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Preface

The intimate connection between information and quantum physics has received

considerable emphasis in the past two decades, in large part due to the successes of

quantum information science (QIS). The field of quantum computing/quantum

information processing is revolutionary in physical science for the future of infor-

mation technology. There are a wide variety of platforms that may be adapted for

useful information-processing protocols. This book specifically addresses the areas

of electron spin-qubit-based quantum computing and quantum information

processing with a strong focus on background and applications based on EPR/ESR

technique/spectroscopy, and organization of the book places emphasis on relevant

molecular qubit spectroscopy. The issues have never been included in a compre-

hensive volume that covers the theory, physical basis, technological basis, and a

selection of various applications and new advances in this emerging field. QIS links

the advanced electron magnetic resonance technology and sophisticated chemistry/

materials science for preparing realistic molecular spin qubits and their physical

models as matter qubits. An idea of quantum entanglement overlooked so far in

applied and natural sciences has attracted much attention in many a branch,

recently. The authors are well-known experts in the field who draw together aspects

of pulse-based magnetic resonance and computational science in the world. The

philosophy and approach to this volume stem from the fact that the field of quantum

computing/quantum information processing is not only a revolutionary approach

for the future of information technology but also underlies disruptive methodolog-

ical advances in magnetic resonance and molecular spectroscopy. “Quantum con-

trol of spin qubits” is a current and important technological issue in manipulating

many addressable qubits to realize quantum computing, providing feedback on the

advanced spectroscopy. EPR/ESR spectroscopy can afford suitable platforms for

this issue, in spite of the fact that electron spin qubits have been the latest arrival in

the emerging field of quantum computing and quantum information processing.

The volume begins with a comprehensive introduction to quantum computing or

quantum information processing from the viewpoint of electron magnetic reso-

nance superbly done by Sushil Misra. The next chapter, one of two involving

v



nuclear spins as well, relates to quantum effects in electron-nuclear-coupled molec-

ular spin systems by an expert team spearheaded by Robabeh Rahimi Darabad and

one of our coeditors, Takeji Takui. Next, Hideto Matsuoka and Olav Schiemann

address molecular spins in biological systems. Biological spin systems relevant to

the target issue have their own right. Then, emphasizing the electron spin-based

computing aspect more heavily, Takui’s group addresses adiabatic quantum com-

puting, different from quantum circuit approaches, on molecular electron spin

quantum computers, followed by a chapter on free-time and fixed end-point

multi-target optimal control theory applied to quantum computing by Mishima

and Yamashita, followed by a chapter by Koji Maruyama and Daniel Burgarth on

gateway theoretical schemes of quantum control for spin networks. Both chapters

above are important in terms of future development of control technology for

matter spin qubits. Coming back to nuclear spins and related topics, the group of

Raymond Laflamme from the Waterloo Institute for Quantum Computing provides

two chapters, one covering NMR quantum information processing and the other on

heat bath algorithmic cooling with spins. We note that NMR quantum computing

and quantum information processing have their own disadvantages, but there have

been many pioneering achievements in this particular field on the basis of the

inherent advantages.

As the reader can garner, we have a world-class team of contributors addressing

a relatively new, perhaps a paradigm shift in our use of this emerging technology. It

is also important to avail the reader of our ongoing plans to compile a second

comprehensive volume on this technology that addresses yet some of the topic areas

that we were unable to include in this book.

Lastly, it is with deep regret that our coeditor Graeme Hanson left us early in

2015 as a result of a devastating cancer. Graeme worked at his endeavors up to the

day he passed away and serves as an excellent role model for the rest of us. And, of

course, Graeme remains as a coeditor of this book.

Osaka, Japan Takeji Takui

Denver, CO Lawrence Berliner

St. Lucia, QLD, Australia Graeme Hanson (16th July 1955–25th February 2015)
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Quantum Computing/Quantum Information
Processing in View of Electron Magnetic/
Electron Paramagnetic Resonance
Technique/Spectroscopy

Sushil K. Misra

Abstract This chapter discusses spin-based quantum computation and information

processing using Electron Magnetic Resonance (also known as Electron Paramag-

netic Resonance—EPR, Electron Spin Resonance—ESR; the term EPR will be

used hereafter). The technique of pulsed EPR can be exploited to design quantum

computers. New quantum information applications can be established by the

development of EPR-based spin manipulation methodology on self-assembling,

interacting nanoscale structures, e.g. fullerenes. The details and implications of

these in the context of quantum computing are covered. As well, the various

relevant jargons used in quantum computing are briefly described.

Keywords Quantum computing (QC) • Quantum information processing •

Electron paramagnetic/spin resonance (EPR/ESR) • Pulse EPR/ESR Fourier

transform (FT) spectroscopy • Spin manipulation technology • Electron-nuclear

spin qubit systems • Quantum entanglement • Pulsed electron-nuclear double

resonance (ENDOR) • Time-proportional phase increment (TPPI) technique in

pulsed ENDOR • Electron-nuclear hybrid spin qubits • Molecular magnets •

Endothermal fullerenes • Quantum gates • Di Vincenzo’s criteria • Bell states

1 Introduction

A quantum computer can outperform any classical computer in factoring numbers

[1], and in searching a database [2] by exploiting the parallelism of quantum

mechanics. Whereas, Shor’s algorithm requires both superposition and entangle-

ment of a many-particle system [3], the superposition of single-particle quantum

states is sufficient for Grover’s algorithm [4], and has been successfully

implemented [5] using Rydberg atoms.
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In quantum computing, one brings together ideas from classical information

theory, computer science, and quantum physics. Information, propagating from a

cause to an effect, plays a fundamental important role in it. The mathematical

treatment of information, especially information processing, is quite new so that the

full significance of information as a basic concept in physics is only being discov-

ered in quantum mechanics recently. The theory of quantum information and

computing leads to some profound and exciting new insights into the use of quantum

states to permit (i) the secure transmission of classical information, known as

quantum cryptography, (ii) the use of quantum entanglement for reliable transmission

of quantum states, known as teleportation, (iii) the possibility of preserving quantum
coherence in the presence of irreversible noise processes, referred to as quantum
error correction, and (iv) the use of controlled quantum evolution for efficient

computation, known as quantum computation. In all these, the use of quantum
entanglement is the common theme as a computational resource.

A qubit (quantum bit) is a two-state system quantum mechanically; see Appen-

dix 1 for more details. It is capable of providing an arbitrary superposition of

quantum states, and it is much more complicated than a classical bit. An electron

spin with spin-1/2 is an example of the qubit. Thus, electrons are natural candidates

as physical qubits to be exploited for quantum computing and information

processing (QC/QIP).

The computation system in a quantum computer makes direct use of quantum-

mechanical phenomena, such as superposition and entanglement, to perform oper-

ations on data; see Appendices 4 and 5 for more details. In quantum computation,

one uses qubits (quantum bits), which can be in a superposition of states, giving

scalable predictable outcomes. In contrast, digital computers require data to be

encoded into binary digits (bits), each of which is always in one of two definite

states (0 or 1). Spins are natural qubits, and therefore magnetic resonance techniques,

consisting of EPR and NMR (nuclear magnetic resonance) are among the most

appropriate techniques to be exploited for quantum computing. NMR has already

been exploited to some extent, but EPR is still in its infancy as a QC technique due to

some inherent drawbacks as compared to NMR, especially in context with electron

decoherence time, which is three orders of magnitude shorter than nuclear

decoherence time. This caused a delay in exploiting EPR for quantum computing.

It is similar to the late arrival of the development of the technique of pulsed EPR

because of the intrinsic technical restrictions, as compared to that of pulsed NMR.

(The same applies to EPR imaging as compared to NMR imaging, which was

developed later.) Hopefully, these drawbacks will be overcome in the not-too-distant

future with further efforts to exploit EPR as an efficient QC technique.

Theoretically, quantum information processing and quantum computation have

been put on firm footing during the last decades [6]. One can solve problems with

QC/QIP technology that are impossible on currently available digital classical

computers. Quantum algorithms can reduce the CPU time for some important

problems by many orders of magnitude. An important merit of QC is the rapid

parallel execution of logic operations carried out by quantum entangled (superpo-

sition) states. For example, given the same input and output, the quantum

processing of given information data represents an exponential speedup for
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factorization by the Shor algorithm [1] and quadratic speedup for search problems

using Grover algorithm [2]. Also, by the implementation of the quantum informa-

tion algorithms such as quantum teleportation [7] and quantum super-dense coding

[8], some intrinsic advantages can be achieved over the classical information

processing. A quest toward the goal of building practical quantum computers

(QCs) encounters problems to be solved, such as (i) establishment and possible

utilization of the entangled states, (ii) implementation of quantum simulators

(digital or analog), (iii) preparation of scalable qubits, (iv) creation and storage of

quantum-data bases, and (v) implementation of novel QC algorithms.

Among matter qubits, molecular electron spin qubits, fulfilling the require-

ments for present-stage QCs/QIPs in the context of EPR, are the latest to be

exploited for the implementation of scalable QCs/QIPSs [9]. To this end, one

needs to design and implement electron spin qubits and nuclear spin qubits. This is

feasible in organic-based molecular frames, with extremely stable radicals. They

are synthetic qubits, well defined in terms of matter spin qubits in ensemble, to

which one can apply the established general guidelines for the molecular designs

of synthetic spin qubits. The synthetic qubits enable generation of quantum

entanglements between the electron spin and proton nuclear spins. Both pulsed

Electron-Nuclear-DOuble Resonance (ENDOR) and Electron-Electron DOuble

Resonance (ELDOR) techniques can be used as the most useful spin manipulation

technology in implementing QCs/QIPSs. Organic molecular frames are hybrid

spin qubit system along with a nuclear spin-1/2 qubit, termed molecular electron-

bus qubits. Electron spin qubits such as synthetic electron spin systems, i.e.,

unpaired electron spins in molecular frames, are promising candidates for

QC/QIP from the materials science, and have the potential to be exploited for

QC/QIP. There is a linkage between QC/QIP and pulsed electron magnetic

resonance as enabling ensemble-spin manipulation technology. The linkage

between QC/QIP and chemistry, or materials science, provides insights into the

quest for practically scalable spin qubits. Pulsed EPR enables manipulation of

electron spin and nuclear spin qubits in an equivalent manner. Super-dense coding

(SDC) experiments by the use of pulse ENDOR are helpful to understand

QC-ENDOR and how it differs from QC-NMR, based on modern nuclear spin

technology. Direct observation of the spinor inherent in an electron spin, detected

for the first time, demonstrates the entanglement of an electron-nuclear hybrid

system, which is the simplest electron-bus system.

This chapter will briefly outline the pulsed EPR and/or ENDOR techniques as

applied to quantum computing and the EPR systems that are suitable for this

purpose, along with a review of relevant jargons. Section 2, mainly based on the

material described by Sato et al. [10], discusses the various enabling technologies

for spin manipulation for QC/QIP. This will include (a) Pulse-Based Fourier-

Transform (FT) EPR/ENDOR Spectroscopy as Enabling Spin Technology;

(b) Spin manipulation by pulsed EPR; (c) Two Types of Pulse-Based ENDOR

Electron-Spin-Echo Detected ENDOR Spectroscopy: (i) Generation of a

Pseudo Pure State for Electron-Nuclear Spin Qubit Systems by pulsed ENDOR,

(ii)Pulse-Based ENDOR Spin Technique Generation and Identification of Quantum

Quantum Computing/Quantum Information Processing in View of Electron. . . 3



Entanglement between an Electron and One Nuclear Spin Qubit; (e) Time-Propor-

tional-Phase-Increment (TPPI) technique in pulsed ENDOR; (f) Inter-Conversion

of Entangled States by Pulsed ENDOR; and (g) TPPI Detection of the Entangle-

ment between Electron-Nuclear Hybrid Spin Qubits by Pulsed ENDOR. In Sect. 3

are presented two ideas for constructing QCs. The appendices outline explanations

of concepts/jargons relevant to QC/QIP: (i) qubits, (ii) quantum gates, (iii)

DiVincenzo’s five criteria, (iv) the Bell states, (v) quantum entanglement.

2 Spin Manipulation Technology for QC/QIP in EPR

2.1 Pulse-Based Fourier-Transform (FT) EPR/ENDOR
Spectroscopy as Enabling Spin Technology

One needs to carry out spin manipulation in time domain, i.e. to manipulate both

electron and nuclear spins in molecular frames in terms of their time evolution and

phases. This enables one to discriminate between any quantum spin states against

decoherence. To this end, one uses Fourier-transform techniques in pulsed EPR,

utilizing intense pulses of MW (microwave) and RF (radiofrequency) radiations in

order to generate a coherent superposition of the relevant spin states in the ensemble

so that the pulses link EPR to matter spin qubit-based QC/QIP. Macroscopic

magnetic moments precessing at frequencies ωk, (k¼ 1 to K ), with amplitudes Ak

emit free induction decay (FID) signals. They are coherently detected and digitized

for further processing by Fourier-transform (FT) analyses. Both MW and RF pulses

are used in pulse-based ENDOR spectroscopy, in which MW radiation signals in

FID or electron spin-echo (ESE) scheme after on-resonance MW excitations are

monitored when pulse-based NMR events occur. Macroscopic moments of electron

and nuclear spin qubits have to be manipulated in required orientations in the Bloch

sphere, in any QC/QIP ENDOR experiments, as shown in Fig. 1.

Under the operation of the π/2 pulse about the x-axis on the
��0istate, a superposition

of the
��0i and ��1i states with equal weights is generated, as shown in Fig. 2(1), whereas

the representation of the direct product composed of the two superpositions in the

macroscopic magnetization qubit scheme is shown in Fig. 2(2). Thus, Fig. 2(1) illus-

trates why the phase manipulation between the qubits is essential for QC/QIP exper-

iments. Transformation of the
��0i to the

��1i state by π pulse is the NOT gate

(Appendix 2) operation. In terms of the pulse-based spin technology, NMR spin

technology is much advanced and matured, but pulse-based FT EPR manipulation

of electron spins has not yet been efficiently developed due to technical difficulties.

In order to illustrate the entanglement between an electron spin qubit and nuclear

spin qubits, quantum phases belonging to the spin states are exploited. QC types of

experiments, in which the quantum phases are controlled and manipulated, have

never been carried out in the past, as they have neither been necessary nor useful for

ordinary pulsed EPR spectroscopy. Further development of pulse ENDOR QC/QIP

is required to provide new directions to EPR spectroscopy.

4 S.K. Misra



2.2 Spin Manipulation by Pulsed EPR

For use in QC, the direction of a spin (magnetization) must be rotated. The direction

of the magnetization, aligned originally along the z-axis, can be rotated by MW or

RF pulses in resonance, as shown in Fig. 3. Such rotation produces superposition of

spin states, known as “quantum gate”. The pulse operations are applied in the

rotating frame of the radiation field. In Fig. 3a, the state
��ψi is represented by two

variables, θ and ϕ. For θ¼ π/2, the choices of ϕ¼ 0 and π/2 generate superpositions
of the states, distinguishable in terms of the phase. These situations can be achieved

by an on-resonance π/2 pulse radiation along the y or x-axis. It is noted that for a

spin-1/2 qubit, the twofold rotation of the magnetization around the x-axis does not
recover the original state, but rather changes the sign of its phase. The original state

is achieved only by the fourfold rotation as shown in Fig. 3, demonstrating the

spinor property of spin-1/2 qubit, manifesting the fact that the double-rotation

group is not equivalent to the single-rotation group for a half-integral spin.

The bold arrow along a particular axis denotes the axis about which the radiation

pulse is applied in Fig. 3b, and all the descriptions are exhibited in the rotating

frame of the oscillating MW or RF radiation, with the static magnetic field

orientation being along the z-axis. In practice, it is important, to use stable, narrow,

and strong pulses of good shapes in spin manipulation by pulsed EPR. In EPR,

unlike NMR, the MW high-frequency technology still suffers from technical

difficulties in (i) power, (ii) multiple-frequency production, and (iii) relative-

phase control between multiple frequencies.

θ

α

Fig. 1 Representation of magnetic moments as qubits in the Bloch sphere, where the thick arrow

denotes the moment. In the xy plane of the Bloch sphere, the moment is a superposition of the
��0i

and
��1i states with equal weights (Adapted from [10])

Quantum Computing/Quantum Information Processing in View of Electron. . . 5



Quantum logic gates, transformation of the states after the operation, and the

corresponding EPR pulses are exhibited in Fig. 4. The Hadamard gate in Fig. 4b is

achieved by the use of the first π/2 pulse applied along the y-axis, followed by the

second, π, pulse about the x-axis. The Hadamard transformation is effected by a

π-rotation around the particular axis, rotated by π/4 from the z-axis in the zx plane.
The operation around this particular rotation axis corresponds conventionally to the

combination of the two above-mentioned pulses in pulsed EPR. In Fig. 4, the gate

(c) is a controlled-not (CNOT) gate constituted by two qubits, consisting of an

electron-nuclear hybrid system with one electron spin qubit and one nuclear spin-1/

2 qubit. The corresponding CNOT gates in molecular frames composed of electron

two qubits have not yet been accomplished. In (c) are shown the electron-nuclear

spin energy level diagram and the labeling of the designation of states. The

transition between levels 3 and 4 is an ENDOR transition, which converts the

populations of the level 3 and 4 by a RF pulse applied about the x-axis. It is noted
that all the quantum operations for EPR in Fig. 4 are achieved in the on-resonance

rotating frame of the oscillating radiation field.

x

y

z 0 1

0

y

z 0

0

0

1

1

1

0

1

Fig. 2 The orientations of macroscopic magnetizations of spins in pulse-based spin manipulation

technology. (1) A superposition of the
��0 iand ��1i states as generated by the π/2 pulse applied along

the x-axis in pulsed magnetic resonance. Thick arrows denote macroscopic magnetization of spins.

(2) A schematic representation of the direct product of the two superpositions in terms of the

macroscopic magnetizations. The coefficients associated to the states have been omitted for clarity

in both (1) and (2) (Adapted from [10])
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2.3 Two Types of Pulse-Based ENDOR Electron-Spin-Echo
Detected ENDOR Spectroscopy

Davies-type ENDOR and Mims-type ENDOR are typically two types of Electron-

Spin-Echo (ESE) detected ENDOR techniques, exhibited in Fig. 5 with regard to

their pulse sequences and timing. Here MW and RF pulse radiations induce EPR

and NMR transitions, respectively. ENDOR signals are detected (D monitored) by

an ESE technique. Figure 5a shows Davies-type ENDOR. Here P0S and P2S are

MW π-pulses and P1S is a MW π/2-pulse: P0S possesses an irradiation strength

ω1�A (converted to the corresponding frequency), where A is the hyperfine

interaction (hf) constant, and PI denotes the RF pulse applied during the waiting

period T. P0S pulse interchanges the populations of levels 1 and 3, as shown in

Fig. 5c so that at 1–2 or 3–4 NMR resonance, the population change of level 1 with

a b

Fig. 3 Figure showing the macroscopic magnetization on the Bloch sphere and the effect of

on-resonance pulses generating various superpositions of the states
�� " i and �� # i and generation

of quantum gates. All the operations by the pulses are applied in the rotating frame of the

oscillating radiation field. The magnetization is shown by the thick arrow in (a); this arrow was

originally aligned along the z-axis in (b). It is noted that for a spin-1/2 qubit the twofold rotation of
the magnetization around the x-axis does not recover the original state, but rather it is the fourfold
rotation that does it, exhibiting the spinor property of spin-1/2 qubit (Adapted from [10])

Quantum Computing/Quantum Information Processing in View of Electron. . . 7



respect to 3 is detected as an increase in the amplitude of the electron spin echo

(ESE) signal. When the sublevel population of the NMR transition 1–2 or 3–4 are

inverted, i.e., for the nuclear flip angle θ1¼ωrtp¼ π, where ωr is the effective

nuclear Rabi-frequency (nutation frequency), and tp is the RF pulse length, the

effect is maximum. An EPR excitation has to be hyperfine nuclear-level selective,

which is essential for generating entanglement composed of electron-nuclear spin

qubits for QC/QIP ENDOR experiments. Mims-type ENDOR spectroscopy is

shown in Fig. 5b with regard to the pulse and timing sequences. Here the MW

three-pulse ESE scheme is utilized for the preparation and detection periods. Mims-

type ENDOR spectroscopy is particularly useful to study molecular information on

nuclei with small hyperfine interactions and small nuclear Zeeman splitting. The

two pulses in the preparation period produce a periodic patternMzi¼M0 cos (Δωiτ)
in the frequency domain. The Mz component of a spin packet “i” is determined by

how its precession frequency in the rotating frame (Δωi) “fits” in the waiting

period τ. The whole pattern refocuses at the time t after the third pulse in the

standard stimulated echo. The polarization transfer shifts the whole Mz pattern up

and down in frequency by an amount of A, when the RF pulse is resonant with a

transition matching a hyperfine interaction, A. As a consequence, the pattern ofMz-

components becomes blurred, and thus the intensity of the echo is reduced. In that

a

b

c

π

(π/2) π

π

π

π

π

π

π
3 4

Fig. 4 The various quantum logic gates, the transformation of the states after the operations of the

gates, and the corresponding EPR pulses. The NOT (a) and CNOT (c) gates are constituted by the
operations of the corresponding single pulses. The Hadamard gate is constructed by the first π/2
pulse applied about the y-axis, followed by the second, π pulse, about the x-axis. The CNOT

(c) gate is a two-qubit one, for which the corresponding energy level diagrams with the state

labeling is specified. In (c), an electron-nuclear hybrid system with one electron spin qubit and one

nuclear spin-1/2 is exploited. The state
��þ�i designates

��Ms ¼ �1=2, Ms ¼ þ1=2i, etc.
(Adapted from [10])
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case, only the A¼ n/π (n¼ 0, 1, 2,. . .) pattern is retained and the stimulated echo

amplitude is unaffected. This implies that the echo amplitude is modulated by a

factor cos(2πAτ).

2.3.1 Generation of a Pseudo Pure State for Electron-Nuclear Spin

Qubit Systems by Pulsed ENDOR

ENDOR spectroscopy using pulses, as described in the rotating frame of applied

coherent radiation fields, consists of three main operation periods: preparation,

polarization transfer, and detection, as shown in the last row of Fig. 5. They

correspond to those in QC/QIP processes in time in pulse-based EPR. In

pulse-EPR-based QC/QIP experiments the first, second, and third periods are

initialization, manipulation/computing, and readout (D detection), respectively.

The initialization operation prepares an either pure or a pseudo-pure spin state

required for executing any quantum computation. The manipulation/computing is

Davies-type ENDOR

Mims-type ENDOR

EPR

EPR

a

b

P0S

P0S

P2S

P2S

P1S

P1S

NMR

NMR

/2

/22 2

PI

PI

TT

T

Preparation Polarzation transfer Detection

Fig. 5 Schematic diagrams of two typical Electron-Spin-Echo (ESE) detected ENDOR tech-

niques: (a) Davies type ENDOR and (b) Mims-type ENDOR, showing their pulse sequences and

timing charts. Here MW and RF pulse radiations induce EPR and NMR transitions, respectively.

The transfer of polarization between particular electron-nuclear sublevels takes place during the

period T. Any change of an ESE (Electron Spin Echo) signal during the NMR transition driven by

the RF pulse is monitored in the detection period of the gate (Adapted from [10])

Quantum Computing/Quantum Information Processing in View of Electron. . . 9



carried out for selective/nonselective excitation among the allowed or forbidden

transitions between the spin states. For particular purposes, the time evolution of the

states involved is carried out. Quantum phases are manipulated in phase-controlled

experiments for QC/QIP in the second period. Electron-spin-based detection,

e.g. Hahn ESE, three-pulse stimulated echo, refocused echo, and FID are parts of

the readout.

An ENDOR-based pulse sequence for preparing the initialization of an electron-

nuclear system with one electron and one nuclear spin-1/2 and the population

change among the states involved on each pulse operation on resonance are

shown in Fig. 6a, b, respectively. The first MW pulse effects population inversion

between the levels 3 and 4 for selective excitation, assuming an equal Boltzmann

distribution for the nuclear spin states belonging the same electron-spin sublevel

MS. The populations of the nuclear sublevels, 1 and 2 of the electron-spin

MS¼ +1/2 level are equalized by the second RF π/2-pulse. The populations 2P+

and P� are redistributed equally among the levels, 1, 2, and 4, making only the level

3 more populated by 2(P��P+)/3 by the two pulses of the MW and RF radiations

at resonance. After the action of the second RF π/2 pulse in Fig. 6b, a pseudo-pure

ω
ω π

π π

Fig. 6 Figure showing the initialization of an electron-nuclear spin qubit system by pulse ENDOR

spin technique. (a) A pulse sequence based on ENDOR for preparing the initial state of an

electron-nuclear system with one electron and one nuclear spin-1/2. (b) The change in the

population among the state on each pulse operation of resonance. (c) Level 3 is shown here as a

pseudo-pure state of the electron-nuclear hybrid system (Adapted from [10])
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state of the electron-nuclear hybrid system with the four spin states is generated as

level 3, shown in Fig. 6c. Any quantum computing with operations is carried out

during the second period as shown in Fig. 6a, and the readout is exhibited in a Hahn

ESE scheme.

2.3.2 Pulse-Based ENDOR Spin Technique Generation
and Identification of Quantum Entanglement Between

an Electron and One Nuclear Spin Qubit

Quantum entanglement plays an important role in QC/QIP. The generation of

quantum entanglement between an electron and one nuclear spin-1/2 qubit in a

molecular entity was achieved by Mehring et al. [11] by pulse ENDOR technol-

ogy for QC/QIP experiments. The establishment of entanglement was identified

by invoking TPPI (Time-Proportional-Phase-Increment) technique, enabling

detection of quantum phases belonging to particular spin states in the hybrid

system. Generation of entangled state in an electron-nuclear spin qubit system by

the use of the pulse ENDOR technique is illustrated in Fig. 7, according to

which, after the initialization of an electron-nuclear spin qubit system, e.g., level

3 as an initialized state, called pseudo-pure state, a sequence of RF2 and MW

pulses on-resonance are applied for generating entangled states. The resulting

state-transformation by the pulses are schematically shown in Fig. 7a, where the

role of each pulse is indicated. In order to entangle the electron-nuclear spin

states, MW pulses are inevitably utilized, which force electron spin sublevels to

become involved in the entanglement process. In the present pulse scheme,

levels 2 and 3 are entangled. The four spin states involved and their population

changes by the pulses are shown in Fig. 7b, level 1 being apparently not involved

during the processes. Relaxations are not explicitly considered here. The pulse

sequence in time for establishing the entanglement between an electron and one

nuclear spin-1/2 is schematically shown in Fig. 7c, as discussed above, and the

RF2 π/2-pulse and π-MW pulses generate a pair of the entangled states during

the first period, which is used for the preparation of the pseudo-pure state.

Manipulation of the spin qubits involved in any quantum operation is carried

out during the second period. The readout of the manipulation shown as the light

gray part in Fig. 7c is performed in the third period. Illustration of QC/QIP

experiments in terms of quantum phase is the highlighted third part. Quantum

logic gates for generating the entanglement between one spin qubit and another

spin qubit are shown in Fig. 7d, with S and I being electron and nuclear spin

qubits, respectively.
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2.4 Time-Proportional-Phase-Increment (TPPI) Technique
in Pulsed ENDOR

To enhance spectroscopic information by increasing the number of spectral

dimensions, TPPI technique was introduced to pulse ENDOR technique for

QC/QIP experiments by Mehring et al. [11] to identify the establishment of

entanglement between an electron and one nuclear spin-1/2 qubit. This technique

really convinces one of the occurrences of entanglement between the matter spin

qubits, which can be achieved by introducing multiple phases for the pulses,

i.e. the MW and/or RF radiations relevant to the magnetic transitions. The phase

increment is described in terms of the angular frequency by time increment. This

frequency is composed of the difference between two relevant frequencies intro-

duced in an arbitrary manner. Using TPPI, one can make spectroscopic

a

b

c

π/2

π/2 π/2
π

π

Fig. 7 Pulse ENDOR generation of entanglement between an electron and one nuclear spin-1/2

qubit by pulse technique. (a) Subsequent to the initialization of an electron-nuclear spin qubit

system, e.g., level 3 as an initialized state (pseudo-pure state), a sequence of RF2 and MW

on-resonance pulses is required for generating entangled states and the resulting state transforma-

tion by the pulses. The role of each pulse is indicated. Levels 2 and 3 are entangled in the present

pulse scheme. (b) The four spin states involved and their population changes by the pulses. Level

1 is apparently not involved during the processes. Any relaxations are not explicitly considered. (c)
The pulse sequence in time for establishing the entanglement between an electron and one nuclear

spin-1/2. The first period is for the preparation of the pseudo-pure state and the RF2 π/2-pulse and
π-MW pulse generate a pair of the entangled states. (d) Quantum logic gates for generating the

entanglement between one spin qubit and another spin qubit. Here, S and I denote electron and

nuclear spin qubits, respectively (Adapted from [10])
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information multidimensional, e.g. TPPI has been applied to allow on-resonance

excitation with the spreading of n-quantum-transition spectra by nΔω. Each time

the evolution time is incremented by δt1, the phase of the pulse is shifted by

Δϕ¼ δωΔt1, i.e., δϕ¼ 2πΔνδt1, thereby resolving multiple-quantum coherence

in pulse-based ENDOR spectroscopy in solution [11].

Experimental approaches to the evolution of quantum entanglement between the

electron-nuclear hybrid systems are shown in Fig. 8. This is based on the technique

for rotating an MW phase when the real MW rotation is not applicable, wherein

MW pulse channels can be utilized as a substitute “quasi-rotation” technology for

the MW part. This variant has been used for identifying the occurrence of entan-

glement between an electron and one nuclear spin-1/2 qubit. For the entangled

(Bell) states generated by an electron and one nuclear spin-1/2 qubit, each Bell state

is characterized by its own quantum phase originally described by the two quantum

numbers,MS andMI. Thus, the introduction of the corresponding two phases, ϕMW

and ϕRF for the MW π-pulse and the RF π/2-pulse, respectively, enables discrim-

ination between the Bell states. The required phase shift is controlled by the above-

mentioned time increment. One can experimentally acquire any possible quantum

phase-interference between an electron and nuclear spin qubit in time via interfero-

grams transformed into the frequency domain. The ESE intensity is given by the

equation inscribed in Fig. 8. It depends on the difference between the two phases

when entanglement occurs. If not, the ESE signal remains constant during the time

increment.

π/2 π/2

φ φ

ππ
π/2

Fig. 8 Detection of establishment of entanglement between an electron and nuclear spin-1/2 qubit

by Enabling pulse ENDOR spin technology. The schematics of the pulse sequence enabling

manipulation of quantum phases of matter spin qubits is shown. There are two variants of the

phase rotations of MW and/or RF pulses. One of these is a variant of the real MW phase rotation

termed “MW-phase quasi-rotation,” as a technique for substitute rotation when the real rotation of

the MW pulse phase is technically difficult. In the quasi-rotation variant, different MW channels

are utilized, to achieve quasi-rotation of the MW pulse (Adapted from [10])
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2.5 Inter-Conversion of Entangled States by Pulsed ENDOR

The pulse ENDOR technique enables one to interchange the entangled states

between an electron and one nuclear spin-1/2 qubit by manipulating the nuclear

spin sublevels by RF pulses once they are generated by a particular pulse protocol,

using the procedures schematically depicted in Fig. 9, where attention should be

paid to the difference in the phase belonging to each Bell state. Inter-conversion

between the entangled (Bell) states is achieved by one of the unitary transforma-

tions denoted by X, Y, and Z, each of which corresponds to the curved thick

arrows, shown in Fig. 9a. The 2π rotation for a half-integral spin qubit is

designated by Z operations. In this manner, the inter-conversion between the

electron-nuclear hybrid spin qubit systems is implemented by pulse ENDOR

spin technique. The procedures depicted in Fig. 9a are represented by a quantum

logic gate. In Fig. 9b, wherein a unitary operation Ui is applied after generating an

entangled state.

a

b

Fig. 9 Figure showing the inter-conversion between entangled (Bell) states by unitary trans-

formations denoted by X, Y and Z, each of which is described by curved arrows. (a) The

Z operations describe 2π rotation for a half-integral spin qubit. The inter-conversion between the

Bell states is achieved by pulse ENDOR. (b) The procedures shown in (a) are equivalent to a

quantum logic gate, wherein a unitary operation Ui is applied after generating the entangled state

(Adapted from [10])
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2.6 TPPI Detection of the Entanglement Between Electron-
Nuclear Hybrid Spin Qubits by Pulsed ENDOR

TPPI detection of the entanglement between an electro and one nuclear spin-1/2

qubits by the pulse ENDOR technique is outlined in Fig. 10. The TPPI pulse

sequence is shown at the top along with the role of the three periods. During the

second period of quantum operation/manipulation of the qubits, the TPPI procedure

is carried out, where the phases of the MW π-pulse and the RF2 π/2-pulse are

controlled in time in pulse ENDOR. The corresponding phase-control technique for

two electron qubits with non-equivalent g-factors in molecular frames had to be

introduced in order to manipulate genuine electron spin qubits in contrast to the

hybrid qubit system. Current MW spin technology for QC/QIP requires two MW

sources with their relative phases locked electronically, unlike that for ordinary

pulse-based EPR. The phase information on which an electron-nuclear sublevel is

entangled with another sublevel corresponds to the TPPI frequency, νTPPI. This is
outlined in the table in Fig. 10, where it is seen that the two pairs among the four

Bell states give the same νTPPI. The ENDOR transition frequencies are ω12 and ω34,

between the levels 1 and 2 and the levels 3 and 4, respectively. The TPPI frequency

is either the simplest combination of addition or the one of subtraction in the Bell

states composed of an electron and one nuclear spin-1/2 qubit. The MS manifolds

involved in the MW transitions appear explicitly in the νMW, in case the sublevels of

an electronic high-spin qubit are utilized with the spin quantum number S.

