generally several oscillating solutions can be found:
they cancel the imaginary part of Y1.!/. For small amplitudes, Eq. (9.76) implies
Y1P1 D AP1; thus:

Y.!/ D A or AZ.!/ D 1: (9.78)

This is the so-called characteristic equation, which is the equation of the
linearized system. It is obtained when the nonlinear equation is linearized around
the static solution. The solution of this equation is sinusoidal (but for degenerate
cases, it can be a square signal [60]). This justifies the writing without the subscript
1, because there is no ambiguity. In the case of a one-mode truncation, the stability
of the static regime (see Sect. 9.3.4.2) was deduced. The solution of the equation
was sought in the form of a complex exponential (9.70), i.e., an exponentially
increasing or decreasing sinusoid, according to the parameters of the problem. When
the exponent has a zero real part, the (in)stability threshold of the static regime is
found, but the existence threshold of the oscillation regime cannot be found by using
the linearized equation. How is it possible to generalize this search for the instability
threshold to Eq. (9.78)? We have to search for all (complex) zeros of the equation
and to see if they correspond to growing exponentials or not. If all exponentials are
decreasing, then the static regime is stable; if any exponential is growing, the static
regime is unstable, and the solution of the nonlinear problem can be expected to
be oscillating.23 When a parameter varies and one decreasing solution switches to

This is very different for other types of instruments, such as conical instruments. This reasoning
implies that losses are accounted for, because when losses are ignored, the impedance ratios are
unknown (the impedance is infinite for the maxima and zero for the minima): the system is called
“degenerate.” In practice we have to consider losses, and make them tend to zero [60].
23For a more general system, the Nyquist criterion can be used: it is based on the location of the
poles of the characteristic equation in the complex plane. Using the terminology of the control
system theory [85], Eqs. (9.74) and (9.75) are typical of a (nonlinear) feedback loop system,
functioning in free oscillations. For most industrial applications the aim is to push further the
instability ranges of the feedback system, on the contrary the instrument maker and the player
attempt to make the system unstable in order to produce self-sustained oscillations (see, e.g.,
[11, 41, 48]). The analysis of linear stability starts with the linearization of the nonlinear element
of the feedback loop system (for us u D F0 C Ap). In the linearized system this element is
replaced by a quantity whose dimension is an admittance (the coefficient A in our equations, which
is the derivative of the nonlinear function with respect to the acoustic pressure, when the latter is
calculated at the operating point, i.e., at the equilibrium position of the system). Then the instability
threshold is calculated by using an equation that is formally identical to Eq. (9.78).
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an increasing solution, we get the instability threshold of the static regime. Exactly
at the threshold, the exponent of the exponential is purely imaginary, because its
real part vanishes. Therefore solving the characteristic equation for real frequencies
provides the thresholds. As an example, using Eq. (9.68), it can be written as:
!21 � !2 C j!!1ZM1Q�1

1 .Ym1 � A/ D 0: Because ! is real, this equation yields
! D !1, and Ym1 D A, i.e., the frequency and excitation pressure thresholds.

• Another, equivalent, formulation is often used for the study of dynamical system.
Let us suppose that it is possible to write the equations of the linearized problem
in the following form:

d

dt
V D MV,

where V is a vector involving the physical variables of the problem, and M is a
matrix involving the parameters of the problem.24

If all eigenvalues of the matrix M have a negative real part, the static regime
is stable. If the real part of one of the eigenvalues becomes positive, this regime
becomes unstable (notice that because M is real, the eigenvalue pairs are complex
conjugate). The threshold value is given by the zero of the real part of an eigenvalue
pair. This technique can be easily applied to Eq. (9.68), confirming the conclusions
of Sect. 3.4.2. by writing the following relationship:

V D
�

p
dp=dt

�
and M D

�
0 1

�!21 F1.A � Ym1/

�
:

9.4.3 The Harmonic Balance Method: An Overview

If we wish to go beyond the first harmonic approximation in order to solve
Eqs. (9.55) and (9.41), we can truncate the series (9.72) to N harmonics, and increase
N to infinity. When we fill the truncated series in Eq. (9.55), we obtain a set of
equations corresponding to the first N harmonics. We obtain a system of nonlinear
complex equations with N complex unknowns, Pn. Moreover a real equation has to
be added for the d.c. component, with the real unknown P0: Therefore the system of
2N C 1 nonlinear real equations has 2N C 1 real unknowns. The “balance” seems to
be satisfactory. However, there is a supplementary unknown, the playing frequency,

24More generally, it can be written before the linearization:

d

dt
V D F.V/

where the components of the vector function F.V/ are nonlinear functions of the components of
the vector V: The matrix M; already encountered in Chap. 8, is called “jacobian” of the function F:
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and it is solved by the possibility to impose a real P1! In order to solve the problem
numerically, the continuation method can be used: starting from a known solution,
the parameters are slightly changed, and the equations linearized around the known
solution. More specifically: Eq. (9.55) is treated in the time domain, while Eq. (9.41)
is treated in the frequency domain, and the passage to one domain to the other is
done alternately by summation and by Fourier Transform. In principle this method
allows following all regimes when the parameters change, e.g., the mouth pressure
� , whatever stability of the regime is [46, 57, 98]. A free software, Harmbal, permits
solving this type of problems, including the reed modes [45].

We will now investigate new simplifications, beyond the first harmonic approxi-
mation, yielding analytical results.

9.4.4 The Variable Truncation Method, and Its Application
to Clarinet-Like Instruments

9.4.4.1 Odd Harmonics

Because the clarinet profile is mainly cylindrical, the even harmonics in the
mouthpiece can be assumed to be much weaker than the odd ones. Thus it is
interesting to split the pressure and the flow rate into a part involving even harmonics
only (subscript s) and a part involving odd harmonics only (subscript a). The
functions with subscript s satisfy: fs.t C T=4/ D fs.t � T=4/ at every t, where
T D 2�=!1 is the period. The functions with subscript a satisfy: fa.t C T=4/ D
�fa.t � T=4/. For the product of two functions of one or another type, the following
rules are applied: fsgs and faga are of type s, while fsga is of type a.25 For the pressure,
it can be assumed that ps << pa: Using a perturbation method, the calculation starts
by ignoring the part ps; the nonlinear equation is split into two equations:

us D F0 C Bp2a; (9.79)

ua D Apa C Cp3a: (9.80)

The second equation involves odd harmonics only, and is solved first, thanks to
Eq. (9.75). The first equation gives the even harmonics of the flow rate from the odd
harmonics of the pressure. Using Eq. (9.75), we finally deduce the even harmonics
of the pressure, as explained hereafter. Here we solve Eq. (9.80) by truncating it
to two harmonics, the first and the third. Bringing the series with terms �3, �1,
1, and 3 and equating the terms of frequency !1 (which is unknown) and 3!1, we
obtain the equations:

25These rules are identical to the rules for even and odd functions. Notwithstanding the two types
are not even and odd functions, in contradiction with what is written in [76]. It is possible to show
that this could be true in the following case only: when the even harmonics have real coefficients
Pn, and the odd harmonics have imaginary coefficients Pn. This can be checked by the reader.
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Y1 � A

C
P1 D 3.P21P

�
1 C P�2

1 P3 C 2P3P
�
3P1/; (9.81)

Y3 � A

C
P3 D P31 C 3.P23P

�
3 C 2P1P

�
1P3/: (9.82)

Rejecting the solution P1 D 0,26 using the assumption that P1 is real, Eq. (9.81) can
be rewritten as:

Y1 � A

C
D 3P21.1C P3=P1 C 2 jP3=P1j2/: (9.83)

• Let us seek a solution to the equations, supposing that we are close to the
threshold defined by Eq. (9.77). It is consistent to consider that P1 is small,
and following Eq. (9.82), P3 is of order 3 in P1. This solution is called “small
oscillation solution.” The harmonic n can be shown to be of order n in P1. This
power law for the harmonics near the threshold is very general (see [2]) and it is
often called “Worman theorem” in musical acoustics (see [60, 94, 124]).27

• Another approximation is consistent with the previous one, but it is valid in a
much wider range of pressures. It is called “Variable truncation method”: the
first harmonic is assumed not to be influenced by the third one, thus Eq. (9.83)
is simplified into Eq. (9.77), and both the frequency and the amplitude can be
determined. Consequently P3 is deduced from Eq. (9.82) using the values of P1
and !1. The higher harmonics can be successively found, and the approximation,
whose accuracy decreases with the harmonic number, is very satisfactory for
a clarinet-like instrument. For instance, for the lossless case, the error is 10 %
for the harmonic 5 (0.8 dB) and 21 % the harmonic 11 (1.7 dB) [76]: this is
due to the decrease of the spectrum of the lossless solution at high frequencies
[see Eq.(9.73)] (the decrease is much more rapid when losses are introduced).
For sake of simplicity, the cubic term P23P

�
3 is ignored, and the calculation yields

26What is this solution? Eq. (9.82) becomes: .Y3 � A/P3=C D P23P
�
3 , and is nothing else than

Eq. (9.76) written for the frequency 3!1 . Two solutions are deduced: the static regime P3 D 0,
and the oscillating (sinusoidal) regime of frequency 3!1 . The threshold for the latter is higher
than that for the fundamental regime with frequency !1, because as a first approximation the
admittances increase as the square root of frequency. As a consequence losses allow discriminating
the threshold of the oscillation regimes: in order to reach the twelfth, it is required to blow harder.
However, we had to avoid the fundamental regime during the attack, and this is possible thanks to
the register hole, which strongly lowers the first resonance and shifts its frequency.
27This law also applies to the even harmonics: there is a minor difficulty, because according to the
law, the second harmonic should be larger than the third, but this situation occurs for values of the
mouth pressure which are extremely close to the oscillation threshold. Thus we consider that this
result is not in contradiction with the ignoring of the even harmonics in Eq. (9.80) (see [76]).
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P3
P1

D �1
3

A � Y1
.A � Y1/C .Y3 � Y1/

: (9.84)

• Several conclusions can be drawn:
• Because Eq. (9.77) is assumed to be valid, Y1 D Ym1 is real and the frequency

does not depend on Y3: When the second resonance is a perfect harmonic of the
first, Y3 also is real, but this is not the general case. For the different notes of
a clarinet the inharmonicity of the resonances has been studied in detail (see,
e.g., [32, 37, 86]). It is not large, because the various causes of inharmonicity
are partially mutually compensating. As a reminder the following factors are
influential: dispersion due to visco-thermal effects, temperature gradient, closed
or open tone holes, non-uniformity of the cross section, etc. The effect of
inharmonicity will be examined in Sect. 9.4.5.

• When the loss limit is approached, the admittances Y1 and Y3 vanish, and the
Helmholtz motion is reached [see Eq. (9.73)]; this is true also when losses are
independent of frequency (Y1 D Y3/:

• When the amplitude becomes large (A becomes large compared to Y1/, the
amplitude ratio converges to the result for the Helmholtz motion as well, because
the admittances Y1 and Y3 have the same order of magnitude. As a consequence,
the details of either the tube shape or the losses, i.e., the details of the pipe input
admittance have a minor influence far from the threshold.

• Near the threshold, the denominator is almost equal to Y3 � Y1 (the reader can
check that this is consistent with the power law, i.e., that P3 is proportional to
P31), and all details have a significant influence. For instance, the visco-thermal
dispersion leads to a complex Y3, thus the phase of P3=P1 is not � , as for the
Helmholtz motion.28

• The effective loss parameter is the ratio of the loss coefficient to the reed
parameter �, because A is proportional to the latter. If � is small (small reed
opening, stiff reed), the effect of losses, which increases with frequency, is
significant. Therefore there are few higher harmonics, in contrast to the case of
large �. This parameter has an effect on both the rapidity of the attacks (via the
coefficient A), and the spectrum.

28When Y3 is slightly larger than Y1, the relative amplitude of the third harmonic is approximately:

P3
P1

' �1
3
.A � Y1/Z3:

So it is nearly proportional to Z3, which is small. For instance it is the case of a one-mode resonator:
its spectrum remains close to that of a sinusoid even at high levels [82]. Nevertheless even if the
conclusion were correct, the calculation would be inconsistent, because the even harmonics have
been assumed to be small compared to the odd ones. Here this is not true, for example, for the
second harmonic compared to the first one.
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• Another important aspect of the result (9.84) is that it does not depend on the
cubic coefficient of the nonlinearity. As a matter of fact it can be rigorously
proved from Eq. (9.80) that the shape of the signal, which depends on ratios
Pn=P1 only, as well as the playing frequency, depend on the coefficient A and
of admittances Yn only. This relativizes the importance of the accuracy of the
nonlinear model, except obviously for the amplitude, which crucially depends
on the coefficient C. This simplicity stems from ignoring the terms of degree
two (which are proportional to B) or higher in the polynomial F.p/: Yet this
approximation is rather good for a clarinet, at least when the reed does not beat.

9.4.4.2 Even Harmonics

Even harmonics remain to be calculated. They are very weak in the mouthpiece, but
relatively much stronger in the radiated sound field. After some calculation (details
are not given here), the solution of Eq. (9.79) is obtained

P2 D BZ2.P
2
1 C 2P1P3 C 
 
 
 /: (9.85)

Notice that at the threshold the power law is satisfied. As expected, the amplitude is
proportional to the coefficient B of the quadratic term in the expansion (9.55) [76].
The nonlinearity plays an important role, as well as the input impedance near the
dips, and therefore as the shape of the mouthpiece is also influential.

9.4.4.3 Application to a Perfectly Cylindrical Tube

In what follows we apply the previous formulas to a perfectly cylindrical tube.
The coefficients A and C are written with respect to the excitation parameters �
and � [see Eq. (9.55)], and a model of losses is added. The threshold pressure �th

is known, thanks to Eq. (9.69): because ˛ is proportional to the square root of
the frequency, which is inversely proportional to the pipe length, the correction
factor in comparison to the lossless case (1=3) is proportional to the square root
of the length. This implies that if the tube length increases, the pressure threshold
increases. We need to blow harder in order to obtain a sound. Another reasoning is
the following: for a given mouth pressure � , a length threshold exists, beyond which
no oscillations are possible. Losses need to be diminished, by choosing a wider tube.
This is one reason explaining why bass instruments require wider diameter. This
issue was discussed in Chap. 5, Sect. 5.5.3.3. Concerning the amplitude of the first
harmonic, a similar calculation can be made. Because Ym1 D Ath, it is found that
Ym1 � A D 3

p
3�.�th � �/=2 and:

P21 ' 2

3
.� � �th/: (9.86)
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For the third harmonic, by writing Y3 D Ym1

p
3, the following result is obtained.

P3
P1

' �1
3

� � �th

� � �th C 0:28˛`=�
: (9.87)

Finally, for the second harmonic, the impedance Z2 D ˛.2!1/` is very small,
because it is at a minimum, and we get

P2
P1

D �Z2�
3

2
p
2

p
� � �th

�
1C 2

P3
P1

C 
 
 

�
: (9.88)

Here the losses involve the product of ˛ and �, and not their ratio as for the
harmonic 3. Figure 9.16 shows experimental results in two forms, and exhibits the
two ranges of amplitude for the odd harmonics. In the first range, their amplitude
compared to that of the first harmonic grows according to the power law, while in
the second range the amplitude is almost constant. For the harmonic 3, Eq. (9.87) is
qualitatively verified. Many similar results can be found in [10]. Notice that at high
level, the reed beats and the previous calculations are no longer valid.
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Fig. 9.16 Experimental results for a cylinder (four first odd harmonics) [89]. The left plot shows
the amplitude ratios P2nC1=P1 as a function of the excitation pressure. The stabilization of the
amplitude occurs at an amplitude level which is lower than that for a square signal, which would
be 1=.2n C 1/ (i.e., in dB �9:5, �14, �17, �19, respectively). The scale for the mouth pressure
pm is in mbar. The right plot is an equivalent representation of the same results, which uses as an
abscissa the amplitude (in dB) of the first harmonic. This representation is due to Benade [10], and
provides a clear representation of the power law near the threshold
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9.4.4.4 External Spectrum: Some Simple Consequences for a Cylinder
at Low Frequencies

Lossless Model

At low frequencies the far-field radiated pressure pext is obtained by using a simple
formula which will be detailed in the fourth part. We examine the case of a
cylindrical open pipe without toneholes, which radiates in an omnidirectional way,
i.e., as a monopole. The pressure pext is proportional to the time derivative of the flow
rate at the output, with a delay of D=c, if D is the distance of the considered point
to the tube output. According to the lossless model we used (square signals), the
output pressure is zero, therefore pC

` D �p�̀, and the output flow rate is u` D 2pC
` :

Knowing how to calculate the outgoing wave at the input, we simply translate it by
`=c to obtain it at the output. Because the outgoing wave at the input is the half-sum
of the pressure and the flow rate, the output flow rate is

u`.t/ D p.t � `=c/C u.t � `=c/,

and, because in the lossless model the input flow rate is a constant, the external
pressure is deduced as follows:

pext / du`
dt

D dp.t � `=c/

dt
:

The interpretation of this result is easy, because for a plane wave the density of total
acoustic energy in a slice of air does not depend on x: because there is no potential
energy at the output and no kinetic (acoustic) energy at the input, the output flow
rate is proportional to the pipe inlet pressure. Instead of a square signal, the far-field
radiated pressure signal is a series of Dirac peaks which are alternately positive
and negative. This is shown in Fig. 9.17. Concerning its spectrum, the ratio of the
complex amplitude of the harmonics to that of the first one is Pext;2�C1=Pext;1 D 1,
instead of .�1/�=.2 � C 1/ [see Eq. (9.73)] for the internal spectrum.29

Model with Losses

When losses are taken into account (but not the dispersion), the transfer function
is U`.!/=P.!/ D 1=j sin.k � j˛/` [see, e.g., the matrix given by Eq. (4.28)]. The
external pressure is proportional to !P.!/= sin.k � j˛/`; a delay function apart.

29This result is obtained for pext which is proportional to du`=dt:However, because of the delay due
to the distance from the tube, the relative phase varies, and therefore the main conclusion concerns
the real amplitude (i.e., the modulus of the complex amplitude): the ratio of the real amplitudes is
1 instead of 1=.2� C 1/: Notice that the Fourier Transform of ı.t � `=c/ is exp.�j!`=c/, thus for
! D .2� C 1/!1; it is .�1/� :
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Fig. 9.17 Sound of a cylindrical tube with a clarinet mouthpiece: the internal pressure (on the
left) is a rounded square signal (see also Fig. 9.12), the radiated pressure (on the right) is roughly
the derivative of the previous one, because the monopole radiation at the end of the tube implies
a derivative of the output flow rate, and because the latter signal is a square signal (in the
lossless approximation). The time-frequency spectrograms (bottom figures) show that the first
harmonic appears first, and confirm that the external sound is much richer in harmonics than the
internal sound. The weakness of the even harmonics is also clear. Notice that the duration of the
spectrogram is much longer than that of the signal

For odd harmonics H2�C1, we write sin k` D .�1/� . Thus by neglecting the terms
of order 2 in ˛`, the complex amplitude with respect to that of the first harmonic is
found to be equal to unity. Finally the expression (9.87) has to be multiplied by 3
and the modulus gives the result for the external pressure. For even harmonics, the
situation is slightly more complicated (remind that their amplitudes are zero when
losses are ignored). Limiting the calculation to the second harmonic:ˇ̌̌̌

Pext;2

Pext;1

ˇ̌̌̌
D 3p

2
�
p
� � �th

�
1C 2

P3
P1

C 
 
 

�
: (9.89)

Compared to the internal spectrum, the value given by Eq. (9.88) is divided by Z2=2:
Curiously the harmonics 2 seems not to vanish with vanishing losses! In fact the
factor in bracket is an infinite series depending on the odd harmonics of the internal
spectrum, and we need to consider more and more terms when going far from the
threshold. . . or when losses tend to zero. The Helmholtz motion in square signal
does not produce even harmonics, but inversely if a signal is poor in harmonics, the
even harmonics are relatively strong, as shown in Fig. 9.18.
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Fig. 9.18 Spectrogram of a clarinet chromatic scale (external pressure). The quasi absence of even
harmonics is observed for lower notes. For higher notes their appearance is linked to the fact that
the signal becomes less rich in harmonics, therefore differs from a square signal [see Eq. (9.89)].
One observes that frequencies below 1800 Hz are globally stronger than above this frequency.
This corresponds to what Benade [10] called the cutoff frequency, due to the tonehole lattice (see
Chap. 7)

9.4.5 Variation of the Playing Frequency
with the Excitation Level

With the lossless model, the frequency is independent of the excitation level. In
practice, it slightly varies. There are several causes, such as the reed dynamic, the
flow rate due to the reed displacement, the effect of the vocal tract. This allows the
player adapting the tuning with respect to what he hears, in a more or less efficient
way. In this section a single cause is treated, the inharmonicity of the resonance
frequencies. We limit the study to the steady-state regime. For this purpose we use
the relationship obtained by Boutillon [18], which is related to the reactive power. It
assumes that a nonlinear, quasi-static relationship exists between the input pressure
and flow rate. Thus the reed is assumed to be without dynamic, like a massless
spring, according to the model used since Sect. 9.3. In the steady-state regime, with
a period T, it can be written as:Z tCT

t
udp D

Z tCT

t
F.p/

dp

dt
dt D 


F.�1/.p/
�p.tCT/

p.t/
D 0, (9.90)

where F.�1/.p/ is the integral of F.p/: If !p is the playing frequency, by using
the expansion (9.72) and calculating the average of the product of two complex
quantities (see Sect. 1.3 of Chap. 1), the following result is found:Z

udp D 4�
X
n>0

n jPnj2 =m.Yn/: (9.91)
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This quantity is related to the reactive power [see Eq. (1.129)], i.e., to the derivative
of the fluctuating power with respect to frequency. Therefore:

=m.Y1/C 3

ˇ̌̌̌
P3
P1

ˇ̌̌̌2
=m.Y3/C 5

ˇ̌̌̌
P5
P1

ˇ̌̌̌2
=m.Y5/C 
 
 
 D 0: (9.92)

The advantage of this equation30 is to provide a relation between frequency variation
and the spectrum.

Denoting !1 the frequency of the first impedance peak, the other peaks are
assumed to be at frequency!n D n!1.1C�n/, where �n measures the inharmonicity.
The playing frequency is sought in the form: !p D !1.1C "/: The input admittance
is given by Eq. (9.66). We assume that for a frequency !n close to a resonance a
single peak intervenes, thus for ! close to !n [see Eq. (2.39)]:

=m.Y/ D 2
! � !n

Fn
, with Fn D !nZMn=Qn: (9.93)

For the frequencies !p and n!p, at the first order in " and �n, we obtain

=m.Y1/ D 2"!1=F1 ; =m.Yn/ D 2n!1." � �n/=Fn: (9.94)

For a perfect cylinder, the modal coefficients Fn D 2c=` are independent of n. If the
cylinder is not perfect, the coefficients are assumed to remain independent of n at
the first order of the perturbation. Using Eq. (9.92), we obtain

" D 


1C 
 0 where 
 D
X
n	3

n2�n

ˇ̌̌̌
Pn

P1

ˇ̌̌̌2
and 
 0 D

X
n	3

n2
ˇ̌̌̌
Pn

P1

ˇ̌̌̌2
: (9.95)

Near the threshold, Pn=P1 is very small, and " vanishes. On the other hand,
when we move away from the threshold, the influence of inharmonicity becomes
significant. Let us consider the harmonics 1 and 3 only. In the extreme case where
jP3=P1j D 1=3, the result would be the following:

" D �=2: (9.96)

This result provides an order of magnitude of the effect of inharmonicity, but
obviously it is an approximation, because the harmonics of order higher than 3
are ignored. This is correct near the threshold only. Moreover the ratio 1=3 was
not observed for a cylindrical pipe. For jP3=P1j D 0:2; (this value seems to be
encountered in practice), the result is " D 0:26�3: As a conclusion, if the second

30This equation is not an extra equation in addition to the equations harmonic balancing. The reader
can check that, when limited to harmonics 1 and 3; it directly comes from Eqs. (9.81) and (9.82).
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resonance frequency is 20 cents31 too high (resp. too low) with respect to the
first one, the frequency increases (resp. decreases) by around 10 cents during a
crescendo. This order of magnitude is roughly confirmed by experiment, especially
for a perfect cylinder, where inharmonicity is due to visco-thermal dispersion: the
playing frequency increases with the excitation level. However, very close to the
threshold the reed damping plays a predominant role and the frequency starts by
decreasing, then increases [75, 89].

• Inharmonicity influences the playing frequency and more generally the self-
sustained oscillation [87]. Benade [10] cited Bouasse [17, p. 91], who correctly
felt the nonlinear character of the oscillation: “the sustaining of the wave is
made easier by the coincidence of the harmonic q of the pressure system due
to the puffs with the partial N D qn of the tube. Correlatively the puffs become
more intense and regular: the reed is stabilized for the frequency n.” Harmonicity
ensures the stability of the frequency when the level is changed, and if the
peaks are of similar height, a too strong inharmonicity can lead to quasi periodic
regimes (see, e.g., [56]). This phenomenon is a cause of the “wolf note” for the
cellos (see Chap. 11). For the instrumentalist the quality of the different notes
appear to be unequal. It is furthermore probable that harmonicity is an important
element of the ease of playing.

In particular a periodic sound can be produced with a very low input impedance
at the playing frequency, when the harmonics correspond to impedance peaks. Some
specific cases are particularly interesting: the “pedal” sounds of brass instruments
(their first harmonic is shifted with respect to the other harmonics, see Chap. 7).
It is possible to produce a sound the frequency of which is the half of that of the
second peak, because the resonance frequencies 3, 4, 5, etc., are harmonics of this
frequency. More generally periodic “multiphonic” sounds can be produced: their
frequency is generally very low, because it is the highest common factor when it
exists [25]. For the point of view of perception, some sounds can have an almost
vanishing at the fundamental frequency and many harmonics, and the perceived
pitch corresponds to the inverse of the period. Furthermore various multiphonic
regimes can be obtained on wind instruments, such as quasi-periodic, or chaotic
regimes (as already mentioned) [38, 39, 107].

9.4.6 Beating Reed and Sound Extinction

9.4.6.1 Lossless Model (Steady-State Regime)

Up to now we considered that the reed does not beat, thus we supposed that the
nonlinear function (9.30) is limited to low pressures. We used Eq. (9.31), or its
simplified version (9.55). If the reed is allowed to beat, Eq. (9.32) needs to be used as

31The cent is the hundredth of a semi-tone. The latter corresponds to a frequency ratio of 21=12 D
1:05946; therefore the cent is a difference of 0:06% in frequency.
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well. This beating-reed model (see Sect. 9.2.5.2) is a rough approximation because
in practice the closure is not sudden and the non-beating range becomes larger.
Nevertheless it gives interesting results when they are compared to experiments.
If it is assumed that a clarinettist plays as often with a non-beating reed as with a
beating reed (see for a discussion [12]), the reader may be surprised by the treatment
imbalance for these two types of functioning. A lot of work remains to do in order
to understand the beating reed oscillation. It is actually the main operating mode
of conical reed instruments (this will be seen hereafter). For a beating reed, all the
analysis of small oscillations becomes useless.

We limit the analysis to the two-state approach for the steady-state regime,
considering first a lossless resonator, then discussing a more general model with
frequency-independent losses. We consider first the static regime: it occurs for p D 0

because the input impedance at zero frequency is assumed to be zero, and this
implies � > 1 for the dimensionless mouth pressure. For a mouth pressure higher
than the closure pressure, the reed closes the mouthpiece: it is our definition of the
closure pressure pM. The stability of this regime is not discussed here, because the
discussion should be rather long and the stability is intuitively understood. Now we
search for the oscillation regime in the same way as in Sect. 9.3.3.4: because the
mean pressure is zero, we search again for two opposite values of the two states:
˙p1, with constant flow rate. If the reed beats for p D �p1, the flow rate vanishes
and, following Eq. (9.32), this implies

p1 � 1 � �: (9.97)

Equation (9.60) shows that the flow rate is constant, thus it also vanishes while the
reed is open. If the reed was beating for both p D p1 and p D �p1, the regime
would be the static regime). Thus, after Eq. (9.31):

p1 D �: (9.98)

So the reed does not close for the positive mouthpiece pressure and beats for the
negative one, because of the large pressure difference pm �p between the mouth and
the mouthpiece. The condition for this regime is given by Eq. (9.97):

� > 1=2:

This solution32 is illustrated in Fig. 9.19. This extremely simplified functioning
can be described as follows: during one half-period, the mouthpiece pressure is
opposite to the mouth pressure and the reed is closed, while during the other half-

32This solution can be easily shown to be stable whatever the value of � is [91]. So, if the pressure
increases with a non-beating reed, yielding several frequency divisions (see Sect. 9.3.3.6), then
frequency multiplications occur in order to retrieve the normal frequency when the reed starts to
beat (see [73]).
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Fig. 9.19 Bifurcation schemes for the Raman model. Top: ˇ1 D 0:1, inverse bifurcation at the
extinction; bottom: ˇ1 D 0:5 (very small reed opening), direct bifurcation. The reader can compare
with Fig. 9.15 (experimental result)

period, it is equal to the mouth pressure and the flow rate vanishes (no pressure
difference). This behavior can produce large sound levels in the mouthpiece, as
explained in the introduction (Sect. 9.2.1).
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9.4.6.2 “Raman Model” with Losses

A major drawback of the lossless model lies in the infinite increase of the acoustic
pressure when the blowing pressure increases [see Eq. (9.98)]. A simple model can
remedy this difficulty [35]: considering frequency-independent losses keeps square
signals but allows finding a good agreement between experiment and model for
the bifurcation schemes. This model is called “Raman model” by analogy with
the model of bowed strings which was studied by the great Indian physicist at the
beginning of the twentieth century. Writing the solution of the wave equation with
damping in the form:

P D PCe�˛xe�jk` C P�e˛xejk`,

and assuming a zero pressure at the output, it is found that the reflection coefficient
at the input is R D P�=PC D �e�2˛xe�2jk`. The input impedance reduced by the
characteristic impedance Zc is given by:

Z D j tan.k � j˛/`: (9.99)

Resonance frequencies are unchanged by damping and all input impedance maxima
are equal to Zmax D 1= tanh˛`, while minima are Zmin D tanh˛`: The modal
expansion (9.66) remains valid. It is possible to generalize the previous study of
square signals, including the graphical method for building the solution. Exact
calculations, which generalize the approach of Sect. 9.3.3, are tedious [35]. A sig-
nificant simplification is obtained when the input impedance at zero frequency is
assumed to be zero (instead of Zmin). Then the static regime remains p D 0. For
the instability threshold, it is not useful to make the calculation because the formula
A D Y1 given by the one-mode approximation remains valid, as well as Eq. (9.69).
This is actually valid whatever the frequency dependence of the damping ˛ is.
When the blowing pressure increases the threshold of period doubling can be found;
however, for a significant damping this threshold is larger than that of beating reed
for the oscillation regime. As a consequence the rather large losses in real cylindrical
instruments explains why it is very difficult to produce a period doubling.

• Now we consider the behavior of the Raman model when the reed beats. In
steady-state regime, because Z.0/ D 0, the two states (i.e., open reed and closed
reed) are opposite. We write them again: ˙p1 and expand the square signal into
(odd) harmonics. For each of them the corresponding flow rate is deduced from
the admittance 1=Zmax; then the oscillating part is ˙p1=Zmax. A constant (dc)
flow rate denoted u0 has to be added. Using Eq. (9.30), if �p D � � p1, we find
the steady-state regime:

u0 C p1=Zmax D �.1��p/
p
�p with 0 < �p < 1;

u0 � p1=Zmax D 0 with 1 � � � p1 < 0 or �p � 2� � 1: (9.100)
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Hence:

2ˇ1.� ��p/ D .1 ��p/
p
�p, (9.101)

with ˇ1 D tanh˛`=� ' ˛`=�: (9.102)

We confirm that the loss parameter intervenes via the ratio ˛=�. The threshold
of beating reed is given by �p D 2� � 1, therefore � D .1 C ˇ21/=2. It is slightly
modified by the losses if ˇ1 is small. Moreover by solving33 Eq. (9.101), it can be
shown that: if � is lower than 1, there is always a unique solution, and it can be
proved to be stable. But if if � is higher than 1 when the mouth pressure is large,
there are two possible cases:

• either ˇ1 <
1

2
: there are two solutions, one is stable, and the other one is unstable

if � is lower than the extinction threshold given by �extinc ' 1
3

h
1C 1

ˇ1
p
3

i
, while

there is no solution if � > �extinc (as expected this threshold tends to infinity
when losses tend to 0).

• or ˇ1 >
1

2
: there is no solution.

Figure 9.19 shows the two cases: the first one corresponds to an inverse bifurca-
tion at extinction, with hysteresis. For � > 1, when forcing the breath, the pressure
increases following the (stable) upper branch, then diminishes. Then the oscillating
solution disappears abruptly and the static solution is retrieved. When the breath is
diminished anew, the static solution is kept up to � D 1, where there is a jump to the
upper oscillating branch. The maximum pressure, or saturation pressure is obtained

for �sat ' 1
3

h
1C 1

ˇ13
p
3

i
: It is undoubtedly the most usual case.

The second case shows a direct bifurcation at extinction, which is a remarkable
result: it is possible to play pianissimo at extinction also, by pinching strongly the
reed! This technique is used by some instrumentalists, who reduce the reed opening
and therefore the parameter �. Comparisons with experiment give excellent results
[30], especially when nonlinear losses are taken into account at the various openings
(see Chap. 8, Sect. 8.4.5), by using cd as a fitting parameter. As a conclusion, the
Raman model gives very interesting results, although the pressure signals are square
signals.

9.4.7 Miscellaneous Considerations About
Clarinet-Like Instruments

In the present chapter we did not treat the reality of the resonator geometry, with
toneholes, changes in cross section, etc. As noted earlier, there is an average

33Equation (9.101) can be graphically solved, by seeking the intersection of the straight line
corresponding to the left term with the function defined on the right-hand side and depicted
in Fig. 9.9.
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compensation of the action of the different elements resulting in a reduction of
inharmonicity [32, 37]. When toneholes are open, one could think that the existence
of cutoff frequency hampers the oscillations because the higher order peaks become
low. The reduction of the compass is effective because it is difficult for the
fundamental frequencies to be higher than the cutoff (from experience, players know
that it is easy to obtain higher order regimes for the note with all holes closed,
while it is more difficult for the other notes). But the dominant feature is that at low
frequencies the effective length of the tube is shorter when opening the toneholes,
thus the threshold diminishes and the oscillations become easier.

Another possibility for easing the oscillations is the use of the vocal tract: the
two resonators are in series. If the player manages to have resonances of the vocal
tract at medium frequencies, he can act on the tuning and tone color. Moreover
he can reinforce the even harmonics of the sound, which do no longer correspond
to impedance minima and can have an effect on the playing frequency (via the
inharmonicity). This topic was recently investigated, and some aspects remain open.
So a difficult question can be asked: what physical quantity can be regarded as a
source, e.g., as imposed by the player? Up to now we assumed that it is the mouth
pressure, assumed to be uniform. On this topic, we refer to the following references
[26, 27, 52, 53, 63, 65, 97, 103, 120]. Another important subject is the role of the
reed dynamics, that we have completely ignored up to now. We will include it in
Sect. 9.5.

Finally we mention the problem of the measurement of the input impedance,
considering the complicated geometry of the mouthpiece. The matching between a
turbulent jet and an acoustic field is extremely complicated (see, e.g., [100]). Even
when exciting the mouthpiece by an acoustic source at its output, the acoustic field
is not planar, and cannot be characterized by a unique quantity such as the input
impedance. Moreover the reed excite the mouthpiece on its side, therefore produces
evanescent modes. The general solution chosen by several authors is to replace the
mouthpiece by a cylindrical tube having the same volume, with a cross section are
equal to that of the mouthpiece output. The first advantage is to be able to compare
with plane-wave models of the input impedance. The second advantage is that near
the first impedance maximum, the effect of the mouthpiece depends on its volume
only, thus the results of the theoretical models of the nonlinear coupled system
can be rather reliable. However, this is not true for the impedance minima, and
more generally at higher frequencies, when the mouthpiece cannot be regarded as
a lumped element. Notice that this difficulty can be anyway of minor importance
when compared to the effect of the vocal tract. Remember that a one-dimensional
model is a great simplification.

9.4.8 Conical Reed Instruments

The resonator of conical reed instruments such as the saxophone has been studied
in Chap. 7. They are truncated cones, and have a mouthpiece similar to that of a
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clarinet, but their resonators are very different from an acoustical point of view.
Oboes and bassoons have a double reed with a nonlinear characteristic which
slightly differs from that of single reeds (see Sect. 9.2.5.2), but what follows deals
with both single and double reed instruments. Indeed it appears that the shape of
the resonator plays a predominant role. As an illustration it is possible to buy a
mouthpiece of sopranino saxophone type adapted to the bassoon, and it is noticeable
that the sounds are rather similar to those normally obtained with a double reed [61].
For the lowest notes of a conical pipe, the first impedance peak is lower than the
second. Furthermore the second peak corresponds more or less to the octave instead
to the twelfth.

The resonance frequencies are approximately a complete series of harmonics (see
Chap. 7). The Helmholtz motion (HM) is also for conical instruments an interesting
approximation of the pressure signal (except near the oscillation threshold). We will
see that the signal is a “rectangle signal,” with a duration ratio of the two states equal
to the length ratio of the missing cone (due to the truncation) and the truncated cone
(see Fig. 9.20).

In comparison with cylindrical instruments, one supplementary parameter is
needed, e.g., the apex angle, which makes the problem far more difficult. The
approach without losses leading to two-state signals implies one more approxima-
tion: the length of the missing cone needs to be much smaller than the wavelength.
This hypothesis is paradoxical for a rectangle signal which is rich in high harmonics!
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Fig. 9.20 Periodic signal of barytone saxophone, and the approximation by a rectangle signal.
The signal is the internal pressure for two notes, which are the lowest and the highest of the first
register. The state of negative pressure, which corresponds to a beating-reed, is common to the two
notes
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Moreover the “small oscillation” approach as well as the variable truncation method
is not of much interest because the bifurcation at low mouth pressure is inverse. This
remarks explain why many problems remain open.

9.4.8.1 Small Oscillation Solution (with Losses)

At the instability threshold of the static solution, it has been seen that oscillations
can start (linearly) and are quasi sinusoidal. If the impedance of the second peak is
higher than that of the first, the first oscillation threshold is that of the octave regime,
not that of the fundamental one. This explains why it is difficult for beginners
to play the fundamental regimes. Going further, we consider the nonlinearities in
steady-state regime, using the harmonic balance for small oscillations in order to
find the existence threshold of the oscillating solution [we refer to the explanation
accompanying Eq. (9.83)]. Equations (9.74) and (9.75) have to be solved without
hypothesis with respect to even and odd harmonics. The “small oscillation” solution
is written as34 [60]:

P21 D Y1 � A

3C C 2B2

Y2�A

D .Y1 � A/.Y2 � A/

3C.Y2 � A/C 2B2
(9.103)

P2 D BP21
Y2 � A

: (9.104)

For the clarinet, Y2 is very large, Y2 > Y1, and the result (9.77) is obtained, as well
as Eq. (9.85) for small oscillations.

We start the investigation with a case simpler than that of the lowest notes: the
case of higher notes for which the second peak is smaller than the first, but has
the same order of magnitude. Now Y2 is larger than Y1; but remains small: the
second term of the denominator of Eq. (9.103) is the larger term (the term in C
can be ignored). In order to find a solution, it is necessary for P21 to be positive.
Thus A needs to be either smaller than Y1 or larger than Y2 (here we assume that
the two resonance frequencies are harmonic, therefore the two admittances are real
for the playing frequency). Starting away from the oscillation threshold A D Y1, the
solution P21 only exists if A < Y1. The case is similar to the case of a clarinet for
which C would be positive, implying an inverse bifurcation (see Fig. 9.14). Close
to the threshold, the oscillating solution is unstable. The existence of a subcritical
threshold can be shown. Above this threshold the oscillation becomes stable (an
example is shown in Fig. 9.21). When the blowing pressure (like A) increases from
0, there is a jump at the threshold A D Y1 to a finite value of the amplitude, while
when the blowing pressure decreases, the player can reach the subcritical threshold,
where he jumps back to the static regime.

34The series is truncated to harmonics 1 and 2 (and �1 and �2), and the harmonic 0 (dc
component) is negligible because the input impedance at zero frequency is very small. For small
amplitudes the influence of the higher harmonics is of higher order in P1:
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Fig. 9.21 Helmholtz motion for a cylindrical saxophone. The right plot shows for different values
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depicts a zoomed view for N D 1 and 2: the bifurcation is direct for N D 1 and inverse for N D 2.
The arrow indicates the subcritical threshold at � D 0:28

Therefore there is a hysteresis. It is not possible to play pianissimo, and it is easier
to play with a low amplitude, when playing decrescendo than playing crescendo (if
it is assumed that the player modifies the mouth pressure only). Figure 9.21 (left)
shows an example of inverse bifurcation for a cylindrical saxophone, treated in the
next sections.

In the case where the admittance Y2 is smaller than the admittance Y1; which
is the general case for lower notes, the fundamental regime can exist with small
oscillations only if A < Y2, and it is still unstable (but the octave regime can
exist and be stable), or if A > Y1: however, for the latter case it can be shown
that the regime is the inverse HM, discussed in the next section. The important
feature is that the octave regime is favored. The previous discussion analyzed the
phenomena occurring when there is a maximum input impedance at the double
frequency, instead of a minimum as for the case of a clarinet.

9.4.8.2 “Cylindrical Saxophone”, Statement of the Problem

Coming back to the lossless approximation, it is possible to go slightly further. On
the one hand if losses are ignored, the two thresholds A D Y1 or Y2 are equal
[see Eq. (9.103)], and information is lost; on the other hand, if a supplementary
approximation is added, results about the amplitude can be found. Figure 9.20 shows
that the internal sound of a saxophone can be loosely approximated by a rectangle
signal, and this gives the idea to seek an analogy with the bowed string, which is
studied in Chap. 11. For that purpose, it was seen in Chap. 7 that considering the
natural frequencies, an approximation of the diverging cone is a cylinder of length
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` C x1 open at the two ends, called “cylindrical saxophone”. x1 is the distance of
the input of the truncated cone to its apex, and it is assumed to be small compared
to the wavelength [see Eq. (7.88), and Fig. 7.10]. So, when losses are ignored, the
input admittance is written as:

Y D S1
�c

�
1

jkx1
C 1

j tan k`

�
or (9.105)

Y ' S1
�c

�
1

j tan kx1
C 1

j tan k`

�
: (9.106)

Formula (9.106) is analogous to the mechanical impedance of a string at the
location of the bow (see the table of Sect. 1.6 of Chap. 1). The two ends of the
string are in series, with the same velocity at the bow position. For the cylindrical
saxophone, the two ends, of length ` and x1, are in parallel, with the same pressure
at their input, where the reed is located. As a first approximation, this equivalence
between a conical tube and a cylindrical one remains valid for any length `, and
for any effective length when holes are open. In what follows, we make an analysis
similar to the one we have made for the clarinet in Sect. 9.3.3. As far for the clarinet,
we will not obtain much information about the spectrum, because we ignore the
losses, as for the clarinet, and in addition we assume the length x1 to be small
compared to the wavelength (notice that this is wrong for higher harmonics). But
many phenomena can be explained thanks to this simplified model,35 that was
proposed for the first time by Gokhshtein [59].36

Thus we seek a periodic solution of period T D 2L=c, where L D ` C x1.
The pressure and the flow rate have the frequencies fn D nc=2L as only possible
components, and they satisfy sin kL D 0 (this can include the dc component). We
will now investigate a particular solution, the Helmholtz motion. Beforehand we
propose an analysis of the different possible solutions, for the interested reader.

35With this model, a clarinet is not analogous to a bowed string, because this should imply an
infinite value for x1. However, if a cylinder is excited at its middle, the two ends of the tubes play
the same role, thus a clarinet is equivalent to a cylinder of double length, excited at its middle and
having a half cross section. This can be checked by using Eq. (9.106) with ` D x1:
36Dalmont [31] showed that a step cone built with N cylindrical pipe segments of equal length x1
and cross section sn D n.n C1/=2 (where the integer n is the rank order of the cylindrical segment
and sn its cross-section area) has the same admittance [Eq. (9.106)] as a cylindrical saxophone of
cross-section area S1 D s1=2 when ` D Nx1. Their realization is easier than that of a cylindrical
saxophone, but is limited to the condition of integer `=x1 . It is the reason why these instruments
allow studying the Helmholtz motion in a precise way [90, 91]. It is noticeable that bamboo
“saxophones” exist with a geometry approaching that of such step cones.
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Different Possible Solutions
In order to study the different possible solutions, we rewrite Eq. (9.106) in the
form:

U.!/ sin kx1 sin k` D P.!/ sin kL.

The inverse Fourier Transform of this expression is Eq. (4.65), if the analogy
between stringed instruments and reed instruments is used. For frequencies fn,
equations sin kL D 0 and sin k` D �.�1/n sin kx1 are valid. It is deduced that
the corresponding components of the flow rate vanish, except if sin kx1 D 0,
i.e., for fm D mc=2x1, where m is another integer. Now fm can belong to
frequencies fn, thus x1=L D m=n (all integer values of m are not possible).
This implies

• either the ratio ˇ D x1=L is a rational number, and the flow rate can
have non-zero components for frequencies mc=2x1 such as m D nˇ. For
instance if ˇ D 2=5, the pairs .m; n/ D .2; 5/; .4; 10/, etc. are possible.

• or m D n D 0, and a priori the dc component of the flow rate does not
vanish whether ˇ is rational or not. If ˇ is irrational, the dc component of
the flow rate is the only non-zero component.

For the pressure, the component fn vanishes if sin kx1 D 0: this can happen
only if ˇ is rational, or if n D 0: As a summary:

• ˇ is irrational, and the pressure involves all harmonics fn, except the
continuous component; the flow rate is continuous (in particular when it
vanishes at every time, i.e., when the reed beats!).

• ˇ is rational, and the pressure has all harmonics fn except harmonics fm
(they are called “missing harmonics”) and among the harmonics fn the flow
rate has the harmonics fm only. Then the flow rate is periodic with the
period 2x1=c or a submultiple which remains compatible with the period
of the solution, 2c=L (if a signal is periodic with period T, it is also periodic
with period pT, where p is any integer).

Therefore numerous solutions to our problem exist. A simple particular case
is that where the solution has two states only. For instance the pressure has
a negative value pS during a time TS D Q̌T, and a positive value pL during
a time TL D .1 � Q̌/T. The flow rate also has two states, because its values
are related to those of the pressure through the nonlinear reed characteristics.
If we subtract the dc component, the flow rate is proportional to the pressure,
and its spectrum is proportional to the pressure spectrum. It has been seen that
if ˇ is irrational, the flow rate is continuous, with two equal states, similarly
to the behavior of a clarinet. Conversely if ˇ is rational, both the flow rate and
the pressure have harmonics fn except harmonics fm; but the flow rate cannot

(continued)
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have other harmonics than fm, thus in this case it is continuous as well. A
more straightforward proof of this result is the following: the mean pressure
vanishes, thus Q̌pSC.1� Q̌/pL D 0 (remind that the indices L and S correspond
to long and short, respectively); on the other hand because the losses are
ignored, the injected power needs to vanish, thus: Q̌pSuSC.1� Q̌/pLuL D 0 and
uS D uL. We still need to find the possible values of Q̌, for a stable or unstable
solution. If ˇ is irrational, any value is possible, but if ˇ is rational, there is
a limitation because the harmonics fm are absent of the spectrum: we need to
choose a value of Q̌ which suppresses these frequencies in the spectrum. This
topic has been investigated by several authors [28, 119].

9.4.8.3 The Particular Case of the Helmholtz Motion

A particular solution was discovered by Helmholtz. It is called “Helmholtz motion”
(HM), which describes the motion of a bowed string that players normally seek. In
this case the division Q̌ D Ts=T of the period is equal to the division ˇ D x1=L of
the length of the instrument, either a bowed string or a cylindrical saxophone. This
case is shown in Fig. 9.20. Because the flow rate is constant, the two states of the
pressure satisfy

F.pL/ D F.pS/; (9.107)

ˇpS C .1 � ˇ/pL D 0: (9.108)

We choose the function given by Eq. (9.31). When the reed does not beat, we have

F2.p/ D F20 C A2p C B2p
2 C C2p

3, where F0 D �.1 � �/p� ; (9.109)

A2 D �2.1 � �/.3� � 1/I B2 D �2.3� � 2/I C2 D ��2: (9.110)

(it can be noticed that B22 D �4 C 3A2C2/: In the useful range of mouth pressure
� A2 is either positive or negative, and B2 and C2 are negative. The flow rate being
constant, we find

A2.pL � pS/C B2.p
2
L � p2S/C C2.p

3
L � p3S/ D 0: (9.111)
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The solution pL D pS is trivial: it is the static regime, because Eq. (9.108) implies
pL D pS D 0. The final result for the oscillating solutions is the following37:

pL̇ D 2ˇ

1C 3�2

�
.2 � 3�/�˙

p
�2 C .1� �/.3� � 1/

�
(9.114)

pṠ D �2.1� ˇ/
1C 3�2

�
.2 � 3�/�˙

p
�2 C .1 � �/.3� � 1/

�
(9.115)

where � D TL � TS

TL C TS
D pS C pL

pS � pL
D 1 � 2ˇ: (9.116)

The parameter � does not intervene: it intervenes in the value of the flow rate only.
Thus there are two different oscillating solutions: one with a pressure pL, which
increases with the blowing pressure � (sign C), the other one with a decreasing
pressure (exponent �). An important value of � is what it is called the subcritical
threshold �sc for which the two values pL̇ are equal, as well as the values pṠ (the
argument of the square root vanishes):

�sc D 2

3

h
1 �

p
1 � 3ˇ C 3ˇ2

i
' ˇ

�
1 � ˇ

4
C O.ˇ2/

�
: (9.117)

These results are valid when the reed does not beat. When it beats, the flow rate
needs to vanish for two different values of the pressure, therefore one is � and the
other one is lower than ��1:Using (9.108), and the signs C and � for the increasing
and decreasing functions of pL, we obtain

if pC
L D � , pC

s D �.1 � ˇ/�=ˇ; this implies: � > ˇ (9.118)

if p�
s D � , p�

L D �ˇ�=.1� ˇ/; this implies: � > 1 � ˇ: (9.119)

Figure 9.21 shows the solutions pL for different values of ˇ. Some comments can be
added

37Starting from (9.111) for pL ¤ pS , the solutions satisfy

A2 C B2.pL C pS/C C2

�
3

4
.pL C pS/

2 C 1

4
.pL � pS/

2

�
D 0: (9.112)

This equation is solved for the unknown 
 D pL C pS , then, because pL D �ˇ
=�, it is found:

p˙
L D �2ˇ

C2

1

1C 3�2

�
�B2�˙

q
�2.B22 � 3A2C2/� A2C2

�
: (9.113)

For the polynomial function (9.55), the expression is exactly the same, if the subscript 2 is
suppressed in the coefficients, and the above result can be easily used in both cases.
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• For the clarinet, � vanishes, and the result becomes very simple [Eq. (9.62) is
found].

• For conical instruments, ˇ is small and the subcritical threshold (9.117) is very
close to the beating reed threshold ˇ: such instruments are expected to function
mainly with a beating reed.

• This is true for positive values of pL: the solution is the standard HM, analogous
to the usual solution for bowed strings, and an inverse bifurcation prevails. The
result of the previous section is confirmed.

• For negative values of pL, the HM is “inverse.” It seems to be produced with a
direct bifurcation, but this issue is very delicate, because the losses differentiate
the thresholds (Y1 and Y2 are different). The problem is rather simple if Y2 is
larger than Y1, but the difficulty increases when the number of impedance peaks
having an amplitude larger than that of the first peak increases. The analysis of a
system with two peaks was done [33] for the different regimes (standard, inverse
and octave; the latter case appears when the second peak is larger than the first).
A more detailed study of the general case with N peaks (for small values of ˇ)
remains to be performed.

• A signal close to the inverted HM was obtained by experiment for saxophone-
like instruments, but was not observed for bowed strings. The mouth pressure
was strong, probably for pressure beyond the saturation threshold of the standard
HM.

• The stability was studied for the case ˇ D 1=3 [91]: the ab initio solution
[Eq. (4.65)] can be used, by considering a small deviation from the sought
solution, but difficulties can occur when two stable regimes are very close
together. When 1=ˇ is an integer, another method is the Floquet method, which
generalizes what we did in Sect. 9.3.3.5, but the recurrence relationships become
longer.38

• The bifurcation point of the static regime is obtained for pL D pS D 0. This
implies A2 D 0, i.e., � D 1 or 1=3. The value 1 for � corresponds to a closed
reed, after Eqs. (9.118) and (9.119), and the bifurcation occurs at � D 1=3

independently of ˇ. The interpretation is easy: when the equations are derived
assuming small oscillations (see the previous section), the solution is quasi
sinusoidal at the threshold limit, and the equation for the first harmonic (9.77)
applies in all cases. Therefore the threshold is A D 0 when losses are ignored.
Notice that the first harmonic approximation cannot distinguish the two HMs,
because it does not provide the sign of P1. In order to distinguish the two regimes,
we have to calculate more harmonics, and this is necessary also for the distinction
between square and rectangle signals.

38The period needs to be split into 1=ˇ points, and high order matrices need to be studied for the
position of eigenvalues with respect to unity. This issue was investigated in numerous articles about
bowed strings [122].
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9.4.8.4 Considerations About the Spectrum of Conical Instruments

The question of the relation between the conical shape and the sound spectrum
remains largely open, in particular for the radiated sound. The simplification of
the signal shape shown in Fig. 9.20 obviously yields the suppression of higher
frequencies in the spectrum. However, for a clarinet we have seen that the simplified
square signal yields relevant results for the signal amplitudes, the oscillation
regimes, and the amplitude of the first odd harmonics far from the oscillations
threshold. This simplification corresponds to a model with losses independent of
frequency, or lossless. For a conical instrument, a supplementary approximation was
needed. The hypothesis that it is equivalent to a cylindrical saxophone is only valid
over a limited frequency range, because the length of the missing cone, denoted x1,
is assumed to be small compared to the wavelength39 We have seen that the pressure
signal when the reed is beating is common to the different notes, and we can suppose
that:

• Characteristic frequencies common to different notes exist in the spectrum,
including higher frequencies, and a consequence is the apparition of formants
or anti-formants;

• For the lowest ones, the common frequencies are the same as those of a
cylindrical saxophone

Internal Spectrum

Let us consider first the spectrum of the internal pressure at low frequencies. We
can imagine without rigorous proof that the maximum of this spectrum is linked
to that of the input impedance. The latter can be determined by using Eq. (7.105),
which describes the envelope curve of the impedance peaks of a truncated cone. The
envelope is proportional for all notes to the following function:

1

1C 1

k2x21

1p
kx1

:

A simple calculation gives a rough estimation for the position of this maximum:
kx1 D p

3: A formant can be found around the corresponding frequency. For
instance, for a soprano saxophone, it is 670Hz. For the lowest notes of an
instrument, there are few low harmonics (1 and 2) in the spectrum because of the
shape of the input impedance curve.

• At higher frequency, we examine first the case of a cylindrical saxophone.
The first characteristics of the spectrum is necessarily the absence of a certain

39Thanks to the choice of the mouthpiece dimensions and instrument input, this limit can be put
off rather high, see Chap. 7. For instance, let us assume that the limit is around kx1 D 1.
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category of harmonics, similarly to the absence of even harmonics for the
clarinet. When the ratio ˇ (D x1=L) is the inverse of an integer, the harmonics
m=ˇ should be absent. Because the fundamental of the first register is c=2L;
this corresponds to frequencies mc=2x1, which are the natural frequencies of a
pipe of length x1. As they do not depend on the played note, an anti-formant is
expected at these frequencies, which are such that kx1 D m� . The anti-formant
can exists also if ˇ is irrational, but they are less pronounced because there are
no harmonics at exactly these frequencies.

• What happens for a conical instrument? Obviously if the quantity kx1 is of order
of � or larger, the use of a cylindrical saxophone model becomes meaningless.
Nevertheless it is possible to find frequencies which are independent of the notes
and for which the input impedance is minimum (and other frequencies for which
the input impedance is maximum). We start from Eq. (9.105), and ignore the
losses. As we have seen, an excellent approximation for the frequency of the
first maximum at the mouthpiece input is c=2.` C x1/. Hence k.` C x1/ D � .
We know that it is not exactly the playing frequency, because the latter depends
on the excitation level, but we assume that it is valid. The harmonics of this
frequency are not necessarily resonance frequencies, because they do not satisfy
the condition kx1 � 1. However, the harmonic n satisfies

k.`C x1/ D n� thus cot k` D cot.n� � kx1/ D � cot kx1: (9.120)

In other words, for a given frequency which exists in the spectrum, the input
admittance of the truncated cone (and therefore the admittance at the input of
the mouthpiece) does not depend on the fingering, i.e., on the played note. These
admittances exhibit extrema which are common to the different notes, as shown
in Fig. 9.22. Hence in the spectrum of the internal pressure formants and anti-
formants are expected. They are the elements common to the different notes that
we mentioned above. They can be calculated for a given shape of the mouthpiece,
but here we do not discuss this matter further. The first anti-formant is slightly
higher than that of a cylindrical saxophone (kx1 D �). But these formants and
anti-formants are less accentuated than those of a cylindrical saxophone, because
losses make their presence less obvious.

External Spectrum

The previous analysis was focusing on the internal spectrum. What happens for
the radiated pressure? For the lowest frequencies the previous reasoning can be
extended by straightforward use of the shape of the input impedance curve. The
scarcity of the lowest frequencies in the spectrum of the internal pressure is
accentuated by the fact that the radiated pressure is the time derivative of the output
flow rate. This is clearly observed, e.g., in the spectrogram of bassoon (see Fig. 7.26
of Chap. 7).
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Fig. 9.22 Input impedance for 100 values of ` linearly distributed on one octave. The visco-
thermal losses are taken into account. The points indicate the impedance modulus for the
fundamental frequency and its harmonics for the notes corresponding to each length value. Above
500Hz, extrema common to the different notes are clearly observed. Minima are found around 800,
1800, 2900Hz. The dimensions are those of a tenor saxophone with a mouthpiece. The toneholes
are ignored (the change of note is obtained thanks to a modification of `). Courtesy of S. Karkar

Unfortunately for the higher frequencies we do not have much insight. Formants
and anti-formants exist, but they are less pronounced and their position differs from
that observed in the spectrum of the internal pressure. We saw that for a cylindrical
instrument the issue of the relative amplitude of the even and odd harmonics is
subtle. We imagine that this subtlety is similar for a cylindrical saxophone for the
main harmonics versus the missing ones. The problem becomes even more intricate
for a conical instrument.40

What is clear is that the level difference between formants and anti-formants is
much smaller than for the internal pressure, as for the difference between even and
odd harmonics of the clarinet.41 Nevertheless, contrary to some possible hypotheses,
the position of the formants is not directly linked to the length x1 of the missing cone
or to the mouthpiece shape.

The previous analysis shows that if the length x1 of the missing cone is reduced,
and then if for a given length, the apex angle is increased, the first characteristic
frequencies increase. Observing the increase of the taper from the first saxophones
of Adolphe Sax to modern saxophones, it is possible to explain this increase by the
aim to enrich the timbre [74], as probably requested by jazz music. In comparison
to a violin, this would correspond to a play closer to the bridge. It is well known

40Remember that this discussion ignores the existence of toneholes, which strongly complicate
the sound analysis above the cutoff frequency (see Chap. 14). Moreover the reed dynamic also is
ignored.
41This is due to the difference between the input impedance and the pressure transfer function: the
first function of the frequency has poles and zeros, while the second has poles only.
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that the timbre is richer in harmonics because the first missing harmonic becomes
higher (similarly to what happens when playing a guitar close to the bridge).

Finally we mention the study by Benade and Lutgen [13], who measured the
external spectrum averaged in a room and showed for the highest frequencies
the existence of a frequency above which the amplitude of the pressure spectrum
decreases as f 3: this frequency would be linked to the cutoff frequency of the
toneholes lattice. Moreover they showed that minima exist in the spectrum of a
given note, and that this is related to the reed beating. To our mind many issues
require further studies in this matter.

9.5 Behavior of the 3-Equation Model with Reed Dynamics
(Non-beating Reed)

9.5.1 Introduction

Synthetic sounds show that what instrumentalists call “squeaks” for single reed
instruments are sounds with a frequency close to that of the (first) reed resonance.
A beginner has to learn how to avoid them, by intuitively controlling the reed
damping with his lower lip. The 3-equation model (9.26)–(9.28) can explain the
relevance of this intuition. Two parameters need to be added to the study of Sects. 9.3
and 9.4: the damping factor and natural frequency of the reed, because the reed is
assumed to be a single-degree-of-freedom oscillator. At the same time it is possible
to study what happens when the playing frequency is close to the reed natural
frequency. It is the case for reed instrument for notes belonging to the high part
of the compass. It is also the case for reed organ pipes for which the reed resonance
determines the playing frequency and the resonator role is limited to a coloring
of the sound: these pipes are tuned by modifying a tuning spring. It can be said
that the corresponding regime is the “reed regime,” as opposed to the “resonator
regime”: this opposition was largely explored by Bouasse [17]. The case of lip-reed
instruments is an intermediate case because the natural frequency of the reed (i.e.,
of the lips) needs to be very close to that of the resonator, yielding a strong coupling.

In order to solve the three dimensionless equations (9.26)–(9.28), the assumption
of square signals is no more suitable, because the reed resonance modifies the
spectrum. Notwithstanding some approximations remain possible. We start by
focusing our attention on the instability threshold of the static regime, by using
the characteristic equation (see Sect. 9.4.2) and supposing that the reed does not
beat, because the amplitudes are extremely small near the threshold. To this end we
base our study on the work by Wilson and Beavers [121], noted as WB, which is
an important milestone in the research on reed instruments.42 We first consider an

42What is the most important for the determination of the pitch? Is it the reed or the resonator?
Historically it was one of the most important subjects of musical acoustics. We can cite Weber
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inward-striking reed, later an outward-striking one. The latter was not considered up
to now because they cannot function for frequencies which are very low compared
to the reed natural frequency.

9.5.2 Oscillation Threshold for an Inward-Striking Reed

The previous presentation needs to be completed. Actually, two effects of the reed
need to be distinguished: (1) the reed dynamics, and (2) the volume flow rate
created by the reed displacement, which modifies the equation of the resonator [see
Eq. (9.18)]. The distinction between these two effects is rather subtle, as this will be
explained in the present section. The historical development can be summarized as
follows:

Effect of the Reed Displacement

Helmholtz [68] and many authors tried to understand the effect of the flow rate in
order to compare instruments such as clarinets with instruments such organ reed
pipes. For the first type, the parameter defined as the ratio of the pipe resonance
frequency to the reed resonance frequency is small, and the reed has a small
influence on the playing frequency. Conversely for the latter type, the same ratio
is large, and the playing frequency is close to the reed resonance frequency. For this
study, a linear theory is used, assuming that the playing frequency is the resonance
frequency of a composite resonator, i.e., the air column coupled to the reed. The
reed dynamics is ignored, and therefore the reed acts as a simple spring. This leads
to a simple transcendental equation, which describes the transition of the playing
frequency from the pipe resonance to the reed resonance, when the pipe resonance
frequency increases up to the reed resonance frequency.

Effect of the Reed Dynamics

How is it possible to proof that, when the reed dynamics is ignored, the playing
frequency is the resonance of the composite resonator? Actually, this is true at
the threshold of oscillation, as shown by the characteristic equation (9.78) which
has been written in Sect. 9.4.2. It involves the input admittance of the composite
resonator. It is obtained by linearizing the nonlinear equation of the excitor, and

[118], Helmholtz [68], and Bouasse [17], who performed a thorough literature review. He discussed
all works of his time with many experimental results, which remain to be studied in detail. Works
on valves with weak coupling of two resonators can also be cited [49, 108] (for us one of the
resonators would be the vocal tract).
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yields the value of both the operating (or playing) frequency, and the mouth
pressure. For the nonlinear model proposed in this chapter, the latter is found to
be equal to the third of the closure pressure pM , whatever the ratio pipe-resonance
frequency/reed-resonance frequency.43

One century after Helmholtz, Wilson, and Beavers were the first authors to
propose a model based on the Bernoulli equation. They tried to take the reed
dynamics into account, considering a single-degree-of-freedom oscillator. However,
they ignored the effect of the reed flow. The solving is based anew on the derivation
of the characteristic equation, which is much more complicated than when ignoring
the reed dynamics. Concerning the dependence of the playing frequency with
respect to the ratio pipe frequency/reed frequency, it seems to be similar to that
found for the other effect (no reed dynamics, but the reed flow is considered).
However, the deviation from the pipe resonance frequency is much smaller than
that found for the reed flow effect. Moreover, when taken into account both effects,
the effect of the reed flow appears to be dominant (this has been explained in [101]).
Conversely the effect of the reed dynamics on the mouth-pressure threshold can be
dominant, and is strongly influenced by the quality factor of the reed. For a strongly
damped reed (for instance the clarinet reed, which is strongly damped by the player
lip), the pressure threshold is close to pM=3. However, for a slightly damped reed,
the pressure threshold is largely lowered, and this explains why squeaks are obtained
with a clarinet when the reed is insufficiently damped by the lip.

The present section considers first the two effects together.

9.5.2.1 Characteristic Equation, Real Frequency Solution
for the Thresholds

We start from the three equations (9.26)–(9.28), by slightly modifying them. The
two first equations can be written in the frequency domain44:

U D YP C j!X�`=c (9.121)

X D DP where D.!/ D
�
1C j!qr

!r
� !2

!2r

��1
: (9.122)

As WB did [121], we derive the characteristic equation, but we wish also to
investigate the effect of the reed displacement flow rate, which is proportional to

43Notice that these results are valid if the threshold of oscillation is equal to the threshold of
instability of the static regime, i.e., if the bifurcation is direct. This is the case for a clarinet or
an organ reed pipe.
44Remind the notations: U is the volume flow rate, P is the pressure at the resonator inlet, X the
reed displacement, Y the admittance at the resonator inlet. � is the mouth pressure, � is the reed
parameter. All quantities are dimensionless (see Sect. 9.2.5.3). �` is the length associated to the
reed flow rate, !r the reed angular frequency, and q�1

r its quality factor.
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�`, and was ignored by these authors. We linearize Eq. (9.28) around the static
regime (p D x D 0), assuming again the zero frequency impedance to be zero:

u D �
p
�.1 � �/

�
1C x

1 � �
� p

2�

�
: (9.123)

Writing this equation in the frequency domain and limiting it to a single harmonic,
using the two linear equations (9.121) and (9.122), and finally dividing the two sides
of the equation by P1; we find the characteristic equation:

Y C Dj!
�`

c
D �

p
�

�
D � 1 � �

2�

�
: (9.124)

This equation generalizes the relation Y D A that we obtained in Sect. 9.4.2: this
can be checked by writing �` D 0: and D D 1. We determine the thresholds by
solving this equation for a real frequency!. We assumed that we are around a static,
non-beating regime and have linearized the nonlinear equation: the quantities x and
p being small, the non-beating reed condition for the static regime is simply45 as
� < 1: Thus results such with � > 1 are not relevant, even if in certain cases the
following analysis can lead to such values.

9.5.2.2 Results of Wilson and Beavers for a Cylinder

We present hereafter the experimental result of WB and compare them with
numerical solutions of Eq. (9.124) (see [101]). The latter slightly differs from those
of WB, especially because we take into account the reed displacement flow rate.
Then analytical approximate results are provided.

• The results shown in Fig. 9.23 correspond to a weak damping of the reed (of type
metallic organ reed, qr D 0:008). The abscissa is the product kr`. For a given
reed frequency (here fr D 700Hz/, it is proportional to the length. Thus these
curves are obtained when the tube length varies, e.g., with a slide. For a given
length, several solutions, which correspond to different tube modes, are possible.
Only the oscillation frequency with the lowest pressure threshold is indicated.
The reed parameters were measured using different techniques. The thresholds
were measured by increasing the blowing pressure until a sound is produced (in
this study the bifurcation is assumed to be direct).