π/2 π/2 π/2

π/2 π
π π

φ

ω

ω

δ φ π δ

φ

Fig. 10 Detection of the entanglement between an electron and one nuclear spin-1/2 qubit by the

pulse ENDOR technique by TPPI. The TPPI pulse sequence is shown at the top along with the role
of the three periods. ωij denote the transitions. The longer solid and dotted arrows show the EPR

transitions. The two pairs among the four Bell states give the same νTPPI as seen in the table

(Adapted from [10])
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3 Designing QC: Two Proposals

3.1 Using Molecular Magnets

An implementation of Grover’s algorithm that uses molecular magnets was

proposed by Leuenberger and Loss [12]. Molecular magnets [13] are solid-state

systems with a large spin. Their spin eigenstates make them natural candidates for

single-particle systems. It has been shown theoretically that molecular magnets

can be used to build dense and efficient memory devices based on the Grover

algorithm. In fact, one single crystal can serve as a storage unit of a dynamic

random access memory device. Fast EPR pulses are proposed to be used

to decode and read out stored numbers of up to 105, with access times as short

as 10�10 s. This proposal was shown to be feasible using the molecular magnets

Fe8 and Mn12.

3.2 Using Endohedral Fullerenes

Pulsed EPR was used to assess the possibilities for processing quantum informa-

tion in the electronic and nuclear spins of endohedral fullerenes [14]. It was shown

that 15 N@C60 could be used for universal two-qubit quantum computing. First,

the nuclear and electron spins were initialized by applying resonant RF and

microwave radiation with a magnetic field of 8.6 T at 3 K so that each can store

one qubit. This is a dynamic nuclear polarization technique, which made it possible

to show that the nuclear T1 time of 15 N@C60 is on the order of 12 h at 4.2 K. The

electronic T2 was, however, the limiting decoherence time for the system. By using

amorphous sulfur as the solvent, this was extended to 215 μs at 3.7 K. Pulse

sequences that could perform all single-qubit gates to the two qubits independently,

as well as CNOT gates, were used. Two techniques were exploited to measure the

value of the qubits after these manipulations. Another fullerene, Sc@C82, was also

found useful for quantum computation. By comparing EPR measurements with

density functional theory calculations, it was shown how the orientation of a

Sc@C82 molecule affects the molecule’s Zeeman and hyperfine coupling in an

applied magnetic field. This is accomplished by expressing the g- and A-tensors in

the coordinate frame of the molecule. The decoherence time was determined by

pulsed EPR to be 13 μs at 20 K, which is 20 times longer than that previously

reported. The arrangement of filling carbon nanotubes with endohedral fullerenes,

forming 1D arrays, can lead to a scalable quantum computer. To this end, N@C60

and Sc@82 were used for filling in various concentrations. EPR measurements of

these samples were found to be consistent with simulations based on the dipolar

coupling.
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4 Concluding Remarks

This chapter provides an outline of how pulsed EPR can be used for quantum

computing, based on existing literature. To this end, some of the techniques for

electron and nuclear spin manipulation using pulse EPR and ENDOR are briefly

described. In addition, the various technical jargons that are relevant in QC are

elaborated in the various appendices. This is not a thorough coverage, but rather as

the title indicates, it is a brief review of quantum computing as accomplished by

EPR. The various references included here should lead the reader to a more

thorough knowledge of the subject.

Appendix 1: Qubits

This description is abstracted from Steane [15]. The elementary unit of quantum

information is the qubit [16]. A single qubit can be envisaged as a simple two-state

system, e.g. a spin-half or a two-level atom, but it should be mentioned that when

measuring quantum information in qubits something more abstract is really being

done. A quantum system possesses n qubits if it has a Hilbert space of 2n dimen-

sions so that it has 2nmutually orthogonal quantum states available to it. (Note that

n classical bits can represent only up to 2n different things).

The two orthogonal states of a single qubit can be written as {j0i, j1i}. More

generally, 2n mutually orthogonal states of n qubits can be written as {jii}, where
i is an n-bit binary number. For example, three qubits have eight:

{j000i, j001i, j010i, j011i, j100i, j101i, j110i, j111i} states available to it.

Appendix 2: Quantum Gates

This description is abstracted from Steane [15]. Simple unitary operations on qubits

are called quantum “logic gates” [17, 18]. For example, if a qubit evolves as 0j i
! 0j i, 1j i ! eiωt 1j i; then after time t, one would say that the operation, or “gate”

P θð Þ ¼ 1 0

0 eiθ

� �
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Has been applied to the qubit, where θ ¼ ωt. This can also be expressed as

P θð Þ ¼ 0j i 0h j þ eiθ 1j i 1h j. Some other elementary quantum gates, with their nota-

tions, are:

I � 0j i 0h j þ 1j i 1h j ¼ identity

X � 0j i 1h j þ 1j i 0h j ¼ NOT

Z � P πð Þ

Y � XZ

H � 1ffiffiffi
2

p 0j i þ 1j i 0h jð Þ þ 0j i � 1j i 1h jð Þ½ �

The last gate is denoted as H because its effect is a Hadamard transformation. All

these gates act on a single qubit, and can be achieved by the action of some

Hamiltonian operator in Schrodinger’s equation, since they are all unitary opera-

tors. There are an infinite number of single-qubit quantum gates, in contrast to

classical information theory, where only two logic gates are possible for a single bit,

namely, the identity and the logical NOT operation. The quantum NOT gate carries

|0i to |1i and vice versa, and so it is analogous to a classical NOT. This gate is also

called X since it is effected by the Pauli spin σx operator. Note that the set {I, X, Y,
Z} is a group under multiplication. Of all the possible unitary operators acting on a

pair of qubits, an interesting subset is 0j i 0h j � I þ 1j i 1h j � U, where I is the single-
qubit identity operation, and U is some other single-qubit gate. Such a two-qubit

gate is called a “controlled U” gate, since the action of I or U on the second qubit is

controlled by whether the first qubit is in the state
��0 ior ��1i. For example, the effect

of controlled-not (CNOT) is

00j i ! 00j i
01j i ! 01j i
10j i ! 11j i
11j i ! 10j i

Here the second qubit undergoes a NOT if and only if the first qubit is in the state��1i. This list of changes of states is the analogue of the truth table for a classical

binary logic gate. The effect of controlled-NOT acting on a state jaijbi can be

written as a ! a, b ! a
L

b, where
L

denotes the exclusive or (XOR) operation.

For this reason, this gate is also called the XOR gate. Other logical operations

require more qubits. For example, the AND operation is achieved by use of the

3-qubit “controlled-controlled-not” gate, in which the third qubit experiences not if

and only if both the others are in the state j1i. This gate is named a Toffoli gate [19],

which showed that the classical version is universal for classical reversible
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computation. The effect of Toffoli gate on a state jaijbij0i is a ! a, b ! b,

0 ! a � b. In other words, if the third qubit is prepared in
��0i, then this gate

computes the AND of the first two qubits. The use of three qubits is necessary in

order to permit the whole operation to be unitary, and is thus allowed in quantum-

mechanical evolution.

Table 1 QC-ENDOR spin qubit systems fulfilling DiVincenzo’s five criteria

DiVincenzo’s criteria ENDOR spin qubit systems

Qubit Identifiable; well

characterised and scalable

qubits are required

Molecule-based electrons and nuclear spins in

molecular open-shell entities, in which hyper-

fine couplings play an essentially important

role for selective excitations of both the elec-

tron spin- and nuclear spin qubits. Molecular

designs, syntheses, and identifications of spin

properties are required. The scalability of client

nuclear spin qubits in electron spin bus quan-

tum computers is limited from the synthetic

view point. Proto-types of 1D periodic electron

spin qubit system have been designed and

synthesised

Initialisation Any possibility for qubits to

be initialised to simple and

fiduciary states is necessary

Pseudo-pure states can be used in this context,

whereas in order to avoid pseudo-pure states

high polarisations of the electron spin can be

coherently transferred to the nuclear spin by

applying relevant pulse sequences followed by

proper waiting time

Decoherence

time

Long relevant decoherence

times, much longer than the

gate operation time are

necessary

Long decoherence times of nuclear spins and an

electron spin in organic radical qubits in solid

state have been available for the demonstration

of quantum operations between the bi- or tri-

partite qubits. Proper molecular entities with

long decoherence times for multi-qubit opera-

tions are not out of reach, for which stable

isotope-labelled open-shell molecules have

been designed and synthesised. QC-ENDOR

experiments in solution also are not out of reach

Quantum

operation

A universal set of quantum

gates is required

Quantum gates between a single electron and a

single nuclear spin have been demonstrated

experimentally. Multi-qubits operation in terms

of ENDOR spin Hamiltonians are underway.

Particularly, a protocol for tripartite QC oper-

ations has been implemented

Measurement The capability of measure-

ments on quantum qubits to

obtain the result of the com-

putation is required

The current measurement scheme is ensemble-

based, in which an individual client nuclear

spin qubit is read out via the electron but spin

qubit. A field gradient approach for the readout

is proposed. On the other hand, single electron

spin detections may be available in the future

by the use of STM-base electron magnetic res-

onance detection
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Appendix 3: DiVincenzo’s Five Criteria

There are some fundamental criteria, namely, DiVincenzo’s five criteria [20], listed
below in Table 1 (reproduced from [10]), which should be satisfied by a physical

system for its realization as a QC [9]. Molecular spin qubit QC-ENDOR is

emerging as novel electron-spin manipulation technique. The high frequency ver-

sions are preferable for true QC/QIP, in particular, but need further technological

developments for QC/QIP purposes. Molecule-based ENDOR system satisfies

DiVincenzo’s criteria, so that it is a realistic physical system for QC/QIP, as seen

from Table 1 below, outlining DiVincenzo’s five criteria and the corresponding

properties of the ENDOR system. In the ENDOR-based QC/QIP, molecular elec-

tron spins are introduced as qubits in conjunction with nuclear spins. Electron

qubits play the role of “bus” spins, while the nuclear spins act as “client” qubits.

In thermal equilibrium, the ground states populations of the molecular electron

spins are more than 103 times larger than those in the corresponding excited states

with different Ms-manifolds in the presence of a static magnetic field or those with

zero-field splittings, as compared with QC-NMR. Therefore, by using ground-state

ENDOR systems, the required experimental conditions for preparing the initial

state for QC/QIP becomes substantially easier to achieve with the help of the

current EPR technology. On the other hand, for exact and complete preparation

of pure initial states, possible manipulation of single-molecule-based systems,

using EPR or Larmor precession detection, is rather difficult to achieve. It appears

quite feasible in the near future to realize the experimental setup using electric

detection schemes.

Appendix 4: The Bell States

The Bell states is a concept in quantum information science. (This discussion is

extracted from Wikipedia, as found by a Google search. See also [6, 21, 22].) They

represent the most simple examples of entanglement. Named after John S. Bell,

being the subject of his famous Bell inequality, an EPR pair is a pair of qubits

which are in a Bell state together. That means that they are entangled with each

other. Unlike classical phenomena, entanglement is invariant under separation of

distance, and is not subject to relativistic limitations. Bell states are maximally

entangled specific quantum states of two qubits. Although usually spatially

separated, they exhibit perfect correlation which can only be explained by

quantum mechanics. In order to understand this, it is important to first examine

the Bell state Φþj i:
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Φþj i ¼ 1ffiffiffi
2

p 0j iA � 0j iB þ 1j iA � 1j iB
� �

This state implies that the qubit held by Alice (subscript “A”) can be 0 as well as

1. If Alice measured her qubit in the standard basis the outcome would be perfectly

random, either possibility having probability 1/2. But if Bob (subscript B) then
measured his qubit, the outcome would be the same as that of Alice. So, if Bob

measured, he would also get a random outcome on first sight, but if Alice and Bob

communicated they would find out that, although the outcomes appear random to

each one individually, they are correlated. One may say that maybe the two

particles “agreed” in advance, when the pair was created (before the qubits were

separated), which outcome they would show in case of a measurement. To address

this, Einstein, Podolsky, and Rosen in their famous “EPR paper” in 1935, explained

that there is something missing in the description of the qubit pair given above.

Specifically, this “agreement” maybe called more formally a hidden variable.

On the other hand, quantum mechanically qubits can be in quantum superposi-

tion, implying that they can be in the states 0 and 1 simultaneously, or, a linear

combination of the two classical states, e.g. the states þj i ¼ 1ffiffi
2

p 0j i þ 1j ið Þ, or
�j i ¼ 1ffiffi

2
p 0j i � 1j ið Þ.

If Alice and Bob chose to measure in this basis, that is, checking whether their

qubits were þj i or �j i, they would find the same correlation result as above. That

is because the Bell state can be formally expressed as:

Φþj i ¼ 1ffiffiffi
2

p þj iA � þj iB þ �j iA � �j iB
� �

Note that this is still the same state, as described above for Φþj i.
Specifically, there are three other states of two qubits which are also regarded as

Bell states. The four together are known as the four maximally entangled two-qubit
Bell states:

Φþj i ¼ 1ffiffiffi
2

p 0j iA � 0j iB þ 1j iA � 1j iB
� �

Φ�j i ¼ 1ffiffiffi
2

p 0j iA � 0j iB � 1j iA � 1j iB
� �

Ψþj i ¼ 1ffiffiffi
2

p 0j iA � 1j iB þ 1j iA � 0j iB
� �

Ψ�j i ¼ 1ffiffiffi
2

p 0j iA � 1j iB � 1j iA � 0j iB
� �
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Bell-State Measurement

The Bell measurement is an important concept in QIS. It is a joint quantum-

mechanical measurement of two qubits that determines which of the four Bell

states the two qubits are in. If the qubits were not in a Bell state before, they

would get projected into a Bell state, due to the projection operation inherent in

quantum measurements. Furthermore, as Bell states are entangled, a Bell measure-

ment becomes an entangling operation.

Appendix 5: Quantum Entanglement

Quantum entanglement occurs when pairs or groups of particles are generated or

interact in ways such that the quantum state of each particle cannot be described

independently, rather, a quantum state may be given for the system as a whole.

(This discussion is extracted from Wikipedia, as found by a Google search. See

also, [23–25]). Measurements performed on entangled particles of physical prop-

erties such as position, momentum, spin, polarization, are found to be appropriately

correlated, in the context of quantum measurement, giving rise to effects that can

appear paradoxical. Apparently, one particle of an entangled pair “knows” what

measurement has been performed on the other, and with what outcome. This

happens even though there is no known means for such information to be commu-

nicated between the particles, which may be separated by arbitrarily large distances

at the time of measurement. These phenomena, known as EPR paradox, were the

subject of a paper by Einstein et al. [23], and two by Schr€odinger and Born [24] and
Schr€odinger and Dirac [25].

Applications of Quantum Entanglement

In quantum information theory, entanglement has many applications, so that with

the aid of entanglement, otherwise impossible tasks may be achieved. Super-dense

coding and quantum teleportation are among the best-known applications of

entanglement.
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Abstract Molecular spin systems coupled with nuclear spins are introduced as

promising matter spin qubits in quantum information processing and quantum

computing (QC). Introductory remarks are given for nonspecialists. For this pur-

pose, NMR-based QC is described and an approach to QC exploiting electron-

nuclear coupled molecular systems is given. Requisites for qubits are described as

DiVincenzo’s criteria. Since Shor’s quantum algorithm appeared, the first success-

ful QC experiment was carried out by highly sophisticated pulsed NMR techniques,

and this very attempt brought quantum computers down to earth. It has been

claimed, nevertheless, that quantum entanglement as the heart of QC has not

been established in any experiments in solution. Thus, advantages of QC experi-

ments with molecular spins over the counterparts of NMR QC are described.

Quantum computing (QC) experiments with molecular spins are exemplified for a

few qubits.
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1 Introduction

The enormous impact of computers on everyday life cannot be underestimated. The

current technology of computers, classical computers, is based on the technology of

transistors, which is an appreciated synergy between computer science and quan-

tum physics. Smaller transistors work with less power; they are highly dense and

can be switched on and off very fast. While miniaturization is necessary to increase

the computation power, it provides us with an intuitive way of understanding why

quantum laws are becoming important for computation and information processing.

Moore [1] in 1965 codified his law, known as Moore’s law, on the growth of

computers. It states that the power of computers will double for constant cost

roughly once every two years. This statement amazingly has come to be true for

decades, since the 1960s. The growth is achieved by shrinking the size of the

processors, which is reaching a fundamental physical limit: the size of atoms

where quantum effects will become important. In fact, we have already reached

the limit in some devices [2] where quantum effects have become important. For

classical computing, these effects are a hindrance but the goal of quantum infor-

mation science is to take advantage of them.

Alan Turing drew the blue print of what we know today as the programmable

computer [3]. Assessing the power of this model of computation has lead to the

strong Church Turing thesis [4, 5].

“Any model of computation can be simulated on a probabilistic Turing machine with at

most a polynomial increase in the number of elementary operations required.”

Although the polynomial difference in speed can be still significant, the above

statement verifies the equivalency of all the computers, from the most pioneer ones

to today’s supercomputers. In practical settings, the thesis gives a robust definition

of what types of problems that might or might not be solved by today’s computers.

These sets of problems define computational complexity classes which have been

taken as assumptions of computer science. Transforming information using the

laws of quantum mechanics suggests a new type of complexity classes which is

different from the ones using the classical rules of physics.

An important milestone in quantum computing has been established by Feynman

in 1980s [6]. He suggested that a quantum computer based on quantum logics

would be ideal for simulating quantum-mechanical systems by making a hint on

how to get involved to these problems. Feynman said that [6]:

“So, as we go down and fiddle around with the atoms down there, we are working with

different laws, and we can expect to do different things. We can manufacture in different

ways. We can use, not just circuits, but some system involving quantized energy levels, or

the interactions of quantized spins, etc.”

A priori, using the quantum laws of nature could be an obstacle to information

processing. After all, the uncertainty principle might suggest that we cannot

compute as precisely as we desire. Surprisingly, what we have learned is the

opposite: the quantum mechanics allows to solve algorithms for interesting

problems efficiently where no efficient classical algorithms are known.
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Physical realization of a quantum computer is a major goal for research activities

in the field of quantum computing. An important guideline to assess the viability of

proposed modalities for quantum computing devices is the so-called DiVincenzo

criteria. These criteria are: (1) having access to well-defined qubits, (2) initialization

of the qubits to a pure state, (3) availability of a universal set of quantum gates,

(4) having qubit-specific measurements, and (5) long coherence times.

In this contribution, we study molecular electron and nuclear spins in spectro-

scopic systems, namely, electron paramagnetic resonance, EPR, and EPR-like

systems for realizing quantum computing and quantum information processing.

There are appreciated facts about EPR-like systems for quantum information

processing and quantum computing. EPR-like systems are good since almost pure

states could be generated with reasonable amount of efforts. Spin manipulations are

faster due to fast microwaves in comparison to radio frequencies (in NMR). More

importantly, quantum error correction (QEC) codes are implementable with an

EPR-like system since the purity of the qubits that are needed for QEC codes can

be, in principal, achieved in EPR-like systems, at least after performing some sort of

spin polarization enhancement techniques.

In order to understand EPR and EPR-like systems for quantum information

processing and quantum computing, we will give some examples that are better

known from NMR. NMR system has been historically the first and foremost used

physical system to implement quantum information processing. But, despite its

successes in having exquisite control, NMR suffers from the difficulty of having

relatively slow gates (compared to decoherence time) and to lack having a practical

way to extract entropy during QEC.

Our goal is to explore EPR with the aim of keeping NMR’s superb control with

introducing the ability of purifying NMR quantum states for quantum computing

and quantum information processing. Thus, we start with NMR and its character-

istics for quantum computing and quantum information processing but will gradu-

ally switch from NMR to EPR-like systems. We will emphasize spin polarization

enhancement of nuclear spins that are involved in quantum processing by getting

contacted to an electron. We will show that the achievable spin polarization is

indeed enough for a successful implementation of QEC. Finally, we will demon-

strate the good control over the entire electron-nuclear coupled spins system by

presenting experimental results on exploiting quantum effects such as superposition

and nonclassical correlated states that have been generated with Electron Nuclear

DOuble Resonance (ENDOR).

2 Experimental Requisites

Quantum computers have been defined through a set of criteria known as the

DiVincenzo’s five criteria. We will first describe them and comment on how

NMR fulfills them. Here, we assume (if not otherwise mentioned) NMR system

is in liquid state for implementing quantum information processing since solid-state
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NMR has somewhat different properties. According to the presented discussion, we

will admit advantages of including electron spins in the nuclear spin systems. Thus,

we will approach systems of EPR and will evaluate their practicality, advantages,

and difficulties, in terms of being used for realizing quantum computing and

quantum information processing. EPR-like systems will give easier and more

forgivable experimental difficulties for satisfying the criteria; however, still there

are theoretical and experimental challenges remaining as to be solved so that

making the EPR-like systems is the best fit for engineering a fully controllable

quantum processor.

2.1 DiVincenzo’s Criteria

The minimal requirements for a quantum computer have been originally introduced

by DiVincenzo [7] (there are some additional criteria for communications but here

we explain only the original list).

2.1.1 A Scalable Physical System with Well-Characterized Qubits

A set of physical system is required in order to give a representation of quantum bits

(qubits). The physical system should have two distinct levels (e.g. energy levels) for

being a good representation of a two-level quantum bit (qubit). The famous

examples are spin-1/2 particles and polarized photons. It is also important to

evaluate if the system of interest is practically scalable in the sense that the number

of qubits can be increased freely and on-demand and with an error rate that is

smaller than the relevant fault tolerant error threshold.

2.1.2 A Universal Set of Quantum Gates

Operations on qubits are defined in terms of quantum gates. Any realization of

quantum computing must have access to a universal set of quantum gates so that

even an elaborated and advanced operation can be realized with an affordable cost

and reasonable effort. The time evolution of a quantum system is determined by its

Hamiltonian. In order to realize quantum logic gates, it must be abilities to control

the Hamiltonian over time. In other words, the resulting time evolutions of the total

Hamiltonian (initial system Hamiltonian plus the control Hamiltonian) should be

corresponding to the computational steps for an algorithm that is supposed to be

realized in the physical system. Theoretically, this can be done by simplifying and

rearranging the required steps and making them based on the existing terms or those

available to be added through the control Hamiltonian in the total Hamiltonian of

the system. Experimentally, engineering the Hamiltonian meaning that refinement

of the control Hamiltonian is of practical importance.
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2.1.3 Ability to Initialize the State of Qubits to a Simple Fiducially State

In fact, if the starting initial state for any computation or information processing is

not well defined and known, the output will be useless. Thus, for any credited

implementation of quantum computing and quantum information processing, it is

an inevitable task to find access to well-defined well-known input states. For a

classical computer, it is generally an easy task to initialize all the bits; however, for

a quantum computer somewhat this task can be very challenging such that for some

particular physical systems, the initialization criterion can be one of the most

challenging criteria. Indeed, it is generally the one serious obstacle for ensemble

systems such as NMR.

2.1.4 A Qubit-Specific Measurement Capability

Computation is useful only if we can read out the results. Because of the postulates

of quantum physics, it is impossible to get all the information about the state of a

qubit by measurement. However, quantum algorithms make it possible to extract

the required information through the projective measurements. For ensemble sys-

tems, such as NMR and EPR-like systems, this criterion sometimes seems to be

challenging because that all the measurements give averages on the states. There-

fore, quantum algorithms need to be, and in fact have been, adapted to be

implementable on ensemble systems.

2.1.5 Long Relevant Coherence Times

Coherence time of a physical system should be much longer than the gate operation

time in order to have possibility to perform several operations in a computational

process before the quantum state disappears. For matter spin qubits, coherence time

is relevant to spin relaxation times. This criterion is not a trivial one to be satisfied

by majority of the physical systems since a quantum system is typically very fragile

against environmental noise.

3 NMR Quantum Information Processing and Quantum
Computation

Nuclear Magnetic Resonance, NMR, is a well-established field in physics, origi-

nally, and in chemistry, widely. NMR technology goes back to 1940s and con-

stantly has been used largely for varieties of purposes. In chemistry, NMR is a

major tool to study the structures and properties of solids, liquids, and gases [8–11].
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NMR has been used extensively for implementing even relatively complicated

quantum algorithms [12–17]. There are several good reasons why NMR has been

one of the foremost physical systems used for realizing quantum computing and

quantum information processing [18–21]. NMR naturally satisfies part of the

criteria mentioned, as explained in the followings. However, some of the important

factors are still missing with NMR. Despite those still remaining challenges, NMR

has been determined to be yet useful since it employs available special techniques

and knowledge that overall make NMR an excellent system for being controllable

(see the chapter in this book on “NMR Quantum Information Processing”). There-

fore, it is worth trying to solve the important issues with NMR, e.g. by adding an

electron spin to the system of nuclear spins and improving the polarization of the

whole system.

3.1 Scalable and Well-Characterized Physical
System of Qubits

The qubit system used in NMR quantum computing and quantum information

processing is an n-spin molecular system. The molecule involves n magnetically

distinct nuclear spins. Usually, the spins are spin-½ particles, though the higher

spins are also workable. Characterizations of spins are possible by considering the

resonance frequencies for each different spins.

The challenges for NMR, in this regard, are its scalability, large decoherence,

and hard control over the currently available twelve qubits. The number of nuclei in

each molecule is restricted and cannot be increased freely. The idea of cellular

automata has been proposed by Lloyd [22], which might be useful in this context.

However, the scalability problem, in its real meaning, as it should be possible to

extendedly increase the number of qubits while the computation is yet fault tolerant,

for liquid state NMR still is an open problem.

3.2 Universal Set of Quantum Gates

From a theoretical point of view, gates or operations are fixed and qubits are

introduced to the gates. However, in NMR quantum computing, qubits are being

represented by spins that are fixed in molecular structures and gates are introduced

by pulses that are selectively applied on each spins. Generally speaking, spins are

manipulated by applying radio-frequency pulses in the x� y plane to excite the

spins on their resonance frequencies. Other techniques such as pulse shaping or

GRAPE pulses are used for this purpose (see the “NMR Quantum Information

Processing” chapter in this book). Two-qubit gates are implemented by using the

pairwise interactions between spins in the same molecule.
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Arbitrary single qubit operations in addition to a CNOT gate make a universal

set of gates. NMR has the ability to construct any arbitrary single qubit operation

(radio-frequency pulses on resonance with each spins) and the CNOT gate

(by using the couplings in between the spins). Therefore, any arbitrary operation

(single- or multi-qubit operations) can be performed on the selected spins as far as

we have known how to make a universal set of gates. “Identity” operation is a rather

challenging operation in NMR since evolutions of spins are naturally never turned

off. Identity operation is performed by using a common NMR technique known as

refocusing.

The good point is that NMR is an already rich field of research going back to

about 70 years ago. Then, occasionally, the advanced techniques discovered by the

NMR community are proved to be useful for quantum computing and quantum

information processing purposes specially for designing quantum operations and

control operators.

3.3 Initialization of the State

Quantum computing and quantum information processing with liquid-state NMR

have been done conventionally and mostly at thermal equilibrium condition. The

thermal equilibrium state of NMR is described by a density matrix as follows

ρ ¼ e
� H

kBT

Tr e
� H

kBT

� � :

At room temperature, kBT is much larger than the differences between the energy

levels, typically 105 times larger. Then, the state is approximated, with a very good

accuracy, as follows

ρ � 1� H

KB2
n ;

where n is the number of spins. For example, n¼ 2 and suppose thatωA � 4ωB then

ρ � 1� hωB

4kBT

5 0

0 3

0 0

0 0
0 0

0 0

�3 0

0 �5

0
B@

1
CA:

This is a mixture of all possible pure states in the computational basis.

Recall the fact that NMR observables are traceless. Then, the identity term in the

above equation is not detectable. What remains detectable is the difference in the

populations of different states. Microscopic states for NMR might be in large
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varieties of states; however, as far as only the ensemble averages are measured,

there is no way to distinguish them.

Pseudo-pure state has been a useful concept defined for NMR and other ensem-

ble physical systems for quantum computing and quantum information processing.

A pseudo-pure state is a state which practically resembles a pure state, particularly

because of the NMR specifications. Pseudo-pure state generally has been intro-

duced in different ways. Preparation of pseudo-pure state inherently requires some

non-unitary operations, such as summation of different experiments.

Under the executed experimental conditions, the states are mixed rather than

pure [23–26]. Even with a pseudo-pure state, an NMR state with an initial low spin

polarization will not be useful because that for controlling and correcting the error

effects on the NMR system (using QEC) generally initial pure states or very close to

pure states are required.

3.3.1 QEC and NMR

Even in a classical scheme, states are supposed to be robust against the environ-

mental, systematic, and any sort of imposed errors since otherwise the final

outcome from the computation or the whole processing will not be reliable. For a

quantum system this requirement is even more critical since a quantum system will

easily leave its quantum state by any minor error effects; therefore, it is of priority

in any practices to be able to detect and refine the quantum states affected by errors.

QEC is one of the approaches taking care of such important job. There are other

approaches for controlling errors or making a quantum system robust against noise

but we are not aiming in reviewing this topic here.

QEC is for controlling and correcting the noises and errors that are occurring on

the physical system. A properly designed QEC code should be in operation, in

multiple rounds, all during that a computation or quantum processing is in progress.

Therefore, as first and the most important experimental testing, it is inevitable to

check the successful implementation of multiple rounds of QEC with the

corresponding physical system. If it turns out to be a successful implementation,

then the system will get enough credibility for being assigned for quantum imple-

mentation purposes.

In this context, NMR has a serious challenging situation. NMR initial states are

largely mixed and for QEC we need to have access to fresh ancillary qubits. Criger

et al. [27] showed that the required purity for ancilla qubits for QEC can be

somewhat less than an absolute purity but still a specific QEC might be successful

as far as the purity of the ancillary qubits are larger than a threshold value.

Therefore, if the purity of qubits bypasses the given threshold value, in principle

the noise effects on the system can be controlled and corrected.

As an example, for a conventional 3-qubit phase-flip error, the minimum

polarization of the ancilla qubits has to be larger than 0.41. This polarization is

clearly far beyond an achievable value for NMR. Direct purification of NMRmixed

states requires very strict experimental conditions of the temperature down to
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milli-Kelvin and a very high magnetic field. Therefore, instead of getting involved

in preparation of the experimental conditions for making a pure state, it has been

considered to follow indirect approaches. Dynamic nuclear polarization (DNP) and

heat-bath algorithmic cooling (HBAC, see the chapter Heat Bath Algorithmic

Cooling with Spins: Review and Prospects in this book) are some of the techniques

that have been used for improving the polarization of the NMR states

[28–30]. These techniques may not give a perfect pure initial state but at least the

enhanced purity of the final state would be high enough so that a QEC code may be

executed. Therefore, one may still need to run some form of pseudo-pure state for

having a clear and distinct starting initial state for the processing and/or computa-

tion after having access to a reasonably high spin polarization, as much as needed

for implementing a genuine quantum processing.

By considering what we have just mentioned in the above sections, with an

electron involved molecule in an EPR-like system, e.g. ENDOR/ELDOR, 0.41 is

indeed an accessible polarization even with a commercially available spectrometer

without very much modifying the default settings. Suppose we work with a fully

labeled malonic acid [31]. In a W-band system (95 GHz) at 4 K, the electron spin

polarization is about 0.60. This polarization can be exchanged with nuclear spins

such that finally all the involved nuclear and electron coupled spins end up with the

electron initial polarization. Note that this can be done, basically with swap gates

without applications of any further advanced methods. In the end, QEC with

polarized ancillary qubits can be implemented and repeated in multiple rounds

assuming that the electron is on duty for refreshing the nuclear spins on-demand, in

between the rounds.

This is actually a very powerful side of using high field ENDOR/ELDOR for

quantum computing and quantum information processing purposes. Eventually,

shaped pulses, GRAPE, can be used for optimizing the whole process but what

has been explained in the above section is based on generally available square and

Gaussian pulses, hence it has its credibility of being feasible with less interrupting

the initial set up of the spectrometers. By upgrading and customizing an available

commercial spectrometer and equipping it with Arbitrary Waveform Generator

(AWG), even further advanced and interesting applications will be possible. A

large number of microwave frequencies with their amplitude and relative phase

controlled at a desired manner have been prepared at X-band or higher bands for

QC experiments on molecular spins.

3.3.2 Exchange Polarization in Between an Electron

and a Nuclear Spins

It is indeed an advantage of electron involved systems that a higher polarized

nuclear spin can be achieved with reasonable efforts since a highly polarized

electron spin is readily available in the system therefore by applying appropriate

radio-frequency and microwave pulses the nuclear spin polarization can be

enhanced to an electron initial polarization. One possible approach to achieve
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nuclear spin polarization as almost equal to an electron spin polarization is shown in

Fig. 1.

The spin polarizations are shown as ES for the electron and EI for the nuclear spin.
The initial spin polarization for the electron is equal to E. In the end of the process,

the two spins pertain spin polarizations as almost same as the initial one, E. The
initial nuclear spin polarization is neglected in comparison with the electron spin

polarization.

N4

N1

¼ exp
�gβH

kBT

� �
� 1� gβH

kBT
¼ 1� E:

Firstly, an on-resonance microwave (ω13) π pulse is applied. The state after the

pulse would be as shown in Fig. 1b. The polarizations are interchanged to ES ¼ 0

and EI ¼ E. The radio-frequency π pulse (ω12) is applied so that it interchanges the

Fig. 1 A scheme on how to make nearly equal spin polarizations on nuclear spin and electron

spin, equal to the initial electron spin polarization. The horizontal length of each energy level

refers to the corresponding population of that level (the differences are exaggerated). The spin

polarizations are shown as ES for the electron and EI for the nuclear spin. The initial spin

polarization (thermal equilibrium) for the electron is equal to E. Nuclear spin polarization is

neglected in comparison with the electron spin polarization
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populations between two energy levels, 1 and 2. Now, we make an assumption that

is usually satisfied by carefully choosing a proper molecular sample. Suppose that

spin-lattice relaxation time for electron, T1e, is less than the relaxation time for

nuclear spin, T1n (this is usually satisfied). Therefore, after a waiting time of T1e the
system goes back to equilibrium on electron spin level and may yield the energy

levels as shown in Fig. 1d. Finally, we will have electron and nuclear spin

polarizations equal to 2E
2�E and

2
2�E 1� Eð Þ. Hence, we have

ES ffi E,
EI ffi E:

The above simplified approximation for calculating the population is based on a

rate-equation method.

Although the explained approach is an experimentally easy and accessible

approach, it has some drawbacks. It can only enhance the nuclear spin polarization

up to the electron spin polarization. If we work with a high field spectrometer and at

low temperature, the achievable polarization might be good enough, but in a

generally available X-band (9.5 GHz) and at higher temperatures, we may not be

satisfied by the final polarization since the electron initial polarization is low. Also,

a careful sample preparation is necessary. Other approaches might be used for a

better enhancement of spin polarization, such as HBAC which is good because it

can bypass the polarization of the bath (electron in our examples). We should

however admit that HBAC also has its own challenges and issues. In this contri-

bution, we keep doing experiments and increasing the nuclear spin polarization

with techniques close to what is just explained here. We will prove our good control

on the nuclear and electron coupled molecular systems in EPR-ENDOR machines

of X-band and Q-band (35 GHz) by exploiting quantum properties such as super-

position and nonclassical correlation.

3.4 Readout

Measurement in NMR is done with a radio-frequency coil placed close to the

sample. Free induction decay, FID, from the sample is captured by the pickup

coil. Then, FID is Fourier transformed to obtain the spectrum. In the obtained

spectrum, different spins (qubits) in the molecule are spectrally distinguishable via

their Larmor frequencies. The amplitude and phase of different spectral lines give

information about the corresponding spin states. The extracted information depends

on the convention; typically, a positive absorptive line is due to a
��0i state and

negative absorptive line is due to the spin in the state
��1i.

The magnetic signal of a single nuclear spin is too weak to be directly detected.

Therefore, NMR experiments should be running by using a large ensemble of

identical molecules, typically on the order of 1018, dissolved in a liquid solvent
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(in a case of liquid-state NMR, however, for solid state also we should have an

ensemble system of molecular spins). In fact, the system is an ensemble system,

rather than a single n-spin molecule.

Suppose an NMR implementation of a particular quantum algorithm. The final

read out information should be given by the distribution of random numbers

detected through the measurement. Signals coming from the NMR states are

averaged over the ensemble state. Averages of random numbers clearly are useless.

This looks like a problem but in fact it has been shown that it does have solutions

that are by slightly modifying quantum algorithms in a way that the averaged result

gives meaningful outcome.

The density matrix representing the state of an ensemble system is completely

determined if all the elements are detected and known. NMR measurements only

selectively address specific entries in the density matrix, called single quantum

coherence elements. Single quantum coherence elements connect basis states,

which differ by only one quantum of energy. Therefore, in order to get the total

density matrix elements, several 90� pulses are systematically applied in order to

rotate each spin around the x and y axes then to observe all the terms in the

deviation of the density matrix from the identity. The process to get the total density

matrix through the measurement is called “state tomography.” In a general scheme,

without any prior knowledge on the state, state tomography involves many exper-

iments and then it is impractical for experiments involving a large number of qubits.

3.5 Decoherence

The decoherence process of spins is well described by a combination of two

phenomena, longitudinal and transverse relaxations. These two processes are

closely related to generalized amplitude damping and phase damping, respectively.

In QEC, also there are different errors assumed to be imposed to a quantum system

and among them are the two important ones, amplitude damping and phase

damping. In other words, theory has already established a nice framework in

learning the above-mentioned errors in NMR and more importantly has given

some techniques to suppress the relevant errors effects.

Relaxations of nuclear spins can be caused by fluctuations in the magnetic field

experienced by the spins. Whether the magnetic field fluctuations contribute to

energy exchange with the bath or only undergo a phase randomization depends on

the timescale of the fluctuations. Roughly speaking, two processes are happening.

Fluctuations at resonance frequencies of the nuclear spins lead to efficient energy

exchange with the spins and slow fluctuations or fluctuations at zero or very small

frequencies give rise to phase randomization. The extended discussions on

decoherence in NMR might be found in literature [9, 28, 29].
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4 Electron-Nuclear Coupled Spin Molecular Systems
for Implementing Quantum Information Processing;
Practical Examples

For quantum computing and quantum information processing implementations, the

electron involved molecular spin systems should be in the solid state. Liquid-state

systems are not appropriate since by any techniques for polarization enhancement,

the achievable polarization would not be as large as the critical value that is

required for QEC.

In order to use any solid-state sample in EPR-like systems, for implementations

of quantum information processing and quantum computing, the first step is

characterizing the spin Hamiltonian because from this information the entire

quantum control will be designed. For a particular molecular sample that is picked

up for realizing an algorithm, it is typical to have different final fidelities if the

Hamiltonian is somewhat different. In terms of experimental practices, this state-

ment is translated to the specific orientation that the crystal sample is positioned

with respect to the external magnetic field.

By measuring all continuous wave EPR and ENDOR/TRIPLE spectra, an

accurate form of the Hamiltonian can be found. Then, an optimal orientation of

the sample is detected. Next, T1 and T2 are measured. We assume that the terms of

the Hamiltonian are well resolved and they are accessible in experiment with

reasonable operational complexities. Also, T1 and T2 are assumed to be long enough

for realizing particular quantum processing.

Special care should be on preparing high polarized states, at least as high

polarized as needed for using QEC. The absolute forms of quantum operations

for the particular quantum algorithm would be calculated based on the determined

Hamiltonian. For these quantum operations, pulse sequences are designed with

respect to available laboratory tools and machines. Finally, pulses (operations) are

applied on the states and the resultant state is measured by the available techniques

from EPR and EPR-like systems. In the following, these steps and techniques are

reviewed by giving some experimental examples.

4.1 Sample Studies

Any sample that is determined for quantum practices should be chemically stable

all during the processing. Malonic acid (X- or γ-irradiated single crystal) has been

proved as a good candidate for the case of small numbers of qubits. Synthetic

organic open-shell entities, which are robust against long and high-power irradia-

tions of radio-frequency and microwave pulses even at ambient temperature, are

also good candidates, for example Diphenyl Nitroxide (DPNO) embedded in a

proper diamagnetic lattice. In this section, we give an overview on the profiles of

the above-mentioned two samples, malonyl radical and DPNO.
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4.1.1 Malonyl Radical

Malonyl radicals are incorporated in the single crystal of malonic acid (HOOC)CH

(COOH), as depicted in Fig. 2. Spin Hamiltonian parameters of non-labeled

malonyl radical have been reported [32, 33]. For a central carbon labeled malonyl

radical, (HOOC)13CH(COOH), the spin Hamiltonian is known [34, 35]. We have

recently studied this sample and found the spin Hamiltonian for a fully carbon

labeled sample that is a better sample for quantum information processing practices

because of the larger number of accessible spin qubits, compared to a non-labeled

malonyl radical [31].

Figure 3 shows the energy levels of malonyl radical for X-band (9.5 GHz) and

Q-band (35 GHz) experiments. In Fig. 3, ω13 and ω24 denote EPR transitions, and

ω12 and ω34 denote ENDOR transitions. The magnetic field for Q-band is more than

three times larger than X-band. The NMR frequency becomes three times lager in

Q-band thus its corresponding relation with the hyperfine coupling yields different

patterns for ENDOR spectra. Figures 4 and 5 show the experimental results of

malonyl radical at X-band and Q-band. Since, the corresponding energy levels are

different, in case of pulsed ENDOR for X-band and Q-band the experimental results

are different. Relaxation times are measured for malonyl radical. T1 was 91.5 ms at

10 K, and T2 about 5.200 μs [36].

Fig. 2 Stable malonyl radicals are produced by X- or γ-irradiating malonic acid

1

2

3

2

4
4

|+,+> |+,+>
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| −,+>| −,− >
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w13
w13

w12
w12

w34
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w24
w24
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Fig. 3 S¼ 1/2 and I¼ 1/2. Energy levels and corresponding EPR/ENDOR resonance transitions

in the presence of a static magnetic field. The levels of energy are |++⟩: |MS¼+1/2, MI¼+1/2⟩,
|�+⟩: |MS¼�1/2, MI¼+1/2⟩, |+�⟩: |MS¼+1/2, MI¼�1/2⟩ and |��⟩:|MS¼�1/2, MI¼�1/2⟩;
Left: X-band. Right: Q-band
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The available number of qubits: The unlabeled malonyl radical has one

electron and one nuclear spin which is the α-proton. We usually do not count the

γ protons, but one may work with them as extra qubits if an excellent control is

MAGNETIC FIELD/mT
334 335 336 337 338

| αA | = 1.873 mT
(52.4 MHz)

Fig. 4 Left: Pulsed EPR spectrum of malonyl radical in the single crystal, X-band. The arrow
indicates the static magnetic field for the ENDOR measurements. Right: Pulsed ENDOR X-band

spectrum from malonyl radical at 20 K. The arrows separate for 2Vn (twice the proton Larmor

frequency) and the central frequency is A
2

�� �� ¼ 26:2MHz to the first order, where A is the hyperfine

coupling at the measured orientation of the sample with respect to the magnetic field

1.196 1.198

34

20 40 60 80

vn

1.200 1.202

51.044MHz

1.204

Magnetic Field/t

Frequency/MHz

=

Fig. 5 Up: Pulsed EPR spectrum of malonyl radical in the single crystal, Q-band. Bottom: Pulsed
ENDOR spectrum at Q-band from malonyl radical at 50 K. The central frequency is the nuclear

Larmor frequency to the first order and the separation of the peaks corresponds to the hyperfine

coupling
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achieved. By labeling carbons in malonic acid, the number of possibly available

qubits can increase up to one electron and four nuclear spins, all spin ½. Since the

lateral carbons are very close, at least in some specific orientations, we may also use

them as a single spin-1 nucleus. Therefore, the number of the available qubits will

be one electron and two nuclear spins, ½, and one nucleus with spin-1.

4.1.2 Diphenyl Nitroxide

DPNO is an open-shell molecular entity that we study as a molecular spin for

exploiting quantum effects. Open-shell molecular systems have emerged in inter-

disciplinary areas such as molecular spin science for giving us new aspects of

quantum functionality [37]. DPNO is potentially a good candidate for applications

relevant to molecular quantum technologies since its coherence time is typically

very long. It is also possible to control the relaxation time of DPNO by controlling

the concentration of DPNO in the diamagnetic lattice.

DPNO has been studied previously by several groups. To our knowledge, the

first pioneering work has been done by Deguchi, 1961 [38]. This work is an EPR

work both on pure DPNO single crystals and on DPNO diluted in benzophenone

single crystals, even before the X-ray structural analysis of the host molecule

appeared in 1968. The exchange line broadening was analyzed in this work.

Then, later high-resolution hyperfine EPR spectra in solution were analyzed by

Yamauchi et al., 1967 [39]. The g tensor for DPNO diluted in the benzophenone

lattice and the hyperfine tensor of the nitrogen nucleus of the nitroxide site were

determined by conventional EPR spectroscopy as early as 1970s by Lin [40]. The

principle values for g tensor for DPNO and hyperfine tensor A for nitrogen have

been reported to be, gxx¼ 2.0092, gyy¼ 2.0056, gzz¼ 2.0022, Axx¼ 1.9 G,

Ayy¼ 3.6 G, Azz¼ 23.8 G. Brustolon’s group [41] revisited DPNO in the benzo-

phenone lattice by cw ENDOR spectroscopy in 1988. According to their paper, the

g tensor has the principle values of gxx¼ 2.0079, gyy¼ 2.0040, gzz¼ 2.0014. Only

preliminary results of the nitrogen hyperfine coupling and quadrupole tensors were

given in [41] without giving the tensor analysis. Also, 1H ENDOR/TRIPLE spec-

troscopy was carried out in isopropanol at 210 K and radical pairs were detected

from the concentrated mixed crystals. In between the two latter introduced works,

Yamauchi et al. measured proton ENDOR in ethylbenzene at 203 K, 1987 [42]. The

substituted ortho-methyl effect was influential. Nevertheless, complete analyses of

the magnetic tensors of DPNO from the experimental side have never been

documented yet because of inhomogeneously broadened EPR lines in the solid

state due to the existence of protons.

There are several reasons on our interest in DPNO. The relaxation time of DPNO

can be controlled by controlling the dilution (DPNO is a very easy-to-dilute

molecular spin in the diamagnetic molecular lattices). DPNO is selected because

it is a stable molecular-spin physical system allowing us to characterize the

magnetic tensors under strong microwave and radio frequency irradiations. The

irradiation in this regard is sometimes required for quantum information processing
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and quantum computing. DPNO is also selected because it is feasible to have

measurements in a wide range of temperature from ambient to liquid helium

temperature.

For sample preparation, DPNO has been magnetically diluted in benzophenone

single crystals. Benzophenone molecule is isostructurally substituted by DPNO at a

desired concentration, see Fig. 6.

The crystal symmetry of the benzophenone crystal is orthorhombic with

a¼ 1.030 nm. b¼ 1.215 nm and c¼ 0.800 nm, see Fig. 7.

In each unit cell, benzophenone has four molecules. All the angular dependen-

cies of EPR and ENDOR spectra were carried out in the crystallographic abc
coordinate system at ambient temperature with a Bruker ESP300/350 spectrometer

(a TMmode cavity and helical coil for RF irradiation) [36]. In each crystallographic

plane, two of the molecules are equivalent. Therefore, two sets of molecules exist

Fig. 6 Up Left: Benzophenone molecular structure. Up Right: Benzophenone is isostructurally

substituted by DPNO. Bottom left to right: DPNO, deuterated DPNO and nitrogen labeled

deuterated DPNO [36]

Fig. 7 Left: Benzophenone crystal. Right: DPNO in the principal xyz-axes system
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while for measurements along the axis, all the four molecules of a unit cell are

equivalent. Therefore, there is not any site splitting due to the different sites. This

property is used in order to define the axis, Fig. 8. For DPNO, we cannot detect the

site splitting because of the proton broadening of the spectra, while this fact for each

plane is clearer in case of the nitrogen labeled deuterated sample. ENDOR spectra

can be observed in the temperature range of 350 K to liquid helium temperature.

In Fig. 9, angular dependencies of the three DPNO samples are shown in the

crystallographic bc plane, as an example. Figure 10 shows ENDOR spectra of

DPNO with the static magnetic field along the crystallographic a axes.

a

b

c

Fig. 8 Single crystal EPR spectral of DPNO, DPNO-d10, and DP15NO-d10 in the benzophenone

single crystal. The horizontal axes are magnetic field in units of mT

Fig. 9 Angular dependencies of single crystal EPR spectra of DPNO, DPNO-d10, and DP15NO-

d10 in the crystallographic bc plane
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From this study, the g tensor is derived and the principal values are as follows:

giso¼ 2.0069, gxx¼ 2.0110, gyy¼ 2.0065, and gzz¼ 2.0033 [36].

Pulsed ENDORmeasurements on DPNO have been done at X-band and Q-band,

at different temperatures. At Q-band, pulsed EPR and pulsed ENDOR measure-

ments were run at 50 K. Figure 11 shows the results for DPNO. Results for DP15

NO-d10 are shown in Fig. 12.

Spin-lattice relaxation time, T1, for DPNO is measured to be 392 ms and for DP15

NO-d10 is 42.5 ms, at 10 K. Measurements on spin-spin relaxation time T2 give

0.777 μs for DPNO, and 0.489 μs for DP15NO-d10.

axis

Fig. 10 Typical ENDOR and TRIPLE spectra of DPNO in the benzophenone single crystal.

Arrows indicate the second frequencies for the TRIPLE experiments

1.2020 1.2060

Magnetic Field/T

50 52
Frequency /MHz

54

1.2100

T = 50 K

vMW = 33.86769 GHZ

vp

Fig. 11 DPNO pulsed Up:
EPR, Bottom: ENDOR
spectra
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The available number of qubits: In the liquid state, DPNO and its derivatives

provide up to six different qubits, each selectively controllable [43]. In the solid

state, the number of qubits, in principle, can be up to the existing protons and

nitrogen with the static magnetic field along arbitrary orientation, in addition to an

electron. DPNO is specifically a strong candidate for realizing HBAC since its large

number of involved qubits can make it hard for a general quantum processing

scheme (at least for the near future), however for the algorithmic cooling, the

ENDOR control on protons and nitrogen with an electron bath qubit should be

enough.

4.2 Generating Pseudo-Pure State

Pseudo-pure states are acquired by applying particular pulse sequences and waiting

time for equalizing different populations. Mehring et al. [44] gave one particular

approach for producing pseudo-pure states for molecular systems such as malonyl

radical.

In a rather similar approach, we implemented pseudo-pure states. Figure 13

gives the pseudo-pure state in comparison to the initial state after applying the pulse

sequence, as shown in Fig. 14.

It is clear that the state corresponding to ω34 is suppressed demonstrating the

pseudo-pure state on the state corresponding to ω12. It should be noted that in the

pulse sequence, Fig. 14, the first 109� microwave pulse of ω24 and π/2 radio-

15N

15N

0 5 10
Frequency/MHZ

15 20 25

2nN

nD T = 50 K

1.196 1.198

Magnetic Field/T

1.200

A

A/2

nMW= 33.6904 GHZ

B0 = 1.1979 T

Fig. 12 DP15NO-d10 pulsed Up: EPR, Bottom: ENDOR spectra
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frequency pulse of ω34 are for pseudo-pure state generation and the other pulses are

applied for (Davies) ENDOR detection. Pseudo-pure states to the other energy

levels, shown in Fig. 5, would be acquired by applying other forms of pulse

sequences.

This experiment demonstrates our control on the electron-nuclear coupled

molecular spin systems because as evidenced by the experimental results the

operations and the required waiting times have been implemented successfully.

Next, in the following section, we show the experimental results on enhancing the

nuclear spin polarizations by an electron spin. As an example and in order to

demonstrate the built-up polarization on the nuclear spins, we have studied the

generation of nonclassical correlations between the electron and the nuclear spins

as a result of the larger nuclear spin polarization.

4.3 Polarization Built Up on Nuclear Spins and Generating
Nonclassical Correlations

The following experiments demonstrate our control over the electron-nuclear

coupled spin systems. Nuclear spins polarizations are enhanced by applying the

109 deg. RF (π)w24 w34(π/2 ) π/2 ππ

Fig. 13 Pseudo-pure state; ENDOR results before (up) and after (bottom) applying the pulse

sequence given in Fig. 14

10

n = 9.43362 GHz

0 10 20
FREQUENCY/MHz

FREQUENCY/MHz

suppressed

30 40

20 30 40

w12

w34

T = 20 K

B = 335.718 mT

Fig. 14 The pulse sequence for generating pseudo-pure state
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pulses, as explained in the above sections. One physical property that is changing as

the result, after building up polarization on the nuclear spins, is nonclassical

correlations between the coupled spins. For a matter of demonstrating the experi-

mental outcome and to check its closeness to the expected results, we use some

nonclassical/quantum coherence measure and investigate if the corresponding

values are enhanced by the nuclear spin polarizations enhancements. We run the

experiments at X-band and Q-band.

It is worth mentioning that if we run the experiment at W-band, the required spin

polarization for starting to generate entanglement between an electron and a nuclear

spin is achieved in a magnetic field for 95 GHz at a temperature of 0.83 K or lower.

However, if a transfer of spin polarization, as explained above, from electron spin to

nuclear spin is performed the required temperature is 5.17 K, or lower, which is

well in reach with current technology with a W-band ENDOR spectrometer oper-

ating at liquid helium temperature. The experimental conditions are given for two

cases of the experiments without and with transfer of spin polarization.

We may use some sort of witness operators for detecting non-classical correla-

tion and entanglement [18, 45]. Here we use another technique available from EPR.

The technique is called Time Proportional Phase Incrementation, TPPI [46]. TPPI

is a technique for separating multiple quantum coherences. The technique gives

global information on the total state of electron and nuclear spins. TPPI is an

essential tool for detecting and resolving the correlated states from the simple

superposition states. In TPPI, the phase shifts are implemented by incrementing

the phase frequencies of the individual detection pulses in consecutive experiments.

Detection pulses are unitary back operations applied in accordance to the expected

state for detecting the coherences. Detection pulses are applied with arbitrary phase

frequencies, υj on jth spin. Therefore, we have

Δωj ¼ 2πυj:

Consecutive experiments are performed for a time Δt. We have

ϕj ¼ ΔωjΔt:

The phase shifts are detected through the experiment and give information on the state.

Let us give an example. Suppose that the state in the experiment is a Bell state of

the following form

��ψi ¼ 1ffiffiffi
2

p 01j i � ��10� 	Þ:

Detection pulses that we apply are a microwave π pulse followed by a radio-

frequency π/2 pulse, with phases of ϕ1 and ϕ2, respectively, Fig. 16. Then the

detection unitary operation might be written as
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Ud ¼ ω34

π

2
;ϕ2

� �
ω24 π;ϕ1ð Þ:

The first pulse is a microwave π pulse, ω24(π) and the second pulse is a π/2 radio-

frequency pulse, ω34(π/2). Then, the measurement is performed with the detection

of electron spin echo. The intensity would be as follows

Sψ
d ϕ1;ϕ2ð Þ ¼ Tr S24z Ud

��ψ
 	
ψ
��U{

d

D o

¼ �1

2
1� cos ϕ1 � ϕ2ð Þ½ �:

Therefore, through the detection by TPPI, we would get the phase shift as follows

ϕ1 � ϕ2 ¼ Δ ω1 � ω2ð ÞΔt:
Here, for the angular frequencies, ωj, we have

Δ ω1 � ω2ð Þ ¼ 2π ν1 � ν2ð Þ:

Detection of a pulse with a phase shift of ϕ1 � ϕ2 demonstrates that the state has

been
��ψi. If the state under measurement is a superposition of the state then after

applying the detection unitary operations with ν1 and ν2, the results will be only ϕ1

and ϕ2 and not the coherences, ϕ1 � ϕ2. After applying phase-dependent pulses, π
microwave ω24 with phase ϕ1 followed with a π/2 radiofrequency ω34 with phase

ϕ2, the phase-dependent echo intensity of the following form is given

I ¼ �1

4
1� cos ϕ1 � ϕ2ð Þ½ �:

Table 1 shows possible choices of microwave and radiofrequencies for the pulse

sequence for generating different coherences (Fig. 15).

The artificial phase frequencies in our experiments are Δωj ¼ 2πΔνj, ν1 ¼ 1:0

MHz and ν2 ¼ 5:2MHz, as arbitrary values. The resultant spectrum is a 2D spectra,

the TPPI frequency against time. The phase interferogram against time is Fourier

transformed. The combination of the phases, whether to be addition or subtraction,

gives evidence of the phase of the coherence state. See Fig. 16 for the results that

have been achieved from experiments with malonyl radical.

Table 1 Different coherent states derived by different pulse sequences

Microwave Radio frequency 1 Radio frequency 2 State VTPPI

ω24 ω12 ω34
1ffiffi
2

p 10j i � ��01� 	Þ ϕ1 � ϕ2

ω24 ω34 ω12
1ffiffi
2

p 00j i þ ��11� 	Þ ϕ1 þ ϕ2

ω13 ω12 ω34
1ffiffi
2

p 00j i � ��11� 	Þ ϕ1 þ ϕ2

ω13 ω34 ω12
1ffiffi
2

p 10j i þ ��01� 	Þ ϕ1 � ϕ2
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Similar experiments have been carried out on DPNO. Fourier-transformed

experimental results showed that three-partite coherence among one electron and

two proton spins is acquired for the first time. However, because of the small

gyromagnetic ratio of nitrogen and the fact that we didn’t have access to a high-

power radio-frequency amplifier, we were unable to appropriately manipulate

nitrogen. Here, nitrogen is a basis for discriminating proton energy levels. How-

ever, we are planning to use this molecule for more elaborated quantum computing

and quantum information processing such as implementing multiple rounds of

HBAC and QEC. From the experimental side, another approach will be the usage

of multiple and strong microwave frequencies allowing us to manipulate nitrogen

nuclei.

5 Conclusion

Electrons (in addition to nuclear spins) involved in molecular spin systems have

intrinsic properties important for exploiting quantum effects, in which the electron

plays the role of a bus qubit. Nuclear spins with typically long coherence times play

109 deg.

MWMW MW

RF1(π/2) RF2(π/2) RF2(π/2)
π/2π echo

π

f1 f2

π

Fig. 15 The pulse sequence that has been used for generation of coherences between an electron

spin and a nuclear spin
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TPPI Frequency /MHZ
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n2 = 1.0 MHZ|n1|

Fig. 16 Experimental results demonstrating the coherences with malonyl radicals
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the role of quantum memories. Fast electron spin manipulations are achieved by

applying on-resonance microwave pulses. Couplings between spins make it plau-

sible to speed up nuclear spin manipulations by using the electron spins as quantum

actuators. In addition, flexibilities are offered by synthetic chemistry for designing

new open-shell molecular materials for quantum applications such as high-

resolution imaging, molecular sensors, and quantum information processing.

One of the main challenges in utilizing the spin systems for quantum practices is

the thermal fluctuations of spins. In principle, a highly pure initial state should be

prepared in order to establish a clean start-up. The idea is to employ the coupled

spins and take advantage of the electron high spin polarization. Polarizations of

nuclear spins are enhanced to the electron spin polarization by applying direct

pulses, DNP methods, or HBAC.

Extracting reliable processing outcome, i.e. robust against noise, is the ultimate

goal for every effort relating to engineering a processing system. In quantum

context, only few examples are applicable since generally quantum systems are

fragile against noise. The electron-nuclear coupled molecular spin systems are

useful since extra spins can be introduced by appropriate molecular optimization;

spins are refreshed by different techniques and algorithms, and they are controlled

by using varieties of advanced tools and knowledge from ESR/ENDOR/ELDOR

[47]. In addition, NMR paradigm-based electron magnetic spin technology has

already been emerging in this field.
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Molecular Spins in Biological Systems

Hideto Matsuoka and Olav Schiemann

Abstract Quantum effects in biological systems have recently been studied

extensively in the fields of quantum computing (QC) and quantum information

processing (QIP). The focus of this review is on quantum coherences and entan-

glement properties created in natural photosynthesis, whose understanding may be

crucial for achieving the remarkable efficiency of its excitation energy transfer. In

the beginning, an overview of electron and energy transfer in photosynthetic

reaction centers (RCs) and light-harvesting complexes (LHCs) is given. Then the

physical aspects of spin-correlated radical pairs (SCRPs) are described, which are

ubiquitous intermediates in a wide range of biochemical reactions. Examples are

given mainly with relation to quantum coherences in RCs and LHCs, which persist

at room temperature, since such long-lived quantum coherences are crucial for

quantum information storage and manipulation. Where appropriate, experimental

observations of quantum coherences in artificial molecular assemblies are also

briefly surveyed. In the second part, site-directed spin-labeling and pulsed

electron-electron double resonance (PELDOR or DEER) are described, which are

becoming important techniques in QC/QIP.

1 Introduction

In addition to solid-state materials [1–4], biological systems have attracted much

attention in the field of quantum computing and quantum information processing

(QC/QIP), which is called “Quantum Biology” [5–8]. Within Quantum Biology,

photosynthesis has been one of the main research subjects [5–8]. In part, because

photosynthetic organisms harvest sunlight with near unity quantum efficiency and

recent theoretical studies have suggested that a coherent superposition of
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delocalized excited states (quantum coherence) may be crucial for achieving the

remarkable efficiency of the excitation energy transfer [6–22].

In 2007, Graham Fleming and his coworkers showed the existence of coherent

quantum beating in bacterial reaction centers (RCs) at 77 and 180 K [12, 13]; and in

2010, Gregory S. Engel and his coworkers provided clear evidence for the existence

of quantum coherence in the bacterial complex at ambient temperature [14]. Those

pioneering works proved that the observation of quantum coherence is not due to an

artifact under cryogenic laboratory conditions but that quantum coherences are

preserved in photosynthetic systems for up to a picosecond at ambient and cryo-

genic temperatures [11–15, 17, 19–21]. These findings have raised questions

concerning the utilization of quantum coherence in the solar energy conversion

because one had expected that the coherence between the excited states is imme-

diately destroyed at ambient temperature in the biological environment composed

of thermally fluctuating water and amino acids. Persistent electronic coherences

were also observed in a series of rigid synthetic heterodimers [23]. A very recent

study of a photoexcited supramolecule demonstrated that the driving mechanism of

the primary photoinduced event is a correlated wavelike motion of electrons and

nuclei [24]. Even in conjugated polymer samples, coherent electronic energy

transfer has been observed at room temperature [25, 26]. In addition, a coherent

charge-transfer model related to the motion of charges has been discussed in blend

films of organic photovoltaic materials [26, 27].

Fleming et al. proposed a particular quantum computation algorithm called a

quantum search, in which an exciton finds its destination (RC) by using quantum

coherences [12]. Seth Lloyd and his coworkers suggested a different quantum

algorithm called a quantum walk [16], in which a quantum particle walks coher-

ently toward its destination. Creating a practical quantum computer requires that

the surrounding environment is prevented from affecting the coherence of the

quantum bits (qubits). Thus, a better understanding of quantum coherence in the

biological systems under ambient conditions would be of significant importance to

achieve practical quantum computing. The long-lived quantum coherences in the

biological systems also stimulated the construction of artificial molecular systems,

which can be used either for direct electric power generation (photovoltaic

approach) [28] or solar fuel production (photosynthetic approach) [5]. Quantum

teleportation across a photosynthetic membrane using SCRPs is another example

for direct utilization of biological systems in QC/QIP [29–31]. In addition, SCRPs

are ubiquitous in a wide range of biochemical reactions and spatially separated,

non-interacting SCRPs can be considered as entangled objects, which have been

extensively investigated by time-resolved electron paramagnetic resonance

(TR-EPR) [32–41].