It can be observed that the threshold frequencies are always lower than the
natural frequencies of both the reed and the resonator. The latter are given by
decreasing hyperbolas (in dotted lines) by cot k` D 0, or k` D .2n � 1/�=2,

45It would be tedious to go beyond this value for solving the complete equation (9.30): indeed if for
p D 0, the function F.p/ is regarded as a function of � , its derivative is not continuous in � D 1.
Moreover we know that the model slightly disagrees with experiment.
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Fig. 9.23 Thresholds of frequency � and of mouth pressure � for a weakly damped reed. qr D
0:008; � D 0:1; fr D 700 Hz ; r D 6:4mm: Solid line: theoretical results [101] without reed
displacement flow rate, corresponding to the calculation by Wilson and Beavers [121]; dashed
line: theoretical results with the reed displacement flow rate (�` D 5mm); dotted line: hyperbolas
of the natural frequencies of the resonator. The squares are the experimental results by WB

i.e., � D !=!r D .kr`/
�1.2n � 1/�=2: When the length increases initially

the frequencies of the first regime are obtained, then those of the second one,
followed by the third one, etc. The pressure thresholds differ drastically much
from the value predicted by the model without losses and reed dynamics, � D
1=3. They can reach values smaller than 1=20, because the reed greatly favors
the oscillation when !=!r is close to unity. But when kr` approaches the values
n� from below, the functioning is very similar to the functioning without reed
dynamics, i.e., the playing frequency corresponds to a tube resonance, with a
pressure threshold close to 1=3. Then suddenly the solution corresponding to the
following regime appears, because its threshold is much lower, and the playing
frequency is close to the reed natural frequency. Consequently for a long tube
the reed favors either “squeaks” when kr` is close to n� , or approaches acoustic
resonance frequencies when kr` is far from these values.

• Now let us look at Fig. 9.24, for which the reed damping is strong, qr D 0:4 (the
reed is of clarinet-type). The variation of the playing frequencies is qualitatively
similar to that for a weak damping but squeaks cannot be obtained, because the
pressure thresholds would be very high. These thresholds are much closer to
the thresholds that we have calculated without reed dynamics [Eq. (9.69)]. And
the thresholds of the higher order regimes become higher than those of the first
regime. This allows keeping the first acoustic regime for any length, and prevents
the production of the other regimes. Because the reed is more damped than in the
previous case, its role is weaker in the variation of the pressure thresholds and
the resonator acoustic losses play a much greater role.46

46Notice that it is easy for a clarinet to obtain squeaks by driving the mouthpiece in the mouth in
order to suppress the damping by the lip.
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Fig. 9.24 Thresholds of frequency � and of mouth pressure � for a strongly damped reed. qr D
0:4 ; � D 0:13; fr D 750Hz; r D 6:4mm: Solid line: theoretical results [101] without reed
flow rate, corresponding to the calculation by Wilson and Beavers [121]; dashed line: theoretical
results with reed flow rate (�` D 12mm); dotted line: hyperbolas of the natural frequencies of the
resonator. The squares are the experimental results by WB

9.5.2.3 Analysis of Threshold Frequencies

For the analysis we simplify the problem by ignoring (for the moment) both the reed
displacement flow rate and the acoustic losses in the resonator. The admittance Y is
purely imaginary. For a cylinder of length `, =m.Y/ D � cot k`. For a resonator of
arbitrary shape, we reduce the admittance to one mode, of subscript n, and even to
one “single” mode, of positive frequency (see Chap. 2). This implies that we search
for a frequency that is not too far from the natural frequency of the resonator. We
rewrite Eq. (9.66) in the following form (see Chap. 2):

Y ' 2jF�1
n .! � !C

n / where !C
n D !n C j!n=.2Qn/; thus (9.125)

=m.Y/ ' 2F�1
n .! � !n/ (9.126)

(remind that for a cylinder, 2F�1
n D `=c). If <e.Y/ D 0 and �` D 0, the separation

of the real and imaginary parts of the characteristic equation yields

1 � �

2�
D <e.D/ D 1

�
: (9.127)

=m.Y/ D =m.D/�
p
� D � �

p
��qr

�.1 � �2/ , (9.128)

where:

� D !

!r
and � D 1

<e.D/
D 1 � �2 C q2r�

2

1 � �2 : (9.129)
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The parameters �, qr, !r, and those of the resonator are fixed, thus two unknowns
remain for the characterization of the threshold: the threshold frequency � and the
mouth pressure � (for the sake of simplicity, the subscript th has been omitted).
The calculation seems to be tedious, but some results are surprisingly simple and
informative. We first retrieve the results obtained without reed dynamic (� D 0/:
because in such a case � D 1, � D 1=3 and =m.Y/ D 0. Then Eq. (9.127) yields

� D �

2C �
. (9.130)

This can be brought in Eq. (9.128), therefore, for a cylinder, the following result is
obtained

� =m.Y/ D cot k` D cot kr`� D �F.�/ (9.131)

where F.�/ D qr�


.1 � �2/2 C q2r�

2
��1=2 


.3 � �2/.1 � �2/C q2r�
2
��1=2

:

Equation (9.131) has only one unknown,!, or � D k`=kr` when kr` is fixed. Up
to � D 0:8, the function F.�/ has a nearly linear variation with respect to qr� , thus it
is proportional to qr:A numerical calculation shows that the increase is monotonous
from 0 to 1=qr when � varies from 0 to 1 (see Fig. 9.25). Thus for two different
values of qr, the curves intersect very close to � D 1. Because F.�/ is positive,
the cotangent function is always positive and the solutions are always below the
hyperbolas cot k` D 0, whose solutions are � D .kr`/

�1.2n � 1/�=2 (see Figs. 9.23
and 9.24): For a one-mode resonator, a similar result can be obtained: following
Eq. (9.125), the solutions are smaller than the natural frequencies of the resonator:

! D �!r D !n � 1

2
�FnF.�/: (9.132)

The previous explanation is not a rigorous proof because the unknown! is included
in F.�/, but it is undoubtedly correct when � is not too large.47

• For the case of a strongly damped reed, the quantity �F.�/ is rather large except
near � D 1, where there is no solution. Thus the threshold frequencies are rather
far from the resonator natural frequencies, roots of cot k` D 0 (i.e., k` D .2n �
1/�=2): it should be remembered that a weak relative difference can be important
from the musical point of view, because one semitone corresponds to 6 % in the
frequency. In order to calculate the threshold frequencies with a good accuracy, it
is possible to use perturbations, bringing into the second member of Eq. (9.132),

47We know that the results with � > 1 are not relevant, because they correspond to a complete
closure of the mouthpiece. According to Eq. (9.127), this corresponds to � < 0 and therefore to
� > 1: With this theory we cannot know determine whether the playing frequency can exceed the
reed resonance or not.
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Fig. 9.25 Comparison of the function cot kr`� for kr` D 8 (thin line) and the function �F.�/ for
the two cases shown in Figs. 9.23 (solid line 1a) and 9.24 (solid line 2a). It is observed that the
playing frequencies are smaller than the natural frequencies of the tube which cancel the cotangent
function F0.�/, [Eq. (9.138)]. The latter represents the effect of the reed displacement flow rate,
which is predominant near the reed resonance for both cases

the values of k we found with � D k=kr: The variation of frequency due to
damping can be written in the form of a length correction, equal to:

�` D �F.�/=k D �F.�/=.�kr/:

Then, because in this case � is small compared to unity, the square roots involved
in F.�/ can be simplified by ignoring the terms in qr� , giving:

�` D qr�

kr.1 � �2n /
3=2.3 � �2n /

1=2
; (9.133)

where �n D .2n � 1/�=.2kr`/: Hence this length correction is positive. It
is proportional to the reed damping and inversely proportional to the reed
frequency. This was expected, because the correction needs to vanish when the
latter tends to infinity. For a sufficiently high reed frequency, the denominator
simplifies to kr

p
3:

• The case of a weakly damped reed is not very different regarding frequencies:
however, the quantity �F.�/, which is �=qr for � D 1, can be very large near
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this value of �; thus the frequencies are far from the tube natural frequencies.
The quasi horizontal portion of the frequency curve starting from the values
kr` D n� is longer than in the case of a strong damping. This seems to be
obvious because when there is no damping the reed dynamic plays a more
important role, and the threshold frequencies are more distant from the tube
natural frequencies. However, for small values of the solutions � , they are closer
to the tube frequencies than for a strongly damped reed.

9.5.2.4 Threshold Pressures

For the threshold pressure, the main result is shown in Fig. 9.23: its variation is rather
strong with the tube length or the reed natural frequency (parameter kr`). When the
playing frequency approaches the tube frequencies, the quantity � becomes close to
unity, corresponding to a threshold pressure close to 1=3 [in fact its value is slightly
higher, because of the tube losses, see Eq. (9.69)].

The minima of threshold pressure can be easily determined because � is a
monotonously increasing function of �. The study of the function �.�/ [Eq. (9.129)]
shows that it has one minimum, for �2c D 1� qr. Its value is �min D qr.2� qr/, and,
using Eq. (9.130) the minimum of � is

�min D qr.2 � qr/

2C qr.2 � qr/
: (9.134)

For a weak damping qr, this expression simplifies in �min ' qr.1� 3qr=2/. For a
strong damping, the minima �min are higher. However, we did not take into account
the tube losses, and this expression cannot explain why the second minimum is
higher than the first (see Fig. 9.24). Therefore this analysis should be refined further,
because such a difference can be responsible for the jump to the second register
(twelfth register), even without register hole, and consequently is important from a
musical point of view.

The search for the value of .kr`/min at which there is a minimum of threshold
pressure can be done using Eq. (9.132). The first order approximation � ' 1� qr=2

yields

F.�/ D 1 � 3qr=4

2
p

qr
, and !n D !r

h
1 � qr

2

i
C �Fn

4
p

qr

�
1 � 3qr

4

�
: (9.135)

For a cylinder:

kr` D .2n � 1/�
2

h
1C qr

2

i
� �

2
p

qr

h
1 � qr

4

i
: (9.136)
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For a strong damping, the second term remains small and the order of magnitude
is given by .kr`/min D .2n � 1/�=2; when the damping decreases, the values of
.kr`/min decrease significantly.48

What is the influence of resonator losses, that we have ignored up to now? A
general idea can guide us: if reactive phenomena have a great influence on the
frequencies, it is not the case of dissipative phenomena. However, the latter have an
influence on the threshold pressure and need to be considered. A detailed calculation
can be found in [101], and gives the following result:

�min D �0


1C 2Ymn

p
�0=�

�
: (9.137)

�0 is the value when tube losses are ignored [Eq. (9.134)], and Ymn D 1=ZMn

[see Eq. (9.66)] is the minimum admittance of the tube, equal to ˛` for a cylinder
(where ˛ is the loss coefficient of the tube). As expected it appears that the minimum
increases when the length increases, and that it is larger for the second register than
for the first one.

9.5.2.5 Effect of the Reed Displacement Flow Rate

Figures 9.23 and 9.24 show that near the reed resonance, the effect of the reed
displacement flow rate on the threshold frequencies is more important than that of
damping. A complete calculation is difficult, therefore we limit the study to the
threshold frequencies by ignoring the reed dynamic, in order to compare the two
effects separately. Equation (9.124) shows that the reed displacement flow inter-
venes as a simple (reactive) modification of the input admittance of the resonator.
If qr D 0, the left member of (9.124) is imaginary and determines the frequencies,
while the right member is real and imposes the pressure. Equation (9.131) leads to
the definition of a new function, F0.�/:

� =m.Y/ D k�`
1

1� �2
D F0.�/ where F0.�/ D kr�`

�

1 � �2 : (9.138)

The quantity kr�` is small.49 For small values of � , the right members of
Eqs. (9.138) and (9.131) have the same order of magnitude. However, close to the

48Above the values .kr`/min, Fig. 9.24 shows also the growth of the three branches of the curve
�.kr`/. The second branch growths slower than the first, and the third growths slower than the
second, because the frequencies are less and less remote from the reed resonance (� does not take
small values for the branches corresponding to higher regimes). Below the values .kr`/min, the
growth is very fast, because between �c and � D 1, � increases from �min to a value close to 1
(infinite �).
49The order of magnitude of �` can be estimated to 1 cm, by measuring the playing frequencies
when they are close to the resonance frequencies of the tube [32]. From the data of Figs. 9.23 and
9.24, the following values are obtained, respectively: kr�` D 0:06 and 0:16:
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reed resonance (� D 1), the reed displacement flow term becomes much larger than
the reed dynamics one. This is shown in Fig. 9.25. Indeed the function �=.1� �2/ is
increasing from 0 to infinity when � increases from 0 to 1 (it resembles the function
F.�/, but the latter is limited to a finite value, 1=qr).

In order to solve Eq. (9.138) in the case of a one-mode resonator, Eq. (9.126) is
used

� D �n � 1

2

�Fn�`

c.1� �2/
where �n D !n

!r
. (9.139)

For a cylinder, in the limit of small � , the reed displacement flow effect is reduced to
a simple length correction, as explained when defining �` [see Eq. (9.17)]. Indeed

the result is f D .2n � 1/c
4.`C�`/

: Obviously this can be improved by a perturbation

calculation [75]. Nevertheless the problem is more complicated close to the reed
resonance: if � tends to unity, =m.Y/ tends to infinity, and we approach the anti-
resonances of the tube. For certain lengths of the tube, when kr` corresponds to a
tube anti-resonance, the playing frequency is the reed natural frequency. If � is close
to unity, the solution can be sought in the form � D 1� ", writing �n D 1� "n, and
this leads to a quadratic equation in ":

2"."� "n/ D ˇ.1C O."//;

where ˇ D 1
2
Fn�`=c is small (it is equal to �`=` for a cylinder). Therefore:

" D "n

2

"
1C

s
1C 2ˇ

"2n

#
: (9.140)

The square root comes typically from mode coupling. This explains why, as soon
as we are interested in more complicated problems, it is extremely difficult to find
analytical solutions. The principle of this study should be emphasized: we sought
the playing frequencies at the threshold by calculating the frequencies for which the
imaginary part of the passive resonator admittance vanishes. The passive resonator
consists of the tube and the reed, while the effect of the flow coming from the
mouth is totally ignored. Historically this approach was used by many authors (see,
e.g., [83]) and give often interesting results, because the reed displacement flow
has an effect preponderant over the reed dynamic. The theoretical curves of the
playing frequencies can be fitted with experimental results, and a reasonable value
of the reed displacement flow rate is obtained. This allows predicting threshold
frequencies, but the measurement of the threshold pressure remains difficult.
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9.5.3 Oscillation Threshold for an Outward-Striking Reed

9.5.3.1 Characteristic Equation

We now investigate an outward-striking reed, which is the elementary model for
lip reeds. There is a major difference with respect to the previous case: the closure
pressure is negative, therefore the mouth pressure is always far from this pressure.
Using a 3-equation model, we will show that the playing frequency is higher than
that of the reed: a functioning in square signals is not possible, and we need to take
into account the reed dynamic (in order to get square signals, it would be mandatory
to inhale).

Using Eqs. (9.37)–(9.39), we obtain the characteristic equation, which is the
counterpart of (9.124):

Y C Dj!
�`

c
D �

p
�

�
�D � 1C �

2�

�
: (9.141)

We ignore the reed displacement flow rate, although its potential importance was
not studied yet, and we ignore the losses in the tube. As a result:

� D � �

2C �
; (9.142)

=m.Y/ D �
p
��qr

�.1 � �2/
: (9.143)

9.5.3.2 Threshold Frequencies

Because of the sign of the second member of (9.143), the quantity �.1��2/ is always
positive, and the playing frequencies are always higher than the natural frequencies
of the tube (see Fig. 9.26). They are also higher than those of the reed, because
positive � implies negative �. Then, by bringing Eq. (9.142) into Eq. (9.143), we
obtain an equation similar to Eq. (9.131):

=m.Y/ D �G.�/ (9.144)

where G.�/ D qr�


.1 � �2/2 C q2r�

2
��1=2 
�.3 � �2/.1 � �2/� q2r�

2
��1=2

:

This implies

.3 � �2/.1 � �2/C q2r�
2 < 0: (9.145)

This inequality is satisfied between the two roots �1 and �2 of a second order
equation. As qr is sufficiently small: �1 ' 1 C q2r=4 and �2 ' p

3.1 � q2r=4/:
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Fig. 9.26 Frequency and mouth-pressure thresholds for an outward-striking reed for different
values of the reed damping

For inward-striking reeds, the value � D 1 can be reached from below. Here it
cannot be reached, but � can be rather close to unity. For the two extreme values,
the tube would function at anti-resonances, but we will see that they cannot be
reached. We do not write the equivalent of Sect. 9.5.2.5, but because the threshold
frequency is higher than the reed frequency, the reed displacement flow produces
again a cumulative effect with that of the reed dynamic. Indeed the reed flow term
in Eq. (9.138) remains unchanged, but with � > 1. It increases the shift of threshold
frequencies compared to the reed frequency or to the tube natural frequencies.

9.5.3.3 Threshold Pressure

Because � > 1, the quantity � C 2 needs to be positive [see Eq. (9.145)]. Thus �
lies between �2 and 0. For the two limit values �1 and �2, for which � D �2, the
threshold � is infinite; therefore it is not possible, in practice, to play close to these
values. For a fixed reed frequency, the interval which can be reached by changing
the resonator length is significantly smaller than

p
3 (one sixth). Experimentally

an interval of one third was found [29]. This enlightens the interest for brass
instruments to have a reed with variable characteristics, that the player adapts to
the tube length. This behavior greatly differs from that of an inward-striking reed,
for which � can vary from 0 to 1! The minima of � can be calculated similarly to
what was done in Sect. 9.5.2.4: according to Eq. (9.142), they correspond to maxima
of �, thus to � 02

c D 1C qr, i.e., � 0
c ' 1C qr=2, and they are:
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�min D qr.2C qr/

2C qr.2C qr/
. (9.146)

For a weak damping, this becomes � ' qr.1 � qr=2/, and is found to be slightly
higher than for an inward-striking reed with the same parameters. Because the value
� 02

c D 1 C qr=2 is quite close to �1, we observe that for a cylinder the curves of
threshold pressure with respect to the parameter kr` display a strong asymmetry
relative to the minimum (see Fig. 9.26). This result is in agreement with those
of [29].

9.5.4 Modal Approach of the Dynamical System

In what follows we consider the analysis of the linearized system in terms of modes.
An approximation of the characteristic equation (9.124) or (9.141) is obtained by
expanding the input impedance in a modal series, similar to (9.66), and by truncating
the series to the first mode of the resonator, as we did in Sect. 9.3.4. Considering the
expression of D.!/, we obtain an equation of the fourth order in s D j!, which has
real coefficients. This implies that if s is a solution, its conjugate s� is a solution as
well. Thus the four solutions are: s1, s�

1 , s2, s�
2 .

The characteristic equation is a polynomial, and p.t/ is the sum of exponentials
of type exp.st/: If the real part of both s1 and s2 are negative, the exponentials are
decreasing, and the static solution P1 D 0 is stable. It becomes unstable when one
of the two real parts become positive. In other words if one real part is positive and
the other vanishes, we get an instability threshold of the static regime. If the two
real parts become positive, we have the sum of two increasing exponentials with
different frequencies, which correspond to the imaginary parts of s1 and s2. It should
be remembered that we do not know anything about the existence of oscillating
solutions, because the nonlinear terms were suppressed, and obviously we do not
know anything about their stability!

An approximation of the fourth order equation is obtained by ignoring the
negative frequencies. This results in a quadratic equation. For the function D.!/
defined by Eq. (9.122), a treatment similar to that we did for the function Y.!/ [see
Eq. (9.125)] can be done, with the following result:

D�1.!/ ' � 2

!r
.! � !C

r / where !C
r D !r C j!rqr=2: (9.147)

For an inward-striking reed, the characteristic equation (9.124) becomes

.! � !C
r /.! � Q!C

n / D !rFn

4

�
j�

p
� C !�`

c

�
with Q!C

n D !C
n C j

Fn

4
�
1 � �p
�
: (9.148)
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It exhibits two modes coupled by the flow from the mouth and the reed
displacement flow. However, the mode of the tube itself is modified by the mouth
flow, with an increase of the losses (as � is lower than unity): this effect corresponds
to the resistance due to the flow if the reed is prevented from vibrating around its
average position, which is determined by the blowing pressure (x D 0). Therefore
these two modes are passive (the imaginary parts of !C

r and Q!C
n are positive). This

approximation of the characteristic equation assumes that the playing frequency and
the frequencies of both the tube and the reed do not differ much. The sum of the roots
of this equation is

!1 C !2 D !C
r C Q!C

n :

Thus if one root, for example, !1; is real, the other root will have a positive
imaginary part because the two modes are passive. In other words, when one of
the exponentials which is decreasing becomes increasing, the other one is always
decreasing. The thresholds we studied in Sect. 9.5.2.1 are instability thresholds
of the static regime.50 Similarly to what was done in Chap. 6 about piano strings
(Sect. 6.3.2), it would be possible to discuss approximate solutions. A similar
analysis can easily be done for an outward-striking reed.

9.5.5 Discussion of the Results

In the present section the role of the reed resonance has been examined together
with the use of the damping for the control of the regimes for a cylindrical tube.
For certain lengths of tubes, the effect of damping can be very important. This
explains why it is not possible to have toneholes very close to the mouthpiece
on a clarinet, because the tuning and the timbre would depend too much on the
reed. The present section has been limited to the instability threshold of the static
regime, for a cylindrical tube or a single-mode resonator. Implicitly the bifurcation
has been assumed to be direct, while this is wrong in many cases, such as that
of conical tubes. Consequently our study has drastic limitations. In addition the
reduction of the reed vibration to a single mode is a supplementary limitation at
higher frequencies, especially for brass instruments. No results have been obtained
concerning the spectrum: the reader can refer to [110] or [54] (for results of the
harmonic balance). Indeed the theoretical approach becomes much more difficult
at higher frequencies, because the tube resonances become weaker and many other

50This does not demonstrate that considering an infinity of modes for the resonator this result would
remain valid, but it is a reasonable hypothesis. Moreover we do not forget that the bifurcation can
become inverse when a second mode is added to the resonator model, as it was seen for conical
reed instruments, and maybe also if a second mode is added to the reed model (a reed with two
modes seems to be necessary to model some behaviors of the excitor of brass instruments, see
Fig. 9.3).
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phenomena intervene: for instance the higher modes of the reed or the vocal tract
can become important, and the radiation becomes more complicated, as it will be
seen in the fourth part. However, thanks to this complexity, the playing of the higher
notes is more flexible for the instrumentalist.

In the present section the addition of the two parameters of the reed dynamics
implies complicated consequences on the effect of the main parameters on the
playing frequency, the sound level or the spectrum. One aspect is the effect of
inharmonicity of the excitation pressure (see Sect. 9.4.5), but few theoretical results
has been published (see also [75]). Recently some advanced experimental studies
has been published for reed instruments [4, 14, 19, 61, 62] and for brass instruments
[42, 51].

The previous study gives us some insight on the free reeds (either without
resonator, such as that of the accordion and harmonica, or weakly coupled to a
resonator, such as organ reeds [48, 49, 84, 95, 108]). For these instruments, the
playing frequencies are expected to be linked mainly to the reed resonance, and
indeed the organ makers tune the reed tubes by moving the tuning spring (who
plays the role of the lower lip of the clarinettists). Nevertheless they can choose a
resonator with a resonance close to that of the reed. For a free reed, the damping is
weak, and it can be accepted that the radiation impedance plays the role of a very
short tube, and we expect that the thresholds correspond to very small values of kr`

(see Fig. 9.23). Obviously this view is schematic, and this subject deserves longer
developments.

Concerning brass instruments, it has been seen in Chap. 7 that the absence of
toneholes implies the existence of a great number of significant modes for the
resonator. The study of the regimes is a complex task, especially if two modes of the
reed are taken into account. However, general ideas were already given by Benade
[10]. The harmonicity of the impedance peaks 2, 3, 4, etc. allows playing notes
without change in pitch related to the excitation level. The frequency of these notes
corresponds to an impedance peak, and the harmonics to other peaks (for instance,
consider peak 2, and peaks 4, 6, 8, etc. which are almost harmonically related).
Moreover it is possible to play “pedal” sounds, whose harmonics correspond to a
peak, except the fundamental. The theoretical study of the existence and stability of
these regimes requires long computation, which is tedious but possible today.

Finally a general conclusion can be drawn concerning the influence of losses of
every kind on the playing frequencies. Ignoring the losses leads to a first assessment
of the frequencies, and with this approximation, the nonlinear excitation has no
effect on the playing frequencies. This justifies the basic, fruitful approach (since
Bernoulli): the playing frequencies were assumed to be the natural frequencies of
the linear resonator. However, we have seen that for the examination of the transition
between the “resonator regime” and the “reed regime,” the reed damping needs
to be considered and the parameters of the linearized excitation play a role [see
Eq. (9.131)].



552 J. Kergomard

References

1. Adachi, S., Sato, M.: Trumpet sound simulation using a two-dimensional lip vibration model.
J. Acoust. Soc. Am. 99(2), 1200–1209 (1996)

2. Allwright, D.: Harmonic balance and Hopf bifurcation. Math. Proc. Camb. Philos. Soc. 82,
453–467 (1977)

3. Almeida, A., Vergez, C., Caussé, R.: Quasistatic nonlinear characteristics of double-reed
instruments. J. Acoust. Soc. Am. 121(1), 536–546 (2007)

4. Almeida, A., George, D., Smith, J., Wolfe, J.: The clarinet: how blowing pressure, lip force,
lip position and reed “hardness” affect pitch, sound level, and spectrum. J. Acoust. Soc. Am.
134, 2247–2255 (2014)

5. Avanzini, F., Walstijn, M.V.: Modelling the mechanical response of the reed-mouthpiece-lip
system of a clarinet. part i. a one-dimensional distributed model. Acta Acust. United Acust.
90, 537–547 (2004)
Acta Acustica united with Acustica

6. Backus, J.: Vibrations of the reed and the air column in the clarinet. J. Acoust. Soc. Am. 6,
806–809 (1961)

7. Backus, J.: Small-vibration theory of the clarinet. J. Acoust. Soc. Am. 35(3), 305–313 (1963)
8. Barjau, A., Agulló, J.: Calculation of the starting transients of a double-reed conical

woodwind. Acustica 69, 204–210 (1989)
9. Barjau, A., Gibiat, V.: Study of woodwind-like systems through nonlinear differential

equations. Part II. Real geometry. J. Acoust. Soc. Am. 102, 3032–3037 (1997)
10. Benade, A.H.: Fundamentals of Musical Acoustics. Oxford University Press, London (1976)
11. Benade, A.H., Gans, D.J.: Sound production in wind instruments. Ann. N. Y. Acad. Sci. 155,

247–263 (1968)
12. Benade, A.H., Kouzoupis, S.N.: The clarinet spectrum: theory and experiment. J. Acoust.

Soc. Am. 83(1), 292–304 (1988)
13. Benade, A.H., Lutgen, S.J.: The saxophone spectrum. J. Acoust. Soc. Am. 83(5), 1900–1907

(1988)
14. Bergeot, B., Almeida, A., Gazengel, B., Vergez, C., Ferrand, D.: Response of an artificially

blown clarinet to different blowing pressure profiles. J. Acoust. Soc. Am. 135, 479–490
(2014)

15. Bernoulli, D.: Physical, mechanical and analytical researches on sound and on the tones of
differently constructed organ pipes (in French). Mem. Acad. R. Sci. 1764, 431–485 (1762)

16. Bilbao, S., Torin, A., Chatziioannou, V.: Numerical modeling of collisions in musical
instruments. Acta Acust. United Acust. 101, 155–173 (2015)

17. Bouasse, H.: Wind instruments. In: Metallic and Membranous Reeds, Reed and Flue Pipes,
Organ, Instruments with Horn Mouthpiece (in French), vol. 1, 2nd edn. Librairie Scientifique
et Technique, Paris (1986)

18. Boutillon, X.: Analytical investigation of the flattening effect - the reactive power balance
rule. J. Acoust. Soc. Am. 90(2), 754–63 (1991)

19. Boutin, H., Fletcher, N., Smith, J., Wolfe, J.: Relationships between pressure, flow, lip motion,
and upstream and downstream impedances for the trombone. J. Acoust. Soc. Am. 137,
1195–1209 (2015)

20. Brod, K.: The clarinet as a bifurcation system: an application to the iterated map method(in
German). Acustica 72, 72–78 (1990)

21. Bromage, S., Campbell, D.M., Gilbert, J., Stevenson, S.: Experimental investigation of the
open area of the brass player’s vibrating lips. In: Forum Acusticum Budapest 2005, Budapest,
Hungary, pp. 729–734 (2005)

22. Bromage, S., Campbell, D.M., Chick, J., Gilbert, J., Stevenson, S.: Motion of the brass
player’s lips during extreme loud playing. In: 8ème Congrès Français d’Acoustique, Tours,
France, pp. 721–724 (2006)



9 Reed Instruments 553

23. Bromage, S., Campbell, D., Gilbert, J.: Open areas of vibrating lips in trombone playing. Acta
Acust. United Acust. 96, 603–613 (2010)

24. Campbell, M.: Brass instruments as we know them today. Acta Acust. United Acust. 90,
600–610 (2004)

25. Castellengo, M.: Multiple sounds in wind instruments (in French). Report, IRCAM (1983)
26. Chen, J., Smith, J., Wolfe, J.: Pitch bending and glissandi on the clarinet: roles of the vocal

tract and partial tone hole closure. J. Acoust. Soc. Am. 126(3), 1511–1520 (2009)
27. Clinch, P.G., Troup, G.J., Harris, L.: The importance of vocal tract resonance in clarinet and

saxophone performance, a preliminary account. Acustica 50, 280–284 (1982)
28. Cremer, L.: The Physics of the Violin (Orig. “Physik der Geige”). MIT (orig.: Hirzel, 1981),

Cambridge, MA (1984)
29. Cullen, J.S., Gilbert, J., Campbell, M.: Brass instruments: linear stability analysis and

experiments with an artificial mouth. Acustica Acta Acustica 86(4), 704–724 (2000)
30. Dalmont, J.P., Frappé, C.: Oscillation and extinction thresholds of the clarinet: comparison of

analytical results and experiments. J. Acoust. Soc. Am. 122(2), 1173–1179 (2007)
31. Dalmont, J.P., Kergomard, J.: Lattices of sound tubes with harmonically related eigenfrequen-

cies. Acta Acustica 2, 421–430 (1994)
32. Dalmont, J.P., Gazengel, B., Gilbert, J., Kergomard, J.: Some aspects of tuning and clean

intonation in reed instruments. Appl. Acoust. 46, 19–60 (1995)
33. Dalmont, J.P., Gilbert, J., Kergomard, J.: Reed instruments, from small to large amplitude

periodic oscillations and the Helmholtz motion analogy. Acustica 86, 671–684 (2000)
34. Dalmont, J.P., Gilbert, J., Ollivier, S.: Nonlinear characteristics of single-reed instruments:

quasistatic volume flow and reed opening measurements. J. Acoust. Soc. Am. 114(4),
2253–2262 (2003)

35. Dalmont, J.P., Gilbert, J., Kergomard, J., Ollivier, S.: An analytical prediction of the
oscillation and extinction thresholds of a clarinet. J. Acoust. Soc. Am. 118(5), 3294–3305
(2005)

36. Debut, V.: Two studies of a clarinet-like instrument: analysis of natural frequencies of the
resonator and calculation of self-sustained oscillations by modal expansion (in French). Ph.D.
thesis, Université Aix-Marseille II (2004)

37. Debut, V., Kergomard, J., Laloë, F.: Analysis and optimisation of the tuning of the twelfths
for a clarinet resonator. Appl. Acoust. 66, 365–409 (2005)

38. Doc, J., Vergez, C.: Oscillation regimes produced by an alto saxophone: influence of the
control parameters and the bore inharmonicity. J. Acoust. Soc. Am. 137, 1756–1765 (2015)

39. Doc, J., Vergez, C., Missoum, S.: A minimal model of a single-reed instrument producing
quasi-periodic sounds. Acta Acust. United Acust. 100, 543–554 (2014)

40. Ducasse, E.: Modeling and time domain simulation of wind instruments with single reed in
playing situation (in French). Ph.D. thesis, Université du Maine, Le Mans (2001)

41. Elliott, S.J., Bowsher, J.M.: Regeneration in brass wind instruments. J. Sound Vib. 83(2),
181–217 (1982)

42. Eveno, P., Petiot, J., Gilbert, J., Kieffer, B., Caussé, R.: The relationship between bore
resonance frequencies and playing frequencies in trumpets. Acta Acust. United Acust. 100,
362–374 (2014)

43. Fabre, B., Gilbert, J., Hirschberg, A., Pelorson, V.: Aeroacoustics of musical instruments.
Annu. Rev. Fluid Mech. 44, 1–25 (2012)

44. Facchinetti, M.L., Boutillon, X., Constantinescu, A.: Numerical and experimental modal
analysis of the reed and the pipe of a clarinet. J. Acoust. Soc. Am. 113(5), 2874–2883 (2003)

45. Farner, S.: Harmbal. Computer program in c (2005). Available at http://www.lma.cnrs-mrs.
fr/logiciels/harmbal/

46. Farner, S., Vergez, C., Kergomard, J., Lizee, A.: Contribution to harmonic balance calcula-
tions of self-sustained periodic oscillations with focus on single-reed instruments. J. Acoust.
Soc. Am. 119(3), 1794–1804 (2006)

http://www.lma.cnrs-mrs.fr/logiciels/harmbal/
http://www.lma.cnrs-mrs.fr/logiciels/harmbal/


554 J. Kergomard

47. Ferrand, D., Vergez, C.: Blowing machine for wind musical instrument: toward a real-time
control of the blowing pressure. In: IEEE 2008 Mediterranean Conference on Control
Automation, vols. 1–4, pp. 556–561 (2008)

48. Fletcher, N.H.: Excitation mechanisms in woodwind and brass instruments. Acustica 43,
63–72 (1979). Erratum: 50, 155–159 (1982)

49. Fletcher, N.H.: Autonomous vibration of simple pressure-controlled valves in gas flow.
J. Acoust. Soc. Am. 93(4), 2172–2180 (1993)

50. Fletcher, N.H., Rossing, T.D.: The Physics of Musical Instruments. Springer, New-York
(1991)

51. Freour, V., Lopes, N., Hélie, T., Caussé, R., Scavone, G.: In-vitro and numerical investigations
of the influence of a vocal-tract resonance on lip auto-oscillations in trombone performance.
Acta Acust. United Acust. 101, 256–269 (2015)

52. Fritz, C.: Influence of musician’s vocal tract on clarinet playing (in French). Ph.D. thesis,
Université de Paris 6 (2004)

53. Fritz, C., Wolfe, J.: How do clarinet players adjust the resonances of their vocal tracts for
different playing effects? J. Acoust. Soc. Am. 118(5), 3306–3315 (2005)

54. Fritz, C., Farner, S., Kergomard, J.: Some aspects of the harmonic balance method applied to
the clarinet. Appl. Acoust. 65, 1155–1180 (2004)

55. Gibiat, V., Castellengo, M.: Period doubling occurrences in wind instrument musical perfor-
mances. Acustica 86, 746–754 (2000)

56. Gilbert, J.: Instruments with single reed: extension of the harmonic balance method, role of
the resonance inharmonicity, measurement of the input quantities (in French). Ph.D. thesis,
Université du Maine (1991)

57. Gilbert, J., Kergomard, J., Ngoya, E.: Calculation of the steady-state oscillation of a clarinet
using the harmonic balance method. J. Acoust. Soc. Am. 86, 35–41 (1989)

58. Gilbert, J., Ponthus, S., Petiot, J.F.: Artificial buzzing lips and brass instruments: experimental
results. J. Acoust. Soc. Am. 104, 1627–1632 (1998)

59. Gokhshtein, A.: Self-vibration of finite amplitude in a tube with a reed. Sov. Phys. Dokl. 24,
739–741 (1979)

60. Grand, N., Gilbert, J., Laloë, F.: Oscillation threshold of woodwind instruments. Acustica 83,
137–151 (1997)

61. Grothe, T.: Experimental investigation of bassoon acoustics. Ph.D. thesis, Technische
Universität Dresden (2013)

62. Grothe, T., Baumgart, J.: Assessment of bassoon tuning quality from measurements under
playing conditions. Acta Acust. United Acust. 101, 238–246 (2015)

63. Guillemain, P.: Some roles of the vocal tract in clarinet breath attacks: natural sounds analysis
and model-based synthesis. J. Acoust. Soc. Am. 121(4), 2396–2406 (2007)

64. Guillemain, P., Kergomard, J., Voinier, T.: Real-time synthesis of wind instruments using
nonlinear physical models. J. Acoust. Soc. Am. 105(1), 444–455 (2005)

65. Guillemain, P., Vergez, C., Farcy, A.: An instrumented saxophone mouthpiece and its use
to understand how an experienced musician plays. Acta Acust. United Acust. 96, 622–634
(2012)

66. Guimezanes, T.: Experimental and numerical study of the clarinet reed (in French). Ph.D.
thesis, Université du Maine, Le Mans (2008)

67. Heinrich, J.M., Kergomard, J.: The bassoon, history, acoustics, reed (in French). Report,
Bulletin du Groupe d’Acoustique Musicale né 82–83 (1976)

68. Helmholtz, H.V.: App. VII, In the theory of pipes. In: On The Sensations Of Tone, 2nd english
edn., p. 576. Dover, New York (1954)

69. Hirschberg, A.: Aero-acoustics of wind instruments. In: Mechanics of Musical Instruments.
CISM Courses and Lectures, vol. 355, pp. 291–369. Springer, Wien, New York (1995)

70. Idogawa, T., Kobata, T., Komuro, K., Masakazu, I.: Nonlinear vibrations in the air column of
a clarinet artificially blown. J. Acoust. Soc. Am. 93(1), 540–551 (1993)

71. Iooss, G., Joseph, D.: Elementary Stability and Bifurcation Theory. Undergraduate Texts in
Mathematics. Springer, Berlin (1980)



9 Reed Instruments 555

72. Karkar, S., Cochelin, B., Vergez, C.: A high-order, purely frequency based harmonic balance
formulation for continuation of periodic solutions: the case of non-polynomial nonlinearities.
J. Sound Vib. 332, 968–977 (2013)

73. Kergomard, J.: Elementary considerations on reed-instrument oscillations. In: Weinreich,
A.H.J.K.G. (ed.) Mechanics of Musical Instruments, CISM Courses and Lectures, vol. 335,
pp. 229–290. Springer, Wien (1995)

74. Kergomard, J.: An acoustic revolution: the saxophone (in French). In: Colloque Acoustique
et instruments anciens, Cité de la musique, Paris, pp. 237–254 (1998)

75. Kergomard J., Gilbert, J.: Analysis of some aspects of the role of the reed of a cylindrical
wind instrument (in French). In: Actes du 5ème congrès Français d’acoustique, pp. 294–297
(2000)

76. Kergomard, J., Ollivier, S., Gilbert, J.: Calculation of the spectrum of the self-sustained
oscillators using a variable truncation method: application to cylindrical reed instruments.
Acustica 86, 685–703 (2000)

77. Kergomard, J., Dalmont, J., Gilbert, J., Guillemain, P.: Period doubling on cylindrical reed
instruments. In: 7th CFA-30th DAGA, pp. 113–114 (2004)

78. Maganza, C., Caussé, R., Laloë, F.: Bifurcations, period doubling and chaos in clarinetlike
systems. Europhys. Lett. 1, 295–302 (1986)

79. McIntyre, M.E., Schumacher, R.T., Woodhouse, J.: On the oscillations of musical instru-
ments. J. Acoust. Soc. Am. 74(5), 1325–1345 (1983)

80. Mersenne, M.: Harmonie Universelle, vol. 1636, Edition facsimilé. CNRS (1963)
81. Meynial, X.: Micro-interval systems for wind instruments with toneholes - oscillation of a

single reed coupled with a resonator of simple shape (in French). Ph.D. thesis, Université du
Maine (1987)

82. Meynial, X., Kergomard, J.: Micro-interval systems for wind instruments with toneholes
(in French). J. Acoustique 1, 255–270 (1988)

83. Miklos, A., Angster, J., Pitsch, S., Rossing, T.: Interaction of reed and resonator by sound
generation in a reed organ pipe. J. Acoust. Soc. Am. 119(5), 3121–3129 (2006)

84. Millot, L., Baumann, C.: A proposal for a minimal model of free reeds. Acta Acust. United
Acust. 93, 122–144 (2007)

85. Mira, C.: Nonlinear Controlled Systems (in French). Hermès, Paris (1990)
86. Nederveen, C.J.: Acoustical Aspects of Woodwind Instruments. Northern Illinois University

Press, IL. New edition, 1998 (1969)
87. Nederveen, C., Dalmont, J.: Mode locking effects on the playing frequency for fork fingerings

on the clarinet. J. Acoust. Soc. Am. 131, 689–697 (2012)
88. Newton, M., Campbell, M., Gilbert, J.: Mechanical response measurements of real and

artificial brass players lips. J. Acoust. Soc. Am. 123, EL14–EL20 (2007)
89. Ollivier, S.: Study of wind instruments with single reed (in French). Ph.D. thesis, Université

du Maine (2002)
90. Ollivier, S., Dalmont, J.P., Kergomard, J.: Idealized models of reed woodwinds. Part I:

analogy with the bowed string. Acta Acust. United Acust. 90(6), 1192–1203 (2004)
91. Ollivier, S., Kergomard, J., Dalmont, J.P.: Idealized models of reed woodwinds. Part II: on

the stability of “two-step” oscillations. Acta Acust. United Acust. 91(1), 166–179 (2005)
92. Picart, P., Leval, J., Piquet, F., Boileau, J., Guimezanes, T., Dalmont, J.: Study of the

mechanical behaviour of a clarinet reed under forced and auto-oscillations with digital Fresnel
holography. Strain 46, 89–100 (2010)

93. Rayleigh, L.: The Theory of Sound, vol. 2. Dover, New York (1877). Second edition, 1945
Re-issue

94. Ricaud, B., Guillemain, P., Kergomard, J., Silva, F., Vergez, C.: Behavior of reed woodwind
instruments around the oscillation threshold. Acta Acust. United Acust. 95, 733–743 (2009)

95. Ricot, D., Caussé, R., Misdariis, N.: Aerodynamic excitation and sound production of blown-
closed free reeds without acoustic coupling: the example of the accordion reed. J. Acoust.
Soc. Am. 117(4), 2279–2290 (2005)



556 J. Kergomard

96. Sattinger, D.: Topics in Stability and Bifurcation Theory. Lecture Notes in Mathematics.
Springer, Berlin (1973)

97. Scavone, G.P., Lefebvre, A., da Silva, A.R.: Measurement of vocal-tract influence during
saxophone performance. J. Acoust. Soc. Am. 123(4), 2391–2400 (2008)

98. Schumacher, R.T.: Self-sustained oscillations of the clarinet: an integral approach. Acustica
40, 298–309 (1978)

99. Schumacher, R.T.: Ab initio calculations of the oscillations of a clarinet. Acustica 48(2),
71–85 (1981)

100. Silva, A.D., Scavone, G., van Walstijn, M.: Numerical simulations of fluid-structure interac-
tions in single-reed mouthpieces. J. Acoust. Soc. Am. 122, 1798–1809 (2007)

101. Silva, F., Kergomard, J., Vergez, C., Gilbert, J.: Interaction of reed and acoustic resonator in
clarinetlike systems. J. Acoust. Soc. Am. 124(5), 3284–3295 (2008)

102. Silva, F., Vergez, C., Guillemain, P., Kergomard, J., Debut, V.: Moreesc: a framework for
the simulation and analysis of sound production in reed and brass instruments. Acta Acust.
United Acust. 100, 126–138 (2014)

103. Sommerfeldt, S.D., Strong, W.J.: Simulation of a player-clarinet system. J. Acoust. Soc. Am.
83(5), 1908–1918 (1988)

104. Taillard, P., Kergomard, J.: An analytical prediction of the bifurcation scheme of a clarinet-
like instrument: effects of resonator losses. Acta Acust. United Acust. 101, 279–291 (2015)

105. Taillard, P., Kergomard, J., Laloë, F.: Iterated maps for clarinet-like systems. Nonlinear Dyn.
62, 253–271 (2010)

106. Taillard, P., Laloë, F., Gross, M., Dalmont, J., Kergomard, J.: Statistical estimation of
mechanical parameters of clarinet reeds using experimental and numerical approaches. Acta
Acust. United Acust. 100, 555–573 (2014)

107. Takahashi, K., Kodama, H., Nakajima, A., Tachibana, T.: Numerical study on multi-stable
oscillations of woodwind single-reed instruments. Acta Acust. United Acust. 95, 1123–1139
(2009)

108. Tarnopolsky, A.Z., Fletcher, N.H., Lai, J.C.S.: Oscillating reed valves—an experimental
study. J. Acoust. Soc. Am. 108(1), 400–406 (2000)

109. Team, N.U.: Music acoustics ‘robot clarinet’ (2008). http://www.phys.unsw.edu.au/jw/
clarinetrobot.html

110. Thompson, S.C.: The effect of the reed resonance on woodwind tone production. J. Acoust.
Soc. Am. 66(5), 1299–1307 (1979)

111. Valette, C., Cuesta, C.: Mechanics of the Vibrating String (in French). Hermès, Paris (1993)
112. van Walstijn, M., Avanzini, F.: Modelling the mechanical response of the reed-mouthpiece-lip

system of a clarinet. Part II: a lumped model approximation. Acta Acust. United Acust. 93,
435–446 (2007)

113. Vergez, C., Lizée, A.: A frequency-domain approach of harmonic balance solutions stability.
In: Forum Acusticum, Budapest, pp. 539–543 (2005)

114. Vergez, C., Rodet, X.: Experiments with an artificial mouth for trumpet. In: ISMA’98
Proceedings, pp. 153–158. Leavenworth, Washington (1998)

115. Vergez, C., Rodet, X.: Air flow related improvements for basic physical models of brass
instruments. In: Proceedings of ICMC’2000, Berlin, pp. 62–65 (2000)

116. Vergez, C., Rodet, X.: Trumpet and trumpet player: physical modeling in a musical context.
In: Proceedings of the International Congress of Acoustics (ICA), Rome, p. CDROM IV
(2001)

117. Vergez, C., Almeida, A., Caussé, R., Rodet, X.: Toward a simple physical model of double-
reed musical instruments: influence of aero-dynamical losses in the embouchure on the
coupling between the reed and the bore of the resonator. Acta Acust. United Acust. 89(6),
964–973 (2003)

118. Weber, W.: Theorie der Zungenpfeifen. Annalen der Physik und Chemie, hrsg. von J.C.
Poggendorf 93, 193–246 (1829)

119. Weinreich, G., Caussé, R.: Elementary stability considerations for bowed-string motion.
J. Acoust. Soc. Am. 89(2), 887–895 (1991)

http://www.phys.unsw.edu.au/jw/clarinetrobot.html
http://www.phys.unsw.edu.au/jw/clarinetrobot.html


9 Reed Instruments 557

120. Wilson, T.: The measured upstream impedance for clarinet performance and its role in sound
production. Ph.D. thesis, University of Washington (1996)

121. Wilson, T.A., Beavers, G.S.: Operating modes of the clarinet. J. Acoust. Soc. Am. 56(2),
653–658 (1974)

122. Woodhouse, J.: Idealised models of a bowed string. Acustica 79, 233–250 (1993)
123. Woodhouse, J., Schumacher, R., Garoff, S.: Reconstruction of bowing point friction force in

a bowed string. J. Acoust. Soc. Am. 108(1), 357–68 (2000)
124. Worman, W.: Self-sustained nonlinear oscillations of medium amplitude in clarinet like-

systems. Ph.D. thesis, Case Western Reserve University Cleveland (1971)



Chapter 10
Flute-Like Instruments

Benoît Fabre

Abstract This chapter deals with a second category of self-sustained oscillations
produced by musical instruments and focuses on flutes with open ends. The
following section presents the self-sustained oscillator as a looped system, focusing
mostly on the jet and on its interaction with the acoustic field in the pipe. An integral
approach, that allows to overpass the limitations of the looped system analysis, is
also introduced. The three main elements that need to be described for modeling
the oscillation in flutes are: (1) the perturbation of the jet by the acoustic field:
the jet receptivity; (2) the evolution of the perturbation convected by the jet: the
jet instability; and (3) the production of acoustical energy by the perturbed flow:
the aeroacoustic sources. Models are proposed for each of these elements and
compared to experiments. The jet-drive model is detailed and shown to be formally
equivalent to the force source term in an aeroacoustic analogy. The main geometrical
parameters that characterize a flute exciter is the ratio of the channel thickness to the
distance between the flue exit and the labium, while the main parameter related to
the instrumentalist is the jet Reynolds number.

10.1 Introduction and General Description

The first attempts to understand flute-like instruments from a physical point of view
are found in the late nineteenth century, see, for example, the work by Helmholtz
[48] and Rayleigh [36]. During the twentieth century, the development of fluid
mechanics and more specifically studies on jet instability and aeroacoustics brought
new insight on the physics of flute-like instruments.

Today’s models allow producing realistic synthetic flute sounds, based on
the physical description of the instrument. This indicates that the main physical
mechanisms are now understood. However, this global understanding does not allow
an accurate interpretation of the influence of some specific parameters, such as those
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of interest for players and instrument makers. This chapter focuses on open end
flutes, excluding stopped pipes, and on quasi-cylindrical pipes. Indeed, the conical
bore of flutes shows a behavior much closer to that of a cylinder than the bores of
double reed instruments such as the oboe or the bassoon.

After a general description of the physics and of the different sound production
mechanisms in flutes, the chapter will develop a general model of flutes (Sect. 10.2).
We then focus on the most difficult parts, namely the description of the jet instability
(Sect. 10.3) and of the aeroacoustic sources (Sect. 10.4). The main elements leading
to a simplified model (Sect. 10.5) aiming at sound synthesis, will be discussed next.

10.1.1 The Air Jet, Driving the Oscillation in Flutes

The three main elements that need to be described for modeling the oscillation in
flutes are

• the perturbation of the jet by the acoustic field: the jet receptivity,
• the evolution of the perturbation convected by the jet: the jet instability,
• the production of acoustical energy by the perturbed flow: the aeroacoustic

sources.

The following section presents the self-sustained oscillator as a looped system,
focusing mostly on the jet and on its interaction with the acoustic field in the pipe.

10.1.1.1 The Jet Instability

Observing the smoke emitted by a cigarette indicates that jets are naturally unstable.
After a few centimeters, the thin smoke jet bends and oscillates, and finally looses
its organized structure, ending as a wide cloud. This kind of (space-time) instability
can be observed as soon as two fluids with different velocities are in contact. For
example, the wind at the surface of the sea induces water waves. The surrounding
air needs to be still in order to observe the evolution of the cigarette smoke described
above: indeed, slight movements of the air around the cigarette or a movement of
the hand holding the cigarette strongly influences the jet motion, demonstrating the
high sensitivity of the smoke jet.

In a flute, the air jet is blown across an open end of the pipe resonator. When
acoustic oscillation occurs within the resonator, the jet instability synchronizes
on the acoustic oscillation, resulting in a “forced” oscillation of the jet. The
hydrodynamic waves traveling on the jet have the same frequency as the acoustic
oscillation. As for the oscillation described in the case of the cigarette smoke, the jet
perturbation grows as it is carried by the flow, being convected downstream. In the
case of a jet oscillation forced by a loudspeaker, Fig. 10.1 shows how the transverse
displacement of the jet increases in the downstream direction.
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Fig. 10.1 Photograph of the jet perturbation forced by loudspeakers placed at few centimeters
apart from the flow, above and under it [Re D 500, 658 Hz, Uj = 7.5 m/s]. The jet is exhausting
from the end of a 1 mm thick channel, seen on the left side of the picture

Two characteristics of the jet motion are important for the flute oscillation:

• the convection velocity of the perturbation, corresponding to the propagation
velocity of the perturbation waves on the jet: to a first approximation, the
convection velocity is equal to half the centerline jet velocity,

• the amplification of the perturbation, corresponding to a characteristic growth
factor of the instability waves along the jet.

Both characteristics depend on frequency, but the amplification strongly depends
on it: the jet instability is stronger in a frequency range depending on both the
jet velocity and jet thickness. The strongest amplification appears for frequencies
around 0:3Uj=h, where Uj is the jet velocity and h is the thickness of the flue channel
from which the jet is flowing.1

10.1.1.2 Acoustic Sources at the Labium of the Flute

Figure 10.2 illustrates the vocabulary used in the case of a recorder. The terminology
changes according to the instrument studied: for instance, the foot of the organ pipe
corresponds to the mouth of the recorder player, while the upper-lip of the mouth
of the organ pipe corresponds to the labium or blowing edge of the recorder! In a
transverse flute, the flue channel is created between the lips of the player.

Transverse perturbations of the jet are induced by the acoustic field. They are
convected from the flue exit to the labium or blowing edge. As a result, the jet
oscillates from one side to the other of the labium (Fig. 10.3). This induces a force
on the labium due to the flow. This force is synchronized with the jet perturbation,
and therefore with the acoustic oscillation. The reacting force of the labium acts as
an acoustic source that sustains the acoustic oscillation, thus compensating for the
various acoustic losses.

1Please note that in this chapter, we will denote the velocity as U, and the volume flow as Q, as it
is of common use in fluid mechanics. This differs from the convention used in the other chapters
of the book.
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Chamfers

Labium

Resonator

Flue channelAir supply
pressure

(player's mouth)

Fig. 10.2 Longitudinal sketch of a recorder, showing the terms used in this chapter. The chamfers
at the flue exit can also be seen on this sketch. The opening between the flue exit and the labium is
called the “mouth” in this chapter

Fig. 10.3 The acoustic field
at the flue exit induces a
perturbation of the jet that is
amplified while it is
convected towards the
labium. This results into the
transverse oscillation of the
jet from one side of the
labium to the other

W

h

Jet:
propagation

and
amplification

Labium:
aero-acoustic

source

Pipe:
passive

resonance

Fig. 10.4 Self-sustained oscillation in flutes can be described as a feedback loop

10.1.1.3 The Self-Sustained Oscillator as a Looped System

The acoustic field in the pipe resonator is responsible for the initial jet perturbation.
This perturbation is convected and amplified downstream due to the natural jet
instability. The interaction of the perturbed jet with the labium constitutes the
aeroacoustic source that feeds acoustic energy into the pipe. As a response to this
excitation, the acoustic energy in the pipe is associated with the acoustic flow
through the mouth, that results in the jet perturbation at the flue exit. Therefore,
the self-sustained oscillations in the instrument can be described as a feedback loop,
as shown in Fig. 10.4.
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This looped description allows to predict the oscillating frequency of the
instrument. Because the pipe accumulates energy only at resonances, the oscillating
frequency is close to a pipe resonance. In the looped description of the system,
stationary oscillations can only occur when the total phase shift around the loop is
2� or any multiple of 2� . When blowing softly in a recorder, one can check that
the time delay associated with the convection of perturbations on the jet is about
half the oscillation period. The phase shift of the pipe response therefore needs to
be the exact complement of one period: that is � , corresponding to another half
period. If we now blow a little harder in the recorder, the jet velocity increases and
the convection velocity of perturbation increases accordingly. The phase shift due
to the convection of perturbations on the jet decreases and therefore the phase shift
of the pipe response needs to increase: the oscillation frequency slightly increases
to match the phase condition. Blowing even harder, the convection delay on the jet
eventually becomes too small compared to the period of the first pipe resonance and
the oscillation jumps to the second pipe resonance, for which the same convection
delay represents a larger phase shift (Fig. 10.5). This is called “overblowing.” For
a given fingering, the player can select the oscillating regime, among the different
pipe resonances, by adjusting the blowing pressure and consequently the convection
jet velocity.

By blowing gently, at very low blowing pressures compared to standard playing,
the player can produce very soft tones at frequencies close to the pipe reso-
nances. This playing technique, called “whistle-tones” or sometimes “eolian tones,”

Jet velocity

Playing frequency

f3

f2

f1

Fig. 10.5 Simplified representation of the playing frequency of a flute as function of jet velocity.
The oscillation takes place at a frequency close to one of the pipe passive resonances f1, f2, or f3.
Regime changes do not occur at the same jet velocity for increasing (gray arrows) and decreasing
(white arrows) jet velocity: a hysteresis appears. Dotted lines indicate whistle-tone oscillations



564 B. Fabre

corresponds to convection delays on the jet that are larger than one oscillation
period: one and a half or two and a half period may be observed, instead of the half
period observed under standard playing conditions. These oscillations do not easily
appear in recorders because of the short distance between flue exit and labium. They
can appear for standard playing conditions during starting transients on some flutes
and organ pipes, before the jet reaches its stationary velocity.

10.1.2 The Sounds of Flutes

10.1.2.1 The Different Elements of the Sound

Different elements are combined in the sound radiated by flutes. Using a mechanical
air supply allows producing a stationary sound, as for an organ. The sound radiated
by a pipe blown in such a way can be split into a deterministic part, that can be
analyzed in terms of sine wave components, and a stochastic part, generated by
turbulence. Indeed, turbulence produces a broadband noise, that is filtered by the
pipe acoustical response. In Fig. 10.6, the FFT spectrum analysis of the stationary
part of the sound of a small organ pipe shows the harmonics together with the
turbulence noise filtered by the pipe. One can clearly see the shift in frequency
between harmonics and pipe resonances: for example, the sixth resonance of the
pipe lies between the sharp lines of the harmonics 6 and 7.

The transverse position of the labium, relative to the jet central axis, has a
strong influence on the relative amplitudes of the harmonics. In the recorder, even
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Fig. 10.6 FFT analysis of the internal pressure (left) and radiated pressure (right) at a distance of
30 cm in front of the mouth of a small organ pipe (2048 points FFT, Hanning window, averaging
over 25 time slots). At frequencies higher than the fifth harmonic, (around 2.5 kHz), resonances
can be identified by their filtering effect on the noise sound of turbulence, since their frequency
does not coincide any more with the harmonics that correspond to the sharp peaks seen as vertical
lines in the spectra. Radiation induces a relative amplification of the higher frequencies. From [18]
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harmonics reach a minimum value for a transverse position of the labium close
to the jet axis [47]. Measurements on (transverse) flute playing indicate that some
players are working to enhance the amplitude of even harmonics, while some others
are seeking to generate strong odd harmonics.

When the air supply comes from a player rather than from a mechanical
system, pressure fluctuations modulate the sound production. Vibrato correspond
to a conscious and intentional modulation of the blowing, but fluctuations are
observed, even when the player aims at producing a “stable” tone. Because of these
fluctuations, it is generally not possible to define a stationary part of the tone. This
makes the analysis of the sound production even more difficult!

Starting transients are also quite difficult to analyze. Experiments on transients
are difficult to set up, mostly because it is difficult to get an accurate and
reproducible control of blowing pressure rises. Analysis is also difficult from the
point of view of signal processing, while the most difficult part of the analysis of
starting transients is due to the complex interaction of intricate physical phenomena
[20, 46]. The different sound components, that will become the harmonics in the
steady stationary part of the sound, display changing frequencies and amplitudes
during the attack transient. Figure 10.7 shows the time evolution of the three
first frequency components during an attack transient. In this example, the second
component (with frequency close to twice that of the later fundamental) increases
much faster than the first component.
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Fig. 10.7 Time evolution of the three first frequency component during the attack transient in a
small organ pipe. In this case, the second component is dominating the attack transient. From [38]
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10.1.2.2 Whistle-Tones or Eolian Tones

High frequency components may also appear during the attack transient [8, 20].
The frequency behavior of the so-called mouth-tones [8] shows some similarity with
edge-tones. Therefore, measurements of the amplitude of these sounds (pipe internal
pressure) were made under steady blowing in whistle-tone condition, showing that
the amplitude is a factor 100 higher than that expected for edge-tones. Furthermore,
the amplitude appears to be even higher (approximately by a factor 2) than that
expected for a “normal” pipe-tone, indicating that the saturation mechanisms at
work are different.

These mouth-tones, or eolian tones or whistle-tones, are relying on energy
accumulation at a resonance frequency of the pipe [1]. Flute players know very
well how dangerous they are because of their poor stability.

10.2 A Global Model for the Instrument

10.2.1 General Description

Before developing a physical model of a flute, the limits of the system must be
clearly identified. Recall that the sound is the result of instrument–player interaction.
It is therefore easier to start our description by instruments in which the player has
little influence on the sound: the organ pipe, and to a lesser extend, the recorder.
Both instruments have in common that the geometry of the exciter part does not
change during playing, and is fully determined by the music instrument maker:
jet formation channel and labium position. When the jet is blown through the lips
of the player, the description is more complex because the player adapts his lip
geometry during playing, in a not fully reproducible manner. A good player may
aim at producing very similar sound quality when repeating a musical excerpt, but
never aims at reaching the same lip geometry: the player’s target is the sound, not
the geometry.

Even for instruments with a fixed geometry, today’s models are still very crude.
They offer a good description of the physics of the instrument for a restricted range
of parameters (Reynolds and Strouhal numbers, see next section). These models
are only valid for specific playing techniques and fail to describe some phenomena
observed during transients. Furthermore, they do not allow to include some details
of the instruments such as the chamfers that are cut at the flue exit in recorders, or the
nicking of some organ pipes. Direct flow simulation, solving the equations of fluid
mechanics at each time step and each position in space, is still difficult nowadays
when dealing with the whole instrument [31, 41], but can offer interesting answers
to localized problems, providing information that can help improving simplified
models [7].
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Fig. 10.8 Geometrical
parameters of the exciter part.
Uj is the jet central velocity at
the channel exit, h is the
channel thickness, and W is
the flue exit to labium
distance

Uj

W

h

10.2.2 Important Parameters

Oscillations in a flute can be described as the result of the coupling between a
hydrodynamic mode of a jet and an acoustic mode of a pipe resonator. Different
scaling parameters are useful. Figure 10.8 shows the geometrical parameters
involved in this coupling.

The Reynolds number Re is used to characterize the structure of the jet: it may
vary from a few hundreds (recorder) up to 10,000 in modern transverse flute playing.

500 < Re D Ujh

�
< 10; 000 (10.1)

where Uj is the jet central velocity at the channel exit, h is the corresponding channel
thickness, and � is the kinematic viscosity of air (� D 1:5 
 10�5 m2=s D �=�,
see Sect. 5.5.2 in Chap. 5). The jet instability is characterized by the Strouhal
number, corresponding to the inverse of the dimensionless frequency. Definitions
of the Strouhal number may vary according to different situations and authors, from
!W=Uj, with ! the angular frequency and W the flue exit to labium distance, to
fh=Uj, where f D !=2� .

Theoretical analysis of jet instability generally uses the half-thickness parameter
b of the jet, for instance, in the case of the Bickley velocity profile2 U.y/ D
U0 sech2.y=b/ with y the transversal coordinate [22, 34]. The relation between the
experimental parameter h and the theoretical parameter b is not straightforward.
To a first approximation, it can be deduced from conservation laws between the
channel flow and the jet flow. For example, if the channel flow is approximated by
a Poiseuille flow and the jet flow is assumed to have a Bickley velocity profile with
U0 D Uj, momentum conservation together with central velocity conservation lead
to b D 2h=5 [45].

For standard blowing conditions in flutes, one half hydrodynamic wavelength
�h can be observed on the jet between the flue exit and the labium. The wave
propagation velocity on the jet is approximately equal to half the central jet velocity

2sech x D 1= cosh x
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Uj, and therefore the half wavelength across the mouth width W, between flue exit
and labium W D �h=2 corresponds to:

StrW D fW

Uj
� 0:25 (10.2)

which is a characteristic value in the oscillating range of the instruments
[15, 21, 39, 47].

The properties of the jet instability are determined by the interaction between
both shear layers, on the two sides of the jet. Therefore, the instability is often
studied as function of the Strouhal number based on the transverse dimension of
the jet (b or h, depending on whether the approach is theoretical or experimental):
Strh D fh=Uj. The jet length to jet thickness ratio W=h corresponds to the ratio
between the two Strouhal numbers discussed above. This ratio is an important
parameter for the modeling. “Thick jets” correspond to values of this ratio smaller
than 4 (in the case of transverse flute or shakuhachi, the Japanese flute, playing loud
in the low register), while “thin jets” such as those found in some organ pipes are
characterized by values up to 20 of the thickness ratio W=h of the jet.

Figure 10.9 shows the standard operating range of different instruments in a map
representing the jet thickness W=h as function of the Reynolds number. Instruments
for which the jet is formed between the lips of the player allow to vary the
parameters during playing, and therefore present a wide operating range. In the
case of the organ, it is the variety of pipes in the different stops that allows a wide
operating range.

Models for the jet behavior need to be adapted to the specific operating range. In
the organ, the same blowing system is generally used for all pipes, and the player
can adjust individual blowing conditions of each pipe by varying the opening of
each pipe foot. Together with different geometries of the flue and of the labium, this
yields a wide operating range.

Last, the oscillating amplitude is quantified as the ratio of the acoustic velocity
in the mouth of the pipe to the central jet velocity, or to the mean flow velocity
of the jet. The central jet velocity is generally estimated from pressure values by
applying the Bernoulli equation (see below) between the pressure reservoir and the
atmospheric pressure [21, 39, 46]. The acoustic velocity in the mouth can be deduced
from pressure measurement in the pipe resonator, taking the non-uniformity of the
flow in the mouth [45] into account. For standard blowing conditions, oscillating
amplitudes induce a transverse acoustic perturbation vac of the jet, with an amplitude
Vac of the order of magnitude of one-tenth of the jet velocity:

Vac

Uj
� 10�1: (10.3)
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Fig. 10.9 Operating ranges of the recorder, of the transverse flute, and of the organ pipes in a
map representing the jet thickness W=h as function of the Reynolds number. Transverse flute
allows the player to cover a wide range on a single instrument through lip and blowing pressure
adjustment, while in the case of the organ, the variety of pipes with different geometries determines
the operating range

10.2.3 Localized or Distributed Interaction?

The different elements that take part in the oscillation interact in such a way that it
is difficult to separate them: the acoustic resonance in the pipe cannot be separated
from the radiation at the pipe ends, and the aeroacoustic source acts in the vicinity
of the open end. It may seem artificial to model each element separately: the jet, the
aeroacoustic sources, and the pipe resonator.

10.2.3.1 Models Assuming Localized Interaction (Lumped Models)

This separation came first from the different related scientific fields: flow instability
is generally a topic of fluid mechanical studies, the pipe resonance of complex pipes
is analyzed in acoustical studies, while the sound production by an unsteady flow
interacting with solid boundaries is analyzed in aeroacoustical studies. Different
time and space scales may allow to justify the splitting of the problem into
independent problems, corresponding to different simplifications of the Navier–
Stokes equation.
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Jet descriptions are usually carried out under the assumption of compact flow,
corresponding to small scales compared to the acoustic wavelength: the fluid is
supposed to be incompressible3. In contrast, the description of the pipe acoustics
usually neglects convective effects. Theses assumptions are valid, in the study of
the oscillation mechanisms, only for low frequencies, corresponding to the lowest
harmonics of the sound. This is justified by the fact that the oscillation mechanisms
are controlled by the fundamental frequency of the oscillation, or by the two first
harmonics. However, for the listener hearing the radiated sound, higher frequency
components are very important. The poor radiation efficiency at low frequencies
makes these two points of view compatible: low frequencies are mostly trapped
inside the resonator and taking care of the self-sustained oscillation. This is because
the sound waves at low frequencies are almost totally reflected at the open pipe ends,
with very little radiation. The visco-thermal losses at the walls at the oscillating
frequency are higher than the radiation losses. On the contrary, higher frequency
components have smaller amplitudes inside the pipe, but they are much more
efficiently radiated. Figure 10.6 shows the spectrum of the acoustic pressure inside
the pipe, together with the spectrum of the acoustic pressure radiated at a distance
of about 30 cm from the pipe mouth. Components in the frequency band from 3 to
5 kHz, corresponding to the most sensitive range of hearing, show a higher relative
importance in the radiated sound than in the internal acoustic field.

10.2.3.2 Distributed Interaction Models

Lumped models with independent blocks are based on the assumption of localized
interactions. The jet is supposed to be perturbed by the acoustic field at the positions
of flow separation at the flue channel exit, and the sound production is supposed to
be localized at the labium. The pipe resonator is then fully described by its acoustic
response to this excitation at the flue exit.

A more rigorous approach can be found in analytical models, as proposed by
Howe [28], Crighton [11], Elder [17], and Bechert [5]. These models describe
the interaction between the flow and the acoustic field using integral formula-
tions. These formulations can be developed for simplified geometries only, such
as an infinitely thin labium, for instance, and leads to awkward mathematical
developments when solving the problem. Solving is only possible under restrictive
assumptions, such as infinitely thin shear layers, linear approximation of pertur-
bations (the saturation of the oscillation is not part of the solution), or in some
cases point vortices. Despite these difficulties, analytical models, together with

3The fluid can be considered as incompressible whenever its density � can be approximated to be
constant. This means that the density variations induced by pressure variations can be neglected.
The equation � D �0 D constant is an equation of state of the fluid, indicating that pressure
changes are related to the acceleration of the fluid (Bernoulli) or to viscous forces, but not to
density changes. As a consequence, one can write div.v/ D 0. Of course, acoustic waves cannot be
written under such an assumption. This assumption can therefore only apply within a region small
compared to the acoustic wavelength, and only for flow velocities Uj that remain small compared
to the velocity c of sound propagation (M D Uj=c � 1).
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numerical simulation, are probably an interesting source of inspiration whenever
lumped models with localized interactions fail to predict the flute’s behavior. This
is the reason why we will present these approaches in the following section.