A different example is to use spin-labeled biological systems as scalable qubits

for electron spin-based QC/QIP [42–44]. Site-directed spin labeling (SDSL), which

has been employed to determine the structures of membranes, proteins, and nucleic

acids [45], is becoming an ever more important technique in QC/QIP. For example,

Takeji Takui and his coworkers have suggested that scalable electron spin-qubits

can be constructed by incorporating spin labels with spatially different orientations
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of magnetic tensors into DNA [44]. A pulsed electron–electron double resonance

(PELDOR) technique was employed to evaluate the spin dipolar and exchange

interactions between the spin labels [46], which are necessary information for

implementing quantum gate operations in open shell compounds. Beyond using

PELDOR merely as an analytical technique, it has been recognized that it is also a

powerful tool for the coherent manipulations of electron spins [47].

2 Photosynthesis

2.1 Reaction Centers and Light-Harvesting Complexes

Light-induced electron transfer reactions in membrane-bound proteins called reac-

tion centers (RCs) play a crucial role in the primary energy conversion steps of

photosynthesis. The RCs are found in large pigment-protein complexes called

photosystems. Two types of photosystems can be distinguished in all oxygen

evolving photosynthetic organisms (plants, cyanobacteria, algae), which are

referred to as photosystem I and II (PS I and PS II). The RCs contain chlorophyll

dimers referred to as P700 and P680 in PS I and PS II, respectively. When a thylakoid

membrane is exposed to sunlight, pigment-protein antennas known as LHCs absorb

solar energy and transfer it to the RCs.

The chlorophyll dimer P700 locates on the electron transfer chain in PS I, which

contains six chlorophylls (Chls), two phylloquinones (A1), and three Fe4S4 clusters

(Fx, FA, FB) arranged in two similar branches related by a pseudo-C2 symmetry

axis, as shown in Fig. 1 [48]. The Chls are separated into three groups: the special

pair P700, the accessory Chls (A), and the primary electron acceptors (A0). The

cofactors (A, A0, A1) are part of either branch A or branch B. Extensive studies have

been performed to reveal the route of the electron transfer from the special pair to

the iron cluster. Especially, TR-EPR [49–51] has been extensively employed to

investigate the electron transfer pathway [32, 33, 52]. It was initially thought that

the electron transfer is unidirectional in PS I, by analogy with the type II reaction

centers of purple bacteria and PS II, where only one cofactor branch is active for the

electron transfer. However, during the past decade, it has been recognized that both

cofactor chains in PS I are functionally relevant (bidirectional mechanism) [32, 33].

Within PSII, molecular oxygen is produced from water by the water-oxidizing

complex [53–57], which is composed of four exchange-coupled manganese

(Mn) atoms and one calcium (Ca) atom (Fig. 2a, b). EPR techniques have provided

detailed information on the electronic and molecular structures of redox-active

molecules in PSII [55–57]. Very recently, the crystal structure of PSII was disclosed

at a resolution of 1.9Å [53]. The crystal structure also revealed the presence of a vast

number of water molecules, as shown in Fig. 2c. Obviously, photosynthetic proteins

are situated in the warm, wet, and noisy conditions due to thermally fluctuating

water, which is expected to destroy quantum coherence immediately.
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Two types of LHCs called LHC-I and -II are found in higher plants and green

algae, which are associated with PS I and PS II, respectively. In purple bacteria, two

types of LHCs are distinguished: the peripheral light harvesting (LH2) [58] and the

core light-harvesting antenna complexes (LH1). Until recently, the main mecha-

nism of energy transfer in the LHCs has been interpreted by the classical hopping

mechanism assumed in F€orster theory [59]. However, recent theoretical and exper-

imental studies have proposed wavelike energy migration through quantum coher-

ence as an alternative to the classical model, revealing the presence of long-lasting

quantum coherence in the warm, wet, and noisy biological systems [10–16].

2.2 Spin-Correlated Radical Pair in an Entangled State

After the chlorophyll dimers absorb light in photosystems, an electron is transferred

from the excited singlet state of each pigment to a primary electron acceptor in the

Fig. 1 Arrangement of the

cofactors in the RCs of PS I

(PDB entry 1JB0)
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pico- to subnanosecond time range. After losing their electrons, the chlorophyll

dimers become positively charged pigments and higher plants, and the acceptor

becomes negatively charged. The positively charged pigments are normally termed

as P700
+ or P680

+ in cyanobacteria, green algae, and higher plants. Through a

specific pathway, electrons are transferred via intermediate electron carriers to a

terminal electron acceptor, which is the iron cluster and quinone in PS I and II,

respectively. Generally, the electron transfer reactions in RCs can be described as

Fig. 2 (a) Arrangement of the cofactors in the RCs of PS II (adapted from [54]). (b) Geometric

structure of the Mn4CaO5 cluster (adapted from [53]). (c) Structure of PSII dimer from

Thermosynecoccus vulcanus at a resolution of 1.9 Å. Arrangement of water molecules is shown

by orange circle. The broken lines represent the noncrystallographic twofold axes relating the two
monomers (adapted from [53])
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P A0AIAT !hv 1P* A0AIAT ! PþA0
�AIAT

! PþA0AI
�AT ! PþA0AIAT

�

where P, A0, AI, and AT are referred to as the chlorophyll dimers, primary,

intermediate, and terminal electron acceptors, respectively. The photoinduced

cation (P+) and anion (Ai
�) are radicals, and thus, the charge separation state

forms the radical pair P+Ai
� that can be detected by TR-EPR [32–41, 52].

A radical pair consisting of two unpaired electrons forms one singlet state

(S) and three triplet (T+, T0, T�) illustrated by a vector model in Fig. 3. At high

magnetic fields, the eigenstates of the four possible electron spin states can be

described as

Sj i ¼ 1ffiffiffi
2

p α1β2j i � β1α2j ið Þ

Tþj i ¼ α1α2j i
T0j i ¼ 1ffiffiffi

2
p α1β2j i þ β1α2j ið Þ

T�j i ¼ β1β2j i

ð1Þ

where αi and βi are referred to as the “spin-up” and “spin-down” states of a radical i.
A radical pair consisting of two radicals with their respective spins, S1 and S2, has

the total spin S¼ S1 + S2. Since spin multiplicity is conserved in electron transfer

processes, the total spin S is the same as the spin multiplicity of the precursor

molecule (spin correlation): S¼ 0 for an excited singlet precursor and S¼ 1 for a

triplet precursor. Thus, such a radical pair is often called a SCRP. The two radicals

are physically separated by a large distance rapidly after the absorption of light, so

Fig. 3 A vector model of the four possible spin states in a radical pair consisting of two unpaired

electrons: one singlet state (S) and three triplet (T+, T0, T�)
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that SCRPs can be practically considered as a non-interacting species. Since SCRPs

are generated from the singlet precursor in photosynthesis, the initial state of

SCRPs is a spin singlet, which can be regarded as a maximally entangled Bell

state under this condition. A pair of quantum systems in an entangled state can be

used as a resource for quantum teleportation. It is well known that SCRPs play a

crucial role not only in photosynthesis but may also be important in the bird’s
navigation system [60, 61].

2.3 TR-EPR of Spin-Correlated Radical Pair

The singlet radical pairs give rise to high electron spin polarization, which is often

called either CIDEP (chemically induced dynamic electron polarization) or ESP

(electron spin polarization). Due to CIDEP/ESP, the radical pairs can be monitored

by TR-EPR with high-time resolution and high sensitivity [32–41, 52, 62]. In the

charge separation, the electron and the hole are separated rapidly by a large

distance. For example, the transfer of an electron from the excited singlet state of

P700 to the primary and secondary electron acceptors (A0 and A1) occurs within

10 and 100 ps, respectively. If the distance between two radicals is sufficiently

large, the exchange interaction J between the spins becomes essentially negligible,

so that the S and T0 states are nearly degenerate. In such a condition, the singlet

state can interact only with the T0 state (S�T0 mixing). When the S�T0 mixing is

considered, the possible four spin states can be described as [34, 36, 38, 40]

1j i ¼ Tþj i
2j i ¼ cos ϕ Sj i þ sin ϕ T0j i
3j i ¼ � sin ϕ Sj i þ cos ϕ T0j i
4j i ¼ T�j i

ð2Þ

where

tan 2ϕ¼ 2Q

2J þ d
,

Q¼ 1

2
ω1 � ω2ð Þ,

d¼ D cos ξ� 1

3

� �
:

ð3Þ

Here, ωi stands for the electron Zeeman interaction of an electron i. J and D are

referred to as the exchange and electron-spin dipolar interactions, respectively. The

angle ξ represents the orientation of the dipolar axis with respect to the magnetic

field direction. Under this condition, coherent interconversion (intersystem
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cross-ing) between the S and T0 states can be occurred with time, and thus, only the

S and T0 states are populated, giving CIDEP/ESP. As a result, either absorptive

(positive) signals from the two states, j2i and j3i, to j1i or emissive (negative) ones

to j4i are observed, as shown in Fig. 4.

In addition to TR-EPR, electron spin transient nutation (ESTN) spectroscopy

also enables one to identify weakly interacting radical pairs [34–36, 38, 40, 63, 64].

In ESTN spectroscopy, the nutation frequency, which is proportional to the transi-

tion moment of an EPR transition, is monitored as a function of the microwave

irradiation strength [63, 64]. Figure 5 shows the transient W-band EPR spectrum of

the light-induced radical pair, P700
+A1�, in PS I from cyanobacteria Synechococcus

lividus (S. lividus) [52]. The nutation frequency is given for an EPR allowed

transition between jS, MSi$ jS, MS + 1i sublevels by

ωN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
�
Sþ 1

��MS MS þ 1ð Þ
q

ω1 ð4Þ

Fig. 4 (a) Energy levels, EPR allowed transitions, and zero quantum coherence for a SCRP. (b) A
stick diagram of an EPR spectrum for a SCRP, in which absorption and emission signals are

illustrated by red solid and dashed lines, respectively

0 1 2 3

Time / µs

3.342 3.344 3.346 3.348 3.350

Magnetic Field / T

Abs.

Em.

a b

Fig. 5 (a) Transient W-band EPR spectrum of the light-induced radical pair, P700
+A1

�, in PS I

from cyanobacteria S. lividus at 80 K. (b) Nutation signal (Torrey oscillation) at the field position

of 3.3475 T

58 H. Matsuoka and O. Schiemann



with ωN¼ gβB1. For short distances between the two radicals (strongly interacting

radical pairs), the exchange interaction J splits the singlet and triplet levels, which

can be described by the eigenstates in (1). In this condition, only transitions

between the triplet levels can be detected by EPR spectroscopy. Since the EPR

transitions for j1,�1i$ j1, 0i and j1, 0i$ j1, 1i are allowed in the strong-coupling
limit, the nutation frequency is given by

ωN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:2� 0:1

p
ω1 ¼

ffiffiffi
2

p
ω1 ð5Þ

In the weak-coupling limit, which is expected for SCRPs in photosynthesis, the

nutation frequency is given by ω1 [34–36, 38, 40]. The ESTN spectroscopy is a

novel technique to identify weakly or strongly interacting radical pairs based on the

transition moment.

As described above, there is zero quantum coherence (ZQC) between the

eigenstates j2i and j3i in weakly interacting radical pairs, which manifests itself

as quantum beat oscillations in an EPR experiment with adequate time resolution

[32, 37, 39, 41, 52, 62]. Gerd Kothe and coworkers have extensively studied ZQCs.

A high-time resolution X-band study was performed for the P700
+A1� radical pairs

at room temperature [37, 41]. Very recently, Kothe et al. have explored the electron

transfer pathways of PS I in fully deuterated green alga Chlamydomonas reinhardtii
using high-time resolution EPR, in which quantum oscillations were clearly

observed at different field positions, as shown in Fig. 6 [32]. Surprisingly, analysis

of the quantum oscillation in fully deuterated S. lividus revealed that the spin

coherence time T2 was 500 ns, even at room temperature despite the warm, wet,

and noisy biological environment [41]. The coherence time extended to microsec-

ond range at 70 K [62]. In nondeuterated Chlamydomonas reinhardtii, the coher-

ence time was around 500 ns at 100 K [33], indicating that the coherence time is

affected by the nuclear spins of protons. However, the mechanism of causing the

long-lived spin coherence at ambient temperature is still an open question. The

ZQC studies in PS I have been very recently extended to the W-band (94 GHz)

regime, in which the excellent spectral resolution is realized [52]. No significant

magnetic field dependence of the coherence time was observed from the high-field/

high-frequency EPR study [66].

2.4 Quantum Teleportation Using Spin-Correlated
Radical Pairs

An exciting application of entanglement is quantum teleportation, which plays an

important role in QIP [65]. Quantum teleportation provides a way for transporting a

quantum state between two separated parties, the sender (Alice) and receiver (Bob).

Imagine that Alice possesses a qubit labeled A that is in an unknown state:

ΨAj i ¼ C1 "Aj i þ C2 #Aj i ð6Þ
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Here, j"Ai and j#Ai represent eigenstates of the qubit in the measurement basis,

which correspond to the spin-up and spin-down states in SCRPs. In addition, Alice

and Bob each share one partner of a two-qubit entangled pair, which can be

described in a singlet state as

SBCj i � "B#Cj i � #B"Cj i ð7Þ

where normalization factors are omitted here, for simplicity. In this condition, Alice

possesses qubits A and B, while Bob possesses qubit C. In quantum teleportation,

the state of qubit A is transported to Bob’s qubit. The essential elements of this

protocol are shown in Fig. 7. Kev. M Salikhov and his coworkers have proposed

quantum teleportation across a photosynthetic membrane using SCRPs. In Fig. 7,

the scheme is arranged in such a way as to represent the photosynthetic RC

complex, where the upper and lower sides of the figure correspond to the lumen

and stroma sides in the photosynthetic systems, respectively. The Salikhov’s
proposal is as follows [29–31]:

1. The first process is to incorporate a stable anion radical as qubit A into the

photosynthetic systems by using a different light-induced reaction, chemical

Fig. 6 Transient Q-band EPR spectra of the light-induced radical pair P700
+A1

� on the B branch

in PS I at various times after the laser pulse, and time evolution of the EPR signals at different field

positions (adapted from [26])
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reduction, or spin labeling. And then, a coherent state of qubit A is prepared by a

short microwave pulse.

2. The second process is to generate an entangled pair composed of qubits B and C.
As described above, the initial state of SCRPs generated in photosystems is the

spin singlet, which can be regarded as the maximally entangled Bell state. Thus,

this process can always be realized in natural photosynthesis, where qubits B and

C correspond to the positively charged special pair and negatively charged

electron acceptor, respectively.

3. The third process is the so-called Bell state measurement, which is the crucial

step in quantum teleportation. Charge recombination to a singlet state between

qubits A and B is required. In order to avoid the singlet-triplet conversion, the

charge recombination should be completed within a nanosecond. Thus, the

incorporation of the stable radical, A, must be engineered properly in such a

way as to satisfy the condition. Due to the fixed spin correlation in SCRPs, the

spin state of qubit C is the same as that of qubit A created by the first MW pulse.

As a result, the input (spin) quantum state is teleported from the lumen side to the

stroma side across the photosynthetic membrane.

Quantum teleportation using SCRPs in biological systems has been extensively

studied from the theoretical side, but the proposed processes are very demanding

experimentally. However, as described above the maximally entangled Bell state is

naturally created in the photosynthetic systems by the primary charge separation.

Thus, utilization of SCRPs in biological systems for quantum teleportation is still of

great interest.

Fig. 7 Schematic representation of quantum teleportation (adapted from [30])
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2.5 Wavelike Energy Transfer Through Quantum Coherence
in Photosynthetic Systems

Nature harvests solar energy with a remarkably high quantum efficiency, followed

by rapid and highly efficient transport of excitation energy to a RC [17]. Until

recently, a classical random hopping assumed in the F€orster model has been

considered as the main mechanism of energy transfer in the LHCs. However,

emerging experimental and theoretical results have revealed that coherent (wave-

like) motion of the electronic excitations through photosynthetic complexes may be

responsible for such a remarkably high quantum yield [6, 7, 10, 12–14, 16–22].

The classical incoherent hopping and quantum coherent transfer mechanisms are

illustrated in Fig. 8 [22]. In 2007, Graham Fleming and his coworkers demonstrated

the existence of coherent quantum beating in the Fenna-Matthews-Olson (FMO)

complex [12, 13]. In 2010, Gregory S. Engel et al. [14] and Gregory D. Scholes

et al. [15] independently provided clear evidences of the existence of quantum

coherence at ambient temperature in the bacterial complex and in cryptophyte

algae, respectively. As shown in Fig. 9 [21], long-lived electronic coherence was

directly observed at room temperature between two rings, called B800 and B850, of

the bacteriochlorophyll a pigments in single LH2 complexes, where B800 and

B850 have the distinct electronic absorption bands in the infrared region.

Fig. 8 The classical hopping and quantum coherent energy transfer mechanisms (adapted

from [22])
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The dynamics of energy transfer is commonly interpreted in terms of the

evolution of populations and coherence [5, 14, 19]. Here, imagine a two-site system

with a single excitation spread coherently over both sites:

Ψ tð Þj i ¼ c1 ea; gbj i þ C2 ga; ebj i ¼ c1 ϕ1j i þ C2 ϕ2j i ð8Þ

where “ei” and “gi” represent the excited and ground states of a system i, respec-
tively. In quantum mechanics, populations and coherences are described by the

density matrix. The time evolution of the density matrix is given by [14]

Ψ tð Þj i Ψ tð Þh j ¼ c1j j2 ϕ1j i ϕ1h j þ c2j j2 ϕ2j i ϕ2h j
þ c1c

*
2e

�i E1�E2ð Þt=h ϕ1j i ϕ2h j þ c*1c2e
�i E1�E2ð Þt=h ϕ2j ihϕ1j

ð9Þ

The first two terms represent the diagonal elements of the density matrix describing

populations and the latter two represent the off-diagonal elements describing

coherences. The coherence dynamics of the photosynthetic systems has been

manifested in two-dimensional electronic spectra by the presence of quantum

Fig. 9 Ultrafast phase-coherent excitation of the peripheral light-harvesting (LH2) complexes at

room temperature. (a) The bacteriochlorophyll amolecules in LH2 are arranged in two concentric

rings termed B800 (blue) and B850 (red). The emission spectrum is depicted in a dotted line.
(b) Schematic representation of the experiment, in which the first pulse (blue) excites the B800

band, the second pulse (red) resonant with the B850 band modulates the population transfer to the

B850 excited states, and the emission is monitored as a function of Δt or Δϕ. Emission monitored

in the single LH2 complexes as a function of (c) the interpulse delay time and (d) phase shift

(Adapted and modified from [21])
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beats due to the phase factors of the coherence terms. The transfer between the

diagonal elements (population transfer) corresponds to the classical hopping mech-

anism for energy transfer, in which energy is transferred from one state to the next.

The transfer between off-diagonal elements (coherence transfer) corresponds to the

wavelike motion. As shown by Gregory S. Engel and his coworkers, quantum

transport of energy can be described as coherent population transfer, in which

coherences couple to populations [13–15, 19, 30]. The three types of transfer are

schematically illustrated in Fig. 10 [19].

The role of quantum coherence to enhance the quantum efficiency for the energy

transfer is still an open and intriguing question. To understand the origins of such

long-lived coherences and their role in the high efficient photosynthetic property

will inspire the development of new energy technologies.

3 Quantum Coherence in Artificial Energy Conversion
Systems

Carlo A. Rozzi et al. evidenced that the photoinduced process is triggered by a

wavelike motion of electrons and nuclei on a timescale of few tens of femtoseconds

in a prototypical artificial RC [24]. Very recently, a series of rigid synthetic

Fig. 10 The three types of transfer of the density matrix elements. The transfer between the

diagonal elements (population transfer) corresponds to the classical hopping mechanism (blue),
the transfer between the off-diagonal elements (coherence transfer) to the wavelike motion

(green), and the transfer between a population and a coherence to quantum transport (red)
(Adapted and modified from [19])
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heterodimers were engineered by Gregory S. Engel and his coworkers, which

exhibited quantum beating in two-dimensional electronic spectra [23]. Compared

with the complicated photosynthetic systems, the synthetic heterodimers are the

smaller and simpler systems that can be a model system to investigate the funda-

mental physics underlying the persistent electronic coherences.

4 Site-Directed Spin-Labeling and Pulsed Dipolar
Spectroscopy

SDSL in combination with Pulsed Dipolar Spectroscopy (PDS) is an important tool

for obtaining structure and dynamics information of biomacromolecules [45]. How-

ever, SDSL in biological systems may also become an important technique in

QC/QIP. For example, the incorporation of organic radicals at designed positions

might be useful for building up scalable qubits of electron-spin-based quantum

computing and spin labels with narrow spectral widths may enable selective

excitation of EPR transitions, which would additionally be supported if the label

is rigid. In addition, molecular spin-based QC/QIP requires stable radicals with long

phase memory times, also for this new types of labels are available. Such radicals

could then be attached to the biomolecule in a way that they have different

orientations. For example, nitroxide spin labels with spatially different orientations

of the magnetic tensors were incorporated into DNA to construct scalable electron

spin-qubits [42–44]. Here, several SDSL techniques with different types of

labels are surveyed, and a small selection of PDS methods will be introduced,

especially PELDOR.

4.1 Labeling of Proteins with Nitroxides

Based on the seminal work of Hubbell, proteins are usually labeled at cysteines [67].

In order to achieve the site specificity, the label carries a functional group that reacts

selectivelywith the SHgroup of the cysteine. If the protein carries several cysteines or

a cysteine at an unwanted site, these are exchanged for other amino acids, e.g. alanine,

via site-directed mutagenesis. In turn, site-directed mutagenesis is also used to

incorporate a cysteine at the wanted site. Thus, the label contains a spin-bearing

moiety, commonly a five- or six-membered nitroxide ring, the functional group that

reacts specifically with the SH side chain of the cysteine, and a linker connecting both.

For example, maleimide [68] (Fig. 11a), iodoacetamide [69] (Fig. 11b), or

methanethiosulfonate [70] (Fig. 11c) has been used as functional groups. The latter

one, the so-called MTSSL label, is the most selective and most used one.

However, one would have to make sure that the mutagenesis and the label itself

do not lead to structural changes, e.g. via testing the proteins function. If the function

is inhibited or if the protein precipitates upon mutagenesis, labeling via cysteines
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might not be feasible. In this case, labeling via unnatural amino acids can be used

[71, 72]. Here, the idea is to introduce an amino acid that carries a functional group

that is unique in the protein and to react this with a compatible functional group at

the label. An example for this is the para-acetylphenylalanine/hydroxylamine couple

[71] (Fig. 12a), which has been used successfully by several labs [73, 74].

Under reducing conditions, as encountered for example within cells, the disul-

fide bridge formed between MTSSL and the cysteine will be cleaved. In such cases,

Fig. 11 Nitroxides used to label cysteines in proteins. (a) A maleimide label, (b) a iodoacetamide

label, and (c) the methanethiosulfonate label MTSSL. All labels can be obtained from Toronto

Research Chemicals

Fig. 12 Labeling of unnatural amino acids. (a) Labeling with the p-acetyl-phenylalanine/hydrox-
ylamine couple and (b) labeling via “click”-chemistry
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labels with other functional groups have to be employed. One possibility is to use

click chemistry. This requires again the incorporation of an unnatural amino acid

carrying a terminal alkyne group and a nitroxide with an azide group or the other

way round [75] (Fig. 12b).

Beyond the linker cleavage, the nitroxide group itself is instable under reducing

conditions. Studies showed that five-membered nitroxides are more stable than

six-membered and that steric shielding with bulkier alkyl groups then methyl can

increase the lifetime of nitroxides [76–78].

With respect to the linker, one should also keep in mind that both, structural

studies and QC/QIP, will usually benefit from linker groups that are rather rigid

because this reduces the label flexibility and thus structural ambiguity. Possibilities

to achieve this are (a) making the linker as short as possible e.g. TOAC [79], (b) by

e.g. non-covalent interactions with the protein [80, 81] or to use labels with two

functional groups that bind covalently to two sites in the proteins as demonstrated

by the Hubbell lab with the label RX [82]. RX binds to two cysteines, which are

separated by 2–3 amino acids between them (Fig. 13).

4.2 Labeling of Proteins with Trityl Radicals

In order to overcome the short lifetime under reducing conditions, short phase

memory times and low spectral sensitivity other spin-bearing moieties than

nitroxides are thought after. Currently, there are efforts made to establish the carbon

centered trityl radicals as spin labels. These have line widths as narrow as 3 Gauss,

which enables the selective excitation of a particular spin state; and the phase

memory times at ambient temperature are up to several microseconds, which is

longer than those of radicals in photosynthetic proteins. In addition, the trityl

radicals are stable under reducing conditions. Double Quantum Coherence (DQC)

and PELDOR measurements on bis-trityl and trityl/nitroxide model systems

showed that such labels also yield higher sensitivity in these experiments and that

exchange and dipolar coupling can be separated [83, 84] (Fig 14a). Application of

trityls as labels for proteins has been shown by the Hubbell lab (Fig. 14b), which

permitted DQC measurements at room temperature [85].

Fig. 13 Labeling with the two-legged nitroxide RX
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4.3 Labeling of Proteins with Metal Centers

The limitations of the nitroxide labels might also be overcome by using paramag-

netic metal complexes. Well-studied examples are the Gd3+-labels pioneered by the

Goldfarb lab [86]. Such labels are stable under in-cell conditions [87], have at high

field/high frequency a narrow ms¼�1/2 transition, and give in PELDOR experi-

ments on model peptides [88] and on proteins [89] time traces with high signal to

noise ratio and rather narrow distance distributions. Usually, these measurements

are performed at Q- or W-band [86]. Recently, the Mn2+ analogue of the Gd2+-

DOTA has been reported and successfully used on model peptides to obtain

distances up to 4.5 nm [90]. The lab of Saxena showed that a double histidine

sequence enables to rigidly bind a Cu2+-complex site specifically to this sequence in

a protein. In this way, they were able to obtain a Cu-Cu distance of 2.5 nm in the B1

immunoglobulin-binding domain of protein G [91].

Instead of using artificial metal complexes, one can also make use of intrinsic

paramagnetic ions or clusters within proteins. Examples for this are the Mn2+ ion

in PSII, which has been studied with PELDOR as early as 1998 by the lab of

Kawamori [92], FeS and NiFe clusters in a hydrogenase [93] and Cu2+ in the

EcoRI endonuclease [94]. A combination of SDSL and PELDOR has recently

been shown to enable the localization of a Cu2+ ion within the three-dimensional

fold a protein, here azurin [95]. For metal centers with faster relaxation times,

broad spectral width or a spectrum separated from g¼ 2 a pulsed EPR method

called Relaxation Induced Dipolar Modulation Enhancement (RIDME) might be

more useful especially in its dead-time free five pulse version [96], due to better

sensitivity, weaker orientation selection, and because the metal center does not

need to be excited by a microwave pulse but flips instantaneous by its T1

relaxation. For metal centers in proteins, this has been demonstrated for example

on the heme protein Cyp101 [97], other examples have been reviewed by

Astashkin [98].

Fig. 14 Trityl labels for (a) hydroxyl groups in materials, yielding ester linkages, (b) for

cysteines in proteins, yielding disulfide bridges, and (c) for oligonucleotides, yielding together

with N,N0-carbonyldiimidazole and 1,4-piperazine a Trityl conjugated to the 50-end of an

oligonucleotide via an ester-piperazine linker
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4.4 Labeling of Oligonucleotides

The DNA double helix contains only four different canonical nucleotides with the

bases adenine, guanine, cytosine, and thymine. Thus, the uniqueness of chemical

groups in DNA is even more limited than in proteins. However, unique groups can

be introduced during the phosphoramidite synthesis of the DNA at the wanted

position in the nucleotide sequence and this can then be reacted selectively with

labels carrying a complementary functional group. Examples of site-specifically

attached nitroxides are shown in Fig. 15.

Labeling at the phosphate backbone can be achieved with the thiol-reactive

nitroxide 3-iodomethyl-(1-oxy-2,2,5,5-tetramethylpyrroline), which reacts with a

phosphorothioate modification leading (1) in Fig. 15 [100]. One possibility of

labeling the sugar group is to react isocyanate tetramethylpiperidinyl-N-oxy with

20-amino modified uridine (2) [101]. Bases can be labeled for example via palla-

dium catalyzed cross coupling between 2,2,5,5-Tetramethylpyrroline-1-oxyl-3-

acetylene and iodo-modified bases e.g. 5-iodo-uridine (3) [102]. Another possibility

is to react 4-Amino tetramethylpiperidinyl-N-oxy with a correspondingly modified

cytidine phosphoramidite (4) [103] or to click Azidoisoindoline-N-oxy with an

alkyne modified uridine (5) [104]. Instead of incorporating a matching modified

nucleotide into the DNA and reacting it after the DNA synthesis with a spin label,

one can also incorporate an already spin-labeled phosphoramidite into the DNA.

Such an example is the very rigid spin label Ç (6), which has been successfully used

in orientation selective PELDOR measurements on DNA [105]. The analogue of Ç

shown in (7) has the advantage that it is still rigid but it avoids elaborate synthesis of

the phosphoramidite because the label binds non-covalently to abasic sites opposite

to a guanine in DNA duplexes [106]. The initialization, manipulation/computing,

and readout of quantum information stored in spin systems are crucial for QC/QIP.

Fig. 15 Nitroxides used for spin labeling of nucleic acids (adapted from [99])
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Orientation selective excitation becomes possible by rather rigid spin labels. Since

the manipulation corresponds to the selective excitation between particular spin

states, such rigid spin labels are necessary in QC/QIP. For more details on nitroxide

labeling of oligonucleotides, see for example [107]. Highly excitingly, the lab of

Bagryanskaya reported recently the labeling of oligonucleotides with trityl labels at

the 50-ends of the duplexes. This enabled, as for proteins, DQC-based distance

measurements on immobilized DNA at ambient temperatures (Fig. 14c) [108].

4.5 EPR-Based Nanometer Distance Measurements

EPR spectroscopy provides various methods for measuring the dipolar coupling

between unpaired electrons. Continuous wave (CW) EPR methods are usually

restricted to distances below 2.5 nm [109] whereas pulsed EPR experiments have

been shown to be applicable for distances of up to 8 nm [110].

Pulse sequences working with one microwave frequency are SIFTER, double-

quantum coherence (DQC) EPR, and RIDME (Fig. 16). SIFTER is based on the

solid echo sequence and has been shown to work nicely in combination with shaped

broadband pulses using an arbitrary wave function generator [111]. DQC-EPR uses

a double-quantum filter and works best if the whole spectrum is excited either by

Fig. 16 Pulse sequences for measuring dipolar and exchange coupling constants
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using hard (broadband) pulses or by using labels with narrow spectral widths,

e.g. trityl radicals [85]. RIDME relies on one of the spin centers having a faster

T1 relaxation time than the other [97], although it has also been applied to

bis-nitroxide systems [96]. An alternative strategy for removing unwanted hyper-

fine interactions is used in PELDOR [112–114]. Here, the detection pulses, applied

at one microwave frequency (νA), excite spin A in a two-spin system and create a

refocused Hahn-echo. In contrast, the pump pulse excites spin B in the same system

using a different microwave frequency (νB) than for spin A. This requires two

microwave sources, which are not phase correlated. If two identical spin labels

are used, the differentiation between spin A and B can be done if the spectral width

is larger than the excitation bandwidth of the pulses (orientation selection via the

hyperfine and g-tensor). If in addition spin A and B are structurally correlated,

meaning the labels are rigidly attached to a rigid biomolecule, the PELDOR time

traces are orientation selective with respect to the dipolar tensor, which provides not

only distance but also angular information [105]. Application of the pump pulse

between the two π-pulses of the detection makes the PELDOR time traces dead-

time free, like the 5-pulse RIDME sequence. Thus, the dipolar coupling frequencies

and the distance distributions can be obtained very precisely. This also enables the

separation of dipolar from exchange coupling as shown on several model systems

[115]. If the dipolar and exchange coupling between the spin centers is very small,

pulsed ESTN spectroscopy may be used to determine both contributions [116].