10.3 A Modeling for the Jet Oscillation

The jet oscillation is described within the framework of fluid mechanics. The basic
description of the flow dynamics is the same as the one used in the context of
acoustics, but fluid dynamics generally focuses on different approximations. We
will first discuss the jet formation at the outlet of the flue channel (in the case of
a recorder) or of the lip channel (in the case of transverse flute, for example). The
unstable behavior of this jet will then be addressed. The sound production associated
with the interaction of the jet with the labium will be described in Sect. 10.4.

10.3.1 Jet Formation

The instrument player produces an overpressure in his mouth. As a result the air
accelerates towards the low pressure area in the channel or between the player’s
lips. To a first approximation, our description will assume that the pressures and
therefore the jet flow are constant, which correspond to stationary conditions.

10.3.1.1 The Flow in the Channel

In a frictionless approximation (inviscid flow), the circulation of the velocity round a
loop is conserved (Kelvin circulation theorem). Since the circulation round a loop is
related to the vorticity field, if the vorticity is zero at an initial instant, it remains zero
for all subsequent times. The flow is then described as irrotational and the velocity
is conservative: it is the gradient of a scalar potential v D grad'. Starting from
Euler’s equation without external forces (1.101), one can write under incompressible
assumption (mass density �0 is constant, divv D 0):

�0
dv
dt

D �grad p: (10.4)

If we now assume a stationary flow, the time derivatives are zero. The pressure
forces push the fluid into the channel in the x direction, and the velocity vx in this
direction is the only component of the flow. The previous equation then writes

�0vx
@vx

@x
D �@p

@x
: (10.5)
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Fig. 10.10 Frictionless flow
at the outlet of a pressure
reservoir: application of
Bernoulli’s equation

p1

v2v1

p2

Patm

The left-hand side of this equation can be written as: 1
2
�0@v

2
x=@x. Integrating the

equation along a path from inside the pressure reservoir to a point outside in the jet
yields a simplified Bernoulli equation (1.104):

1

2
�0.v

2
x2 � v2x1/ D p1 � p2: (10.6)

If the reservoir that accounts for the player’s mouth is large enough, the
integration can be carried out from a point inside the reservoir where the velocity
is negligible to a point outside in the jet, where the pressure is equal to the ambient
atmospheric pressure p2 D Patm (Fig. 10.10). Assuming a potential flow allows
this result to be independent from the path between the two considered points.
A fluid particle is accelerated from the mouth (pressure higher than the atmospheric
pressure, stagnant fluid, potential energy) by the pressure gradient into the flow
channel down to the channel exit (atmospheric pressure and kinetic energy). The jet
velocity Uj at the flue channel exit is

Uj D
s
2�p

�0
: (10.7)

where�p stands for the mouth pressure relative to the atmospheric pressure:�p D
p1 � Patm.

However, this description does involve friction because of the flow separation
at the channel exit. Indeed, in a strictly frictionless potential flow description,
streamlines follow the walls and this would induce an infinite transverse acceleration
of fluid particles at the edges of the channel exit! In an actual flow, the viscosity
becomes important at this point, even if it is very small. Viscosity is responsible for
flow separation and jet formation.

• A viscous flow approach allows describing the development of boundary layers
at the channel walls. Because of viscosity, the tangential velocity is zero at the
walls, and increases within a thin layer up to its nominal frictionless flow value.
This transition layer is called a “boundary layer.” The thickness ı of this layer
grows as the flow travels downstream in the channel. The flow in the axial x
direction therefore shows a transverse velocity profile vx.y/ D U.y/ that changes
as fluid flows downstream. Friction forces due to viscosity depend on the slope
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of the velocity profile �.@U=@y/; where � is the coefficient of viscosity of the
fluid. The net force on a layer of thickness dy results from viscous stresses on
both sides: �.@U=@y/yCdy on one side and ��.@U=@y/y on the other side.

In total, the net viscous force (per unit surface dxdz of the layer of thickness
dy) is �@2U=@y2. The momentum conservation (10.4) should take this force into
consideration. Extending the viscous force in the three directions (when necessary!),
leads to the Navier–Stokes equation for incompressible flows:

�0
dv
dt

D �grad p C �r2v: (10.8)

In the case of a stationary flow, this equation writes

�0.v:grad/.v/ D �grad p C �r2v: (10.9)

Solving this equation in a channel is generally associated to the name of Prandtl.
This is a nonlinear 2D problem. Rather than the mathematical development (see
[3, 42] for reference), we now focus on its physical interpretation.

In the boundary layer along the channel walls, viscosity induces transverse
transfer of momentum on a thickness that grows with time as ı / p

�t, and therefore
also grows with distance x from the channel inlet. For a flow of velocity U, the
boundary layer thickness can be approximated as:

ı.x/ �
r
�x

U
: (10.10)

If the channel is long enough, the two boundary layers from each side of the
channel will join, resulting in the formation of a parabolic velocity profile. For a long
channel of uniform thickness h, the corresponding parabolic flow velocity profile is
known as the Poiseuille velocity profile4

U.y/ D 1

2�

dp

dx
.y2 � h2/: (10.11)

4Acoustic boundary layers discussed in Chap. 5, Sect. 5.4.2.1, are different from those studied
here. In the description of the acoustic boundary layers, the linear mass acceleration �0@v=@t
takes the place of the convection term (left-hand side) in Eq. (10.9). The change between the two
complementary situations is governed by the channel thickness, flow velocity, and the frequency
of the acoustic phenomenon: in a cylindrical pipe, the Stokes number indicates the ratio of
the pipe radius to the acoustic boundary layer thickness. The Stokes number can be seen as
the combination of the Reynolds number (dimensionless flow velocity) and Strouhal number
(dimensionless frequency). For a quasi-steady flow (low Strouhal) and low flow velocity (low
Reynolds), the Stokes number is small and the Poiseuille velocity profile is reached, corresponding
to thin pipes, also called capillaries. For high frequencies and/or wider pipes, the linear term
becomes dominant and the viscous acoustic boundary layer is observed, with constant thickness as
the wave travels downstream. Intermediate situations show a boundary layer that grows in space,
whenever the convective term controls the development of the boundary layer.
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The pressure decreases linearly with the distance x along the channel. Integrating
the previous equation allows calculating the pressure gradient, as a function of the
flow velocity U0 at the channel inlet (constant velocity profile, with infinitely thin
boundary layers):

dp

dx
D �3�U0

1

h2
: (10.12)

Mass conservation between the channel inlet (uniform velocity profile) and the
channel outlet yields the central velocity U.y D 0/ of the Poiseuille profile:

U.0/ D 1:5U0: (10.13)

Before the channel exit, the flow velocity profile is determined by the time during
which viscosity has smoothed the profile: for a short channel, and/or high velocity,
the boundary layers are thin and the flow shows a central core with a flat velocity
profile. On the opposite, a long channel, and/or a slow velocity, allows for the
development of a Poiseuille-like velocity profile. In most actual applications to flute
channels, the estimation of the central velocity using Bernoulli’s equation (10.7)
seems to be reasonable [43]. Not only the channel is relatively short, but also in the
case of recorders, it is usually convergent. The decrease in channel thickness will
delay the boundary layer development.

10.3.1.2 The Jet Flowing Out of the Channel

Because of viscosity, the flow separates from the walls at the channel exit in order
to form a free jet.

If the end of the channel shows sharp edges, the flow separation is triggered at the
edges. Indeed, a fluid particle that would stick to the walls would experience a strong
localized acceleration in time and space. Even if it is low, viscosity will counteract
this acceleration. This is related to the fact that edges represent singularities in a
potential flow.

If the end of the channel is rounded, the flow separation point is more difficult
to predict. Before the separation, the flow spreads into a divergent channel. Mass
conservation indicates that the velocity in the x direction slows down as the channel
gets wider. According to Bernoulli’s description, this results in a rising pressure in
the flow, corresponding to a change of sign of the pressure gradient in the x direction:
while the pressure is decreasing in the straight part of the channel due to friction,
it increases in the divergent part. The pressure in the boundary layer is equal to
the pressure in the core of the flow, hence the fluid particles in the boundary layer
are submitted to two opposite influences: acceleration due to viscous momentum
transfer from the core of the flow to the boundary layer and deceleration due to
the inverse pressure gradient. At some point in the diverging channel the balance
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Fig. 10.11 The flow at the channel inlet has a top-hat velocity profile. As the fluid flows
downstream, boundary layers get thicker because of viscosity. If the channel outlet is rounded, the
flow slows down, resulting in an increase of pressure. The change of sign of the pressure gradient
in the diverging part at the channel exit is responsible for flow separation. Because of viscosity, the
free jet formed drags the surrounding fluid (rounded arrows)

between these two terms changes of sign and triggers the separation of the fluid
particle at the wall, generating a stagnant fluid and/or fluid recirculation (Fig. 10.11).

In both cases (sharp or rounded edges), flow separation results in a jet that carries
the memory of the channel geometry, and of upstream hydrodynamic conditions.
Like a piano hammer escaping from the launching mechanism and projected against
the string, the jet escapes from the control of the player. Jet characteristics such as
its velocity, shape, and profile influence its behavior, like the instability that is at
work in the heart of the sound production in flutes.

10.3.2 Jet Instability

An air jet flowing in air is intrinsically unstable, in the sense that any small
perturbation is amplified by the jet: the example of cigarette smoke has already
been discussed to illustrate this topic (see Sect. 10.1.1.1). The aim of the following
section is to describe more quantitatively this instability.
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10.3.2.1 Assumptions and Basic Phenomena

Assumptions

The first assumption used here is that of an inviscid fluid: as seen below, the
instability of a shear flow is not driven by viscosity.5 The second assumption is that
compressibility can be ignored. This incompressibility assumption can be justified
in the following cases:

• as long as the jet velocity U is kept small compared to the sound speed c,
• as long as the dimensions of the jet and sound production region are small

compared to the acoustic wavelength.

Incompressibility implies a divergent free flow field divv D 0. We will also
assume for the sake of simplicity that the flow is two dimensional (vz D 0).
Incompressibility then writes divv D @vx=@x C @vy=@y D 0. The velocity can then
be written in terms of a stream function  :

vx D @ 

@y
; vy D �@ 

@x
: (10.14)

Decomposition of the Velocity Field

From a general point of view, any vector field can be split into two complementary
parts: a scalar potential ' part and a vector potential A part :

v D grad' C curl A: (10.15)

Of course, the acoustic field is part of the first contribution grad' because it
involves compressibility (r:v D r2'). The second contribution takes into account
the rotational part of the flow:

! D curl v D curl.curl A/:

The following description is based on the evolution of the vorticity!. This evolution
can be studied by calculating the curl of the equation of motion (10.4):

curl
�
�

dv
dt

�
D �curl grad p; therefore

d!

dt
D 0: (10.16)

This shows that in a frictionless flow, vorticity is conserved by the fluid particles:
vorticity is convected at the local fluid velocity. In a two dimensional flow, a point

5Even if viscosity may be responsible for the formation of the sheared flow.
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vortex of circulation� (� D H
C v:d` on any contour C around the vortex) induces a

tangential velocity field with amplitude decreasing away from the vortex. Symmetry
of the flow around a point vortex allows calculating this tangential velocity v�
induced by the vortex at a distance r from the vortex core:

v� D �

2�r
: (10.17)

This corresponds to the Biot–Savart induction law. The instability of a shear layer
can most efficiently be described starting from the flow induced by vorticity.

Kelvin–Helmholtz Instability Mechanism

Let us start the physical analysis of the jet instability with a simple case: the flow at
the planar interface between two areas of the fluid with different velocities. This is
known as the Kelvin–Helmholtz instability [16, 42]. This flow can be described by
the relative velocity U between the two areas (see Fig. 10.12):

• vx D U=2 if y > 0
• vx D �U=2 if y < 0
• vy D 0:

U/2

U/2

x

y
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v
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c

Fig. 10.12 The instability mechanism of a perturbed shear layer: (a) a perturbation of the interface
induces local convection that concentrates (b) the vorticity at points C. This concentration amplifies
the initial perturbation, leading to the formation of rolled structures (c)
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The curl of the velocity field, !, is zero everywhere except for y D 0: the
interface is a line of vorticity. The three components of the curl are:

• !x D 0

• !y D 0

• !z D @vy=@x � @vx=@y D �@vx=@y:

As long as the interface remains unperturbed, the velocity field induced by the
vorticity vanishes everywhere. Indeed, the transverse contributions to the velocity
field at one given point of the interface due to the left side are fully compensated by
the contributions on the right side. If we now assume the interface to be perturbed
by a sinusoidal transverse motion, contributions from left and right sides to the local
motion are no longer symmetrical. Figure 10.12 shows how this asymmetry induces
a convection of vorticity of the upper parts (A) of the perturbed interface towards the
right, while the lower parts (B) are convected towards the left. As a result, vorticity
concentrates at the zero decreasing positions (C) of the interface.

This vorticity accumulation induces asymmetrical velocities, that contribute to
the amplification of the initial perturbation, up to the point where waves break
(Fig. 10.13).

10.3.2.2 Instability of an Infinite Jet

Rayleigh’s Theory of an Infinite Jet

A jet can be described as two shear layers interacting with each other. The instability
of an infinite jet has first been analyzed by Rayleigh [36]. The unperturbed jet in the
x direction is given by:

Fig. 10.13 Wavy clouds in Wyoming, USA are induced by different wind velocities in neighbor-
ing layers (photo B.E. Martner, NOAA Environmental Technology Laboratory, Boulder)
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• vx D U.y/
• vy D 0:

where U.y/ is the velocity profile of the jet. It satisfies the boundary conditions
U.1/ D U.�1/ D 0 and we will further assume that the velocity profile has a
single maximum. The curl of the velocity is

• !x D 0

• !y D 0

• !z D �@U.y/=@y D ˝z:

The perturbed flow then writes

• vx D U C v0
x

• vy D v0
y

• !z D ˝z C !0
z.

The vorticity conservation d!=dt D 0 is

@.˝z C !0
z/

@t
C .U C v0

x/
@.˝z C !0

z/

@x
C v0

y

@.˝z C !0
z/

@y
D 0: (10.18)

Because ˝ is the steady unperturbed vorticity, it does not change in time nor in
space and @˝z=@t D 0 and @˝z=@x D 0. For small enough perturbations, a linear
approximation can be used. Products of perturbation terms are then neglected, and
the previous equation becomes�

@

@t
C U

@

@x

�
!0

z C v0
y

@˝z

@y
D 0 (10.19)

where the last term shows the dependence of the jet on the second derivative of the
velocity profile @2U.y/=@y2. We now look for harmonic and propagative solutions6

exp.j!t/ exp.�j˛x/. Using !0
z D @v0

y=@x � @v0
x=@y, and the incompressibility

condition @v0
x=@xC@v0

y=@y D 0 the previous equation turns into Rayleigh’s equation:

�
U.y/� !

˛

� @2v0
y

@y2
� ˛2v0

y

!
� v0

y

@2U.y/

@y2
D 0: (10.20)

The transverse component of the perturbation v0
y is obtained by solving this

equation. One needs the help of the stream function  0 of the perturbation to
calculate the longitudinal component of the perturbation. The stream function
has the same harmonic propagative form  0.x; y; t/ D � 0.y/ exp.j!t/ exp.�j˛x/.

6Notice that ! is the time periodicity (angular frequency) of the perturbation, while! D .0; 0; !z/

is the curl of the velocity.
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All perturbation terms can be calculated from the stream function function ampli-
tude � 0, solution of:

�
U.y/� !

˛

��@2� 0

@y2
� ˛2� 0

�
� � 0 @2U.y/

@y2
D 0: (10.21)

Spatial Versus Temporal Analysis

When the jet velocity profile U.y/ is known, a dispersion relation is obtained, linking
the time and space periodicity! and ˛ of the solution, by assuming boundary values
� 0.y/ ! 0 far from the jet (y ! ˙1). Depending on the problem studied, two
resolutions can be carried out:

• the space dependence (˛ D ˛r C j˛i) of the perturbation with fixed time
periodicity (! real). Such a perturbation grows with distance as exp.˛ix/ with
a phase velocity associated to the convection of the perturbation cp D !=˛r. A
hydrodynamic wavelength�h D 2�cp=! D 2�=˛r results from this propagation.
This is a spatial analysis.

• the time dependence (! then being complex) that results from a perturbation with
specific real wavenumber ˛r , corresponding to imposed geometry conditions.
The perturbation then grows or vanishes in time, according to the sign of ˛i. This
is a temporal analysis.

The oscillating frequency in flutes is strongly dependent on the acoustic reso-
nances of the pipe. Therefore, a spatial analysis is generally preferred.

Sinuous and Varicose Modes

If the jet velocity profile is symmetrical about y D 0, perturbations on both shear
layers of the jet can be symmetrical or anti-symmetrical, depending on the symmetry
properties of the initial perturbation of the jet. Symmetrical perturbations induce the
so-called varicose oscillations of the jet, associated with a modulation of the jet
thickness (see Fig. 10.14). Anti-symmetrical perturbations correspond to “sinuous”
oscillations of the jet. Solving Rayleigh’s equation (10.21) indicates that sinuous
oscillations have a stronger amplification than varicose oscillations.

Furthermore, jet visualizations in various flute configurations indicate that the
sinuous motion dominates under standard blowing conditions. In some cases,
varicose contribution can be observed, which has an influence on the spectral
content of the sound.
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Fig. 10.14 Flow visualization of a jet submitted to an acoustic perturbation: following the initial
jet perturbation, sinuous motion can be dominant (left) or varicose can be dominant (right)
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Fig. 10.15 Spatial amplification on a shear layer for different velocity profiles. (a), (b), and
(c): simple shear layers, after Blake [6]. The amplification corresponds to anti-symmetrical jet
oscillations [sinuous: (c,A)] or symmetrical [varicose: (c,S)]. Note that sinuous oscillations are
better amplified than varicose oscillations

Solutions of the Rayleigh Equation

Depending on the jet velocity profile U.y/, Eq. (10.21) can be solved either
analytically or numerically. In the case of a spatial analysis, Fig. 10.15 shows
the frequency dependence of the spatial growth of perturbations on the jet. The
dimensionless amplification coefficient ˛iı uses the shear layer thickness ı as the
spatial scale of the problem. The dimensionless frequency is the Strouhal number
Strı D !ı=Umax, where Umax is the maximal value in the jet velocity profile.

It can be checked that, in the case of an infinitely thin shear layer such as the
one discussed above (Kelvin–Helmholtz), the amplification increases monotonously
with frequency, as already mentioned by Rayleigh. Such a thin shear layer is purely
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theoretical since viscosity, even if it is very low, spreads the shear layer. All other
velocity profiles with finite shear layer thickness show a maximum of amplification
and then fall down below zero for Strouhal number of the order of unity. As a matter
of fact, the jet does not amplify the perturbation anymore when the hydrodynamic
wavelength �h D 2�cp=! gets smaller than the shear layer thickness ı.

10.3.2.3 Receptivity and Jet Oscillation in a Flute

The Jet Motion

Rayleigh’s theory, presented above, is based on an infinite parallel jet flow assump-
tion. In flutes, the jet is formed at the flue exit and flows through a window where
strong transverse acoustic flows can be experienced, due to the accumulation of
acoustical energy in the pipe resonator. A first step in this direction is to consider a
semi-infinite jet, with negligible transverse displacement at the flue exit.

The transverse displacement �.x; t/ of the jet in the y direction can be calculated
by integration of the transverse velocity from the flue exit to the actual position x.
This transverse velocity is made of two components: the perturbation term v0

y
exponentially growing with the distance from the flue exit, and the air displacement
due to the acoustic velocity vac:

�.x; t/ D
Z t

t�x=U0



v0

y.x
0; t0/C vac.x

0; t0/
�

dt0, (10.22)

if x0 D x � .t � t0/U0.
For long enough distances from the flue exit, one can ignore the contribution of

the acoustical displacement. The transverse jet displacement then writes7

�.x; t/ � �
Z t

t�x=U0

@ 0.x0; t0/
@x

dt0: (10.23)

This implies a growth of the amplitude of the jet displacement � with exp.�˛x/

Receptivity: The Jet Initial Perturbation

The sinuous jet motion comes from the anti-symmetrical perturbation by the acous-
tic field. The way the acoustic field produces the initial jet perturbation is called the
receptivity. To a first approximation, we will assume that the initial perturbation is
localized at the flue exit. In an incompressible inviscid flow approximation, this can

7Indeed v0
y D �@ 0.x0; t0/=@x, which may be the reason why some authors make a confusion

between the jet transverse displacement � and the stream function  0 of the perturbation.
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U

Fig. 10.16 The initial jet perturbation by the acoustic field is localized at the flow separation points
where the jet is formed

be justified by the vorticity conservation in the flow. The jet perturbation can be
represented as a modulation of the vorticity in the flow. Because of the vorticity
conservation, such a vorticity modulation can only be injected at the separation
points of the flow, due to local viscous effects. The amplification that occurs
downstream is only a consequence of the jet instability, in terms of redistribution
of the initial vorticity (Fig. 10.16).

Details of the geometry and of the flow in the vicinity of the flow separation
points can strongly affect the receptivity [7]: boundary layer thickness in the channel
just upstream from the flue exit and the geometry of the channel exit are of great
influence. This is in line with the observation of recorder makers who give great
care to the cutting of chamfers at the end the channel, as well as with the transverse
flute players’ claim that small irregularities on the player’s lips strongly affect the
tone quality.

Receptivity: An Empirical Model

A simplified description of the jet oscillation is generally considered for the global
analysis of the oscillation in flutes. The description integrates some of the results
of the analysis presented and, in particular, the exponential spatial growth ˛i of
the perturbation together with the convection of the perturbation. In the case of a
harmonic perturbation, the transverse jet displacement � at a distance x from the
flue exit is written as:

�.x; t/ � �0e
˛ixej!.t�x=cp/: (10.24)
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Even if this description cannot fulfill the initial condition �.0; t/ D 0, it offers
a fairly good approximation of the jet displacement for distances from the flue
exit larger than the channel thickness (x � h), provided that the initial value �0
is correctly chosen. The perturbation being triggered by the acoustic velocity, the
initial jet displacement is expected to be proportional to Vac=Uj and h:

�0 � Vach

Uj
: (10.25)

Experimental data [14] indicate that the receptivity of the jet can be interpreted in
terms of the relative thickness of shear layers in the jet ıj D L=

p
Re, where L is the

flue channel length, and acoustic boundary layers ıac D p
2�=! as follows:

�0 D Vachıj

Ujıac
: (10.26)

This approach allows the dependence of the receptivity on both the frequency and
jet velocity to be introduced. More recent studies by Blanc [7] indicate that the effect
of chamfers found in recorders can be split into two complementary contributions: a
protection effect reducing the effective Vac=Uj due to the standing back of the flow
separation points and an orientation of the perturbative acoustic velocity, locally
following the wall geometry.

The Upper Limit of the Linear Analysis: Jet Roll Up and Vortex Formation

Rayleigh’s description of the evolution of a perturbation on the jet uses a lin-
earization of the equations [see Eq. (10.19)]. From a physical point of view, the
accumulation of the shear layers’ vorticity at the inflexion points in the shear layer
is responsible for the growth of the perturbation. For transverse jet displacement of
the same order of magnitude as the jet thickness, the jet appears to roll up and break
down into discrete vortices.

The flow can then be described as an alternate vortex street, as described by Von
Kármán. In order to be stable, the vortex street needs to follow the correct relation
between the hydrodynamic wavelength �h, the street width b, the circulation � of
vortices, and the convection velocity cVx of the street:

cVx D � �

�h
tanh

�
�b

�h

�
: (10.27)

Experiments show that the amplitude of the transverse jet displacement for which
the linear behavior (exponential growth) turns into a vortex street is close to the jet
thickness. However, this amplitude does not depend on the distance between the
flue exit and the transition point, while this distance depends on the perturbation
amplitude (see Fig. 10.17).
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Fig. 10.17 Visualization of a
jet submitted to a transverse
acoustic field. From bottom to
top, the excitation amplitude
Vac grows from 0.5 to 6.5 %
of the jet velocity Uj. The jet
transverse displacement
grows linearly, up to the point
where the jet breaks down
into a row of alternate
vortices, forming a vortex
street. The formation of the
vortex street occurs closer to
the flue exit when the
excitation amplitude is
increased. From [14]

10.3.3 Turbulent Jet

As the jet velocity increases, its structure becomes chaotic. For values higher than
a threshold, the jet is disorganized and spreads rapidly with distance. This chaotic
behavior is called turbulence. This threshold depends on the geometry of the jet
as well as on the fluid viscosity. It is expressed in terms of the Reynolds number
Re D Ujh=�, where h is the jet channel thickness, and � is the kinematic viscosity of
air. While turbulence always develops sooner or later on the jet (see Fig. 10.18), for
values of the Reynolds number smaller than 2000, the jet remains laminar for a short
distance. For values above 3000, the jet becomes turbulent immediately downstream
the flue exit. Estimations under playing conditions for different recorders indicate
that the Reynolds number varies between 700 and 2000.

In order to produce loud sounds with flutes, the instrument and the blowing
technique must allow to blow hard, that is to blow large air flows. Therefore, in most
of the flutes intended for outdoor playing, one finds high values of the Reynolds
number, sometimes higher than 104. The jet then becomes rapidly turbulent and the
above description of the jet instability becomes inaccurate.

Several aspects are to be considered in this case:

• a strong decrease of the jet velocity with distance,
• a strong spreading of the jet,
• kinetic energy dissipation.
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Fig. 10.18 Jet perturbed by
an acoustic field. The
Reynolds number in the jet
increases from 200 (top) to
500 (middle) up to 3000
(bottom). The jet remains
laminar all along the
observation window for
Re D 200. On the opposite,
turbulence develops rapidly
downstream of the flue exit
for Re D 3000

A consequence of the turbulent structure of the jet is a wideband noise produc-
tion. This is well known in the case of traditional instruments for outdoor music, for
which a loud sound is required. The associated strong wideband noise is a part of the
sounding aesthetics of these instruments. In the case of the modern Boehm flute, the
quest for a “pure” tone in the sounding aesthetics of the instrument at the beginning
of the twentieth century, until 1935, is challenging for the player since he has to
handle a tricky compromise between sound power and tone purity (Fig. 10.19).

10.4 Aeroacoustic Sound Sources

The interaction of the oscillating jet with the labium produces the acoustic energy
that sustains the oscillation in the resonator. The largest jet oscillation takes place
at a position where the resonator shows a strong reaction: the labium is an edge at
an open pipe end, where the acoustic velocity is maximum. Furthermore, a sharp
labium induces a local singularity in the acoustic field. The same jet oscillation in
free field or at less reactive position in the resonator would not produce as much
sound.

Helmholtz was the first to describe the sound production by the end of the
nineteenth century. In the first edition of his book [48], the jet oscillation is described
as injecting fluid in the pipe at each period of the oscillation. Rayleigh argued to
Helmholtz that the labium is at an open end of the pipe, where acoustic pressure
fluctuations pa are small. The mechanical work associated to volume flow injection
Q is therefore weak:

W D
Z

T
paQdt: (10.28)
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Fig. 10.19 Mouth pressure in modern Boehm flute playing as function of the pitch, for three
different dynamics: plus symbol, p; filled circle, mf ; open circle, ff. Estimated values of the
Reynolds number are added on the plot

Conversely, the acoustic velocity is maximum at the open pipe end, therefore
Rayleigh suggests that the acoustic source is a force Fa acting on the acoustic
field. Such a source is more efficient since the work is then proportional to the local
acoustic velocity va:

W D
Z

T
Favadt: (10.29)

However, Rayleigh does not give any clue on the physical origin of this force.
Several mechanisms may contribute to this force, such as the jet oscillation and
the turbulence. Estimations of the acoustical power produced shows an order of
magnitude of 10 mW [20].

10.4.1 The Jet-Drive Model

This model is based on Helmholtz’s description: indeed, he modified his text in
the second edition, taking Rayleigh’s arguments into consideration! Developing
Helmholtz’s idea, the model takes the two flow injections on both sides of the
labium into account. The two sources Qin and Qout, placed a small distance ıd from
each other, have fluctuating parts Q1 and Q2 with opposite phases (Q1 D �Q2).
Therefore, they generate a pressure difference (see Fig. 10.20).
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Fig. 10.20 The jet oscillation can be described as two flow injections on both sides of the labium.
The fluctuating parts of the two volume flows show opposite phases Q1 D �Q2, at a short distance
ıd . In a low frequency approximation, the two sources are separated by a short distance in a small
pipe. It can be represented by an equivalent pressure difference given in Eq. (10.30)

The model is developed in a low frequency approximation. Plane waves prop-
agate in the resonator, which is therefore represented as a 1D transmission line.
Assuming that the source dimensions are small compared to the acoustic wave-
length, the resonator is described as a main pipe and a short thinner pipe since the
open end in the mouthpiece always has a smaller cross-section area than the pipe. In
this 1D representation, the two sources with opposite phases Q1 and Q2 are placed
in the thin short pipe, at a short distance ıd from each other (see Fig. 10.21). They
constitute a dipole confined in the small pipe of cross section Sm, and produce an
alternate motion of the air mass �ıdSm between the two sources.8 The acceleration
of this air mass generates the force acting on the acoustic field. This force can be
written in terms of a pressure difference acting across the mouth of the pipe:

�p D � �

Sm
ıd

d

dt
Q1; (10.30)

that the source maintains between both sides of the labium. Therefore, the source
can be seen as a localized pressure step across the mouth, even if both volume flow
injection points are at a small distance.9

8Please note that the initial model by Helmholtz took only the inner volume flow injection into
account, leaving the outer volume flow injection Qout aside. However, even if the outer volume
flow injection appears to be outside the pipe from a geometrical point of view, it definitely is inside
the instrument from the acoustic point of view, since the limit between inner and outer field is not
clearly defined from the acoustic point of view, that is within the scale of the acoustic wavelength.
9In Chap. 1, sources in a pipe have been discussed, using Eqs. (1.134) and (1.135). The source term
in (1.134) can be written as:

� �

Sm

d

dt
ŒQ1ı.x � x1/C Q2ı.x � x2/	 D � �

Sm

d

dt
Q1ıd

d

dx
ı.x � x1/:

The second expression uses the Taylor development at x1, since x2 D x1 � ıd and Q1 D �Q2:

Equation (1.135) gives the equivalent force:

f D �� d

dt
Q1ıd:

this force balances the pressure difference f D Sm.p1 � p2/ D Sm�p, and corresponds to (10.30).
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Fig. 10.21 Simplified model of a flute. Injection of two volume flows sources is equivalent to a
pressure step, in a l ow frequency approximation. W and H are the flue exit to labium distance and
the pipe height: in a 2D geometry, they are proportional to the areas Sm and S of mouth and pipe,
respectively. The distance between the sources is x1 � x2 D ıd . The flow rates Qm and Qp through
mouth and in the pipe, (that are used in the simplified model in Sect. 10.5.4) are equal since the
pressure difference source does not affect the flow rates

The distance ıd corresponds to the distance between the injection points Q1

and Q2: it corresponds to the distance associated with the potential difference in
a potential theory. It can be calculated from the estimated injection positions, using
conformal mapping for idealized geometries [35] (see also Chap. 7, Sect. 7.6.3.2).

10.4.2 A Discrete Vortex Model

As discussed earlier in this chapter, the jet oscillation results from the perturbation
of the vorticity in the shear layers: the velocity field can be described as a potential
flow on top of which two films of vorticity are added, which are modulated at the
flue exit by the acoustic perturbation. The transverse motion of the jet results from
the progressive concentration of vorticity at specific points, and the jet can therefore
be described as a succession of line vortices shifted between the two shear layers. In
such as description, the sound production can be seen as the work performed on the
acoustic field by the Coriolis force associated with the convection of vortices. The
force per unit volume f generated by a vortex of vorticity ! and moving at the local
fluid velocity v is given by:

f D ��0.! ^ v/: (10.31)

The acoustic power produced per unit volume is the scalar product f:vac; where
vac is the acoustic velocity. In this approach, the velocity field v is split into two
contributions: the potential and the rotational components [see Eq. (10.15)]. The
acoustic velocity then corresponds to the fluctuating part of the potential component
of the field:

vac D grad' � hgrad'i: (10.32)
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Fig. 10.22 The sound production is represented as the work performed on the acoustic field by
the Coriolis force associated with the convection of vortices

where the brackets hxi indicate the time average of x. The acoustic power produced
becomes

Pvortex D 1

T

Z
T

Z
vol

��0.! ^ v/:vacdVdt; (10.33)

where vol is the volume where the source term .! ^ v/:vac is not vanishing
(Fig. 10.22).

Sound production is restricted to areas where the force is parallel to the acoustic
field, which of course corresponds to a condition for accelerating the acoustic
motion. This is why the sound production is dominated by the vortex line the closest
to the labium edge: indeed, the acoustic velocity is maximum around the labium
edge because of the singularity associated with a sharp edge in a potential flow.
Estimation of the sound power in the case of edge-tones [26] as well as in the case
of flutes [15] shows that the sound production can be reasonably estimated taking
only the vortex line closest to the edge into account. This explains why the sound
quality is very sensitive to the shape of the edge of the labium. Vortices carried
further downstream into the pipe have a velocity v parallel to the acoustic velocity
vac so that the source term .! ^ v/:vac vanishes.
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10.4.3 Aeroacoustic Formulation

The modeling of the acoustic source presented in the previous sections is based on
the assumption that the source mechanism is localized in the vicinity of the labium
edge. In a complementary approach, sound production can be described through
an integral description. Several frameworks can be found, called aeroacoustic
analogies: the one that is behind the description using discrete vortex lines presented
above is basically the description used by Howe [28]. The following section presents
the approach by Lighthill (see, for example, [12, 23, 25, 37]).

10.4.3.1 Lighthill’s Analogy

In the analogy of Lighthill, one assumes a spatially limited region of sound
production by the flow. The sound generated propagates to an observer located
outside the source region, in a stagnant uniform fluid of density �0 and sound
velocity c0. The flow at the observer’s position is assumed to be described by the
acoustic approximation.

Lighthill’s analogy is obtained by rewriting the basic equations of flow motion.
It is based on the time derivative of the mass conservation10:

@

@t

�
@�

@t
C @�vi

@xi

�
D 0; (10.34)

and on the divergence of the momentum conservation equation:

@

@xi

�
@�vi

@t
C @�vivj

@xj

�
D � @

@xi

�
@Pij

@xj

�
; (10.35)

where Pij is the stress tensor, due to pressure p and viscous stresses �ij (Pij D
pıij � �ij).11

The fluid density � is split into its mean value �0 at the observer’s position and
fluctuating component � D �0 C �0 with @2�=@t2 D @2�0=@t2. Subtracting the two
equations above and subtracting c20@

2�=@x2i on both sides of the equation yields

@2�0

@t2
� c20

@2�0

@x2i
D @2Tij

@xi@xj
; (10.36)

10 The following equations use the so-called Einstein summation convention: when an index
variable appears twice in a single term it implies summation of that term over all the values x; y; z

of this index. For example, @vi
@xi

means @vx
@x C @vy

@y C @vz

@z :

11�ij is defined as [3]:

�ij D �

�
@vi

@xj
C @vj

@xi

�
� 2

3
� div v:ıij

As it is, (10.35) is the divergence of the Navier–Stokes equation.
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where Tij is the Lighthill tensor:

Tij D �vivj C .p0 � c20�
0/ıij � �ij ' �vivj C .p0 � c20�

0/ıij; (10.37)

if p D p0 C p0. This last expression is obtained assuming that the forces induced
by the fluid viscosity are negligible compared to the convection forces: �ij can
therefore be neglected. This assumption is based on an estimation of the Reynolds
number in flute jets, as a ratio between inertial and viscous forces in the flow. In
this approach, the equations above describing the basic fluid properties of mass and
momentum conservation are subtracted to produce a left-hand term of the equation
corresponding to an acoustic wave equation. All the other terms, pushed on the
right-hand side are acoustic sources.

This can also be written in terms of the pressure fluctuations p0; showing four
source terms:

1

c20

@2p0

@t2
��p0 D @2�vivj

@xi@xj
C @2

@t2

�
p0

c20
� �0

�
C
�
�
@qm

@t
� �

@Fi

@xi

�
: (10.38)

The first source term is a quadrupole, and corresponds to nonlinear convective
terms like vortices and turbulence. The second source term is a monopole and
corresponds to entropy fluctuations. The last two terms are not in Eq. (10.36) but
have already been discussed for stagnant fluid [see Eq. (1.111)]. They have been
added here. The third term is a monopole and corresponds to a mass injection �qm,
while the last term, dipolar, describes the effect of an external force field density �Fi

acting on the fluid.
An integral formulation of this analogy has been proposed by Curle [13], in order

to take the presence of walls with surface S into account, delimiting a volume V .
Sources will be discussed in Chap. 12, but the integral description presented here

already introduces this discussion. The acoustic pressure in a given geometry can
be written using the Green’s function that describes the acoustic response of the
system. This function G.x; tjy; �/ corresponds to the acoustic pressure at time t and
position x observed for an impulsive source at time � and position y. The Green’s
function is solution of [see, for instance, (4.19)]:

@2G

@t2
� c20�G D ı.x � y/ı.t � �/: (10.39)

Applying this formalism to Lighthill’s source terms yields

p0.x; t/ D
Z t
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Z
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Tij
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Z t

�1

Z
S
�vi

@G

@�
nidSd� C

Z t

�1

Z
S

@G

@y
.p0ıij C �vivj/njdSd�;

(10.40)
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where V is the volume in which all sources are located, S is the surface bounding
volume V , with ni the outgoing normal. While the last equation is an exact solution
that helps to improve our understanding of the sound production mechanisms,
it can only be applied to the modeling at the expense of severe simplifications,
regarding both the acoustic response of the system (Green’s function) and the flow,
as illustrated in the following paragraphs.

10.4.3.2 Low Frequency Approximation

At frequencies lower than the pipe cutoff frequency, only plane waves propagate
(see Chap. 7) and the Green’s function of a 1D infinite pipe can be used

G.x1; tjy1; �/ D c

2S
H.t� � �/; (10.41)

where H.t/ is the Heaviside step function, the index “1” indicates the pipe direction
and t� D t � x1�y1

c is the retarded time, taking the sound propagation from
source to observer into account.12 Using the symmetry properties of the Green’s
function @G=@x1 D �@G=@y1, the derivatives of the Green’s function @G=@y1 D
1=2 sgn.x1 � y1/ı.t� � �/ and @G=@t D �c=2ı.t� � �/, and assuming further
that the volume is small compared to the acoustic wavelength � (compact source
assumption, @=@t << c=�), the pressure then writes [12]

p0
1.x1; t/ D � c

2S

Z
S
Œ�vi	t� nidS

� 1

2S
sgn.x1 � y1/

Z
S

p0.y1; t�/n1dS � 1

2S
sgn.x1 � y1/

Z
S



�v1vj

�
t� njdS:

(10.42)

The first term describes the mass flow going out of the source volume V , while
the second term describes the pressure forces acting on the surface bounding the
source volume, and the third term corresponds to nonlinear convective contributions
in the flow (turbulence and vortices).

In the application to sound production in flutes, if the total jet volume flow is
assumed to be constant (see Sect. 10.5.2 for a discussion on this topic), the first
term does not produce any sound. Furthermore, for values of the Reynolds number
less than a few hundreds, the sound produced by turbulence is negligible. The main
source terms then lie in the pressure term and in the vortices.

A similar analysis developed by Powell [34] in the case of edge-tones, i.e., a jet
flowing towards a labium without acoustic resonator, shows that the dominant term
is the unsteady force exerted by the flow on the labium. This force corresponds to

12It is in fact the first term of (4.20) and (4.21), since the infinite pipe does not show any reflection.
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the stagnation pressure of the jet and the amplitude of the oscillating force is (H is
the width of the jet in the transverse direction):

Fa D 1

2
�H

Z
U.y/2dy, (10.43)

which has been confirmed by experiments [40].
Finally, in the case of edge-tones, the source term can be written in terms of a

dipole, such as the one written in Sect. 10.4.1, provided that the potential distance
ıd between source and sink is a function of the jet velocity, or of the hydrodynamic
wavelength �h D 2�cp=! of the perturbations on the jet:

ıd � �h=2: (10.44)

Both approaches, the aeroacoustic and the more acoustically intuitive presented
in Sect. 10.4.1 are in line, provided that the source-sink distance in the jet-drive
model corresponds to half the hydrodynamic wavelength, and therefore depends on
the jet velocity and on the frequency.

10.4.3.3 Increasing the Jet Velocity

The analysis presented above is restricted to relatively low Reynolds numbers
and low frequencies. When the jet velocity is increased, sound production by
turbulence becomes more and more important. Verge [44] presented a study of
sound production by turbulence of a jet impinging on a labium in an infinite pipe,
assuming no synchronized jet oscillations. The two first terms in Eq. (10.42) vanish
and the pressure is written as:

p0.x1; t/ D � 1

2S
sgn.x1 � y1/

Z
S
�v1

2
t� dS; (10.45)

showing that the acoustic power ranges as the fourth power of the jet velocity or of
the Mach number M D U0=c:

Pac / M4: (10.46)

In a sound synthesis by physical modeling, adding to the source terms a
broadband noise that follows this power law improves the realism of the synthesis.
This shows how important the turbulence noise is for the perception of the sound
identity of flutes.
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10.4.3.4 Vortex Shedding at the Labium

In a theoretical analysis of the problem, Howe [28] proposes a model for the sound
production in flutes based on the vortex sound theory. The sound production is due to
the action of the Coriolis force on the acoustic field [see Eq. (10.33)]. In this model,
the sound is generated at each period by a vortex shed at the labium, triggered by the
flow induced by the acoustic resonance in the pipe. This vortex is then convected by
the jet (see Fig. 10.23). In this framework, the sound production in a flute has been
estimated, based on flow visualizations that show the exact phase of the triggering
of this vortex. It appears that, due to the phase relation between the different terms,
the sound production is negative [21]: the vortex does not produce sound as was
assumed by Howe [28] but rather absorbs acoustic energy. Furthermore, the analysis
of the different losses, under standard blowing conditions in a recorder, indicates
that the losses induced by the vortex shedding at the labium is one of the dominant
mechanism that limits the oscillation amplitude.

The vortex sound theory of Howe is also interesting for thick jet configurations.
The vorticity in the jet shear layers is represented as discrete vortices, triggered
by the acoustic perturbation. These vortices are convected at a constant velocity
of approximately half the main flow velocity, with a circulation that grows linearly
with time.13 Notice that the vortices considered here are not those shed at the labium
like in Howe’s model [28], but those formed at the flue exit, corresponding to the
jet shear layers. The model proposed by Meissner for a whistle is built with this
description. It seems to give an accurate prediction of the oscillating frequency

Fig. 10.23 Vortex shedding
at the labium, due to the
separation of the flow induced
by the acoustic field. Dashed
lines indicate streamlines of
the potential flow associated
with the acoustic velocity

13See, for example, the work by Meissner [32] in the case of a whistle and Dequand [15], inspired
by Nelson’s [24, 33] and Holger’s [27] descriptions. A difference between the two models is that
Dequand assumes that the circulation of each vortex grows during one oscillating period only,
while Meissner assumes that the circulation grows without saturation, but only takes the vortices
between the flue exit and the labium into account.
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Fig. 10.24 Dimensionless frequency f=fres of the oscillation in a Helmholtz resonator (fres is the
passive resonance frequency) as function of the dimensionless jet velocity (or inverse Strouhal
number) Str�1 D U=Wf , U is the jet velocity, W is the flue exit to labium distance. For low jet
velocities, the oscillation appears at frequency lower than the resonance frequency. It corresponds
to a constant Strouhal number, indicating that the frequency is proportional to the jet velocity.
After [32]

(Fig. 10.24) but not of the amplitude. This indicates that even if phase terms are
well described in the model, losses are still difficult to estimate.

The oscillating frequency in flutes and organ pipes on the first regime shows a
double slope behavior:

• for low jet velocities and oscillation at frequency lower than the pipe resonance,
the oscillation appears to be at constant Strouhal number, that is at frequency
proportional to the jet velocity.

• For higher jet velocities, the frequency grows much slower, due to the strong
phase rotation with frequency of the acoustic response of the pipe, as shown by
Auvray [2].

The frequency behavior at low jet velocities is responsible for the so-called
mouth-tones observed in some organ pipes [19], during attack transients, or for low
blowing conditions [8]. Notice that these mouth-tones are quite different from edge-
tones, since they rely on the pipe resonance: Auvray showed that they are accurately



10 Flute-Like Instruments 597

predicted using a model considering only the feedback of the pipe, while edge-tones
rely on a direct hydrodynamic feedback [27], because there is no pipe in the edge-
tone configuration.

10.5 A Lumped Model of the Oscillation in a Flute

A simplified description of the self-sustained oscillation in the flute has been
presented in Sect. 10.1.1. This description can now be improved by including the
aspects presented in the previous sections. In order to achieve this, we first need to
describe complementary aspects:

• nonlinear losses at the window;
• jet velocity fluctuations;
• direct hydrodynamic feedback of the sources on the jet.

These three points are developed in the following section to be later integrated in
lumped description of the self-sustained oscillator.

10.5.1 Nonlinear Losses at the Blowing Window

The blowing window is an open end of the pipe. The area of this window is smaller
than the main pipe cross section, resulting in an increased acoustic velocity as
compared to the other pipe end. Under standard blowing conditions, the acoustic
velocity in the blowing window is about one-tenth of the jet velocity. The labium
edge is generally sharp, at least sharper than the other edges in the instrument, and
a nonlinear behavior of the flow induced by the acoustic resonance is expected:
velocities are high enough to trigger flow separation at the edge of the labium, as a
consequence of viscosity. Several models can be used to describe the losses induced
by this flow separation [21]. We will focus on the most simple one, inspired from
[30] (see also Chap. 8, Sect. 8.4.5). If we first assume an inviscid 2D incompressible
flow, the flow can be described as a potential flow (see Fig. 10.25 left) and the fluid
acceleration in the window is associated with a pressure decrease. After the window,
the fluid slows down and the pressure rises to its initial value. Notice that, when
passing close to the labium edge, the fluid is submitted to strong accelerations: a
sharp edge induces a singularity in a potential flow.

If we no longer assume the flow to be inviscid, viscosity induces the flow
separation, resulting in a jet formation (see Fig. 10.25 right). The initial pressure
drop induced by the flow acceleration is no longer compensated: flow separation
can be modeled as a pressure difference between the two sides of the labium:

�psep D pp � pm D �1
2
�

�
vac

˛v

�2
sgn.vac/; (10.47)
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Fig. 10.25 Influence of viscosity on the flow induced by the acoustic resonance : without viscosity
(left), the flow is potential and strong acceleration appear near the tip of the labium. Viscosity
(right) is responsible for the flow separation and jet formation

where ˛v corresponds to the vena contracta14 with values ˛v � 0:6; vac is the
acoustic velocity in the window, oriented towards the inside, while pp and pm are the
pressures on both sides of the window. The pressure difference changes in sign with
the acoustic velocity in the window, and depends on the square of the oscillating
amplitude. It is therefore a dominant mechanism in the amplitude saturation of the
oscillation in steady oscillation [21]. This was first observed and described in terms
of a nonlinear “impedance” by Coltman [9]. It is the reason why the dimensionless
oscillating amplitude does not depend on the frequency [47] (see Fig. 10.26): indeed,
viscous, thermal, and radiation losses are frequency dependent and the oscillating
amplitude would be frequency dependent if they were dominant!

This mechanism is the same as the one discussed in Sect. 10.4.3 of the present
chapter, and also in Chap. 8 (Sect. 8.4.5).

10.5.2 Jet Velocities Fluctuations

All models presented above assume that the jet velocity is constant. The jet flow has
been shown to be induced by the pressure in the player’s mouth, accelerating the

14Inertia of the fluid particles induces flow separation in the direction given by the wall from which
the flow separates. This results in a jet with a smaller width than the actual size of the window,
smaller by a factor ˛v:
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Fig. 10.26 The oscillating amplitude in a small organ pipe (square cross section (2 cm � 2 cm),
28 cm length and W D 4mm flue exit to labium distance) is here presented in a dimensionless
form for the four first oscillating regimes, corresponding to the four first pipe resonances: asterisk
symbol, 1st, plus symbol, 2nd, cross symbol, 3rd, open circle, 4th. The amplitude of the fundamental
is made dimensionless as the ratio of the acoustic velocity in the blowing window to the jet velocity,
plotted as function of the dimensionless jet velocity Uj=fW. After [47]

flow into the channel. But, until now, we did not take the pressure fluctuations at the
flue exit into account, due to the pipe resonance, added to the mean (atmospheric)
pressure. Indeed, the flue exit is close to the open end of the pipe, but acoustic
pressure at this position can still be around 60 % of the mode amplitude, depending
on the end correction [10].

For a flue channel of length L, the jet velocity Uj can be estimated using the
unsteady Bernoulli equation:

�lc
dUj

dt
C 1

2
�U2

j D pres � pexit; (10.48)

where pres is the reservoir pressure in the player’s mouth and pexit is the pressure at
the channel exit.

The average jet velocity can be approximated as hUji D p
2pres=� and the total

jet velocity is Uj D hUji C U0
j . Because of the jet velocity fluctuations, the reservoir

pressure can also fluctuate around its average value pres D hpresi C p0
res; and the

jet velocity fluctuations at the fundamental frequency ! of the oscillation can be
written as:

U0
j � p0

res � pexit

�.j!L C hUji/ : (10.49)
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For a short channel, jet velocity fluctuations are in opposite phase with the acous-
tic pressure at the flue exit: the instantaneous velocity increases when the pressure
decreases. The acoustic work performed is therefore negative, and the jet velocity
fluctuations act as losses. Air inertia in the channel becomes important when the
channel is longer, and �j!L becomes more important: jet velocity fluctuations are
reduced and the phase shift relative to the acoustic pressure increases. A simple
description can be used to describe the jet velocity fluctuations, by adding a volume
flow source term Q0

j D SlumU0
j at the end of the resonator. In a more developed

description, the jet velocity fluctuations can be integrated directly in the source
mechanism as proposed by Auvray [2] with interesting influence on the balance
between odd and even harmonics that affect the timbre.

Jet velocity fluctuations can be modulated by the player, adjusting mouth
resonances: the jet velocity fluctuations are responsible for acoustic pressure in the
mouth cavity, and the player has therefore control on the jet fluctuations. According
to players, this is an important element of the control of the tone quality.

Pressure signals recorded in the foot of a small organ pipe and in the pipe, close
to the labium, are presented in Fig. 10.27.
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Fig. 10.27 Pressure signal in the foot .Pf / and close to the labium Pb of a small organ pipe. Strong
pressure fluctuations appear in the foot, induced by the acoustic pressure in the pipe. Please note
that the mean pressure in the foot and the amplitude of the acoustic pressure in the pipe are of the
same order of magnitude. The pressure drop between foot and flue exit shows fluctuations that may
become larger than the mean pressure: the jet velocity fluctuates around its mean value. After [47]
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10.5.3 Direct Hydrodynamic Feedback

Aeroacoustic sources associated with the jet oscillation have been presented as two
volume flow injections with opposite phases. While this source sustains the acoustic
oscillation in the pipe, it also induces a local velocity field, that may contribute
to the jet perturbation. This is a hydrodynamic direct feedback, which controls
the oscillation in edge-tones. For self-sustained oscillation under normal playing
conditions in a flute, this hydrodynamic feedback is negligible during steady-
state oscillation, compared to the feedback from the resonator (about 4 % of the
perturbation coming from the resonator [45]).

10.5.4 The Minimal Oscillator

All the different elements can be lumped to build a simple model for self-sustained
oscillations in a flute, as presented in Fig. 10.4. Basic hypothesis for the model of
the excitation are

• a constant jet velocity Uj, as estimated following Bernoulli (10.7),
• an exponential growth of the jet transverse displacement, independent of fre-

quency,
• a convection velocity of perturbations on the jet, estimated as cp � 0:4Uj,
• a dipole source associated to the jet oscillation at the labium.

The model is then described by the following equations:

• the jet transverse displacement at the labium is written as:

�.W; t/ D h

Uj
vac.t � W=cp/e

˛iW ; (10.50)

where ˛i comes from the resolution of Rayleigh’s equation (10.21).
• the aeroacoustic source at the labium acts as a pressure step:

�pdip D ��ıd

Sm

dQ1

dt
; (10.51)

where Q1 is the part of the jet volume flow passing under the labium:

Q1 D H
Z 1

y0

U.y � �/dy, (10.52)
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where y0 is the transverse position of the labium, relative to the jet and channel
symmetry axis, and H is the jet width. For smooth velocity profiles induced by
viscous spreading of the jet, the volume flow Q1 is a smoothly nonlinear function,
as for instance U0H tanh.2y=h/. The main difference between flute models
and models for simple reed instruments is the delay induced by convection of
perturbations on the jet.

• losses induced by flow separation of the labium:

�psep D �1
2
�
� vac

0:6

�2
sgn.vac/: (10.53)

This nonlinear loss term is very important for the saturation of the oscillating
amplitude, but is not necessary during the starting transient of the oscillation.
Please note that this pressure difference, as the one in (10.51), is a pressure step
between the inside and the outside of the blowing window �p D pp � pm.

• the acoustic response of the pipe is build in the frequency domain, using a low
frequency 1D approximation (see Fig. 10.21). The source is introduced using
mass conservation in the blowing window Qm D Smvac D Qp and adding the
two pressure steps (dipolar source and losses). The acoustic response of the pipe
is then15:

Qm D �ptot

Zm C Zp
; (10.54)

where Zm and Zp are the acoustic impedances of the blowing window (to a
first approximation, this is a mass, equivalent to a length correction) and of the
resonator (input impedance).16

All the different elements are lumped as shown in Fig. 10.28. Time domain
simulation of the equations of the model has been proposed by several authors
(for instance, [14, 44]), allowing sound synthesis by physical modeling. The sound
quality and realism of the synthesis is greatly enhanced by adding a wideband noise
scaling with the jet velocity to the source terms, in order to model the turbulence.
Some other aspects presented in the previous sections can also be integrated in order
to provide a more complex model. This allows to take some important aspects for
instrument makers into account, such as the channel shape and the chamfers at the
flue exit.

15The same development is presented in Eq. (7.63) in Chap. 7, where the flow rate is written as U
instead of Q.
16Please remind that impedances are defined as passive systems, that is with positive real part
(see Sect. 1.3.3.1 in Chap. 1). We therefore have: Qm D �Zmpm and Qp D Zppp:
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Fig. 10.28 Simplified model for self-sustained oscillations in a flute-like instrument. The nonlin-
ear element that initiates the sound production is the saturation of the source at the labium, the
other nonlinear element modeling the flow separation at the labium is essential for saturating the
oscillation at a reasonable amplitude

10.6 Discussion About the Model

Different approaches to describe the elements of a model were presented in the
previous sections. Each approach has its own limitations and ranges of validity,
that would be interesting to point out, together with common ranges and transitions
between models. A summary is presented below with regard to the sources, the
instability and the receptivity.

• The sources can be described, to a first approximation, as a pressure step with an
amplitude depending on the exact position of the flow injection points, or rather
on the equivalent distance between them. Several clues indicate that this position
may vary with the hydrodynamic wavelength on the jet. This wavelength does not
vary much under standard blowing conditions of the instrument, and therefore, a
fixed position of the injection points is fair as a first approximation. This model is
restricted to low values of the Strouhal number, for which the jet does not break
down into discrete vortices, typically Str D Wf=Uj < 0:3 [15]. The amplitude
of the pressure source �p can be deduced from the transverse jet displacement
� at the labium. For displacement larger than the jet thickness, �p is a saturated
function of the displacement �. When the displacement � is smaller or similar to
the jet thickness, the integration of the jet velocity profile is necessary to calculate
the pressure source�p from the jet displacement �. It can be linearized for small
amplitudes.

For small amplitudes of the jet transverse displacement, in the case of a short
distance W from flue exit to labium, for example, the instability does not have
space to develop enough. In such a case, a better candidate is the model of
Dequand [15], following [29, 33], in which the aeroacoustic source is the Coriolis
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force due to the vortices that model the shear layer. This corresponds to “thick”
jets, with values of W=h smaller than 2 [15]. This kind of model can also apply
to thin jets (W=h > 5 typically) with high values of the Strouhal number, where
the jet breaks into discrete vortices [26].

Finally, for turbulent jets and low values of the Strouhal number (or thick
jets), the model by Howe [28] of sound production by vortices shed at the labium
should still be evaluated. Even for values of the Reynolds number smaller than
2500, turbulence can significantly affect the behavior of the instrument, at least
through the broadband noise generated. The first transverse acoustic resonance
of the pipe seems to be strongly coupled to turbulent sources. This affects the
sound quality of instruments with large bores like the bass flute of some organ
pipe stops.

• The instability of the jet can be studied, in the case of laminar jets, through three
different approaches: using a linear theory (Rayleigh), using discrete vortices
to describe each shear layer of the jet, or using an alternate vortex street
(Holger [26]).

The linear model, inspired by Rayleigh, is well adapted to thin jets, with
less than a half hydrodynamic wavelength between flue exit and labium. This
corresponds to low values of the Strouhal number. When this condition is not
fulfilled, a better candidate is Holger’s model, which turns the thin jet into an
alternate vortex street. In the case of very thick jets, the model of Dequand should
be used since it better describes the vorticity in each shear layer. It is interesting
to recall that Holger’s model assumes an initial linear growth of vorticity in the
shear layers before the jet breaks into a vortex street.

For turbulent jets, the work of Bechert [4] is an interesting direction. Turbu-
lence is not fully developed, and the study of the triggering of the turbulence,
including geometrical aspects of the reservoir, would be very interesting.

• Receptivity still remains a very difficult problem. Flute makers and players as
well as experiments [7, 40] on this subject indicate that the geometry of the flue
exit strongly influences the receptivity. The work by Blanc [7] suggests that the
chamfers in a recorder control both a protection effect due to the standing back of
the flow separation points and a relative orientation of the perturbative acoustic
velocity compared to the jet flow. This work should be continued in the future.

• In this chapter, the analysis focused on open pipe flutes. Closed pipe instruments
have special sounding qualities, mostly because of the spectral content of the
sound they produce, dominated by odd harmonics: closed organ pipes, Pan
flutes. . . From the physical point of view, some specificities should be included
in the model. First, these instruments are most often played with a turbulent jet.
Second, the closed end of the pipe induces a recirculation of the air flow. As a
consequence, the jet, submitted to a cross flow, bends towards the outside of the
pipe.
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Chapter 11
Bowed String Instruments

Xavier Boutillon

Abstract This chapter focuses on the interaction between a bow and a string,
and on the resulting self-sustained oscillations. It starts with the presentation of
the friction phenomena and tribology of the rosin, which play a major role in the
dynamics of the bowed string. Among the variety of possible dynamical regimes
induced by the stick-slip mechanism on a string, the so-called Helmholtz motion
(HM) deserves particular attention because it is the most widely used in the musical
context. First, the kinematical and dynamical characteristics of the ideal HM are
described. It is followed by the presentation of some more realistic features of the
HM observed on real strings, such as the flattening effect, the wolf note, and the
anomalous low frequency (ALF) tones.

11.1 Introduction

After the reed- and the flute-mechanisms, the bowed string is the third example
of self-sustained oscillations that we examine among musical instruments. The
vibration of the instrument body and, ultimately, the radiated sound are generated
by the force exerted by the string on the bridge. The purpose of this chapter is thus
to analyze the dynamical characteristics of the bowed string: frequency, amplitude,
and stability. Among the various regimes that can be sustained under friction by the
bow, the so-called Helmholtz motion of the string is highly privileged in musical
usage. It is therefore the main focus of this chapter. Other regimes will be presented
at the end. We will analyze

• how the motion is initiated and sustained by the bow,
• how the mechanical and dynamical parameters under control by the luthier and

by the player influence the motion characteristics (frequency, amplitude, and
spectrum) and may eventually destabilize it.

Bending and torsion waves are the most important waves in a bowed string.
A linear analysis of these waves has been presented in Sect. 3.4.9 (Chap. 3).
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Several local models for the interaction between the surface of the string and the
bow hair are presented in Sect. 11.2. The approximations relative to the bow are
given in Sect. 11.3. In Sect. 11.4, we describe the Helmholtz motion (HM) and
its relationships to the physics of the system where a linear multimodal string is
associated with a nonlinear, local, or narrow bow. We also analyze the influence of
the violin characteristics and of the parameters controlled by the musician on the
HM or pseudo-Helmholtz motion.

Since the most recent and insightful contributions to the knowledge of the bowed
string are due to Jim Woodhouse and his students, this chapter is largely inspired by
their work (see References).

When it comes to the perception of a musical instrument, two aspects must
be distinguished: the perception of the instrument by the player, which may be
summarized by “ease of playing,” and the “quality” of the sound reaching the
listeners’ ears, including those of the player. Science has not yet fully elucidated the
physical–perceptual relationships. This chapter is an attempt to describe the current
physical knowledge that underlies these relationships.

Nomenclature

a: Radius of the string
cT: Speed of transverse waves in a

perfectly flexible string (no stiffness)
cR: Speed of torsional waves
F: Force exerted by the bow on the

string (also: Fb/s)
F0: Force exerted by the end of the

string on the bridge
FP: Vertical (pressing) component of

the force of the bow on the string (static)
T: Tension of the string
vb: Bow speed
vH: Velocity of the string due to the

history of the wave (that is: if the bow
were instantly removed)
vs: Velocity of the surface of the

string (D P�.x; t/ for a null-diameter
string)

Y0.!/ and YL.!/: Point-mobilities in
the Oy-direction at the bridge-end and at
the finger end

Yc: Characteristic mobility of the tor-
sion and transverse waves associated at
the string periphery

Yc,T: Characteristic mobility of the
transverse wave on a perfectly flexible
string

Zc,T: Characteristic impedance of the
transverse wave on a perfectly flexible
string (reciprocal of Yc,T)

Zc,R: Characteristic impedance of tor-
sion waves in a string
ˇ: Position of the bow, normalized by

the string length L
�: Mass per unit length of string
�s and �d: Static and dynamic fric-

tion coefficients of rosin on the surface
of the string (strictly speaking: depend
on the string material)
�.x; t/: Displacement of the string

axis in the direction of the bow (Oy)
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11.2 Bow–String Interaction

As seen in Chaps. 9 and 10, the system must include one nonlinear element for self-
sustained oscillations to take place. In the violin case, this element is given by the
friction between the bow and the string. Friction is governed by the properties of
rosin, an organic adhesive material which is spread by the player on the bow hair,
which otherwise would have no adhesion properties (see Fig. 11.1).

In this section, we describe the local interaction between the string and the
bow, independently of the dynamical characteristics of each of these systems. The
physical quantities for this description are the velocity of the string at the contact
with the bow vs.t/, the bow velocity vb.t/, their difference �v D vs � vb and the
local or distributed force F.t/ D Fb/s.t/ exerted by the bow on the string. The point
(or possibly the line) of contact of the string with the bow is not on its axis but at the
periphery of the string. Its velocity is the sum of the velocity given by the transverse
waves P� and by the torsion wave a P [see Eq. (3.114)].

11.2.1 Quasi-Static Models of Friction

The simple models that describe friction are based on two hypotheses: the area of
contact is reduced to one point and the relationship between F.t/ and the velocity
difference�v D .vs � vb/.t/ is time-independent. The most simple model is that of
Coulomb and the corresponding force–velocity relationship is given by the dashed
line in the left diagram of Fig. 11.2.

β L

(1-β) L
String

Finger

Bow

vb

FP

F0

F

Bridge

x
y

Fig. 11.1 Bowed string
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Fig. 11.2 Left diagram: friction models of the bow on the string. Dashed line: Coulomb model.
Thick solid line: modified Coulomb model. Thin solid line: modified Coulomb model taking into
account two outgoing torsion waves [see Eq. (11.1)]. Right diagram: ideal Helmholtz motion
as a solution of the modified Coulomb model associated with a perfectly flexible string (see
Sect. 11.4.1.2, p. 618). The solution points A (adhesion) and S (sliding) must have the same ordinate
F D const. and share the friction characteristics in a ratio .1� ˇ/=ˇ. After [36]

Even though this model is not commonly used in the bowed string context,
it remains a conceptual reference throughout this chapter.1 The two states of the
system are (a) sliding with a constant-force �dFP (where FP is the pressing force
of the bow on the string in the direction normal to the motion) and (b) sticking
where vs D vb and the force takes any value between ˙�sFP. Typical values for the
dynamical and statical friction coefficients �d and �s are 0:2 and 0:7, respectively
(see also Chap. 1). Noting that sticking and sliding refer to a point at the string
periphery, it becomes clear that the transition from one state to the other depends on
the value of the torsion and transverse waves when they reach the string point under
the bow.

A model which is commonly used in a number of studies on the bowed string
derives from the strict Coulomb model: the sliding force is considered as dependent
on the relative velocity (solid line in Fig. 11.2). One can take for F.�v/ a hyperbolic
dependence and parameterize it by the slope at �v D 0. It will be seen further on
that this slope acquires an important physical significance when it is compared to
2Zc D 2=Yc, where Yc is the sum of characteristic mobilities of the transverse and
torsion waves, given by Eq. (3.116). The validity of this model has been checked by
Lazarus by means of experiments on the static contact between a bow and a string
[20]. It is correct as long as the quantities involved do not depend on time and the
bowed point is at a thermo-mechanical equilibrium. However, contrary to what has

1The formal analogy between strings and pipes presented in Chap. 1 can be extended by
considering a reed instrument. The bow velocity vb corresponds to the pressure pm inside the
mouth, the string velocity vs to the pressure p in the mouthpiece, and the force Fb/s to the air flow
u input in the mouthpiece. The pressing force of the bow onto the string, a control parameter of the
player, may even be associated with the maximum flow uA that can enter in the pipe [Eq. (9.22)].
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been taken for granted for a long time, friction of the bow on a vibrating string
cannot be considered as a quasi-static phenomenon (see Sect. 11.2.2).

This model can be slightly modified by including some of the torsional dynamics
in the friction characteristics. Since the torsion waves are generally much more
rapidly attenuated than the transverse waves, one may consider that they are
generated by the bow (since it exerts a force at the periphery of the string) but
that they are not reflected by the ends of the string. Within this approximation, these
waves constitute a local reaction of the string which does not depend on time. They
comply with the above hypothesis on friction and can therefore be included in the
friction curve. A new relative velocity is considered: �v0 D P� � vb, where � is
the motion of the central axis of the string in the (Oy-)direction of the bow. The
summation on waves yields vs D P� C a P . Using Eq. (3.117):

F.�v0/ D F.vs � a P � vb/ D F.�v � a P /

D F.�v � F

2Zc,R
/

(11.1)

Graphically, this equation yields the thin solid line in the left frame of Fig. 11.2
which can be obtained from the thick line by shifting each point horizontally by the

quantity
1

2
F=Zc,R. The infinite slope at �v D 0 becomes finite and, according to

[25], the self-sustained oscillation of the system is more stable.

11.2.2 Tribology of Rosin

At the end of the 1980s, the models described above were challenged by experiments
on the tribology of rosin [34]. The string was replaced by a simple harmonic
oscillator with a resonance factor close to that of the string and this system was
rubbed by a glass rod covered with rosin. It appeared that the friction curve was
not single-valued: different states of the system could have the same velocity
difference between the “bow” and the “string” (Fig. 11.3). Later, it was confirmed
on a complete string that an additional state variable must be considered in the
dynamical description of the system.

Microscopic photography (Fig. 11.4) of the rosin covering a rod “bowing” the
string or its substitute revealed two possible regimes of sliding:

• when the local temperature (in the friction zone) is sufficiently high (wood rod,
which conducts heat poorly), rosin melts at the string passage and becomes solid
again afterwards;

• with a copper rod, the temperature does not reach the melting point but rosin
encounters a considerable strain (plastic deformation) at the passage of the string.

Two thermo-mechanical models have been proposed to describe what happens
in the contact zone (Fig. 11.5), with thickness ı and area A. When the temperature
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Fig. 11.3 (Left) Trajectory in the (�v;F)-plane of the point representing friction of a glass rod on
a small portion of string attached to a cantilever (after [34]). Dashed line: quasi-static friction curve.
(Right) Friction coefficient of a glass rod bowing a vibrating string. The velocity was measured
directly and the force was determined indirectly from measurements at the string ends (cf. [42])

Fig. 11.4 Surface of the rosin coating a wood rod (Left) or a copper rod (Right) after friction with
the string (after [34]). Fusion (Left) or plastification (Right) can be distinctly observed

variation � induced by the mechanical work of the friction force F is large enough to
melt the rosin, the force F now describes a viscous flow, with a viscosity depending
on temperature:

F D ��.�/A
vs � vb

ı
: (11.2)

When the temperature change does not initiate melting, the shearing stress in the
rosin layer is considered to cause an ideal plastic strain:

F D A k.�/ sign.vs � vb/: (11.3)
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Fig. 11.5 A rod (top gray area) covered with rosin is driven at constant speed in contact with
the string. The rosin layer (hatchings) is deformed in the contact zone. Heat flow and temperature
change appear, changing in turn the adhesion properties of the rosin (after [34])

11.3 Bow Models

Violin bows have not undergone major changes for about 150 years. One of the most
famous bow makers was François Tourte (1747–1835). Among other achievements,
he recommended Pernambuco wood for the bow stick, which is still much praised by
today’s players. It is thought that this choice is motivated by mechanical properties
such as a high Young’s modulus [2] and a high resistance to shearing [21].