With respect to QC/QIP, especially the excitation with two different microwave

frequencies, like in PELDOR, may become a key technology to manipulate partic-

ular spin states selectively.
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Adiabatic Quantum Computing
on Molecular Spin Quantum Computers

Satoru Yamamoto, Shigeaki Nakazawa, Kenji Sugisaki, Kazunobu Sato,

Kazuo Toyota, Daisuke Shiomi, and Takui Takeji

Abstract A molecular spin quantum computer (MSQC) is a model of QCs, in

which we manipulate bus electron spins with client nuclear spins by pulse-based

electron spin/magnetic resonance (ESR/MR) techniques applied to well-defined

open-shell molecular entities. The spin manipulation executes quantum computa-

tion ranging over all Hilbert space, which is achieved by sets of quantum gate

operations, called universal gates. The bus electron spin quantum bits (qubits)

interact extensively with other electron spins and relatively localized nuclear

spins as client qubits. Since the electron spins play the central role in MSQCs,

MSQCs can simply be regarded as ESR-QCs. Generally compared with NMR-QC,

ESR-QCs have advantages in fast gate operations, global control in client qubits,

and initialization process. On the other hand, apparent disadvantages are fast

decoherence and technical difficulties in current spin manipulation technology.

In this chapter, we introduce the implementation of an adiabatic quantum

computation from the theoretical point of view. The main issue is quantum oper-

ations in realistic Adiabatic Quantum Computers (AQCs) based on molecular spin

systems, suggesting that the established experimental schemes and protocols render

MSQCs realistic. For this purpose, an algorithm is selected for an adiabatic

factorization problem of 21, as we compare with the comparable algorithm of

NMR experiments with three nuclear qubits. Toward adiabatic quantum computa-

tion on MSQCs, two molecular spin systems are selected: One is a molecular spin

composed of three exchange/dipole-coupled electrons as electron-only spin qubits

and the other an electron-bus qubit with two client nuclear spin qubits. Their

electronic spin structures are well characterized particularly in terms of quantum

mechanical behavior as interpreted by their spin Hamiltonians. The implementation

of AQC has been achieved by establishing ESR/MR pulse sequences applied to the

spin Hamiltonians in a fully controlled manner of spin manipulation. The con-

quered pulse sequences have been compared with the NMR-QC experiments and
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standard QCs. A significant result is that MSQCs can perform adiabatic quantum

computations efficiently as same as standard QCs, and the computations can be

performed in ESR timescale even if the client nuclear spin qubits participate in the

computation processes.

Keywords Molecular spin qubits • Adiabatic quantum computing • Pulse

sequences

1 Introduction

In the current era, chemists or materials scientists in emerging fields discuss the

quantum states of electrons and nuclei in materials, and they have attempted to

implement molecular quantum devices at various levels in microscopic scales.

Their attempts are categorized as bottom-up approaches. On the computer technol-

ogy, down-sizing approaches have been facing physical limits of classical com-

puters (CCs) manufactured on current technology [1, 2], in which further device

miniaturization gives rise to quantum interference. Quantum behavior of mole-

cules, especially spin-bearing entities, underlain by molecular optimization for

quantum functioning, has attracted considerable attention [3–10], and the relevant

interests from the viewpoint of spin science range widely. One major issue is the

observations for functionalized spin properties and the other one is the manipula-

tion or control of spin qubits at a desired manner in molecular systems. Quantum

computers (QCs) can afford to contribute to range over these problems, which

execute calculations beyond the limits of CCs and will require us to establish

further molecular optimizations for scalable and practical molecular spin quantum

computers (MSQCs). This is an important aspect of implementing QCs as well as a

current target in spin science.

According to enormous computational capability, nowadays CC is an essential

source for any analyses in pure and applied sciences, but it is known that the total

computational capability is intrinsically restricted by its physical “classical” reality

[2, 11, 12] and most quantum problems belonging to NP (Non-deterministic

Polynomial time) class are not possible to solve efficiently [13–15]. QC is a new

paradigm in that bits relevant to quantum states (qubits) are capable of processing

quantum problems much faster since QC utilizes the superpositions of the states

and/or their entanglement to speed up the processing [13, 14]. In fact, QC has

expanded computational ability from CCs and solves BQP (Bounded-error Quan-

tum Polynomial time) class containing some part of the NP class in polynomial time

[16–18], e.g., Shor’s factorization algorithm [19–23].

Since Shor’s algorithm appeared, many experimental attempts have been

performed [24] and the first experiment was carried out by highly sophisticated

pulsed NMR techniques [25]. The first experiment was made by manipulating C, H,

and F nuclear qubits of dimethyl fluoromalonate molecule in solution. It has been

claimed that quantum entanglement as the heart of QC was not been established in
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any NMR experiments in solution. Another factorization experiment was proposed

by Peng et al., which factorizes 21 by an Adiabatic Quantum Computer (AQC) with

only three qubits. This is the quantum algorithm which we will discuss below as a

relevant version of electron spin qubits.

We describe in this chapter how to perform adiabatic quantum computation by

implementing AQCs by using MSQCs. As discussed below, AQC is a computation

model of the ground state manipulation by the Hamiltonian of the system under

study [26]. Then the algorithm of AQC, i.e., adiabatic quantum algorithm (AQUA)

is defined by the time-dependent Hamiltonian path. The first quest is how to make

performable formula of AQUA for spin resonance techniques. This answer has

already been proven in NMR-QCs, and it is based on a replacement approach of the

time-dependent Hamiltonian to the time evolution operator. The second quest is the

focus of our recent research into how to simulate the time evolution operators by

MSQCs. This issue contains AQC and quantum simulation also by using advanced

microwave (MW)-based ESR spin technology. In this context, MSQC belongs to

the class of ESR-QC, which allows us to manipulate client nuclear spins via bus

electron spin qubits. This is not just the simple scaling of NMR to ESR because

some physical parameters are different in order of magnitude from each other. In

this chapter, we show that qubits generated by open-shell molecules, whose spin

properties are optimized, can perform AQC in ESR timescale.

Referred to truly realistic QCs, it is worth noting the recently established MSQC

techniques. The MSQC implements that nuclear spin spins as client qubits in

molecular spins, while electron spins play the role of bus qubits, then the system

can be controlled by both pulsed radiofrequency and pulsed MW techniques [27].

This approach requires particular molecular optimization which renders electron or

nuclear spins of molecular spins functioning as addressable spin qubits. The

optimization includes g- or A-tensor engineering to distinguish between the qubits

[28–33]. It is worth noting that the implementation of CNOT (Controlled-NOT)

gates as two-qubit quantum gates has been for the first time achieved for synthetic

molecular electron spins [30], and chemistry emerges in the field of quantum

computing and quantum information processing (QIP). Furthermore, recently arbi-

trary wave-form generator (AWG) techniques have been developing to satisfy the

manipulation for more than a few molecular electron spins by generating sophisti-

cated sequences of radiation pulses. By virtue of the AWG-based technical devel-

opment, molecular spin quantum technology has been coming to engineer a large

number of the pulses now.

2 Adiabatic Quantum Computer

Algorithms of AQC, AQUAs, are based on the adiabatic theorem (Fig. 1). Let us

assume time evolution of a quantum system under following conditions: (1) One

prepares a ground state of Hamiltonian as an initial state, (2) the Hamiltonian of the

quantum system is varied slowly from the initial state to the final one, and (3) there
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is no intersection between the ground state and exited states during the evolution

period. Under these assumptions, the adiabatic theorem indicates that the quantum

system stays in the ground state of the time-dependent Hamiltonian [26].

From the viewpoint of the quantum computation, there is a possibility to find a

ground state of the Hamiltonian by the adiabatic theorem. This is because if one

develops the quantum system to the known final Hamiltonian, then one can conquer

its unknown final state. This is Adiabatic Quantum Computing. Note that the

required time of AQC depends on the energy gap (ΔE) between the ground and

exited states, which corresponds to the change of speed for the Hamiltonian in a

precise manner. Therefore, the computational time is defined as polynomials of the

energy gap against the size of problems (N ). In general, the computational time of

AQC is unknown because of the computational complexity for the energy surface

of the quantum systems, even though there are proven cases executing calculations

faster than CCs, e.g., adiabatic searching algorithms (
ffiffiffiffi
N

p
) [34] as the same order of

Grover’s algorithm in standard QCs. Except for this problem, AQC has the same

properties of QCs: (1) AQCs are equivalent to standard QCs [35], and (2) AQCs

have error correcting codes [36].

Throughout this chapter, we name a time-dependent Hamiltonian of AQUA as

an ideal Hamiltonian or algorithm Hamiltonian, since ESR-QC does not operate the

Hamiltonian in any direct manner.

2.1 Adiabatic Factorization Algorithm of 21

Here, we introduce an adiabatic factorization algorithm of 21. This algorithm is

proposed by Peng et al. [25]. The ideal/final Hamiltonian (or say the problem

Hamiltonian: Ĥf), is Eq. (1),

Ĥ f=h ¼ N̂ � x̂ ŷ
� �2 ð1Þ

Fig. 1 Schematic view of AQC. The top and bottom lines indicate the ground and first excited

states of a quantum system, respectively. The Hamiltonian of the system moves from the initial

Hamiltonian (Hi) to the final one (Hf). g denotes a variable changing from 0 to 1 and corresponding

to the initial state (g¼ 0) and final one (g¼ 1). The minimum energy gap is ΔE at g¼ gc
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where, N̂ ¼ 21Î and ( x̂ , ŷ) is the binary representation of natural numbers by

qubits. It is obvious to find that the ground state is given by Eq. (2).

Ĥ f

� � ¼ 0 , x̂h i; ŷh ið Þ ¼ 7, 3ð Þ or 3, 7ð Þ ð2Þ

This is because the final Hamiltonian of Eq. (1) is a positive operator. In the case of

factorizing 21, this algorithm is performed by only three qubits. Without loss of

generality, one can write down x̂ and ŷ as Eqs. (3) and (4) assuming x̂h i � ŷh i and
both are odd numbers. This indicates x̂h i2 � N̂ and ŷh i2 � N̂ because of the

relation of x̂h i � ŷh i � N̂ .

3 � x̂h i �
ffiffiffiffiffi
21

p
) x̂ ¼ Î � σ̂ 1

z

� �þ Î ð3Þ
ffiffiffiffiffi
21

p
� ŷh i � 21=3 ) ŷ ¼ 2 Î � σ̂ 2

z

� �þ Î � σ̂ 3
z

� �þ Î ð4Þ

where σ̂ i
z is the σ̂ z value of the ith spin. In Eqs. (3) and (4), 3 indicates the minimum

prime number which gives the restriction to the minimum value of x̂h i and the

maximum value of hŷi. The ground state of Ĥf is j###> which allows one to

calculate the values of x̂h i; ŷh ið Þ ¼ 3; 7ð Þ from Eqs. (3) and (4). This adiabatic

algorithm is not efficient in a certain case when the solutions of x̂ and need the same

bit length, that gives two solutions of x̂h i; ŷh ið Þ and ŷh i; x̂h ið Þ with ΔEmin ¼ 0.

However, there are some possibilities to calculate other N̂ problems fast, and this

algorithm allows us to carry out AQC experiments with operations by a small

number of qubits. Expanding Eq. (1), we obtain the following expression:

Ĥ f=h � 84σ̂ 1
z þ 88σ̂ 2

z þ 44σ̂ 3
z � 20σ̂ 1

z σ̂
2
z � 10σ̂ 1

z σ̂
3
z þ 20σ̂ 2

z σ̂
3
z � 16σ̂ 1

z σ̂
2
z σ̂

3
z ð5Þ

which is utilized for implementing pulse sequences of radiofrequency or MW

frequency irradiation in magnetic resonance QC experiments. In this transforma-

tion, an identity operator Î is neglected.

2.2 Time Evolution Formula of AQC for Spin-Resonance
Molecular Systems

To perform AQC, we need to define an adiabatic path of a time-dependent ideal

Hamiltonian. A typical method defines two ideal Hamiltonians, which are named

an initial Hamiltonian (Ĥi) and a final Hamiltonian (Ĥf) presented above.

They connect the path in a linear manner. In order to compare with NMR-QC

experiments, the following parameters and initial Hamiltonian are adopted

(Eqs. (6), (8), and (9)) [25].
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Ĥ i=h ¼ 30
X3
i¼1

σ i
x ð6Þ

The coefficients of Eq. (6) are selected and the Hamiltonian has the same order of

the norm with the final one. If not, the algorithm must need more time required. As

mentioned above, it is hard to manipulate spin Hamiltonians of the real systems

including its coupling constants between spins in ESR/NMR-QC. However, we can

simulate behavior of the quantum system with the time-dependent ideal Hamilto-

nian by affecting the time evolution operator (Eq. (7)) to the initial state.

Û ¼ T̂

ðtf
ti

exp �iĤ tð Þ=h� �
dt ð7Þ

where T̂ denotes time-ordered products, Ĥ tfð Þ ¼ Ĥ f , Ĥ tið Þ ¼ Ĥ i , and ti < tf .
Approximating to the finite time step for pulse calculations,

Û ¼
Y5
m¼1

exp �0:028� iĤ m=h
� � ð8Þ

Ĥ m ¼ m=5ð Þ2Ĥ f þ 1� m=5ð Þ2
n o

Ĥ i ð9Þ

are obtained. Note that Ĥi (Eq. (6)) is needed not to commute with Ĥf (Eq. (5))

because of avoiding crossing of energy levels between the ground state and exited

states, and the restriction is satisfied in Eqs. (8) and (9). A simple example is that if

Ĥm is composed of only σ̂ i
z operators, the operator Û will never change the σ̂ i

z

values, thus never give rise to spin flipping. Therefore, Û must contain the

noncommutative operators in Ĥm terms, and simulating the time evolution by

ESR/NMR experiments needs Trotter expansion into the commutative operators

(Eqs. (10)–(12)).

Û ¼
Y5
m¼1

Û mi � Û mf � Û mi ð10Þ

Û mi ¼ exp �i0:028 1� m=5ð Þ2
n o

Ĥ i=2h
� �

ð11Þ

Û mf ¼ exp �i0:028 m=5ð Þ2Ĥ f=h
� �

ð12Þ

In this approach, the theoretical fidelity is known to be 0.91 [25], and the imple-

mentation procedure is shown in Sect. 3. The explicit formula of Eqs. (10)–(12) and

(10)–(12) is
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Û mi ¼
Y3
i¼1

exp �i0:42 1� smf gσ̂ i
x

� � ð13Þ

Û mf ¼ exp �i2:352smσ̂
1
x

� �� exp �i2:464smσ̂
2
x

� �� exp �i1:232smσ̂
3
x

� �
�exp �i0:56smσ̂

1
x σ̂

2
x

� �� exp þi0:56smσ̂
2
x σ̂

3
x

� �� exp �i0:28smσ̂
3
x σ̂

1
x

� �
�exp �i0:448smσ̂

1
x σ̂

2
x σ̂

3
x

� �
ð14Þ

sm ¼ m=5ð Þ2 ð15Þ

and thus, the adiabatic factorization is performed by operations given in Eqs. (13)–

(15). Note that the elements of Ûmi (Ûmf) are commutable with itself, which means

one can choose the order of operations in the unitary operator.

3 Spin Hamiltonian in Pulsed ESR Techniques

The spin Hamiltonian of open-shell molecules is written by Eq. (16) in Schr€odinger
picture. From the viewpoint of QCs, we term Eq. (16) the spin Hamiltonian of

molecular spin QCs (MSQCs).

Ĥ MSQC ¼
XN
i¼1

Sig i
eβeB�

XM
i¼1

Iig i
nβ

i
nBþ

XN,N
i<j

Si jþ Dð ÞijeSj

þ
XN,M
i¼j¼1

SiAijIj þ
XM,M
i<j

Ii jþ Dð ÞijnIj
ð16Þ

where, N and M denote the number of electrons and nuclei, respectively. This

Hamiltonian contains effects of both the static magnetic field and the irradiation

fields from micro/radio waves in B term. The first and second terms denote Zeeman

interactions and gi is a second rank tensor which is related to the Larmor frequency

ω0 of an ith spin (ω i
0,e ¼ gi

zzβeBz=h and ω i
0,n ¼ �gi

zzβ
i
nBz=h where Bz denotes the

static magnetic field which is parallel to the z-axis). The interactions between spins
are described also by second rank tensors of J, D, and A, which denote exchange,

spin-dipolar, and hyperfine interactions, respectively. MSQC is assumed to satisfy

three conditions for the following pulse sequence study: (1) small anisotropy of the

g-tensor for electrons and nuclei, (2) strong magnetic field limit for electrons, which

the Zeeman term is much larger than others and (3) hyperfine co-axial system for

solid-state ESR studies. The condition (3) is not always needed but this restriction

leads the theoretical approach more easily or accurately. Note that there is the case

that Eq. (16) can be regarded as an exact Hamiltonian in ensemble systems.
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Especially, the molecules hosting spins embedded in the lattices of single crystals

are the case. Therefore, these systems have been employed in most of QC exper-

iments on open-shell molecules, e.g., in establishing qubit initialization and entan-

glement conditions [27, 37, 38], and we also focus on similar systems in this

chapter.

3.1 Effective Hamiltonian: Approach for Spin Qubits

For an analytical pulse sequence study, the spin Hamiltonian of MSQCs, Eq. (16) is

needed to transform to an effective spin Hamiltonian. The effective spin Hamilto-

nian is an approximated Hamiltonian for the time evolution of the spin systems.

There are some analytical techniques for the approximation of the effective spin

Hamiltonian, e.g., Floquet Approach (FA) [39, 40], variations of perturbation

theory [41–43] and Secular Averaging Approach (SAA) [41]. In this chapter, we

deal with SAA as the most basic approach in order to manipulate molecular spins as

spin qubits. The simple form of the effective spin Hamiltonian is due to an

interaction picture using rotational frames and all spin manipulations composed

of the spin rotation period and time evolution period. The perturbed Hamiltonian in

the rotating frame is regarded as an effective spin Hamiltonian of the qubit system.

Alternatively, one can choose other approaches for AQC. The core or heart of

the AQUA is the quantum simulation of time evolution which is composed of

selective single qubit operations and time evolution of Ising type interactions (SizS
j
z),

two-spin operations around the z-axis between spin qubits. Therefore, replacement

of the generation part for the Ising type interaction allows us to perform AQC in

another theoretical model, e.g., perturbation theory (see [43]). In principle, more

accurate theory needs a larger number of pulses.

3.2 Effective Hamiltonian: Three Electron System in SAA

Equation (16) for the three electron system can be written by Eq. (17) in

Schr€odinger picture.

Ĥ 3e ¼
X3
i¼1

Ŝ
i
giβeBþ

X3, 3
i<j

Ŝ
i
J þ Dð ÞijŜ j ð17Þ

Since there are no MW irradiation during the time evolution period, B term only

contains the static magnetic field in the z-direction (B ¼ 0; 0;Bzð Þ). Then, the spin
Hamiltonian is described by Eq. (18).
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Ĥ 3e ¼
X3
i¼1

X
k¼x, y, z

Ŝ
i

kg
i
kzβeBz

 !
þ
X3, 3
i<j

Ŝ
i
J þ Dð ÞijŜ j ð18Þ

There are two methods to transform to the rotational frame: an individual

rotating frame and common rotating frame. Here, we introduce the individual

rotating frame first. The non-perturbed Hamiltonian and the perturbed Hamiltonian

are given by Eqs. (19) and (20), respectively. Where time-dependent spin operators

are given by Eqs. (21)–(23).

Ĥ
0

3e ¼
X3
i¼1

hω i
0,eŜ

i

z ð19Þ

Ĥ
int

3e ¼
X3
i¼1

X
k¼x, y

Ŝ
i

k tð Þgi
kzβeBz

 !
þ
X3, 3
i<j

X
k, l¼x, y, z

Ŝ
i

k tð Þ J þ Dð Þijkl Ŝ
j

l tð Þ
 !

ð20Þ

Ŝ
i

x tð Þ ¼ cos ω i
0,et

� �
Ŝ

i

x � sin ω i
0, et

� �
Ŝ

i

y ð21Þ

Ŝ
i

y tð Þ ¼ sin ω i
0, et

� �
Ŝ

i

x þ cos ω i
0, et

� �
Ŝ

i

y ð22Þ

Ŝ
i

z tð Þ ¼ Ŝ
i

z ð23Þ

There is no approximation in Eqs. (19) and (20). Secular approximation assumes

time averaging of the Hamiltonian under the condition of fast Larmor rotations. In

the zeroth order approximation, this approach gives rotating terms related to

Larmor frequency as zero in the case of the small anisotropy of g-tensors [41]

and smaller interactions between spins than Larmor terms. Therefore, the perturbed

Hamiltonian of the three electron system in the time evolution can be written by

Eq. (24) in the individual rotating frames.

Ĥ
int

3e ¼
X3, 3
i<j

Ŝ
i

z J þ Dð ÞijzzŜ
j

z ð24Þ

The perturbed Hamiltonian of Eq. (24) is adopted for following pulse sequence

study (Sect. 4) as an effective spin Hamiltonian of the qubit system. On the other

hand, in solution ESR experiments the same procedure can be executed by only

annihilating the anisotropic tensor parameters (Eq. (25)).

Ĥ
int

3e, sol ¼
X3, 3
i<j

Ŝ
i

zJŜ
j

z ð25Þ

Adiabatic Quantum Computing on Molecular Spin Quantum Computers 87



The formula of the common rotating frame is slightly different from Eqs. (19),

(20), and (21)–(23) and the interaction picture is represented in Eqs. (26), (27), and

(28)–(30), respectively.

Ĥ
0

3e ¼
X3
i¼1

hω1
0,eŜ

i

z ð26Þ

Ĥ
int

3e ¼
X3
i¼1

X
k¼x, y

Ŝ
i

k tð Þgi
kzβeBz

 !
þ
X3, 3
i<j

X
k, l¼x, y, z

Ŝ
i

k tð Þ J þ Dð ÞijklŜ
j

l tð Þ
 !

þ
X3
i¼2

Ŝ
i

z g i
zz � g1zz

� �
βeBz

ð27Þ

Ŝ
i

x tð Þ ¼ cos ω1
0,et

� �
Ŝ

i

x � sin ω1
0,et

� �
Ŝ

i

y ð28Þ

Ŝ
i

y tð Þ ¼ sin ω1
0,et

� �
Ŝ

i

x þ cos ω1
0,et

� �
Ŝ

i

y ð29Þ

Ŝ
i

z tð Þ ¼ Ŝ
i

z ð30Þ

This picture indicates that all spins are rotating in a common Larmor frequency

frame of the first spin and the deviation of the rotational speed for the second and

the third spins makes a difference in Eq. (27). The secular approximation can also

be applied to this picture,

Ĥ
int

3e ¼
X3, 3
i<j

Ŝ
i

z J þ Dð ÞijzzŜ
j

z þ
X3
i¼2

Ŝ
i

z g i
zz � g1zz

� �
βeBz ð31Þ

Ĥ
int

3e, sol ¼
X3, 3
i<j

Ŝ
i

zJŜ
j

z þ
X3
i¼2

Ŝ
i

z g i
iso � g1iso

� �
βeBz ð32Þ

Equation (31) for a diluted single-crystal ESR case and Eq. (32) for a solution ESR

case are obtained. The extra terms can be eliminated by spin manipulations as

shown in Sect. 4.4.

3.3 Effective Hamiltonian: One Electron System with Two
Nuclear Spins in SAA

The same secular approach for the three electron system is applicable to one

electron system with two nuclear client qubits. The spin Hamiltonian of this system

can be written by Eq. (33) in Schr€odinger picture.
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Ĥ 1eþ2n ¼ Ŝ
1
g1βeB�

X3
i¼2

Î
i
giβ i

nBþ
X3
j¼2

Ŝ
1
A1jÎ

j þ Î
2
J þ Dð Þ23Î 3 ð33Þ

Applying the static magnetic field B ¼ 0; 0;Bzð Þ,

Ĥ 1eþ2n ¼
X

k¼x, y, z
Ŝ
1

kg
1
kzβeBz �

X3
i¼2

X
k¼x, y, z

Î
i

kg
i
kzβnBz

 !
þ
X3
j¼2

Ŝ
1
A1jÎ

j

þ Î
2
J þ Dð Þ23Î 3 ð34Þ

is obtained. In the case of transforming the individual rotating frame, the Larmor

frequency is selected under the condition of ω1
0,e ¼ g1zzβeBz=h and ω i

0,n ¼
�gi

zzβ
i
n
Bz=h. Then, the Hamiltonian in interaction picture is represented by

Eqs. (35) and (36),

Ĥ
0

1eþ2n ¼ hω1
0,eŜ

1

z þ
X3
i¼2

hω i
0,nÎ

i

z ð35Þ

Ĥ
int

1eþ2n ¼
X
k¼x, y

Ŝ
1

k tð Þg1kzβeBz �
X3
i¼2

X
k¼x, y

Î
i

k tð Þgi
kzβnBz

 !

þ
X3
j¼2

X
k, l¼x, y, z

Ŝ
1

k tð ÞA1j
kl Î

j

l tð Þ
 !

þ
X

k, l¼x, y, z
Î
2

k tð Þ J þ Dð Þ23kl Î
3

l tð Þ
ð36Þ

where the same definition is applied for nuclear spin operators, i.e., Eqs. (21)–(23)

and (37)–(39).

Î
i

x tð Þ ¼ cos ω i
0,nt

� �̂
I
i

x � sin ω i
0,nt

� �̂
I
i

y ð37Þ

Î
i

y tð Þ ¼ sin ω i
0,nt

� �
Î
i

x þ cos ω i
0,nt

� �̂
I
i

y ð38Þ

Î
i

z tð Þ ¼ Î
i

z ð39Þ

Then, we discuss the secular approximation in the rotating frame. As well as the

three electron system, the time-dependent electron spin operators in Eq. (36) are

averaged out and vanishing in terms of this approximation on the basis of the fast

electron Larmor rotations. The problem is with nuclear spin operators. The inter-

actions between the nuclei spins are possible and the approximation only applies to

their secular terms. This is because the nuclear Larmor terms are much larger than

those interactions. On the other hand, hyperfine tensors, interactions between

electron and nucleus, do not allow the same secular approach since these are not
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small enough than the Larmor terms of the nuclear spins. Then the spin Hamiltonian

of the system in the time evolution can be written by Eq. (40).

Ĥ
int

1eþ2n ¼
X3
j¼2

X
l¼x, y, z

Ŝ
1

z A
1j
zl Î

j

l tð Þ
 !

þ Î
2

z J þ Dð Þ23zz Î
3

z ð40Þ

Equation (40) is a time-dependent perturbed Hamiltonian in interaction picture. The

trigonometric part of Îix;y(t) makes it hard to calculate pulse sequences by using

analytical techniques. Therefore, we assume a co-axial system for hyperfine tensors

in order to apply the static magnetic field (B0) parallel to both the principal axes.

Then, the Hamiltonian in the representation of time evolution operators is time-

independent and can be written by Eq. (41).

Ĥ
int

1eþ2n ¼
X3
j¼2

Ŝ
1

zA
1j
zzÎ

j

z þ Î
2

z J þ Dð Þ23zz Î
3

z ð41Þ

Equation (41) is also adopted as an effective spin Hamiltonian of spin qubits

composed of one electron system with the two nuclear spins in the following

pulse sequence study of a diluted single crystal (see Sect. 4). On the other hand,

in the solution ESR study, the same procedure can be executed only by changing the

parameters of the tensor into the isotropic term. Since there is no anisotropic term in

a solution case, the restrictions between the static magnetic field and the hyperfine

axis are not needed. The secular formula is written by Eq. (42).

Ĥ
int

1eþ2n, sol ¼
X3
j¼2

Ŝ
1

z A
1j
isoÎ

j

z þ Î
2

z J
23 Î

3

z ð42Þ

The common rotating frame formula for nuclear spins is written in Eqs. (43) and

(44), whose formula also has the individual frame between electron and nuclei

spins, of necessity. The notation of the electron and nuclear spin part is given by

Eqs. (28)–(30) and (45)–(47), respectively.

Ĥ
0

1eþ2n ¼ hω1
0,eŜ

i

z þ
X3
i¼2

hω2
0,nÎ

i

z ð43Þ

Ĥ
int

1eþ2n ¼
X
k¼x, y

Ŝ
1

k tð Þg1kzβeBz �
X3
i¼2

X
k¼x, y

Î
i

k tð Þgi
kzβnBz

 !
þ
X3
j¼2

X
k, l¼x, y, z

Ŝ
1

k tð ÞA1j
kl Î

j

l tð Þ
 !

þ
X

k, l¼x, y, z
Î
2

k tð Þ J þ Dð Þ23kl Î
3

l tð Þ þ I3z g3zz � g2zz
� �

β3nBz

ð44Þ
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Î
2

x tð Þ ¼ cos ω2
0,nt

� �
Î
i

x þ sin ω2
0,nt

� �
Î
i

y ð45Þ

Î
2

y tð Þ ¼ sin ω2
0,nt

� �
Î
i

x þ cos ω2
0,nt

� �
Î
i

y ð46Þ

Î
i

z tð Þ ¼ Î
i

z ð47Þ

This difference between Eqs. (36) and (44) only appears in a third spin term and this

gives rise to a g-shift during the time evolution. By using the same procedure as the

individual rotating frame of this system, we obtain Eqs. (48) and (49) for a diluted

single crystal study and solution study, respectively. This extra term can be also

eliminated by spin manipulations (see Sect. 4.4).

Ĥ
int

1eþ2n ¼
X3
j¼2

Ŝ
1

zA
1j
zzÎ

j

z þ Î
2

z J þ Dð Þ23zz Î
3

z þ I3z g3zz � g2zz
� �

β3nBz ð48Þ

Ĥ
int

1eþ2n, sol ¼
X3
j¼2

Ŝ
1

zA
1j
iso Î

j

z þ Î
2

z J
23 Î

3

z þ I3z g3iso � g2iso
� �

β3nBz ð49Þ

4 Pulse Operations in AQC

An operation set of ESR-QC experiments is assumed to manipulate arbitrary spin

rotations (x- and y-axis directions) for each spin and to perform the time evolution

with the effective spin Hamiltonian given in Sects. 3.2 and 3.3 (Ĥ int
3e and Ĥ

int

1eþ2n,

respectively). These systems allow us to implement Universal Quantum Gates

(UQG), where UQG is a gate set which can perform any quantum operations

[14]. This is on the basis of a theory that arbitrary single spin rotation of one

qubit and CNOT gates between any qubits can perform UQG. When all the spin

qubits of the system can be operable individually, CNOT gates are equivalent to

Ising type operations (SizS
j
z) between arbitrary two qubits (i and j). Therefore, two

problems arise: (1) How to operate Ising type interaction between arbitrary two

qubits and (2) How to simulate time evolution of AQUA by UQG.

The operation set, we assumed in this section, can be written by operator sets of

(50) and (51).

σ i
x; σ

i
y; Ĥ

int

3e

n o
for the three electron system ð50Þ

σ i
x; σ

i
y; Ĥ

int

1eþ2n

n o
for the one electron and two nuclear system ð51Þ
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In terms of AQUA, the problem is how to operate adiabatic time evolution of the

factorization algorithm of 21 by pulsed ESR operations. From a discussion on

Sect. 2, the time evolution operator is written by Eqs. (10) and (13)–(15) where Û
is a total adiabatic path of the ground state. Then, we implement operators Eqs. (13)

and (50) in order to perform the time evolution of Eqs. (10) and (13)–(15).

Û mi ¼
Y3
i¼1

exp �i0:42 1� smf gσ̂ i
x

� � ð52Þ

sm ¼ m=5ð Þ2 ð53Þ

Û z ¼ exp �i2:352smσ̂
1
x

� �� exp �i2:464smσ̂
2
x

� �� exp �i1:232smσ̂
3
x

� � ð54Þ

Û zz ¼ exp �i0:56smσ̂
1
x σ̂

2
x

� �� exp þi0:56smσ̂
2
x σ̂

3
x

� �� exp �i0:28smσ̂
3
x σ̂

1
x

� � ð55Þ

Û zzz ¼ exp �i0:448smσ̂
1
x σ̂

2
x σ̂

3
x

� � ð56Þ

Û zzz ¼ exp þi0:56smσ̂
2
x σ̂

3
x

� � ð57Þ

The contents of Sect. 4 are:

(1) Arbitrary rotations of spin qubits around the x-/y-/z- axis.

1. Arbitrary rotations of spin qubits (x-/y-axis): Eq. (13).
2. Arbitrary rotations of spin qubits (z-axis): Eq. (54).

(2) Two-qubit operations of Eq. (55) depending on interaction picture.

1. Two-qubit operation in the individual rotating frame.

2. Two-qubit operation in the common rotating frame.

(3) Three qubit operation and higher order qubit operations.