A bow must sustain a high level of hair2 tension without being subject to buckling
instability3 [6]. This is the reason for the inverse curvature of modern violin bows,
compared to ordinary (and ancient musical) bows.

In the rest of the chapter, the bow model is based on the following approxima-
tions:

• point friction,
• imposed velocity at the friction point.

2Bow hair are made from horse tails.
3Buckling refers to the deformation of beams subject to an axial compressing force.
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This bow model corresponds to a zero-width bow with stiff hair. The changes
induced by more realistic bow models are indicated at the end of the chapter
(Sect. 11.4.2.5).

11.4 Dynamical Regimes of the Bowed String

Almost systematically, the motion of the string desired by musicians is quasi-
periodic and consists of the succession, within a period, of one sticking phase and
one sliding phase only (Figs. 11.6 and 11.7). In its idealized form, it was observed
and described by Helmholtz in 1862 [35]. It is certainly not the only motion, periodic
or not, that can be obtained by bowing a string: the sounds produced by beginners
testify to the great variety of achievable motions! In a corner-stone study (difficult
to read, though), Raman [29] analyzed a large number of other periodic motions that
are admissible on a bowed string.4;5

Sticking

Sliding

O

O

F0

t

t

va

Fig. 11.6 Top: velocity of the center of the string at the bowing point. In the ideal HM, of period
� (dashed line), P� is the same as vs and takes successively two constant values. In a real HM (solid
line), P� is mainly due to transverse waves, almost following vb during the sticking phase, with
deviations due to torsion waves. Bottom: force exerted by the string on the bridge, for the ideal
HM. Since a constant force is exerted by the bow on the string, a constant component in F0 is
superimposed to the varying force given by Eq. (11.5)

4A similar discussion has been given in Sect. 9.4.8 of Chap. 9 about conical woodwinds.
5Later on, Raman received the Nobel Prize in physics for his work in spectroscopy.
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Fig. 11.7 Ideal Helmholtz motion. The bow splits the string in a ˇ=.1�ˇ/ ratio. A corner travels
on the string (diag 1), initiates sliding of the string under the bow (2) until (3, 4) sticking occurs
again (5). This explains why the ˇ=.1� ˇ/ ratio is also the ratio between the respective durations
of the sliding and sticking phases in Fig. 11.6

The characteristics of the motions of musical interest are described next.
The ideal Helmholtz motion (HM) — that would be encountered by a perfectly
flexible string with fixed ends, where only non-dispersive and non-dissipative
transverse waves travel — is distinguished from the real HM. Of particular interest
are the lower and upper limits of the bowing parameters beyond which the HM
cannot be sustained, the perturbations of the HM, its stability and the frequency
deviations of the real motion.
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Other regimes will be evoked: either reached by mistake or imposed by the violin
(wolf note) or looked after for special effects (Anomalous Low Frequency “ALF”
notes).

11.4.1 The Ideal Helmholtz Motion

11.4.1.1 Kinematic Characteristics

The ideal Helmholtz motion is a periodic motion that is compatible with the
propagation equation of transverse waves and with the friction condition imposed
by bowing (see the right diagram in Fig. 11.2). Kinematically, the ideal HM can be
represented by the propagation of a corner along the string (Fig. 11.7), at the celerity
of transverse waves cT D p

T=�. Anticipating the demonstration, the period of this
motion is therefore � D 2L=cT. The shape taken by the string during one period is
represented in Fig. 11.7: coming from the finger side toward the bow sticking on the
string (1), the corner triggers sliding (2), reaches the bridge (3) where it is reflected
with a sign change (4), goes back to the sliding bow (5) and initiates a new sticking
phase, goes to the finger (6) where it is reflected (7), travels again toward the bow
(8), etc.

The ideal HM can also be represented as the propagation of a velocity disconti-
nuity� P� D vb=ˇ along the string (Fig. 11.8). This representation will be used in the
rest of this section. A geometrical representation of the HM is that of two straight
lines rotating around the string ends.

The velocity at the bowing point is vb during the sticking phase which lasts
.1 � ˇ/� , the time for the corner to travel from the bow to the bridge and back
(Fig. 11.7). The velocity value during the sliding phase is given by the null average
velocity condition (the string does not go away!) which yields �.1 � ˇ/vb=ˇ

(straight dashed lines of the top diagram in Fig. 11.6). At the bowing point, the
amplitude of the velocity waveform is therefore vb=ˇ and one must notice that it
does not depend on FP.

Examining now what happens at x D ˇ0L (ˇ0 ¤ ˇ), one can derive from the
various representations given above that the velocity of each point of the string
alternates between two values in one period:

• When a point belongs to the same “velocity line” (middle frame in Fig. 11.8) as
the bowing point, P�.ˇ0L; t/ takes the value vbˇ

0=ˇ during .1 � ˇ0/� ;
• When this point is on the other side of the velocity corner, compared to the

bowing point, P�.ˇ0L; t/ takes the value �vb.1 � ˇ0/=ˇ during ˇ0� (by virtue of
the same reasoning as before on the average velocity).

The maximum displacement of a given string point can be computed by temporal
integration of the velocity during the “pseudo-sticking phase” (see above and
Fig. 11.8):
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Fig. 11.8 Kinematical conditions (from top to bottom: position, velocity, and acceleration) on the
string at t D 0, corresponding to frame 6 in Fig. 11.7. Such initial conditions generate an ideal
HM: at point x0, a corner and a discontinuity of velocity � P� > 0 propagate a transverse wave
toward the right of the string at cT. Dynamically, the corner corresponds to an acceleration impulse
cT� P� ı.x � x0/. Since P� and R� are temporal derivatives, notice that the middle and bottom frames
are not derived from the top and middle frames, respectively, by space derivation

�max D 1

2

Z .1�ˇ0/�

0

P�.ˇ0L; t/ dt D 1

2

ˇ0.1 � ˇ0/
ˇ

vb � ; (11.4)

hence the parabolic shape of the envelope of the string motion. The force F0.t/
exerted by the string on the bridge can be easily derived. Near the bridge, at

ˇ0 D dx=L, the velocity is almost always
vb

ˇ

dx

L
since ˇ0 � 1. Therefore, the

displacement is d�.0C; t/ D vb

ˇ

dx

L
t for t 2 Œ��=2; �=2	 (choosing appropriately the

origin of time), where the integration constant satisfies the null average displacement
condition. The force is

F0.t/ D T
d�

dx
.0; t/ D vb T

ˇ L
t; (11.5)

as represented in Fig. 11.6. Its maximum value is

F0max D vb

ˇcT
T: (11.6)
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11.4.1.2 Dynamical Characteristics

The ideal HM is a solution of the following dynamical problem: ideal string
(infinitely thin so that neither torsion waves nor dispersion of transverse waves are
involved, without losses, with fixed ends) to which a bow at x D ˇL imposes a
friction curve corresponding to the modified Coulomb model (thick line in the left
diagram of Fig. 11.2). We show below that the ideal HM is one of the periodic
solutions of the propagation equation without the bow. We show then that this
motion is compatible with the friction curve.

Considering the kinematic initial conditions given in the two top diagrams of
Fig. 11.8, it is shown that the propagation equation and the end conditions generate
the HM. In these conditions, the string position is a continuous piecewise linear
function whereas the velocity profile is also piecewise linear but discontinuous. One
define P�.x D x0; t D 0/ as the initial velocity (here: negative) at the right side of
x0 D ˇ0 L.

Since the string is straight everywhere, the restoring force due to tension is zero
everywhere except at x0. Within the approximation of small angles, the force at x0
can be derived from the expression (11.4) of the maximal displacement �max:

F.x0/ D T

�
�max

.1 � ˇ0/ L
C �max

ˇ0 L

�
D T

1

2

ˇ0 .1 � ˇ0/
ˇ

vb �
1

Lˇ0 .1 � ˇ0/
. (11.7)

Using the expressions � D 2L=cT (see further) and � P� D vb=ˇ (see kinematic
description) leads to:

F.x0/ D T
1

2
� P� 2 L

r
�

T

1

L
D p

� T � P� . (11.8)

One recognizes here the expression of the forward propagating force associated
with the forward propagating velocity discontinuity:

F.x0/ D CZc,T� P�: (11.9)

This localized force is responsible for an acceleration R�.x/ which is null
everywhere except at x0,

F.x0/ D
Z x

0C

x0�

R�.x/ � dx. (11.10)

The space-dependency of the acceleration becomes a pulse:

R�.x/ D cT� P� ı.x � x0/: (11.11)

With the acceleration given above, this point acquires the velocity corresponding
to the left side of the velocity diagram (middle frame of Fig. 11.8). Since the
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acceleration is null everywhere else, all other points keep their initial velocity. This
amounts to a propagation of the velocity discontinuity toward the right side of the
string. The string dynamics (given by the propagation equation of the transverse
waves) implies that this propagation occurs at the celerity cT and also that the force
impulse given by Eq. (11.9) propagates toward the right side of the string.

The above reasoning implies also that the corner propagates toward the right.
Since the velocity profile remains the same, except at x0, the initial condition is
simply transposed a bit to the right. Altogether, the dynamics of the string implies
that a velocity discontinuity associated with an initial corner-shape propagates in a
direction that is determined by the respective signs of these initial conditions.

It is now shown that this motion has a period � D 2L=cT when the ends are fixed.
In the absence of motion at the right end of the string, the reflection of the traveling
acceleration impulse occurs instantaneously with a sign change and so does the force
impulse.6 It follows that the corner propagating now toward the left side of the string
points toward the top of the diagram. At the instant of the reflection, all string points
have a positive velocity. The acceleration impulse progressively changes the sign of
this velocity: the velocity profile is therefore the same slightly before and slightly
after the instant of reflection, that is, for a change in the propagation direction. At
the time of the reflection at x D L, only the signs of the force, acceleration, and
displacement have changed. This will be the same for reflection at x D 0, yielding
the 2L=cT periodicity.

Combined with a small modification, the above solution is compatible with the
friction curves in Fig. 11.2. Since the string does not absorb energy (in this ideal
model), the force exerted by the bow does no work and the average power given by
the bow is zero. Since the time-average of the string velocity is zero everywhere, it
follows that the force F.t/ exerted by the bow must be constant in time: the power
given during the sticking phase must be given back during the sliding phase.

The friction curve (left diagram of Fig. 11.2) can be redrawn as a function of the
string velocity at the bow. The force takes the constant value that gives the value

vb
1 � ˇ

ˇ
to the velocity during the sliding phase (point G). Since the force exerted

by the bow is continuous, it adds a permanent deformation — a triangle with its
summit at x D ˇL — to the motion of the string described above. This permanent
shape imposes in turn a DC component in the force F0.t/ exerted on the bridge.

However, the ideal HM is not stable. A perturbation propagating on the string can
meet the bow either during a sticking or during a sliding phase. Since the ends and
the sticking bow have a null-mobility, it cannot lose energy in the first case. In the

6This result may look strange since the force exerted by the string on its ends is not identically zero
in time. In reality, the force exerted at x D L is exerted by the left part of the string on the right
part of the string whereas the force impulse at stake here is local and results from the left and the
right parts of the string.
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second case, it will gain energy since the dynamical mobility dvs=dFs/b presented
by the bow during that phase is real and negative.7 This point is discussed further in
the case of a dissipative system.

11.4.1.3 Schelleng’s Diagram and Generalization

The HM propagates a velocity discontinuity that can be observed and consequently
a force discontinuity which is the velocity discontinuity times the characteristic
impedance of transverse waves on the string. Since the propagated force moves the
string downward the propagation direction, it can be observed by examining how it
acts on an obstacle placed in its way.

The bow may represent such an obstacle for propagating waves: when the
discontinuity of velocity reaches the sticking bow (diagram 2 in Fig. 11.7), sliding
begins if the propagated force is sufficiently high to initiate it.8 The bow is a
fixed obstacle as long as the force does not exceed �sFP, corresponding, within
the frame of the ideal HM dynamics, to a force variation .�s � �d/FP. If the
velocity discontinuity does not trigger sliding, it reflects with a sign change. The
corresponding variation of force on the bow is �F D 2 Zc,T� P� . Thus, sliding is
initiated if �F exceeds .�s � �d/FP, corresponding to Zc,T� P� � .�s � �d/FP=2.
It follows that the pressing force FP must not exceed a certain value in order to
maintain the sticking/sliding transitions:

FP,max D 2 Zc,T vb

ˇ.�s � �d/
: (11.12)

In order to make the system more realistic, the first ingredient to add is a
dissipative mobility at the bridge. As a first approximation, this mobility can be

assumed independent of frequency so that: F0.t/ D Y0


�.0; t/. Keeping the ideal

HM as a valid approximation of the motion, the average power dissipated at the
bow is obtained by using successively Eq. (11.5) and the relationships between the
tension, the celerity, and the characteristic impedance of the transverse waves:

hPi D 1

�

Z �=2

��=2
F0.t/ P�.0; t/dt D Y0

�

�
vb T

ˇ L

�2 Z �=2

��=2
t2dt

D Y0
�

�
vb T

ˇ L

�2
�3

12
D Y0

3

Z2c,T v
2
b

ˇ2
: (11.13)

7This conclusion applies in the particular case ˇ D 1=2 which corresponds to that of the clarinet:
since the slope of the sticking branch is infinite, the stability condition (9.64) cannot be met.
For other values of ˇ, finding a stability condition is much more difficult, as mentioned for the
cylindrical saxophones.
8One may think that the corresponding condition is Zc,T� P� D .�s � �d/FP, but this is not the
correct result (see below).
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The energy comes from the bow. In the .� P�;F/ plane, the point representing the
state of the system during sliding is approximately the same as in the case of the
ideal HM. During sticking, this point is confined to the vertical segment defined by
the ˙�sFP limits. The upper bond of the average power that the bow can impart to
the string during the sticking phase is therefore:

Pupper D 1

�

Z
�

F.t/ P�.ˇL; t/ dt, or

Pupper D FPvb

�

�
�s.1 � ˇ/� � �d

1 � ˇ

ˇ
ˇ�

�
D FP vb .1 � ˇ/ .�s � �d/:

(11.14)

The bow can provide the energy absorbed by the bridge only if Pupper > P and
thus, only if the static pressing force FP of the bow on the string exceeds

FP,min D vbY0Z2c,T

3.1 � ˇ/ .�s � �d/ˇ2
. (11.15)

Schelleng reasoning on the force wave on the string [30] yields a slightly different
result: the mobility at the bridge (for example) alters the force wave, compared
to the ideal HM. This perturbation must not initiate sliding during the expected
sticking phase. The bow must therefore be pressed sufficiently hard. Using certain
approximations on the motion (first harmonic, small ˇ and thus 1 � ˇ ' 1), it
comes that the pressing force must exceed FP,min D vbY0Z2c,T=



2 .�s � �d/ˇ

2
�
.

This expression displays the same dependence on the playing parameters as in
Eq. (11.15).

Schelleng’s diagram (Fig. 11.9) is a qualitative representation of the maximal
and minimal pressing forces as a function of the bowing position ˇ. It shows in a

Raucous sound

Surface noise

Log β

Ideal HM

Log FP

Fig. 11.9 Schelleng’s diagram: minimal and maximal values of the pressing force of the bow as
a function of the bowing position ˇ. Area where a nearly ideal Helmholtz motion may take place.
After [30]
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simple way why it is difficult to play near the bridge, as well-known to beginners:
the margin between FP,min and FP,max becomes progressively smaller as bowing
is performed nearer to the bridge. Accordingly, the control on the bow must be
more rigorous. It can also be understood why it is very difficult to play with a pp
(pianissimo) level near the bridge, which may be desirable for sonority reasons: on
one hand, vb must be small since the amplitude of the motion is proportional to vb=ˇ

but, on the other hand, the minimum pressing force increases accordingly (and even
as ˇ�2), which makes it difficult to control a low bowing velocity vb.

More realistic models for the bridge mobility have been proposed by Woodhouse,
with a frequency-dependent reactive part. At the playing frequency !p, the minimal
pressing force becomes [38]

FP,min D 2 vbZ2c,T

�2 .�s � �d/ ˇ2

�
"

<e
1X

nD1

Y0.n!p/

n2
C max

t

(
<e

1X
nD1

.�1/nC1Y0.n!p/

n2
exp.ni!pt/

)#
:

(11.16)

The dependency of FP,min on the playing parameters remains similar to that in
Eq. (11.15).

11.4.2 Real Helmholtz Motion

11.4.2.1 Observations—Definition

The real motion of the bowed string in musical playing is apparently significantly
different from the ideal HM, as exhibited, for example, by Fig. 11.6:

• Torsion of the string induces a difference between the motion of the center of the
string — characteristic of transverse waves — and that of its surface, where the
succession of sliding and sticking phases occurs. Consequently, the velocity of
the center of the string encounters oscillations during the sticking phase.

• The stiffness of the string is responsible for some dispersion of the transverse
waves so that the Helmholtz corners are gradually smoothened during their
propagation along the string.

• If the energy dissipation that occurs in a string depends on frequency, which is
generally the case, the corner is even further (generally) smoothened in the course
of its propagation.

• Reactive end conditions are also a cause of a change in the shape of the corner
when it reflects at the end of the string.

However, the ideal HM remains a good approximation and the family of periodic
motions that are characterized by the occurrence of only one sticking phase (and
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thus one sliding phase) will still be labeled as Helmholtz motions. The following
paragraphs show how the string dynamics can be treated in the non-ideal case.

As shown in Sect. 3.4.9 of Chap. 3, the velocity vs at the surface of the string
interacting with the bow results from the combination of torsion and transverse
waves: vs D P� C a P . The characteristic mobility of this combined wave, as seen at
the surface of the string, is Yc D Yc,T C a2=.I cR/ [see Eq. (3.116)].

11.4.2.2 Simplified Dynamics of the Bowed String

A simplified treatment of the dynamics of the bowed string is allowed due to
the following properties of the system: the string is linear whereas the nonlinear
phenomenon (friction) is restricted to one point and is instantaneous. In order to
obtain the two independent variables vs.t/ and F.t/, two equations are required

vs.t/ D ŒF � vı	 .t/; (11.17)

F.t/ D FN L Œvs.t/ � vb	 ; (11.18)

where vı.t/ is the impulse response of the string and FN L is a friction curve
independent of time. In order to solve this system, Friedlander [11] suggested the
construct represented in Fig. 11.11, taking advantage of the string linearity. The
velocity at the bowing point v.t/ is split into two components as shown in Fig. 11.10
and according to the following equations:

vs.t/ D vH.t/C v1;1.t/ with v1;1.t/ D F.t/

2Zc
D Yc

2
F.t/

) vs.t/ D vH.t/C Yc

2
F.t/; (11.19)

Fig. 11.10 (a)
Decomposition of the
incoming and outgoing
velocity waves at the bowing
point. (b) The incoming
waves vH.t/ are due to the
history of the waves along the
string. (c) The outgoing
waves v1;1.t/, at a given
instant, are due to the
instantaneous force exerted
by the bow and are the same
as if the string were infinite
on both sides of the bow

v , (t)

a

b

c

vH (t)



624 X. Boutillon
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Fig. 11.11 The Friedlander resolution of a simplified dynamics of the bowed string. The point
representing the dynamical state of the system in the .vs;Fb/s/-plane alternates between sticking
(point A, “adhesion”) and sliding (point S, “sliding”). It follows the friction curve, belongs to a line
with slope 2=Yc and its time evolution is governed by the history of the waves on the string (vH)

where vH is the velocity caused by the history of the waves along the string and
v1;1.t/ is the velocity caused by the instantaneous action of the bow9 At a given
time, the latter is the same as if the string were infinite on both sides, hence the
notation.

The graphical resolution of these equations is given in Fig. 11.11. The point
representing the dynamical state of the system, of coordinates .vs.t/;Fb/s.t//, is at
the intersection of the straight line given by Eq. (11.19) and the friction curve. This
point follows a closed line in the .vs;Fb/s/-plane since the motion is periodic. When
the pressing force FP is small enough, the slope of all the points of the friction curve
is less than 2=Yc and there is only one intersection. When FP exceeds a certain
threshold, 2=Yc becomes less than the steepest slope of the friction curve so that,
between points A (“really” sticking) and G (“really” sliding), the running point there
is a zone with three intersection points. Switching between the two branches is done
according to the following rule: the point representing the dynamical state of the
system stays on the same branch as long as possible, as illustrated in Fig. 11.11. The
hysteresis in the periodic cycle goes along with a slight flattening of the playing
frequency, compared to the “natural” value cT=2L of the period of the HM.

9This equation can also be obtained from (4.64) with the following equivalence: in the case of
the string, the source and the receptor are located at the same place (x D xS), with pH being the
sum of all terms generated by reflections, in other words by convolutions with r0.t/ and r`.t/.
Equation (4.65) is written for quantities pertaining to a string, in the Raman model.
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11.4.2.3 The Flattening Effect

The flattening effect is the result of pressing the string with the bow beyond a certain
force threshold: for a given bow velocity and bow position, the playing frequency
goes slightly down.10 Numerical simulations in the time-domain have shown
[22, 32] that this effect appears along with a hysteresis in the sticking-sliding cycle
(see above). More recent observations and simulations suggest that the flattening
effect may also appear in the absence of a threshold in the pressing force and
increases with the pressing force, particularly when the friction model depends on
temperature, which induces almost inevitably a hysteresis cycle [33, 40].

It is also possible to analyze this effect in the frequency-domain, with the advan-
tage of an analytical approach [4]. For a periodic motion, the Fourier components
of the force exerted by the bow and of the velocity at the bowing point are

F.t/ D
X

n

Fn sin.!nt C  n/ (11.20)

vs.t/ D
X

n

Vn sin.!nt C  n C 'n/; (11.21)

where the n are chosen so that Fn are positive. Since the string absorbs energy from
the bow, choosing the 'n in the Œ��=2; �=2	 interval also guarantees positive values
for the Vn. The mechanical mobility presented by the (linear) string to the bow is
therefore:

Yn D Vn

Fn
ej'n : (11.22)

This mobility combines the mobility of transverse waves with that of torsion
waves (depending on the string model). These mobilities can be obtained by
transporting the end mobilities along the string.11 The area A of the hysteresis cycle
in the .vs;F/-plane is

A D
Z
�

F.t/ dv.t/

D
X

n

n � Fn Vn sin 'n D
X

n

n �
V2

n

jYnj sin 'n (11.23)

10An early scientific observation of the effect has been reported by H. Bouasse [3] in an experiment
which he had designed for demonstrating the stability of the playing frequency of a bowed string.
11A first approximation of the stiff string case is treated in [4].
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Fig. 11.12 Flattening of the playing frequency as a function of the bow pressing force FP for a
nearly ideal HM. The string has some stiffness and dissipative ends and torsion is included in the
model. The friction curve is given by the modified Coulomb model. Left diagram: flattening effect
for various bow velocity values. Right diagram: flattening effect for various bowing position ˇ.
After [4]

where the terms of the discrete sum can be interpreted as reactive powers.12

Here, the Fourier components Vn must be determined independently. It appears in
Fig. 11.11 that A is positive so that, according to Eq. (11.23), the 'n must generally
be positive. The phase of a mobility is positive below resonance and negative above.
Since the playing frequency is near resonance (low inharmonicity), the appearance
of the hysteresis implies flattening, compared to the non-hysteresis situation. Precise
measurements of the motion of a bowed calibrated string [9] are in good quantitative
agreement with this analysis.

Taking advantage of the analytical approach, the dependence of the effect on the
playing parameters is displayed in Fig. 11.12: the effect is more marked for low
bow velocity and when bowing closer to the bridge. This is consistent with the
observation of a marked effect in attack transients and during a change in the bow
direction.13

11.4.2.4 Stability of the Helmholtz Motion

As explained earlier, the ideal HM is not stable because the corresponding dynam-
ical model does not include energy dissipation. Instabilities appear as growing
subharmonics superimposed onto the HM [23] (Fig. 11.13).

12This quantity is labeled in contrast to the active power Fn Vn cos 'n. The principle of this
computation has been used in Chap. 9 (Sect. 9.4.5) with a different objective: when there is no
hysteresis, the area A is zero, which yields a relationship between the imaginary parts of the
admittances (or mobilities) and the amplitudes of the harmonics.
13Michèle Castellengo, personal communication.
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Bridge
Bow

Finger
or nut end t

Fig. 11.13 Space-time diagram of the propagation of the Helmholtz corner (dashed line) and of a
perturbation (solid line) along the string. The perturbation follows a periodic path at a frequency
lower than the main motion (after [23])

Such subharmonics can indeed be heard, and even be annoying, in the real HM
for specific values of ˇ. They appear in the simulations of more realistic models
with dissipation in the bow, at the string ends and in the string itself, mostly as
non-reflecting torsion waves [11, 23].

Several studies on the stability of more realistic string models confirm the idea
that the longer the sticking phase is, the more stable is the motion [5]. This is
consistent with the fact that the instability comes from the negative dynamical
resistance offered by the sliding branch of the friction curve. Also, it turns out that
torsion waves are generally fairly dissipative and that they are generated when a
perturbation meets the sticking bow. However, not all perturbations can be stabilized
by dissipation at the bow: those which reach the bow during sliding would remain
unstable without further refinements of the string model [36]. The stability of a wide
range of periodic motions, including the HM, has been studied in various situations,
more or less idealized [39]. It appears that the duration of the reflection functions
at the string ends (whether the bridge, the finger, or the nut) tends to stabilize the
motion.

11.4.2.5 Modifications Induced by a More Realistic Bow Model

In reality, the bow has a finite extension and a number of different hairs simultane-
ously bow the string at slightly different locations. Keeping the scheme of a corner
propagating along the string as a good approximation of the motion, it follows that
the sliding phases of the various hairs are initiated at slightly different instants,
depending on their location on the string. The effects of such a differential slipping
have been extensively studied [23, 24, 26–28], the latest of these articles also
including some more realistic characteristics (elasticity of the hair, etc.). Among
the consequences, one can note the altered duration of the travel of the corner under
a reactive bow and the appearance of jitter, a small amount of aperiodicity of the
motion. These works show that experimental and simulation results are better fit if
one takes an apparent static friction coefficient �s for the whole bow with a smaller
value than that of an individual: 0.6 instead of 0.8.

It also appears that the finite bow model provides a more gradual transition
between the values of bowing parameters that lead, after some transient regime, to a
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Fig. 11.14 Simulated motion of a string under a bow with finite width, as a function of time. Top
diagram: velocity of the string at the bow edge nearest to the finger. Bottom diagram: velocity
of the string at the bow edge nearest to the bridge. Middle diagram: position of the bow hair
(in ordinates, the lowest line of the diagram corresponds to the bow edge nearest to the bridge),
whether slipping (white areas) or sliding (black areas). Partial slipping is initiated mostly on the
bridge side; however, these partial slipping events are not successful in breaking sticking on the
full bow width and the motion remains a HM (after [27])

musically acceptable motion and the values that fail to do so. When the bow pressing
force increases, some hair initiate slipping during the sticking phase (see the middle
diagram in Fig. 11.14), as in the case of an ideal bow, leading to the breaking in
the HM. For a finite bow, the level of the bow pressing force for which all the bow
hair initiate slipping during the sticking phase is significantly larger. Conversely,
some wiggles appear in the waveform (see bottom diagram in Fig. 11.14) which
may become unfavorable to the musicality of the sound.

The dynamics of the bow stick (flexibility and damping) and of the bow hair
(longitudinal flexibility) plays an important role in the physics of the bow–string
contact but also, according to the makers and players, in the appreciation of the
violin itself. A detailed sensitivity analysis of the bowing parameters [28] shows
that partial slipping during the sticking phase is less frequent with more flexible and
damped hair. As evoked above, the possible consequence of an increased reactive
mobility of the bow, seen by the string, is an increase in the frequency variations of
the HM. An example of simulations of the string motion under a finite-width bow
made of finite-compliance hair, is displayed in Fig. 11.14.
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Fig. 11.15 Observation of a wolf note on a cello (after [10])

11.4.3 Other Regimes

11.4.3.1 Wolf Note

The so-called wolf note is an amplitude modulation of the note which appears during
a stable bowing gesture, out of the player’s control. This occurs on some notes of
the cello and viola, rarely on violins (Fig. 11.15). Dynamically, this corresponds
to a stable, biperiodic regime, which is not acceptable for musicians. When the
fundamental (or pitch) of the note corresponds to a resonance of the instrument
body, sustaining the tone goes along with a slow (because the coupling remains
weak, altogether) growth of the amplitude of the bridge motion. In turn, this end
motion generates a perturbation to the HM (see also Chap. 6). Beyond a certain
level of the bridge motion, this perturbation is sufficiently large to trigger a second
slip in the middle of the sticking phase. The primary HM is gradually destroyed,
which decreases the amplitude of the bridge motion, and a new HM appears with a
phase difference relative to the primary motion corresponding to the time shift of the
(new) slipping phase. This secondary HM increases, thereby increasing the bridge
motion and has the same fate as the primary HM, etc.

Musicians can attenuate this modulation amplitude by pressing the bow harder
or by changing the bowing position. Mechanical devices to be added on the “dead”
part of the string, between the bridge and the tailpiece, have been proposed in order
to alter the bridge mobility. For a more precise analysis of this question, as well as
others, we refer the reader to papers by McIntyre and Woodhouse and to the book
by Cremer [5].

11.4.3.2 Anomalous Low Frequency (ALF) Tones

An interesting regime has been independently (re?)discovered in the early 1990s
by a violinist, Mari Kimura,14 a bassist and acoustician, Knut Guettler [18] and a
physicist, Roger Hanson together with Frederick Halgedahl, a violinist [19]. Later
documents report the use of the technique by Paganini. The main characteristic of

14The reader may consult her website for examples of musical usage.
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the regime is to be periodic at a lower frequency than that of the HM. In other words,
it is possible to play a third, an octave, a ninth, a twelve, and even two octaves below
G3 on a violin! In effect, an appropriate bowing technique, requiring careful control,
adjusts the cooperation of the torsion and the transverse waves so that the traveling
corner does not trigger slipping each time it reaches the bow. Because the period
of ALF tones is not a multiple of the “normal” period of the string, this regime is
not to be mistaken with genuine subharmonics which can sometimes be heard, as
mentioned above, together with the “normal” Helmholtz motion.

11.5 Recent Results

In recent years, a number of new results were published on the physics of violins.
Studies of the violin bow were made by Gough [16, 17], Ablitzer et al. [1],
and Demoucron [7]. Bowed string transients were investigated by Galluzzo [15].
A method was developed by Schoonderwaldt and Demoucron for extracting bowing
parameters from bow performance [31]. Measurements of input admittance of
bowed string admittance were discussed by Zhang and Woodhouse [43]. Bridge
transfer mobility measurements were performed by Elie et al. [8]. Finally, a
significant number of papers were published by Fritz and colleagues on the links
between physical properties and perception of violin tones [12–14, 37]. One can
also refer to the review by Woodhouse [41].
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Part IV
Radiation and Sound–Structure

Interaction

Musical instruments are complex systems in which numerous acoustical and
vibratory phenomena are intrinsically mixed together. Since this book is devoted
not only to research, but also to teaching, it seemed necessary to us in this fourth
part to start with the description of the main phenomena on simple examples.
Thus, the main results on elementary sources (monopoles, dipoles, quadrupoles,. . . ),
which might be of use in the accurate description of musical instrument in the
next chapters, are presented in Chap. 12. Here, we do not demonstrate all results
mathematically, because these sources are largely described in the literature, and we
invite the reader to consult specialized textbooks for more details.

Chapter 13 is entirely devoted to the radiation of structures. The presented results
are aimed at providing an understanding on how a sound is produced by stringed and
percussive instruments. The main concepts are introduced through the example of
the radiation of thin elastic plates, which offers the advantage to give an pertinent
analytical reference.

Finally, with the purpose to illustrate the basic concepts on complete instruments,
the last chapter is devoted to the detailed presentation of the radiation of some
selected instruments: vibraphone, timpani, guitar, piano and wind instruments.



Chapter 12
Elementary Sources and Multipoles

Antoine Chaigne and Jean Kergomard

Abstract Elementary sources, such as monopoles and dipoles, are described in this
chapter in order to introduce the basic concepts of radiation applicable to musical
instruments. In each case, the radiation field is characterized in terms of sound
pressure, directivity, acoustic intensity, and sound power. The dependence of the
pressure amplitude with respect to distance and frequency is highlighted. Pulsating
and oscillating spheres are used as reference examples to illustrate these concepts.
Another interest of the elementary sources follows from the fundamental Kirchhoff–
Helmholtz theorem, which states that any extended source can be represented as a
distribution of elementary sources. This result forms the basis of the calculation
of the acoustic field radiated by a musical instrument with arbitrary geometry.
Particular attention is also paid to the radiation of sound tubes, either isolated or
with mutual influence due to their proximity.

12.1 Introduction: Acoustical Radiation of Musical
Instruments

Musical instruments are primarily designed for radiating sound power: this is a
necessary condition for allowing the audience to listen to music! A good knowledge
on the radiation mechanisms is also essential for the sound engineer, who is in
charge of recording a concert with only a finite number of microphones. The sound
that reaches the listener (or the microphones) not only depends on the properties
of the sources (the musical instruments), but also on the properties of the listening
space, and on the position of the listener (resp. the microphones) in the room.
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In this fourth part of the book, we limit ourselves to the physical description of the
radiation of the instruments, leaving aside the questions linked to the acoustics of the
room and on the psychoacoustical aspects of the sound perceived by the listeners.
However, before starting this study, a rapid overview is made on the parameters to
be considered, alternatively from the point of view of the player, the listener, and
the sound engineer.

An instrument has to be heard. From the point of view of the physicist, this
implies that it can produce sufficient sound power. In an orchestra, or in a chamber
music ensemble, another linked question is the level balance between all sections
of instruments. This, in turn, determines, for example, the total number of violin
players compared to the number of trumpet or clarinet players in an orchestra. We
will not go further into these considerations which, as one can imagine, also largely
depend on aesthetic choices and on the work performed.

The spatial distribution of the radiated sound and the directivity of the instrument
also are important aspects of radiation. During a concert, some instruments, such as
the trumpet or the trombone, for example, radiate in restricted emitting cones. In
what follows, we will see that the directivity of a given instrument strongly depends
on frequency, and thus varies substantially from bass to treble range.

For the player, one important feature of the instrument is the ratio between the
input mechanical power and the acoustical power at the “output.” This determines
the playability of the instrument: in a number of situations, some notes are more
difficult to play than others. As a consequence, the sound level can be very
heterogeneous over the complete frequency range of the instrument. In terms
of physics, attempt will be made to model the relationships between the input
mechanical quantities (blow velocity, plucking force, bow pressure, key velocity,. . . )
and the sound pressure.

These are also central questions for the instrument maker. The physical approach
of the instrument must serve as a guide for the selection of construction parameters
(geometry, materials,. . . ). The function of the developed models is to establish clear
links between these parameters and the sound qualities of the instrument: sound
level, dynamic range, directivity, homogeneity, and playability.

To finish with this preamble, let us add a few words on contemporary music,
with focus on those which make a large use of virtual instruments and synthe-
sizers. In this case, the sound does not result from structural-acoustics coupling
between instrument’s body and air, but is rather obtained by transduction through
loudspeakers. The question of sound level is less critical here, since it is always
possible to amplify the electric signal, within the limits imposed by the linear range
of the transducers. However, the problem of directivity is still present as well as the
question of distribution of these virtual sources in a symphonic orchestra.
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12.1.1 General Problem of Radiation

12.1.1.1 Musical Sound Sources

The radiation mechanisms are specific for each musical instrument. However, three
basic mechanisms (or source types) are present, to a lesser or greater extent, in each
family of instruments [10]:

1. For the sources of type 1, the sound results from the variation with time of a
volume flow. The academic example is the pulsating sphere that can be illustrated
by the oscillations of a air bubble in water. In musical acoustics, the lowest mode
of a kettledrum struck by a mallet in its center, or the radiation at the end of a
tube (below the cut-off frequency), are examples of such sources (see Fig. 12.1).
In this case the continuity equation (1.109), presented in Part I of this book, is
written:

1

c2
@p

@t
C � div v D m; (12.1)

where m D �q represents the mass flow, or, equivalently, the volume and time
density of mass injected in the surrounding fluid.

2. In type 2 sources, the sound results from local variations of forces exerted on the
particles of the fluid, with a zero volume velocity. The standard models of such
sources are the oscillating disk or the oscillating sphere. In musical acoustics,
the lowest flexural mode of a xylophone beam, the 11 mode of a kettledrum or
of a guitar plate are examples of type 2 sources (see the Fig. 12.1). In general,
external force densities are present not only on oscillating sources, but also when
sound waves are reflected on a rigid surface. One example was given in Chap. 10
for the flutes. In the presence of external force density f , the linearized Euler
equation in the fluid becomes

�
@v

@t
C grad p D f : (12.2)

+ + + +
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+
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+

Fig. 12.1 (Left) Examples of sources of type 1: lowest modes of a kettledrum and of a guitar plate.
(Right) Examples of sources of type 2: oscillating disk, first flexural mode of a xylophone beam,
without its resonator
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where f D �F (F is a mass density of force). Eliminating the acoustic velocity v
between these two equations yields the heterogeneous wave equation (i.e., with
a source term):

1

c2
@2p

@t2
��p D @m

@t
� div f : (12.3)

In Eq. (12.3), the two types of sources are present in the right-hand side. It can be
seen that the mass term produces sound only if it varies with time. Conversely,
the force term produces some sound under the condition of spatial variation.

3. Finally, sources of type 3 exist in a viscous fluid, and are due to the presence of
shear stresses. The formulation of these source terms is obtained by taking the
viscosity forces and the convective acceleration (nonlinear terms) in the equa-
tions. These terms govern, for example, the origin of jet noise in aeroacoustics
[see Eq. (10.30) and Sect. 10.4 in Chap. 10] [26].

12.2 Elementary Sources

Elementary sources are limiting cases that are often very useful, to a first approxi-
mation, in order to describe complex sources such as musical instruments.

The pulsating sphere is a good archetype of a perfectly omnidirectional source,
which means that the amplitude of the sound pressure only depends on the distance
from the source, and not on the angle of observation. The example of the air bubble
in water was given in the previous paragraph, but it is not very “musical”! In musical
acoustics, the radiation of the guitar soundhole, or of the end of a tube, also can be
considered as omnidirectional, at least in a given frequency range. If the radiation
field is omnidirectional in an half-space (or in the fraction of the acoustic space),
then models of pulsating half-sphere or fractional pulsating spheres can be applied.
In what follows, this simple model will be used to introduce the basic concepts of
acoustic intensity, radiating power and impedance, and to define the concepts of both
near and far fields.

A monopole, or point source, can be viewed as the theoretical limit of a pulsating
sphere, when its radius tends to zero. It is an idealized system which is not feasible in
practice. However, one can build reasonable approximate monopole sources under
the condition that their dimensions are kept small compared to the wavelength
and/or the distance to the observer (listener).

In contrast with the pulsating sphere (source of type 1), the volume of an
oscillating sphere (or of an oscillating disk) does not change during its motion and it
will be seen below in this chapter that it corresponds to a type 2 source. The limiting
case of such sources yields another elementary source called dipole. A dipole is a
directional source. It will be shown that a dipole with the same amplitude as the one
of a monopole radiates the low frequencies less efficiently. In musical acoustics a
xylophone beam, or an oscillating string, can be conveniently described by linear
arrays of dipoles [15].
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One major interest of such point sources lies in the fact that extended sources can
be viewed as distribution of elementary sources. This is one essential result of the
Kirchhoff–Helmholtz theorem that will be demonstrated at the end of the present
chapter. This theorem also forms the theoretical basis of numerical techniques such
that the Boundary Element Method which are of current use for the computation of
acoustic radiation.

In this chapter, the main properties of the elementary acoustic sources are
reviewed, without the details of the mathematical derivations. The reader is invited
to consult the numerous textbooks available on these topics (see, for example, [31]).
Emphasis is put instead on the consequences of these properties in the particular
cases of musical instruments. Most derivations are made in the frequency domain,
although some examples are intentionally treated in the time domain.

12.3 Pulsating Sphere

The most simple example of a “type 1” source is the pulsating sphere. Due to
the spherical symmetry of the problem, the radiation phenomena can be described
analytically with only one spatial coordinate. A sphere with radius a and given radial
velocity Va.!/ along its periphery .S/ is described here in the frequency domain
(Fig. 12.2). The amplitude of the radial motion is supposed to be small compared to
the radius.

12.3.1 Pressure and Velocity Fields

Using the wave equation expressed in spherical coordinates, as seen in Sect. 7.4.1 in
Chap. 7, we get the expression of the radiated pressure field at a distance r from the
center of the sphere. In what follows, the pressure field inside the sphere is ignored
(it might lead to nonlinear effects in the vicinity of the center whose is beyond the

Fig. 12.2 A pulsating sphere
of radius a is vibrating
radially with angular
frequency ! and velocity
Va.!/ along its periphery (S):
the resulting pressure at a
given distance from the center
of the sphere is identical in all
directions

Va (  )

a

(S)
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scope of this book) and we concentrate on the outside pressure in free space. From
the general solution, the pressure at a distance r can be expressed as a function of
the surface pressure P.a/ as follows1:

P.r/ D P.a/
a

r
e�jk.r�a/: (12.4)

Using the specific admittance in a [Eq. (7.79)], we get the pressure P.r/ as a function
of the acoustic velocity which is, by continuity, equal to Va. Introducing the volume
velocity of the sphere U D 4�a2Va, we get

P.r/ D �c

4�a2
a

r
U

jka

1C jka
e�jk.r�a/ : (12.5)

The first term in this expression is the characteristic acoustical impedance of the
source Zc D �c

4�a2
. The second term a=r characterizes the spherical expansion

in free field (or 1=r law). The term jka
1Cjka governs the frequency dependence of

the pressure. If the characteristic dimension of the sphere (the radius a, here) is
small compared to the acoustical wavelength (ka � 1), then the magnitude of the
sound pressure is of the same order as ka. Conversely, for the “small” wavelengths
(ka 	 1), in the “high” frequency range, the magnitude of P becomes independent
of frequency. Finally, the exponential term expresses the delay of propagation
between the vibrating surface of the sphere and the observation point. This delay
takes the form of a phase shift in the frequency domain. Figure 12.3 shows the
variations of the squared pressure modulus as a function of frequency for a given
source at a given fixed point in space.

Fig. 12.3 Squared modulus
of the pressure radiated by a
pulsating sphere as a function
of the dimensionless
frequency ka

0
0 1 2 3 4 5

0.5

1

2
P––––

Pmax( (

ka

1In all the following expressions, the time dependence of the acoustical quantities are omitted, for
simplicity. Thus, P.r; !/ is denoted P.r/.
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Using again the expression of the admittance in r [Eq. (7.79)] now yields

V.r/ D U

4�a2
a2

r2
1C jkr

1C jka
e�jk.r�a/ : (12.6)

It can be checked in (12.6) that the continuity condition of the radial velocity is
fulfilled in r D a. When the observation point is located far from the source (kr 	 1,
in terms of wavelength), then the modulus of the acoustic velocity decreases
proportionally to 1=r as the sound pressure. In this case P.r/ ' �cV.r/, which
means that the radiated wave at a large distance from the source behaves like a
plane wave. In contrary, if kr � 1 (in the near field of the source), the acoustic
velocity decreases as 1=r2.

These results illustrate different important cases of approximations which are
frequently encountered when studying the radiation of sound sources:

• Approximation at the emission depending on the ratio between the dimensions
of the source and the acoustic wavelength (discussion on the parameter ka in the
case of the pulsating sphere)

• Approximation at the reception depending on the ratio between the source-
receiver distance and the wavelength (discussion on the parameter kr in the case
of the pulsating sphere)

In some case, we might also consider purely geometrical approximations, for a
given wavelength, where a comparison has to be made between the source-receiver
distance and the characteristic dimension of the source. For the pulsating sphere, for
example, this refers to approximations involving the ratio a=r.

12.3.2 Acoustic Intensity and Sound Power

From the expressions of pressure and acoustic velocity in the frequency domain, the
mean value of the acoustic intensity is derived.2 In the case of the pulsating sphere,
the acoustic intensity is radial (as the velocity) and its modulus is equal to:

I.r/ D 1

2
<efP.r/V�.r/g D jUj2

4�r2
�c

2S

k2a2

1C k2a2
; (12.7)

where S D 4�a2 is the emitting surface.
One can see that the mean acoustic intensity decreases in 1=r2, which is in

accordance with the property of spherical expansion. The mean acoustic power
corresponds to the flow of the acoustic intensity vector through a closed surface
surrounding the source. Taking advantage of the spherical symmetry, the power is
computed on a spherical surface˙ with radius r, which yields

2In this chapter, capital letters are used for all quantities expressed in the frequency (Fourier)
domain. Recall that the concept of mean power only has a signification in the frequency domain.
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Pr D
Z
˙

I.r/d˙ D 4�r2I.r/ D �c jUj2
2S

k2a2

1C k2a2
: (12.8)

The quantity Pr is independent of r, which is in accordance with the principle of
energy conservation, since no dissipation has been introduced in the model, neither
on the source, nor during the propagation. The evolution of the acoustic power with
the reduced number ka is identical to the squared modulus of the pressure (see the
Fig. 12.3). For a given volume velocity U, the sound power radiated by the spherical
sphere is proportional to the square of frequency as long as ka � 1, and tends to

the asymptotic limit Pmax D �cjUj2
2S for ka 	 1.

12.3.3 Force Exerted by the Fluid on the Sphere:
Radiation Impedance

Let us now examine the different acoustic quantities in the vicinity of the pulsating
sphere. The radiation impedance is defined as the ratio between the surface pressure
and the volume velocity in r D a. We have

Zr D P.a/

SV.a/
D �c

S

jka

1C jka
D �c

S

�
k2a2

1C k2a2
C j

ka

1C k2a2

�
D Rr CjXr : (12.9)

Comparing (12.9) and (12.8), one can see that the acoustic power can be written
equivalently:

Pr D jUj2
2

Rr : (12.10)

In other words, the acoustic power radiated by the sphere is proportional to the real
part of the radiation impedance (or radiation resistance) Rr. The imaginary part of
the radiation impedance (or reactance) Xr is written:

Xr D �c

S

ka

1C k2a2
: (12.11)

One can see that Xr has the form of an acoustic mass. This mass depends on
frequency, except for ka � 1. In this latter case, the mass is constant and is equal
to �a

S . The reactance corresponds to the inertial forces that are to be overcome by
the sphere during its motion, and to the fluctuating power exchanged between the
source and the near field (see Chap. 1). In summary, the radiation impedance yields
useful information on the radiated sound power and on the reaction of the fluid on
the acoustic source. If the sphere radiates in a finite space (room, cavity), then the
reactance might also contain an elastic term which represents the influence of the
compressibility of the enclosed fluid.
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12.3.4 Concept of Point Source

12.3.4.1 First Approach

Imagine now that the radius of the pulsating sphere vanishes, while keeping a
constant volume velocity U. As a result, we obtain a omnidirectional point source,
centered at point r D 0, called monopole. The pressure (12.5) becomes

P.r/ D j!�UG.r/ with G.r/ D e�jkr

4�r
: (12.12)

The function G.r/ is the Green’s function in free space. More generally, if r0 denotes
the position of the point source and r the one of the observer (r and r0 are vectors),
one writes

G.rjr0/ D G.r0jr/ D e�jkjr�r0j

4�jr � r0j : (12.13)

This expression shows the important reciprocity property of the Green’s function
which means that the expression of the pressure is unchanged through permutation
of the respective coordinates of both the source and receiver.

In the time-domain, the operator j! corresponds to a time derivative, while the
operator exp.�jkr/ corresponds to a delay r=c. As a consequence, the pressure
p.r; t/ generated by the monopole is written:

p.r; t/ D �

4�r

d

dt
u
�

t � r

c

�
: (12.14)

In Eq. (12.14), one can see that an acoustic pressure exists only if the time derivative
of the volume velocity is different from zero. A sphere moving at constant speed, for
example, does not create sound.3 It is also observed that the pressure still decreases
in 1=r. It is finally not surprising to see that the pressure (which is nothing but a
surface force density) is proportional to an acceleration, following Newton’s second
law.

12.3.4.2 Second Approach

The mathematical tool that describes the point source is the Dirac delta distri-
bution ı. Imagine now that a point source with volume velocity u.t/ is placed
at the origin of the axes (in r D 0). In order to establish a link with the wave

3This remark might be surprising and seems to contradict everyday experience where a vehicle
rolling at constant speed creates aerodynamical noise. In fact, this noise is due to the viscous
forces in the fluid, which are not taken into account in the present model.
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equation (12.3), one can write that the mass flow is defined as:

m D � u.t/ ı.r/ : (12.15)

The Helmholtz equation is then written:

�P C k2P D �j!�U.!/ı.r/ : (12.16)

In order to solve (12.16), this equation is integrated on a sphere of radius
" with " ! 0 (see Fig. 12.4). Due to the spherical symmetry, one can write
P.r/ D A

r exp.�jkr/, for r ¤ 0. Denoting V the volume of the sphere around
the source, the integration of (12.16) is written:

A
Z

V

�

�
e�jkr

r

�
dV C A

Z
V

k2
e�jkr

r
dV D �j!�U : (12.17)

After some manipulations, this equation can be transformed as follows:

A
Z

S
grad

�
e�jkr

r

�
:n dS C A

Z "

0

k24�re�jkrdr D �j!�U; (12.18)

where .S/ is the surface of the sphere of radius " and n the normal vector oriented
towards the external field (see Fig. 12.4). As " tends to zero, the first integral in
(12.18) tends to �4� , and the second integral vanishes. One obtains

A D j!�

4�
U and P.r/ D j!�UG.r/ : (12.19)

One find then again the intuitive solution previously obtained for a finite pulsating
sphere as the radius tends to zero. By the way, one shows that if P is a solution
of (12.16), then the Green’s function G.rjr0/ is a solution of the equation:

�G.rjr0/C k2G.rjr0/ D �ı.r � r0/ : (12.20)

Fig. 12.4 Integration of the
Helmholtz equation with a
point source

n

(S)
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In what follows, the set of both Eqs. (12.16) and (12.20) will be used for calculating
the pressure field radiated by any source.

12.3.4.3 Acoustic Power Radiated by a Monopole

In order to calculate the sound power radiated by a monopole, the acoustic intensity
is integrated over a spherical surface around the source, as it has been done for the
pulsating sphere. Alternatively, one can also use the expression (12.8) and calculate
its limit when ka � 1. In both cases, one gets

Pr D �ck2 jUj2
8�

D �!2 jUj2
8�c

: (12.21)

which indicates, among other things, that the power radiated by a monopole is
proportional to the square of frequency.

12.3.5 Monopole Arrays

In order to extend the results of the previous paragraph, let us now consider a
discrete set of monopoles distributed in space (see Fig. 12.5). This array can be seen
as a cloud of active points. Applying the principle of superposition which is valid in
linear acoustics, one can derive the resulting field at a given point M of coordinates
r just by summing the contributions of the n sources of volume velocities Un:

P.r/ D j!�

4�

X
n

Un
e�jkRn

Rn
D j!�

4�

X
n

Un
e�jkjr�rnj

jr � rnj : (12.22)

This result can be generalized to the case of a continuous distribution of monopoles
with elementary volume velocities UdS distributed over a surface S :

Fig. 12.5 Discrete arrays of
monopoles
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P.r/ D j!�

4�

Z
S

U.r0/
e�jkjr�r0j

jr � r0j dS ; (12.23)

whose equivalent time-domain formulation is given by:

p.r; t/ D �

4�

d

dt

Z
S

1

jr � r0j u

�
r0; t � jr � r0j

c

�
dS : (12.24)

Important Remark Equation (12.24) is not valid if S corresponds to the
surface of a finite structure with a finite volume. In this latter case, the waves radiated
by the structure are reflected by its own surface, and this phenomenon has to be taken
into account.

12.3.5.1 Large Distance Approximations

let us denote L a characteristic dimension of the monopolar distribution. For r 	 L,
the pressure at a distance r from the source in (12.24) can be simplified, considering
that jr � r0j ' r. A first level of approximation (we will denote it modulus
approximation) is obtained by simplifying the denominator only:

p.r; t/ D �

4�r

d

dt

Z
S

u

�
r0; t � jr � r0j

c

�
dS : (12.25)

For rapidly varying signals (with significant energy in the “high” frequency range)
the phase terms can be significant and cannot be neglected, even in the case of small
propagation delays between the sources. These delays may alter the waveform at
the receiver substantially. Conversely, for slowly varying signals with a significant
energy level in the “low” frequency range, an higher level of approximation (let us
denote it phase approximation) leads to the expression:

p.r; t/ D �

4�r

d

dt

Z
S

u
�

r0; t � r
c

�
dS : (12.26)

In this case, the pressure is equivalent to the one radiated by a unique monopole
whose total volume velocity is the sum of all elementary volume velocities.
However, one should keep in mind that this equivalence is only valid in restrictive
situations which depend on the assumptions made on the geometry of the source
distribution and on the properties (spectral content) of the emitted signal.
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12.3.5.2 Acoustic Power Radiated by a Set of Coherent Monopoles

For a set of sources radiating coherent acoustic signals simultaneously, the acoustic
power radiated by each source is affected by the presence of the other sources (see,
for example, [14]).

One can think, for example, of the simultaneous emission of pressure by the two
main sources of a flute (mouth and open end) for a given note, as seen in Chap. 7.
This phenomenon is now illustrated in a simple case involving two monopoles S1
and S2 separated by a distance d, and with given volume velocities U1 and U2. The
results can be generalized to the case of multiple sources.4

The far field pressure (at point M) can be calculated using an approximation
of the type (12.26). We denote � the angle between the vector OM D r and the
source axis (see the Fig. 12.6). With a first-order expansion (in terms of the ratio
d=r), the distance between the source S1 and the observation point M is jr � r1j '
r C 1

2
d cos � , whereas it is equal to jr � r2j ' r � 1

2
d cos � for the distance between

S2 and M.

P.r/ D j!�

4�r
e�jkrU.�/ where U.�/ D U1e

�j kd
2 cos � C U2e

Cj kd
2 cos � . (12.27)

Fig. 12.6 Two monopoles.
For a dipole: U2 D U D �U1

M

r

U1
d––
2

d––
2

O U2

4For the sake of simplicity, the following derivations are made in the case of given volume
velocities. However, one has to be aware of the fact that, in numerous cases, the two sources
are not independent and are linked together by means of a transfer function. This is, for example,
the case for the side holes of wind instruments interacting through the resonator, or for the volume
velocities of plate and sound hole in stringed instruments that are coupled by the air cavity (see
Chap. 6).
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The far field behavior of these two sources is thus equivalent to the one of a single
monopole, though with a directivity U.�/ depending on the reduced wavenumber
kd. In order to calculate the total acoustic power radiated by both sources, one has
to calculate5 the acoustic intensity on a sphere with radius r. Using the notations
U1;2 D jU1;2j exp.j'1;2/ and ' D '2 � '1, we have

Pr D �ck2

8�

�
jU1j2 C jU2j2 C 2jU1jjU2j sin kd

kd
cos'

�
. (12.28)

The power is always positive, because the free field can be seen as an absorbing
medium at the infinity, and thus the outgoing pressure never comes back to the
source. The term in jU1jjU2j is the interaction term. Let us first consider two sources
of identical amplitudes in the low-frequency range (kd � 1). if the sources are in
phase, the interferences are constructive, and the sound power is equal to four times
the power radiated by a single source (C 6 dB). If these sources are in antiphase
(' D �), the sound power is close to zero. By expanding sin kd to the third order
in kd, we then find the expression of the sound power radiated by a dipole (see the
next section). One well-known illustration is the case of two loudspeaker systems in
antiphase.

Let us now examine how the power is distributed among both sources [14]:
depending on the values taken by ', the sound power due to the presence of the
second monopole can either increase or decrease. Moreover, is the amplitude ratio
jU2=U1j is larger than unity, the power can even become negative, which means that
the second monopole is absorbing part of the acoustic energy: it behaves then like a
sink and not like a source.

Directivity of a Linear Array of Monopoles

One main consequence of linear arrays of monopoles is that the directivity increases
compared to the case of a single monopole. One can take benefit of this property in
electroacoustics: an antenna of microphones is used, for example, if the purpose
is to record a source in a restrictive solid angle. Such a process is very useful in
order to record situated at a large distance from the microphones, since it reduces
the influence of sideways ambient noise considerably. Reciprocally, loudspeakers
arrays are used with the purpose of radiating sound in a restrictive region of space.
The directivity of arrays is a joint property of both sources and receivers.

5On should integrate over the surface r Dconstant W

I.r; �/ D 1

2

k2�c

.4�r/2
jU.�/j2 where jU.�/j2 D jU1j2 C jU2j2 C 2jU1jjU2j cos Œkd cos � C '	

which amounts to calculate the integral 2�r2
R �
0 jU.�/j2 sin �d� . This calculation is straightfor-

ward since sin � is the derivative of the � -function appearing in cos Œkd cos � C '	.
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Fig. 12.7 Linear array of
monopoles

M

O x
d

Un

Musical instruments do not escape this rule: a slender structure (like a xylophone
bar) vibrating on a high flexural mode can be viewed as a linear array of sources.

Another illustrative example is the association of several regularly distributed
open holes in wind instruments. In order to determine theoretically the directivity
resulting from the association of point sources, we calculate it below for an array
composed by N monopoles with velocities Un, equally distributed on the x axis, with
a distance d between consecutive sources (see Fig. 12.7). It is assumed here that all
sources have the same amplitude, but that there is a constant phase shift between
consecutive sources:

Un D U exp Œ�j.n � 1/'	 :

Using a first-order expansion of jr � rnj in (12.22), and defining � as the angle
between the x-axis and the vector r D OM, where M is the observation point, the
pressure is written:

P.r; �/ D j!�0Ue�jkr

4�r

NX
nD1

ej.n�1/.kd cos ��'/ : (12.29)

Denoting then� D .kd cos � � '/, the directivity of the array is given by:

D.�/ D 1

N

e�2jN� � 1

e�2j� � 1 D sin N�

N sin�
: (12.30)

Examining (12.30) shows that the main lobe of the directivity pattern becomes
narrower as N increases (see Fig. 12.8).
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Fig. 12.8 Directivity D.�/ of the array [see Eq. (12.30)] for different numbers N of monopoles:
(left) N D 3; (center) N D 10; (right) N D 20

12.4 Oscillating Sphere

We now turn to the sources with a global zero volume velocity, but which are
subjected to a force density f by the surrounding fluid during their motion. In this
case, the heterogeneous wave equation (12.3) shows that the divergence of the force
density must be different from zero in order to generate sound. An oscillating source
meets these requirements, since its motion creates an overpressure in front and a
decrease of pressure at the back. In total, this produces a spatial heterogeneity of the
force field in the vicinity of the source that creates a nonzero divergence term. At
the same time, the total sum of the volume velocities is zero. In order to compare
the properties of the oscillating sphere with those of the pulsating sphere, the main
results are briefly reviewed below. As done previously, bringing the radius of the
sphere close to zero allows to define a dipole, or elementary oscillating source.

12.4.1 Pressure and Velocity Field

Given v0.t/ the oscillating velocity of a sphere of radius a (see Fig. 12.9), and V0.!/
its Fourier transform. � is the angle between the direction of the oscillation and the
radial velocity at a given point of the sphere surface. The equation of continuity at
the interface between fluid and solid allows to write:

Vr.a/ D V0 cos �: (12.31)

As for the pulsating sphere, the acoustic pressure and velocity fields are obtained
by combining the wave equation with the Euler equation. We find

P.r; �/ D �cV0 cos �
a2

r2

�
jka.1C jkr/

2C 2jka � k2a2

�
e�jk.r�a/ : (12.32)

The main difference with the pulsating sphere is the presence here of the
directivity factor cos � in the expression of the pressure (see Fig. 12.10). As a
consequence, the pressure is maximum in the direction of the oscillation, and zero
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Fig. 12.9 A rigid oscillating
sphere creates an
overpressure in front and a
decrease of pressure at the
back, during its motion. In the
median plane, overpressure
and decrease of pressure are
equal and opposite in signs,
and thus the resulting
pressure is equal to zero
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Fig. 12.10 Pressure
directivity of an oscillating
sphere
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in the plane perpendicular to it. A small distances (kr � 1), the pressure varies as
1=r2, and as 1=r for kr 	 1. Finally, we have the propagation term exp Œ�jk.r � a/	.

The acoustic velocity vector has now two components, in the directions er and
e� , respectively (see Fig. 12.11):8̂̂̂<̂

ˆ̂:
Vr.r; �/ D V0 cos �

a3

r3
2C 2jkr � k2r2

2C 2jka � k2a2
e�jk.r�a/;

V� .r; �/ D V0 sin �
a3

r3
1C jkr

2C 2jka � k2a2
e�jk.r�a/ :

(12.33)

In the near field (kr � 1), both components of the velocity vary as 1=r3. In the
far field (kr 	 1), the radial component varies as 1=r. The specific impedance is
equal to �c, and the component along e� varies as 1=r2.

12.4.2 Acoustic Intensity and Radiated Pressure

The e� -component of the intensity is zero. Its radial component is given by:
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Fig. 12.11 Acoustic velocity radiated by an oscillating sphere

Ir.r; �/ D 1

2
Re fPV�

r g D 1

2
�c

a2

r2
k4a4

1C k4a4
jV0j2 cos2 � : (12.34)

The radiated power is derived:

Pr D
Z

S
Ir.r; �/ dS D �c

2�a2 jV0j2
3

k4a4

1C k4a4
: (12.35)

If the acoustic wavelength is larger than the dimensions of the source (ka � 1),
then the radiated power is proportional to !4. This means that, for given radius
and velocity magnitude, an oscillating sphere is less efficient for radiating sound
in the low-frequency domain, compared to a pulsating sphere. Using Eqs. (12.8)
and (12.35), it is found that the ratio � between both acoustic powers, for a given
oscillation velocity V0, is given by:

� D .Pr/SO

.Pr/SP
D k2a2

3

1C k2a2

1C k4a4
; (12.36)

which yields � ' k2a2=3 for the sources of small dimensions ka � 1.
This reduction of radiated power at low frequencies is the consequence of

destructive interferences between the acoustic waves generated in the front and at
the back, respectively. If the wave at the back is “eliminated” in an absorbing box,
as made in most loudspeaker systems, the radiating properties of the system become
closer to a those of a monopole and is thus more efficient at low frequencies. It is
exactly what happens also in drums (timpani, bass drums,. . . ).
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Fig. 12.12 Elementary
dipole
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12.4.3 Concept of Elementary Dipole

12.4.3.1 First Approach

Bringing the radius of the sphere in (12.32) close to zero yields the expression of
the sound pressure generated by an oscillating point source (or dipole) (Fig. 12.12):

P.r; �/ D j2�a3!�V0

�
jk C 1

r

�
G.r/ cos � : (12.37)

The reader can check that this expression is identical to the one obtained by
calculating the pressure radiated by a set of two monopoles of equal volume velocity
and opposite signs CU= � U, where d D 2a is the distance between them (see
Fig. 12.6) and where

U D
Z

S
V0:n dS D �a2V0 : (12.38)

Defining now Dd D j2a!�U D jk�cUd as the moment of the dipole6 and using
the definition of the Green’s function in free space G.r/ D e�jkr=4�r defined above,
the radiated pressure can be expressed under the form:

P.r; �/ D Dd

�
jk C 1

r

�
G.r/ cos �

D �Dd
@G

@r
cos � : (12.39)

6Notice that some authors define Dd D Ud as the moment of the dipole.
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In the time-domain, the pressure is written:

p.r; �; t/ D cos �

4�r

�
1

r
dd

�
t � r

c

�
C 1

c

d

dt
dd

�
t � r

c

��
: (12.40)

The variable dd has the dimension of an acceleration. The pressure here results from
two terms: one acceleration term and another term proportional to the time deriva-
tive of the acceleration, which corresponds to a third-order time derivative. The
contribution of this second term is dominant for the rapidly varying pressure, such
as those resulting from percussive impacts, for example, for which instantaneous
levels can reach very high values.

Applying the same method as for the sphere, we get the radial intensity:

Ir D 1

2
�c

�
k2 jUj d

4�r

�2
cos2 � : (12.41)

The other components of the intensity vector are zero. The power radiated by the
dipole [a particular case of Eq. (12.28)] is

Pr D �c
k4 jUj2 d2

24�
D �

!4 jUj2 d2

24�c3
: (12.42)

12.4.3.2 Second Approach

As done previously for the monopole, the pressure radiated by a dipole source is
directly derived from the heterogeneous wave equation. For a particle oscillating
with volume velocity U at constant volume between two positions r1 and r2, the fluid
in this region is subjected to a force f0 D j!�U, according to Newton’s second law
of motion (see Fig. 12.13). As a consequence, the spatial derivatives (the divergence
term) yield the Dirac delta functions corresponding to the discontinuities of the force
field in r1 and r2. The heterogeneous equation becomes

1

c2
@2p

@t2
��p D �div f D f0 Œı.r � r1/ � ı.r � r2/	 : (12.43)

In the frequency domain, taking advantage of the properties of the Green’s
function in free space in Eq. (12.20), we derive the pressure:

P.r/ D j!�U

4�

"
e�jkjr�r2j

jr � r2j � e�jkjr�r1j

jr � r1j

#
: (12.44)

We find again the intuitive result obtained as the radius of the oscillating sphere
tends to zero. This shows that the acoustic field generated by an elementary
oscillating source is equivalent to the one radiated by two monopoles of identical
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Fig. 12.13 Forces exerted on an elementary dipole
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Fig. 12.14 Radiation of an isolated vibrating string. The string is stretched along the x-axis and
is assumed to vibrate transversely along the z-axis. The oscillating string can thus be viewed as a
linear array of dipoles oriented in the direction of the z-axis. The observation point M is located in
the vertical plane, at a distance r from the string with an elevation angle � with regard to the z-axis

volume velocity and opposite signs, where the distance between the point sources is
determined by the peak-to-peak amplitude of the oscillation.

12.4.4 Distribution of Dipoles: Example of the Vibrating String

The vibrating string is a good example of a continuous distribution of dipoles.
Before tackling in the next chapters the radiation of a complete stringed instrument,
it is a interesting step to calculate the acoustic power radiated by an isolated string,
not coupled to a soundboard. The examined configuration is shown in Fig. 12.14.
The vector D D j!�Ud is the moment of the elementary dipoles oscillating along
the z-axis and d is the vector oriented from �U to CU. The pressure is calculated
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at point M of coordinates .y; z/ (or, alternatively, .r; �/), with r D p
y2 C z2 and

cos � D y=r. With r1 D r0 � d=2 and r2 D r0 C d=2 in (12.44), one obtains

P.r/ D j!�U

4�

"
e�jkjr�r0Cd=2j

jr � r0 C d=2j � e�jkjr�r0�d=2j

jr � r0 � d=2j

#
: (12.45)

If jdj tends to zero in the previous equation, we get

P.r/ D �j!�Ud:grad

"
e�jkjr�r0j

4�jr � r0j

#
D �D:grad ŒG.rjr0/	 : (12.46)

One finds again the expression (12.39) obtained for an oscillating sphere whose
radius tends to zero, and where � is the angle between the vectors D and .r � r0/.

Considering now the vibrating string as a linear distribution of dipoles yields the
radiated pressure:

P.r/ D � 1

4�

@

@z

"Z
L

D.x/
e�jk

p
r2Cx2

p
r2 C x2

dx

#
: (12.47)

In this formula, D.x/ contains the information on the vibratory state of the string.
In general, the integral in Eq. (12.47) cannot be solved analytically. However, in
order to continue the calculation with the objective of highlighting some typical
orders of magnitude for the radiation, two additional assumptions are made:

1. D.x/ D j!�U0d; which corresponds to a uniform oscillation of the string with
diameter d.

2. The string is of infinite length.

In this particular case, Eq. (12.47) becomes

P.r/ D � j!�U0d

4�

@

@z

"Z 1

�1
e�jkr

p
1Cw2

p
1C w2

dw

#
; (12.48)

with the change of variable w D x=r. It can be shown (see, for example, [31]) that
the pressure is written:

P.r/ D �cU0d

4
k2 H.2/

1 .kr/ cos �; (12.49)
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where H.2/
1 .kr/ is the Hankel function of the second kind of order one7 [2]. Another

strategy for obtaining this result consists in solving the wave equation in cylindrical
coordinates [20].

The acoustic power radiated per unit length of the string is derived from the
calculations of pressure and acoustic velocity:

Pr D �!3 jU0j2 d2

16c2
D ��2!3 jV0j2 d4

16c2
; (12.50)

where U0 D V0�dL with L D 1m. V0 is the oscillating velocity of the string. We can
check on this expression that the radiated power varies as !3, which means that it
increases rapidly with frequency. The strings of musical instruments generally have
a small diameter (except for the low bass strings of the piano and of the double bass).
According to Eq. (12.50), this means that they usually are very inefficient in terms
of radiation. It is easy to make the experiment that the sound emitted by an isolated
stretched string is almost inaudible, except if the string is put close to the ear.