1. Three qubit operation: Eq. (56).

2. Higher order (>3) qubit operations.

(4) Fast two-qubit operation between nuclei spins.

1. Fast two-qubit operation between nuclei spins: Eq. (57).

(5) Pulse sequences for AQC.

1. AQC pulse sequence in a three electron system.

2. AQC pulse sequence in a one electron system with two nuclear spins.

From the viewpoint of UQG, (1) and (2) are the generation of UQG. On the other

hand, (3) and (4) are computational methods applying UQG. For the understanding

of figures for the pulse sequence during this section, the pulse operations are

depicted as given in Fig. 2. The time of the pulse interval and the direction of the

irradiation are also given with the pulses.

92 S. Yamamoto et al.



4.1 Arbitrary Rotations of Spin Qubits (x-/y-Axis)

The most basal qubit operation is a single spin rotation, which can be performed by

irradiating a MW pulse in ESR-QC experiments. There are two types of pulses,

selective pulses, and nonselective pulses. The former one rotates a single spin in a

system and the latter one rotates some species of spins in a system. Most qubit

manipulations in QC need selective operations but the operation of Eq. (52) can

be performed by nonselective ones. Although the exact formula of the pulse

operation is calculated by the effective spin Hamiltonian with MW irradiations,

which contain correctable artifacts in the MW irradiation e.g., Bloch-Siegert shift

[41] etc., here we discussed only the simple formulae of pulses as operation sets of

(58) and (62).

2α radian rotation to ith spin by a selective pulse (x-/y-axis):

exp �iασ k
x

� �
, exp �iασ k

y

� �
ð58Þ

2α radian rotation by a nonselective pulse (x-/y-axis):

Y3
k¼1

exp �iασ k
x

� �
,
Y3
k¼1

exp �iασ k
y

� �
ð59Þ

The nonselective x-pulse in Eq. (62) can obviously perform Eq. (52) and

parameter α should be taken as Eq. (60).

α ¼ 0:84 1� smf g ð60Þ

Fig. 2 Notation of pulse operations. Black (gray) blocks indicate the rotation around the x-(y-)
axis. Square (oblong) blocks indicate the rotational angles of π(π/2). The filled block means a

minus angle operation. Other pulse operations around the x- and y-axes are circled by dotted lines

with a number/word
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4.2 Arbitrary Rotations of Spin Qubits (z-axis)

The single qubit operations around the z-direction can be performed by single spin

rotations around the x- and y-axes. With selective pulses, the arbitrary rotation (2α
radian) around the z-axis can be written by Eqs. (61) and (62). Figure 3 shows the

pulse sequence for Eqs. (61) and (62).

exp �iασ k
z

� � ¼ exp i
π

4
σ k
y

� �
� exp �iασ k

x

� � � exp �i
π

4
σ k
y

� �
ð61Þ

exp �iασ k
z

� � ¼ exp �i
π

4
σ k
x

� �
� exp �iασ k

y

� �
� exp i

π

4
σ k
x

� �
ð62Þ

Then Eq. (54) is operated by the selective pulses with the parameter set of

Eq. (63). The sequence of Eq. (61) or (62) is utilized in the calculations for the

first, second and third qubits.

α1 ¼ 4:704sm, α2 ¼ 4:928sm and α3 ¼ 2:464sm ð63Þ

4.3 Two-Qubit Operations in Individual Rotating Frames

The interaction between qubits needs the time evolution of the effective spin

Hamiltonian in general cases. The two-qubit interactions are the essential part of

quantum algorithms to speed up. Here, we introduce the method to create two spin

interactions between two arbitral spins, σiz and σiz(i 6¼ j), in the secular approxima-

tion of the individual rotating frame. The target effective Hamiltonians at Eqs. (24),

(25), (41), and (42) are composed of two spin interactions only.

Ĥ
int

3e ¼
X3, 3
i<j

Ŝ
i

z J þ Dð ÞijzzŜ
j

z ð64Þ

Ĥ
int

3e, sol ¼
X3, 3
i<j

Ŝ
i

zJŜ
j

z ð65Þ

Fig. 3 The pulse sequence of single spin operations. (a) Corresponds to the Eq. (58). (b)
Corresponds to Eq. (62). Dotted blocks of a and b are the θ¼ 2α rotation around the x- and
y-axes, respectively
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Ĥ
int

1eþ2n ¼
X3
j¼2

Ŝ
1

zA
1j
zzÎ

j

z þ Î
2

z J þ Dð Þ23zz Î
3

z ð66Þ

Ĥ
int

1eþ2n, sol ¼
X3
j¼2

Ŝ
1

z A
1j
isoÎ

j

z þ Î
2

z J
23 Î

3

z ð67Þ

In the three spin system, the operator exp �iαijσ i
zσ

j
z t=h

� �
can be written by

Eqs. (68) and (69),

exp �iαijσ i
zσ

j
z t=h

� �		
i6¼k 6¼l ¼ exp �iHt=2hð Þ � exp �iH�kt=2h

� � ð68Þ

¼ exp �iH�kt=2h
� � � exp �iHt=2hð Þ ð69Þ

where, H ¼
X3

i<j
αijσ i

zσ
j
z and H�k ¼

X3

i<j
αijσ i

zσ
j
z

		
i 6¼k 6¼j �

X3

i 6¼k
αikσ i

zσ
k
z . The

operator exp �iH�kt=h
� �

can be achieved via Eqs. (70)–(73).

exp �iH�kt=2h
� � ¼ exp �i

π

2
σ k
x

� �
� exp �iHt=hð Þ � exp i

π

2
σ k
x

� �
ð70Þ

¼ exp i
π

2
σ k
x

� �
� exp �iHt=hð Þ � exp �i

π

2
σ k
x

� �
ð71Þ

¼ exp �i
π

2
σ k
y

� �
� exp �iHt=hð Þ � exp i

π

2
σ k
y

� �
ð72Þ

¼ exp i
π

2
σ k
y

� �
� exp �iHt=hð Þ � exp �i

π

2
σ k
y

� �
ð73Þ

Any decomposed operation sets can be chosen for the pulse sequence in Eqs. (68),

(69), and (70)–(73). The calculated pulse sequence corresponding to Eq. (68) with

(70) is shown in Fig. 4.

If we do not need to consider the global phase, any pattern of π pulses with the

same direction is permitted as given by Eqs. (74)–(77). This phase does not affect

the quantum computation results.

�exp �iH�kt=2h
� � ¼ exp �i

π

2
σ k
x

� �
� exp �iHt=hð Þ � exp �i

π

2
σ k
x

� �
ð74Þ

Fig. 4 An example of the pulse sequence of a two spin interaction. The operation

exp �iαijσ i
zσ

j
z t=h

� �
(i 6¼ k, k 6¼ j, j 6¼ i) is composed of Eqs. (68) and (70). The vertical line indicates

the end of the pulse sequence
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¼ exp i
π

2
σ k
x

� �
� exp �iHt=hð Þ � exp i

π

2
σ k
x

� �
ð75Þ

¼ exp �i
π

2
σ k
y

� �
� exp �iHt=hð Þ � exp �i

π

2
σ k
y

� �
ð76Þ

¼ exp i
π

2
σ k
y

� �
� exp �iHt=hð Þ � exp i

π

2
σ k
y

� �
ð77Þ

In the case of the opposite sign operator (exp(iαijσizσ
j
zt/h)), the operation can be

written by Eqs. (78)–(81), utilizing an exp �iαijσ i
zσ

j
z t=h

� �
operation.

exp iαijσ i
zσ

j
z t=h

� � ¼ exp �i
π

2
σ i
x

� �
� exp �iαijσ i

zσ
j
z t=h

� � � exp i
π

2
σ i
x

� �
ð78Þ

¼ exp i
π

2
σ i
x

� �
� exp �iαijσ i

zσ
j
z t=h

� � � exp �i
π

2
σ i
x

� �
ð79Þ

¼ exp �i
π

2
σ i
y

� �
� exp �iαijσ i

zσ
j
z t=h

� � � exp i
π

2
σ i
y

� �
ð80Þ

¼ exp i
π

2
σ i
y

� �
� exp �iαijσ i

zσ
j
z t=h

� � � exp �i
π

2
σ i
y

� �
ð81Þ

Any decomposed operation sets can be chosen for the pulse sequence in Eqs. (78)–

(81). If we do not care about the global phase, any pattern of π pulses with the same

direction is permitted as given by Eqs. (82)–(85).

�exp iαijσ i
zσ

j
z t=h

� � ¼ exp �i
π

2
σ i
x

� �
� exp �iαijσ i

zσ
j
z t=h

� � � exp �i
π

2
σ i
x

� �
ð82Þ

¼ exp i
π

2
σ i
x

� �
� exp �iαijσ i

zσ
j
z t=h

� � � exp i
π

2
σ i
x

� �
ð83Þ

¼ exp �i
π

2
σ i
y

� �
� exp �iαijσ i

zσ
j
z t=h

� � � exp �i
π

2
σ i
y

� �
ð84Þ

¼ exp i
π

2
σ i
y

� �
� exp �iαijσ i

zσ
j
z t=h

� � � exp i
π

2
σ i
y

� �
ð85Þ

An example of the pulse sequence is shown in Fig. 5, being composed of

Eqs. (83), (71), and (80). And these operations are utilized for Eq. (55).

Fig. 5 An example of the pulse sequence of a two-spin interaction. The operation

exp �iαijσ i
zσ

j
z t=h

� �
(i 6¼ k, k 6¼ j, j 6¼ i) is composed of Eqs. (83), (71), and (80). The time is

delimited by a dotted line
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4.4 Two-Qubit Operations in the Common Rotating Frame

In some cases, experimental restrictions force us to manipulate spins in the common

rotating frame, Eqs. (86), (87), (88), and (89). The difference between the individ-

ual and common rotating frame originates from the single spin rotating terms

around the z-axis in the secular approximation. Here, we show two methods to

annihilate these extra terms to develop the same formulas as Eqs. (24), (25), (41),

and (42) in the common rotating frame.

Ĥ
int

3e ¼
X3, 3
i<j

Ŝ
i

z J þ Dð ÞijzzŜ
j

z þ
X3
i¼2

Ŝ
i

z g i
zz � g1zz

� �
βeBz ð86Þ

Ĥ
int

3e, sol ¼
X3, 3
i<j

Ŝ
i

zJŜ
j

z þ
X3
i¼2

Ŝ
i

z g i
iso � g1iso

� �
βeBz ð87Þ

Ĥ
int

1eþ2n ¼
X3
j¼2

Ŝ
1

zA
1j
zzÎ

j

z þ Î
2

z J þ Dð Þ23zz Î
3

z þ I3z g3zz � g2zz
� �

β3nBz ð88Þ

Ĥ
int

1eþ2n, sol ¼
X3
j¼2

Ŝ
1

zA
1j
iso Î

j

z þ Î
2

z J
23 Î

3

z þ I3z g3iso � g2iso
� �

β3nBz ð89Þ

The first method is based on the effect of selective inverse pulses for single spin-

rotating terms. During the time evolution period, exp �iĤ
intΔt=h

� �
corresponding

its Hamiltonian of Eqs. (86), (87), (88), and (89), the pulses are applied as the single

spin rotation of the z-direction, Eqs. (61) and (62). The resulting time evolution

exp �iĤ
zzΔt=h

� �
is given in Eqs. (90) and (91), where the rotation angle (2αk

pulses) for kth spin is given in Table 1. The example is given as Eq. (92) and in

Fig. 6 under the condition of Eqs. (86) and (58). Then, the Hamiltonian in the time

evolution of the common rotating frame, exp �iĤ
zzΔt=h

� �
, gives the same operator

of the case for the individual rotating frame (Eq. (24)).

Table 1 Rotation angle of the spins during the time evolution of exp �iĤ
intΔt=h

� �
Rotation angles (θ2¼ 2α2) Rotation angles (θ3¼ 2α3)

Equation (31) g2zz � g1zz
� �

βeBzΔt=h g3zz � g1zz
� �

βeBzΔt=h
Equation (32) g2iso � g1iso

� �
βeBzΔt=h g3iso � g1iso

� �
βeBzΔt=h

Equation (48) 0 � g3zz � g1zz
� �

β3
n
BzΔt=h

Equation (49) 0 � g3iso � g1iso
� �

β3
n
BzΔt=h
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exp �iĤ
zzΔt=h

� �
¼ exp �iĤ

intΔt=h
� �

� exp �i
X3
k¼2

αkσ k
z

 !
ð90Þ

¼ exp �i
X3
k¼2

αkσ k
z

 !
� exp �iĤ

intΔt=h
� �

ð91Þ

exp �iĤ
zzΔt=h

� �
¼ exp �i

X3, 3
i<j

Ŝ
i

z J þ Dð ÞijzzŜ
j

zΔt=h

 !
ð92Þ

The second method is the annihilation approach to the odd order effects. This

operation can be performed by two nonselective pulses and does not depend on the

evolution time exp �iĤ
intΔt=h

� �
. Then, we define the operator Ĥ

int,�s
as a spin

flipped Hamiltonian of all spins (Eq. (93)) and this operation can be achieved via

Eqs. (94)–(97).

Ĥ
int,�s

σ i
z

� � ¼ Ĥ
int �σ i

z

� � ð93Þ

exp �iĤ
int,�sΔt=h

� �

¼ exp �i
π

2

X3
k¼1

σ k
x

 !
� exp �iĤ

intΔt=h
� �

� exp i
π

2

X3
k¼1

σ k
x

 !
ð94Þ

¼ exp i
π

2

X3
k¼1

σ k
x

 !
� exp �iĤ

intΔt=h
� �

� exp �i
π

2

X3
k¼1

σ k
x

 !
ð95Þ

¼ exp �i
π

2

X3
k¼1

σ k
y

 !
� exp �iĤ

intΔt=h
� �

� exp i
π

2

X3
k¼1

σ k
y

 !
ð96Þ

¼ exp i
π

2

X3
k¼1

σ k
y

 !
� exp �iĤ

intΔt=h
� �

� exp �i
π

2

X3
k¼1

σ k
y

 !
ð97Þ

Fig. 6 Generation of exp �iĤ
zzΔt=h

� �
by the spin rotation around z-axis in the case of Eqs. (86)

and (61). The dotted block a is the spin rotation around x-axis which spin number and angles (θk)
are shown in Table 1
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If we do not need to consider the global phase, any pattern of π pulses with the same

direction is permitted as given by Eqs. (98)–(101).

� exp �iĤ
int,�sΔt=h

� �

¼ exp �i
π

2

X3
k¼1

σ k
x

 !
� exp �iĤ

intΔt=h
� �

� exp �i
π

2

X3
k¼1

σ k
x

 !
ð98Þ

¼ exp i
π

2

X3
k¼1

σ k
x

 !
� exp �iĤ

intΔt=h
� �

� exp i
π

2

X3
k¼1

σ k
x

 !
ð99Þ

¼ exp �i
π

2

X3
k¼1

σ k
y

 !
� exp �iĤ

intΔt=h
� �

� exp �i
π

2

X3
k¼1

σ k
y

 !
ð100Þ

¼ exp i
π

2

X3
k¼1

σ k
y

 !
� exp �iĤ

intΔt=h
� �

� exp i
π

2

X3
k¼1

σ k
y

 !
ð101Þ

Then, the time evolution which is the same evolution in the individual rotating

frame is given by Eqs. (102) and (103). The example pulse sequence calculated by

Eqs. (94) and (103) is shown in Fig. 7.

exp �iĤ
zzΔt=h

� �
¼ exp �iĤ

int,�sΔt=2h
� �

� exp �iĤ
intΔt=2h

� �
ð102Þ

¼ exp �iĤ
intΔt=2h

� �
� exp �iĤ

int,�sΔt=2h
� �

ð103Þ

From these methods, the effective spin Hamiltonian in the common rotating frame

can be manipulated similarly as in the case of the individual rotating frame;

therefore, we will discuss only the effective spin Hamiltonian in the individual

rotating frame in the following sections.

Fig. 7 Generation of

Eqs. (94) and (103) by the

spin rotation around the z-
axis for three spin systems
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4.5 Three Qubit Operations

In general, UQG can simulate n qubit interactions as n qubit operations. Here, we

show a three qubit interaction case which method can expand into the n qubit

interactions [44]. At first, the three qubit interaction is decomposed as given by

Eqs. (104)–106.

exp �iα12σ1zσ
2
zσ

3
z t=h

� � ¼ exp �i
π

4
σ1x

� �
� exp �iα12σ1yσ

2
zσ

3
z t=h

� �
� exp i

π

4
σ1x

� �
ð104Þ

¼ exp �i
π

4
σ1x

� �
� exp i

π

4
σ1xσ

3
z

� �
� exp �iα12σ1zσ

2
z t=h

� � � exp �i
π

4
σ1xσ

3
z

� �
� exp i

π

4
σ1x

� �
ð105Þ

¼ exp �i
π

4
σ1x

� �
� exp �i

π

4
σ1y

� �
� exp i

π

4
σ1zσ

3
z

� �
� exp i

π

4
σ1y

� �
� exp �iα12σ1zσ

2
z t=h

� �

�exp �i
π

4
σ1y

� �
� exp �i

π

4
σ1zσ

3
z

� �
� exp i

π

4
σ1y

� �
� exp i

π

4
σ1x

� �
ð106Þ

The two-qubit operation terms depend on the method of effective spin Hamiltonian,

where we have assumed with secular approximation in the individual rotating

frame. The Eq. (106) is utilized to perform the three qubit interaction part

(Eq. (56)) of the pulse sequence study. In order to prepare the following section,

we denote other two expressions (Eqs. (107) to (110)) calculated from the permu-

tation of Eq. (106).

¼ exp �i
π

4
σ2x

� �
� exp �i

π

4
σ2y

� �
� exp i

π

4
σ1zσ

2
z

� �
� exp i

π

4
σ2y

� �
� exp �iα12σ2zσ

3
z t=h

� �

�exp �i
π

4
σ2y

� �
� exp �i

π

4
σ1zσ

2
z

� �
� exp i

π

4
σ2y

� �
� exp i

π

4
σ2x

� �
ð107Þ

t ¼ α23t
0
=α12 ð108Þ

¼ exp �i
π

4
σ3x

� �
� exp �i

π

4
σ3y

� �
� exp i

π

4
σ2zσ

3
z

� �
� exp i

π

4
σ3y

� �
� exp �iα12σ1zσ

3
z t=h

� �

�exp �i
π

4
σ3y

� �
� exp �i

π

4
σ2zσ

3
z

� �
� exp i

π

4
σ3y

� �
� exp i

π

4
σ3x

� �
ð109Þ

t ¼ α13t
0
=α12 ð110Þ

Note that t’ and t” whose absolute value indicates the evolution time which can

range to negative values. In the negative case, adopt Eqs. (78)–(81) or (82)–(85) in
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order to transform the positive time evolution. For the operation of exp(iα12

σ1zσ
2
zσ

3
z t/h), one can use the same procedure as given by Eqs. (78)–(81) or (82)–

(85). The example pulse sequence of Eq. (106) with Eqs. (69), (71), and (79) is

shown in Fig. 8. In this pulse sequence, the sign of α13 is assumed to be positive.

4.6 Higher Order (>3) Qubit Operations

The higher qubit interaction (n> 3) can be simulated as a same method as a

three qubit operation [44]. Only the repetition is needed to simulate four qubit

interaction from three qubit interaction. Eq. (111) is obtained as an example utilized

by Eq. (106). This is because the first four terms and the last four terms play the

role to create an interaction between the controlled first spin and newer fourth spin

in Eq. (111).

exp �iα12σ1zσ
2
zσ

3
zσ

4
z t=h

� �
¼ exp �i

π

4
σ1x

� �
� exp �i

π

4
σ1y

� �
� exp i

π

4
σ1zσ

4
z

� �
� exp i

π

4
σ1y

� �
� exp �iα12σ1zσ

2
zσ

3
z t=h

� �
� exp �i

π

4
σ1y

� �
� exp �i

π

4
σ1zσ

4
z

� �
� exp i

π

4
σ1y

� �
� exp i

π

4
σ1x

� �
ð111Þ

These equations shown in Sect. 4.5 and 4.6 indicate that the spin QCs have the

ability for simulating n qubit interactions analytically, and the computational costs

of AQC are estimated 2n + 1 as the number of two-qubit operation parts in order to

create a n qubit interaction.

Fig. 8 The pulse sequence of a three spin interaction. The operation exp �iα12σ1zσ
2
zσ

3
z t=h

� �
is

composed of Eqs. (69), (71), (79), and (106). α13 > 0 is assumed in this pulse sequence scheme.

The time is delimited by a dotted line in 2 and 3
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4.7 Fast Two-Qubit Operation Between Nuclear Spins

In general, two spin interactions between nuclei are too weak to manipulate due to

the small gyromagnetic ratio of nuclei in comparison with electron one. Here, we

introduce a fast operation method by manipulating hyperfine interactions. One

electron and two nuclear system (e1, n2, and n3) are assumed as described above.

Focusing on the three qubit operations, Eqs. (106) and (107), there is only one

two-qubit operation between the second and third spin. Transforming these

equations,

exp �iα12σ2zσ
3
z t=h

� � ¼ exp �i
π

4
σ2y

� �
� exp �i

π

4
σ1zσ

2
z

� �
� exp i

π

4
σ2y

� �
� exp i

π

4
σ2x

� �
� exp �i

π

4
σ1x

� �
� exp �i

π

4
σ1y

� �
� exp i

π

4
σ1zσ

3
z

� �
� exp �iα12σ1zσ

2
z t=h

� �
� exp �i

π

4
σ1y

� �
� exp �i

π

4
σ1zσ

3
z

� �
� exp i

π

4
σ1y

� �
� exp i

π

4
σ1x

� �
� exp �i

π

4
σ2x

� �
� exp �i

π

4
σ2y

� �
� exp i

π

4
σ1zσ

2
z

� �
� exp i

π

4
σ2y

� �
ð112Þ

is obtained. This transformation is always possible to hyperfine coupled nuclei and

the computational cost of AQC is 5 as same as a four qubit interaction for the case

of two nuclear spins coupled to the same electron. This cost increases in which two

nuclei couple only to other electrons. The pulse sequence is shown in Fig. 9 when

the sign of α12 and α13 is positive and adopting Eqs. (69), (71), and (79).

4.8 AQC Pulse Calculations in a Three Electron System

The pulse operations toward the adiabatic factorization problem of 21 are calcu-

lated by the method described above, and the pulse sequence for a three electron

system is calculated by connecting these pulse operations. Here, we show the

connected pulse sequence when all spin interactions are negative (Fig. 10). As

mention later, this pulse sequence can be applied for a phthalocyanine derivative

molecule.

Fig. 9 The pulse sequence of a three spin interaction. The operation e�α12σ2z σ
3
z t=h is composed of

Eqs. (69), (71), (79), and (112) assumed in this pulse sequence scheme. The time is delimited by a

dotted line in 2 and 3
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4.9 AQC Pulse Calculations in a One Electron
and Two Nuclear System

The pulse sequence for a one electron and two nuclear system is calculated by

connecting these pulse operations. Here, we shows the connected pulse sequence

when spin interaction signs are α12 > 0, α31 < 0 (Fig. 11). As mentioned later, this

pulse sequence can be applied for a glutaconic acid radical molecule.

5 MSQCs for AQC

This section introduces realistic molecular spin systems for AQC. As discussed

before, towering the experiments of the adiabatic factorization algorithm of

21 requires some particular conditions. Here, we summarize the computational

conditions as discussed in Sects. 2–4.

Fig. 10 The pulse sequence for a three electron system which coupling constants are

α12, α23, α31 < 0. This sequence needs to repeat five times with changing the value of m¼ 1 to

5 (see Eqs. (10) and (13)–(15)), where Δt¼ 0.028/h. The detail information on the pulse interval

(t1 to t5) and the dotted blocks are shown in Tables 2 and 3

Table 2 The analytical pulse interval (t1 to t5) in the three electron system

t1/s t2/s t3/s t4/s t5/s

�πh= Dzz þ Jð Þ13 �64am= Dzz þ Jð Þ12 �80am= Dzz þ Jð Þ12 �40am= Dzz þ Jð Þ13 �80am= Dzz þ Jð Þ23

Here, am ¼ 0:028h m=5ð Þ2

Table 3 The analytical operation angles and the directions (Block 1–5) in the three electron

system

1 2 3 4 5

30bm 168cm 176cm 88cm 30bm þ π=2

x y y y x

Here, bm ¼ 0:028 1� m=5ð Þ2
n o

and cm ¼ 0:028 m=5ð Þ2
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(1) This AQUA needs 3 qubits to perform AQC.

(2) The spin system is assumed as a fully controlled/coupled manner.

(3) The principle axes of hyperfine tensors should be parallel to the static

magnetic field.

(4) The coupling constants between nuclear spins are not important.

(1) was discussed on Sect. 2 in terms of the algorithm, (2) and (3) are assumed to

make universal gates easy to implement and discussed in Sects. 3 and 4, and (4) was

proven in Sect. 4. The effective spin Hamiltonian (Eqs. (64) and (66)) in the diluted

single crystal was chosen in this section since most of QC experiments on MSQCs

have been carried out in solid states and such ensemble experiments enable us to

establish both qubit initialization and entanglement conditions [27, 37].

Fig. 11 The pulse sequence for a one electron and two nuclear system which coupling constants

are α12 > 0, α31 < 0. This sequence needs to repeat five times with changing the value of m¼ 1–5

(see Eq. (1-6a)), where Δt¼ 0.028/h. The detail information on the pulse interval (t1 to t5) and the
dotted blocks is shown in Tables 4 and 5

Table 4 The analytical pulse interval (t1–t5) in a one electron and two nuclear system

t1/s t2/s t3/s t4/s t5/s

�πh=A13
zz 64am/A

12
zz 80am/A

12
zz �40am=A

13
zz πh/A12

zz

Here, am ¼ 0:028h m=5ð Þ2

Table 5 The analytical operation angles and the directions (Block 1–5) in a one electron and two

nuclear system

1 2 3 4 5

30bm 168cm 176cm 88cm 30bm þ π=2

x y y y x

Here, bm ¼ 0:028 1� m=5ð Þ2
n o

and cm ¼ 0:028 m=5ð Þ2
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A phthalocyanine derivative [45] and a 2-deuterated glutaconic acid radical

[46–49] are adopted for MSQCs as three electron qubit (3e) system and one electron

and three nuclear client qubit (1e + 2n) system, respectively (Fig. 12). These

systems are selected to concern above conditions (1)–(4), especially glutaconic

acid radical has approximate collinearity between the hyperfine tensors, which is

essential for the restriction (3) [46, 48]. We assumed its deuterated derivative and

the spin qubits (e1, H2, and H3) is depicted in Fig. 12. On the other hand, a

phthalocyanine system with four electron spins has been reported [45]. In this

study, we assumed that one of the four nitroxide radical (N� O�) sites is reduced
to form the closed shell of N� O� H. Other chemical structures at the NO site are

possible. The unpaired electrons (e1, e2, and e3) are numbered in Fig. 2.

5.1 Parameter Sets of the Three Electron Spin Qubit System
(D-tensor)

The spin parameters of the phthalocyanine system (Eq. (113)) were calculated by

quantum chemical calculations.

Ĥ
int

3e ¼ S1z jþ Dð Þ12zzS2z þ S2z jþ Dð Þ23zzS3z þ S3z jþ Dð Þ31zzS1z ð113Þ

The geometry optimization of this Mg-centered phthalocyanine system was carried

out at the UB3LYP/6-31G* level of theory using Gaussian 03 software [50–52].

The molecule belongs to a Cs point group with a mirror plane parallel to the

HON. . .Mg. . .NO• axis. The structure do not have imaginary vibrational frequency

at the optimized geometry (Fig. 13).

Since the phthalocyanine derivative has localized electrons with the spin dis-

tance larger than 10 Å, the zero field splitting (D-) tensor was calculated by the

point dipole approximation with (Eq. (114)) the optimized structure. An angle θ is

Fig. 12 Molecular systems for AQC. (a) A phthalocyanine system for three electron spin qubits.

One radical site is reduced by a hydrogen atom. Three electron spins are mostly localized on each

NO radical site, which is numbered. (b) A trans-glutaconic acid radical molecule for one electron

spin bus qubit and two nuclear client qubits. One hydrogen atom is deuterated and the number

1 denotes an unpaired electron spin and the numbers 2 and 3 denote the client qubits. It should be

noted that the unpaired electron is delocalized to some extent over the π-conjugation
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defined an angle between the static magnetic field (the z-direction) and the line

connecting two radical sites. The distance was assumed for the mean distance

between N–N and O–O in the nitroxide radical moieties. Table 6 shows the spin

distance and D tensors between the spin sites.

D=h ¼ �3

2

μ0 gβð Þ2
4πr3h

, Dzz ¼ D 3 cos 2θ � 1
� � ð114Þ

5.2 Parameter Sets of the Three Electron Spin Qubit
System (J-Coupling)

Exchange coupling constants J in the phthalocyanine triradical system are calcu-

lated by means of the broken-symmetry DFT method [52]. It is not trivial to expand

the broken-symmetry DFT method [53], then we assumed a following expansion.

The exchange coupling constants are derived by a Heisenberg Hamiltonian acting

on the unpaired electrons localized onto the NO sites, as Eq. (115).

H ¼ �2J12S1 � S2 � 2J23S2 � S3 � 2J31S3 � S1 ð115Þ

Fig. 13 The optimized

structure of the

phthalocyanine triradical

molecule

Table 6 The spin distances

and D-values of the zero field

splitting tensor

1–2 2–3 3–1

Distance /Å 13.31 13.31 18.82

D/h /MHz �33.11 �33.11 �11.71
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The numbering of the spin site is given in Fig. 12. The Heisenberg Hamiltonian

matrix in the spin function (Slater determinant) basis (jααβi, jαβαi, and jβααi) is
written by Eq. (116).

H _¼
�J12 þ J23 þ J31ð Þ=2 �J23 �J31

�J23 J12 þ J23 � J31ð Þ=2 �J12

�J31 �J12 J12 � J23 þ J31ð Þ=2

0
BB@

1
CCA
ð116Þ

The Cs symmetry of the phthalocyanine molecule indicates J12¼ J23. In this

case, the secular equation is analytically solved, and the following eigenfunctions

and eigenvalues of one spin-quartet and two spin-doublet states (Eqs. (117) to

(119)) are obtained.

Ψ S ¼ 3

2
,MS ¼ 1

2


 �
¼ 1ffiffiffi

3
p ααβj i þ αβαj i þ βααj ið Þ;

E S ¼ 3

2
,MS ¼ 1

2


 �
¼ � J12 þ J23 þ J31ð Þ=2 ð117Þ

Ψ S ¼ 1

2
,MS ¼ 1

2
; 1


 �
¼ 1ffiffiffi

6
p 2 αβαj i � ααβj i � βααj ið Þ;

E S ¼ 1

2
,MS ¼ 1

2
; 1


 �
¼ J12 þ J23 � J31=2 ð118Þ

Ψ S ¼ 1

2
,MS ¼ 1

2
; 2


 �
¼ 1ffiffiffi

2
p ααβj i � βααj ið Þ

E S ¼ 3

2
,MS ¼ 1

2
; 2


 �
¼ 3J31=2 ð119Þ

Here,Ψ(S,MS; X) represents an eigenfunction of the Heisenberg Hamiltonian of the

spin quantum number S and magnetic quantum number MS. X is the difference

between the two spin-doublet wave functions. The Eqs. (117)–(119) hold regardless

of the absolute signs and magnitudes (ratios) of the J values. (The off-diagonal term
of the Heisenberg Hamiltonian between the two spin-doublet eigenfunctions is

calculated as
ffiffiffi
3

p
J12 � J23ð Þ=2, but this is vanished by J12¼ J23). Since the

spin-doublet eigenfunctions in Eqs. (118) and (119) have multideterminantal char-

acters, they cannot be represented from DFT calculation directly. In this case, the

structure of the spin eigenfunctions is well defined, then one can derive energy

differences between the spin states as well as the exchange coupling constants

J from the diagonal terms of the Heisenberg Hamiltonian (Eq. (116)). It should be
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emphasized that the calculations of the off-diagonal terms in the Heisenberg

Hamiltonian are not straightforward in DFT because Kohn–Sham orbitals are not

identical between two determinants such as |ααβi and |αβαi.
In the phthalocyanine-based triradical, energy separations among three states

(one spin-quartet (HS, MS¼ 3/2) and two broken-symmetry (BS1 and BS2) states

with MS¼ 1/2) are quite small (<10�7 Hartree). The tough conditions are adopted

that an ultrafine grid for the computations of two-electron integrals and very tight

SCF convergence criteria (requested convergence on RMS density matrix is

1.0� 10�12, max density matrix is 1.0� 10�10, energy is 1.0� 10�10 Hartree).