12.4.5 Quadrupoles

Quadrupolar sources can be viewed as the association of dipoles. A few “musical”
examples of such sources are presented below. The most common quadrupoles are
the following:

• The lateral quadrupole whose plane configuration is shown in Fig. 12.15a. It
corresponds to the association of four monopoles of alternate signs located at
the corners of a square. The pressure radiated by this source in its plane is given
by [14]:

P.r; �/ D �j�cd2k3U
e�jkr

4�r

�
1C 3

jkr
� 3

k2r2

�
sin � cos � : (12.51)

For a point situated outside its plane, the pressure is (see Fig. 12.16):

P.r; �; 
/ D �j�cd2k3U
e�jkr

4�r

�
1C 3

jkr
� 3

k2r2

�
sin � cos � cos
 : (12.52)

The acoustic power radiated by the quadrupole is given by:

Pr D �cd4k6 jUj2
120�

: (12.53)

7The Hankel functions of the first and second kind of order n are defined from the Bessel functions
of the first kind Jn and from the Bessel functions of the second kind Yn through the relation
H.1/

n .z/ D Jn.z/C jYn.z/ and H.2/
n .z/ D Jn.z/� jYn.z/.
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Fig. 12.15 (a) Lateral quadrupole. (b) Linear (or longitudinal) quadrupole

Fig. 12.16 Radiation of a
lateral quadrupole: definition
of the geometry outside the
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This power is proportional to !6 which means that, for similar flow rate, this
source is less efficient than a dipole in the low-frequency domain, though it
increases more rapidly with frequency.

• The linear (or longitudinal) quadrupole, composed by two dipoles aligned on the
same axis (see the Fig. 12.15b). The whole set is symmetrical with regard to the
vertical plane, which yields a double flow rate 2U to the monopole in the center.
In this case, the acoustic pressure is written [14]):

P.r; �/ D �j�cd2k3U
e�jkr

4�r

�
cos2 �

�
1C 3

jkr
� 3

k2r2

�
� 1

jkr
C 1

k2r2

�
:

(12.54)

Applying the same method as for the other elementary sources, the acoustic
power of this quadrupole is derived:

Pr D �cd4k6 jUj2
40�

: (12.55)
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Compared to the lateral quadrupole, the same frequency dependence is observed
(in !6). However, the resulting pressure (for identical flow rates) is three times
higher.

12.4.5.1 Application 1: Acoustic Field Radiated by a Tuning Fork

The tuning fork is an essential device for each musician. We could have model this
device as an example for illustrating the vibrations of beams in Chap. 1, but we
prefer to focus here on its quadrupolar radiation properties. These properties were
investigated by Russel [28]. In this study, the directivity of a tuning fork at a forced
frequency around 440 Hz (note A4), and at different distances r from the source
were investigated. The main results of this study are summarized below.

• At a frequency of 426 Hz (close to the nominal frequency of the fork) and at a
distance r D 5 cm (close to the ear), we have kr D 0:39. On can thus reasonably
consider to be in the near field. For this kr-value, it is not possible to derive from
the simple observation of the directivity pattern whether the fork behaves as a
lateral or as a longitudinal quadrupole, since both patterns are very similar (see
Fig. 12.17). In both cases, four lobes are observed, which can be easily confirmed
audibly by rotating the fork around its axis close to the ear. Notice, however, a
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Fig. 12.17 � - directivities of two quadrupoles for kr D 0:39. Left: (a) lateral quadrupole. Right:
(b) longitudinal quadrupole [28]. The corresponding vibrational modes are displayed on top of
each directivity pattern, as well as the motion of the tines. In the normal use of the fork, both
branches vibrate at a nominal frequency of 440 Hz with the (b)-motion (note A4)
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Fig. 12.18 Directivity along � of quadrupoles for kr D 7:8. Left: lateral quadrupole. Right:
longitudinal quadrupole. After [28]

difference of 5 dB between both models in the direction perpendicular to the axis
of the fork [according to Eqs. (12.51) and (12.54)].

• If now the fork is located at a distance of 1 m from the ear (kr D 7:8), and slowly
put into rotation around its axis, then only two maxima of the sound intensity
are perceived for a complete turn, instead of four. In addition, the differences
between the maximum and the minimum sound intensity level are less clearly
audible than in the previous experiments. In this case, the directivity is clearly
close to the one observed for the longitudinal quadrupole in the far field (see
Fig. 12.18). This is coherent with the motion of the branches in the normal use of
the fork.

• For kr 	 1, the first-order approximation of Eq. (12.54) yields

P.r; �/ / k3

r
cos2 � : (12.56)

This approximation accounts for the existence of two directivity lobes. However,
this approximation predicts a zero amplitude in the axis perpendicular to the fork,
which is neither in accordance with the complete model in Eq. (12.54), nor to the
experiments.

In conclusion, these simple, and easy-to-reproduce, experiments illustrate the
fact that the directivity of multipoles not only depend on frequency, but also on the
distance of observation. In addition, it shows that oversimplified models can be not
sufficient (and even wrong) for interpreting the experiments.
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Fig. 12.19 Sliding the edge of a wine glass with a wet finger generates a self-sustained oscillation
comparable to the one of a string excited by a bow. The glass vibrates close to a (2,0) mode (two
nodal diameters) and the directivity of the sound field is similar to the one of a lateral quadrupole

12.4.5.2 Application 2: Radiation of Wine Glasses

Another easy to do experiments consists in sliding a wet finger on the edge of a
glass. Several authors have shown that the main excited shell mode is of the (2; 0)-
type (see Fig. 12.19). Such a mode is also often observed in the vibrations of bells
[11, 27]. The excitation of this system involves typical stick-slip mechanisms, as for
the bowed strings (see Chap. 11). Here, the sound is nearly a pure tone, since almost
only one mode is strongly excited. The instrument called glassharmonica can be
viewed as a generalization of this system. It has been used in the past by Mozart and
other composers [4]. Figure 12.19 shows that the directivity of the sound field for
this mode is analogous to the one of a lateral quadrupole, as verified experimentally
by Russel [28].

12.5 Radiation of a Source with Arbitrary Shape

12.5.1 Kirchhoff–Helmholtz Integral

In this section, we are now dealing with the external field radiation of an extended
acoustic source with arbitrary geometry, where a part of the external surface is
subjected to a vibratory motion (see Fig. 12.20). This situation corresponds to the
one encountered in most stringed and percussive instruments. Our purpose is to
introduce a general formulation of the radiation, known as the Kirchhoff–Helmholtz
integral. Except for very particular geometries, only numerical techniques (such
as the Boundary Element Method, or BEM) can be used for solving such an
integral (see Sect. 12.5.3.6 below). However, some approximations are valid, in
some situations, leading to interesting results in terms of physics. Approximate



662 A. Chaigne and J. Kergomard

Fig. 12.20 In the most
general case, an extended
acoustic source is composed
of both vibrating surfaces (in
grey) and rigid parts (in
black). The rigid parts reflect
the waves emitted by the
vibrating surfaces. The total
resulting pressure field is the
sum of the direct field
radiated by the vibrating
surfaces and the field
reflected by the rigid passive
surfaces

results can also serve as reference solutions when the purpose is to evaluate the
pertinence and consistency of a numerical solution.

The pressure field radiated by an extended source such as the one shown in
Fig. 12.20 is together due to the vibrating surfaces and to the waves reflected by
the rigid parts. As a consequence, it will be shown that the whole source can be
viewed equivalently as the association of a monopole and dipole distributions. This
is one fundamental result of the Kirchhoff–Helmholtz integral. The existence of two
distributions is a consequence of the fact that the Helmholtz equation itself is of the
second order.

12.5.1.1 Green’s Theorem

In order to introduce the Kirchhoff–Helmholtz equation, a mathematical tool is
needed that allows the transformation of a volume integral into a surface integral: the
Green’s theorem. The interest of such a transformation will appear later, especially
for the use of the integral in numerical applications.

Let us select two arbitrary functions G and ˚ , assuming that these functions
have the adequate properties of continuity and derivability for the problem. These
functions are defined in a volume V bounded by a surface S with external normal
vector n. It can be shown that:

Z
V
ŒG�˚�˚�G	 dV D

Z
V

div ŒGgrad˚�˚gradG	 dV D
Z

S

�
G
@˚

@n
�˚ @G

@n

�
dS :

(12.57)

The main interest of this theorem, which is nothing but a generalization of
the divergence theorem, is the transformation of a volume integral into a surface
integral, thus reducing by one the dimension of the problem. If both functions have
the same impedance boundary condition on S (or on a part of S), the integral is
equal to zero on this surface (or, on the considered part). Recall that the impedance
is defined as the ratio between G and @G=@n.
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Fig. 12.21 Application of
the Green’s theorem to the
calculation of the external
pressure field

(S)

n

(   )

n

Vext

The application of the theorem (12.57) to the calculation of the external pressure
field is illustrated in Fig. 12.21. The volume to consider here is the external volume
denoted Vext bounded by the external surface S of the source, on the one hand and,
on the other hand, by the closed spherical surface ˙ obtained as its radius tends to
infinity:

Z
Vext

ŒG�˚ � ˚�G	 dV D �
Z

S

�
G
@˚

@n
� ˚

@G

@n

�
dS C

Z
˙

�
G
@˚

@n˙
� ˚

@G

@n˙

�
d˙ :

(12.58)

On ˙ , the functions G and ˚ fulfill the so-called Sommerfeld condition (see
Sect. 12.5.1.2) and the integral vanishes. The change of sign in front of the first
integral, in the right-hand side of the equation, is a consequence of the fact that the
normal vector n is oriented towards the internal part of the volume Vext.

12.5.1.2 Calculation of the Pressure Radiated Outside the Source
(External Field)

The purpose now is to determine the sound pressure P.r/ radiated by the acoustic
source in the external field. This pressure is governed by the Helmholtz equation
�P.r/ C k2P.r/ D 0. In addition, the Green’s function in free space is given by
Eq. (12.20) where r0 refers to any point on the surface S surrounding the volume V
of the source. From these two equations, one can simply derive:

�P.r/G.rjr0/��G.rjr0/P.r/ D P.r/ı.r � r0/ : (12.59)

Taking advantage of the reciprocity properties of the function G, Eq. (12.59)
becomes

�P.r0/G.rjr0/ ��G.rjr0/P.r0/ D P.r0/ı.r � r0/ : (12.60)
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Finally, after integration over Vext and application of the Green’s theorem, we getZ
Vext

P.r0/ı.rjr0/dV D P.r/ D
Z

S

�
P.r0/

@G.rjr0/
@n

� G.rjr0/
@P.r0/
@n

�
dS.r0/ :

(12.61)

The Kirchhoff–Helmholtz (KH) in (12.61) is valid for the external field. It shows
that the pressure at any point r in the external space is obtained by means of a
surface integral on the bounding surface S of the source.8 This integral involves
a distribution of monopoles (terms in G.rjr0/), and a dipole distribution (terms in
@G.rjr0/

@n ). In the following examples, the physical meaning of both distributions will
be clarified.

Using Euler equation @P=@n D �j!�Vn, where Vn is the normal velocity (with
regard to S), the KH-equation can be transformed into the following form9:

P.r/ D
Z

S

�
�P.r0/

e�jkR

4�R

�
jk C 1

R

�
cos � C e�jkR

4�R
j!�Vn.r0/

�
dS.r0/ : (12.62)

Equation (12.62) shows that, for the calculation of the external pressure, knowledge
of both the surface (parietal) pressure P.r0/ and normal velocity Vn.r0/ are necessary.

Sommerfeld Condition
In order to define a complete problem of radiation, initial and boundary
conditions must be added to the partial differential (wave) equation. Writing
in (12.58) that the integral on˙ vanishes as the observation distance tends to
infinity corresponds to imposing a boundary condition at the infinity. In the
far field (r0 �! 1), we have jr � r0j ' r0. The integral then vanishes under
the condition:

� 4�r02
"

P.r0/jk
e�jkjr�r0j

4�r0 C e�jkjr�r0j

4�r0
@P.r0/
@r0

#
! 0 : (12.63)

Through permutation of r and r0, this condition becomes

lim
r!1 r

�
@P.r/

@r
C jkP.r/

�
D 0 : (12.64)

(continued)

8Notice that this integral is valid for any Green’s function satisfying (12.20) in the external space,
whatever the boundary conditions. In addition, this integral can be generalized to the case of
multiple sources in the external space, due to the principle of superposition.
9It can be shown that the normal derivative of G is written @G

@n D �G


jk C 1

R

�
cos � , where

� D .n;R/.



12 Elementary Sources and Multipoles 665

This condition is the so-called Sommerfeld condition. Notice that the Green’s
function fulfills this condition. This amounts to assume that there is no
convergent wave reflected back from infinity.

One drawback of the Sommerfeld condition is that it depends on the
geometry. As a consequence, its exact formulation can be known explicitly
only in a limited number of cases. An equivalent method for accounting to
the zero condition at infinity is to consider that the wave is progressively
damped during its propagation. This very “physical” method can be illustrated
in the following 1-D case. Consider the transfer impedance [Eq. (4.29)]: if x2
tends to infinity, the tangent function exhibits zeros and infinite maxima, and
does not converge, which indicates the presence of reflected waves. However,
if the wavenumber k becomes complex, and is written k � j˛, then the
tangent function (of complex angle) tends to unity and the impedance tends
to the characteristic impedance of a progressive wave, due to the absence of
returning wave. In this case, the damping factor ˛ can be imposed as small
as we want. Finally, a Sommerfeld condition is obtained for the plane wave
case: @P=@x C jkP �! 0.

It will be shown in Chap. 14 that, for numerical necessity, another widely
used method for simulating the radiation and propagation of waves in free
space consists in imposing Absorbing Boundary Conditions at the border of a
finite computational domain (such as a “virtual” anechoic chamber) in order
to prevent the propagation of returning waves back to the source.

12.5.1.3 Time-Domain Formulation of the KH Integral

At this stage, a transformation of the KH integral in the time-domain can be
achieved. The operator j! corresponds to a time derivative, while exp.�jkr/
corresponds to a time delay r=c. The pressure is then written:

p.r; t/ D � 1

4�

Z
S

�
1

Rc

@

@t
p

�
r0; t � R

c

�
C 1

R2
p

�
r0; t � R

c

��
cos � dS.r0/

C �0

4�

Z
S

@vn

@t

�
r0; t � R

c

�
dS.r0/ :

(12.65)

Equation (12.65) shows the implicit character of the equation, since the surface
pressure p also appears under the integral. This induces some difficulties in
the resolution. In addition, two terms are present in the first integral, where the
magnitude of the second (in 1=R2) is attenuated more rapidly than the first one
during the propagation. This first integral is of the dipolar type [see Eq. (12.40)].
The second integral is of the monopolar type, as in Eq. (12.14).
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12.5.2 Multipolar Decomposition

Under the condition that the external surface S is sufficiently regular, it can be
shown that the Kirchhoff–Helmholtz integral can be expanded as a convergent series
of multipoles, whatever the size of the source. This approximation is particularly
useful for the sources whose characteristic dimensions are small compared to the
wavelength. Such a decomposition can be obtained using Taylor series expansion of
vector functions f such as [2]:

f .r � r0/ D f .r/ � .r0:grad/f .r/C 1

2Š
.r0:grad/2f .r/C 
 
 
 (12.66)

Applying this expansion to the function R�1p .r0; t � R=c/, where R D jr � r0j, we
get

p .r0; t � R=c/

R
D

1

r
p
�
r0; t � R=c

	� .r0:grad/
p .r0; t � R=c/

r
C 1

2Š
.r0:grad/2

p .r0; t � R=c/

r
C 
 
 

(12.67)

or, equivalently:

p.r0;t� R
c /

R D exp.�r0:grad/
p.r0;t� r

c /
r with

exp.�r0:grad/ D 1 � r0:grad C 1
2 Š
.r0:grad/2 C 
 
 
 : (12.68)

Applying this result to both the pressure and velocity in (12.65), the KH integral is
rewritten as follows:

p.r; t/ D � 1
4�

R
S exp.�r0:grad/.n:grad/ p.r0;t�r=c/

r dS.r0/

C �

4�r

R
S exp.�r0:grad/ @vn

@t .r
0; t � r=c/ dS.r0/ : (12.69)

Then, defining the following quantities:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:
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Z
S
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Z
S
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i r0
j Pvn.r0; t/C .r0

i nj C r0
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(12.70)
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where the indices i and j refer to the vector components, the radiated pressure is
expressed as follows:

p.r; t/ D S.t � r=c/

r
�grad:

D.t � r=c/

r
C

3X
i;jD1

@2

@xi@xj

Qij.t � r=c/

r
C
 
 
 : (12.71)

In (12.71), S.t/ is the monopolar term, the vector D is the dipole moment, and the
Qij are the quadrupolar components of the source.

12.5.2.1 Spherical Harmonics Expansion

The interest of the multipolar decomposition is to formulate the pressure field
radiated by any source as a sum of elementary fields radiated by point sources of
increasing order. However, from a mathematical point of view, such a decomposition
might be problematic, because the selected basis is not orthogonal. For this reason,
it is often preferred to expand the pressure on a spherical harmonics basis, which is
orthogonal. For the external problem, and assuming no returning wave propagating
towards the source, this expansion is written: [35]:

P.r; �; 
; !/ D
1X

nD0

nX
mD�n

Cmn hn.kr/ Ym
n .�; 
/; (12.72)

where the Cmn are complex coefficients depending on frequency, the hn.kr/ are
Spherical Hankel functions10, and the Ym

n .�; 
/ are the spherical harmonics [2].
These harmonics are written explicitly:

Ym
n .�; 
/ D

s
2n C 1

4�

.n � m/Š

.n C m/Š
Pm

n .cos �/ ejm
; (12.73)

where the Pm
n are the Legendre polynomials.

There is no bijection between the coefficients of the multipolar expansion and the
spherical harmonics. However, it is relatively easy to express the first coefficients
of the multipolar expansion in terms of spherical harmonics. The first spherical
harmonic

Y00 .�; 
/ D 1p
4�

(12.74)

10With the time convention selected throughout this book, the spherical Hankel functions here are
of the second kind, defined as h.2/n .z/ D jn.z/ � jnn.z/, where jn.z/ and nn.z/ are the spherical
Bessel functions of the first and second kinds, respectively. The exponent .2/ is omitted for clarity.
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for example, is a monopolar term. Similarly, the second spherical harmonic

Y01 .�; 
/ D
r

3

4�
cos � (12.75)

has the directivity of an axial dipole . One can also show that the directivity of a
longitudinal quadrupole can be derived from the difference Y02 � ˛Y00 where ˛ is a
constant (see [35]).

Radiated Power

The acoustic power can be obtained through integration of the acoustic intensity on
a sphere ˙ of radius r0 around the source. We obtain

Pr.!/ D 1

2

Z
˙

<e


P.r0; �; '; !/V

�.r0; �; '; !/
�

r20 sin � d� d' : (12.76)

Using Euler equation and the spherical harmonics expansion of the pressure, the
acoustic velocity is written:

V.r0; �; '; !/ D � 1
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/ : (12.77)

The acoustic power can thus be rewritten as:

Pr.!/ D r20
2�c

1X
nD0

nX
mD�n

jC2
mnj<e



hn.kr0/h

0
n.kr0/

�� : (12.78)

Using one characteristic property of the spherical Hankel functions:

<e


hn.kr0/h

0
n.kr0/

�� D 1

k2r20
; (12.79)

it is found finally that the radiated power can be expressed in terms of the spherical
harmonics under the form:

Pr.!/ D 1

2�ck2

1X
nD0

nX
mD�n

jC2
mnj : (12.80)

This result shows that, due to their orthogonality property, the spherical harmonics
are independent and thus the acoustic power radiated by each component only
depends on the squared modulus jCmnj2 of its magnitude.
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12.5.2.2 A Few Applications of the Spherical Harmonics
in Musical Acoustics

Radiation of a Stringed Instrument with Holes

In the 1980s, Weinreich and Arnold have developed a new technique for measuring
acoustic fields, based on the spherical harmonics expansion of the sound pressure.
This technique was applied with success to the violin [34]. More precisely,
Weinreich and his colleagues made the measurements of the radiativities of a
stringed instrument, such as the violin, defined as the ratio between the so-called
multipolar moments �mn and the force FB exerted by the string at the bridge [33].
The moments defined by this author are related to the coefficients Cmn of the
expansion in Eq. (12.72) by the relations11:

Cmn D
"

�j!�c
knC2p

4�.2n C 1/

2nnŠ

.2n/Š

#
�mn : (12.81)

With this definition, one can show that the moments �mn for a sphere of radius
a small compared to the wavelength (ka � 1) and subjected to a radial motion
�.r D a; �; '/ are given by:

�mn D 4�
p
2n C 1anC2

n C 1

Z 2�

'D0

Z �

�D0
Ym�

n .�; '/ �.a; �; '/ sin � d� d'; (12.82)

due to the orthogonality properties of the spherical harmonics [35]. One can check,
in particular, that for m D n D 0, the monopolar moment is written:

�00 D
Z 2�

'D0

Z �

�D0
�.a; �; '/ a2 sin � d� d'; (12.83)

which corresponds to the volume variation of the sphere during its motion.
One interest of the spherical harmonics expansion is due to its rapid convergence

as the order n becomes higher than ka, where a is a characteristic dimension of
the source. Keeping a few terms only in the expansion (12.72) is then sufficient for
obtaining a good estimate of the radiated field. Assuming a characteristic dimension
of the order of 10 cm for the violin, for example, then an expansion up to the second
order yields a good approximation of the radiated field between 0 and 1 kHz.

The radiativities �mn D �mn=FB are functions of frequency which can be further
expanded on the eigenmodes basis (see Part II of this book):

11This definition by the author of the acoustic multipolar moments is dictated by analogies with
corresponding definitions in electrodynamics. Let us also mention that, in the presently cited paper,
the index n is replaced by the index l and the order of the indices is reversed. As a consequence,
the moment �mn defined here corresponds to the moment �lm in Weinreich’s paper.
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�mn.!/ D
X

j

Aj
mn

! � !j
; (12.84)

where the !j are the complex eigenfrequencies of the source (see Sect. 2.2.1 in
Chap. 2), and where the Aj

mn are also complex constants. This expression is also
written:

� �mn.!/ D
X

j

Aj
mn

!j
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 : (12.85)

• Back to the physics of the violin. For ! ! 0, the behavior of the instrument in
quasi-static regime is obtained. This corresponds to very low frequencies, where
the air can be considered as incompressible. In other words, applying a vertical
force FB on the soundboard, then the decrease in air volume inside the box is
exactly compensated by the volume of air escaping through the f-holes. As a
consequence, Eq. (12.83) indicates that the monopolar moment�00 must be zero,
which implies

X
j

Aj
00

!j
D 0 : (12.86)

This result is valid for any musical instrument made of a vibrating shell with
holes (guitar, lute,. . . ). It is the so-called sound hole sum rule.

Neglecting the damping terms yields real eigenfrequencies. In this case, the
radiativities become

�mn.!/ '
X

j

Bj
mn

!2 � !2j
: (12.87)

These expressions can be expanded as follows12:

� �mn.!/ '
X

j
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mn

!j
C !2

X
j

Bj
mn

!3j
C !4

X
j

Bj
mn

!5j
C 
 
 
 : (12.88)

It can be seen that the terms of odd exponent in ! are not present in the
expansion (12.88). As mentioned earlier, the constant term vanishes, because of the

12The coefficients in the numerator are denoted Bj
mn, in order to make the difference with the

coefficients Aj
mn. We do not write the relationships between these two families of coefficients

explicitly, since it is not necessary for the present demonstration.
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sound hole sum rule. The first nonzero term is in !2, which corresponds to a dipole
(see, for example, Eq. (12.39). As a consequence, the radiated power is proportional
to !4.

For stringed instruments such as the violin or the guitar, the modal damping
coefficients �j (see the definition of these coefficients in Eq. (2.3)) generally are in
average smaller than 0.05 below the lowest mode, so that the approximation (12.88)
is justified. One can conclude that these instruments radiate as dipoles below the
first mode.

Virtual Sources

The reproduction of the acoustic field radiated by a given source is another
growing application of the spherical harmonics. In the music world, the use of
synthesizers and electronic amplification leads to the question of sound diffusion
through loudspeakers. In fact, recording a given instrument (flute, or violin,. . . )
and reproducing it through a standard stereophonic apparatus composed of 3-way
loudspeaker systems, then there is very little probability that the reproduced sound
field will be identical to the one radiated by the original recorded instrument.
Even if the human ear recognizes the type of instrument without ambiguity, the
directivity of the source (and, even, its timbre) might be substantially altered by the
electroacoustic system.

For many years, the research team at IRCAM (Institut de Recherche et Coor-
dination Acoustique-Musique) in Paris have tackled that question [8]. Here again,
they took advantage of the fast convergence of the spherical harmonics expansion
for approximating real sources with an array of loudspeakers. The first step of
the method consists in measuring the directivity D of a given instrument (violin
and upright piano) in free field (anechoic chamber) at a given distance from the
instrument, and for different frequencies. The measured directivity pattern is then
decomposed on a truncated spherical harmonics basis. To a first approximation, this
truncated basis contains the monopolar component and the three dipole components.
This can be written formally:

D ' a1Dm C a2Dd1 C a3Dd2 C a4Dd3; (12.89)

where the ai.!/ are the unknowns of the problem. These coefficients (or filters)
can be estimated by using, for example, least square methods where the goal is to
minimize the distance between measured and approximate directivity.

As soon as the filters ai.!/ are determined, the recorded sound is played through
loudspeaker arrays, where each group of loudspeakers has been first designed
so that its directivity pattern corresponds either to a monopole or to one of
the three dipoleterms, with one dipole oriented in each of the three directions of the
coordinates. In summary, the principles of the diffusion is shown in Fig. 12.22. The
recorded signal is filtered in parallel on the i channels of the expansion. The output



672 A. Chaigne and J. Kergomard

a1 (   ) 

a2 (   ) 

a3 (   ) 

a4 (   ) 

Fig. 12.22 This figure shows the basic principles of sound reproduction of a given instrument
(piano and violin) by a loudspeaker array (here, a dodecahedron), so that the array has a directivity
similar (or close) to the one of the real instrument. For this purpose, the sound radiated by the
instrument is recorded and fed into a filter bank ai.!/. The output signal of each filter is, in turn,
fed into groups of loudspeakers, where each group has either the directivity of a monopole or the
one of a dipole. The sum of all output pressure patterns must fulfills the condition (12.89), which
corresponds to the directivity of the real instrument. After [8]

of each filter ai is fed into the loudspeaker array corresponding to its directivity. The
whole set of loudspeakers is usually grouped into a single extended source (cube,
dodecahedron, . . . ).

12.5.3 Radiation of Sound in a Semi-Infinite Space

12.5.3.1 General Formulation

In the previous sections, it has been shown to what extent the acoustic pressure that
reaches the ear of a listener depends on the velocity profile of the external surface of
the source, and on its geometry. It has been also pointed out that the passive surfaces
(without sources) contribute to the radiation field. This last property is generalized
here where it is shown that the sound field is influenced by the passive surfaces
situated in the vicinity of the sources. The acoustic field radiated by a loudspeaker
located in the corner of a room, for example, is not the same as the one resulting
from the same loudspeaker (playing the same sound) located in the center of the
room. Similarly, recording an instrument (a cello, for example) in a room with
a very reflective floor can be surprising! In this case, the sound that reaches the
microphone is
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Fig. 12.23 Source in the vicinity of an infinite plane

the sum of the direct field and the field reflected by the floor. Constructive (or
destructive) interferences can result from this superposition which might alter the
timbre of the instrument substantially, like the well-known “comb-filter” effect. In
order to address this question, we consider the simple situation, shown in Fig. 12.23
where the source is situated in the vicinity of an infinite plane SH with normal
vector nH.

As for S, r0 denotes any point of SH , where the pressure and the acoustic velocity
are denoted P.r0/ and Vn.r0/, respectively. According to the superposition theorem,
Eq. (12.61) becomes
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@nH

�
dS : (12.90)

12.5.3.2 Particular Case: Half-Space Delimited by an Infinite Rigid Plane

In the particular case where an infinite plane delimiting the half-space is supposed
to be rigid, then the velocity normal to this plane is supposed to be zero.
Equation (12.90) can be simplified through the use of a new Green’s function GH

which takes the presence of the rigid plane into account. In other words, a function
GH.rjr0/ is searched which fulfills both the Sommerfeld condition and the boundary
condition Vn D 0 on SH. We have

�GH.rjr0/C k2GH.rjr0/ D �ı.rjr0/ with
@GH

@nH

ˇ̌̌̌
SH

D 0 : (12.91)
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Fig. 12.24 Green’s function
for an half-space bounded by
an infinite plane

Image source

R1

R2

M (r)

z

0

Monopole (r')

It can be easily checked that the function:

GH.rjr0/ D e�jkR1

4�R1
C e�jkR2

4�R2
; (12.92)

where R1 and R2 are the distances defined in Fig. 12.24, fulfills the required
conditions of the problem.

In Cartesian coordinates, these distances are given by:

R1 D 

.x � x0/2 C .y � y0/2 C .z � z0/2

�1=2
R2 D 


.x � x0/2 C .y � y0/2 C .z C z0/2
�1=2

; (12.93)

where R1 is the distance between one point source and the observation point, and R2
is the distance between the image of the source point (with regard to the plane SH)
and the observation point.

On SH , or equivalently for z D 0, we have R1 D R2 D R and @R1
@z C @R2

@z =0. As a
consequence, the expression (12.92) fulfills

@GH

@nH

ˇ̌̌̌
SH

D @GH

@z

ˇ̌̌̌
SH

D 0 : (12.94)

Finally, GH is obtained when the observation point M.r/ tends to the plane SH, and
is equal to:

GHSH D 2
e�jkR

4�R
D 2G : (12.95)

12.5.3.3 Radiation of a Plane Source Fixed in an Infinite Rigid Plane

The determination of the acoustic field is highly simplified in the particular
case of the plane sources, especially in the far field. In this case, and under
certain conditions, the implicit Kirchhoff–Helmholtz integral is transformed into
the simpler explicit Rayleigh integral where the free-field pressure is derived from
the velocity profile of the emitting surface.
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Fig. 12.25 Plane source of
surface S fixed in an infinite
rigid plane (SH ). The origin O
is arbitrary. r is the coordinate
vector of the observation
point M. r

0
is the coordinate

vector of a point on the
source S

SH

M

O

r 

r'

S

R = |r–r'|

In musical acoustics, the Rayleigh integral is a convenient tool for computing, for
example, the sound field radiated by a plane soundboard, to a first approximation.
However, in this case, the condition of fixation in an infinite plane is not fulfilled,
which leads to significant discrepancies with measurements, especially in the low-
frequency range, when the acoustic wavelength is larger than the dimensions of the
soundboard. The Rayleigh integral also yields wrong results in the soundboard plane
and behind the source. Therefore, most precise predictive calculations applicable to
real instruments will be presented in Chap. 13.

In this section, the main results for the radiation of a plane source fixed in
an infinite rigid plane are briefly reviewed. More details can be found in many
textbooks.

12.5.3.4 Rayleigh Integral

We consider an extended plane source with surface S fixed in an infinite rigid plane
SH (Fig. 12.25). It has been shown above that the Eq. (12.61) remains valid for any
Green’s function whatever the boundary conditions. We derive

P.r/ D
Z

SH

�
P.r0/

@GH

@nH
� GH

@P.r0/
@nH

�
dSH, (12.96)

By definition, the normal derivative of the Green’s function GH is zero on the
surface SH. The normal derivative of the pressure P.r/ is also zero on SH, except on
S. We get

P.r/ D �
Z

S
GH

@P.r0/
@nH

dS : (12.97)

Writing GH explicitly [Eq. (12.95)], and using Euler equation, we get

P.r/ D j!�

2�

Z
S

Vn.r0/
R

e�jkR dS: (12.98)

This last expression is the so-called Rayleigh integral.
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12.5.3.5 Fresnel and Fraunhofer Approximations

For jrj 	 jr0j, it is useful to look for approximations of the Rayleigh integral, based
on Taylor series expansion of R, as follows:

R D jr � r0j ' r � r0:m C 1

2r

h
r02 � �

r0:m
	2iC 
 
 
 ; (12.99)

where m is the unitary vector r=r.
In the so-called Fraunhofer approximation, the expansion (12.99) is truncated to

the first two terms. As a consequence, the Rayleigh integral becomes

P.r/ ' j!�

2�

e�jkr

r

Z
S

Vn.r0/e�jk:r0

dS; (12.100)

where k D km. By definition, the spatial Fourier transform of Vn.r0/ is

QVn.k/ D
Z

S
Vn.r0/e�jk:r0

dS : (12.101)

Finally, we get for the pressure:

P.r/ ' j!�

2�

e�jkr

r
QVn.k/: (12.102)

This result means that the magnitude of the pressure, besides the 1=r dependence,
is fully determined by the spatial Fourier transform of the normal velocity field
of the baffled source. Under the condition of adequate spatial discretization, this
property opens a wide range of efficient methods for the calculation of radiated field,
in view of the existence of numerous fast algorithms dedicated to the computation
of discrete Fourier transforms.

In the Fresnel approximation, the first three terms of the expansion of R are kept.
It is further assumed that the observation point is not too far from the x-axis or,
equivalently, r ' x (see Fig. 12.26). We can then calculate the acoustic field near
the plane source and close to its axis. We have

R D jr � r0j ' x � m:r0 C r02

2x
: (12.103)

Using the same notations as previously, the pressure is written:

P.r/ ' j!�

2�

e�jkx

x

Z
S

Vn.r0/e�jk:r0

e� jkr02

2x dS : (12.104)

This last expression also involves a Fourier transform. However, in the Fresnel case,
the velocity field on the source has to be first multiplied by a phase factor. Denoting
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Vpn this weighted velocity, we have:

Vpn D Vn.r0/ e� jkr02

2x ; (12.105)

and the acoustic pressure becomes

P.r/ ' j!�

2�

e�jkr

r
QVpn.k/ : (12.106)

It can be shown that the limit between the Fresnel and the Fraunhofer zone is located
at position x D L2=4� ' L2f=4c, where L is a characteristic dimension of the
source, and � the acoustic wavelength. This is an alternative way to define a limit
between near and far field.

12.5.3.6 Source with Uniform Velocity Distribution, or “Plane Piston”

In this paragraph, the radiation of a plane circular disk of radius a subjected to
a uniform velocity V0 at frequency ! is considered. This well-known example
is often called a “plane piston” (see Fig. 12.26). In the far field, it is assumed
that the Fraunhofer approximation is valid, so that the pressure can be computed
using (12.102). For the velocity, we have

Vn.r
0/ D

(
V0 for 0 � r0 � a;

0 elsewhere :
(12.107)

Fig. 12.26 Geometry of the
plane piston. The circular
disk of radius a is situated in
the plane yOz and subjected
to a uniform velocity V0
oriented along the Ox-axis

x
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r 

O

y 

z 
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r'

R = |r–r'|θψ
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As a consequence, its spatial Fourier transform is written:

QVn.k/ D U0

�
2J1.ka cos �/

ka cos �

�
(12.108)

where � is the angle between the vector r and the source plane (see Fig. 12.26), and
U0 D �a2V0 the volume velocity of the piston. The quantity D.�/ D 2J1.ka cos �/

ka cos � is
the directivity of the piston. The radiated pressure is written:

P.r; �/ D j!�U0

2�

e�jkr

r
D.�/ : (12.109)

Comparing this result with the pressure field radiated by a pulsating half-sphere
shows that the directivity is more pronounced for an extended source than for a
point source. The directivity increases with frequency. This general result can be
explained as follows: at low frequencies, the different vibrating points of the surface
S yield constructive interferences, whereas, with increasing frequency, the phase
shifts due to the differences in the propagation distances at a given point in space
are more and more pronounced, leading to destructive interferences, especially off-
axis. The power radiated by the piston is equal to:

Pr D �ck2 jU0j2
4�

; (12.110)

which corresponds exactly to twice the sound power radiated by a monopole with
identical volume velocity.13 As a consequence of the source extension, the sound
intensity is not distributed equally in all directions.

One interesting result for the circular plane piston is the calculation of the
pressure on the axis since, in this particular case, an exact calculation of the pressure
can be made without assuming a far field approximation. Figure 12.27 shows some
examples for different values of the source radius a at various frequencies. At a
frequency of 5:525 kHz and for a radius a D 25 cm, for example, it can be seen that
the limit between near and far field is close to 1m. below this limit, in the vicinity of
the piston, the pressure shows rapid fluctuations. These fluctuations are reduced for
a smaller radius, and at lower frequencies. Such properties are important to know
when recording sound sources in general (including musical instruments), since the
recorded signal is highly sensitive to the location of the microphone in the near field.

13This is due to the fact that the plane piston radiates in an half-space: the volume velocity in the
complete space is U0

0 D 2U0, thus, expressing the power in (12.110) as a function of U0
0 yields a

factor 16 in the denominator. The total power in the two half-spaces is the sum of the power on
each side of the rigid plane, and we find as a result the factor 8 in the denominator as in (12.21).
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Fig. 12.27 Axial pressure field of a circular plane piston for different values of the radius a and
oscillation frequency f . Comparison with the results obtained for a semi-monopole (in grey color).
As a and f increase, more and more important amplitude fluctuations are seen in the vicinity of the
piston. The monopole approximation becomes more and more relevant as both a and f decrease.
However, this approximation is never realistic on the piston itself, since it predicts an infinite
pressure

Boundary Element Method (BEM)
The Kirchhoff–Helmholtz (KH) integral forms the theoretical basis of the
numerical BEM: Boundary Element Method. It mains attracting aspect lies
in the fact that the KH integral is a surface integral (and not a volume
integral) which contributes to reduce the computational burden substantially.
In musical acoustics, this method has been applied to the guitar by Brooke [3]
and Fleischer [32]. This last author also applied the BEM method to timpani.
The main principles and difficulties of this method are briefly summarized
below. The reader may consult specialized textbooks on this topic for more
information [36].

In Eq. (12.61), the expression of P.r/ was given for an observation point
situated in free space outside the external bounding surface S of the source.
For an observation point situated on the surface S, one can show that the
equation becomes

1

2
P.r/ D

Z
S

�
P.r0/

@G.rjr0/
@n

� G.rjr0/
@P.r0/
@n

�
dS.r0/ : (12.111)

The physical meaning of the factor 1=2 can be explained by the fact that, on
the surface, we have to define a Green’s function in 2� steradians, and not in
4� steradians. The use is to group (12.61) and (12.111) in a single expression:

(continued)
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Z
S

�
P.r0/

@G.rjr0/

@n
� G.rjr0/

@P.r0/

@n

�
dS.r0/ D �P.r/ with

8̂<̂
:
� D 1 for M 2 Vext;

� D 1

2
for M 2 S :

(12.112)

The first level of approximation of the BEM method is of the geometrical type.
It is due to the fact that the discretization of (12.112) requires a subdivision of
the surface (or boundary) S in a number Ne of finite elements, so that:

NeX
jD1

Sj ' S : (12.113)

In (12.113), the symbol “'” means that some fine details of the edges,
and/or of the curvature of the surface, cannot be taken into account by such a
discretization. Equation (12.112) becomes

�P.r/ D
NeX

jD1

Z
Sj

�
P.r0/

@G.rjr0/
@n

� G.rjr0/
@P.r0/
@n

�
dS.r0/ : (12.114)

For approximating the surface, one can use simple elements, such as triangles,
or other geometrical forms of higher order (spline functions). The degree of
accuracy of the approximation increases with the number of elements Ne and
with the order of the surface elements.

The second level of approximation in the BEM method is of the functional
type. This level govern how the variables P and G inside a given surface
element are expressed as functions of their values in a number of fixed points
called nodes. In the simplest case, it is assumed that these variables are
approximated by piecewise constant functions. In this case, Eq. (12.114) is
written:

�P.r/ D
NeX

jD1
P.r0

j/

Z
Sj

@G.rjr0
j/

@n
dS.r0/ �

NeX
jD1

@P.r0
j/

@n

Z
Sj

G.rjr0
j/dS.r0/;

(12.115)
and the number of nodes is equal to the number of elements. The expression
of the pressure at points ri becomes

�P.ri/ D
NeX

jD1
P.r0

j/Mij �
NeX

jD1

@P.r0
j/

@n
Lij (12.116)

(continued)
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or, equivalently, in matrix form:

�P D M PS � L
@PS

@n
: (12.117)

In general, the normal velocity is a given parameter, so that @PS
@n is known.

The unknowns are P in free space and PS on the surface S. In a first step, it
is necessary to determine PS in order to solve Eq. (12.117). This quantity is
obtained as the observation point converges to the surface S, which means that
r tends to r0. Equation (12.117) becomes

ŒM � �I	 PS D L
@PS

@n
; (12.118)

where I is the identity matrix. At this stage, one of the main difficulties of the
BEM method is a consequence of the non-uniqueness of the solution observed
for the eigenvalues of the operator ŒM � �I	. A physical meaning for this
eigenvalues is difficult to find, since they result from a purely mathematical
singularity problem. Some methods exist today, such as the CHIEF (or
Combined Helmholtz Integral Equation Formulation), for overcoming such
difficulties [32]: this last method is based on the idea to formulate (12.118)
in the form of a overdetermined system which is solved by means of a least
square method.

12.6 Radiation of Sound Tubes

The complexity of the radiation by wind instruments is mainly due to the existence
of orifices, which can be large compared to the wavelength for brass instruments
or saxophones. Moreover for woodwinds they can have a significant external
interaction. Hereafter we give the main elements (i.e., the radiation impedance,
which represents the effect inside the tube, and directivity of the radiated field
outside) for the end of a tube, and we explain the principle of the interaction of
two orifices. The radiation of instruments with several sources will be investigated
in Chap. 14.
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12.6.1 Radiation Impedances

12.6.1.1 First Approach

In what follows we consider the radiation by tubes without mean flow, in the linear
approximation. An analysis of the flow influence can be found in the literature
[6, 21, 24], and the issue of high levels is treated in Chap. 8 (Sect. 8.4.5) of
the present book. Moreover we consider low Helmholtz number ka, where a is the
tube radius, when only the planar mode propagates.14 Results concerning non-planar
modes of the tube can be found in [13]. We start with a very qualitative approach,
which allows understanding the tube radiation phenomenon, and gives already a
correct value for the real part of the input impedance at low frequencies. Indeed for
a tube radiating into the infinite space, radiation is a particular case of discontinuities
such as those studied in Chap. 7.

• Let us consider an abrupt change in cross section (Fig. 7.20): at low frequencies,
the fluid can be regarded as incompressible (cf. Chap. 1, Sect. 1.5), thus there
is flow rate conservation from one side of the discontinuity to the other side. If
in addition the pressure is uniform in a straight cross section of each duct, the
energy conservation yields

<e.Zleft/ D <e.Zright/: (12.119)

(here the impedances are the acoustic impedances, i.e., a ratio pressure/flow
rate). Close to the discontinuity, the pressure is not uniform, but if the straight
cross sections are chosen at a certain distance of the discontinuity (i.e., one or
two diameters), only the planar mode is present, and this expression is valid.
Otherwise the discontinuity impedance Zd is purely imaginary [see Eq. (7.158)],
and the Expression (12.119) remains valid at the discontinuity. This is exactly
what we need to match the internal and external fields.

If the tube on the right is infinite, the impedance to the right is: �c=Sright, and we
have found a first expression of the real part of the radiation impedance Zleft of the
left tube into an infinite tube. The reflection coefficient R` at the end of this tube is
found to be:

jR`j2 D .RR � 1/2 C X2R
.RR C 1/2 C X2R

'
�

RR � 1
RR C 1

�2
;

14This means ka < 1:8 [cf. Eq. (7.147)]. For a clarinet this gives f < 14 kHz, but for tapered
instruments, the limit frequency can be much lower. The following equation can be used up to
ka D 3:8 for the case of a perfect axisymmetry (see Chap. 7), but it is not the case of wind
instruments, because of the exciter geometry and of the existence of toneholes.
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if we denote ZrightSleft=�c D RR C jXR (see Sect. 7.3.2 in Chap. 7). Indeed at low
frequencies the effect XR of the added mass tends to 0. Therefore, the larger the
cross section discontinuity, the stronger the reflection.

• This reasoning can be extended to the case where the left tube is terminated in an
infinite cone (with index b): there is a matching volume, as shown in Fig. 7.13,
where pressure and velocity have complicated profiles, but, at low frequencies,
the flow rate is conserved. The field can be expanded in the cone by using
spherical Bessel functions. The fundamental mode is the mode with a spherical
symmetry. Its characteristic admittance (ratio pressure/flow rate) is given by:

Y D Sb

�c

�
1C 1

jkrb

�
:

[see Eq. (7.79)]. At low frequencies, this implies

<e.Zright/ D �c

Sb

k2r2b
1C k2r2b

(12.120)

' �c

Sb
k2r2b D �ck2

2�.1 � cos �b/
. (12.121)

Here, �b is the apex semi-angle of the cone, because the impedance is defined on
a spherical cap.15 When the cone is opened up to become an infinite flange, �b

tends to �=2, and the real part of the radiation impedance decreases down to:

<e.ZR/ D �ck2

2�
: (12.122)

The explanation of the decrease is intuitive, because the discontinuity increases,
thus the reflection coefficient increases and the reflection tends to be total.

• The latter result can be obtained directly if we assume that the tube radiates
with an infinite flange and that waves are spherical far enough from the tube end
(Fig. 12.28). This assumption is confirmed by the fact that the result does not
depend on the radius of the hemisphere. And for an unflanged tube (i.e., with a
zero thickness) the surface where waves are spherical is a sphere,16 and we obtain

<e.ZR/ D �ck2

4�
: (12.123)

15Formula (12.121) is not valid for a cone with weak taper: when rb tends to infinity, the impedance
should tend to �c=Sleft , which is the characteristic impedance of the cylindrical tube. In order to
find this result, we must keep the expression (12.120) with Sgauche D Sb, because the matching
volume tends to zero.
16In fact, we have here a complete sphere reduced by the external cross section of the tube.
Nevertheless, because the radius is small compared to the wavelength, this reduction may be
ignored.
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Fig. 12.28 Radiation of a tube with an infinite flange (left) and of an unflanged tube (right). The
flow rate and power are conserved on a hemisphere and a quasi-complete sphere, respectively. The
radius of the sphere is sufficiently large for waves to be spherical on it

Therefore the previous approach allows determining the real part of the radiation
impedance at low frequencies. It is nothing but that of a monopole radiating into
the infinite space expressed in (12.12). Incidentally we notice that, using the same
argument, the radiation of a diverging conical tube produces a reflection smaller than
the one of a cylinder. In what follows, the formulas are limited to cylindrical tubes,
because there are no known formulas for a cone or a flared bell. As to the termination
of a bell, i.e., the shape of the flange, plays a determinant role on radiation and, as
one can imagine, there are no simple formulas for these cases. The matching of the
field between the bell and the infinite space presents a difficulty of a nature similar to
that of the field analysis inside the bell. The case of the Bessel horns (see Sect. 7.5.1
in Chap. 7) illustrates the fact that the separation between the tube and the flange is
less relevant than for a cylinder.

12.6.1.2 Radiation Impedance of a Cylinder with an Infinite Flange

Now we wholly treat a rather simple case, that of a cylinder radiating with an
infinite flange. It is somewhat academic but interesting, and it can be applied as
a first approximation for a side hole, when the flange is the external surface of the
tube. Then the two cases of a tube without flange and with a finite flange (which
can be the tube thickness) are considered. In a cylinder, where the planar mode only
propagates, evanescent modes can exist near the tube end, but they all are with a
radial symmetry n D 0, which is the symmetry of the problem. The calculation of
the radiation with an infinite flange is done thanks to the Rayleigh integral (12.98)
together with the modal expansion given in Sect. 7.6.3.2 of Chap. 7. Pressure and
velocity are expanded in duct modes (in a vector form), and a matrix radiation
impedance ZR is deduced for the modes with radial symmetry ˚i0.r/ D J0.�i0r/:

P D ZRU where Zij D j!�

2�

1

S2

Z
S

Z
S
˚i0.r/˚j0.r

0/
exp.�jk jr � r0j/

jr � r0j dS dS0:
(12.124)
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Similarly to the method used for a cross section discontinuity, it remains to separate
the planar mode .p; u/ from the higher order modes (P0;U0/, then to close the latter
on their characteristic impedance (P0 D �Z0U0), because the tube end is assumed to
be far from any other discontinuity. Using evident notations, we write�

p
P0
�

D
�

ZR00
tz

z Z0
R

��
u

U0
�
;

where

p D ZRu, with ZR D ZR00 � tz.Z0
R C Z0/�1z: (12.125)

In this expression the quantity ZR00 is the plane piston approximation, which was
discussed in Sect. 7.6.3.2 of Chap. 7, and is often used since Rayleigh. This author
calculated the ratio of the averaged pressure to the piston velocity starting from
formula (12.98), and obtained a formula where modified Bessel functions, called
Struve functions, intervene. The low-frequency approximation is the following:

ZR00 D �c

S

�
1

2
.ka/2 C j

8

3�
ka

�
C O



.ka/3

�
: (12.126)

The imaginary part corresponds to a length correction of�`D8a=.3�/D0:85a (cf.
the analysis of Chap. 4, Sect. 4.6.4), and the real part is that given by Eq. (12.122).

For a tube, several authors made the computation (see, for example, [23]).
At low frequencies, the result is very close to that of the plane piston, but the
length correction is �` D 0:8216a, as calculated by Rayleigh himself. At other
frequencies, the impedance can be written with respect to the complex reflection
coefficient R`:

ZR D �c

S

1C R`
1 � R`

D j
�c

S
tan

�
k�`C j

2
ln jR`j

�
(12.127)

where R` D � jR`j exp.�2jk�`/ (12.128)

[cf. Eq. (4.43)]. As a consequence, both the length correction �` and the modulus
of the reflection coefficient depend on frequency. Figure 12.29 shows the two results
(the exact formula and the plane piston approximation). The behaviors are different
at lower and higher frequencies, with a transition around ka D 1 or 2. At higher
frequencies, the real part tends to the characteristic impedance, the imaginary part
tends to 0, and the length correction decreases significantly.

An approximate formula was recently obtained [17, 30], by seeking an expansion
ensuring the following properties:

• symmetry Z.!/ D Z�.�!/;
• causality of the reflection function (and of the inverse FT of the impedance);



686 A. Chaigne and J. Kergomard

1.000

0.100

0.010

0.001
0.01 0.10 1.00 10.0

Im (Z)

Re (Z)

1.0

0.8

0.6

0.4

0.2

0
0

03.02.01.0

No flange

ka

L
/a

ka

With flange 

Fig. 12.29 Left plot: real and imaginary parts of the radiation impedance for a tube without flange
(gray dashed line), with an infinite flange (gray solid line) and with an infinite flange in the
approximation of the plane piston (dotted line). At higher frequencies, the real part tends to the
characteristic impedance while the imaginary part tends to 0. Right plot: length correction �` with
respect to frequency: with an infinite flange (gray line) and without flange (black line)

• a correct behavior of ZR at low frequencies, with the following notation: ZR D
Zc


jıka C 1

2
ˇ.ka/2

�
;

• convergence of ZR to the characteristic impedance at higher frequencies.

This formula is written as follows:

R`D� 1C n1jka

1C d1jka C d2.jka/2
, where (12.129)

n1D0:182; d1 D 2ı C n1 D 1:825 ; d2 D 1

2

�
d21 � n21

	 � 2ˇ D 0:649

(12.130)

ıD0:8236I ˇ D 1

2
: (12.131)

The inverse FT of R`.!/ can be deduced: for t > 0, it is the superposition of two
real decreasing exponentials, because the poles of the polynomial 1 C d1x C d2x2

are real. The corresponding formula for the impedance is

ZR D Zc
jıka C 1

2
d2.jka/2

1C 1
2
.n1 C d1/jka C 1

2
d2.jka/2

: (12.132)

12.6.1.3 Radiation Impedance of an Unflanged Tube

The calculation for an unflanged tube is significantly more complicated. It
was done by using the analytic continuation in the complex plane (i.e., the
Wiener–Hopf method) by Levine and Schwinger [18]. At low frequencies the
result is the following:
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ZR D �c

S

�
1

4
.ka/2 C 0:6133jka

�
: (12.133)

The real part is that given by Eq. (12.123), and the imaginary part corresponds to a
length correction of �` D 0:6133a. Figure 12.29 shows the comparison between
this result, which is probably the most useful, with that of the previous cases. The
approximate formula (12.129) can be used, with:

n1 D 0:167 ; d1 D 2ı C n1 D 1:393 ; d2 D 1

2

�
d21 � n21

	 � 2ˇ D 0:457 (12.134)

ı D 0:6133I ˇ D 1

4
: (12.135)

12.6.1.4 Radiation Impedance of a Tube with a Finite Flange

The two above presented cases are extreme cases. Calculations were done for the
case of a tube with a finite flange. The external diameter is denoted 2b. Fit formulas
were obtained for the reflection coefficient, based upon experimental and numerical
results [7]:

R` D R�̀ � 0:43
a.b � a/

b2
sin2

�
kb

1:85 � a=b

�
e�jkbŒ1Ca=b.2:3�a=b�0:3.ka/2/	 ;

(12.136)

R�̀ D �e�2jk�`�
�`� D �`�1 C a

b
.�`�

0 ��`�1/

C 0:057
a

b

�
1 �

�a

b

�5�
a. (12.137)

The quantities �`�
0 and �`�1 are complex length corrections (the indices 0 and 1

correspond to the cases without flange and with infinite flange, respectively), and
are deduced from formulas (12.129) to (12.135) by:

k�`� D k�`C j

2
ln jR`j :

In formula (12.136), the function sin2 evidences oscillations which are due to
reflections on the external edges of the tube. Other geometrical shapes or other
terminations were studied by some authors [7, 12, 24, 29]: as it was above
mentioned, the issue is complicated and cannot be clearly distinguished from that
of the extension of a tube into a small bell. Concerning the radiation by bells, the
case of a conical horn has been treated above. If the plane wave approximation is
accepted, it is consistent to choose the radiation impedance of a cylindrical tube.
However, the frequency limit of validity is rather low, similarly to that of the horn
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equation (cf. Sect. 7.6.3.5, Chap. 7). In order to study this matter in a more precise
way, numerical methods need to be used, such as the Boundary Element Method
(cf. Sect. 12.5.3.6), or experiments can be carried out.

12.6.1.5 Radiation Impedance of a Tonehole

The radiation by a tonehole is another rather complicated problem. When the radius
tends to 0, the radiation is expected to become similar to that with an infinite flange,
and the corresponding formula is in general satisfactory. However, holes are often
provided with keys which are perforated or not and modify the radiation: some
indications can be found on their effect, in particular in Refs. [9, 22].

12.6.2 Field Radiated by a Tube: Directivity

For an unflanged tube Levine and Schwinger [18] gave an approximated formula
for the far field. It can be written in the following form (if � D 0 in the tube axis):

P.r; �/ D j!�U` D.�/ F.�/
e�jkr

4�r
where

D.�/ D 2J1.ka sin �/

ka sin �
and F.�/ D 1C ZRS

�c
cos �: (12.138)

At the lowest frequencies the radiation is that of a monopole. The directivity
factor D.�/ is that for a plane piston in an infinite baffle.

The factor F.�/, can be interpreted as the result of the superposition of a plane
piston in an infinite baffle and an unflanged piston, which behaves as a dipole with
the directivity factor D.�/ cos � W it can be shown that this superposition corresponds
to a piston radiating without flange from one side only17 [5]. The existence of this
dipole makes the radiation forwardly and rearwardly very asymmetrical (notice that
the result jF.�/j = jF.0/j D jR`j is exact). At higher frequencies, the factor F.�/
tends to .1C cos �/, which is the directivity of a cardioid.

Figure 12.30 shows the directivity of a tube for different values of ka, and a
comparison with the case of a plane piston in an infinite baffle. The maximum is
obtained for � D 0ı, and the minimum near � D 130ı. For example, for ka D 1,
with respect to � D 0ı, it is found �2:7 dB for � D 90ı, �3:5 dB for � D 131ı,
and �3:3 dB for � D 180ı. At higher frequencies, the formula (12.138) diverges
from the exact value, except for 0ı and 180ı.

17For this case the imaginary part is found to be 2R=� D 0:6366R, and is slightly larger than that
of a unflanged tube: this difference can be compared to that between a tube and a plane piston.
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Fig. 12.30 Directivity, in decibels, of an unflanged tube (left plot), D.�/F.�/, and of a plane piston
in an infinite baffle, D.�/ (right plot). The values of the frequency are, from the outside to the
inside: ka D 0:5; 1; 1; 5; 2

Considering now the argument of the function F.�/, we see that, for small ka,
it is equal to k�` cos � . A geometrical reasoning shows that the acoustic center of
the waves produced by the tube is located at the distance �` from the tube end:
therefore the length correction is also a quantity related to the radiated field.

Finally, Ando [1] showed that the directivity is slightly modified when the tube
thickness is taken into account, and that the acoustic center is no longer located
exactly at a distance equal to the length correction of the tube.

For a bell, experiment shows that the directivity globally increases at higher
frequencies, and is similar to that of a cylinder. Figure 12.31 shows experimental
results, which are obtained by exciting a trombone with a loudspeaker at its input
(the real radiation can be slightly different because of the mean flow). However, as
the opening is wide, the directivity of the bell is significant even at rather low audible
frequencies. This result was confirmed by Martin, who made similar measurements
[19]. Such a phenomenon is very well known by the players, who modify the
orientation of their instrument in order to adjust the perception of higher frequencies
by the listeners.

12.6.3 Radiation by Two Tubes or Two Orifices

When two sources are close together, they have a mutual influence. From the integral
formulation of type (12.61), we can calculate the average pressure on two surfaces
with respect to the flow rate of each of them, and the result can be written in the
general form of a radiation impedance matrix (or an admittance matrix):
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Fig. 12.31 Radiation of a trombone with closed slide excited by a loudspeaker. The directivity is
measured for different harmonics of the note. The corresponding frequencies are 113; 171; 229;
294; 346; 406; 465; 521; 590 Hz. The increase from the lower frequencies to the higher ones is
plotted from the inside to the outside. It can be noticed that the directivity increases with frequency.
(Courtesy of R. Caussé)

P1 D Z11U1 C Z12U2

P2 D Z21U1 C Z22U2: (12.139)

Z11 and Z22 are “self-impedances,” and Z12 D Z21 are mutual impedance, which are
equal because of reciprocity. It can be useful to know them when the ends of two
tubes are close together, or when two orifices of a tube are close together, as it is
the case for open toneholes. We examine this issue in detail at lower frequencies,
and focus on the power balance. A simple approximate formula can be deduced,
together with a validity condition.

The mutual impedances generally are as difficult to calculate as the self-
impedances, which were calculated in the previous section. The literature on this
subject is wide. As an example, we can start with two pistons located in the same
infinite baffle. The formula of the mutual impedances can be then directly deduced
from the Rayleigh integral (12.98):
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Z12 D Z21 D j�c
k

2�

1

S1S2

Z
S1

Z
S2

e�jkjr1�r2j

jr1 � r2j dS1dS2: (12.140)

We consider two elementary sources, separated by a distance d. A series expansion
can be calculated if the quantity k Œd C .a1 C a2/=2	 is assumed to be small [25]. We
limit the calculation to the real part, which is the only term involved in the power
balance. The result is

<e.Zii/ D �c
k2

2�

�
1 � k2a2i

6
C O.k4a4i /

�
, i D 1; 2 ; (12.141)

<e.Z12/ D �c
k2

2�

�
1 � 1

6
k2
�

d2 C a21 C a22
2

�
C O

�
k4d4; k4a41; k

4a42
	�
:

(12.142)

The power averaged over a period is written in the following form:

P D 1

2
<e.p1U

�
1 /C 1

2
<e.p2U

�
2 / or (12.143)

P D 1

2
jU1j2 <e.Z11 � Z12/

C1

2
jU2j2 <e.Z22 � Z12/C 1

2
jU1 C U2j2 <e.Z12/: (12.144)

For the case of the two pistons, we derive

P D �c
k2

4�
jU1 C U2j2 C �c

k4

24�
jU1j2

�
a22 � a21
2

C d2
�

C�c
k4

24�

�
jU2j2

�
a21 � a22
2

C d2
�

� jU1 C U2j2
�

a21 C a22
2

C d2
��
: (12.145)

For point sources, it can be checked that the result is the same than Eq. (12.28) by a
factor of two, since the pistons here radiate into a half-space.

Formula (12.145) shows that at low frequencies the radiation is that of a
monopole with flow rate jU1 C U2j2, which is proportional to !2, but if the two
sources have the same amplitude and are opposite in phase, the radiation is that
of a dipole, proportional to !4. This kind of analysis allows understanding why a
vented box loudspeaker18 paradoxically radiates as a dipole at lower frequencies

18The enclosure partially separates the rear face of a loudspeaker; it has several openings, contrary
to a closed box loudspeaker.
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and as a monopole at higher frequencies, because the two sources are linked by
a relationship of kind: U1 D U2.!

2=!2r � 1/, where !r is the Helmholtz angular
resonance frequency of the enclosure. A similar case is that of stringed instruments
with openings: this was analyzed in connection with the sound hole sum rule in
Eq. (12.86).

For two tubes radiating in the same plane and without flange, the approximation
of the plane piston can be used [16]. By applying again the superposition principle,
we obtain for the real part of the mutual impedance the Expression (12.142), divided
by a factor 2. This analysis could be extended, but it is rather academic, because the
two tube ends rarely are in the same plane. This result can be used, for instance for
toneholes, but we can simply use the approximation, and more generally the formula
of a monopole radiation:

Z12 D j�c
k

4�

e�jkd

d
: (12.146)

In summary, the previous analysis allows understanding, at least for a particular
case, under which condition this condition is valid: the distance d needs to be large
compared to the source radii. This very simplified expression will be used in order
to analyze the radiation of complex sources in Chap. 14.
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Chapter 13
Radiation of Vibrating Structures

Antoine Chaigne

Abstract This chapter deals with the radiation of vibrating structures in air, with
application to stringed and percussive instruments. Basic notions are first presented
with the help of an introductory example of a beam coupled to an air column. The
important concept of critical frequency is then introduced through the example
of an infinite thin plate radiating in air. The radiation models of finite plates
and their results can be applied to real musical instruments. Recent methods are
then presented for calculating the radiation of unbaffled plates, structural volumes,
and nonplanar sources. Finally, the questions relative to the appropriate choice of
material, and to the compromise between radiation efficiency and tone duration, are
illustrated on several stringed instruments.

13.1 Introduction

For a number of musical instruments, the sound results from the vibration of
structures. This is the case, for example, for stringed and percussive instruments.
Structural acoustics (or vibroacoustics) is that subdomain of acoustics dealing with
the interaction phenomena between a vibrating structure and the sound field in the
adjacent fluid. In what follows, the air is the considered light fluid interacting with
the structures. The concept of light and heavy fluid will be defined more formally in
this chapter.

The structures used in the making of instrument are most often thin structures,
which means that their thickness is small compared to the other dimensions.
Different types of elastic waves can propagate in these structures. Among them,
the flexural waves are those which show the lowest characteristic mechanical
impedance. As a consequence, these waves also are those which are the most excited
by an impact, and/or by the vibrations of strings coupled to them. The normal
velocity and, in turn, the acoustic pressure field, are directly linked to the mechanical
vibratory field of the structure.
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d

Fig. 13.1 Transverse vibrations of a plate at a frequency close to one on its eigenmodes

In musical acoustics, the most common vibrating structures are plates (guitar,
harp, piano soundboards, etc.) or shells (soundboards of bowed strings instruments,
bells, gongs, cymbals, etc.). The beams (xylophone, vibraphone, marimba, glock-
enspiel, etc.) can be considered as limiting cases of plates whose width is small
compared to the length. The particular case of the membranes (timpani, drums, etc.)
will be treated in detail in Chap. 14.

In contrast with the case of the plane piston seen in Chap. 12, where the surface
velocity field is uniform, the vibrations of shells and plates are characterized by the
juxtaposition of zones with velocity fields of alternate signs, which can be seen as
the 2-D association of dipoles (pairs of monopoles of opposite signs) (see Fig. 13.1).
The main effect of this situation is to globally reduce the compression of the fluid
(compared to the plane piston), and thus to limit the efficiency of the radiation
to the far field. Intuitively, one can feel that the dipoles will produce destructive
interferences if kd � 1, where k is the wavenumber and d the distance between
two consecutive “monopoles” on the plate or on the shell. Conversely, if kd 	 1,
the monopoles radiate more independently and the radiation efficiency is improved
(see also Chap. 12).

As seen in Chap. 3, flexural waves are dispersive, where the phase and group
velocities vary with frequency. It will be shown in Sect. 13.3 that the so-called
critical (or coincidence) frequency fc exists, for which the acoustic wavelength in the
fluid is equal to the elastic wavelength in the structure. For the frequencies smaller
than fc, the sound power radiated by an infinite flat plate is zero, and is very weak
for a finite plate. For the shells, and, more generally, for complex structures (such as
ribbed plates, for example), the radiation properties depend on the elastic dispersion
curve. The phase velocity increases by imposing a curvature to a flat plate: as a
consequence, shells are generally more efficient in terms of radiation than plates of
similar external surface and thickness, and made of the same material. However, this
general tendency needs to be clarified for each particular geometry: in Sect. 13.5, it
will be seen on a simple example that the curvature also affects the bandwidth and
the directivity of the source.

13.2 Basic Concepts in Structural Acoustics

This chapter starts with the presentation of a simple 1-D example whose aim is
to introduce the basic concepts in structural–acoustic coupling. The purpose is to
highlight the following properties:
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• Both the real and imaginary parts of the eigenfrequencies are modified by the
acoustic radiation of a structure. In this section, a method is shown for calculating
these modifications. In addition, approximations are presented which are justified
in case of weak coupling between the structure and the fluid, as it is often the case
for the air.

• Expanding the general solution of a coupled system in terms of the structural
in vacuo modes shows that intermodal coupling results from the radiation. In
practice, this means that if one particular mode is excited then, in turn, other
coupled modes are excited. These phenomena are currently observed in stringed
instruments. For a formal point of view, this coupling is indicated through the fact
that the differential equations that govern the generalized displacements are not
independent from each other anymore. These properties are analogous to those
demonstrated in Chap. 5 for the nonproportional damping.1

• For a forced excitation at a given frequency !, it is generally not possible to
excite only one mode, as a consequence of the intermodal coupling. Thus, the
concept of Operating Deflexion Shape (or ODS) needs to be introduced.

• The structural and radiation resistance matrices are introduced by means of an
energy analysis of the coupled system. The radiation efficiency is derived from
these definitions.

13.2.1 Vibrating Beam Coupled to an Infinite Fluid Medium:
Modal Approach

A typical situation involving a vibrating structure radiating sound energy in free
space is analyzed here. The simple selected system is composed of a finite elastic
beam vibrating longitudinally and loaded at one end by a semi-infinite tube filled
with air. This problem shows some analogies with the example of the string with
dissipative end studied in Chap. 5.

The system shown in Fig. 13.2 is considered. It is composed of an elastic
longitudinally vibrating 1-D beam with density �s, section S, length L, and Young’s
modulus E. �.x; t/ is the longitudinal displacement of a current point at position x
along the bar (with 0 < x < L). This beam is coupled at one end (x D L) with a
semi-infinite tube filled with air, and clamped at the other (x D 0). The motion of
the beam induces a pressure p.x; t/ inside the tube. This pressure reacts on the beam
at point x D L. cL D p

E=�s is the longitudinal wave speed. The coupled system is
governed by the equations:

1In reality, the modes of the coupled system are complex, and we could think of applying the
rigorous theory of complex modes presented in Chap. 5. However, since the air coupling can be
most often considered as weak in musical acoustics, the method of projection on the in vacuo
modes is preferred here, which corresponds to current practice.
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x0 L

–p n

Fig. 13.2 Longitudinally vibrating beam coupled to a semi-infinite tube. In x D L, the cross-
section of the bar is subjected to the sound pressure �p n, where n is the unitary vector normal to
the beam
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for 0 � x < L;

p.L; t/ D �c P�.L; t/;

�.0; t/ D 0;

p.x; t/ D �c P�.L; t � x�L
c / for L < x < 1:

(13.1)

The system (13.1) is solved by expanding the sought solution �.x; t/ in terms of
the in vacuo modes 
n.x/ of the beam:

�.x; t/ D
X

n


n.x/qn.t/; (13.2)

where the qn.t/ are the generalized displacements. The system (13.1) is then
integrated over the length of the beam (from 0 to L), after multiplication by any
eigenfunction 
n. This givesZ L
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�sS

 X
m


m.x/Rqm.t/
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n.x/ dx �
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00
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!
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D S�c
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!

n.L/: (13.3)

Equation (13.3) expresses the energetic balance between the internal stresses inside
the beam, the inertial forces, and the pressure forces applied to the beam by the
exterior medium. Due to the orthogonality properties of the in vacuo modes 
n, the
only nonzero terms remaining in (13.3) are those for which m D n. Introducing
further the modal mass:

mn D
Z L

0

�sS

2
n.x/dx; (13.4)

and rewriting the second integral:

�
Z L

0
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!2n

c2L

 X
m


m.x/qm.t/

!

n.x/ dx D �!2n mnqn.t/; (13.5)
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it is found that the generalized displacements qn.t/ are solutions of the coupled
system:

mn Rqn.t/C mn!
2
n qn.t/ D �Ra
n.L/

X
m


m.L/Pqm.t/; (13.6)

where Ra D �cS is the radiation resistance. It is observed that one effect of the
radiation is to couple together the in vacuo modes of the beam. However, under
some restrictive assumptions, it will be allowed to replace the system (13.6) by an
approximate uncoupled system.