The calculated DFT energies and <S2> values, and expected value of the Heisen-

berg Hamiltonian are summarized in Table 7. The exchange coupling constants

J were calculated by utilizing the following equations.

J12 ¼ J23 ¼ E BS1ð Þ � E HSð Þf g=2 ð120Þ

J31 ¼ E BS2ð Þ � E HSð Þ � J12 ð121Þ

The calculated HS, BS1, and BS2 are illustrated in Fig. 14. It should be noted that

the reliable calculation of exchange coupling constants J in terms of BS-DFT is

very difficult because the level of accuracy strongly depends on the nature of the

species under study, exchange–correlation functionals, and basis sets. In the present

study, we used the UB3LYP/6-31G* level of theory for the calculations because

qualitative J values can usually be obtained at this level.

Table 7 The UB3LYP single point energies and< S2> values, and expectation value of the

Heisenberg Hamiltonian

State E(UB3LYP/6-31G*)/Hartree <S2> <H(Heisenberg)>

HS �3326.33031852657 3.7614 (�J12� J23� J31)/2

BS1 �3326.33031853021 1.7614 (J12 + J23� J31)/2

BS2 �3326.33031853843 1.7614 (J12� J23 + J31)/2

Fig. 14 Contour plot of the spin density of a spin-quartet (HS) and two broken-symmetry (BS1
and BS2) states. The isosurface value of the contour plot is set to 0.005
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Table 8 shows the exchange–correlation functional dependences by using

O3LYP, B3PW91, and BMK functionals, and the basis set dependence from

6-31G* to 6-311G*, which indicates that no significant differences in the trend of

J values. Another computational examples of exchange coupling constants, birad-

ical molecules (BIR-1 and BIR-2) [30, 54], are calculated by the present compu-

tations. Both are also weakly exchange-coupled systems using known TEMPO

(2,2,6,6-tetramethylpiperidine 1-oxyl) as shown in Fig. 15. Those experiments

were carried out using isotope-labelled samples for BIR-1 and BIR-2, aiming to

make ESR lines narrower and to make two TEMPO radicals distinguishable.

Experimentally determined exchange coupling constants J in the TEMPO

biradicals are +0.07 MHz and less than 0.5 MHz (in absolute value) for BIR-1

and BIR-2, respectively. Note that the Heisenberg exchange coupling Hamiltonian

is defined as H ¼ J12S1 � S2 in [30, 54], not as H ¼ �2J12S1 � S2. Therefore, we
divided the J value given in Refs. [30] and [54] by a factor of �2 for the purpose of

direct comparison. At the UB3LYP/6-31G* level, the J value is calculated to be less
than 0.07 MHz for BIR-1, and +2.50 MHz for BIR-2.

5.3 Total Spin Interactions Between the Spins in the Three
Electron Spin Qubit System

A static magnetic field direction is selected for the pulse sequence analysis. In order

to have strong interactions between the spin sites, the static magnetic field is

assumed to be along the z-direction as given in Fig. 16. The orientation is selected

to give suitable interaction strengths. The calculated value of UB3LYP/6-31G* is

adopted for J coupling constants. Table 9 shows the Dzz-values and the total

coupling values Dzz þ Jð Þ. These values are utilized to the coupling constants of

Table 8 The exchange–

correlation functional and

basis set dependences of the

exchange coupling

constants J

Functional Basis set J12/MHz J23/MHz J31/MHz

B3LYP 6-31G* �12.01 �12.01 �66.03

O3LYP 6-31G* �8.03 �8.03 �54.02

B3PW91 6-31G* �14.21 �14.21 �47.83

BMK 6-31G* �24.18 �24.18 �59.98

B3LYP 6-311G* �17.30 �17.30 �51.65

O O
O O O O O

O

O

O

O

O O
O

N
N N N

Fig. 15 Weakly exchange-coupled TEMPO biradicals BIR-1 (left) and BIR-2 (right)
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the effective spin Hamiltonian, which govern pulse intervals (required time) and

pulse sequence.

5.4 Parameter Sets of the One Electron and Two Nuclear
Spin Qubit System

The spin Hamiltonian parameters of the glutaconic acid derivative were obtained

from the X-ray irradiation study [46, 48]. The magnetic field direction is oriented

along the z-axis depicted in Fig. 17 because the orientation gives the anisotropic

terms of the hyperfine tensors for the deuterated glutaconic acid system, respec-

tively. The adopted hyperfine coupling constants of the glutaconic acid system are

A12
zz ¼ þ7:0 MHz and A31

zz ¼ �37:9 MHz [46, 48]. These values are utilized as the

coupling constants of the effective spin Hamiltonian, which govern pulse intervals

(required time) and pulse sequence. In this electron spin bus qubit, the exchange

interaction between the nuclei was estimated to be much smaller than the hyperfine

interactions; therefore, any operation relevant to this interaction is not included in

the present pulse sequences.

Fig. 16 The molecular structure of the phthalocyanine system. The radical sites are designated by

the numbers

Table 9 The interaction

strength between the spin

sites by theoretical calculation

1–2 2–3 3–1

θ 5π/4 �5π/4 π/2

Dzz/h/MHz �16.55 �16.55 11.71

Dzz þ Jð Þ=h/MHz �28.56 �28.56 �54.32
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6 Pulse Sequence Results: Operation Time
of the Sequences

The pulse sequences for the adiabatic factorization of 21 are calculated analytically

as shown in Sect. 4.8. A phthalocyanine derivative and a glutaconic acid radical as

discussed in Sect. 5 satisfy the signs of the spin coupling constants for the sequences

as shown in Table 10.

The simplified pulse sequences are shown in Fig. 18 by reducing the obvious

operations from the sequences of Sect. 4.8, and the detailed parameters for the pulse

intervals and the rotational angles are given in Table 11. To claim any practical

scheme of quantum computation, the spin qubit manipulation based on the pulse

sequence must be executed in polynomial time. The sequence generation method

for AQC, which is also useful for quantum simulation by using molecular spins,

gives the simplest procedure and fulfills the requirement for the computation time.

The required time of MSQC in the context of ESR-QC was estimated as the total

time of the pulse intervals, the summation of the time evolution period, shown in

Table 12. The phthalocyanine and glutaconic acid systems need 0.176 and 1.31 μs
to complete the factorization, respectively. The required time for those systems

reflects the spin interaction strength and the sequence generation technique espe-

cially for the two nuclear spin manipulation. In the previous NMR-QC experiment

on the closed shell molecule, the corresponding required time was approximately

50 ms [25]. The time length is proportional to the strength of two spin interactions

generating for the multi-qubit operations. At the NMR-QC case, there are only

exchange couplings between the nuclei ranging from 50 to 200 Hz on the basis of

the solution NMR experiments. On the other hand, the ESR-QC molecular spins,

both the 3e and (1e + 2n) systems, have about 7 up to 55 MHz spin interaction for

the qubit manipulations, and thus the 3e and (1e + 2n) systems can speed up

performing AQC-base factorization about 2:8� 105 and 3:8� 104 times faster

than the NMR-QC case, respectively. Besides initialization issues of spin qubits in

ensemble, in this context molecular electron spins have a big advantage over

NMR-QC cases. As expected for ESR-QC experiments based on the circuit

model [30], the present AQC approach demonstrates that hyperfine interactions

with reasonable strength ensure marked speedup in performing QC processes.

Fig. 17 The molecular structure of the glutaconic acid radical. The hydrogen 1 is deuterated and

the direction of the static magnetic field is along the z-direction. The experimental principal values

in z,z-direction of hyperfine tensors between the electron and second and third hydrogen nuclei are
+7.0 MHz and �36.0 MHz, respectively
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Table 10 Coupling constants

obtained by quantum

chemical calculations for the

phthalocyanine system

e1–e2 e2–e3 e1–e3

(a) Coupling constants of the J tensors

J/h/MHz �12.01 �12.01 �66.03

(b) Spin distances and coupling constants of the D tensors

r/Å 13.31 13.31 18.82

D/h/MHz �33.11 �33.11 �11.71

Dzz/h/MHz �16.55 �16.55 11.71

Fig. 18 Conquered pulse sequences for AQC. Time intervals are given in the upper panel of each

pulse sequence. Numbered pulse operations in dotted blocks denote rotations around the x- or y-
axis direction. (a) A pulse sequence in the phthalocyanine derivative for the factorization of 21.

The sequence indicates one cycle for m (ranging from 1 to 5); therefore, this sequence is needed to

loop at five times along the arrows. (b) A pulse sequence in the glutaconic acid system for the

factorization of 21. The sequence indicates one cycle for m (ranging from 1 to 5); therefore, this

sequence is needed to loop at five times along the arrows. (c) Schematic picture for the operations

appearing in the pulse sequences. Narrow and wide pulses denote the π/2 and π angle rotations,

respectively. Black and gray blocks denote the operations for the x- and y-axis direction,

respectively
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6.1 Pulse Sequence Results: Operation Angles
of the Sequences

Referred to the spin manipulation appearing in the pulse sequences, a larger total

number of pulses have to be executed, 140 pulses for the 3e system and 240 pulses

for the (1e + 2n) system, than the NMR-QC case with 95 pulses [25], and accord-

ingly the operation angles increased (Table 12). The operation angles relevant to the

three spin qubits are 29.8π, 34.9π, 28.2π in units of radian for the 3e system, and

39.8π, 70.0π, 53.2π for the (1e + 2n) system, while 21.5π, 24.0π, 11.5π for the

NMR-QC case with three nuclear spin qubits. This is on the basis that our pulse

generation method is a fully straight forward method which is ensured to calculate

in polynomial time; therefore, there is the space to reduce pulses in terms of single

spin rotations. It is worth to mention that although the optimization of the pulse

sequence must make the experiments easier to carry out, the optimization problem

is harder than what we expect to solve in general. This is the reason why we

calculated the pulse sequence analytically.

The straightforward method for the sequence generation in the 3e system takes

approximately 1.5 times larger time of the pulse operation/spin rotation angles than

the NMR-QC case. For comparison of the two ESR-QC systems, the operation

angles in the (1e + 2n) system result from approximately twice a larger number of

the pulse operations than the 3e-system. This is due to the replacement techniques

of the spin interaction between the nuclear spins (discussed in Sect. 4.7). This

operation needs 5 two-qubit manipulations in order to generate the qubit interaction

between the nuclei; this term strongly affects the operation time and angles. This

operation achieves the (1e + 2n) system to operate fast as the same order as the 3e

system, otherwise the (1e + 2n) system needs its required time as the same as

NMR-QC experiments.

6.2 Pulse Sequence Results: Discussion

From the experimental viewpoint, we found important difference in the pulse

intervals between the spin qubits under study. The pulse intervals between two

spins are found to be much smaller in the ESR-QC systems (shorter than 1 ns: about

Table 12 Required times

and total operation angles in

units of radian

e1 e2 e1
(a) Required time and total operation angles for the phtha-

locyanine derivative

Operation angles 29.8π 35.0π 28.2π
Required time 0.176 μs

e1 n2 n3
(b) Those for the glutaconic acid radical

Operation angles 39.8π 70.0π 53.2π
Required time 1.31 μs
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0.2 ns). This is because AQUA defines the time evolution in which an ideal

Hamiltonian contains small interaction terms. Since these terms are optimized for

the interaction strength of NMR cases (Table 11b), the adiabatic ESR-QCs can

cause much shorter time operation than standard ESR-QCs. Under this condition,

we can execute operations of the pulse sequence with somewhat reduced fidelity or

perform AQC with scaling up the pulse intervals (resulting in the longer required

time). Another paradigm is to implement correct and short time operations (below

0.1 ns) suitable for ESR-QC systems. In this work, we assumed that the ESR-QC

experiments were carried out under the conditions of conventional MW frequencies

at X-band. In principle, it is possible to set up ESR-QC experiments with the strong

static magnetic field, which erase the anisotropic terms of the spin Hamiltonian in

the SAA.

The issue above appears particularly in AQC, but not in gate model QC

approaches. Simulating the adiabatic path demands larger numbers of operators

than the standard QC, whose processes are composed of only single spin rotations

and CNOT-gate (two-qubit gate) operations. On the other hand, the basic opera-

tions, selective single spin rotations, and two-qubit operations around the z-axis,
which we discussed above (Sects. 4.1 and 4.4) is the same as standard QCs. The

difference is the following procedures for CNOT-gate and n-qubit operation in

standard QC and AQC, respectively. This ensures that if we can perform the

standard QC with some molecules then AQC can be performed with them as well.

Elaborate qubit operations are needed not only for the time interval but also for

the single spin rotations operated for the ESR-QC systems. We did not treat pulse

generating techniques in this chapter; nevertheless, this is also an essential technical

element for achieving the spin ensemble QCs. For example, Rabi operations about

spin flips take sub-nanosecond for electrons and few μs for nuclei (e.g., π pulses)

[30, 37, 38]. The spin rotation time is at least the same order as a typical short period

of qubit manipulations, then the generation of the pulse forms can be a significantly

tough task in current pulse-MW technology. The theoretical approach shown in

Sect. 4 is also known to help pulse designing, and numerical calculations will help

more elaborate spin rotations by pulses. It is worth to mention that recent AWG

techniques must help us perform numerically calculated pulses for specific cases.

The formidable task is the Rabi operation of nuclei for the complex system

composed of electron and nuclei spins. This operation takes much time, therefore

one needs to eliminate the spin interactions between electrons and nuclei during the

operating period, and it needs additional pulses for the electrons. Based on the

estimation from the numbers of the pulses and the Rabi frequencies of nuclear

spins, the required time for executing the AQC algorithm depends on the operation

time of the spins in both the present ESR-QC systems, resulting in a marked

difference from the NMR-QC experimental scheme. As described above, the spin

rotation time of nuclear spins (few μs) is estimated to be much larger than electron

spins, therefore the true required time seems to strongly depend on the spin

rotations in the (1e + 2n) system. This is the total costs for AQC with the complex

system. Nevertheless, clearing this hindrance promises us fast quantum computa-

tions in ESR timescale with nuclear spins.
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7 Conclusions

In this chapter, we have described the adiabatic factorization of 21 by MSQCs.

Implementation of spin qubit operations as the pulse sequences has proved how fast

the factorization is processed on real molecular ESR-QCs in the solid state,

compared with the previously documented NMR-QC experiments. The pulse

sequences implemented assume the experimental conditions of ESR. The theoret-

ical approach to AQCs here contains the treatment of both three electron spins as

qubits (3e system) and a one electron-bus spin with two nuclear client spins coupled

to the electron spin, (1e + 2n) system. We applied the secular approach under the

restriction between the principal axes of hyperfine tensors and the static magnetic

field, and the approach can also help utilize other molecules as spin qubits by pulse

ESR techniques (e.g., average Hamiltonian method [39–41] etc.). The CPU time of

AQCs indicates the same behavior as standard QCs. The spin interaction strength of

the z-direction plays the central role and this suggests that molecular spin qubits

with spin properties optimized can afford to perform adiabatic quantum computing

with much faster than NMR-QC cases. On the other hand, the static magnetic field

(assumed as X-band) does not affect the required time directly but the secular

approximation and the pulse shape can be influential.

The numbers of pulses at the 3e and (1e + 2n) systems increase from the

NMR-QC experiments. This difference between the 3e system and NMR one is

on the basis of the pulse sequence calculation approach, therefore the spin rotation

of the 3e system is expected to be decreased down to the NMR pulse sequence.

Another important aspect is the difference between the 3e and (1e + 2n) systems.

The basis of the theoretical treatment of different kinds of spins as qubits demands

proper spin operations.

The pulse intervals in the present AQC algorithm are found to be much small in

ESR-QC cases. This is a particular issue intrinsic to AQC, contrasting with standard

gate model approaches to QC. In this context, improved MW spin technology is

encouraged to develop from the experimental side.

Finally, we emphasize that the present approach to perform AQC on MSQCs

requires only three spin qubits and such a small number of qubits are not enough to

solve intractable problems with CCs. We note that AQC is another approach to QC

but equivalent to the standard quantum gate model. All physically realized qubits

face their scalability in extending the QC capability [3, 28–33]. ESR-QC suggests

that the scalability is materials challenge and chemistry can reach an important

milestone if more than ten addressable synthetic spin qubits are prepared in

optimized molecular frames. Based on the possible scenario, we have illustrated

how chemistry contributes to the development of QC/QIP in spite of the fact that

quantum chemistry or quantum chemical calculations performed on QCs is still a

challenge for current QC/QIP technology underlain by quantum gate/circuit

models. It is worth mentioning that in this work we have achieved adiabatic

quantum computing (AQC) on MSQCs composed of a few addressable qubits

and demonstrated that molecular spins can afford to execute realistic quantum

computing.
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Abstract Quantum computing and quantum information science are expected to

be one of the newest technologies in the next generation. In this article, we focus on

theoretical and numerical studies on quantum computing and entanglement gener-

ation using molecular internal degrees of freedom (electronic, vibrational, and

rotational). We have proposed one method of creating the Bell states and arbitrary

linear superposition states in molecular vibrational–rotational modes by using

sequential chirped laser pulses. In addition, the numerical simulations of Deutsch–

Jozsa algorithm using several combinations of the molecular internal states are

reported and compared them from the viewpoint of fidelity of the measurement

results of the sender. It turned out that rotational modes of polar molecules coupled

by dipole–dipole interaction are the most promising candidates for molecular

quantum computing. In connection with quantum computing and entanglement

manipulation by external laser fields, we have constructed free-time and fixed

end-point optimal control theories (FRFP-OCTs) for the quantum systems without

and with dissipation. Using the theories, we have performed simulations of entan-

glement generation and maintenance. From the numerical results, we have found

that FRFP-OCT is more efficient than the conventional fixed-time and fixed

end-point optimal control theory (FIFP-OCT) because the optimal time duration

of the external laser fields can also be determined exactly using FRFP-OCT.
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1 Introduction

In recent years, quantum computing and quantum information science have become

one of the most important and attractive research topics in a variety of disciplines,

e.g., mathematics, information science, physics, etc. [1]. These new kinds of

technologies are predicted to be much more advantageous compared with the

classical computers and classical information science and the benefit obtained by

these technologies is assumed to be beyond measure in our everyday life. For

instance, quantum computers are predicted to be able to solve mathematical

problems that today’s fastest computers could not solve in years. In particular,

entanglement or entangled state plays a key role for quantum computing and

quantum information processing. For example, arbitrary quantum states of

two-level system can be teleported through classical communication with the

help of maximally entangled Bell state from one place to other macroscopic distant

places (quantum teleportation) [2], which has no counterpart in classical mechanics.

As opposed to the quantum teleportation, classical information can be teleported by

using the maximally entangled Bell state (superdense coding) [3]. Needless to say,

entanglement is also an essential ingredient in quantum computing.

At present, theoretical investigations of the mechanism of quantum computing

and quantum information science have become mature although some of the

important theoretical problems, e.g., definition of entanglement degree of multi-

partite systems, have not yet been solved and are still controversial. Yet, one can

say that we are now reaching a stage of experimental realizations of quantum

computing and quantum information processing proposed and investigated theo-

retically and numerically. To apply quantum computing and quantum information

processing to realistic quantum systems, a number of microscopic quantum systems

have been proposed. Just to mention a few, cavity quantum electrodynamics (cavity

QED) [4], trapped ions [5–7], neutral atoms trapped in optical lattices [8], nuclear

magnetic resonance (NMR) [9, 10], superconducting circuits [11], silicon-based

nuclear spin [12], diamond-based quantum computer [13, 14] are some of the

promising candidates of quantum computing devices.

However, investigation of utilization of molecular internal degrees of freedom

for quantum computing and quantum information science, in particular, electronic,

vibrational, and rotational degrees of freedom, is still in its infancy. Although

molecules are also quantum systems, very few chemists have yet examined how

to use molecular internal degrees of freedom for quantum computing and quantum

information science from the chemical viewpoint. The pioneering numerical inves-

tigation of usage of molecular vibrational states for constructing elementary quan-

tum gates was reported by de Vivie-Riedle and coworkers at the beginning of this

century [15]. Later on, they have stick to pursuing “molecular vibrational” quantum

computing in a number of papers [16–21]. Soon after their works, some of the other

research groups have extended their works and have proposed new ideas of

quantum computing and quantum information science [22–30]. The purpose of

many of these works is to numerically construct elementary gate pulses using

120 K. Mishima and K. Yamashita



optimal control theory (OCT) [31]. Instead of using tailored laser pulses, Teranishi

and coworkers have developed a quantum computation scheme to process arbitrary

quantum gate operations by using the free propagation of the wave packet of I2
molecule [32].

Although the “vibrational” quantum computers are the mainstream for the

investigations of molecular quantum computing, two-qubit system consisting of

one vibrational and one rotational modes of molecules has also been investigated by

several researchers [33, 34]. In [33], single- and two-qubit operations, e.g., NOT

and CNOT gates, within rotational and vibrational states of a diatomic molecule

using strong-field molecular alignment are proposed. Numerical calculations of IR

quantum gate pulses for 12C16O molecule using a genetic algorithm instead of

employing OCT have been investigated by Momose and coworkers [34].

Another possibility is to use intermolecular states instead of the intramolecular

states mentioned earlier. In [35], one of the methods of realizing quantum phase

gate and generation of entanglement rotational modes of two polar molecules

coupled by dipole–dipole interaction has been proposed. Unlike their research,

we have numerically constructed several universal gates and applied them to the

Deutsch–Jozsa algorithm as shown later in detail [36].

On the other hand, attempts of experimental realizations of quantum computers

using molecular internal degrees of freedom have also begun to be done in recent

years. For example, Vala and coworkers experimentally demonstrated the Deutsch–

Jozsa algorithm for three-qubit functions by utilizing pure coherent superposition

states of Li2 rovibrational eigenstates [37]. Rovibrational wave-packet manipula-

tion using phase- and amplitude-modulated midinfrared femtosecond laser pulses

for 12C16O and 14N16O molecules have been investigated experimentally and

numerically by Momose and coworkers for the purpose of applying their techniques

to quantum computing [38]. Ohmori and coworkers experimentally demonstrated

coherent control of wave packet interference, wave packet interferometry, using

vibrational wave packets of I2 molecule with the aim of retrieving quantum

information such as amplitudes and phases of eigenfunctions involved in the

wave packet [39–43].

This present situation implies that the research of quantum computing using

molecular internal degrees of freedom is gradually attracting many physical chem-

ists and chemical physicists in quite recent years.

Interesting aspects of molecules compared with physical systems such as atoms,

photons, electron spins, nuclear spins, etc., are that they possess a variety of

quantum mechanical internal degrees of freedom. If we restrict ourselves only to

two-qubit systems, several kinds of combinations of modes can be considered. The

two-qubit combination studied most frequently is vibrational–vibrational qubit

combination as mentioned earlier. Since the investigation of molecular quantum

computers is still immature, we predict that there will be a number of unsolved

problems up to now and recommend chemists to investigate molecular quantum

computing in more detail in the future although many of the chemists including us

have already contributed to the improvement of the molecular quantum computers.
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The present article is organized as follows. In Sect. 2, we present our proposed

method of generation of entanglement and arbitrary superposition states using

vibrational and rotational modes of molecules. In addition, we shall show numerical

results based on the scheme. In Sect. 3, we first introduce some of the basic concepts

of quantum computers for chemists’ convenience who are not familiar with quan-

tum computers. Then, for this article to be self-contained, OCT will briefly be

reviewed because molecular quantum computing strongly relies on OCT as men-

tioned earlier. Our calculation results or some improvement of the present OCT will

also be presented. In Sect. 4, our development of free-time and fixed end-point

optimal control theories (FRFP-OCTs) without and with dissipation is presented

and the theory and the algorithm are applied to entanglement generation and

maintenance. One will find that FRFP-OCT is more convenient and advantageous

than fixed end-point optimal control theory (FIFP-OCT). Finally, Sect. 5 is devoted

to concluding remarks.

2 Generation of Entanglement and Arbitrary
Superposition States Using Vibrational and Rotational
Modes of Molecules [44]

2.1 Scheme of Generation of Arbitrary Quantum States
in Vibrational and Rotational Modes of Molecules

In Fig. 1, we show the scheme of arbitrary superposition states using the molecular

rovibrational modes of closed shell molecules. Here, 0v denotes no quantum in the

vibrational mode and 1v corresponds to one quantum in the vibrational mode. The

same holds for 0r and 1r for rotational mode. The initial state is assumed to be a

separable state j0v0ri. By shining a microwave pulse, the following superposition

state can be obtained: a 0v0rj i þ b 0v1rj i. When we irradiate an IR laser pulse to this

0v1r

1v1r

1v0r

0v0r

(1) (2) (3) (4)

initial state final state

Fig. 1 Scheme of arbitrary

state generation using the

molecular rovibrational

modes
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state, we obtain c 0v0rj i þ d 0v1rj i þ e 1v0rj i. Finally, using another IR laser pulse to

this state, we have f 0v0rj i þ g 0v1rj i þ h 1v0rj i þ q 1v1rj i as a final state. Note that
steps 2 and 3 are interchangeable. Of course, entangled states such as u 0v1rj i þ w
1v0rj i and x 0v0rj i þ y 1v1rj i are the special cases of the arbitrary superposition

states. The fact that any arbitrary superposition states of two-mode system can be

created at least means that there is a possibility to process two-qubit quantum

algorithms with the choice of vibrational and rotational modes of molecules.

(This conclusion will be shown numerically in Sect. 3.5.) Therefore, it is very

important to numerically show that arbitrary superposition states can be created by

external fields.

The mechanism of creating entangled states is explained as follows. The inter-

action Hamiltonian of molecules with laser pulses is given by

W R; θ; tð Þ ¼ �E tð Þd Rð Þ cos θ; ð1Þ

where R is the internuclear distance, θ is the angle between the molecular axis and

the laser polarization direction, d(R) is the transition dipole moment, and E(t) is the
external laser field. Because this Hamiltonian contains the product of the vibra-

tional parameter R and the rotational parameter θ, it follows that the entanglement

between the vibrational and rotational degrees of freedom can be created when the

external laser pulse is on. On the other hand, if the external laser pulse is off, the

degree of entanglement cannot be changed. This feature is very particular to

molecular systems. As far as we know, this kind of mechanism of entanglement

generation is not found in any quantum systems other than the combination of

molecular vibrational and rotational modes.

2.2 Numerical Calculation of Generation of Entanglement
and Arbitrary Superposition States

The total Hamiltonian for the rovibrational states of diatomic molecules in a given

electronic state irradiated by laser fields is given by

Ĥ tot R; θ; tð Þ ¼ Ĥ 0 R; θð Þ þW R; θ; tð Þ; ð2Þ

where

Ĥ 0 ¼ TN Rð Þ � 1

2μredR
2
HROT θð Þ þ V Rð Þ; ð3Þ

Here, TN(R) is the vibrational kinetic part with vibrational coordinate R, HROT(θ) is
the rotational part of the total Hamiltonian with θ being the angle between the

molecular axis and the laser polarization direction, μred is the reduced mass of the

molecule, and V(R) is the potential energy.
The Schr€odinger equation for the rovibrational states of diatomic molecules

using the total Hamiltonian of Eq. (2) is expressed as
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_c v, l tð Þ ¼�iεvcv, l tð Þ � i
l lþ 1ð Þ
2μred

X
v0¼0

cv0 , l tð Þ
Z 1

0

χ*v Rð Þχv0 Rð ÞdR

þiE tð Þ
X
v0 ¼0

cv0 , l�1 tð Þ lffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 � 1

p
Z 1

0

dRR2χ*v Rð Þd Rð Þχv0 Rð Þ
�

þ
X
v0 ¼0

cv0 , lþ1 tð Þ lþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1ð Þ 2lþ 3ð Þp Z 1

0

dRR2χ*v Rð Þd Rð Þχv0 Rð Þ
#
;

ð4Þ

where εv is the vibrational energy for the vibrational quantum number v, l is the
rotational principal quantum number, χv(R) is the vibrational wavefunction for

quantum number v, and cv,l(t) represents the amplitude for the rovibrational

wavefunction with the quantum numbers v and l. The external successive IR and

microwave chirped laser pulses are expressed as

E tð Þ ¼
X3
j¼1

Ej t� Tj

� �
cos ωj t� Tj

� �þ bj
2

t� Tj

� �2� �
; ð5Þ

where ωj is the resonant pulse frequency, bj is the linear chirp rate, and Ej(t) is given
by the following Gaussian line shape,

Ej tð Þ ¼ E0
j exp � 4ln2

FWHMj
2
t2

� 	
; ð6Þ

where FWHMj is the full-width at half maximum for the jth pulse and E0
j is the peak

amplitude of the jth pulse. In the following, we assume that the linearly polarized

fields are irradiated to the molecule.

To obtain the appropriate external fields, we use the Landau–Zener formula for

population transfer that is given by [45–47]

pi ¼ 1� exp �π
dE0

i

� �2
2bi

( )
if bi 6¼ 0; ð7Þ

where d denotes the transition dipole matrix element and bi is the absolute value of
the chirp rate of the ith pulse.

Here, we shall show one of the numerical examples. The numerical result of the

transfer 0v0rj i ! 0v1rj i þ 1v0rj ið Þ= ffiffiffi
2

p
based on the scheme shown in Fig. 1 is

presented in Fig. 2. In this case, the equations of p1¼ 1 and p2¼ 1/2 have to be

satisfied. Then, we have set b1¼ 0.0855 cm�1/ps and b2¼ 3.30 cm�1/ps. From

Fig. 2, we can see that by using one IR field and one microwave external field, the

Bell state 0v1rj i þ 1v0rj ið Þ= ffiffiffi
2

p
can be created almost completely. However, there is

a detrimental effect that has to be taken into account experimentally. That is, the

initial external field has to be long or strong enough to satisfy p1¼ 1. The chirp rate
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b2 should be large for large α01 and be small for large α10, where the wavefunction
isα01 0v1rj i þ α10 1v0rj i. In the former case, the second pulse has to have small pulse

amplitude or large chirp rate. On the other hand, in the latter case, the reverse holds.

To realize the former case, one should note that the rotational energy gap in most of

the molecules is so small that care has to be taken in order not to excite the molecule

to unexpected energy levels, e.g., |0v2ri. In fact, we have confirmed that the virtual

transition to |0v2ri takes place in the present situation. On the other hand, to realize

the latter case, the chirp rate has to be so small that the chirp rate has to be adjusted

appropriately in the experiments. The maximally entangled state is achieved at

p2¼ 1/2. If p2 shifts from this value, the entanglement degree decreases unilater-

ally. It is clear that the state |0v1ri can be created without the second and third pulses
while the second adiabatic chirped pulse is necessary for generating the state |1v0ri.
Since two sequential chirped pulses are necessary for creating the state |1v0ri, this
state is relatively difficult to create from the experimental point of view.

3 Quantum Algorithms

3.1 Quantum Gates

Quantum gates are the counterparts of logic gates of classical computer circuits.

The definition of operations of the classical single bit logic gates is given by truth

table. For example, the operation of NOT gate is to flip the bits: 0 ! 1 and 1 ! 0.

In what follows, we list some important quantum gates that are usually used in

quantum circuits:

Hadamard gate: Hdm ¼ 1ffiffi
2

p 1 1

1 �1

� 

for single-qubit gate,
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Fig. 2 Generation of the Bell state 0v1rj i þ 1v0rj ið Þ= ffiffiffi
2

p
in the HF molecule in the electronically

ground state. Panel (a) shows the time evolution of the populations and panel (b) shows the

external field amplitudes. The electronic ground state of the HF molecule is assumed
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NOT gate: NOT ¼ 0 1

1 0

� 

for single-qubit gate,

CNOT (controlled-not) gate: CNOT ¼
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

2
664

3
775 for two-qubit gate,

ID gate: ID ¼ 1 0

0 1

� 

for single-qubit gate,

Z gate: Z ¼ 1 0

0 �1

� 

for single-qubit gate,

π/8 gate: T ¼ 1 0

0 exp iπ=4ð Þ
� 


for single-qubit gate,

Phase gate: S ¼ 1 0

0 i

� 

for single-qubit gate,

Toffoli gate: UT ¼

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 i
0 0 0 0 0 0 �i 0

2
66666666664

3
77777777775
for three-qubit gate.