After determining the generalized displacements qn, the displacement � is
derived from (13.2), and this allows to calculate both the velocity and the pressure
field. In conclusion, all variables of the problem are known. This justifies to focus
primarily on the qn in what follows.

13.2.1.1 Systems Having a Few Number of Degrees of Freedom (dof)

In this section, coupled systems of small dimensions are examined, in order to better
understand their physical meaning.

Single dof System

Let us suppose that, for various reasons, the beam can be reduced to a single mode.
In this case (13.6) reduces to:

Rq1.t/C Ra

2
1.L/

m1

Pq1.t/C !21q1.t/ D 0: (13.7)

This is simply the equation of a damped oscillator (see Chap. 2) where the
dimensionless damping factor �1 is

2�1!1 D Ra

2
1.L/

m1

: (13.8)

Thus, for a single dof system loaded by a semi-infinite tube, the acoustic coupling
adds a radiation damping to the structure.

2-dof System

Let us now truncate the continuous beam to its two lowest modes. In this case, (13.6)
becomes8<: Rq1.t/C !21q1.t/ D � Ra
1.L/

m1
Œ
1.L/Pq1.t/C 
2.L/Pq2.t/	;

Rq2.t/C !22q2.t/ D � Ra
2.L/
m2

Œ
1.L/Pq1.t/C 
2.L/Pq2.t/	:
(13.9)
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Equation (13.9) can be rewritten as:8<: Rq1 C 2�1!1 Pq1 C !21q1 D � Ra
1.L/
2.L/
m1

Pq2 D C12 Pq2;

Rq2 C 2�2!2 Pq2 C !22q2 D � Ra
2.L/
1.L/
m2

Pq1 D C21 Pq1;
(13.10)

where �m1C12 D �m2C21 D Ra
2.L/
1.L/.
Several conclusions can be drawn from this result:

• Due to the acoustic radiation, damping terms 2�i!i Pqi are introduced in both
equations.

• The generalized displacements are coupled.
• In the absence of any other damping phenomena, the coupling coefficients C12

and C21 are linked by the property2:

C12C21 D 4�1�2!1!2:

The eigenfrequencies of the system are the roots of the characteristic equation:

.s2 C 2�1!1s C !21/.s
2 C 2�2!2s C !22/� 4�1�2!1!2s

2 D 0; (13.11)

This equation shows that the structural-acoustic coupling modifies the complex
eigenfrequencies. In general, this equation can only be solved numerically. How-
ever, under the assumption of weak damping (�1 � 1 and �2 � 1), first-order
approximations can be found [8].

13.2.1.2 Generalization

For a continuous system with a large number of dof, the differential system (13.6)
is written:

Rqn C 2�n!n Pqn C !2n qn D
X
m¤n

Cnm Pqm; (13.12)

where

2�n!n D Ra

2
n.L/

mn
and Cnm D �Ra
n.L/
m.L/

mn
: (13.13)

This expression shows the two main effects of the elasto-acoustic coupling seen in
Fig. 13.2:

2Notice that this property is no longer valid if there is another structural damping inside the beam.
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Fig. 13.3 Comparison between two velocity waveforms at a given point on a guitar soundboard
(synthesis). (Left) Isolated mode in vacuo. (Right) Coupled modes due to air-soundboard coupling

1. modal damping due to radiation
2. modification of the eigenfrequencies due to intermodal coupling.

The 1-D model presented here can be further generalized to more complex
systems. Figure 13.3 shows, for example, the case of a synthesized guitar tone.
The picture on the left shows the time decay of an isolated mode, assuming only
a modal damping in the in vacuo soundboard. The picture on the right shows the
time evolution of the generalized displacement, in case of a coupling with external
air and cavity. It can be seen that several other modes are excited, as a consequence
of the air-structure coupling.

13.2.1.3 Reactive Effects

Imagine now that the free end of the beam subjected to longitudinal vibrations is
now inserted in an infinite plane baffle, as in the case of the plane piston seen in
Chap. 12. The radiation impedance now contains a real part Ra, and an imaginary
part Xa.

The imaginary part corresponds to an inertial load by the fluid3 which was not
present in the case of the beam loaded by the semi-infinite tube. The main effect of
Xa is to lower the eigenmodes of the structure compared to the in vacuo case.

3Such an effect can be taken into account as a length correction in tubes.



702 A. Chaigne

Fig. 13.4 Elastic beam
vibrating longitudinally and
inserted in an infinite plane
baffle

13.2.2 Forced Regime

As for the harmonic oscillator in Chap. 2, the case of a forced excitation is now
considered. A force F.t/ is applied at point x D x0 with x0 < L. This situation
corresponds in practice to stringed instruments, where the soundboard is excited
at the bridge by the vibration of a string. For a violin, the force is due to self-
sustained oscillations. For a guitar or a piano, the decay times of the strings’
vibrations are usually long compared to those of the soundboard, so that the
excitation can be viewed as quasi-stationary. In the presence of an excitation, the
energy balance (13.3) becomes

Z L

0

�sS

 X
m


m.x/Rqm.t/

!

n.x/ dx �

Z L

0

ES

 X
m



00

m.x/qm.t/

!

n.x/ dx

D
Z L

0

Ra

 X
m


m.L/Pqm.t/

!

n.x/ı.x � L/ dx C

Z L

0

F.x0; t/ı.x � x0/
n.x/ dx

(13.14)

which leads to the equations governing the generalized displacements:

Rqn C 2�n!n Pqn C !2n qn D
X
m¤n

Cnm Pqm C F.x0; t/

n.x0/

mn
; (13.15)

or, equivalently, using the Laplace transform:

Qqn.s/ D Hn.s/ QF.x0; s/C
X
m¤n

Knm.s/Qqm.s/; (13.16)
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with

Hn.s/ D 
n.x0/

mn.s2 C 2�n!ns C !2n /
and Knm.s/ D sCnm

s2 C 2�n!ns C !2n
: (13.17)

In summary, the displacement is written:

Q�.x; s/ D
X

n

Qqn.s/
n.x/ D QF.x0; s/
X

n


n.x/Hn.s/C
X

n


n.x/
X
m¤n

Knm.s/Qqm.s/:

(13.18)
In matrix form, the system (13.16) is written4:2664

D1 �sC12 : : : �sC1n

�sC21 D2 : : : �sC2n

: : : : : : : : : : : :

�sCn1 �sCn2 : : : Dn

3775
2664

q1
q2
: : :

qn

3775 D F

2664
ˇ1
ˇ2

: : :

ˇn

3775 (13.19)

where ˇn D 
n.x0/
mn

and Dn D s2 C2�n!ns C!2n . It is convenient to put this equation
in the following form:

CQ D Fˇ; (13.20)

where the displacement thus becomes

� D t�Q where Q D .C�1ˇ/F: (13.21)

Notice that, due to the sound–structure coupling, the matrix C is not diagonal.
However, in the case of radiation in air, this coupling is generally weak and it will
be justified to use approximate formulations.

13.2.2.1 Light Fluid Approximation

Several methods exist for addressing the problem of elasto-acoustic coupling in light
fluid. In the method retained below, dimensionless intermodal coupling coefficients
are viewed as perturbation terms, compared to the reference in vacuo case. A simple
expression is then derived for the structural shapes. As previously, the presentation
starts with a simple 2-dof system.

4In what follows, the symbols “Q” will be omitted for clarity.
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2-dof System

For a 2-dof system, the matrix C is written:

C D
�

D1 �sC12
�sC21 D2

�
: (13.22)

In order to test to what extent this matrix is different from the diagonal case, we look
for the diagonal matrix D built with the eigenvalues �1 and �2 which are solutions
of the characteristic equation:ˇ̌̌̌

D1 � � �sC12
�sC21 D2 � �

ˇ̌̌̌
D .D2 � �/.D1 � �/� s2C12C21 D 0: (13.23)

Denoting ei the corresponding eigenvectors, and T D Œe1 e2	, the classical matrix
relationships are obtained

TD D CT , D D T�1CT; (13.24)

where it is assumed that C is reversible. In the general case (without approxima-
tions), the eigenvalues of C are given by:

�1;2 D 1

2

h
D1 C D2 ˙

p
.D1 � D2/2 C 4s2C12C21

i
: (13.25)

At this stage, the following dimensionless coupling coefficient is defined5

" D C12C21
D2 � D1

D C12C21
!22 � !21 C 2s.�2!2 � �1!1/

; (13.26)

so that, for " � 1, the eigenvalues of C can be written to first-order approximation:

�1 D D1 � "s2 I �2 D D2 C "s2: (13.27)

Discussion At this stage, we make the approximation of “light fluid,” i.e., we
assume that the coefficients Cij and �i are small in (13.26). As a consequence, it
can be seen that the coupling parameter " is small only under the condition that the
in vacuo frequencies of the structure are sufficiently far apart from each other. If this
latter condition is not fulfilled, a strong coupling can be observed, even for a light
fluid. Such a situation occurs, for example, in the coupling between the fundamental
mode of a head, and the lowest mode of the cavity in timpani (see Chap. 14).

5See also the definition of a coupling coefficient in Sect. 6.4 of Chap. 6.



13 Radiation of Vibrating Structures 705

Generalization

For a system with n dof, it can be shown that the first-order approximations of the
eigenvalues �i can be written as:

�i D Di C "is
2 with "i D

X
j

CijCji

Di � Dj
and 1 � j � n and j ¤ i:

(13.28)

In summary, n intermodal coupling coefficients are defined, one for each pair of
modes. The conditions of weak coupling are generalized: light fluid and sufficient
distance between the values of the eigenfrequencies.

13.2.2.2 Operating Deflexion Shapes

Forced excitation is often used for measurements purpose on musical instruments. In
case of uncoupled modes, a forced excitation close to one particular eigenfrequency
of the structure yields the corresponding modal shape. However for coupled modes,
as in the case examined in this section, the observed deflexion cannot be reduced to
a single modal shape. They are usually referred to as ODS.

In what follows, we content ourselves with a simplified presentation with two
dof. The results can be generalized to any number n of dof. We start by writing the
displacement field of the structure in vacuo:

�0 D 
10q10 C 
20q20: (13.29)

For the same structure vibrating in air, and using an expansion of the displacement
on the in vacuo modes, we get

� D 
10q1 C 
20q2: (13.30)

Based on the results obtained in the previous section, we can write to the first-order:

� D 
10

�
q10 C sC12

D1

q20

�
C 
20

�
q20 C q10

sC21
D2

�
; (13.31)

or, equivalently, by grouping the terms corresponding to each generalized
displacement:

� D q10

�

10 C sC21

D2


20

�
C q20

�

20 C 
10

sC12
D1

�
with qi0 D 
i0

miDi
F:

(13.32)
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Let us now examine typical experimental situations where a sinusoidal force F.t/ D
F0H.t/ sin!t6 is applied suddenly at time t D 0 and at point x0.

(1) In the particular case where both the frequency and excitation point are selected
so that q20 is negligible compared to q10, the displacement becomes


1 D 
10 C 
20
sC21
D2

: (13.33)

After a certain amount of time, the second term in (13.33) tends to zero, and the
observed deflexion corresponds to the first mode.

(2) However, in the general case, Eq. (13.32) shows that both modes are simul-
taneously excited. After the transient regime, the stationary solution for the
displacement is given by:

�.!; x/ D
�

10ˇ1

D1.j!/
C 
20ˇ2

D2.j!/

�
: (13.34)

The quantity enclosed in square brackets is the ODS of the structure at
frequency !.

13.2.3 Energy Approach

In the previous sections, the internal losses inside the material of the structure were
not considered. However, if we take the example of a stringed instrument, only a
part of the mechanical power transmitted by the string to the body is transformed
into acoustic power. The difference is essentially due to dissipation in the material.

The energy balance and the acoustical efficiency of a single dof oscillator loaded
by a tube filled with air were determined in Chap. 2. This example is generalized
here to a structural system with multiple dof coupled to a fluid. For a better
comprehension, we start with a 2-dof system. The losses in the structure itself are
represented by two mechanical resistances r1 and r2. The resistances ra1 and ra2

account for the radiation losses. One goal is to compare the dissipated power in the
structure and in air, respectively.

13.2.3.1 Structural and Acoustic Resistance Matrix

The illustrating example is still the case of a longitudinally vibrating beam radiating
at one end (x D L) in a semi-infinite tube (see Fig. 13.2). The excitation force F is
applied at point x D x0. The radiation coupling coefficients are defined in (13.13).

6Recall that H.t/ is the Heaviside function.
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The system is truncated to the first two modes of the beam, for simplicity. The
system of equations governing the system is(

m1 Rq1 C .r1 C ra1/Pq1 C k1q1 C � Pq2 D 
1.x0/F;

m2 Rq2 C .r2 C ra2/Pq2 C k1q2 C � Pq1 D 
2.x0/F;
(13.35)

where � D �C12m1 D �C21m2. The following notations are used8<: 2�1!1 D r1Cra1
m1

I 2�10!1 D r1
m1

I !21 D k1
m1
;

2�2!2 D r2Cra2
m1

I 2�20!2 D r2
m2

I !22 D k2
m2
:

(13.36)

The instantaneous mechanical power imparted to the beam is

pm.t/ D F
d�

dt
.x0; t/ D F Œ
1.x0/Pq1 C 
2.x0/Pq2	

D m1 Rq1 Pq1 C .r1 C ra1/Pq21 C k1q1 Pq1 C 2� Pq1 Pq2
Cm2 Rq2 Pq2 C .r2 C ra2/Pq22 C k2q2 Pq2: (13.37)

In case of a periodic motion with period T, the mean value of this power is:

Pm.T/ D 1

T

Z T

0

.r1 C ra1/Pq21 C .r2 C ra2/Pq22 C 2� Pq2 Pq1 dt; (13.38)

It is composed of three terms:

• The mean power dissipate in the structure (material) Ps.T/ D 1
T

Z T

0

r1 Pq21 C
r2 Pq22 dt,

• The mean radiated acoustic power Pa.T/ D 1
T

Z T

0

ra1 Pq21 C ra2 Pq22 dt,

• The mean coupling power Pc.T/ D 2
T

Z T

0

� Pq2 Pq1 dt reflecting the energy

exchange between the modes.

In the particular case of sinusoidal excitation, we get

Pm D 1

2



.r1 C ra1/jPq1j2 C .r2 C ra2/jPq2j2 C 2� jPq2jjPq1j

�
: (13.39)

In vacuo, this expression reduces to:

Pmo D 1

2



r1jPq10j2 C r2jPq20j2

�
: (13.40)
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In what follows, it is convenient to write these results in matrix form. Introducing

the notations: PQ D
�Pq1

Pq2
�

, Rs D
�

r1 0
0 r2

�
and Ra D

�
ra1 �

� ra2

�
, we get

Pm D PQH ŒRs C Ra	 PQ; (13.41)

where PQH is the Hermitian conjugate (conjugate transpose) of PQ. Rs is the matrix
of the structural resistances. For the sake of simplicity, it is written here in diagonal
form. However, it is not the case for all causes of damping (see Chap. 5). Finally, Ra

is the radiation resistance matrix of the beam coupled to the fluid.

13.2.3.2 Generalization and Acoustical Efficiency

Generalizing the previous results to the n dof of the beam, we find

Pm.T/ D 1

T

Z T

0

24 nX
iD1
.ri C rai/Pq2i C

nX
iD1

nX
j¤iD1

�ij Pqi Pqj

35 dt où �ij D �miCij:

(13.42)
The resistance matrix becomes

Rs C Ra D

26666666664

r1 C ra1 : : : �1i : : : �1j : : : �1n

: : : : : : : : : : : : : : : : : : : : :

�i1 : : : ri C rai : : : �ij : : : �in

: : : : : : : : : : : : : : : : : : : : :

�j1 : : : �ji : : : rj C raj : : : �jn

: : : : : : : : : : : : : : : : : : : : :

�n1 : : : �ni : : : �nj : : : rn C ran:

37777777775
(13.43)

The radiated acoustic power is given by:

Pa D PQHRa PQ: (13.44)

In conclusion, for an elastic-acoustic system where the modes are coupled by the
radiation, the acoustical efficiency is written:

�m D
PQH ŒRa	 PQ

PQH ŒRs C Ra	 PQ : (13.45)

Equation (13.45) is thus the generalization of the result obtained in Chap. 2 for a
single oscillator coupled to the air.

Measurements conducted on a number of classical guitars have shown that the
order of magnitude of the acoustical efficiency is nearly 10 % between 100 and
1000 Hz, and 5 % between 1 and 8 kHz. However, for some particular frequencies,
the efficiency can reach 20 % [5].
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13.3 Radiation of an Infinite Thin Plate

13.3.1 Elastic Equation

The radiation properties of a plane surface with uniform velocity profile were
studied in Chap. 12. This theory is valid for the structures subjected to rigid body
motion. It can also be applied to the radiation of a hole (as the soundhole of a guitar,
for example), as long as the normal acoustic velocity remains constant over the
cross-section.

As soon as the frequency increases, which causes in turn that the vibratory wave-
length becomes comparable to (or smaller than) the dimensions of the structure, then
one has to consider the propagation phenomena inside the structure. To illustrate this
point, the case of flexural motion of thin plates is treated below.

The presentation starts with the case of an “infinite” plate, which amounts to
neglecting the reflection of waves at the edges. The particular case of an isotropic
plate subjected to a transverse velocity V.x; !/ D V0.!/e�jkBx along the x-axis is
studied in the frequency domain. kB D 2�=�B is the flexural wavenumber (see
Fig. 13.5). For a given frequency !, the phase velocity of the elastic wave in the
plate is given by cB D !=kB.

At this stage, the internal losses in the plate, and the reaction of the acoustic
pressure on it, are left temporarily aside. These features will be progressively
introduced later. �p is the density of the plate, E its Young’s modulus, � its Poisson’s
coefficient, and h its thickness. In the context of the Kirchhoff–Love assumptions,
it has been shown in Chap. 1 that the governing equation of motion for the plate is
given by:

� !2�phW C D
d4W

dx4
D 0 with D D Eh3

12.1� �2/ ; (13.46)

where W.x; !/ is the transverse displacement.

M

λB

y

x

p (x, y, t)

Fig. 13.5 Radiation of an infinite plate subjected to transverse flexural vibrations. The elastic
flexural wavelength is �B. The objective is to determine the pressure p radiated by this plate in
free space. For simplicity, the case of a “1D” plate (equivalent to a beam) is considered. As a
consequence, the pressure only depends on two spatial coordinates: x and y
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13.3.2 Acoustic Equations

The Helmholtz equation governing the sound pressure P.x; y; !/ is written:

@2P

@x2
C @2P

@y2
C k2P D 0: (13.47)

The elasto-acoustic interaction between the plate and the air (with density �) is
ensured by the continuity equation for the normal velocities:

@P

@y

ˇ̌̌̌
yD0

D �j!�V0e
�jkBx: (13.48)

13.3.3 Dispersion Equations and Critical Frequency

For any progressive flexural wave of the form ej.!t�kBx/ injected in Eq. (13.46), we
get the dispersion relationship between frequency and wavenumber in the plate:

! D
s

D

�ph
k2B: (13.49)

Due to the linearity of the problem, the same frequency is found in the acoustic field,
which yields the acoustic dispersion relation:

! D kc: (13.50)

where c is the speed of sound in air. Plotting both dispersion relationships (13.49)
and (13.50) on the same figure (see Fig. 13.6) shows that a particular frequency
exists for which the wavenumber in the plate is equal to the wavenumber in air. This
so-called critical (or coincidence) frequency is given by:

fc D !c

2�
D c2

2�

r
�ph

D
D c2

�h

r
3�p.1 � �2/

E
: (13.51)

The critical frequency fc plays a major role in elasto-acoustic coupling. In
Sect. 13.3.4, it will be shown that this two distinct frequency domains are defined
by this frequency: below fc, the radiation efficiency is weak, whereas it becomes
significant for frequencies higher than fc. A maximum is obtained for the particular
case fD fc. This result is due to the particular shape (parabolic, here) of the plate
dispersion. By contrast, for ideal membranes, the dispersion relationship is linear,
and no critical frequency can be exhibited. There is only one particular case where
both wave speed in air and in the membrane are equal (see the next paragraph).
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Fig. 13.6 Equations of
dispersion in plate and air.
The critical (or coincidence)
frequency is given by the
intersection of both curves

Pl
at

e

Air

Wavenumber

c

For other structures (for some shells, for example) some situations can also be
observed where there are no intersections between the air and structures dispersion
relationships. These features will be studied in more details in Sect. 13.5.

In Eq. (13.51), it can be seen that the critical frequency depends on the thickness
of the plate and on the material properties. In summary, the critical frequency
decreases as the plate becomes thicker, more dense, and more rigid.

Transposing these results to stringed instruments, one can derive that, for similar
thickness and density, replacing a given material by a more rigid one contributes to
lower the critical frequency which, in turn, should enhance the radiation efficiency
of the lowest notes. In this context, gluing some ribs on the soundboard contributes
to increase its stiffness and its mean thickness, which is coherent with a decrease of
the critical frequency. However, one must be careful before concluding that these
modifications will, in fact, lead to an increase in sound power. One has first to
consider (and estimate) the change of velocity profile of the soundboard due to the
attachment of ribs.

Critical Domain for Orthotropic Materials

For orthotropic materials (such as the wood species used for stringed instruments),
the calculation (13.51) can be conducted again in the two limiting cases correspond-
ing to the stiffer and to the more flexible directions, respectively. Two dispersion
curves are then obtained from which the critical domain Œ!c1; !c2	 is derived (see
Fig. 13.7). It has been shown in Chap. 3 that, for a finite orthotropic plate, all
eigenfrequencies are situated between the two dispersion curves. Among these
eigenfrequencies, those situated in the critical interval will have a particularly high
radiation efficiency.
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Fig. 13.7 Critical domain for
the orthotropic materials. The
straight line accounts for the
air dispersion. The direction
of maximal rigidity
determines the frequency !c1,
whereas the less stiff
direction determines !c2. The
“critical domain” is given by
the interval Œ!c1; !c2	

c1

c2

Wavenumber

Air

Critical Frequency for Stiff Membranes and Prestressed Plates

The flexural motion of ideal membranes (with no damping and stiffness terms) is
governed by a wave equation. As a consequence, their dispersion equation is of the
form ! D kcm, where cm D p

�=�mh is the transverse wave speed (see Chap. 1).
In timpani membranes, the tension and density are such that usually we have cm <

c. In practice, the wave speed is of the order of 100 m s�1 for timpani.
As a consequence, the dispersion curve of the membrane is a straight line with

a lower slope than for the air, and there is no intersection between both curves (see
Fig. 13.8). In practice, however, timpani heads (like nylon guitar strings) have a
nonzero elasticity modulus. Therefore, the dispersion equation is written:

! D
s

Dk4 C �k2

�mh
; (13.52)

and it becomes possible to define a critical frequency. The dispersion equation for a
prestressed plate is written in the form similar to (13.52). If the plate is subjected to
a compression (� < 0), then its critical frequency increases. Conversely, if the plate
is subjected to a tension (� > 0), its critical frequency decreases. In conclusion, it
is checked on this example that introducing any kind of stiffening effect in the plate
globally contributes to yield favorable conditions for the radiation.

13.3.4 Pressure, Velocity, and Acoustic Power

In order to show the relevance of the critical frequency on the radiation efficiency,
for the infinite plane plate in air, both the pressure and acoustic velocity in the fluid
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Fig. 13.8 Dispersion curves for stiff membranes and prestressed plates. Dashed line:
air dispersion. Dash-dotted line: dispersion curve of an ideal membrane with density
�m = 1.05 � 103 kg m�3, thickness h = 0.25 mm, and tension � = 3325 N m�1. Solid line: dispersion
of the same membrane taking the Young’s modulus E = 3 � 109 N m�2 and the Poisson’s coefficient
� D 0:4 into account. Notice that, in this latter case, a critical frequency exists though it has a
rather high frequency (127 kHz)

need to be calculated explicitly. This, in turn, will allow the calculation of sound
intensity and acoustic power.

We look for a pressure field of the form P.x; y/ D P0e�j.kxx C kyy/. The Helmholtz
equation (13.47) then yields k2 D k2x C k2y . In addition, the condition of continuity
on the plate (13.48) imposes kx D kB, so that:

k2y D k2 � k2B and P0 D �cV0
k

ky
: (13.53)

As a consequence, the pressure and velocity fields are written:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

P.x; y; !/ D �cV0
k

ky
e�j.kxxCkyy/;

Vx.x; y; !/ D � 1

j!�

@P

@x
D V0

kB

ky
e�j.kxxCkyy/;

Vy.x; y; !/ D � 1

j!�

@P

@y
D V0e

�j.kxxCkyy/:

(13.54)

The first equation in (13.53) shows that the ky component of the wavenumber is real
if k > kB, and purely imaginary otherwise.

For a given frequency, the first so-called supersonic case is obtained when the
acoustic wavelength � D 2�=k is less than the elastic wavelength �B D 2�=kB.
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Figure 13.6 shows that this situation is obtained when the frequency of vibration of
the plate is higher than its critical frequency. In terms of wave speed, this amounts to
saying that cB D !=kB > c D !=k, which justifies the designation of supersonic.
Conversely, when the acoustic wavelength � D 2�=k is higher than the elastic
wavelength in the plate �B D 2�=kB or, equivalently, when the driving frequency
is less than the critical frequency, the elastic wave speed is lower than the speed of
sound, and this corresponds to the so-called subsonic case. These two situations are
now examined with more details.

13.3.4.1 Supersonic Case

The supersonic case is illustrated in Fig. 13.9. With ky D
q

k2 � k2B, the pressure is
written:

P.x; y/ D �cV0
kq

k2 � k2B

e�j.kBxC
p

k2�k2By/: (13.55)

The wave vector (indication the direction of propagation) is given by the angle �
defined by:

sin � D kB

k
D
r
!c

!
: (13.56)

As the frequency increases, the angle � between the direction of propagation and
the vector normal to the plate decreases. The direction of propagation then tends

x

λB

λ

y

ky

kx

k

Fig. 13.9 Supersonic case. When the acoustic wavelength � is less than the elastic wavelength �B

in the plate, the acoustic wave radiated by the plate propagates in the direction � . As the frequency
increases, the angle � decreases, and thus the propagation tends to be more and more perpendicular
to the plate
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Fig. 13.10 Radiation of a plate excited by an impact in its center. (Left) simulation. (Right)
measurements. The plate is perpendicular to the plane of the figure. The angle � between the
direction of propagation and the vector normal to the plate decreases from the center to the edges,
consecutive to the increase of propagation speed with frequency. See also the insert on the “optical
measurements of sound fields” in the next section. After [32]

to become progressively perpendicular to the plate. In contrast, as the vibration
frequency decreases and tends to the critical frequency of the plate (with f � fc),
then the acoustic wave progressively tends to be confined to the plate plane.7

This property is clearly visible in Fig. 13.10 which shows a comparison between
measurements and simulation for a plate excited by an impact in its center. As a

7Here, an interesting link can be made with the linear array of monopoles shown in Fig. 12.7. It
was shown in the previous chapter that, as the number N of monopoles tend to infinity, then the
direction of radiation tends to � D 0, which is equivalent to kd cos � D '. This can only occur
under the condition j'j < kd. In the present example of the plate, the definition of the angle � is
modified, so that we must here convert the cos � of the monopole array in sin � , which yields

sin � D '

kd
:

For the plate, the phase shift ' between two consecutive “monopoles” is given here by kBd D '.
As d tends to zero, we find Eq. (13.56) again. This shows that the linear array of monopoles is of
the supersonic type. We can further add that if a condition such as j'j > kd would have been
obtained as N tends to infinity, then no radiation would have exist in the far field, because � could
not be zero. This remark will be useful in Chap. 14 to understand why there is no critical frequency
in wind instruments.
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result of the impact force, flexural waves propagate from the center to the edges.
According to the elastic dispersion relationship, the high frequencies propagate
faster than the low frequencies. For this reason, the angle � between the vector
normal to the plate and the direction of propagation decreases from the impact point
to the edge.

The mean value of the acoustic power radiated per unit area is obtained by a
classical method:

hPai D 1

2
RefPV?

y g D 1

2
�cV2

0

kq
k2 � k2B

D 1

2
�cV2

0

1q
1 � !c

!

: (13.57)

The radiation efficiency 
.!/ is defined as the ratio between the mean value of
the power radiated by the plate and the power obtained for an identical plate with
the same area vibrating with a uniform velocity V0. Here, we have (see Fig. 13.11):


 D hPai
1
2
�cV2

0

D kq
k2 � k2B

D 1q
1 � !c

!

: (13.58)

In summary, it has been shown that the infinite plate can radiate acoustic energy
for the frequencies above the critical frequency. As the frequency f > fc becomes
closer to the critical frequency, then the radiation efficiency increases and the
direction of propagation tends to the plate plane. Notice that the simple theory
presented here predicts that hPai can tend to infinity. In the reality, the acoustic
power is bounded both by the internal losses and by the finite size of the plate, as
shown in the next sections.

Fig. 13.11 Radiation
efficiency of the infinite plate
as a function of frequency
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Fig. 13.12 Subsonic case.
The trajectories of the air
particles are elliptic, with
axes decreasing exponentially
with the distance from the
plate plane

y

x

λB

Air particle trajectories

13.3.4.2 Subsonic Case

The subsonic case corresponds to the situation shown in Fig. 13.12. In this case, we

have ky D �j
q

k2B � k2, and the acoustic variables are written:

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

P.x; y/ D j�cV0
kq

k2B � k2
e�jkBxe�

p
k2B�k2y;

Vx.x; y/ D jV0
kBq

k2B � k2
e�jkBxe�

p
k2B�k2y;

Vy.x; y/ D V0e
�jkBxe�

p
k2B�k2y:

(13.59)

The pressure modulus decreases exponentially with the distance y. The exponent
increases with the ratio between the acoustic wavelength and the elastic wavelength.
From a physical point of view, this means that there is destructive interferences
between the neighboring “dipoles” of the plate over one given acoustic wave-
length �.

Examining now the acoustic velocity sheds useful light on the underlying physics
of the subsonic case. It is seen in Eq. (13.59) that both components of the velocity
vector are in quadrature and, in general, with different amplitudes. As a consequence
the trajectories of the particles are elliptic. The motion is then confined locally
and there is no transmission of energy from plane to plane as in the propagative
case. In addition, the area of the ellipses decrease exponentially with the distance

to the plate. The quantity 1=
q

k2B � k2 gives a measure of the “thickness” of this
evanescent field. It can be seen that this thickness decreases as the two wavelengths
(elastic and acoustic) are more and more apart from each other. Finally, one can
easily check that the mean value of the acoustic power hPai is zero in the subsonic
case, since the product PV?

y is purely imaginary.
Let us now conclude this paragraph with the description of an experiment. It

can be observed that if a second plate made of porous (absorbing) material is
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placed close to the first vibrating plate, then the radiation losses increase, which
induces an increase of damping for the elastic vibrations in the first plate. In
order to demonstrate this phenomenon in a rigorous manner, the reader is invited
to reconsider the previous mathematical derivations with a complex structural
wavenumber kB [10]. In short, this additional damping is due to the fact that, close to
the plate, the energy contained in the elliptic motion of the particles is transformed
into heat in the porous material. Benefit of this well-known phenomenon was taken,
for example, in the plate reverberators used in the past in the recording studio for
adding artificial reverberation effects [2].

Optical Measurements of Sound Fields

The figure shown in Fig. 13.10-(right) was obtained by means of optical
measurements of the acoustic pressure [32]. A first instantaneous image of
the sound field is made with a laser, for the air at rest. In this case, the optical
index is n0. A rubber bullet then hits the plate: as a result a transient sound
pressure p is generated in the vicinity of the plate. A second image is recorded
with the same laser, at a very short time t after the impact. In accordance
with the Gladstone–Dale law, the optical index field is then governed by the
equation:

n � 1 D K�; (13.60)

where K is the Gladstone constant, and � the density of the fluid. The density
is linked to the sound pressure by the adiabatic equation of state (see Chap. 1).
Due to the index variation consecutive to the propagation of the sound wave,
the optical path in the z-direction (the plane of Fig. 13.10) is modified by the
quantity:

�L D
Z
Œn.x; y; z/� n0	 dz: (13.61)

As a consequence, the phase shift undergone by the laser beam with
wavenumber kl is �˚ D kl�L. The superposition of both images generates
the fringes of interference shown in Fig. 13.10.

13.3.5 Acoustic Loading of the Plate

As for the pulsating sphere in the previous chapter, the radiation impedance (or
acoustic loading impedance) per unit area of the plate is defined by the ratio of the
pressure divided by the normal acoustic velocity in the plate plane (in y D 0). For
the supersonic case, Eq. (13.55) yields
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Z.x; 0/ D �c
kq

k2 � k2B

D �c
1q
1 � !c

!

; (13.62)

Since k is larger than kB, the radiation impedance is purely resistive and equal
to Ra D �c
.!/. This radiation resistance is thus proportional to the radiation
efficiency. Conversely, in the subsonic case, a purely imaginary radiation impedance
is obtained

Z.x; 0/ D �c
jkq

k2B � k2
D j�!

1q
k2B � k2

: (13.63)

which corresponds to an acoustic mass of the form:

Ma D �
1q

k2B � k2
; (13.64)

This result quantifies the inertial loading of the fluid on the plate.

Remark. In this paragraph, only the radiation on one side of the plate was
considered, in the positive half-space. In reality, notice that the infinite plate also
radiates another sound field, in opposite phase, in the negative half-space.

13.3.6 Dispersion Equation for the Acoustically Loaded Plate

In order to evaluate and quantify the influence of the acoustic field on the plate,
its flexural equation of motion needs to be modified through introduction of the
pressure forces on each side of the plate, as follows:

� !2�phW C D
d4W

dx4
D �P.x; 0C; !/C P.x; 0�; !/: (13.65)

As previously, the pressure terms are governed by the Helmholtz equation, and the
continuity of the normal velocity is expressed by means of the Euler equation. These
classical derivations are not detailed here. It is assumed that the plate radiates in the
air on both sides.

The demonstration is conducted in the case of a forcing frequency !. The
unknown is the flexural wave number, denoted �B in order to make a distinction
with the case presented in Sect. 13.3.4 where the acoustic loading was ignored.
According to the results obtained in Eq. (13.54), the equation of dispersion becomes

D.�B; !/ D � 2j�q
k2 � �2B

C �ph

�
1 � D�4B

�ph!2

�
D 0: (13.66)
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The first term in Eq. (13.66) accounts for the acoustic loading of the fluid. If the plate
radiates in a light fluid (which is usually the case for a fluid with a “small” density
� compared to the density of the plate), then we have �B ' kB (see Sect. 13.3.3).

It is often of interest to write the equation of dispersion (13.66) in a dimensionless
form, using the following reduced variables:

˝ D !

!c
I � D

s
c2

c2b
� 1 I " D 2�c

!c�ph
; (13.67)

where cb D !=�B is the speed of the flexural waves for the acoustically loaded
plated. After some derivations, the following equation is obtained [21]:

�5 C 2�3 C �
1 �˝�2	 � � "˝�3 D 0: (13.68)

It can be shown that Eq. (13.68) has five roots. Only two of them are physically
relevant for the radiation of the loaded plate. Compared to the supersonic case
presented in Sect. 13.3.4, these roots are complex, with a positive imaginary part.
This means that the elastic wave is damped in the plate, due to the radiation losses.

For stringed instruments, the order of magnitude for the physical parameters are
the following: fc D 1 kHz, �p D 103 kg/m3, h D 1mm, � D 1:2 kg/m3, and
c D 340m/s. As a consequence, the parameter " which quantifies the acoustic
loading is equal to 0.15.

13.3.7 Radiation of a Point-Excited Plate

13.3.7.1 One Step Backwards: Back to the Plate Vibrations, Ignoring
the Acoustic Loading

The particular case of an infinite point-excited plate is examined below. This is a
very pertinent example in musical acoustics, since it accounts well for the practical
situation of a soundboard excited by a string, at least during the time interval before
the first reflections at the boundaries.

The geometry of the problem is shown in Fig. 13.13. For convenience, the
problem is solved in polar coordinates, taking advantage of the axial symmetry.
In the Fourier domain, the flexural equation of motion is written:

D

�
d2

dr2
C 1

r

d

dr

�2
W � �ph!2W D Q.r/; (13.69)

where the source term Q.r/ has the dimension of a surface density of force and is
defined by: Z 2�

0

Z 1

0

Q.r/rdrd� D F0; (13.70)
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Fig. 13.13 Point-excited
vibrating plate

z

θ
r

........

F0

which yields

Q.r/ D F0ı.r/

2�r
: (13.71)

This class of axisymmetrical problem can be solved with the Hankel transform of
zero-order, defined as:

Of .�/ D
Z 1

0

f .r/rJ0.�r/dr; (13.72)

where J0 is the zero-order Bessel function of the first kind [1]. Applying this
transform to the equation of motion of the plate (13.69) yields the Hankel function
of the displacement:

OW.�/ D F0
2�

1

D
�
�4 � k4B

	 with k4B D �ph!2

D
: (13.73)

The plate displacement is derived from the inverse Hankel transform:

W.r/ D
Z 1

0

OW.�/�J0.�r/d�; (13.74)

which yields, finally:

W.r/ D F0
2�D

Z 1

0

J0.�r/

�4 � k4B
�d�: (13.75)

The integral in (13.75) yields: (see [21, 31, 40]):

W.r/ D jF0
8!
p
�phD

�
H.2/
0 .kBr/� 2j

�
K0.kBr/

�
; (13.76)
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Fig. 13.14 Point-excited
infinite plate at constant
frequency. Modulus of the
plate velocity V as a function
of the distance from the
excitation point. Dotted line:
approximate solution, valid
for kBr > 4. V0 D jj!W.0/j
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where H.2/
0 is the zero-order Hankel function of the second kind defined by:

H.2/
0 .x/ D J0.x/ � jY0.x/: (13.77)

In this expression, Y0.x/ is the zero-order Bessel function of the second kind, and
K0.x/ is the modified zero-order Hankel function [1].

Figure 13.14 shows the modulus V D j!W of the plate velocity as a function of
the normalized distance kBr, and the approximate solution:

V ' F0p
�phD

s
2

�kBr
; (13.78)

which is valid for kBr > 4.
At the excitation point, the term between square brackets in Eq. (13.76) is equal

to one. The driving impedance is defined by the fraction:

Zp.0/ D F0
j!W.0/

D 8
p
�phD D 4h2

s
�pE

3.1 � �2/ : (13.79)

The remarkable result here is that this impedance is real and does not depend on
frequency. It depends on the thickness and on the material properties of the plate,
only. Notice, however, that this result is only true for a thin plate (Kirchhoff–Love
model). The driving admittance (or mobility) is given by Yp.0/ D 1=Zp.0/.

The expression (13.79) can be used for validating measurements of driving
impedance (or admittance) of finite damped isotropic thin plates, in the high
frequency range. In general, the losses increase with frequency, so that the returning
waves reflected at the boundaries can be neglected. Equation (13.79) can then be
viewed as an asymptotic limit. Benefit will be taken from this expression at the end
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of the chapter for defining a “merit index” for stringed instruments, whose interest
is to help in the selection of appropriate materials for the soundboard.

A similar expression can be found for anisotropic plates [4, 7]. For an orthotropic
plate, for example, the following approximation is usually admitted:

Zp.0/ ' 4h2

s
�pŒE1E2	1=2

3.1 � �2/ ; (13.80)

where E1 is the Young’s modulus in the direction of the fibers, and E2 the modulus
perpendicular to the fibers [19].8

Taking further the structural losses into account, then the Young’s modulus
becomes complex of the form EŒ1 C j�.!/	. For most materials used in instrument
making, � increases with frequency. As a consequence, the modulus jZ.!/j
increases and the admittance jY.!/j decreases with frequency.

Most soundboards of musical instruments are not homogeneous, due to the
presence of ribs glued on one side. The driving-point mobility of isotropic plates
reinforced by periodic ribs was investigated by Nightingale and Bosmans [28].
One conclusion of this study is that the measured mobility greatly depends on
the distance between the driving point and the closest rib, as long as this distance
is small compared to the flexural wavelength. For a driving-point close to a rib,
the measured real part of Yp.0/ corresponds to the mobility of the rib (beam).
As soon as the rib-driving-point distance becomes larger than the wavelength,
then the measured mobility tends to the theoretical value obtained for a plate with
constant thickness. These results are of interest for understanding and interpreting
the driving-point mobility measurements performed on a piano, for example.

Impulse Excitation

For a given load q.r; t/ in the time domain, the governing equation for the
plate displacement w.r; t/ is

D

�
@2

@r2
C 1

r

@

@r

�2
w C �ph

@2w

@t2
D q.r; t/: (13.81)

Let us assume that the plate is initially at rest (w.r; 0/ D Pw.r; 0/ D 0).
Denoting b2 D D=�ph, the particular case of an impulse excitation of the
form:

(continued)

8In this expression, it is assumed that the Poisson’s coefficients are identical in both directions.
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q.r; t/ D 8b�phf .r/ı.t/; where
Z 1

0

2�rf .r/dr D 1 so that f .r/ D ı.r/

2�r
:

(13.82)

is examined. The full calculation was done by Graff [17]. The following
solution is obtained

w.r; t/ D 2

�

Z t

0

u

t � u
sin

�
r2

4b.t � u/

�
du: (13.83)

The displacement can be rewritten in the form:

w.r; t/ D 1� 2

�
Si

�
r2

4bt

�
where Si.x/ D

Z x

0

sin z

z
dz; (13.84)

and where Si.x/ denotes the sine integral function.
Figure 13.15 shows the motion of the plate at a given fixed time t0, and the

temporal evolution of one particular point. It shows, among other things, the
presence of a precursor where the most rapid oscillations arrive first, due to
the properties of the dispersion equation.

13.3.7.2 Fluid-Loaded Plate

The purpose of this paragraph is to evaluate the influence of the fluid (acoustic
field) on the plate for a harmonic excitation on a single point. The results presented
below should be compared to those obtained for a plate in vacuo (see Sect. 13.3.7.1).
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Fig. 13.15 Impulse excitation of a plate. (Left) Global motion of the plate at a fixed time t D t0.
(Right) Temporal evolution of the plate displacement at a given point r D r0
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Taking now the radiated pressure exerted on both sides of the plate into account, the
equation of motion is modified as follows:

D

�
d2

dr2
C 1

r

d

dr

�2
W � �ph!2W D F0ı.r/

2�r
� P.r; z D 0C/C P.r; z D 0�/;

(13.85)

where the z-axis is perpendicular to the plate. The plate is located in the plane
z D 0. As in Sect. 13.3.7.1, this equation can be solved by means of the Hankel
transform [17, 40]. Denoting OP.�; 0/ the Hankel transform of the pressure, and OW.�/
the transform of the displacement, we get

D
�
�4 � k4B

	 OW.�/ D � OP.�; 0C/C OP.�; 0�/C F0
2�
: (13.86)

Noticing that the first term in the left-hand side of Eq. (13.86) has the dimension of
a pressure, the Hankel transform of the driving-point impedance of the plate can be
defined as:

OZp.�/ D D
�
�4 � k4B

	
j!

: (13.87)

According to (13.62), the pressure is written:

OP.�; 0/ D j! OZa.�/ OW with OZa.�/ D �
!p

k2 � �2
: (13.88)

Equation (13.86) becomes

j! OW.�/ D F0
2�

1

OZp.�/C 2 OZa.�/
: (13.89)

Through inverse Hankel transform, the displacement of the plate is derived

W.r/ D F0
j2�!

Z 1

0

�J0.�r/
OZp.�/C 2 OZa.�/

d�: (13.90)

This last equation can be solved using contour integration in the complex plane, or
numerically [21]. The Hankel transform of the radiated pressure is obtained through
the Helmholtz equation combined with the continuity of the normal velocities on
the plate, as in Sect. 13.3.4. These derivations are not detailed further here. Finally,
we obtain

for z > 0 OP.�; z/ D j! OZa.�/ OW.�/e�jz
p

k2��2 ; (13.91)
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which yields, in turn:

P.r; z/ D F0
2�

Z 1

0

OZa.�/

OZp.�/C OZa.�/
�J0.�r/e�jz

p
k2��2d�: (13.92)

The far field pressure P.r; z/ can be derived by using the method of stationary
phase [21]. With the change of coordinates r D R sin � and z D R cos � , the
following expression is obtained for the half-plane z > 0, and for kR 	 1:

P.R; �/ D jkF0e�jkR

2�R

cos �

1C jkh �p

�
cos �

h
1 � !2

!2c
sin4 �

i : (13.93)

Discussion

A few remarks can be made with regard to the expression of the far field pressure
calculated in (13.93):

• In the direction perpendicular to the plate (� D 0), the pressure reduces to:

P.R; 0/ D jkF0e�jkR

2�R

1

1C jkh �p

�

: (13.94)

This result shows that, due to the loading, the pressure is multiplied by a
correcting factor which depends on the surface density �ph of the plate only
(in particular, this factor does not depend on the plate rigidity D). In other words,
the far field pressure of a plate is similar to the one radiated by a membrane with
the same surface density.

• In addition, if the plate can be considered as sufficiently thin or, equivalently, that
the frequency is sufficiently small so that one can assume that kh �p

�
� 1, then

we have

P.R; 0/lim � jkF0e�jkR

2�R
: (13.95)

Under these assumptions, it can be seen that the pressure is equivalent to the one
radiated by a point source with imposed force F0.

• For frequencies below the critical frequency, P.R; 0/ is the maximum of the
pressure. In contrast, in the supersonic range, pressure maxima can exist with
larger amplitudes than P.R; 0/ in some particular directions �c defined by the
condition:

�c D sin�1
�!c

!

�1=2
: (13.96)
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θ = 0°

Fig. 13.16 Pressure field radiated by a thin isotropic plate loaded by the air. (Left) f D 0:4fc;
(Center) f D 1:2fc; (Right) f D 2:0fc. The horizontal arrow is perpendicular to the plate plane
and corresponds to the direction � D 0. The light-gray zones (for f > fc, middle and right figures)
indicate the directions of maximum pressure. For f < fc (left figure), there are no preferential
directions, and the directivity pattern is close to the radiation pattern of a dipole [31]

Figure 13.16 shows the sound pressure radiated by an isotropic plate, for different
frequencies (below and above the critical frequency of the plate).

• In practice, the magnitude of the pressure is limited by the internal damping
inside the plate. This is particularly true in the supersonic range, above the critical
frequency.

13.4 Radiation from Finite Plates

In a number of past studies, it has been shown that finite plates are relevant to
account for the radiation of stringed instruments, at least to a first approximation
(see Fig. 13.17) [11]. In fact, it is plain that guitar, violin or piano soundboards
cannot be strictly modeled as plates. Other components such as the ribs, the sound
holes and the bridge, for example, and geometrical factors such as the curvature
contribute to add perturbations in the model [15, 16]. However, the finite plate model
is a good reference for presenting the basic principles that govern the structural
acoustics of stringed and percussive instruments. It also yields interesting reference
solutions which might be helpful in case of numerical approach. This explains why
the radiation of finite plates is presented in detail below. The application of the
results to real instruments, as well as the study of some particular modifying features
will be examined later in this section.
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Fig. 13.17 Relevance of the plate model in the case of violin plates. A few low-order modal shapes
of violin back plates are presented. These shapes are very similar to those of a metallic plate of
comparable dimensions. The Chladni patterns were obtained in a similar way as for the guitar
modes in Chap. 3. After [41]

13.4.1 Spatial Fourier Transform

The purpose of this section is to calculate the acoustic field radiated by a thin
rectangular isotropic vibrating plate, simply supported along its edges. The vibratory
properties of such a plate were presented in Chap. 3. It is assumed that the plate
is inserted in an infinite rigid baffle, so that the Rayleigh formula presented in
Chap. 12 can be used. It is also assumed that the observation point is located
at a sufficiently large distance from the plate, in order to take advantage of the
Fraunhofer approximation defined in the same chapter. The geometry of the problem
is shown in Fig. 13.18. W denotes the flexural displacement of the plate. Cartesian
coordinates are used. All derivations are made for an harmonic excitation of the
plate with frequency !. The radiated pressure is written:

P.r; !/ D �!
2�

2�r

Z
S

W.x0; y0; !/e�jkjr�r0jdS.r0/; (13.97)
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Fig. 13.18 Geometry used for calculating the radiation of a rectangular plate inserted in an infinite
baffle. kx D k sin � cos˚ and ky D k sin � sin˚

which can be written, equivalently:

P.r; �; ˚; !/ D �!
2�

2�r
e�jkr

Z
S

W.x0; y0; !/eCj.kxx0Ckyy0/dx0dy0; (13.98)

with kx D k sin � cos˚ and ky D k sin � sin˚ . A fundamental result is found
in Eq. (13.98): if the distance between the observation point and the plate is large
compared to the dimensions of the plate, then the radiated pressure is proportional
to the spatial Fourier transform of the plate displacement:

P.r; �; ˚; !/ D �!
2�

2�r
e�jkr QW.kx; ky; !/: (13.99)

This property can be viewed as a generalization of the previously obtained result for
the plane piston in Chap. 12.

13.4.2 Contribution of the Vibrating Modes to the Radiated
Pressure

In what follows, the internal damping in the plate material and the reaction of the
acoustic field against the plate are left temporarily aside. The displacement field if
the plate is projected onto the its eigenmodes basis:

W.x; y; !/ D
1X

mD1

1X
nD1

Amn.!/
mn.x; y/: (13.100)
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Fig. 13.19 Modal shape of a
simply supported rectangular
plate for (m D 4, n D 3).
The respective quantities �m

and �n determine the spatial
periodicity along the x and y
axis

λn = 2 Ly/n

λm = 2 Lx/m

For a simply supported plate of length Lx and width Ly, the eigenmodes are written:


mn.x; y/ D 2p
LxLy

sin

�
m�

Lx
x

�
sin

�
n�

Ly
y

�
(13.101)

where the normalization factor has been selected so that
R

S 

2
mndS D 1. An example

of modal shape is shown in Fig. 13.19.
The contribution Pmn of the mode .m; n/ to the total sound pressure is defined by:

Pmn.r; �; ˚/ D �!
2�

2�r
e�jkrAmn Q
mn.kx; ky; !/: (13.102)

Thus, the problem reduces to calculating the spatial Fourier transform of the modal
shape 
mn.x; y/. This calculation is rather tedious by hand, though it becomes
straightforward with currently available numerical tools. The result in the simple
case presented here is written [40]:

Pmn.r; �; ˚; !/

D �!
2�

r
e�jkrAmn �mn

p
LxLy

�
.�1/meCjkxLx � 1
.kxLx/2 � m2�2

� �
.�1/neCjkyLy � 1

.kyLy/2 � n2�2

�
:

(13.103)

For a given angular frequency !, Eq. (13.103) shows that particular directions exist
in space where the modal contribution Pmn is high. These directions fulfill the
conditions kxLx � m� and kyLy � n� .9 The corresponding directions �mn and
˚mn (also called directions of spatial coincidence) are given by:

9These values correspond to the maxima of the functions
ˇ̌̌
.�1/meCjkxLx �1

.kxLx/2�m2�2

ˇ̌̌
and

ˇ̌̌
.�1/neCjkyLy �1

.kyLy/2�n2�2

ˇ̌̌
.

Except for the lowest values of m and n, these maxima are close to m� and n� .
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Fig. 13.20 Examples of spatial coincidence for the plate mode m D 4; n D 3, at a frequency of
1 kHz. Lx D 1m; Ly D 0:6m

k sin �mn cos˚mn D km D m�

Lx
and k sin �mn sin˚mn D kn D n�

Ly
: (13.104)

Examples of spatial coincidence are shown in Fig. 13.20. In addition, the pressure
components Pmn are subjected to frequency coincidence through the expression of
the modal amplitudes Amn. In Chap. 3, it was shown that, for a plate excited with a
force F at point .x0; y0/, this amplitude is

Amn D F

�ph


mn.x0; y0/

!2mn � !2 C 2j�mn!!mn
; (13.105)

where the !mn are the eigenfrequencies of the plate, and �mn the modal damping
factors which are assumed to be small compared to unity. For simply supported
rectangular plates, the eigenfrequencies are given by:

!mn D
s

D

�ph

"
m2�2

L2x
C n2�2

L2y

#
D
s

D

�ph



k2m C k2n

�
: (13.106)

In summary, situations may occur where a plate mode is vibrating with high
amplitude (frequency coincidence), although the corresponding sound pressure is
low, if the condition of spatial coincidence is not fulfilled. In other words, resonant
modes might not be always efficient in terms of radiated power. Different particular
cases are now examined.
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13.4.2.1 Radiated Sound Pressure

• For large wavelengths, i.e., for k ! 0 in (13.103), the pressure becomes

Pmn ! Bmn
e�jkr

r
; (13.107)

where Bmn depends only on !. This means that the directivity index is constant.
The pressure is similar to the one radiated by a pulsating sphere.

• In Eq. (13.104), one can see that the coincidence angles exist only if kn < k and
km < k, since the sine and cosine functions are bounded by one. In terms of
wavelengths, this means that the acoustic wavelength � has to be smaller than
�m D 2Lx=m and �n D 2Ly=n (see Fig. 13.19). For subsequent discussion, it
is convenient to introduce the structural wavenumber kmn D p

k2m C k2n. From
Eq. (13.104), the directions �mn are given by:

�mn D sin�1 kmn

k
: (13.108)

This shows that �mn exist under the additional condition kmn < k, i.e., when the
acoustic wavelength is smaller than the elastic wavelength in the plate. This is a
generalization of the result obtained for an infinite plate. This condition can occur
only for frequencies beyond the critical frequency defined in (13.51). It can be
also checked that:

˚mn D tan�1 kn

km
: (13.109)

Examples of two cases (kn < k with km < k and kmn > k, part; kn < k with
km < k and kmn < k) are shown in Fig. 13.21.

• Some intermediate configurations also exist, corresponding to the cases where
kn < k and km > k, or kn > k and km < k. In these cases, there are no
maxima for ˚ . However, one can observe maxima for the angles � which fulfill
the conditions:8̂̂̂<̂

ˆ̂:
for kn < k and km > k W �n D sin�1

�
kn

k cos˚

�
;

for km < k and kn > k W �m D sin�1
�

km

k cos˚

�
:

(13.110)
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Fig. 13.21 Pressure radiated by some particular modes .m; n/ of a simply supported rectangular
plate. (Left) kn < k and km < k and kmn > k: the pressure vanishes in some directions (˚) of the
horizontal plane, but not in the vertical plane (� ). (Right) kn < k and km < k and kmn < k: the
pressure vanishes for some particular directions in both the horizontal and vertical planes

13.4.2.2 Intermodal Radiation Impedances

Using the spatial Fourier transform of the displacement, the radiated pressure
can be written alternatively [26]:

P.x; y; z; !// D j
�!2

4�2

Z C1

�1

Z C1

�1

QW.kx; ky/

kz
e�jkzzej.kxxCCkyy/ dkxdky;

where kz D
q

k2 � k2x � k2y :

(13.111)
Based on the modal expansion of the displacement (13.100), one can derive

the surface pressure (in the plate plane z D 0):

P.x; y; 0; !/ D
X
m;n

X
r;s

j!Amn.!/Zmnrs.!/
rs.x; y/; (13.112)

(continued)
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where the Zmnrs are the intermodal radiation impedance given by:

Zmnrs.!/ D �!

4�2

Z C1

�1

Z C1

�1
Q
mn.kx; ky/ Q
rs.�kx;�ky/ dkxdky: (13.113)

The real part of the Zmnrs corresponds to the dissipated acoustic power. The
imaginary part accounts for the fluid loading. In free field, the imaginary part
is positive and, in turn, the eigenfrequencies of the plate decrease compared to
the in vacuo case. These expressions generalize the result obtained in Chap. 12
in the case of the plane piston. For “light” fluids, the reactive effects are often
negligible, except for light and flexible structures (see Chap. 14).

In this section the comparison between acoustic and elastic wavenumber pre-
sented in Sect. 13.3 for infinite plates has been generalized to finite plates. The main
difference between both cases is due to the fact that the elastic wavenumber can
take only discrete values for finite plates. In addition, as a consequence of the spatial
periodicity of the vibratory field on the plate, the magnitude of the pressure field is
subjected to strong variations with regard to the direction of propagation in the air
in the supersonic range. These directions vary a lot with the geometry of the mode.
During normal playing of an instrument, different modes are excited successively.
Consequently, the directivity of the instrument changes continuously.

13.4.3 Radiated Acoustic Power

13.4.3.1 Single Modal Contribution

The radiated acoustic power is calculated by integration of the flow of the acoustic
intensity vector through a closed surface at a given distance r from the plate. The
calculation is simple for a spherical surface in the far field. We get

hPajmn.!/i D 1

2�c

Z 2�

0

Z �=2

0

jPmn.r; �; ˚; !/j2 r2 sin �d�d˚; (13.114)

where Pmn is given by (13.103). As for the infinite plate, the radiation efficiency is
defined by the ratio:


mn.!/ D hPajmn.!/i
1
2
�cLxLyhj PWmnj2i

; (13.115)

where hj PWmnj2i is the mean quadratic velocity defined as:
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hj PWmnj2i D 1

LxLy

Z Lx

0

Z Ly

0

j PWmn.x; y; !/j2 dxdy: (13.116)

The efficiency 
mn is proportional to the radiation resistance of the mode mn:

Ramn.!/ D hPajmn.!/i
1
2
hj PWmnj2i D �cLxLy
mn.!/: (13.117)

In the particular case of the simply supported rectangular plate, the calculation based
on (13.103) leads to the expression:


mn.!/ D 16k2LxLy

�6m2n2

Z 2�

0

Z �=2

0

0BBB@
�

cos
sin



kxLx
2

�
cos
sin



kyLy

2h� kxLx
m�

	2 � 1
i ��

kyLy

m�

�2 � 1

�
1CCCA
2

sin �d�d
:

(13.118)
In (13.118), the cosine function is used for odd values of m (resp. n), and the sine
function is used for even values of these indices.

Figure 13.22 shows some examples of radiation efficiencies of a rectangular plate
[38], as a function of the ratio:

� D k=kmn D kr�
m�
Lx

�2 C
�

n�
Ly

�2
For k > kmn, the modal efficiencies tend to unity, as for the limiting case of the
infinite plate.

For k < kmn, 
mn is weak but nonzero (as it was the case for infinite plates: see
Fig. 13.11). Close examination shows that, depending on the values taken by m and
n, two different situations may occur, depending whether the plate radiates by the
edges or by the corners, as shown in the next section.

13.4.3.2 Edge and Corner Radiation

Figure 13.23 (left) shows a typical situation of corner radiation. This corresponds
to the vibration of the plate at a frequency ! so that the following conditions are
fulfilled:

k < kmn; km D m�

Lx
> k and kn D n�

Ly
> k:

In the case presented in Fig. 13.23, the contributions of the elementary “dipoles”
on the plate to the radiated power are close to zero (see Chap. 12), except for the
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Fig. 13.22 Examples of
modal radiation efficiencies

mn as a function of
� D k=kmn for a rectangular
plate, after Wallace [38]. For
� < 1, the modes (1; 12),
(1; 11), and (2; 12) are
radiating only by the edges,
whereas the modes (12; 12)
(11; 11), and (11; 12) are
radiating by the corners

12, 1212, 12
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Fig. 13.23 (Left) Corner radiation of a rectangular plate: � > �m (k < km) and � > �n (k <

kn). (Right) Edge radiation of a rectangular plate: � < �m (k > km) and � > �n (k < kn). Only
the gray zones are efficient in terms of radiation. The radiation efficiency is close to zero in the
other parts of the plate, since the distance between the centers of the zones (with opposite signs) is
less than one wavelength. This is a consequence of the dipole properties demonstrated in Chap. 12

four zones at the corners since, in this latter case, the distance between the zones is
larger than an acoustic wavelength. Similarly, the edge radiation corresponds to the
conditions:
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Fig. 13.24 Surface, edge, and corner radiation

k < kmn and�
kmD m�

Lx
< k and kn D n�

Ly
> k

�
or

�
km D m�

Lx
> k and kn D n�

Ly
< k

�
:

Here a similar situation as for the corner radiation is obtained, along the y axis only.
The radiation efficiency only results from the gray zones situated close to the edges
in y D 0 and y D Ly. In the case shown in Fig. 13.23, the acoustic wavelength �
is smaller than the spatial periodicity �m D 2Lx=m of the mode along the x axis
and, as a consequence, the different contributions to the radiation do not cancel each
other in this direction.

A summary of all possible situations is shown in Fig. 13.24. In addition to the
cases of edge and corner radiation, the third case corresponds to the conditions

kmn < k; km D m�

Lx
< k and kn D n�

Ly
< k;

where the whole surface contributes to the radiation. The corresponding zone in the
k-plane is inside the quarter circle of radius k.

The dark gray zone located between the quarter circle of radius k and the
square of side k corresponds to particular edge modes where the periphery of
the whole surface contributes to the radiation efficiently. The width of the radiating
zone increases progressively as the operating point comes closer to the quarter circle
(see Fig. 13.25).
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Fig. 13.25 Edge radiation in
x and y directions
simultaneously, or
“incomplete” surface modes.
� < �m (k > km) and
� < �n (k > kn) and
k < kmn

+ – +
– + –
+ – +
– + –
+ – +
– + –

In summary, surface modes are the most efficient in terms of radiation, followed
by the edge, and then by the corner modes.

13.4.3.3 Forced Excitation of a Rectangular Plate

In the previous paragraph, the different possible situations governing the radiation
of finite rectangular plates were presented. This allows us now to address the case of
the forced excitation of a plate at a given frequency !. Such situation is close to the
real case of a guitar or piano string excited by a particular frequency component of
the string’s vibration. In fact, the decay time of plucked and struck strings is usually
much larger than the one of the body, and thus, to a first approximation, the string
excitation can be considered as “forced.”

Subsonic Case

Figure 13.26, inspired by Williams [40] shows an example where the excitation
frequency is less than the critical frequency of the plate (subsonic case), which
corresponds to the condition kB > k in terms of wavenumber (see Fig. 13.6).
In this figure, the bullets “
” indicate the eigenmodes of the plate in terms of
wavenumber.

• For a given frequency !, the geometric locus of kB is a “structural” quarter circle
with radius larger than the “acoustic” quarter circle of radius k D !=c.

• Considering the modal vibration amplitudes Amn [see Eq. (13.105)], one can
derive that all modes close to the “structural” quarter circle are likely to be
excited, which corresponds to the condition ! � !mn. This region of modal
excitation is shown as a gray zone in Fig. 13.26. The width of this zone increases
with the modal damping, which means that the resonance peaks are wider.

• As a consequence of the spreading of this zone, three family of modes can be
excited by the forcing frequency!: edge, corner, and surface modes. The surface
modes (which are the most efficient in terms of radiation) correspond to the
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Fig. 13.26 Subsonic forced excitation of a rectangular plate. After Williams [40]

smallest values of the wavenumber in the zone (m and n such as kmn < k). As
a result, even if the vibratory magnitude Amn of these surface modes is smaller
than the one of the corner and edge mode at this forcing frequency, because of
the distance between !mn and !, their acoustical efficiency is higher since kmn

are closer to k.

For the instruments for which a plate radiation model is pertinent (piano or guitar
soundboard, for example), the immediate practical consequence of the property
presented above is that, in the subsonic case, the lowest modes may contribute to the
radiation significantly, even if the excitation frequencies of the strings are relatively
well apart from the corresponding modal frequencies of these modes.

Supersonic Case

In view of the usual order of magnitude for the soundboard materials and geometry
used in stringed instruments, the elasto-acoustic interaction can be considered as
subsonic below 1–5 kHz, depending on the practical case. As a consequence, almost
all fundamental frequencies belong to this interval. However, it is not the case for
the higher partials of the notes, which can have frequencies up to 20 kHz (and even
more, in the case of the cembalo, for example). Thus, for these higher partials, the
supersonic case also has to be examined.

Both the structural and acoustic wavelengths decrease as the forcing frequency
increases. Because of the dispersion properties of the plate, the acoustic wavelength
decreases faster, and thus, above the so-called critical frequency (see Sect. 13.3),
the acoustic wavelength becomes smaller than the structural one. It has been shown
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Fig. 13.27 Forced
supersonic excitation of a
rectangular plate
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previously in this chapter that we are then in the case of a supersonic regime where
the complete surface of the plate radiates efficiently. In terms of wavenumber, this
case is shown in Fig. 13.27. The modes inside the gray ring in the vicinity of the
quarter circle of radius kB are together highly resonating (! close to !mn) and
radiating modes (kmn < k).

The radiation efficiency defined in (13.115) is close to unity for all surface
modes (see Fig. 13.22). recall that this quantity is normalized by the quadratic mean
velocity hj PWmnj2i, and thus, in turn, by the square of the modal amplitude Amn.
For stringed instruments, these amplitudes are rapidly decaying with the rank of
the partial, so that, to a certain extent, one can say that the radiation efficiency
compensates the reduction of magnitude due to the vibration.

Finally, we should bear in mind that, due to the spatial coincidences, the radiated
acoustic energy is concentrated in narrow directivity lobes in the supersonic case.

13.4.3.4 Generalization to Multimode Systems

In Sect. 13.4.3.1, the radiated power was calculated for a single mode. We consider
now a general motion of the plate expanded onto its in vacuo eigenmodes basis, and
written in the form:

W.x; y; !/ D
1X

mD1

1X
nD1

Amn.!/
mn.x; y/ D tA.!/�.x; y/: (13.119)
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In what follows, it is assumed that the far field conditions are valid, so that the spatial
Fourier transform can be used. Advantage will be taken, in particular, of Parseval’s
theorem which states that the mean radiated power hPa.!/i can be calculated in
the wavenumber space as follows [40]:

hPa.!/i D 1

8�2

Z
Sr

Re
n QP.kx; ky; !/

PQW?.kx; ky; !/
o

dkxdky; (13.120)

where the “?” symbol designates the conjugate of a variable. For simplicity, the
calculation of the power in (13.120) is restricted here to a summation over the
quarter circle Sr, which corresponds to the surface modes. In practice, this means
that the power radiated by the edge and corner modes are neglected. Using Euler
equation, hPa.!/i can be expressed in terms of pressure:

hPa.!/i D 1

8!��2

Z
Sr

j QP.kx; ky; !/j2 kz dkxdky; (13.121)

where kz D
q

k2 � k2x � k2y .

Radiation Resistances Matrix

The radiated power can also be expressed in terms of plate velocity:

hPa.!/i D !�

8�2

Z
Sr

j PQW.kx; ky; !/j2
kz

dkxdky: (13.122)

Using the modal expansion (13.119), the square modulus of the velocity is written
equivalently:

j PQW.kx; ky; !/j2 D jt PA.!/ Q�.kx; ky/j2 D PAH
.!/ Q�?.kx; ky/

et�.kx; ky/ PA.!/;
(13.123)

where the exponent “H” accounts for the Hermitian (conjugate transpose) operator.
Finally, we get the (supersonic) radiated acoustic power:

hPa.!/i D PAH
.!/Ra.!/ PA.!/; (13.124)

where Ra.!/ is the radiation resistance matrix defined as:

Ra.!/ D !�

8�2

Z
Sr

Q�?.kx; ky/ et�.kx; ky/q
k2 � k2x � k2y

dkxdky: (13.125)

Notice that this expression is similar to the one obtained in Sect. 13.2.3 for the
elementary case of a beam coupled to a semi-infinite tube.
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Each term .Ra/ij D .Ra/mn;m0n0 of the matrix Ra quantifies the mutual radiation
resistance resulting from the interference between the sound fields created by the
modes .m; n/ and .m0; n0/. For .m; n/=.m0; n0/, the eigen radiation resistance are
obtained, which are identical to those obtained for isolated modes, and which form
the diagonal of the matrix Ra.

For a simply supported rectangular plate, it can be shown that [21]:

.Ra/mn;m0n0 D mm0nn0!��2
8L2xL2y

�
Z

Sr

fmm0.kxLx/ fnn0.kyLy/dkxdky

Œk2x � .m�=Lx/2/	Œk2x � .m0�=Lx/2	Œk2y � .n�=Ly/2/	Œk2y � .n0�=Ly/2	
;

(13.126)

where the functions fmm0.kxLx/ are equal to:

fmm0.kxLx/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

2.1� cos kxLx/ for m even; m0 evenI
2.1C cos kxLx/ for m odd; m0 oddI
2 sin kxLx for m odd; m0 evenI
2 sin kxLx for m even; m0 odd:

(13.127)

Recall that, so far, the action of the sound field on the plate is ignored. This
assumption is justified for a light fluid. However, as seen for the infinite plate, the
dispersion equation of the plate is otherwise modified (as for a thin and flexible
plate, for example). This, in turn, modifies the real and imaginary part of the
wavenumbers, due to both the inertia of the fluid and radiation losses. In Chap. 14,
the action of the sound field on timpani membranes will be presented, showing
substantial modifications of the eigenmodes, compared to the in vacuo case.

13.4.3.5 Radiation Modes of a Plane Plate

The radiation matrix Ra.!/ defined in Eq. (13.125) contains the eigenresistances
of each structural mode on its diagonal and, on both sides, the mutual radiation
resistances. As a consequence, it is not possible to control the power radiated by
each structural mode independently from the others, because of the intermodal
coupling. The problem of the vibratory and acoustic control of musical instruments
is a rapidly evolving field [18], and thus it is worth to take time for addressing this
question. In addition, this problem yields important theoretical results.

The goal is to determine whether velocity distributions exist on the plate so that
the power radiated by each of them is independent from the others. These velocity
distributions are the radiation modes of the plate [12]. Since Ra.!/ is symmetrical,
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definite and positive, it can be decomposed as follows:

Ra D tPLP; (13.128)

where L is a diagonal matrix whose elements on its diagonal are the eigenvalues
of Ra. The matrix P is the transfer matrix (the matrix of the eigenvectors).
Following (13.124), the radiated acoustic power can be rewritten as follows:

hPa.!/i D bHLb where b D P PA: (13.129)

One can check that Eq. (13.129) is written explicitly:

hPai D
X

n

Lnjbnj2; (13.130)

which shows that the radiating modes bn are independent from each other. Ln is the
radiation efficiency associated to the n-th radiated mode.

One difficulty in the use of the radiation modes is due to the dependence of Ra

with frequency. This means that the calculation of these variables has to be made
again for each frequency of interest. However, several authors have shown that, for
ka � 1 where a is a characteristic dimension of the plate, the radiation modes are
reasonably well independent of frequency. Figure 13.28 shows the six first radiation
modes of a baffled plane plate, calculated by Elliott and Johnson [12]. The first
mode is identical to the mode of a plane piston. It corresponds to the monopole
component of the plate whose flow rate is given by the product of the surface by the
mean velocity. The detailed calculation of the eigenvalues and eigenvectors show
that this lowest mode contains the main part of the radiated power. The radiation
efficiency of the higher-order radiation modes is much lower.

(1)

(4)

(2)

(5)

(3)

(6)

Fig. 13.28 First radiation modes for a rectangular baffled plate. kL � 0:1. After [12]
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Fig. 13.29 Decomposition of a volume with plane walls into several planar sources. After [24]

13.4.4 Radiation of Unbaffled Plates and Structural Volumes

To a first approximation, stringed musical instruments can be viewed as structural
volumes with one (or more) vibrating sides. For simplicity, it is assumed here
that the vibrating parts of the volume are plane surfaces. Figure 13.29 shows a
particular case where only the upper surface of the volume vibrates, all other
surfaces remaining at rest. This simplified model is close to the case of a guitar
where the vibrations of neck, sides, and back plate would be neglected compared to
the vibrations of the soundboard.

The radiation of a volume composed of planar walls can be decomposed into two
parts: a baffled plate part and an unbaffled plate part. As seen in Chap. 12, a baffled
source has a condition of zero velocity on the rigid baffle containing the source,
and thus the system is equivalent to two moving plates with symmetrically opposite
velocities on both sides of the baffle. In contrast, an oscillating unbaffled source can
be viewed as the association of two plates moving in phase. As a consequence, as
shown in Fig. 13.29, the pressure radiated by a volume with one moving plane wall
is the sum of two contributions: one pressure pb generated by the baffled component,
and a pressure pu radiated by the unbaffled component. This property incited us to
study first the radiation of unbaffled plates, for which the direct use of the Rayleigh
integral is not valid anymore.
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Baffled case

Unbaffled case

ε < εmin

ε > εmin

 p is kept

p(z = 0) kept on (S) and p (z = 0) = 0 imposed on (Sext)

Calculation of p (z = 0) using FFT

Error calculation  ε =˙Ôv1 − v0˙Ô

v = v0 on (S) and v = 0 else (Sext)

Calculation of  v = v1 using FFT–1

Fig. 13.30 Iterative algorithm for the calculation of the pressure radiated by an unbaffled plane
plate. After [39]

13.4.4.1 Radiation of an Unbaffled Source: Iterative Algorithm

The method presented below was developed in the 1980s by Williams and Maynard
[39]. This method takes advantage of the spatial Fourier transform presented in
Sect. 13.4, which means that it is restricted to the prediction of far field radiation. In
practice, the Fourier transforms are calculated numerically on a discrete mesh of the
structure and, in turn, on a discrete set of wavenumbers. Using rapid and appropriate
tools, such as the Fast Fourier Transform (FFT), a good estimate of the pressure can
be rapidly obtained, even in the case of complex vibration patterns. The successive
steps of the iterative algorithm used for the computation of the sound field are shown
schematically in Fig. 13.30.

(1) Let us denote v0 the velocity imposed on the baffled plate. The remaining part
of the infinite plane (baffle) is supposed to be perfectly rigid (v D 0). In a first
step, the radiated pressure field p0 in the space is then calculated by means of
the Rayleigh integral (using, for example, the FFT).

(2) In a second step, the pressure field p0 is retained, except on the baffle, where the
condition p D 0 is imposed. Through inverse Fourier transform, the velocity
field v1 is calculated corresponding to this modified pressure distribution.

(3) The velocity field v1 is compared to the initial (given) velocity profile v0. If the
relative error " between these two velocity fields is larger than an arbitrarily
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Fig. 13.31 Iterative calculation of the pressure radiated by an unbaffled plane piston of radius a,
for ka D 4. After Le Pichon [24]

imposed limit "min, then another iteration occurs. Otherwise, it is considered that
the result corresponds to the imposed boundary conditions, and the calculation
stops.

In practice, it is observed that the algorithm converges rapidly for ka > 1, where
a is a characteristic dimension of the plate. Figure 13.31 shows, for example, the
results obtained for a unbaffled plane piston for ka D 4.

13.4.4.2 Application to the Guitar

The previous method was successfully applied to the guitar by Le Pichon [25].
First, the velocity profile of both the soundboard and back plate of the instrument
were measured. For each of these two vibrating surfaces, the radiated sound field
was calculated by summing two contributions: the first (for the baffled component)
with the Rayleigh integral, and the second (unbaffled component) by means of the
iterative algorithm presented above.
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Fig. 13.32 Comparison between measurements and prediction of guitar directivity patterns at two
frequencies: 420 and 549 Hz. The measured velocity profiles of soundboard and back plates are
shown in (a) and (b). The corresponding directivity patterns are shown in (c) and (d). On these
two diagrams, the directivity predicted by the Rayleigh integral applied to the soundboard only
is represented with a dashed line. The directivity patterns predicted by the volume model, taking
both plates into account are drawn with solid lines. Finally, the directivity patterns measured in an
anechoic chamber are in dotted lines. After [25]

Figure 13.32 shows the calculated directivity patterns, and the comparison with
measurements performed in an anechoic chamber. It can be seen, among other
things, that the baffled plate model (Rayleigh integral) yields erroneous predictions,
especially on the back of the instrument. In contrast, the measured directivity is
well predicted by the volume model. In accordance with the properties of the
iterative algorithm, the results obtained with this method are deteriorated in the low
frequency range (for ka < 1). For a guitar, the typical frequency limit is around
60 Hz. Also recall that the method is not applicable in the near field.

13.5 Radiation of an Axisymmetrical Nonplanar Source

For a number of instruments, the radiating body is not a plate but a shell which
is, by definition, a nonplanar source. Such a shape is justified by several reasons.
It was shown, for example, in Chap. 8 that the curvature of gongs and cymbals is
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the prime origin of the quadratic nonlinearities observed in the sounds of these
instruments, in case of large amplitude motion. In bowed strings instruments, the
curvature of the soundboard allows the conversion of the vertical static loading due
to the tension of the strings into a “membrane-like” prestress in the soundboard.
As a consequence, the soundboard is more rigid, which contributes to increase the
radiation efficiency, and, in addition, this geometry yields a better contact between
the bridge and the strings. Finally, in wind instruments, several authors have shown
that, in some situations, a coupling exists between the sound field and the structure
[13, 14, 22, 27, 29]. In this case, the tubular geometry of the tubes also is described
by a shell model.10

In this section, the influence of the curvature on the radiation properties of
a source are examined, and the differences with the case of planar sources are
highlighted. First, some simple rules are derived from the dispersion curves, which
show the effect of the curvature on the radiation efficiency. In a second step, it
is shown to what extent the curvature modifies the radiated pressure, compared
to the case of a plate. A simplified model is presented, in case of shallow shells,
which can be used for many instruments. Based on a modal approach, the notion of
Spatial impulse response is presented. The general concepts are illustrated on the
particular case of the spherical shallow shell, which is typical example of practical
use in many percussive instruments, and which can also account for the radiation of
some loudspeakers and stringed instruments. The effect of the curvature on both the
directivity of the source and cutoff frequency are particularly emphasized.

13.5.1 Dispersion Curves for Shells and Critical Frequency

Figure 13.33 shows an example of spherical shell with radius of curvature R, and the
associated dispersion curve. For thin shallow shells, the dispersion relation is given
by [34]:

�sh!
2 D Dk4 C Eh

R2
; (13.131)

where �s is the density of the shell, and h its thickness. It can be seen in Fig. 13.33
that the dispersion curve is shifted up, compared to the case of plates [Eq. (13.49)].
The shift of the curve increases when R decreases. The curvature tends to make
the structure stiffer. As a consequence, the critical frequency decreases, which is
shown by the position of the intersection point between both dispersion curves. In
addition, due to the presence of a constant term in (13.131), another intersection
point appears near the origin of the axes. This indicates that the second effect of the

10The issue of the material choice for wind instruments is a very intricate and controversy matter.
Two different materials handled by the same tool do not produce the same geometry, and the nature
of the material intervenes also by its porosity, the state of its surface, its heat capacity, etc.
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Fig. 13.33 Spherical cap and its associated dispersion curve. The straight line in the (!; k)-
diagram accounts for the air dispersion. The numerical values selected for this example are:
E D 2� 1011 N m�2, �s D 7:8 kg m�3, R D 0:8m, h D 2mm, and � D 0:3

curvature is to enhance the radiation efficiency in the low-frequency range. For a
small radius of curvature, a situation may occur where the dispersion curve of the
shell is completely above the dispersion curve of the air: in this case, there is no
critical frequency anymore and all structural modes are radiating.

Similar results are obtained for thin cylindrical shallow shells, such as the
one shown in Fig. 13.34, where a is the radius of curvature. Denoting !p the
corresponding plate modes (obtained in the limiting case of an infinite radius of
curvature), it can be shown that the cylindrical shell modes fulfill the relation [34]:

!2s D !2p C E

a2�s.1 � �2/ : (13.132)

As a consequence, similar conclusions as for the spherical shell can be drawn
here. In particular, all modes will be radiating when the dispersion curve of the
cylindrical shell is located above the air dispersion curve, which can occur for a
small radius of curvature.

13.5.2 Radiated Pressure

Let us now turn to the exact calculation of the pressure radiated by shells. For
simplicity, we limit ourselves here to axisymmetrical shells. Figure 13.35 shows
that, by contrast to the case of plane plates, the structural velocity might not be
normal to the structure. In the general case, we have to take both the normal vn and
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the tangential vt velocity into account. The complete calculation of the Kirchhoff–
Helmholtz integral in this case was done by Hu and Wu [20]. These authors show
that the pressure is then given by the sum of four terms:

p.r; t/ D Mn.r; t/C Mt.r; t/C Dn.r; t/C Dt.r; t/; (13.133)

where Mn and Dn are the monopole and dipole contributions of the normal velocity,
respectively, whereas Mt and Dt are the monopole and dipole contributions of the
tangential velocity. For a shallow shell inserted in an infinite baffle, this sum reduces
to the first term, which is of the Rayleigh type, though with a nonplanar integration
surface. This term is written in the time-domain:

p.r; t/ D ��
Z t

0

Z
S

g.r; r0; t; �/
@vn.r0; �/

@�
dSr0d�; (13.134)

where g.r; r0; t; �/ is the space-time Green’s function. For a known (imposed)
normal velocity vn, the problem reduces to the appropriate determination of the
Green’s function g. This function is here different from the one defined in Chap. 12
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Fig. 13.36 Construction of the Green’s function for a spherical cap

for the plane piston, because of the curvature of the source. Figure 13.36 shows a
example of graphical construction of a Green’s function for a spherical cap, using
the method of images.

For a shell inserted in an infinite rigid baffle, the condition of zero velocity on
the baffle imposes

g.r; r0; t; �/ D g1.r; r0; t; �/C g2.r; r0; t; �/

D ı.t � � � jr � r0
1j=c/

4�jr � r0
1j

C ı.t � � � jr � r0
2j=c/

4�jr � r0
2j

; (13.135)

where the first term g1 is the contribution of the direct sound, while the second term
g2 is the contribution of the reflection from the source. Once the Green’s function
is known, the calculation continues by using a modal approach. The transverse
displacement w of the shell is expanded onto its in vacuo eigenmodes basis. We
write

w.r; t/ D
1X

pD0
˚p.r/qp.t/; (13.136)

where qp.t/ are the generalized displacements. The modal decomposition of the
pressure is derived

p.r; t/ D ��
1X

pD0

Z t

0

Z
S

g.r; r0; t; �/˚p.r0/Rq.�/ ez:dSr0 d�; (13.137)
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Fig. 13.37 Spatial impulse response for the planar piston (left) and a convex spherical cap (right)

in the particular case of a velocity profile of the shell oriented in the direction ez of
the shell axis (see Fig. 13.35). One main interest of the expression (13.137) is that
it remains valid even for nonlinear vibrations, which is usually the case for gongs
and cymbals, as shown in Chap. 8 [30]. This property results from the fact that no
particular condition is given above on the displacements q.t/. Another interesting
property results from the grouping of the terms g and ˚ under the integral, which
yields, after integration, to the following transformation:

p.r; t/ D ��
1X

pD0

Z t

0

Hp.r; �/Rq.�/d�: (13.138)

This method was originally developed by Stepanishen [35]. The function Hp was
called Spatial Impulse Response, or SIR for the mode p by the author. This function
contains together the information on the modal shape for the mode p and on the
observation point r, for a given shell profile.

Figure 13.37 shows a comparison between two spatial impulse responses, for
the plane piston and a convex spherical cap. These plots show the spreading of the
response over time when the observer moves in a vertical plane at a fixed distance
from the source plane (baffle). One can see, in particular, that this spreading is more
pronounced for the spherical cap than for the plane piston, which, as we will show
in the next paragraph, implies that the cutoff frequency of the pressure spectrum is
lower for the cap, compared to a piston of the same size.

13.5.3 Influence of the Source Shape

The shape of a source influences both the directivity and bandwidth of its radiated
sound pressure. These effects can easily be shown in the frequency domain, through
calculation of the Fourier transform of the spatial impulse response. Figure 13.38
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shows, for example, the frequency response of the far field pressure on the axis
(at a distance equal to 100 times the radius of the source) for a spherical cap with
different radii of curvature. One can see that the cutoff frequency of the response
decreases as the radius of curvature increases.11 Another feature to notice is that a
kind of comb filter effect appears in the attenuated band.12

In contrast, Fig. 13.39 shows that the directivity in the far field is less pronounced
for convex spherical caps, at a given frequency, as the radius of curvature decreases.
The convexity of the source thus spreads the acoustic pressure more uniformly
in space, the price to pay being a reduction of the pressure magnitude with
frequency. These properties have direct consequences from the point of view of
sound distribution and sound reproduction in a room: a source with a curvature
seems to be more appropriate if the purpose to insonify a zone for a large audience.

11By analogy with the electric filters, this cutoff frequency can be defined as the value for which
the pressure is reduced by a factor of �3 dB compared to its low-frequency asymptotic value (see
Fig. 13.38).
12Similar results were obtained by Suzuki and Tichy [37], using the theory of spherical harmonics
for expanding the pressure (see Chap. 12). These authors report that, due the diffraction effects, an
attenuation of the order of �5 dB between ka D 0:4 and ka D 4 is obtained for the convex caps,
whereas an amplification of 4 dB is obtained for the concave case.
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13.6 Application to Stringed Instruments

In this section, the purpose is to show how some fundamental results of vibroacous-
tics can be applied to stringed instruments. The presentation starts by specifying to
what extent the concepts of critical frequency and modal density, together with the
mechanical impedance of the soundboard, are of help in selecting the appropriate
materials for enhancing the acoustical efficiency of the instrument. It is followed
by the experimental analysis of a piano soundboard which illustrates the analytical
results on efficiency and radiation resistance. Finally, the necessary compromise that
is to be found between loudness and tone duration for free oscillations systems, such
as the piano or the guitar, is discussed.
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13.6.1 Selection of Materials and Merit Index

The addressed question here is how to select the appropriate material for building
stringed instruments. The demonstration below is inspired from the work by Barlow
[4]. First, we focus on the acoustical efficiency of stringed instruments. The
underlying idea is to show under which conditions the mechanical power transmitted
by the strings to the bridge can be usefully converted into acoustical power. This
imposes to lower the critical frequency while keeping the real part of the admittance
at the bridge as high as possible. In Sect. 13.3.3, the critical frequency was calculated
in the case of an isotropic material [see Eq. (13.51)], and the usually admitted
approximate formula for orthotropic materials also was indicated

fc � c2

�h

s
3�p.1 � �2/

ŒE1E2	1=2
: (13.139)

In Sect. 13.3.7.1, the driving-point impedance was calculated for an infinite isotropic
plate, and the approximate expression for an orthotropic plate also was given. In
terms of admittance (or mobility), this quantity is written:

Yp � 1

4h2

s
3.1� �2/

�pŒE1E2	1=2
: (13.140)

Recall that Eq. (13.140) also corresponds to the mean (and asymptotic) value of
the admittance for a finite plate [33] and this is the reason why it is well adapted to
our problem. Assuming further that the Poisson’s coefficients have a minor effect
on the admittance, one can see that both quantities in Eqs. (13.139) and (13.140)
basically depend on the thickness h and density �, and on the Young’s moduli of the
plate.

First of all, it is reasonable to consider that the thickness h of the soundboard
is selected in such a manner that the spectral domains of strings and soundboard,
respectively, coincide. Otherwise, the instrument would not have the possibility
to enhance the vibrations of the strings. Once the thickness has been fixed, then
only the two parameters of the soundboard material remain to be optimized. By
eliminating h between both quantities Yp and fc, a merit index is obtained

Me D Yp

f 2c
D �2

4c2
p
3.1 � �2/

ŒE1E2	1=4

�p
3=2

: (13.141)

Equation (13.141) shows that, in order to maximize the acoustical power radiated
by the plate, the quantity ŒE1E2	1=2=�3p needs to be maximized also. For an isotropic
plate, this quantity reduces to E=�3p. One convenient strategy to make the most of
this result is to use the well-known Ashby diagram [3] shown in Fig. 13.40.
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In this diagram, the density is represented on the horizontal axis, while the
Young’s modulus is shown on the vertical axis, in logarithmic coordinates, for
a large class of materials. For the purpose of the demonstration, a zone called
mean wood is added on the diagram, where the elastic moduli are the mean values
Emoy D ŒE1E2	1=2 of the usual wood species used in lutherie. Imagine now a line
of constant slope E=�p

3 translating on this diagram. It can be seen that this quantity
is maximized in the region of the diagram corresponding to low density and high
moduli: as a conclusion the best candidate to build an instrument . . . is the wood !

Examining the Ashby diagram more closely shows that the “winner,” for this
merit index, is the balsa wood. However, this result needs to be tempered, since
other criteria have to be considered in instrument making. The yield strength, in
particular, imposes maximal values for the stresses in the structure in terms of
traction, compression and shear. Other Ashby materials are available where such
a criterion is taken into account. In practice, breakable wood species, such as
balsa wood, are not appropriate for soundboard, in view of the usual static loading
they have to withstand. For more information on the properties of wood in string
instruments, one can refer to [6].



13 Radiation of Vibrating Structures 757

Function of the Modal Density

In the previous paragraph, the selection of materials for stringed instruments was
based on the critical frequency. Another alternative for the reasoning is to use the
concept of modal density, which yields another appropriate criterion in the case
of finite plates. In Chap. 3, it was shown that the radiated acoustical power is
proportional to the real part of the admittance and, in turn, to the modal density of the
plate. For an orthotropic rectangular plate of surface S, the following approximate
formula was obtained

D.f / � S

h

s
3�p.1 � �2/

ŒE1E2	1=2
; (13.142)

which is proportional to the critical frequency. Bringing together Eqs. (13.140)
and (13.142), we get

D.f / D 4YpSh�p D 4YpMtot; (13.143)

where Mtot is the total mass of the plate. For a finite plate, Yp should be here
considered as the (real) asymptotic value of the admittance in the high frequency
range or, equivalently, as the mean value of the admittance over the frequency range
of interest radiated by the plate [33].

In Chap. 6, it was shown that the power transmitted from the strings to the
soundboard to the real part of the admittance, for a given transverse force.
Equation (13.143) shows, in addition, that this admittance’s real part is proportional
to the modal density and inversely proportional to the total mass of the plate.

13.6.2 Example of the Piano Soundboard

The concepts of radiated power, radiation resistance, and acoustical efficiency are
now illustrated by using the piano soundboard as an example. We take advantage
here of the experimental results obtained by Suzuki [36].

Figure 13.41 shows the results of measurements conducted with wideband
excitation. The mean radiated power was calculated by means of the flow of the
acoustic intensity vector through a surface S of the soundboard I D 1=2Re fPV?g.
In these experiments, the pressure is measured in the near field, close to the
soundboard, and the acoustic velocity V is derived from the measurements of the
soundboard velocity. The excitation force is normalized to 1 N. Between 50 and
500 Hz, the radiated power is weak, except at some frequencies corresponding to the
eigenmodes of the soundboard. The power increases progressively between 500 and
2000 Hz, with a maximum in the range 1800–2000 Hz. The power remains constant
above 2 kHz. It is interesting to compare the power to the radiation efficiency shown
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in Fig. 13.42. Recall that the efficiency is defined as the ratio between acoustical
power and the mechanical power at the input. Some differences exist between
both curves, although the general tendency is comparable. The efficiency is almost
constant above 1.4 kHz, and decreases slightly above 3.5 kHz. By comparison
with the theoretical results, one can reasonably estimate on these figures that the
critical zone is approximately situated between 1.2 and 1.6 kHz. In addition, an
estimation based on typical values, such as E D 1:4 � 1010 N/m2 for the mean
Young’s modulus, �p D 400 kg/m3 for the density, and a mean thickness equal
to 9 mm yields a critical frequency equal to 1.2 kHz, which is coherent. One can
assume, in addition, that the internal losses in the wood increase above 3.5 kHz,
thus contributing to reduce the efficiency in this range. Another explanation given
by the author is based on the experimental conditions, as a result of the distance
(a few centimeters) between the measurements points of velocity and pressure,
respectively.

The Suzuki paper also shows the input power versus frequency (not shown here).
This shows, in particular, that the input power is high around the eigenmodes of
the soundboard, especially in the low-frequency range. One can remark that this
situation is rather fortunate since, in this range, the rather high level of vibration is
compensated by a smaller efficiency, compared to the high frequency range (above
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Fig. 13.42 Measurements of the radiation efficiency of a piano soundboard in the same frequency
range as in Fig. 13.41. After Suzuki [36]

the critical frequency). As a result, the sound power in the complete range of the
piano tends to be rather uniform. At this stage, one must add that one of the main
difficulty for piano makers is to obtain a sufficiently high acoustic level for the
highest notes of the instrument. The limitations here can be due to three possible
phenomena: first, the mechanical energy imparted to the string is usually weak in
this range. Second, the coupling between string and bridge is strong thus reducing
the tone duration (see the next paragraph below). Third, the zone of effective
vibration of the soundboard is restricted to a small area (see the paragraphs dealing
with the localization of modes in Chap. 3).

Finally, as seen in Eq. (13.117), the normalized radiation resistance Ra=�c is
defined as the product of the radiation efficiency by the radiating area. This quantity
then yields useful information on the radiation efficiency for a given vibrating part of
the instrument. In the cited Suzuki paper, the resistance Ra of the piano is presented
for the area corresponding to the medium and high frequency range of the instrument
(see Fig. 13.43). In this figure, the increase of Ra between 0.6 and 1.8 kHz is seen
more clearly than on the complete instrument. Again, a clear negative slope is seen
beyond 3.5 kHz.
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Fig. 13.43 Measurement of the radiation resistance of a piano soundboard, in the restricted area
corresponding to the medium and high range of the instrument. After Suzuki [36]

Numerical methods are necessary to calculate the radiation efficiency of a piano
accurately (see Chap. 14). However, it has been shown here that qualitative results
and relevant trends can be obtained from general considerations based on simple
plate models.

13.6.3 Compromise Between Loudness and Tone Duration

In the foregoing, simple criteria were established as guidelines for the selection of
materials used for soundboards. These criteria are based on the following quan-
tities: critical frequency, driving-point admittance at the coupling point between
soundboard and strings, modal density of the soundboard. The calculations were
made with the underlying goal to maximize the radiated power. In the reality, this
objective has to be more flexible for free oscillations instruments, such as the piano,
the cembalo, or the guitar, for example. This follows from the fact that the tone
duration decreases as the radiated power increases, since the radiation damping
factor of the soundboard is proportional to the radiated power (see Chap. 6). This
situation might, or might not, be desirable, depending on the musical context.
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Let us take the example of the piano again. In Chap. 6, it was shown that the
damping factor of an isolated string with tension T and length L loaded at one end
by an admittance Y.!/ was given by:

˛.!/ D 1

�
D T

L
RefY.!/g: (13.144)

In the upper range of a grand piano, the tension T is almost constant and equal to
800 N (see [9]). As a consequence, the damping factor increases if the string’s length
is reduced, for a given admittance. To compensate this phenomenon, the driving-
point mobility should be reduced. This means, for example, in practice that, for
a given material, and according to (13.140), the thickness and the rigidity of the
soundboard increase near the coupling point. Such an achievement needs a special
design, and attention must be paid to the fact that these modifications do not induce
other unwanted and unanticipated effects.

In a real instrument, the tone duration is governed by additional phenomena. It
was shown in Chap. 6, for example, that both the vertical and horizontal motion
of the string are coupled by the motion of the bridge. The input admittance
corresponding to the horizontal motion is significantly smaller than the one of the
vertical motion (see, for example, [23]). As a consequence, the decay time of the
horizontal component of the string is higher that the one of the vertical component,
which contributes to increase the tone duration. Other coupling phenomena, such as
the coupling of the triplets of strings of a given piano note, influence the duration of
a tone significantly.
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Chapter 14
Radiation of Complex Systems

Antoine Chaigne and Jean Kergomard

Abstract The fundamental properties of the constitutive elements of musical
instruments were presented in the previous chapters: vibrating systems, holes, and
air columns. Some fundamental coupling situations between such elements, as well
as their radiation in free space were also described. In this last chapter, a detailed
presentation of some selected instruments is given (vibraphone, timpani, guitar, and
piano). In the previous approach made on simple systems, one goal was to give a
general view on several order of magnitudes for the involved physical quantities,
in order to identify general laws in terms of time, space, and frequency. Here, a
complementary point of view is adopted: the geometry, material and frequency
range of a given instrument are fixed, and the interaction between its elements is
examined for this particular configuration. The objective is to build a complete
model of an instrument and to study the vibratory and acoustical phenomena
from the initial excitation (mallet impact, struck or plucked string) to the acoustic
radiation. The modeling complexity of these sound sources is due to several causes:
complex structural geometry, coupling between different components with distinct
mechanical properties, broad frequency range, and required accuracy. Finally, the
previous presentation of wind instruments is supplemented here by the analysis of
radiation by both the tone holes and apertures, and by the resulting interferences.
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14.1 Example of the Vibraphone

14.1.1 Introduction

The vibraphone belongs to the family of mallet percussion instruments, as the
xylophone, the marimba, and the glockenspiel [47]. All these instruments work in
a similar way: horizontal beams are excited by the impact of a mallet and radiate
sound. In most cases, a tubular resonator is put under each beam. The function of
such resonators is to capture a fraction of the sound energy radiated by the beam and,
in turn, to radiate again after amplification and filtering of some frequencies. The
instruments of this family differ from each other both by their geometry (size) and
material. A vibraphone is made of metallic beams, whereas marimba and xylophone
beams are usually made of wood. The case of the vibraphone, which is presented
here, can be generalized to the other mallet instruments.

From the point of view of radiation, the vibraphone is a typical example of
interaction between a field radiated by an impacted beam and a tubular resonator
placed in its vicinity (see Fig. 14.1).1

rT

ST

x

z

r

d

b

M (r,θ)

θ

Fig. 14.1 Left: vibraphone (Courtesy of Rythmes et Sons). Right: schematic representation of a
vibraphone beam and tube. The pressure at point M.r; �/ is the sum of the pressure radiated by the
beam and the pressure radiated by the open end of the tube at a distance rT

1In some instruments, both ends of the tube are open. In the present chapter, the example of a
resonator with an open end on the beam side, and a closed end at the bottom, is investigated.
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In Chap. 1, the flexural equations of motion for an Euler–Bernoulli beam were
presented. The eigenmodes were calculated in Chap. 3, for beams of constant and
variable sections. The damping mechanisms in both the tubes and beam materials
were presented in Chap. 5. Here, the radiation of the complete instrument is
described. According to the usual geometry and materials of the instrument, the
following simplifying assumptions are made:

1. The vibrations of the beam are not affected by the radiated field. It has been
shown in the previous chapters that this assumption is reasonable, as long as the
ratio between air and material density is small and, in addition, for a sufficiently
rigid beam, as it is the case here. This amounts to assuming that the coefficient "
in Eq. (13.67) is small compared to unity.

2. The transverse dimension (width) b of the beam is small compared to the acoustic
wavelength: kb � 1. For a typical beam of width b D 3 cm, this yields an
upper limit of 11 kHz for the frequency. In most mallet instruments, the spectral
energy is below this limit, except for the highest notes of the xylophone. In what
follows, this condition is assumed to be fulfilled, so that some approximations
can be made for calculating the radiated pressure field, according to the results
presented in Chap. 12.

3. The radiation of the tube, at its open end, is not affected by the presence
of the beam. It has been shown experimentally that this assumption remains
valid as long as the end-beam distance remains small: d=b 	 1. Otherwise,
the eigenfrequencies of the tube might be modified, due to the change in the
boundary conditions [25].

4. Only the flexural vibrations of the beam contribute to the radiation significantly.
This is almost true in practice, except if the impact is located near the corners. In
this latter case, additional torsional vibrations are generated. These vibrations are
generally unpleasant and unwanted, since they are not in harmonic relationships
with the flexural modes. In what follows, it is thus assumed that the vibraphone is
struck by a talented player who is able to control the impact point of the mallets
with precision! Denoting y0 the distance between the symmetry axis of the beam
and the impact point, the condition y0=b � 1 is assumed (see Fig. 14.2).

5. Finally, it is assumed that the diameter D of the tube is sufficiently small so that
only the longitudinal modes exist. This is true under the condition D=� � 1,
where � is the acoustic wavelength (see Chap. 7). It is also admitted that the
walls of the tube are rigid and do not contribute to the radiation.

b
y0

Fig. 14.2 Excitation of the beam near the symmetry axis, in order to avoid the generation of
torsional waves (y0 � b)
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Impact Beam flexion Beam radiation

Radiation of
the resonator

Excitation of
the resonator

Fig. 14.3 Physical principles of the vibraphone. The beam radiates due to the impact of the mallet.
A part of the radiated field excites the air column in the tubular resonator. The resonator radiates,
in turn, a sound field where its own eigenfrequencies are dominant in the spectrum. The beam-tube
coupling is efficient only if the tube is tuned so that some of its eigenfrequencies are close to the
eigenfrequencies of the beam (see Fig. 14.4)

The physical behavior of the vibraphone can be summarized as follows (see
Fig. 14.3):

• The impact of the mallet induces flexural vibrations in the beam . The excited
eigenfrequencies are close to those of a beam with free boundary conditions. The
suspension of the beam by a cord can be viewed as a flexible spring, so that the
eigenfrequency of the oscillator made of the complete beam mass and the cord is
equal to a few Hz, and thus is far below the first flexural mode. This rigid-body
mode is very weakly coupled to the flexural modes, and does not radiate sound.

• From the point of view of radiation, the oscillating beam can be viewed as a
linear array of dipoles (see the next section).

• A fraction of the acoustic energy radiated by the beam is captured by the tubular
resonator. This resonator acts as an acoustic filter. Only the spectral components
of the input field which are close to the eigenfrequencies of the tube can persist.
The other components are subject to destructive interferences inside the tube, and
are attenuated progressively.

• A fraction of the acoustic energy stored in the tube is radiated to the external
field through the open end. The resonator thus acts as a secondary source. An
observer in space receives the pressure contributions of both the beam and tube.
The spectral content of the tube pressure is dominated by the eigenfrequencies
of the tube: the amplitude of these components is significant only if some of
the input components (the eigenfrequencies of the beam ) coincide with some
eigenfrequencies of the tube: the tube is then said to be tuned to the beam (see
Fig. 14.4).
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f1 4 f1

3 f1 5 f1 7 f1 9 f1f1

10 f1

Spectrum (dB)
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b

Spectrum (dB)

Beam

Tube

Fig. 14.4 Basic principles of tuning between a beam and a tubular resonator. (a) shows the
spectral content of a tuned beam where the three first flexural modes are tuned to f1, 4f1, and
10f1, respectively. (b) shows the spectrum of a tube closed at one end and open at the other, for
which only the odd harmonics exist. It can be seen on this example that the beam and the tube are
tuned if both fundamental frequencies are equal. The upper harmonics of the beam do not excite
the tube

14.1.2 Radiation of the Beam

If the acoustic wavelength � is large compared to the width b of the beam, then
the reflection of waves radiated by the beam on its surface is negligible. As a
consequence, it has been shown in Chap. 12 that the monopolar terms can be
neglected in the Kirchhoff–Helmholtz integral (12.61). The only remaining terms
are the dipolar terms due to the oscillation of the beam [34]. The total field radiated
by the beam is then the sum of elementary dipoles distributed along its length L. A
discrete formulation of this sum is given below. Each elementary dipole has a width
�x D L=N, where N is the number of elements, length b, and thickness h.x/ (see
Fig. 14.5).

In order to benefit from simple known results, it is convenient to represent
each element of the beam by an equivalent oscillating sphere. This is achieved by
considering each element as a sphere with identical volume. The error made by
using such an approximation becomes noticeable when the acoustic wavelength is
less than or equal to �x, which corresponds here to typically 1–5 mm. The radius
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Δ x

h(x)

Fig. 14.5 Decomposition of the beam into an equivalent linear array of elementary oscillating
spheres

a.x/ of the equivalent sphere is given by:

4

3
�a3.x/ D bh.x/�x D �V.x/; (14.1)

where x 2 Œ0;L	. Under the assumptions of far field, as seen in Chap. 12, the field
radiated by each equivalent oscillating sphere is written in the time domain [see
Eq. (12.40)]:

�pŒr.x/; �.x/; t	 D 3��V.x/ cos �.x/

8�r.x/

�
�
1

r.x/
�

�
x; t � r.x/

c

�
C 1

c

@�

@t

�
x; t � r.x/

c

��
; (14.2)

where � is the beam acceleration at point x, r.x/ and �.x/ are the polar coordinates
of the listening point. In total, the pressure field pB radiated by the beam is written

pB.r; �; t/ D
X

x

�pŒr.x/; �.x/; t	; (14.3)

where the reference coordinates r and � correspond to the location of the listening
point with regard to the center of the beam (see Fig. 14.1). One main property of the
dipole array lies in the pronounced directivity of the radiated pressure along the axis
� D 0 (see also the discussion on the linear arrays in Chap. 12), which is confirmed
experimentally. Another property is that the pressure is zero in the beam plane.

14.1.3 Radiation of the Resonator

The tubular resonator with cross-section ST is oriented along the z-axis (see
Fig. 14.6). v.0; t/ and p.0; t/ are the acoustic velocity and sound pressure at the
open end, respectively, and pT.rT ; t/ is the pressure radiated by the open end at a
given point in space (see Fig. 14.6).
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Fig. 14.6 Tubular resonator

z 

rT

M 

ST

It is assumed that the pressure radiated by the tube is similar to the one of a
monopole, as long as the diameter of the tube remains smaller than the acoustic
wavelength. In what follows, the diffraction of the tube is also ignored. Using the
results demonstrated in Chap. 12, the pressure radiated by the tube is written

pT.rT ; t/ D �ST

4�rT

@v

@t

�
0; t � rT

c

�
; (14.4)

or, equivalently, using Euler equation:

pT.rT ; t/ D ST

4�rT

@p

@z

�
0; t � rT

c

�
: (14.5)

The pressure can be determined at any point in space provided that the pressure
at the end of the tube is known. This end tube pressure is the sum of both the beam
pressure pB and the tube pressure pT . Such a superposition corresponds to the case
of two tubes explained in Sect. 12.6.3 of Chap. 12.

In the frequency domain, denoting Zr.!/ the radiation impedance of the tube,
and taking further the orientation of the z axis into account, we get

P.0; !/ D �Zr.!/STV.0; !/C PB.!/ : (14.6)

where P.r; !/ is the Fourier transform of p.r; t/. Since the tube is unbaffled and
radiates in the unbounded space, we can use the Levine–Schwinger expression for
the impedance (see Chap. 12).
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Converting Eq. (14.6) into the time domain is not an easy task [26]. One possible
method consists in expressing the impedance under the form of a fraction of two
polynomials in j! of the form:

Zr.!/ D �c

ST

b0 C b1j! C b2.j!/2 C 
 
 

a0 C a1j! C a2.j!/2 C 
 
 
 ; (14.7)

as it has already been done for Eq. (12.132). As a result, a time-domain formulation
of Eq. (14.6) is obtained�

a0 C a1
@

@t
C a2

@2

@t2

�
.pB.t/ � p.0; t// D �c

�
b0 C b1

@

@t
C b2

@2

@t2

�
v.0; t/ :

(14.8)

Finally, the time-domain evolution of both internal and external tube field can be
obtained by combining the boundary condition (14.8), the boundary condition at
the other end of the tube (either closed end or another open end though without
interaction with beam), and the wave equation inside the tube (1.111). In contrast
with the beam field, the tube field is almost omnidirectional.

Figure 14.7 shows, on the left, an example of recorded pressure waveform
radiated by a vibraphone beam tuned to its resonator and struck by a mallet. The
measurements were made in an anechoic chamber. This waveform is compared
(on the right) with the pressure waveform simulated with the help of the model
presented above, using finite differences [24]. One can see on this figure that the
contribution of the beam reaches first the observation (listening) point, and that
the tube contribution arrives a few milliseconds later. This delay is due to the fact
that the resonator behaves here like an harmonic oscillator forced in the vicinity of
its eigenfrequency. As a consequence (as seen in Chap. 2), a rather slow growth
is observed. Contrary to what is usually thought, this delay is not due to the
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Fig. 14.7 Pressure waveform radiated by a vibraphone beam with a tuned tubular resonator. (Left)
Measurements. (Right) Simulation. One can see an abrupt initial pressure jump due to the beam,
followed by a slow growth due to the resonator and a slow decrease due to damping
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propagation between the beam and the open end. The beam-tube distance is usually
equal to a few centimeters: thus, the propagation delay should be equal to 1 or 2 ms.
This value is about ten times smaller than the observed delay.

From a musical viewpoint, tubular resonators should be used if slowly growing
“aftersound” is wanted. In contrast, the tubes should be (totally or partially) closed
if the purpose is to emphasize the clarity and suddenness of the initial transients.
Finally, it should be noticed that, in the complete instruments, the tubes are very
close to each other and that the differences in tuning are only one semitone. As a
consequence, they often interact together (see also Sect. 4.3), which contribute to
enrich the sound of the instrument.

14.2 Example of the Kettledrum

14.2.1 Introduction

The kettledrums (or timpani), as other drums like the snare drums or the bass drums,
belong to family of membranophones. As indicated in this classification name, these
instruments are made of one (or two) membrane(s) (or head(s)) stretched over a
cavity filled with air and struck by a mallet. Originally, the heads were made of
calfskin. Today, Mylar (polyethylene terephthalate) is the most common material
used for the heads, because of its better homogeneity, tensile strength, and relatively
smaller sensitivity to humidity changes. However, a number of orchestras today
still prefer using timpani with calfskin heads, especially for playing music of the
past centuries, because of their characteristic tone color. One physical property
of calfskin lies in its higher internal damping, compared to Mylar. An interesting
feature of timpani is due to the fact that these instruments together have a decisive
rhythmic function and a well-defined pitch.

The equations of motion for a stretched membrane were presented in Chap. 1.
Their modes of vibration were calculated in Chap. 3 for a homogeneous circular
membrane in vacuo. However, in order to understand the observations and experi-
ments made on timpani, it is necessary to take further the coupling of the membrane
with both external air and cavity into account. One-dimensional examples of
coupling between a vibrating structure and a cavity were presented in Chap. 6. Here,
the example of timpani gives us the opportunity to generalize these results to the case
of a 2-D structure (the membrane) coupled to a 3-D cavity (Fig. 14.8). In Chap. 13
it was shown, in addition, to what extent the vibrations of a structure are modified
by its radiated field. The case of timpani yields a situation where the density, the
rigidity, and thickness of the membrane are relatively small, so that the reaction of
the acoustic field cannot be neglected. One can easily be convinced of this fact by
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Fig. 14.8 Geometry of the
kettledrum, and notations.
The head ˙ is bounded by its
contour @˙ . C is the external
surface of the bowl with
normal vector n. ˝i is the
internal volume delimited by
the bowl and the membrane.
˝e is the external volume
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doing the simple experiments which consist in speaking (or singing!) in front of a
timpani head: by lightly touching the head with the fingers, the vibrations of the
membrane are clearly felt. In addition, the modifications of the tone color due to the
additional sound field of the membrane excited by the speech also are clearly heard.

The joint action of both external and internal (cavity) pressure on the membrane
also contributes to modify its eigenfrequencies compared to the in vacuo case. Since
the membrane oscillates freely after the impact of the mallet, the spectrum of the
emitted sound is composed of the eigenfrequencies of the complete coupled system
(see Fig. 14.15).

It has been shown in Chap. 3 that the eigenfrequencies of a circular membrane
in vacuo are not integer multiples of a fundamental frequency. In contrast, the
spectral content of timpani sounds shows that the eigenfrequencies of timpani
sounds, for an impact excitation close to the edge, are almost integer multiples
of a missing fundamental (2f, 3f, 4f, 5f,. . . ) as shown in Fig. 14.15. This is the
reason why the instrument has a well-defined pitch, though it is a bit less clearly
defined as, for example, the pitch of a violin or of a piano sound.2 A number of
authors have shown that both the external and internal pressure field acting on
the membrane are responsible for these frequency shifts (see, for example, [5]).
However, due to mathematical difficulties, accurate calculations of the coupled
modes of the complete instruments were obtained only recently [44, 45]. In what

2Notice that the perceived pitch rather fits with the frequency of the first partial (at 2f) than with the
missing fundamental (f). This octave ambiguity has several reasons: first, the lowest partial usually
has the highest amplitude and, secondly, the frequency of the missing fundamental is usually low
(less than 100 Hz), and thus the human ear is less sensitive in this frequency domain, from the point
of view of pitch perception.
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follows, emphasis is put on the physical modeling of the kettledrum and on its
corresponding time-domain numerical formulation. Notice that another technique
is possible, based on the use of Green’s functions [18]. However, the use of this
technique is restricted to simple geometrical shapes of the bowl (cylinder or half-
sphere) with standard systems of coordinates.

In the following paragraph, it is also shown, as an interesting application,
how to take advantage of the air-membrane-cavity coupling for determining the
tension of the membrane experimentally. This determination is based on the simple
measurements of the eigenfrequencies, when direct mechanical measurements of
the tension usually are cumbersome and not very precise. Finally, a perturbation
method is briefly presented, whose aim is to obtain a direct approximation of the
eigenfrequencies of the instrument. This method can be viewed as a generalization
of the results presented in Chap. 13.

14.2.2 Presentation of the Physical Model

It is supposed here, as a simplifying assumption, that only the head of the kettledrum
vibrates, consecutive to the impact of the mallet, and not the bowl. In the reality,
vibrations of the bowl can be sometimes observed, especially for light bowls in
fiberglass. A small hole is drilled at the bottom of the cavity (with a diameter
of typically 1–2 cm) in order to equalize the static pressure on both sides of the
membrane. This hole plays the same role as the Eustachian tube in the middle
ear: a difference in static pressure on both sides would restrict the motion of the
membrane [31]. Apart from this function, the hole has no effect on the acoustic
behavior of the instrument, because of its small dimensions compared to the acoustic
wavelengths of the main spectral components. It is currently observed that timpani
spectra do not have significant energy above 1 kHz, which corresponds to an
acoustic wavelength of 34 cm.

Another function of the cavity is to enclose the acoustic wave generated by the
membrane on its back side, as it is observed on other systems like loudspeaker
cabinets, for example. This prevents the system from destructive interferences
between forward and backward sound fields, which would otherwise reduce its
acoustical efficiency.

In what follows, ms D �sh denotes the surface density of the membrane of

density �s and thickness h, and cf D
q

�
ms

is the wave speed of the flexural waves

on the membrane for a tension � in N m�1 (see Chap. 1). In timpani, a typical order
of magnitude for cf is 100 m/s, and the surface density of Mylar is 0.1 kg/m2.
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14.2.2.1 Equations of Vibrations

To a first approximation, one can consider that the initial velocity condition for the
displacement �.t/ of the mallet’s center of gravity reduces to P�.0/ D �V0, where
the origin of time is taken as the mallet just reaches the membrane.3 In addition,
we have �.0/ D ı, where ı is the thickness of the felt before the compression (see
Fig. 14.9). During the contact phase, the mallet’s head of mass m is subjected to
the compression force F.t/ resulting from its interaction with the membrane which
yields (if we neglect the gravity force):

m
d2�

dt2
D F.t/ : (14.9)

F.t/ can be conveniently described by a nonlinear function of the felt compres-
sion of the form (see Chap. 1):

F.t/ D K


.ı � �.t/C W.t//C

�˛
(14.10)

where K is a stiffness coefficient, and ˛ an exponent. Both constants are derived
from experiments by curve-fitting procedures. For typical timpani mallets, ˛ usually

F= 0

W (t)

t = 0

δ

V0

F

W (t)

Compression

z 

t > 0 : contact 

(t)

(t)

Fig. 14.9 Impact of the mallet on the membrane. At time t D 0, the mallet comes in contact
with the membrane with an initial normal velocity V0. At this time, both the compression of the
felt and the interaction force are assumed to be zero. ı denotes the thickness of the felt before its
compression. During the contact phase, this thickness decreases and becomes equal to .W � �/.t/,
where W is the mean displacement of the membrane on the contact area, and � the center of gravity
of the rigid mallet’s head. An interaction force then exists between mallet and membrane

3The negative sign is coherent with the orientation of the vertical z axis.
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lies in the range 2–4 [13]. The symbol “C” in Eq. (14.10) means that the force is zero
in the absence of contact. W.t/ is the mean value of the membrane’s displacement
over the contact area, defined as:

W.t/ D
Z
˙

w.x; y; t/g.x; y/ dS: (14.11)

In (14.11), w.x; y; t/ is the transverse displacement of a given point of the membrane
of surface˙ , and g.x; y/ is a normalized distribution function so that

R
˙

g.x; y/ dS D
1. In practice, a good approximation of the size of g can be obtained experimentally
by measuring the spot drawn on the head by a felt pre-soaked with dark ink.4

Strictly speaking, this function g should vary with time, since the felt does not press
instantaneously on the head. This effect is not taken into account here.5

The model presented below is restricted to the linear transverse vibrations
of a damped membrane without stiffness. The assumption of linearity might be
questionable during the impact since a motion with an amplitude 10–100 times
higher than the thickness of the membrane can be observed as the mallet is in contact
with it. The linear equation of motion is written [45]:

ms
@2w

@t2
D div

�
�r

�
w C �

@w

@t

��
� f .t/g � Œp	 j˙; (14.12)

where Œp	 j˙ D .pe � pi/˙ is the pressure jump acting on the membrane. In
comparison with the membrane model presented in Chap. 1, notice the introduction
of the force density f .t/which represents the action of the mallet and, in addition, the
viscoelastic damping coefficient � which accounts for the average losses in polymer
(such as the Mylar, commonly used for timpani heads). The viscoelastic term yields
an increase of damping with frequency, as observed experimentally. For nonuniform
membranes, ms and � depend on the spatial coordinates. The tension then becomes
a tensor of order 2 (as seen in Chap. 1). The force density f .t/ is related to the
interaction force by the relation:

F.t/ D f .t/
Z
˙

g.x; y/ dS D f .t/ : (14.13)

It is further assumed that the membrane is fixed at its periphery, which implies

w.x; y; t/ D 0 8.x; y/ 2 @˙; 8t > 0 : (14.14)

4The function g is a smooth and normalized version of the indicator function, which is equal to 1
in the contact area, and 0 outside.
5Taking further the flexibility of the mallet’s stick would also contribute to improve the model: this
flexibility certainly has an influence on the contact time.
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The condition (14.14) does not account for the losses at the boundary. This is
probably wrong, since the head of a kettledrum is usually stretched over a dissipative
rubber ring, and should be revisited in future models. In order to calculate the time
evolution of the motion, starting from the membrane at rest, we write the initial
conditions:

w.x; y; 0/ D @w

@t
.x; y; 0/ D 0 8.x; y/ 2 @˙ : (14.15)

14.2.2.2 Acoustic Equations

Both the internal (inside the cavity ˝i) and external acoustic field (in ˝e) are
governed by the basic linear acoustic equations (see Chap. 1):8̂̂<̂

:̂
@p

@t
D �c2� divvj in ˝j; for j D e; i I

�
@vj

@t
D �gradpj in ˝j; for j D e; i

(14.16)

where vj is the acoustic velocity.
The problem imposes boundary conditions on the surface � of the kettledrum

composed of the membrane˙ and the bowl C , so that � D ˙ [ C . On the surface
˙ (in the plane z D 0) we write the continuity equation for the normal velocity:

vj.x; y; 0; t/:n D @w

@t
.x; y; t/ 8.x; y/ 2 ˙; 8t > 0; for j D e; i: (14.17)

It is supposed, in addition, that the bowl with surface C delimiting the air cavity is
perfectly rigid, which can be considered as justified for copper bowls. However, it is
observed experimentally that fiberglass bowls (used for study instruments) vibrate
significantly, especially during the impact. The assumption made here imposes the
condition:

vj.x; y; z; t/:n D 0 8.x; y; z/ 2 C ; 8t > 0; for j D e; i; (14.18)

where n is the unitary vector normal to C (see the Fig. 14.8). Finally, the following
initial conditions are imposed:

pj.x; y; z; 0/ D 0; vj.x; y; z; 0/ D 0 in ˝j; for j D e; i : (14.19)
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14.2.2.3 Energy Balance

The system of coupled equations presented above has the property that the total
energy decreases with time. Through integration of Eq. (14.9) to Eq. (14.18), it
can be shown that the different contributions of the system to the total energy are
written [44]:8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

for the mallet W Em.t/ D m

2

�
d�

dt

�2
C K

˛ C 1

h
.ı � �.t/C W.t//C

i˛C1

;

for the undamped membrane W Ew.t/ D 1

2

Z
˙

ms

�
@w

@t

�2
ds C 1

2

Z
˙

� .grad w/2 ds;

for the air W Ea.t/ D 1

2

Z
R3

�v2d˝ C 1

2

Z
R3

p2

�c2
d˝ :

(14.20)

Adding now a viscoelastic damping term with coefficient � in the membrane
equation, then the total energy E D Em C Ew C Ea is governed by [44]:

dE

dt
.t/ D ��

Z
˙

�

�
grad

@w

@t

�2
ds : (14.21)

In practice, as shown in Fig. 14.10, a slow decrease of the total energy is
observed, starting from the initial value E.0/ D 1

2
mV2

0 . This initial energy is
transferred from the mallet to the air-membrane system. Beyond its physical interest,
this continuous energy balance is a necessary preliminary step for guaranteeing the
stability of the numerical approximation [44].

14.2.3 Eigenfrequencies, Damping Factors, and Tuning
of the Instrument

For an undamped membrane in vacuo, it was shown in Chap. 3 that the eigenfre-
quencies are real solutions of the equation:

� c2f�wmn D !2mnwmn; (14.22)

(with a condition of nullity for the displacement at the edge), and the eigenfrequen-
cies were calculated for a circular membrane, explicitly. In the case of a kettledrum,
the coupling of the membrane with both the external air and cavity has to be taken
into account [18]. As a consequence, the eigenfrequencies become complex, and
their imaginary part represents the time decay of the spectral components. In what
follows, !0 D 2�f0 denotes any eigenfrequency of the undamped membrane in
vacuo, and Q! D ! C j˛ D 2� Qf D 2�.f C j˛=2�/ is the corresponding complex
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Fig. 14.10 Energy balance for the kettledrum. A time evolving energy exchange is observed
between the mallet (dashed line), the membrane (dotted line), and the acoustic field (solid line)
during the first 20 ms of the sound. The total energy of the system (dash-dotted line) is slowly
decreasing with time

frequency when the same membrane is coupled to external air and cavity.6 In order
to characterize the time decay of the eigenmodes, some authors use the quantity
�60 (decay time of a free oscillation corresponding to an attenuation of �60 dB
of the amplitude), whose definition is identical to the reverberation time in room
acoustics [18]. We have

�60 D � ln 10�3

˛
D 6; 9

˛
: (14.23)

In summary, the practical consequences of air coupling are the following:

1. The real part of the eigenfrequencies are modified substantially. In timpani, these
real parts are almost harmonically related (though with a missing fundamental),
whereas it is not the case for in vacuo membranes (see Chap. 3). These
modifications are clearly seen in Table 14.1, which shows that the real parts of
the eigenfrequencies are lowered consecutive to the air loading. In some cases, a
reduction of 50 % can be observed.

2. The radiation of the instruments induces an additional damping (radiation losses)
to the internal losses of the membrane. As shown in Table 14.1, the radiation

6The imaginary part ˛=2� is usually small compared to the real part f (see Table 14.1). Thus the
modulus

ˇ̌Qf ˇ̌ is not very different from f , which explains why the distinction between both quantities
is not always mentioned in the literature.
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yields decay times which do not vary monotonically with the rank of the
partial. This is a consequence of the fact that the radiation losses depend on
the eigenvalue. Notice that a simple structural damping is not able to take such
variations into account. One can see, for example, that the symmetrical modes
01, 02, and 03 with a strong monopolar character radiate quite efficiently and, in
turn, have a smaller decay time than the anti-symmetrical modes 11, 21, 31, 41,
and 51.

Determination of the Eigenfrequencies Using a Perturbation Method

In Table 14.1, the eigenfrequencies were obtained by time-frequency
analysis performed on the simulated pressure based on the time-domain
model described in Sect. 14.2.2. However, it might be also interesting to
calculate these frequencies directly, without the intermediate step of time-
domain computation.

For bowls of simple shapes (cylindrical, hemispherical, parabolic,. . . ), the
eigenfrequencies of the complete system can be obtained with the help of
Green’s functions [18]. Alternatively, a general method based on perturbation
theory is presented here [44].7 As for the nonlinear vibrations shown in
Chap. 8, the leading idea consists in expanding the eigenfrequencies in series
of terms with increasing power of a small dimensionless parameter ". Here,
this parameter is defined as the ratio between air and membrane densities:

" D �

�s
: (14.24)

For Eqs. (14.12) and (14.16), leaving aside the source term due to the action
of the mallet, we search solutions of the form ej Q!t. As a consequence, the
dispersion relation for the membrane loaded on both sides by air and cavity,
respectively, is given by8:

� c2f�w D Q!2w C " Q!2D. Q!/w; (14.25)

(continued)

7Other methods exist, as the one which consists in expressing the system in terms of matrices, and
in calculating the eigenfrequencies by using singular value decomposition (SVD) techniques [30].
8A similar example was given in Chap. 13 for the loaded plate.
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where Q! is complex. D. Q!/ is an operator accounting for the radiation. Both
the eigenshapes and the eigenfrequencies are expanded onto the in vacuo
modes as follows:8̂<̂

:
Qw"mn D wmn C "

X
kl¤mn

�mn
kl wkl C "2

X
kl¤mn

�mn
kl wkl C o."3/;

Q!"mn D !mn C " Q!a
mn C "2 Q!b

mn C O."3/ :

(14.26)

where we limit ourselves here to the order 2, for simplicity. As mentioned
previously in Chap. 5, the eigenmodes also become complex: therefore, we
write Qw. Inserting (14.26) in (14.25), and taking advantage of the orthogonal-
ity of the in vacuo modes (see the general method in Chaps. 3 and 13), the
coefficients of order 1 of the expansion are given by:8̂̂<̂

:̂
�mn

kl D !2mn

!2kl � !2mn

hD.!mn/wmn;wkli 8.k; l/ ¤ .m; n/;

!a
mn D �!mn

2
hD.!mn/wmn;wmni;

(14.27)

where the scalar products are indicated by the usual symbol h i. The reader
can refer to [44] for the coefficients of order 2. For the example reported in
Table 14.1, the results of this perturbation method are in excellent agreement
with the values obtained by time-frequency analysis [44].

Application: Experimental Determination of a Timpani Head’s Tension

One interesting application of the dispersion relation of the air-loaded membrane is
the experimental determination of its tension � . It is assumed here that the membrane
is uniform.
The direct static measurements of the tension are usually difficult to achieve,
and suffer from insufficient precision. Its main principle is based on the vertical
deflexion � of a weight M put in the center of the membrane. With a the radius of
the membrane and b the radius of the cylindrical mass, we have (see Fig. 14.11) [39]:

�.b/ D Mg

2��
ln

a

b
: (14.28)

One drawback of the static method is that �must be kept sufficiently small so that
the assumption of linearity is fulfilled and, in turn, that the increase of the tension
due to the vertical deflexion � is negligible (see Chap. 8). In addition, it was shown
that the deflexion must be measured with a precision equal at least to 0:1mm, for a
typical 1% accuracy on the tension [12].
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a

b

F = Mg

Fig. 14.11 Static determination of the tension for a circular membrane. The deflexion � is
measured, consecutive to the action of a mass M put at the center. The size of the mass is assumed
to be small compared to the radius of the membrane

The alternative method presented below is based on a comparison between
the wave velocity on the air-loaded membrane and the wave velocity in vacuo.
The tension can be then estimated from the measurements of the eigenfrequencies
of the air-loaded membrane, which corresponds to the real conditions of use of the
instrument.

The dispersion relation for the infinite membrane loaded by the air on both sides
is written

� D c2F.!/

264ms C 2�

!
q

1

c2F.!/
� 1

c2f

375 ; (14.29)

where cF is the flexural wave speed in the presence of fluid, and cf D p
�=ms the

wave speed in vacuo. For typical values of kettledrum’s parameters, the dispersion
curve of the membrane takes the shape shown in Fig. 14.12. One can check
that the fluid–structure coupling primarily affects the wave speed of the lowest
frequencies. As the frequency f increases, the speed cF asymptotically tends to cf

while remaining always smaller. Returning now to (14.29), one can see that the
tension can be estimated from the estimation of cF . One remaining question is to
know to what extent the model of an infinite membrane loaded on both sides can be
applicable to the case of timpani. The answer is given by examining the perturbation
terms calculated in (14.27). These terms show that:

• The presence of the cavity primarily affects the axisymmetrical modes !0n

of the membrane which produces a change of volume in the cavity and, in
turn, a stiffness-like effect. In contrast, the model (14.29) well accounts for the
asymmetrical modes and, in particular, for the modes !m1 (simply denoted m1-
modes hereinafter) which are dominant in the pressure spectrum.

• The coefficients �mn
kl are small for the asymmetrical modes, which means that the

modal shapes are weakly perturbed by the fluid.

As a consequence, provided that only the asymmetrical modes are considered,
the following relation (3.147) obtained in Chap. 3 can be used:
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Fig. 14.12 Dispersion curve for an infinite membrane. The effect of the fluid loading is essentially
pronounced in the low-frequency range
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"
mn/ D !"mn

ˇmn
; (14.30)

where the coefficients ˇmna are the roots of the Bessel functions, with a the radius
of the membrane.

As shown in Fig. 14.13, it can be seen that an almost constant value of the tension
is derived from the measurements of the asymmetrical modes of the kettledrum.
However, a small increase of the estimate with frequency is to be noted.9

14.2.4 Acoustic and Vibratory Fields: Time-Domain Analysis

14.2.4.1 Vibration of the Head

The fictitious domain method (see Sect. 14.2.6) is a convenient tool for solving
the complete set of equations that govern the kettledrum model (14.9)–(14.18).
The results of these simulation were validated by comparisons with measurements
performed on real instruments [45]. A few representative examples of these

9In practice, comparisons between measurements and simulations using the estimated values of
the tension show that the error made on the determination of the tension with this method is of the
order of 1–3 % [12].
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Fig. 14.13 Estimation of the
tension of a kettledrum’s head
from measurements of its
eigenfrequencies. The
symbols open circle designate
the axisymmetrical modes,
and the symbols asterisk the
asymmetrical modes
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Fig. 14.14 Profile of the timpani’s head during the first 12 ms of the sound. The successive
vibratory states of the displacement are separated by a time interval of 2 ms (increasing time scale
from left to right)

comparisons are described below. These examples illustrate the vibroacoustics of
timpani in the time domain, from the initial impact of the mallet on the head taken
as the origin of time.

Figure 14.14 shows the vibrations of the head during the first 12 ms of the sound.
It is assumed that the head is uniformly stretched, and at rest at the origin of time.
Due to the impact, transversal waves propagate on the membrane and are reflected
at the edge with change of sign. During this period of time, the felt of the mallet is
decompressing, and the mallet’s head is pushed back by the waves returning from
the edge: this succession of stages is similar to the interaction between hammer and
string in a piano (see Chaps. 1 and 3). Here, the interaction between the mallet and
the membrane ends approximately 12 ms after the initial impact (see the picture on
the right in Fig. 14.14). Then, the transverse waves evolve freely on the membrane.
Due to the interferences between outgoing and returning waves, only a few number
of discrete frequencies are present in the vibration (and in the acoustic) spectrum.
The usual bandwidth of the sound radiated by timpani is usually restricted to the
interval [0; 1] kHz, due to the combined effects of excitation spectrum, internal and
radiation damping.

For a uniformly stretched circular membrane, the observed modes are modes
correspond to those listed in Table 14.1. In practice, it is difficult to obtain a
perfectly uniform tension, because this implies to have a perfect control on the
boundary conditions at the edge. As an illustration, Fig. 14.15 shows an example
of heterogeneous tension field obtained on a kettledrum tuned with the help of six
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Fig. 14.15 (a) Heterogeneous distribution of tension of the membrane of a kettledrum. (b)
Simulated spectrum. (c) Measured pressure spectrum radiated by a real kettledrum

screws equally distributed on the edge. In this particular simulated case, two of the
screws were deliberately more tightened than the four others: as a consequence, the
tension field shows a nonuniform tension field, between 3100 N m�1 (in white) and
3317 N m�1 (in dark grey).

Simulating a kettledrum with such a tension distribution yields the spectrum
shown in Fig. 14.15.

• One can check that the simulation yields a spectrum which is very close to the
measured spectrum.

• Here, the membrane is struck close to its edge. In all, the frequencies with the
highest amplitude correspond to the modes m1 (11, 21, 31,. . . ), which is in
accordance with the prediction of small damping factors for these modes (see
Table 14.1). Recall that these modes are characterized by a single nodal circle
(n D 1) at the edge, and m nodal diameters.

• As predicted by the simulation of the air-membrane-cavity coupling, the eigen-
frequencies !m1 form a quasi-harmonic series with a missing fundamental
(around 75 Hz).

• Finally, the heterogeneous tension is reflected in the spectrum by a number
of peak doubling. In the time domain, these peak doubling result in clearly
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audible beats. Systematic and progressive canceling of these beats is one of the
techniques used by the percussionists for tuning their instruments.

14.2.4.2 Internal and External Acoustic Fields

The time-domain evolution of both the internal and external pressure fields are
shown in Fig. 14.16. The successive snapshots are synchronized with the represen-
tations of the membrane vibrations in Fig. 14.14.

• At the time of impact, an overpressure is generated inside the air cavity, due to the
reduction of air volume. As a consequence, a reduction of pressure is generated
outside the bowl.

• Both the internal and external acoustic waves propagate at sound speed c, which
is approximately three times faster than the elastic waves on the membrane. It
can be seen on the second picture from the left (4 ms after the impact), for
example, that the pressure inside the cavity already has reached the other side
of the instrument, while the elastic wave on the membrane did not even reach its
center.

• Due to the rigidity of the bowl, the internal wave is restrained by the shape of
the cavity. Microphone measurements show that the internal pressure field is
significantly more intense than the outside pressure. This property is confirmed
by the representations of the pressure jump in Fig. 14.17.

• Finally, during this transient regime, it is observed that the external radiated field
is subjected to significant and rapid variations of directivity.

Fig. 14.16 Simulated pressure field inside and outside the cavity of the bowl, during the first 12 ms
of the sound

Fig. 14.17 Pressure jump between external air and cavity at the surface of the membrane during
the first 12 ms of the sound
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14.2.5 Spatial Distribution of the Radiated Pressure. Radiation
Efficiency

After the transient regime, only a limited number of modes contribute to the
radiation. Ignoring the damping temporarily, then one can admit that the oscillations
of the membrane are almost stationary. Under this assumption, the method presented
in Chap. 13 for calculating the power radiated by the instrument, and its associated
directivity, can be applied.

As for the finite plates in Chap. 13, we consider first the radiation of a single
isolated mode, assuming that it is decoupled from the others. It is also assumed
hereafter that the observation (listening) point is in the far field, and that the
membrane is inserted in a rigid baffle.10 The radiated pressure is then given by:

P.r; �; ˚; !/ D �� !2 e�jkr

2�r

Z
˙

W.x0; y0; !/ej.kxx0Ckyy0/dx0dy0; (14.31)

with kx D k sin � cos˚ and ky D k sin � sin˚ which yields

P.r; �; ˚; !/ D �!
2�

2�r
e�jkr QW.kx; ky; !/; (14.32)

where QW.kx; ky; !/ is the spatial Fourier transform of the head’s transverse displace-
ment. From these expressions, all the radiation properties of the membrane can be
calculated. One can get, in particular, the radiated pressure per unit solid angle at a
given angular frequency ! [21]:

dhPai.!/
d˝

D r2

2�c
jP.r; �; ˚/j2 D �!4

8�2c

ˇ̌ QW.kx; ky; !/
ˇ̌2
: (14.33)

The radiated pressure then is written

hPai.!/ D �!4

8�2c

Z
˙

ˇ̌ QW.kx; ky; !/
ˇ̌2

sin � d� d˚ : (14.34)

Finally, the radiation efficiency is obtained in a similar way as for the radiating plate
in Chap. 13:


.!/ D hPai.!/
1
2
�chj PWj2i.!/ : (14.35)

10This latter assumption is certainly wrong for the lowest modes of the kettledrum, for which the
acoustic wavelength is larger than the diameter of the membrane. However, in this case, other
methods such as the iterative algorithm presented in Sect. 13.4.4 can be applied.
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Compared to plates, the main difference here is due to the fact that both the air and
membrane are non dispersive media, if the stiffness of the membrane is ignored.
As a consequence, no critical frequency exists, since both dispersion curves do not
cross each other. Following situations can occur:

• The wave speed cF of the flexural waves on the membrane is smaller than the
speed of sound c. This is the most common case for timpani, where cF is of
the order of magnitude of 100 m s�1. In this case, the radiation efficiency is
weak [21]. As for the plate, this follows from the fact that, over a distance
corresponding to one acoustic wavelength, the different spatial contributions of
the membrane (due to each elementary dipole) interfere in a destructive way. The
radiation field is almost omnidirectional.

• cF > c: this case can be observed in some drums, or, more generally, for
instruments with stiff skins and under high tensions. This is a situation of strong
radiation efficiency with 
 � 1. The instrument radiates in a cone with an half
top angle equal to � D arccos c

cF
[21].

• cF is close to c. Here, the acoustic wavelength is close to the elastic wavelength.
This corresponds to an hyper-radiating case. The radiation efficiency might take
values higher than unity. The radiation field is concentrated in the plane tangent
to the membrane.

For timpani, a compromise must be found between sound power and tone
duration. In particular, the duration must be sufficient (i.e., a sufficiently high
number of oscillations) so that the human ear can attribute a pitch to the tone. This
explains why a weakly radiating case is preferred for this category of instruments.
In such a situation, the radiated energy at each cycle is relatively small so that the
vibrational energy of the flexural waves on the membrane can last longer. For some
other drums (toms, djembe,. . . ) it is either the emergence of the sound over a whole
orchestra which is sought, or the transmission of the sound at a large distance (notice
that the sound of a djembe in free field can be heard at distances up to hundred of
meters). In this latter cases, the head is heavily stretched so that the instrument is
strongly radiating.

14.2.6 Numerical Simulation of the Coupled Problem

The numerical resolution of the coupled system composed of the mallet, the
membrane, the cavity, and the external air might pose a number of practical
difficulties.

1. The first difficulty is due to the size of the problem. Since the wanted accuracy
requires a 3D-modeling, the number of elements rapidly increases with the
considered volume of space and with the refinement of the spatial mesh. In
addition, for a radiation in free space, the required volume increases with the
propagation of the wavefront (theoretically, there is no limit for this!). Then,
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Fig. 14.18 Mesh of the
kettledrum. (Left) Separated
meshes yielding numerical
diffraction. (Right) Fictitious
domains method

in order to restrict the volume, a cube of air of 1 m3 is selected around the
instrument. Absorbing Boundary Conditions (ABC) are simulated on the edges
of the cube, in order to suppress the reflected waves, and thus to simulate a free
field. The size of the mesh inside the cubic domain is directly linked to the
maximum frequency fmax of the calculated variables. With a spatial step equal
to 2.5 cm, and assuming the currently admitted accuracy criterion of 10 points
per wavelength, then fmax D 340=0:25 D 1360Hz. This value is compatible with
timpani sound spectra, which do not contain significant energy above 1 kHz, as
seen in Fig. 14.15.11

2. A second difficulty is due to the approximation made of the shape of the bowl. In
order to keep a regular mesh, defined in a simple system of coordinates (Cartesian
coordinates, for example), one could imagine to use different discretization
schemes for the internal and for the external pressure field, respectively (see
Fig. 14.18).

However, this solution must be rejected because it generates spurious diffraction
effects due to the discontinuous (“staircase”) approximation of the bowl’s shape.
In order to overcome this difficulty, it is preferable to use the fictitious domain
method [32]. In this method (see below) the acoustic variables are calculated in
a unique domain ˝ , instead of the two separated domains ˝i and ˝e, thanks to
the introduction of a new “pressure jump” variable across the boundary of the
instrument.

14.2.6.1 Fictitious Domain Method

The fictitious domain method is based on a variational formulation of the problem.
Multiplying Eq. (14.12) by an admissible test function w�, and integrating it over
the surface ˙ of the membrane, we get

d2

dt2

Z
˙

msww�dS D
Z
˙

div

�
�r

�
w C �

d

dt

��
w�dS�

Z
˙

f .t/gw�dS�
Z
˙

Œp	j˙w�dS :

(14.36)

11In the context of musical sound synthesis, one might prefer referring to a dispersion criterion:
since the ear is very sensitive to slight differences in frequency, it is justified to select a mesh
density so that the frequencies can be estimated with an accuracy smaller than 1 % [45].
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Since the test function w� must fulfill the boundary conditions of the problem, this
function vanishes on the edge @˙ of the membrane. It can then be checked that the
integration by parts of (14.36) yields

d2

dt2

Z
˙

msww�dS D
Z
˙

�r
�

w C �
d

dt

�
rw�dS �

Z
˙

f .t/gw�dS �
Z
˙

Œp	j˙w�dS:

(14.37)

A similar method is applied to the acoustic equations (14.16), through introduction
of the test functions p� and v�, for both the pressure and velocity, for which the
boundary conditions are fulfilled. After integration by parts, we get (see [45]):

�
d

dt

Z
˝

vv�dV �
Z
˝

p divv�dV D
Z
�

Œp	j� v�:n dS (14.38)

and

1

�c2
d

dt

Z
˝

pp�dV C
Z
˝

divv p�dV D 0 ; (14.39)

where � D ˙ [ C is the total surface of the kettledrum (membrane + bowl), and
˝ is the complete space R3. A new variable � D Œp	j� appears in Eq. (14.38). This
variable is the pressure jump across the surface of the instrument with normal vector
n. Thanks to the introduction of this new variable, it is as if the unknown pressures pi

and pe were replaced by the unique variable p and, similarly, the unknown velocities
vi and ve were replaced by the unique velocity field v. The formulation of the
problem is completed by expressing the boundary conditions on the surface � :8̂<̂

: v:n D @w

@t
in ˙;

v:n D 0 in C :

(14.40)

Through integration on � , with the introduction of another test function ��, we get

d

dt

Z
˙

w��dS �
Z
�

v:n��dS D 0 : (14.41)

In summary, the fluid–structure problem corresponding to the acoustics of timpani
is entirely defined by the system of four equations (14.37)–(14.39) and (14.41),
where the four unknowns are the displacement w of the membrane, the pressure p
and the acoustic velocity v in space, and the pressure jump � across the surface of
the instrument. The numerical formulation of this problem is presented later in this
section.
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14.2.6.2 Absorbing Boundary Conditions

The purpose of ABC is to simulate a free space. In this context, the leading
idea consists of inserting artificial absorbing conditions at the border of the
computational domain. The basic principles of this method are presented here, for
the simple case of an half-space. For a cube, additional conditions on the edges and
on the corners are necessary [19]. The posed problem is the following: given the
wave equation

@2p

@t2
� c2

�
@2p

@x2
C @2p

@y2
C @2p

@z2

�
D 0 8.x; y; z/ 2 R3; (14.42)

the aim is to limit the computation in the half-plane z < 0 by imposing a
perfectly (totally, or transparent) absorbing condition in z D 0 (see Fig. 14.19).
Denoting QP.kx; ky; z; !/ the Fourier transform of the pressure (in time and space),
the conditions amounts to impose:

@ QP
@z

C j
!

c

s
1 � c2.k2x C k2y/

!2
QP D 0 in z D 0 : (14.43)

One drawback of the formulation (14.43) is that it is nonlocal in time and
space (x; y). As a consequence, the ABC cannot be expressed in the time domain
using partial differential equations. In order to overcome this difficulty, the functionp
1 � u (where u D c2.k2x C k2y/=!

2 < 1) is expanded onto a series of rational
functions:

p
1 � u ' 1 �

LX
lD1

ˇl
u

1 � ˛lu
D � �

LX
lD1

ˇl

˛l

1

1 � ˛lu
with � D 1C

LX
lD1

ˇl

˛l
;

(14.44)

Fig. 14.19 Principle of
absorbing boundary
conditions (ABC) on an
half-space
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where, for stability reasons, the parameters ˛l and ˇl must fulfill the conditions

˛l > 0; ˇl � 0;

LX
lD1

ˇl

1 � ˛l
< 1 : (14.45)

One possible alternative consists of selecting the Padé coefficients defined by:

ˇl D 2

2L C 1
sin2

�
l�

2L C 1

�
and ˛l D cos2

�
l�

2L C 1

�
: (14.46)

Auxiliary variables are the defined:

Q̊ l D !2

!2 � ˛lc2.k2x C k2y/
QP : (14.47)

The ABC can then be rewritten on the form of the following system:8̂̂<̂
:̂

d QP
dz

C j
!

c

 
� QP �

LX
lD1

ˇl

˛l

Q̊ l

!
D 0



!2 � ˛lc

2.k2x C k2y/
� Q̊ l D !2 QP :

(14.48)

Finally, returning back to the time domain through inverse Fourier transform, we
get 8̂̂̂̂

<̂
ˆ̂̂:

c
@p

@z
C �

@p

@t
�

LX
lD1

ˇl

˛l

@
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@t
D 0;
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l
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� ˛lc

2

�
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@x2
C @2
l

@y2

�
D @2p

@t2

ˇ̌̌̌
zD0

for l D 1; : : : ;L :

(14.49)

In practice, approaching the condition of perfect transparency (i.e., no wave
returning from z D 0) as close as possible depends on the order L of the expansion
(the higher the number of auxiliary variables 
l, the better the approximation). The
system (14.49) can be seen as a transport equation along z coupled to L 2-D wave
equations in the plane z D 0.

14.2.6.3 Numerical Discretization

The numerical resolution of the timpani model consists of seeking for discrete
approximations (ph; vh;wh; �h; �h) for the variables of the problem: the pressure p,
the acoustic velocity v, the displacement of the membrane w, the pressure jump
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a b c

Fig. 14.20 Mesh of the different constitutive elements of the kettledrum. (a) Cubic mesh for the
pressure ph and the acoustic velocity vh. (b) Finite elements P1 for the pressure jump �h. (c) Refine
previous P1 mesh for the displacement wh on the membrane

�, and the mallet’s displacement �. The index h indicates that we are dealing here
with a spatial discretization obtained from the meshes of the constituting elements
of the the kettledrum coupled to the free space. For these approximations, the finite
element method is used (see Chap. 1).

Figure 14.20 shows the meshes used by Rhaouti [44]. The space˝ is discretized
with a cubic mesh. The pressure ph and the velocity vh are associated with each
elementary cube. For the pressure jump �h, P1 finite elements are used. These
elements can be viewed as a 2-D generalization of the hat functions presented in
Chap. 1. A triangular mesh is selected on the surface of the instrument. Finally, a
triangular mesh and P1 finite elements also are used for the displacement wh of
the membrane. Since the speed of the flexural waves is usually three to four times
smaller than the speed of sound, the elastic wavelength also is three to four times
smaller than the acoustic wavelength, for a given frequency. In order to ensure the
coherence between all numerical schemes, a similar ratio between wavelength and
mesh size must be selected for the variables. For this reason, the size of the mesh
elements on the surface for wh is selected here so that the spatial step is four times
smaller than for the pressure jump �h.

After the space discretization, the equations of the problem are reduce to a matrix
system of time differential equations, similar to the example shown in Chap. 1. We
have
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8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
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ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

fh D K


.ı � �h C Gtwh/

C�˛ ;
m

d2�h

dt2
D fh;

Mw
d2wh

dt2
C Rwwh C �Rw

dwh

dt
C Aw�h D �Gfh;

Mp
dph

dt
C Dt

vvh D 0;

Mv

dvh

dt
� Dvph � Bv�h D 0;

Bt
vvh � At

w

dwh

dt
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(14.50)

whereMw, Rw, Mv ,Dv , Bt
v , andAt

w are matrices, and where G is a vector accounting
for the spatial extent of the mallet’s impact on the membrane. This system can be
discretized in time using finite differences, as seen in Chap. 1.

14.3 Example of the Guitar

14.3.1 Introduction

Various aspects of the acoustics of guitars have been addressed a number of
times in the previous chapters of this book. The vibrations of plucked strings, for
example, were presented in detail in Chap. 3. In Chap. 5, the dissipation mechanisms
encountered in the different constitutive parts of the instruments were analyzed.
The coupling between string and soundboard, and the soundboard-cavity coupling
were studied in Chap. 6. Finally, the general results on the radiation of plates,
and the plate-air interaction studied in Chap. 13 are also applicable to the guitar.
These previous investigations are pursued here where the interaction between air
and soundboard is now extended to the whole spectrum of the instrument (up to
5 kHz) and not only limited to the low-frequency range as in Chap. 6.12 Another new
feature of the model presented here is that the complex interactions between cavity,
soundboard, and the external air are taken into account. This additional feature is
made possible through application of the fictitious domain method (presented in the
previous section devoted to the timpani), which allows to consider the fluid domain
(internal cavity and external space of the guitar) as a whole.

The classical guitar (in contrast to the electric guitars without an air cavity)
has the particularity to show a sound hole in the soundboard. As a consequence,

12Notice that the simplified 2 dof air-plate model presented in Chap. 6 will appear as the low-
frequency limit of the general model presented here.
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the air cavity is not closed, and the acoustic field has no discontinuity between
inside and outside. An appropriate model should account for this specificity. The
average diameter of the sound hole is 10 cm, which corresponds to an half acoustic
wavelength at a frequency of 1.7 kHz. In comparison, the spectrum of guitar sounds
usually shows significant energy up to 5 kHz. Thus, it is not possible to ignore
the presence of this hole, in contrast with the previous case of timpani where the
diameter of the hole was significantly smaller than the smallest acoustic wavelength
of timpani sounds.

As for timpani, we have to consider the interaction between the vibrating parts
of the guitar and the acoustic field. The soundboard is the main radiating part of
the instrument, though, in some circumstances, the back plate also might contribute
to the total sound. The radiation of the other parts will be ignored in this section.
Compared to a membrane, the guitar soundboard is heavier and stiffer. However, as
discussed later, the acoustic pressure can affect its vibratory behavior. It should be
noticed that the pressure inside the cavity can be very high.13

In what follows, a recent guitar model is presented [22]. This presentation is
complemented by considerations on the acoustic intensity radiated by the instrument
[1]. Finally, a summary of power balance between all the constitutive parts of the
instrument is conducted. In this section, the equations of the model that present
similarities with the timpani model are not detailed. We content ourselves with
the presentation of the specificity of the guitar model, and we rather focus on the
significant physical results of the instrument (admittance, intensity, sound power,
damping factors, and decay times) that the model is able to account for. The
relevance of fluid–structure interaction in the case of the guitar is particularly
emphasized. Most of these results can be generalized to other stringed instruments.

14.3.2 Physical Model

In the guitar model presented below, several elements are coupled together:

• The string(s). The flexural motion of the string is assumed to be perpendicular to
the soundboard plane (one polarization). The internal damping is represented by
the association of a viscous (“fluid”) damping term and a viscoelastic term (see
Chap. 5). The excitation of the string by the finger is represented by a idealized
impulse localized in time h.t/ and space g.x/, see Fig. 14.21. The impulse h.t/ is
made of the association of two cosine functions accounting for a slow increase
followed by a fast decrease, and is inspired by experimental results (see [11]).
Is also accounts, to a first approximation, for stick-slip mechanisms between the

13Putting a microphone inside the cavity shows that the sound pressure level can reach 130 dB!
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Fig. 14.21 Idealized force impulse on the string. (Left) Time dependence h.t/. (Right) Spatial
extent g.x/

finger and the string (see Chap. 1). The function g.x/ is here a Gaussian function
(though other smooth functions could be used) and accounts for the finite width
of the finger on the string [23].

• The soundboard. An orthotropic plate model is used for the soundboard (see
Chap. 1). The shape of the plate is that of a standard guitar. The presence of
the bridge and of the ribs is represented by spatial heterogeneities of both the
density �p.x; y/ and thickness h.x; y/. The amount of internal damping depends
on the material, and is derived from experiments. The soundboard is assumed to
be clamped at its periphery, and free on the edge of the sound hole. Considering
the small mean value of the thickness, it is further assumed that the Kirchhoff–
Love model is applicable. The soundboard is excited by the force transmitted by
the string to the bridge, and by the pressure force on its both sides. The other
parts of the instrument are supposed to be perfectly rigid.

• The acoustic field. Here, the model is close to the one presented in Sect. 14.2 for
timpani [see Eq. (14.16)]. A condition of continuity for the velocity normal to the
soundboard is added, as well as a null condition for the normal velocity on the
other constitutive parts of the instrument.

Limitations of the Present Model

The present coupled model shows an additional degree of complexity, compared to
other elementary models where each constitutive part (soundboard, cavity, . . . ) is
treated separately. In this chapter, attention is put on radiation, and thus we focus
on the soundboard-acoustic field coupling. However, with the objective to model a
real instrument more accurately, then several refinements should be added. Without
pretending to be exhaustive, several possible additional features are the following:

(1) As indicated in the previous Chaps. 6 and 8, the motion of the string is complex
and cannot be reduced to a single polarization perpendicular to the soundboard.
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Several factors also induce a parallel component: the motion of the bridge, the
slipping of the string along the fret, and nonlinearities due to large amplitude
motion.

(2) The modal analysis of a guitar shows that one of the lowest modes corresponds
to a flexural mode of the neck (free at one end, and loaded by the body at
the other end). The corresponding eigenfrequency is of the order of magnitude
of a few Hz. As a consequence, this mode does not directly contribute to the
audible radiated acoustic pressure. However, the flexion of the neck induces
fluctuations of length (and, in turn, fluctuations of tension) in the attached
strings. In conclusion, the coupling between the neck and the strings should
be taken into account in a future model.

14.3.3 Specificity of the Numerical Guitar Model

14.3.3.1 Spatial Discretization

A six strings guitar model that couples the soundboard with the air has been solved
numerically with a method similar to the one used for timpani [3]. Both models are
briefly compared and summarized below.

• The main difference between both instruments is due to the presence of a plate
operator for the guitar soundboard, compared to a 2-D wave equation in the case
of timpani membrane. This operator contains fourth-order space derivatives (see
Chaps. 1, 3 and 13). In order to use standard finite elements, the fourth-order
equations are replaced by second-order systems of equations where the new
variables are the velocity and the flexural moment.

• As for the kettledrum, the fluid–structure interaction problem is solved with the
fictitious domain method. For the guitar, this method has two main advantages:
it allows to avoid distinct pressures meshes inside and outside the cavity and, in
addition, it facilitates the treatment of the pressure continuity through the sound
hole. In this context, the present method is more efficient than those where the
cavity is considered separately (see, for example, [46]), or those requiring an
artificial ectoplasm (a massless vibrating element) at the sound hole [6].

Fig. 14.22 Mesh used for the string, the soundboard and the pressure jump
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• The string equation is replaced here by a system of first-order partial differential
equations, where both unknowns (force and velocity) are discretized with finite
elements.

• The acoustic field (inside and outside the cavity) is discretized with the same
scheme as for the kettledrum.

14.3.3.2 Time-Domain Discretization

The time-domain discretization of both the string and acoustic equations is achieved
with second-order centered finite difference schemes, as for the kettledrum. The
main difficulty arises from the soundboard equation.

The stability condition for the plate, with explicit second-order finite differences,
is of the form �t � A=h2p, where A is a parameter depending on the material used
for the plate, and hp is the spatial step. This means, for example, that the sampling
frequency must be multiplied by 4, if the spatial mesh is refined by a factor 2. Such a
condition rapidly becomes very cumbersome as soon as the objective is to extend the
spectral domain of the sound to be simulated. By comparison, we have the condition
�tmax / 1=h for the wave (or the string) equation, which is less demanding.

In order to overcome this difficulty, one can use a pseudo-spectral method [22].
The method consists, first, in calculating the in vacuo modes of the soundboard,
using spatial finite elements. This yields a system of decoupled differential equa-
tions where the damping terms can be added separately for each mode. For each
damped oscillator equation, the source term is the projection of the forces exerted
by the string and the pressure on the soundboard. These source terms are updated
at each time step. Notice that the time step for the soundboard must be compatible
with the time steps selected for the other constitutive parts of the instrument (string
and air).

In practice, computing the first 50 modes of the soundboard yields a satisfactory
simulation of the sound field up to 3 kHz. The average distance between consecutive
modes is then�f D 60Hz. As an illustration, Eq. (13.142) in Chap. 13 yields�f D
57Hz with the following data: �p D 350 kg/m3, E1 D 15:109 Pa, E2 D E1=17,
� D 0:3, h D 2:9mm, S D 0:1m2.

14.3.4 Admittance at the Bridge

The admittance at the bridge is a key variable influencing the coupling between the
“engine” of the instrument (the strings) and the resonator (the soundboard coupled
to both the air cavity and external air). Therefore, computing this quantity is an
appropriate means of quantifying the effects of coupling. The following results
were obtained by using Derveaux’s model described in Sect. 14.3.2. The values of
the geometrical and material parameters are extracted from the literature (see, for
example, [28, 29]). One advantage of the model is to compare the behavior of the
guitar successively in vacuo and in air.
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Fig. 14.23 Admittance at the bridge of a guitar at the attachment point of the 6th E-string (83 Hz).
(a) In vacuo soundboard. (b) Soundboard coupled to air and cavity: [0–800] Hz. (c) Soundboard
coupled to air and cavity: [0–3000] Hz. Simulation based on the model by Derveaux et al. [23]

Figure 14.23 shows the simulated admittances at the bridge for a guitar with a
soundboard of thickness 2.9 mm, and a cavity of height 10.4 cm. The two first figures
show a comparison between the simulated admittances between 0 and 800 Hz, at
the point of the bridge corresponding to the position of the lowest E-string (with
fundamental 83 Hz), in vacuo and in air, respectively. One can see that the influence
of both external air and cavity is reflected in a shift of the spectral peaks, and by the
emergence of additional peaks.

Below 250 Hz, the admittance curve in air shows the same shape as for the
simplified low-frequency two-oscillators model presented in Chap. 6 [17]. The
third figure shows the simulated admittance up to 3 kHz. Its general shape is
similar to those observed experimentally (see, for example, [8] or [49]). With the
selected parameters, the mean value of the admittance between 0 and 1 kHz is
approximately 10 dB above its mean value between 1 and 2.5 kHz, which shows
a higher mobility in the low-frequency domain. The peaks are clearly separated
for f < 1 kHz, whereas they overlap more and more with increasing frequency.
This overlapping can be attributed to both the air-structure coupling and damping
phenomena (material damping and radiation). The imbalance between low and high
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Fig. 14.24 Damping factors ˛ (in s�1). (Left) Comparison between the damping factors of the
in vacuo soundboard modes (asterisk symbol), and of the soundboard coupled to external air and
cavity (inverted triangle symbol). (Right) Comparison between the damping factors of the isolated
open E2 string modes (asterisk symbol), the string modes coupled to the in vacuo soundboard
(square symbol), and the string modes coupled to the complete guitar (inverted triangle symbol).
Simulations based on the model by Derveaux et al. [23]

frequency domains is reinforced if the thickness of the soundboard decreases. With
an average thickness divided by a factor of 2 (1.45 mm), the mean value of the
admittance between 0 and 500 Hz is roughly 15 dB below its mean value between
500 and 2500 Hz [23].

14.3.5 Damping Factors

The admittance curves are complemented by the damping factors shown in
Fig. 14.24. These factors are the imaginary parts of the eigenfrequencies which
govern their decay times. The damping factors ˛ of the in vacuo soundboard
(asterisk symbol), and of the soundboard coupled to air and cavity (inverted triangle
symbol), are represented on the left figure. These values are derived from time-
frequency analysis of the impulse responses of the bridge velocity, at the attachment
point of the 6th E-string (83 Hz). Not surprisingly, the curve ˛.f / for the in vacuo
soundboard is in accordance with the linear law selected for the structural damping
in the model. For the soundboard coupled to external air and cavity, the mean
value of the damping factors is higher than in the previous case. However, the
variations from one mode to the next is more erratic. Due to multiple coupling
between soundboard and air modes, some of the modes even show a smaller global
damping factor than the structural damping factor (at the same frequency), whereas
the neighboring frequencies are more damped. It is as if some of the modes receive
energy from their neighboring modes through air-structure coupling.
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Similar conclusions can be drawn for the strings. Figure 14.24 (right) shows a
comparison between the damping factors ˛ of a isolated open E2 string (asterisk
symbol), with fundamental 83 Hz, and of the same string coupled to the in vacuo
soundboard (square symbol) and to a complete guitar (inverted triangle symbol),
successively. The curve ˛.f / is a parabola, which is coherent with the selected
damping model made of the association of a fluid damping term and a viscoelastic
damping term. Due to the coupling of the string with the in vacuo soundboard, the
damping factors globally increase. However, the increase in damping fluctuates from
one mode to the next, depending on the degree of proximity between soundboard
and string modes (see Chap. 6). Finally, the coupling of the soundboard with air and
cavity yields an additional increase of the average damping, though with significant
variations from one mode to the next. Such fluctuations are currently observed on
real guitars [50].

14.3.6 Radiated Sound Field

Figure 14.25 shows five successive snapshots of the pressure field radiated by a
simulated guitar in its symmetry plane, right after the initial plucking of the 1st
open string (E4: fundamental 330 Hz). The delay between consecutive snapshots
is 0.36 ms. At first (snapshots 1 and 2), the pressure field is omnidirectional and
is mainly due to the vibration of the soundboard. In the meantime, the magnitude
of the pressure field inside the cavity increases progressively. From snapshot 3, the
cavity radiates through the sound hole. The internal field is partially in phase with
the motion of the soundboard, and partially in antiphase. On snapshots 4 and 5, the
cavity field progressively becomes in total antiphase with the external field. As a
result, a decrease of pressure followed by an inversion of the outside pressure is
observed. The instantaneous directivity of the pressure field is complex and evolves
rapidly with time. This is a consequence of the large number of excited modes
(between 0 and 3 kHz), where each mode has its own directivity pattern and its own
temporal evolution. As observed in timpani, the global directivity of the instrument
stabilizes after a certain amount of time (typically within one second). At this time,
the sound of the guitar is governed by a relatively low number of string’s partials.

t1 = 0 ms t2 = 0.36 ms t3 = 0.72 ms t4 = 1.08 ms t5 = 1.44 ms

Fig. 14.25 Successive snapshots of the pressure field radiated by the guitar, right after an initial
pluck of the 1st open string (E4: fundamental 330 Hz). Simulations based on the model by
Derveaux et al. [22]
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Fig. 14.26 Acoustic intensity for the guitar mode at 272 Hz. (Left) Plane perpendicular to the
neck. (Middle) Symmetry plane of the guitar. (Right) Horizontal plane, 1 cm above the soundboard.
After [1]

14.3.7 Acoustic Intensity and Power Balance

14.3.7.1 Acoustic Intensity

In the model used in the section for illustrating the acoustics of guitars through
simulations, we take benefit from having at our disposal both the pressure and the
acoustic velocity field to compute the acoustic intensity I D pv. Figure 14.26 shows
an example of the useful information provided by this variable. In this Figure, the
intensity I is shown in three perpendicular planes, successively: the symmetry plane
of the instrument, one horizontal plane close to the soundboard, and one vertical
plane perpendicular to the neck and passing through the box. The acoustic intensity
is here averaged over one period, for a forced sinusoidal excitation close to one
mode of the complete guitar (272 Hz). As shown in Chap. 1, the acoustic intensity is
linked to the energy density through its divergence. As a consequence, the intensity
vectors are oriented towards the regions of space with increasing acoustic energy. A
“source” is characterized by a set of diverging vectors, whereas a “sink” is a region
where the intensity vectors converge. In Fig. 14.26, one can see both the internal
and external sources and the regions of space (above the soundboard, in particular)
where the energy density vanishes, due to opposition of phase between sources.

14.3.7.2 Radiated Power and Acoustical Efficiency

At this point, we are now able to compute the acoustical efficiency of the guitar (see
also Chaps. 2 and 13), defined as:

� D hPai
hPii ; (14.51)
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where Pa is the mean value of the radiated power, and Pi is the mean value
of the total power dissipated in the instrument. For simplicity, only one string is
considered. We have

hPii D hPai C hPci C hPsi (14.52)

where hPci is the mean power dissipated in the string, and hPsi is the mean power
dissipated in the body.

Let us now consider one particular frequency component !n of the string’s
spectrum for which the mean power dissipated over one period Tn D 2�=!n is
calculated. We denote Vn the modal amplitude of the string’s velocity, and rn the
modal resistance corresponding to the internal losses. The quality factor is then
given by Qn D !nmn=rn, where mn is the modal mass [33]. The mean power
dissipated in the string for this partial is written

hPci.!n/ D 1

2
rnV2

n : (14.53)

When the string is coupled to the soundboard (at position x D L), it was shown
in Chap. 6 that the mean power dissipated at the end (or, equivalently, the power
transferred from string to soundboard) is written

hPLi.!n/ D 1

2
Z2c <e fY.!n/g V2

n : (14.54)

In (14.54), Y is the driving point admittance of the bridge at the attachment point,
for the soundboard loaded by the air. hPLi accounts for all acoustic and structural
losses in the loaded body at frequency !n: hPLi D hPai C hPsi. In summary, the
mean power dissipated in the guitar at frequency !n is written

hPii.!n/ D hPci.!n/C hPLi.!n/ : (14.55)

Experimentally, rn can be derived from measurements performed on an isolated
string, or, alternatively, on a guitar where the soundboard is blocked. The quantity
Y.!/ can be obtained from standard admittance measurements (see Chap. 3). Using
finally Eqs. (14.53) and (14.54), one can calculate the efficiency for a given !n.

Table 14.2 shows the values obtained for the acoustical efficiency, at some
particular frequencies, using the guitar model by Derveaux et al. These values are
coherent with measurements performed on real guitars by Boullosa et al. These
authors have shown, among other things, that a link exists between the acoustical
efficiency of the guitar and the subjective evaluation of its quality for both the
players and listeners. From the point of view of the player, the input mechanical
energy that can be transmitted to the guitar is limited in terms of maximum force
and string displacement. Thus, it is essential that a significant part of this energy
can be converted into sound power without excessive effort that would deteriorate
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Table 14.2 Acoustical
efficiency of the guitar

Frequency (Hz) 200 272 289 372 437 508

� (in %) 40.8 3.96 0.9 8.8 7.8 4.09

Simulations based on Derveaux’s model [14]

the sound quality. A noticeable efficiency is necessary so that the guitarist can have
enough dynamic range at its disposal in order to introduce subtleties in the played
music. However, one must keep in mind that other quality factors of the instrument
are essential for playing “good” music, such as the spectral balance between bass
and treble sounds, and the clarity of the attack. Last but not least, the talent of the
player cannot be ignored!

In conclusion, a guitar tone is a free oscillation: the total dissipated power is the
sum of the power dissipated by both the strings and the air-loaded body. The power
dissipated by the soundboard modes takes place during the initial part of the sound,
since their quality factors are significantly smaller than those of the strings (see
Chap. 6). After this transient part, the main part of the radiated power is concentrated
in the partials of the strings. Audibly, a guitar tone is schematically made of a short
“body” sound followed by a long “string” tone.

In this section, attention was mostly paid on classical guitars with nylon strings.
Electric guitars are characterized, in particular, by a more massive body and the
use of steel strings, which induce a significantly different tone quality. For more
information on electric and steel strings guitars, one can refer to [38, 40–42].

14.4 Example of the Piano

14.4.1 General Presentation of the Model

A piano sound is the result of free oscillations, as for guitars and timpani in their
normal use. As the player presses a key, a complex mechanism is activated whose
main effect is to project the hammer against the strings with an impact velocity
that depends on the depression conditions of the key [48]. In what follows, the key
mechanism is ignored. The consecutive vibrations of the hammer shank also are
ignored. A recent study by Chabassier and Duruflé highlights the relevance of these
vibrations [10].

The model starts as the very instant where the hammer hits the strings, taken as
the origin of time. The purpose is to model the succession of vibratory and acoustic
phenomena in hammer, strings, soundboard, and surrounding air.

The strings are set into motion by the blow of the hammer. Their motion is
a combination of transverse and longitudinal waves. These waves are nonlinearly
coupled, due to the variation of the tension with amplitude, as shown in Chap. 8.
These nonlinear phenomena greatly influence the properties of piano sounds: they
are responsible for the presence of pitch glide and phantom partials. In this section,
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Fig. 14.27 General configuration of the piano model

the nonlinear equations of strings presented in Eq. (8.62) will be used. Another
nonlinear feature exists in the hammer–string interaction, due to the compression
of the felt, as seen in Chap. 1. The interaction force is modeled here as a power law,
as for the interaction between a mallet and a timpani head. The main consequence
of this nonlinearity is to widen the excited spectral domain (due to shortening of the
force impulse) as the hammer impact velocity increases.

An orthotropic Reissner–Mindlin (or thick plate) model is selected for the piano
soundboard [9]. Such a model can be viewed as equivalent to the Timoshenko model
for plates, in the sense that it accounts for the shear stresses, so that the transverse
displacement is coupled to the rotation of the cross-sections [43]. Such a model,
which is more complex than the Kirchhoff–Love model used for the guitar, is firstly
justified by the spectral extent of most piano sounds (up to 15 kHz and even more)
and, secondly, because of the presence of bridge and ribs. Due to these elements,
the assumption of thin plate is no longer valid. The ribs and the bridge are taken into
account as heterogeneities in thickness and material properties of the soundboard,
as for the guitar model presented in the previous section. Figure 14.28 illustrates
this method in the case of a grand piano (Steinway D).

The coupling between the soundboard and a string has to be expressed by dual
conditions, in order to conserve the energy: one condition for the force and another
for the velocity. The force exerted by the string is given in Eq. (8.64) in Chap. 8.
Assuming that the motion of the bridge is purely vertical (an assumption that could
eventually be revised), then one has to write a condition of continuity for the vertical
components of both string and bridge velocities, and a condition of nullity for the
horizontal motion of the bridge.

The conditions of coupling between the structure of the piano and the acoustic
field can be written with a similar method as for the guitar and the kettledrum.
The linear acoustic equations in the surrounding air are the same as in Eq. (14.16).
It is supposed here that only the soundboard vibrates, all other parts of the
instrument remaining rigid. Thus, a continuity of the normal velocity is written on
the soundboard, and a condition of nullity of the normal acoustic velocity is written
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Fig. 14.28 Grand piano
soundboard model. The thin
grey stripes indicate the
direction of the fibers. The
ribs (in dark grey) and the
bridge (in black) are treated
as heterogeneities

ex

ey

on the other parts. We are aware of the fact that this is an approximation since, in
reality, one can clearly feel with the fingers that the rim of a grand piano vibrates,
especially when playing notes in the bass range.

The free space is simulated here using perfectly matched layers (PML). The
method consists of simulating a fictitious layer of absorbing material along the
boundaries of the computational domain, in order to limit as much as possible the
reflected waves [2].

An equation of energy conservation can be written for the complete model
composed by the hammer, the strings, the soundboard, and the acoustic field,
as illustrated in Fig. 14.29. This energy conservation is then used for deriving
numerical schemes with the guarantee of stability.

14.4.2 Modal Analysis of the Soundboard

The dynamics of the soundboard is governed by a plate operator. As for the guitar
[23], it is preferable to solve this part of the model in two steps because of the
required accuracy in the calculation of the frequencies (numerical dispersion). In
a first step, a modal analysis is conducted on the undamped soundboard (i.e., the
terms of losses are not considered in the equations). The soundboard equations are
discretized in space, using high-order finite elements. For a grand piano, typically
2400 modes are necessary for predicting accurately the vibrations of the soundboard
between 0 and 10 kHz.
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Figure 14.30 shows a few calculated modes for a Steinway D soundboard, with
fourth-order finite elements and 450,000 degrees of freedom. Examining the shapes
of the higher modes confirms the results presented in Chap. 3 for an upright piano:
here also, the vibrational energy is localized in relatively narrow areas, frequently
bounded by the ribs and/or the bridge.

In a second step, once the soundboard modes are obtained, each modal amplitude
Xn.t/ associated to the modal frequency fn is governed by a second-order differential
equation, as shown several times in Chap. 3. Then, a convenient way to account for
the observed damping in the soundboard material (wood) is to introduce in these
oscillator equations a damping term whose value is derived either from experiments
or from available data in the literature for the appropriate species. We get

d2Xn

dt2
C ˛.fn/

dXn

dt
C .2�fn/

2 Xn D Fn; (14.56)

where the terms Fn are the modal projections of the source terms. These terms
are composed by both the string forces and acoustic pressure due to the radi-
ated field. Recall that introducing a posteriori damping terms in the decoupled
equations (14.56) is justified as long as the damping factors are reasonably
small compared to the eigenfrequencies (see Chap. 5). Usually, this assumption
of diagonal damping is justified for the wood species of current use for making
the soundboard, for which the damping coefficients are of the order of a few
percents [27].

The damped oscillator equations (14.56) yield analytical solutions which can be
discretized with any time step, without altering the dispersion, and with no risk of
instability. The appropriate selected time step must be synchronized with those used
for the other constitutive parts of the piano (strings and acoustic space).
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Fig. 14.30 Examples of some simulated modes of a grand piano soundboard (Steinway D)

Recent studies on the vibroacoustics of the piano soundboard were made by
Boutillon and Ege [7]. Mamou-Mani et al. investigated the influence of prestress
on the eigenfrequencies of piano soundboards [37].

14.4.3 Results of the Simulations

Figure 14.31 shows the temporal evolution of some simulated variables for the note
C2 (fundamental f D 65:4Hz) during the first milliseconds of the sound, using the
piano model presented above [9].

The transverse displacement of the string is shown on the top of the figures,
the longitudinal displacement is drawn in gray color in the line thickness. It can be
seen that the longitudinal perturbation reaches the end (bridge side) well before the
transverse wave, in accordance with the ratio between the speed of these waves



14 Radiation of Complex Systems 811

×10 –3

×10 –7

c
5
4
3
2
1
0

−1
−2
−3
−4
−5

a
4
3
2
1
0

−1
−2
−3
−4

1
0

−1
×10 –3

×10 –8

b

fd e

ig h

2.0
1.5
1.0
0.5

0
−0.5
−1.0
−1.5
−2.0

2.0
1.5
1.0
0.5

0
−0.5
−1.0
−1.5
−2.0

1
0

−1

×10 –8
2
0

−2

×10 –7

1.0
0.8
0.6
0.4
0.2

0
−0.2
−0.4
−0.6
−0.8
−1.0

1.0
0.8
0.6
0.4
0.2

0
−0.2
−0.4
−0.6
−0.8
−1.0

1
0

−1
×10 –2×10 –2

×10 –8

2.0
1.5
1.0
0.5

0
−0.5
−1.0
−1.5
−2.0

5
0

−5

×10 –8
5
0

−5

×10 –7

4
3
2
1
0

−1
−2
−3
−4

1
0

−1

×10 –7

3

2

1

0

−1

−2

−3

1
0

−1

×10 –7
1
0

−1

Fig. 14.31 Temporal evolution of some simulated variables for the note C2 (fundamental f D
65:4Hz) using a grand piano model (Steinway D). The transverse displacement of the string is
shown on the top of the figures, the longitudinal displacement is drawn in gray color in the line
thickness. The displacement field of the soundboard is shown in the bottom of the figures, and the
pressure field is shown in two planes perpendicular to the soundboard. The snapshots are calculated
at the successive instants of time: (a) 0.4 ms; (b) 1.1 ms; (c) 2.1 ms; (d) 3.1 ms; (e) 4.1 ms; (f)
5.1 ms; (g) 7.1 ms; (h) 8.1 ms; (i) 16.1 ms

(around 14). The displacement field of the soundboard is shown in the bottom
of the figures, and the pressure field is shown in two planes perpendicular to
the soundboard. These planes cross at the attachment point of the string (C2)
on the bridge. It can be seen that the soundboard starts to vibrate in picture (b),
approximately one millisecond after the impact of the hammer: this initial vibration
is due to the longitudinal wave, since the transverse wave has not reached the bridge
at that time. From Fig. 14.31b–f, the longitudinal wave excites the soundboard
modes, which yield a significant contribution to the attack of piano tones. On
the waveforms, this contribution takes the form of the so-called precursor whose
magnitude increases with the loudness of the tone, which is in accordance with the
nonlinear model of the string [15]. This property is illustrated in Fig. 14.32, for the
note D]1.



812 A. Chaigne and J. Kergomard

0.4

0.2

0

–0.2

–0.4

0.2

0.1

0

–0.1

–0.2

0.08

0.04

0

–0.04

–0.08

2.5
1.0
0.5

–0.5
–1.5
–2.5

0.25
0.15
0.05

–0.05
–0.15
–0.25

1

0.5

0

–0.5

–1

0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05

0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05

0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05

Time (s) Time (s)

Time (s) Time (s)

Time (s) Time (s)

Pr
es

su
re

 (
a.

u.
)

Pr
es

su
re

 (
Pa

)
Pr

es
su

re
 (

Pa
)

Pr
es

su
re

 (
Pa

)

Pr
es

su
re

 (
u.

a.
)

Pr
es

su
re

 (
u.

a.
)

Fig. 14.32 (Left) Measurements and (Right) simulations of the acoustic pressure radiated by
a grand piano (Steinway D) for different levels of excitation: (top) forte; (middle) mezzoforte;
(bottom) piano. Note D]1 (fundamental f D 39Hz)

Figure 14.33 shows the spectral analysis of measured and simulated piano tones
for the note D]1 played on a Steinway D, for different levels of attack.

It can be seen first that the domain of excited frequencies increases towards
the high frequencies as the initial velocity of the hammer increases. This is a
consequence of the decrease of the impulse duration due to stiffening of the
hammer’s felt. In each spectrum, the presence of a dense packet of frequencies
between 0 and 800 Hz superimposed to the string’s partials is also observed. This
packet, which remains almost unchanged from one spectrum to another, is made
of the lowest modes of the soundboard. These modes are excited by the strings:
the lowest soundboard modes are less damped than those in the medium and high
range, and this is the reason why they are more visible on the spectra. Although all
soundboard modes are significantly more damped than the strings’ modes, they are
clearly audible during the attack transients. Cutting artificially the first milliseconds
of a piano tone, then a rather poor “string” tone is obtained. Finally, Fig. 14.33 shows
that the spectra are enriched in some specific frequency bands, as the amplitude
increases. In the present case, such an enrichment is visible around 1.2, 1.7, 2.3,
2.8, 3.3, 3.7, and 3.9 kHz. As shown in Chap. 8, these additional peaks are phantom
partials, due to nonlinear combination of both the transverse and longitudinal waves
on the string.
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Fig. 14.33 Spectra of the sound pressure radiated by a Steinway D grand piano for different levels
of excitation: (top) forte; (middle) mezzoforte; (bottom) piano. Note D]1 (fundamental f D 39Hz).
Left: measurements; Right: simulations

14.4.4 Radiation and Directivity of the Piano

In this section, the purpose is to investigate the influence of ribs and bridge on the
radiation of the piano, with special emphasis on the directivity of the instrument in
the medium and high frequency range. This study is related to the localization of
modes presented in Chap. 3 [16].

The problem is illustrated here by simulations of directivity performed on a
model of upright piano soundboard with equally spaced ribs, without the bridge.
Figure 14.34 shows the directivity of the pressure field in two (almost perpendicular)
particular planes in the direction of the ribs, and in the direction of the fibers,
respectively. At frequency f D 2078Hz, the inter-ribs distance corresponds here
exactly to the half of a vibratory wavelength. The sound field is calculated on a
hemisphere with radius r D 3m. Both directivity patterns show a number of narrow
peaks, which means that the radiated energy is concentrated in narrow solid angles.
This is nothing but a particular case of antenna effect, comparable to those seen
in the previous chapters for plates and wind instruments: in all these situations, the
directivity is reinforced for equally spaced arrays of identical sources.

By contrast, Fig. 14.35 shows the directivity patterns obtained from a measured
velocity field on an upright piano soundboard, at a forcing frequency f D 1542Hz.
The real soundboard here has a slightly irregular distribution of ribs and two
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Fig. 14.34 (Top) Calculated displacement field for an upright piano soundboard with equally
spaced ribs, at frequency f D 2078Hz. (Middle) Directivity D(� ) in the direction of the ribs
(X axis). (Bottom) Directivity D( ) in the direction of the fibers (Y axis)

bridges. As a consequence, localized modes, and also localized operating deflexion
shapes (ODS) are observed. Recall that ODS are combination of modes with close
eigenfrequencies, that are currently observed for forced excitation (see Chap. 3).
Due to damping, the modes of a real structure generally cannot be separated beyond
a certain frequency (usually beyond 1–1.2 kHz for piano soundboards), and ODS
are measured. In a recent paper, it was shown that the localization of modes also can
lead to localization of ODS, which corresponds to experiments [16]. As a result of
this localization, the array equivalent to the soundboard is made of a significantly
small number of sources, compared to the case presented in Fig. 14.34. Thus, the
directivity patterns show only one main lobe (along  ) and two main lobes (along
�). In addition, these calculated patterns are very well predicted by those resulting
from an equivalent array of 4 � 2 monopoles (see Fig. 14.35). In conclusion, one
practical result of mode localization in the piano, which occurs primarily in the
medium and high frequency range, is that the opening of the main lobe is wider as
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Fig. 14.35 (a) Measured velocity field on an upright piano at f D 1542Hz. (b) Array of 4 � 2
monopoles presenting the same geometrical properties as the vibratory zones of the soundboard. (c)
Directivity pattern D(� ) along the X-axis (direction of the ribs) and (d) along the Y-axis (direction
of the fibers): these patterns were calculated from the measured velocity field (solid line) and from
the array of monopoles (dashed line), respectively

with a regularly spaced ribs pattern. In consequence, the spectral distribution of the
radiated sound is not subjected to strong variations, as the direction of observation
changes around the instrument, which is rather a favorable property. At this stage,
one remaining question is to know whether this interesting effect is really wanted
(and controlled) by the piano makers.

14.5 Radiation of Wind Instruments with Several Orifices

In Chap. 12, we explained that at low frequencies the orifices of wind instruments
radiate as monopoles, because their dimensions are small compared to the wave-
length. This is true, in particular, for woodwinds, even for saxophones which belong
to this category, although these instruments have rather wide orifices. The present
section aims to show how multiple sources can radiate. Two simple examples are
considered: the two orifices of an open flute, which are rather far apart from each
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other, and the lattice of woodwind toneholes, which are close to each other. We add
the problem, which is slightly different in nature, of two tubes having their radiating
ends close to each other; this allows a global understanding of the sound production
and radiation for a self-oscillation instrument.

As mentioned in the introduction of Chap. 12, we do not study the effect of the
room, or even the reflection on the floor, and assume that instruments radiate into
an anechoic room. Indeed it is useful, if only for the sound engineers, to understand
the essentials of the interference fields created by wind instruments, before studying
how they are modified by the rooms.

14.5.1 Open Flute at Low Frequencies

Among woodwinds the flutes are a particular case, because the exciter system
directly radiates. For a Boehm flute, radiation is due at least to two sources.14 We
choose to investigate the particular case of an open flute without toneholes, with
a limitation to low frequencies. In chap. 7 we obtained the amplitude ratio of the
two sources for the mode n [Eq. (7.72)], and here we simplify this ratio. At low
frequencies, it is approximately equal to:

U2

U1

' .�1/nC1: (14.57)

For clarity we deliberately changed the notation: the outgoing flow rates from
the orifices are considered as positive15: for the mouth-hole U1 D �U.0/ and for
the passive end of the instrument U2 D U.`/: We are interested in the playing
frequencies and in their harmonics, assuming that they are very close to the modal
frequencies: as an example, the mth harmonic of the playing frequency n is at the
frequency mn:

• In Chap. 12 (Sect. 12.6.3), we examined the problem of the interaction of orifices
of two tubes, and here we discuss it for the present case by choosing the example
of the passive end, with flow rate U2. The pressure created by this flow rate at this
end is equal to P22 D Z22U2, where Z22 is the (self-)impedance of this source,
while the pressure created by the mouth-hole, which is at the distance `, is given
by P21 D Z21U1. The mutual impedance Z21 is given in Eq. (12.146), with d D `.
The determination of the influence of one source on the other is reduced to the
ratio jZ21=Z22j, because the two flow rates have the same order of magnitude.

14We wish to emphasize different meanings of the word “source”: in Chap. 10, aeroacoustic sources
were defined as the origin of the sound production. Here the considered sources are the orifices,
which are the sources of acoustic radiation.
15Remind that in Chap. 10, we denoted U.0/ D Qm:
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Fig. 14.36 Directivity of a
Boehm flute near the
fundamental frequency of the
lowest note, C4, 261 Hz
(there are two sources only:
the mouth-hole and the open
end). Solid line: theoretical
result; dotted line:
experimental result when
exciting the instrument with a
small loudspeaker at the
location of the head joint
cork. The scale is linear. The
angles � D 180ı and � D 0ı

correspond to the mouth-hole
and the open end, respectively
(Courtesy of R. Caussé)

30

210

60

240

90

270

120

300

150

330

180 0

0,5

1,0

1,5

2,0

This ratio is equal to R=.2:4`/, where R is the tube radius, and therefore it is
small (in general R=` < 10, and it is possible to ignore the interaction between
the two sources).

• In order to calculate the directivity in the far field (the distance being much larger
than the tube length), we can directly use Eq. (12.27), with the following result
(see Fig. 12.6):

U.�/ D .U1 C U2/ cos

�
k`

2
cos �

�
� j.U1 � U2/ sin

�
k`

2
cos �

�
;

or, alternatively, if Eq. (14.57) is used

jU.�/j2 D 2 jU1j2 Œ1� .�1/n cos .k` cos �/	 : (14.58)

Because the distance of the sources is not small compared to the wavelength, the
behavior is very different to that of a simple monopole (for odd n) or dipole (for
even n). Figure 14.36 shows an experimental result, obtained with a loudspeaker
excitation, and the corresponding theoretical result. The interference field created
by an open flute is very complicated, even for the lowest playing frequencies, and
even when the toneholes are closed.

For the lowest playing frequency around k` D � , the radiation is maximum
in the direction which is transverse to the instrument (� D 90ı), and minimum
in the longitudinal direction. Measurements during playing were made for an organ
pipe [20], with an excellent agreement with theory, which shows the very weak
influence of the mean flow at low frequencies.



818 A. Chaigne and J. Kergomard

14.5.2 Instruments with Toneholes

In order to analyze the radiation by a lattice of toneholes, we first ignore the external
interaction, starting from the approach of Chap. 7, then we show how to state the
numerical problem when interaction is taken into account.

14.5.2.1 Radiation of a Regular Lattice of Toneholes Without External
Interaction

The theory proposed by Benade [4] for a periodic lattice of toneholes allows
showing the behavior difference between the frequency ranges below and above
the cutoff, when the lattice is supposed to be infinite.16 If the lattice is infinite,
all quantities of the cell n (see Fig. 7.27) are proportional to exp.�n� /, where the
propagation constant � .!/ is real in the stop band and purely imaginary in the
pass band [see Eq. (7.193)]. This applies in particular to the flow rate of the holes,
arranged in a regular antenna of monopoles, studied in Chap. 12 (see Fig. 12.7).
We denote the flow rate of the hole n Un D U exp Œ�.n � 1/� 	. The pressure
produced is given in Eq. (12.29), with � D j'; in the far field, it is proportional to
U exp Œ.n � 1/.2jk` cos� � � /	, where 2` is the hole interval, and � is the azimuth
of the considered point with respect to the tube axis.

• Below the cutoff, � is real and the flow rates decrease exponentially from the
first open hole. If it is assumed that the distance between two holes is smaller
than the wavelength (2k` << 1), the superposition of the different monopoles
is still a monopole and there is no directivity. Thus the woodwinds (except the
flutes!) radiate in an omnidirectional way at low frequencies. The first open hole
plays the main role: this is consistent with the analysis given in Chap. 7: to a first
approximation, it is if the tube was cut at the first open hole.

• The case of frequencies above cutoff is more complex: Eq. (12.30) can be used
for the directivity pattern:

D.�/ D sin N�

N sin�
where� D k` cos � � '

2
: (14.59)

Therefore there are directivity lobes, corresponding to � D 0; if we write ' D
2`!=v' , where v' is the phase velocity inside the lattice, they are obtained in
particular for17:

16Here we treat the case of reed instruments, in order to separate the problem of tonehole radiation
from that of the flute mouth-hole.
17The relationship between a monopole lattice and an infinite plate has been seen [see the note
after Eq. (13.56)]. Above cutoff the wavenumber k1 D '=2` is equal to

p
k2 � k2c ; it is therefore

smaller than the wavenumber k in free space, and this corresponds to the supersonic case. The
wavenumber tends to k at higher frequencies, thus there is no critical frequency and the subsonic
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cos � D c=v': (14.60)

When the frequency decreases to the cutoff, ' tends to 0 (v' tends to infinity),
and the lobe angle tends to � D �=2 perpendicularly to the tube axis. When
the frequency increases beyond cutoff, it can be shown that the phase velocity
becomes close to the free space sound velocity and that the lobe becomes close
to the tube axis. At very high frequencies, it can be observed that the radiation
mainly occurs from the tube end: this explains why saxophonists, when playing
with amplification, play with a microphone close to the instrument bell in order
to reinforce the highest frequencies.

• In the stop band, the behavior of a finite lattice is rather similar to that of an
infinite lattice, because the amplitude of the growing exponential is significant
near the end only and is often negligible as explained in Chap. 7. Conversely,
above the cutoff, the incoming wave term needs to be added to D.�/, but with a
multiplication factor corresponding to the flow rate reflection coefficient, and an
angle �R D k` cos � C '

2
: Therefore we find lobes that are symmetrical to the

lobes of the outgoing wave with respect to the vertical axis, though with a slightly
smaller amplitude because the modulus of the reflection coefficient is less than
unity.

Figure 14.37 shows an example of result with front and rear lobes. The
discrepancies between theory and experiment can be explained by the difficulty
to obtain an accurate computation at higher frequencies, but the qualitative
agreement between the results is rather satisfactory. However one difference
between theory and experiment is understood: the amplitude difference between
the front and rear lobes is underestimated by the theory, because the external
interaction of the holes is ignored, as explained in the next paragraph.

• Beforehand we notice that the generalization presented in Sect. 7.8.2.5 of Chap. 7
cannot be easily applied to radiation. For a lattice built with cells of different
geometry but with equal cutoff frequency, the input and output quantities
(pressure and flow rate) remain proportional to exp.�n� /; and it can be shown
that this is also true for the pressures at the input of the holes. However, the
relevant quantity for the radiated pressure is the flow rate: it is proportional to
the pressure at the input of a hole divided by the hole impedance, j!mt [see
Eq. (7.196)], and this impedance is not constant in the considered lattice. In the
pass band, the modulus of exp.�n� / D exp.�jn'/ is unity, and the flow rates
therefore are inversely proportional to the total mass of a hole, which decreases
with the hole radius. Consequently the flow rates increase with the hole radius,
and the analysis requires the examination of each particular case. The considered
lattice behaves as a periodic lattice for the internal field of the tube, but not for the
radiated pressure field. Nevertheless we conclude that qualitatively the radiation
structure keeps directivity lobes above the cutoff.

case does not exist. Below cutoff the wavenumber is purely imaginary: this case differs from both
cases supersonic and subsonic, with radiation into the far field.
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Fig. 14.37 Directivity of an
oboe, at f D 2366Hz near the
9th harmonic of one of the
lowest notes (C4,
fundamental 261 Hz): two
holes are open, in addition to
the bell. Solid line: theoretical
calculation. Dotted line:
experiments (which was done
by exciting the instrument
with a small loudspeaker at
its input). The scale is linear.
The angle � D 0ı

corresponds to the instrument
bell (Courtesy of R. Caussé)
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14.5.2.2 Radiation of a Tonehole Lattice with External Interaction

The previous analysis assumes that the holes radiate in separate spaces. A method
of computation of the interaction is given hereafter (see [35]; notice that another
method can be found in [36]). We start by giving the main qualitative results as
obtained by a numerical computation.

• In the stop band, the main attenuation from one hole to the following one is
not exactly exponential because the radiation is inversely proportional to the
hole spacing and comes to compensate the exponential attenuation. Thus, the
attenuation is rather linear and slow.

• In the pass band, there is a reflection at the end of the tube, and therefore there
are maxima and minima (i.e., antinodes and nodes) of flow rate. In other words
there is a non-zero standing wave ratio. A perturbation reasoning is possible:
because of the external interaction the strong flow rates compensate for the weak
flow rates, and the standing wave ratio decreases. This yields a small effective
reflection coefficient. The following phenomena result:

– The input impedance peaks are very attenuated above cutoff. Thus the exper-
imental determination of the cutoff frequency is justified. When interaction
is ignored, it has been seen in Chap. 7 that, on the one hand, the peaks
are very inharmonic above cutoff, and, on the other hand, they are rather
low in amplitude since the attenuation near the walls occurs over the whole
tube length (instead of below the first open hole as in the stop band). When
interaction is considered, the magnitude of the peaks is even lower.

– As the effective reflection coefficient is low because of external interaction,
the rear lobes are smaller than when interaction is ignored. It is a part of the
explanation of the discrepancy between the theory (without interaction) and
the experiments shown in Fig. 14.37.



14 Radiation of Complex Systems 821

Above cutoff, we conclude that there are directivity lobes mainly in the front
direction, and their orientation comes closer to the axis perpendicular to that of the
tube as frequency tends to cutoff. It should be specified that this analysis is linear and
ignores the particular effects existing at high level for narrow holes (see Chap. 8).

Computation Method for the External Interaction of Toneholes
The flow rates of the toneholes are sought with respect to one input reference
quantity, such as the input flow rate, denoted Us0, the subscript s indicating
a source. In order to generalize the calculation, we assume that there is also
a flow rate source Usn, emitting inside the tube at tonehole n (this can be a
small loudspeaker). The principle presented hereafter does not assume any
particular regularity of the holes. We also assume that it is a flute, which
radiates by the mouth with a flow rate U0 (the handling of the reed instrument
case is easy). For the sake of simplicity, we consider each hole as a shunt
admittance, ignoring the effect of the anti-symmetrical masses. For each hole
the flow rate conservation is written as:

Usn D Un C Urn C U`n: (14.61)

Un is the flow rate which radiates from each hole and contributes to the
radiated pressure. Urn and U`n are the flow rates entering the main tube on the
right and on the left, respectively, both defined with the orientation coming
out from the hole. At the output of the main tube, with subscript N, the
radiating flow rate is denoted UN , and UrN D 0. At the input (subscript 0),
we write Ug0 D 0. The flow rates Urn and U`n are related to the pressure
of the corresponding hole and that of the following one, pn and pnC1. Using
(7.119), it can be written

Urn D Ynpn C Y�npnC1: (14.62)

U`n D Y�n�1pn�1 C Y 0
n�1pn: (14.63)

The admittances Y are given in Eq. (7.119) with respect to the coefficients
of the transfer matrix of the main tube between the two holes. A matrix
relationship between flow rate vectors and pressure vectors is derived

Us D U C YP; (14.64)

where the admittance matrix Y of the hole lattice is tridiagonal, including
the known elements Yn, Y�n, and Y 0

n. The dimension is equal to the radiating
element number (mouth, holes, and tube end). It remains to express the
radiation impedance matrix ZR, which generalizes the relationship (12.139)

(continued)
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valid for two orifices:

P D ZRU: (14.65)

In order to take the pressure difference between the input and output of the
holes into account, Eq. (7.188) is used, and the acoustic mass which is denoted
�L3=S3 is added to the diagonal element of the matrix ZR. The solution of the
problem is therefore given by:

U D .I C YZR/
�1US (14.66)

In practice there is a unique source at the input and therefore the vector Us

involves a unique non-zero element. The flow rates at every orifice is deduced
with respect to Us0. The method can be used also when the interaction is
ignored, the matrix ZR being diagonal, but it is less efficient than the transfer
matrix method. Conversely, when interaction is taken into account, the matrix
ZR is full, and a numerical solution is required.

14.5.3 Interaction of Two Tubes

14.5.3.1 Statement of the Problem

The problem of two tubes interacting through radiation is somewhat similar to that
of a vibraphone (see Sect. 14.1). A typical example is that of two juxtaposed organ
pipes, which can have a mutual influence. This complex problem is interesting
because it can help understanding the effect of the interaction on the sound
production itself, thanks to the analysis of the input impedance and the radiation.
In order to simplify the problem, we consider the example of two cylindrical tubes
having a unique opening. One tube is provided with a reed, and the second one
is passive, with a closed extremity (see Fig. 14.38). The distance between the two
orifices is d. In order to calculate the input impedance of the reed tube, we use the
formula of the impedance projected at its input, and the radiation impedance matrix
which is given by Eq. (12.139).

The mutual impedance is assumed to be given in Eq. (12.146). In order to
calculate the impedance at the open end of Tube 1, we simply need the knowledge
of the input impedance of Tube 2:

Z2 D �P2=U2 D j
�c

S2
cot k`2: (14.67)
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Reed U1

1 d

U2

2

Fig. 14.38 Two tubes interacting: one is a reed tube and the other one is passive with a closed end.
The lengths are `1 and `2, the radii r1 and r2, and the spacing of the openings d

The sign � is a consequence of the orientation choice and of the definition of a
passive system impedance (see Sect. 1.3.3.1, Chap. 1). The flow rate ratio and the
radiation impedance of Tube 1 as modified by Tube 2 can be deduced as follows:

U1

U2

D �Z22 C Z2
Z12

I (14.68)

P1
U1

D Z11 � Z212
Z22 C Z2

: (14.69)

If Tube 2 was closed at its input (infinite Z2), Tube 2 would not perturb Tube 1,
because of the assumed approximations in the expression of the mutual impedance,
when ignoring the diffraction effects on the external walls of the tubes. It appears
that Tube 2 influences Tube 1 only if the mutual impedance is large enough,
therefore if the distance d is small enough, and if the impedance Z22 C Z2 is small
enough: this corresponds to the natural frequencies of Tube 2 when open at its input.
The first one is f D c=4.`2 C�`2/; where�`2 is the radiation length correction of
Tube 2. If the natural frequencies of Tube 2 differ from those of Tube 1, the influence
of the passive tube is weak, as it is expected for two tubes of different lengths, and
as it is often the case for two juxtaposed organ pipes.

14.5.3.2 Eigenmodes

The natural frequencies of the set of tubes can be calculated by considering Tube
1 closed at its input. This leads to the impedance seen from the output equal to
P1=U1 D j �c

S1
cot k`1 D �Z1 (if the orientation choice above presented for Tube 2 is

used). Using (14.69), we get

.Z11 C Z1/.Z22 C Z2/ D Z212:

When ignoring losses, the impedances become purely imaginary, and the solution of
this equation is the natural frequencies. The case of two symmetrical tubes (with the
same radius and above all the same length) is especially interesting. The equation is
written in the following form:
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Z11 C Z1 D Z22 C Z2 D ˙Z12:

Thus the natural frequencies are duplicated, with respect to the case where the tubes
are isolated (Z12 D 0/: At low frequencies the mutual impedance can be written as
follows: Z12 D jk�`12�c=S1, with �`12 D r21=4d. The two twin modes have the
following frequencies:

f �
n D .2n C 1/c

4.`1 C�`1 C�`12/
and f C

n D .2n C 1/c

4.`1 C�`1 ��`12/ :

They are very close together and are located on both sides of the non-perturbed
frequencies. Using Eq. (14.68), we find that they correspond to U2=U1 D C1
and U2=U1 D �1, respectively. The first ones correspond to a symmetrical field,
while the second correspond to an anti-symmetrical field, in accordance with the
symmetry of the geometry. The first ones are related to a monopole radiation,
while the second are related to a dipole radiation, which is very weak. This very
weak radiation corresponds to the same phenomenon than the quarter-wavelength
rejection observed when a closed chimney is at its resonance (see Chap. 7).

14.5.3.3 Input Impedance

In order to interpret the theoretical result for the input impedance curve, it is not
necessary to calculate the modes when losses (either visco-thermal or radiation) are
taken into account. We can use the fact that the peaks are inversely proportional to
the power entering the tube. Figure 14.39 shows a case where coupling is important,
because the tube radii are wide, and the distance d between the two openings is
small. It is limited to the first peak, which is split into two peaks. The first (sub-)peak
corresponds to a symmetrical field, with a rather strong radiation, while the second
(sub-)peak corresponds to an anti-symmetrical field, with a very weak radiation.
This explains why the second peak is higher than the first. Moreover it can be noticed
that:

• If Tube 1 does not radiate, the amplitude of the (unique) peak is almost twice
that of the 2nd peak, because when interaction excites Tube 2 the boundary
layer losses are equal in the two tubes. Acoustic power enters Tube 2 in order
to compensate for losses;

• If Tube 1 radiates in the absence of Tube 2, the amplitude of the (unique) peak is
almost twice the one of the first peak, because when interaction excites Tube 2,
the boundary layer losses are equal in both tubes which radiate symmetrically in
the surrounding space. The power entering Tube 2 is the difference between the
compensation for the losses and the radiated power.

In practice, Tube 1 is excited by a reed and produces the frequency of the 2nd
peak, which is the highest peak, and the radiation is weak. But quasi-periodic
regimes can also be expected because of the proximity of both peaks. This example
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Fig. 14.39 Modification of the first impedance peak of a cylindrical tube of length `1 D 0:3m,
radius r1 D 2 cm, put close to another identical tube, which is closed. The extremities are set
at distance d D 5 cm apart. The solid line shows the duplication of the peak. The dotted lines
correspond to the case of Tube 1 with Tube 2 removed: for the higher curve, the radiation is ignored
(the real part of the radiation impedance is zero), while for the lower curve, it is considered. The
effect of the passive tube is very weak far from its natural frequency. The unit of jZj in ordinate is
arbitrary

is particularly simple, and highlights the coupling effect of radiation. For the peaks
of higher frequencies, the phenomenon is more important because the ratio of the
radiated power to boundary layer losses increases and thus the first “sub-peak”
strongly decreases, and might even disappear.
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Glossary

Acoustic Compliance An acoustic compliance is defined as the ratio of an
acoustic-flow-rate difference to the time derivative of the acoustic pressure. It is
the product of a mechanical compliance by the square of a cross-section area.

Acoustic Impedance An acoustic impedance is the ratio of an acoustic pressure to
an acoustic flow rate (acoustic quantities are variations of physical quantities around
a mean value). It is equal to the mechanical impedance divided by the square of
the cross-section area. A specific acoustic impedance is a local quantity, i.e., the
ratio of an acoustic pressure to an acoustic velocity, equal to an acoustic impedance
multiplied by a cross-section area.

Acoustic Mass An acoustic mass is defined as the ratio of the acoustic pressure
difference to the time derivative of the acoustic flow rate. It is the ratio of a
mechanical compliance to the square of a cross-section area.

Acoustic Power The instantaneous acoustic power through a given surface is the
product of an acoustic pressure and an acoustic flow rate. The acoustic intensity is
a local vector, which is the product of an acoustic pressure by an acoustic velocity;
the flow of an acoustic intensity through a surface is the acoustic power.

Duct Modes Duct eigenmodes are modes of a cavity of infinite extend in the
longitudinal direction. The eigenfrequency spectrum is continuous. Their cutoff
frequency is the eigenfrequency of the 2D transverse area. Above this frequency, the
modes are propagating, while below this frequency, they are evanescent. A planar
mode (with a zero cutoff frequency) exists when the walls are rigid.

Eigenmodes and Eigenfrequencies Eigenmodes are eigenfunctions of the linear
operator that describes the vibrations, the domain of solutions being defined
by the boundary conditions. Modes are functions of space (the so-called modal
shapes, defined with a relative amplitude, only) multiplied by sinusoidal functions
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of time. The frequencies of these time functions are called the eigenfrequencies and
correspond to the eigenvalues of the operator. For conservative systems, eigenmodes
and eigenfrequencies are real. All points of the structure vibrate either in phase or in
antiphase. In general, the eigenfrequencies are not harmonic, and thus the spectrum
of the physical quantities (in free oscillations) contains partials. For a rigid-walled
cavity, an acoustic uniform exists, with a zero eigenfrequency.

Field A variable field corresponds to the values of this variable taken at all points
in space at a given time.

Forced Oscillations A vibrating structure is subjected to forced oscillations when
it is excited by a source imposing a time dependence to (at least) one physical
quantity in (at least) one point.

Free Oscillations A vibrating (or oscillating) structure is subjected to free oscilla-
tions if no source interacts with this structure, after cessation of an excitation. For a
linear structure, the physical quantities can then be decomposed into eigenmodes.

Harmonics The harmonic components of a signal (or “harmonics”) are integer
multiples of a fundamental frequency. The graphical representation of the magnitude
spectrum of a periodic signal shows equally spaced vertical lines. The period of
the signal is equal to the inverse of its fundamental frequency or, if the amplitude
of the fundamental frequency is zero, to the inverse of the distance between two
consecutive harmonics.

Modal Expansion For a linear structure, one can expand the motion onto the
modal shapes of the structure. The associated time functions are the generalized
displacements (or modal participation factors).

Modes of Dissipative Systems For a dissipative system, the eigenfrequencies are
complex, the time dependence of each mode is a damped sinusoid, and the modes
are either real or complex. In the complex case, the structure points do not vibrate
in phase and the shapes are not fixed in time (see Chap. 5).

Partials In general, the spectrum of a non-periodic signal is continuous, with pos-
sible salient components. These components are called partials, and are generally
not equidistant.

Resonance Frequency For a sinusoidal excitation with a given amplitude, the
response (for any other physical quantity) can reach a maximum at a given
frequency, called resonance frequency: the resonance thus corresponds to the
existence of a maximum effect for a given cause.

Self-sustained Oscillations A vibrating structure is subjected to self-sustained
oscillations when it is excited by a non-oscillating (either continuous or slowly
varying) source. This is a special case of nonlinear oscillations. After a transient
regime, and depending on the excitation parameters, different types of steady-
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state regimes may exist: periodic, quasi-periodic, chaotic, etc. The oscillation
frequency of the periodic regime might correspond to one particular eigenfrequency
of the structure, but the spectrum is composed of exact harmonics, even if the
eigenfrequencies of the structure are not harmonic.

Signal A variable signal (or waveform) is the time history of this variable at a given
point in space.

Spectrum The spectrum of a signal corresponds to its Fourier transform. For a
periodic signal, it contains harmonic components only.
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