For processing the quantum computation, the two-level unitary gates such as

shown earlier must be universal [48]. Here, the term “universal” means that one can

implement an arbitrary two-level unitary transformation on the space of arbitrary

numbers of qubits. For example, using the Gray codes, it has been proven that single

qubit and CNOT gates are universal [1]. It should be emphasized that the global

unitary transformations such as CNOT gate cannot be reduced to the direct product

of two single-qubit gates. Therefore, if the total Hamiltonian can be reduced to the

product of two single-qubit unitary transformations, it is impossible to perform

universal quantum computation and quantum information processing.

3.2 Deutsch–Jozsa Algorithm

So far, several quantum algorithms have been proposed which outperform the

corresponding classical algorithms. These include the Grover’s algorithm, Shor’s
algorithm, the quantum Fourier transform, the Deutsch–Jozsa algorithm, etc. [1]. In

particular, the Deutsch–Jozsa algorithm of our concern here was found by Deutsch

and coworkers [49, 50]. For example, the Shor’s algorithm is a quantum algorithm

for integer factorization [51]. On a quantum computer, to factor an integer N, Shor’s
algorithm takes polynomial time in logN, specifically O((logN )3), demonstrating
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that integer factorization is in the complexity class BQP. This is exponentially

faster than the best-known classical factoring algorithm.

The flowchart of the two-state Deutsch–Jozsa algorithm is shown in Fig. 3. In

short, the story of the Deutsch–Jozsa algorithm is as follows. Let us assume two

persons, Alice and Bob. Alice holds the so-called query register while Bob holds the

so-called answer register. First, they come close together and they make some

promises before they go far apart from each other. When they are close together,

Alice promises to send the number 0 or 1 to Bob and he promises to calculate some

function f and to send her the answer 0 or 1. At this time, Bob promises to use two

kinds of functions f. That is, he sends her the same number for all the numbers that

he obtains from her (constant function) or he sends 0 for half of the numbers that he

obtains from her and 1 for the remaining half (balanced function). After that, they

go far apart from each other. The purpose of this algorithm is that Alice must clarify

whether the function f that Bob applies is constant or balanced, which is contained

in the oracle denoted by Uf. It is known that classically the algorithm scales as O(2n

), while quantum mechanically it scales as O(n), where n is the number of qubit

Fig. 3 Flowchart of the two-state Deutsch–Jozsa algorithm
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registers that Alice holds. This demonstrates the significant speedup of quantum

parallelism compared with classical algorithms, in particular, when n is very large.

In other words, the advantage of quantum parallelism is obtained when the quantum

circuit becomes very large.

In the flowchart of Fig. 3, the initial state of the whole Hilbert space is |00i. First,
Bob applies the NOT gate and the transition 00j i ! 01j i occurs. Bob then applies

the Hadamard gate HdmR and Alice the Hadamard gate HdmV. At this moment, the

state of the whole system becomes 00j i � 01j i þ 10j i � 11j i. To this quantum

superposition state, the unitary transformation, the so-called oracle,

Uf : x; yj i ! x, y
M

f xð Þ
��� E

; ð8Þ

is applied. Here,
L

denotes addition modulo 2. The rule of Eq. (8) must be applied

for all four possible definitions of f. According to the four definitions, Uf is defined

by the four operations (i)–(iv) in Fig. 3. Alice then applies the Hadamard transfor-

mation HdmV. If she recognizes that she obtains the state � 0j i by her own

measurement, f is constant, while f is balanced if she obtains the state � 1j i.
These states can be distinguished by measuring their own qubit as shown in Fig. 3.

In all the presentations later, the subscripts of the first and the second entries for

elementary quantum gates refer to control bit and target bit, respectively. In

addition, we shall use abbreviations E, V, and R for electronic, vibrational, and

rotational states, respectively.

3.3 Optimal Control Theory

As already mentioned in Sect. 1, to process quantum computing, it is necessary to

tailor elementary gate laser pulses appropriately. This particularly holds for mole-

cules. This is because unlike spins molecular modes of internal degrees of freedom

are essentially “qudits,” not “qubits.” In this section, we will briefly review con-

ventional OCT and multitarget OCT (MTOCT). For more details, we recommend

the readers to refer to [52, 53].

If the purpose is just to drive one specific wave function ψ i(t) to the desired wave
function Φ(T) at the fixed time t¼ T, the objective functional to be maximized is

given by [52]

J ¼ ψ i Tð ÞjΦ Tð Þh ij j2 � α0

Z T

0

E tð Þ½ �2dt� 2Re ψ i Tð ÞjΦ Tð Þh i½

�
Z T

0

ψ f tð Þ� �� ∂
∂t

þ i H0 þ V � μE tð Þ½ � ψ i tð Þj idt


;

ð9Þ

where H0 is the 0th-order Hamiltonian, V is the potential energy, μ is the transition

dipole moment, E(t) is the laser pulse to be optimized, and T is the fixed final time of
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the laser pulse. The second term restricts the laser intensity, where α0 is usually

called the penalty factor. |ψ f(t)i is the Lagrange multiplier for |ψ i(t)i.
To incorporate the effect of slow turn-on and turn-off of the laser pulses

adequate for practical experimental tailoring, the penalty factor in Eq. (9) is

replaced by [53]

�α0

Z T

0

E tð Þ½ �2
s tð Þ dt; ð10Þ

where

s tð Þ ¼ sin 2 πt=Tð Þ: ð11Þ

In this case, the optimized external field is expressed as

E tð Þ ¼ � s tð Þ
α0

Im ψ i tð Þjψ f tð Þ� 
ψ f tð Þ� ��μ ψ i tð Þj i� �

: ð12Þ

In all the calculations shown later, we have taken this effect into account.

Although the above formalisms may be applicable to tailoring the gate laser

pulses, they are not appropriate for tailoring general-purpose global gate pulses. In
other words, the given gate pulse has to process the given quantum gate for any

inputs and the corresponding outputs. In this case, one of the best choices is to resort

to multitarget optimal control theory (MTOCT) [54]. For MTOCT, the objective

functional to be maximized is given by

JMTOCT ¼
Xz
k¼1

ψ ik Tð ÞjΦf k Tð Þ� �� ��2n
� α0

Z T

0

E tð Þ½ �2
s tð Þ dt� 2Re ψ ik Tð ÞjΦf k Tð Þ� �

�
Z T

0

ψ f k tð Þ� �� ∂
∂t

þ i H0 þ V � μE tð Þ½ � ψ ik tð Þj idt
��

;

ð13Þ

where z is the number of control targets, k denotes the number of targets ranging

from 1 to z, |Φfk(T )i is the kth target at time t¼ T, |ψ ik(t)i is the wavefunction of the
system of the kth target, and |ψ fk(t)i is the Lagrange multiplier for |ψ ik(t)i. In this

case, the optimal external field reads

E tð Þ ¼ � zs tð Þ
α0

Xz
k¼1

Im ψ ik tð Þjψ f k tð Þ� 
ψ f k tð Þ� ��μ ψ ik tð Þj i� �

: ð14Þ

The number of the control targets z has to be chosen as follows. Recently, de

Vivie-Riedle and coworkers [17] proposed a method for phase-correct and basis-

set-independent quantum gates in order to perform the correct universal quantum

computing. As far as we know, their work is the first one where the phase correction
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was taken into account adequately. The requirement of the phase-correct quantum

gate is that, for example, the NOT operation for the superposition state,

00j i þ 01j i þ 10j i þ 11j i ! 01j i þ 00j i þ 11j i þ 10j ið Þeiφ5 ; ð15Þ

must be optimized in addition to the following four conventional pure basis state

optimizations,

00j i ! 01j ieiφ1 ,

01j i ! 00j ieiφ2 ,

10j i ! 11j ieiφ3 ,

11j i ! 10j ieiφ4 :

ð16Þ

If we do not impose the requirement of Eq. (15), the superposition state will

evolve as:

00j i þ 01j i þ 10j i þ 11j i ! 01j ieiφ1 þ 00j ieiφ2 þ 11j ieiφ3 þ 10j ieiφ4 ; ð17Þ

which is not the correct NOT operation, because in general φ1 6¼ φ2 6¼ φ3 6¼ φ4.

Likewise, we must impose additional constraints for the other quantum gates we

have in mind. As de Vivie-Riedle and coworkers pointed out [17], the phase

correction of quantum gates is one of the key issues for the implementation of

quantum algorithms. Therefore, for two-qubit systems, z has to be more than 4, and

according to their suggestion, their proposal will be taken into account in all the

following calculations.

There are two methods to measure the gate fidelities: the average transition

probability given by

P ¼ 1

z

Xz
k¼1

ψ ik Tð ÞjΦf k Tð Þ� �� ��2; ð18Þ

and the fidelity expressed as

F ¼ 1

z2

Xz
k¼1

ψ ik Tð ÞjΦf k Tð Þ� �����
�����
2

: ð19Þ

The average transition probability cannot take into account the phase relation

between ψ ik(T ) and Φfk(T ), while the fidelity can. If one uses the average transition
probability, the phase correction cannot be determined, while the fidelity is useful

for clarifying the phase correction. Therefore, we define the laser pulses that have

the largest fidelity as the optimal gate pulses in the following calculations.

In what follows, we will show our numerical results by using some of the

combinations of molecular internal degrees of freedom.
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3.4 Combination of Intramolecular Electronic
and Vibrational States [55]

When one regards electronic and vibrational states as qubits, special care must be

taken. Usually, the eigenstates of control and target qubits are orthonormalized

states in each Hilbert space. If we consider electronic and vibrational states as

two-qubit system, the electronic eigenstates are usually orthonormalized, while the

vibrational eigenstates that the electronic eigenstates involve are usually not

orthonormalized for each electronic eigenstate. Unless they are orthonormalized,

efficient quantum computing cannot be expected. This is because if the states are

not orthogonal among each other, we cannot distinguish them reliably by measure-

ment, as is well known from quantum mechanics. In order to circumvent this

difficulty, the vibrational eigenstates of the electronic excited state should be

written as a linear combination of the vibrational eigenstates of the electronic

ground state:

i
0
V

�� E ¼
X
j¼0

ci, j jVj i; ð20Þ

where |i
0
Vi is the ith real vibrational eigenfunction of the electronic excited state, |jVi

is the jth vibrational eigenfunction of the electronic ground state, and ci,j is the

coefficient required to perform a unitary transformation among the vibrational

eigenfunctions.

The total Hamiltonian for the electronic and vibrational states of diatomic

molecules in the ground and excited electronic states irradiated by the laser pulses

is given by:

Ĥ tot R; tð Þ ¼ TN Rð Þ þ Vg Rð Þ W R; tð Þ
W R; tð Þ TN Rð Þ þ Ve Rð Þ

" #
; ð21Þ

where

W R; tð Þ ¼ �d Rð ÞE tð Þ: ð22Þ

Here, TN(R) is the vibrational kinetic component with vibrational coordinate R;
Vg(R) and Ve(R) are the potential energy curves (PECs) for the electronic ground

and excited states, respectively; d(R) is the transition dipole moment dependent on

R; and E(t) is the external laser pulse. In the calculations, we have taken the

electronic ground and excited states as X1Σþ
g and A1Σþ

u , respectively, of Li2 and

Na2 molecules.

Using the total Hamiltonian of Eq. (21), the Schr€odinger equation for our system
is given by

Free-Time and Fixed End-Point Multitarget Optimal Control Theory Applied. . . 131



i
∂
∂t

ψg R; tð Þ
ψ e R; tð Þ

 !
¼ Ĥ tot R; tð Þ ψg R; tð Þ

ψ e R; tð Þ

 !
; ð23Þ

where ψg(R, t) is the wavefunction in the electronic ground state and ψe(R, t) is that
in the electronic excited state.

In Fig. 4, we show the optimized laser pulse (panel a), frequency resolved optical

gating (FROG) representation (panel b) for NOTV gate of Na2 molecule. In panel a,

we can see that the optimized laser pulse contains very low laser amplitudes from

t¼ 0–100 fs to t¼ 500–600 fs, and the laser is virtually on from t¼ 100–500 fs.

From panel b, we notice that the laser frequency mainly consists of the value

15,000 cm�1 which almost corresponds to the resonant transition frequency

between X1Σþ
g and A1Σþ

u states of Na2 molecule: hω0 ¼ 15, 325:4367cm�1.

Using the optimized laser pulse, the final population of |11i state reaches 90.03%
at the target time T¼ 600 fs for the transition 10j i ! 11j i.

From the snapshots of motion of wave packets for the transition 10j i ! 11j i of
NOTV gate (not shown here), it is clear that the wave packet oscillates twice on the

electronically excited state until the target state is reached. From t¼ 0–100 fs, the

laser pulse is negligibly small so that the initial wave packet on the excited

electronic state just propagates on the identical PEC. However, from t¼ 100–500 fs,

some portion of the wave packet on the electronic excited state transfers from the

state to the electronic ground state because the laser pulse is on. During this period,

the wave packet on the electronic excited state changes to the one-node shape and at

around t¼ 500 fs, the wave packet on the electronic ground state disappears. After

around t¼ 500 fs, the wave packet only freely propagates on the electronic excited

state because the laser pulse is almost off. The final wave packet at t¼ 600 fs is very

similar to the target state |11i. Almost all the optimized laser pulses obtained for the

combination of the electronic and vibrational qubits contain these kinds of

low-amplitude intensities for the initial and final free propagations of the wave

packets. This kind of low-amplitude parts of the optimized laser pulses is necessary,

e.g., for generating or destructing the nodes to reach the final target states with high
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Fig. 4 (a) Optimized laser pulse after 1500 iterations of MTOCT, and (b) FROG representation

for NOTV gate of the Na2 molecule
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fidelity. This seems to be very different from vibrational–rotational and

vibrational–vibrational qubits in which case the laser pulses do not contain these

low-amplitude intensities for the initial and final periods of the laser pulses.

In Fig. 5, we show the optimized laser pulse (panel a) and FROG (panel b) of

CNOTEV for Na2 molecule. Roughly speaking, NOTV gate at least performs the

transformations 00j i ! 01j i, 01j i ! 00j i, 10j i ! 11j i, and 11j i ! 10j i. All these
transformations include the vibrational transitions with the change of vibrational

quantum number being unity. This is reflected in the complicated FROG in panel b

of Fig. 4. However, CNOTEV gate performs the transformations 00j i ! 00j i,
01j i ! 01j i, 10j i ! 11j i, and 11j i ! 10j i. In this case, the two former transitions

do not include the vibrational transition so that the FROG has a simpler form for

CNOTEV gate than for NOTV gate as shown in panel b of Fig. 5.

From the snapshots of the wave packet dynamics of the transition 00j i ! 00j i
for CNOTEV gate (not shown here), the wave packet again oscillates twice until the

target state is reached. From t¼ 0–50 fs, the strength of the laser pulse is negligibly

small and the initial wave packet is the eigenstate |00i so that the initial wave packet
retains the initial shape. However, from t¼ 50–450 fs, some portion of the wave

packet on the electronically ground state transfers from the state to the electroni-

cally excited state because the laser pulse is on. During this period, using the shapes

of PECs and the laser pulse, the wave packets on the electronic ground and excited

states change to the one- or two-node shape and at around t¼ 450 fs, the wave

packet on the electronic excited state disappears and the wave packet almost

reaches the target state |00i. After around t¼450 fs to the target time T¼ 500 fs,

the laser pulse is almost off so that the wave packet nearly retains the target

eigenstate |00i.
As mentioned earlier, almost all the optimized laser pulses contain the

low-amplitude intensities for the initial and final periods. In Fig. 4, this fact was

used for the free propagation on the electronic excited state since the target state is

not the vibrational eigenfunction of the electronic excited state, while in Fig. 5 this
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Fig. 5 In panel (a), optimized laser pulse after 999 iterations of MTOCT and in panel (b), FROG
representation for CNOTEV gate of the Na2 molecule are presented
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is used for the wave packet to be able to remain the target eigenfunction of the

electronic ground state until the target time. Therefore, it turns out that the

low-amplitude intensities of the laser pulses for the initial and final periods are

used for the free propagation as well as for the wave packet to remain to be the

vibrational eigenfunction.

By concatenating all the optimized laser pulses and tracking the wave packet

motion, the summary of the quality of the Deutsch–Jozsa algorithm for each

quantum gate and the fidelity of the measurement results shown in Tables 1, 2, 3,

and 4 were obtained. Let us compare this with Table I of [17] (vibrational–

vibrational qubits) and Table 5 (vibrational–rotational qubits). The results for

vibrational–rotational qubits of C12O16 molecule [56] indicate that constant and

balanced functions can be distinguished correctly with an accuracy of at least

96.11% (as shown in the next section). This is slightly larger than that for the

vibrational–vibrational qubits of the acetylene molecule, 94.28% [17]. However,

for electronic–vibrational qubits constant and balanced functions can be distin-

guished correctly with an accuracy of at least 83.12%. This corresponds to Table 4

(DJV of Li2 molecule). In addition, we notice that DJV is better than DJE for both the

Table 1 Average transition

probabilities of the quantum

gates for DJE of the Na2
molecule

Gates Population (%) f1 f2 f3 f4

(Operations)

NOTV 91.76

HdmV 89.74

HdmE 75.84

Uf 89.66 79.00 85.00 85.84

HdmE 80.46 80.46 67.96 67.96

(Measurements)

Correct 72.34 74.90 58.62 62.38

False 27.66 25.10 41.38 37.62

Constant and balanced functions can be distinguished correctly

with an accuracy of at least 58.62%

Table 2 Average transition

probabilities of the quantum

gates for DJV of the Na2
molecule

Gates Population (%) f1 f2 f3 f4

(Operations)

NOTE 86.59

HdmE 88.44

HdmV 80.31

Uf 87.46 76.14 83.64 83.53

HdmE 82.23 82.23 82.37 82.37

(Measurements)

Correct 80.42 87.58 66.54 78.72

False 19.58 12.42 33.46 21.28

Constant and balanced functions can be distinguished correctly

with an accuracy of at least 66.54%
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molecules. Because these values are the maximum possible values that MTOCT

produced with our intuitive initial guess, a real maximum reliability will be higher

for any two-qubit combination. This also holds for all the following results obtained

by MTOCT.

Table 3 Average transition

probabilities of the quantum

gates for DJE of the Li2
molecule

Gates Population (%) f1 f2 f3 f4

(Operations)

NOTV 95.49

HdmV 96.04

HdmE 90.52

Uf 91.36 87.22 93.82 90.57

HdmE 91.14 91.14 84.52 84.52

(Measurements)

Correct 84.03 76.86 85.59 77.83

False 15.97 23.14 14.41 22.17

Constant and balanced functions can be distinguished correctly

with an accuracy of at least 76.86%

Table 4 Average transition

probabilities of the quantum

gates for DJV of the Li2
molecule

Gates Population (%) f1 f2 f3 f4

(Operations)

NOTE 92.67

HdmE 85.23

HdmV 90.87

Uf 91.05 88.18 92.58 91.15

HdmE 93.39 93.39 91.11 91.11

(Measurements)

Correct 90.44 83.12 83.63 86.09

False 9.56 16.88 16.37 13.91

Constant and balanced functions can be distinguished correctly

with an accuracy of at least 83.12%

Table 5 Average transition

probabilities of the quantum

gates

Gates Population (%) f1 f2 f3 f4

(Operations)

NOTR 98.63

HdmR 97.86

HdmV 94.80

Uf 88.19 90.28 92.02 93.87

Hdmv 89.41 88.99 91.39 88.23

(Measurements)

Correct 96.27 99.29 96.11 97.52

False 3.73 0.71 3.90 2.48

Constant and balanced functions can be distinguished correctly

with an accuracy of at least 96.11%
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3.5 Combination of Intramolecular Vibrational
and Rotational States [56]

Next, let us proceed to the case of the combination of intramolecular vibrational and

rotational modes of molecules in the electronically ground state. The molecule of

our target is closed-shell C12O16 molecule. Among the various gate pulses calcu-

lated for this molecule, the most difficult one is the HdmV gate (Fig. 6). This gate

deserves detailed consideration. The essence of the difficulty is that this gate

involves the disallowed transition for rotational modes, e.g., 00j i ! 00j i þ 10j i.
From the population evolution, we can see that the allowed transitions 00j i ! 01j i
and 00j i ! 11j i occur first. In effect, the FROG shows strong peaks for the

frequencies of these transitions within about 20 ps. The pulse shape also shows

this tendency, with slowly varying and rapidly varying components. From 20 to

50 ps, very complicated transitions take place, especially among the states |00i, |
01i, |10i, and |11i. From 50 ps, by using IR and microwave frequencies, the

populations of the states |01i and |11i go down and the state 00j i þ 10j i is created.
The form of the laser pulse actually consists of a slowly varying sine function

(rotational transition) and a rapidly oscillating sine function (vibrational transition).

This is actually reflected in the split FROG in panels (b) and (c): the IR frequency

components are shown in panel (b) and the microwave frequency components in

panel (c). This is the method for counteracting the so-called forbidden transition

that OCT has produced. The essential features are the same for other types of

transition. From several calculations, it was revealed that these kinds of transitions

require longer pulses than other types of gate operations (note that the HdmV gate

pulse requires more than 60 ps time duration).

The CNOTVR gate is shown in Fig. 7. In panel (d), the transition 10j i ! 11j i is
demonstrated. We can see that the dominant transition consists of 10j i ! 11j i and
02j i ! 11j i, where the |02i state is transiently populated by vibrational transitions.
The transition 10j i ! 11j i does not require any vibrational transition, but OCT

chooses to include the vibrational transition in order for the gate to be universal. In

addition, we have also checked that the population transitions 00j i ! 00j i,
01j i ! 01j i, and 11j i ! 10j i follow the transitions 00j i ! 01j i ! 00j i,
01j i ! 00j i ! 01j i, and 11j i ! 02j i, 11j i ! 10j i, respectively (not shown

here). In the CNOTVR, the transition patterns are a little less complicated than

those for the HdmV gate, because they satisfy the selection rule of rotational

transition compared with those for the latter.

As can be understood from these two examples, for quantum computing using

rovibrational qubits, the selection rule for rotational transition plays a key role in

determining the optimal laser pulse and the gate fidelity.

The summary of the quality of the Deutsch–Jozsa algorithm for each quantum

gate and the fidelity of the measurement results is demonstrated in Table 5. Let us

compare this with Table I of [17]. Our results indicate that constant and balanced

functions can be distinguished correctly with an accuracy of at least 96.11%. This

is slightly larger than that for the vibrational–vibrational qubits of the acetylene
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Fig. 6 Optimization results for the HdmV gate. From top to bottom, they are the optimized gate

pulse (a), FROG ((b) and (c)), and the population transition of 00j i ! 00j i þ 10j i (d). Panel (b)
shows the IR frequency components and panel (c) shows the microwave frequency components of

the external field
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Fig. 7 Optimization results for the CNOTVR gate. From top to bottom, they are the optimized gate

pulse (a), FROG ((b) and (c)), and the population transition of 10j i ! 11j i (d). Panel (b) shows the
IR frequency components and panel (c) shows the microwave frequency components of the

external field
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molecule: 94.28% [17]. This means that the combination of vibrational and rota-

tional qubits is a little bit better than the other cases discussed until here, at least

from the numerical viewpoint.

3.6 Combination of Intermolecular Rotational States [36]

This type of combination of molecular internal degrees of freedom is quite different

from the previous examples. In the present case, a quantum system that carries a

qubit is different. In addition, the nonlocal operation such as CNOT gate can be

carried out through nonlocal interaction such as dipole–dipole interaction. Further-

more, we have extended the conventional one-laser pulse OCT to multiple-pulse

OCT, which is quite similar to the spirit as proposed in [57, 58].

In the present calculations, we assume four cases: four configurations of two

polar molecules that are shown in Fig. 8. In panel (a), two different molecules, NaCl

and NaBr, are the target molecules whose rotational axes are parallel to z-axis. In
this case, one laser pulse addresses two molecules simultaneously. In the case when

the rotational axes are numbered as (i), the interaction between the two molecules is

attractive, while they are numbered as (ii), the interaction is repulsive. In panel (b),

two identical molecules, NaCl or NaBr, are the target molecules whose rotational

axes are also parallel to z-axis. In this case, two different laser pulses address each

molecule. In the case when the rotational axes are numbered as (iii), the interaction

between the two molecules is repulsive, while they are numbered as (iv), the

interaction is attractive. In both panels (a) and (b), the linearly polarized laser

polarizations are parallel to z-axis.
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Fig. 8 Four configurations of two polar molecules studied in the present article. In the figure, R is

the intermolecular distance, RA1 and RA2 represent the rotational axes for molecule 1 and

molecule 2, respectively, ~ε’s are the laser polarizations, and c’s are molecule-fixed coordinates

that are parallel to the dipole moment
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For notational convenience, we define the case when the rotational axes are

numbered as (i) in panel (a) of Fig. 8, where the molecule 1 is NaCl and the

molecule 2 is NaBr as NaCl–NaBr (I). On the other hand, we define the case

when the rotational axes are numbered as (ii) in panel (a) of Fig. 8 where the

molecule 1 is NaCl and the molecule 2 is NaBr as NaCl–NaBr (II). In the similar

manner, we define the case when the rotational axes are numbered as (iv) in panel

(b) of Fig. 8 where the molecule 1 is NaCl and the molecule 2 is NaCl as NaCl–

NaCl (I). On the other hand, we define the case when the rotational axes are

numbered as (iii) in panel (b) of Fig. 8 where the molecule 1 is NaCl and the

molecule 2 is NaCl as NaCl–NaCl (II). Likewise, we define the cases for the system

consisting of two NaBr molecules as NaBr–NaBr (I) and NaBr–NaBr (II),

respectively.

For designing general-purpose universal gate pulses, we have treated case

(a) and case (b) in Fig. 8 separately. For the one-pulse technique in the cases of

NaCl–NaBr (I) and NaCl–NaBr (II), the objective functional is expressed as

J ¼
Xz
k¼1

ψ ik Tð ÞjΦf k

� �� ��2 � α0

Z T

0

E tð Þj j2
s tð Þ dt

(

�2Re ψ ik Tð ÞjΦf k

� Z T

0

ψ f k tð Þ� ��i Ĥ � ~μ1 � ~E tð Þ � ~μ2 � ~E tð Þ� �þ ∂
∂t

ψ ik tð Þj idt
� ��

;

ð24Þ

The Hamiltonian Ĥ is given by

Ĥ ¼ Ĥ 0 þ V̂ ; ð25Þ

where Ĥ0 denotes the diagonal part of the Hamiltonian which satisfies

Ĥ 0 j1;m1; j2;m2j i ¼ 1

2I1
j1 j1 þ 1ð Þ þ 1

2I2
j2 j2 þ 1ð Þ

� �
j1;m1; j2;m2j i; ð26Þ

where I1 and I2 represent the rotational constants for the control bit and target bit

molecules, respectively. V̂ is the rotational dipole–dipole coupling operator which

can be written as

V̂ ¼ μ1μ2
4πε0

1

R3
~v1 �~v2 � 3 ~v1 � R̂

� �
~v2 � R̂
� �� �

; ð27Þ

where μ1 and μ2 are the dipole moments for the first and second molecules,

respectively, ~vi is the unit vector of the orientation of the ith molecule, R is the

distance between the two molecules, and R̂ is the unit vector from the center of the

first molecule to the second molecule. For case (a), the optimized gate pulse is given

by
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E tð Þ ¼ � zs tð Þ
α0

Xz
k¼1

Im ψ ik tð Þjψ f k tð Þ� 
ψ f k tð Þ� ��μ1 cos θ1 þ μ2 cos θ2 ψ ik tð Þj i� �

: ð28Þ

On the other hand, in case (b) of Fig. 8, we assume that the individual molecules

are irradiated by respective optimized laser pulses. The objective functional in this

case is given by

J ¼
Xz
k¼1

ψ ik Tð ÞjΦf k

� �� ��2 � α1

Z T

0

E1 tð Þj j2
s1 tð Þ dt� α2

Z T

0

E2 tð Þj j2
s2 tð Þ dt

(
,

�2Re ψ ik Tð ÞjΦf k

� Z T

0

ψ f k tð Þ� ��i Ĥ � ~μ1 � ~E1 tð Þ � ~μ2 � ~E2 tð Þ� �þ ∂
∂t

ψ ik tð Þj idt
� ��

;

ð29Þ

where it is assumed that the laser pulse ~E1 tð Þ addresses the first molecule (control

bit) and ~E2 tð Þ addresses the second molecule (target bit) individually. The second

and third terms restrict the laser intensity, where α1/s1(t) and α2/s2(t) are the penalty
factors for the first and second molecules, respectively. Therefore, the optimized

control and target gate pulses are expressed as

E1 tð Þ ¼ � zs1 tð Þ
α1

Xz
k¼1

Im ψ ik tð Þjψ f k tð Þ� 
ψ f k tð Þ� ��μ1 cos θ1 ψ ik tð Þj i� �

,

E2 tð Þ ¼ � zs2 tð Þ
α2

Xz
k¼1

Im ψ ik tð Þjψ f k tð Þ� 
ψ f k tð Þ� ��μ2 cos θ2 ψ ik tð Þj i� �

;

ð30Þ

where the quantities with subscript 1 are related to the control bit and those with

subscript 2 are related to the target bit.

In Fig. 9, we show the optimized laser pulse of the first qubit in panel (a), the

FROG representation of the pulse in panel (b), the optimized laser pulse of the

second qubit in panel (c), and the FROG representation of the pulse in panel (d),

respectively. The target population evolution of this figure is 00j i ! 00j i for CNOT
gate for the case NaCl–NaCl (II) with R being equal to 5.0 nm as shown in panel (e).

From panel (e), we can see that the population transfer mainly takes place in the

Hilbert space of our interest. However, the transient population transfer to |2, 0, 0, 0i
takes place due to the dipole coupling between |01i and |10i. From the Fourier

transforms of the laser pulses, it is clear that the off-resonant frequency of the laser

pulses has the strongest intensity at around 0.9 cm�1. The discussion in Fig. 6 also

holds for the role of this off-resonant component. The final population of |00i is
99.31%.

The eigenenergies of the rotational eigenstates of NaCl molecule are 0.0, 0.4336,

1.301, 2.602 cm�1 for the ground state, the first excited state, the second excited

state, and the third excited state, respectively. Comparing with these values with the

frequency components shown in the FROG, the frequency of the laser pulses is

Free-Time and Fixed End-Point Multitarget Optimal Control Theory Applied. . . 141



almost resonant between the ground and the first excited states. However, we find

the laser frequency of around 0.9 cm�1 in the FROG, that is, off-resonant compo-

nent that lies between the first and the second excited states. As explained in [59], in

a pair of two-level atoms interacting with each other by the dipole–dipole coupling,

a new dipole–dipole interaction-induced resonance takes place at the frequency of

the sum of the resonant frequencies of the ground and the first excited states of two

atoms. This also holds for the rotational modes of molecules. Actually, the laser

frequency of around 0.9 cm�1 is almost the same as the sum of the resonant

frequencies of the ground and the first excited states of two NaCl molecules

(0.8672 cm�1).

Although not shown here, almost all the optimized laser pulses have a similar

structure of the FROG for the cases NaCl–NaCl (I), NaCl–NaCl (II), NaBr–NaBr

(I), and NaBr–NaBr (II).

In Table 6, we show some examples of the transition probabilities of each

quantum gate and the correctness of the measurement. The corresponding flowchart

of the two-state Deutsch–Jozsa algorithm is shown in Fig. 10. Comparing the case

NaCl–NaBr

(I) with R being equal to 5.0 nm and that with R being equal to 8.5 nm, we can

see that the distinguishability is better for the latter than the former. This is due to

the fact that the fidelity of Hdm2 gate plays a key role in the two-state Deutsch–

Jozsa algorithm because Hdm2 gate is used twice. Therefore, because the fidelity of

Hdm2 gate with R being equal to 8.5 nm is larger than that with R being equal to

5.0 nm, the distinguishability is better for the case with R being equal to 8.5 nm. On

the other hand, in the case NaCl–NaBr (I) with R being equal to 12.0 nm, we notice
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Fig. 9 (a) Optimized control gate pulse, (b) FROG representation of the optimized control gate

pulse, (c) optimized target gate pulse, (d) FROG representation of the optimized target gate pulse,

(e) population evolution of 00j i ! 00j i for CNOT gate of the case NaCl–NaCl (II) with R being

equal to 5.0 nm. The population of |00i state reaches 99.31% at the target time T¼ 2621.42 ps
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that the correctness of constant function is very good (~99%). This is because since

the quantum circuit for the constant function only contains the local unitary

operations, the dipole–dipole interaction is negligibly small so that the local

operation can be performed with high fidelity when R is very large. However, the

correctness of balanced function is very small (~80%). This is simply because for

the balanced function the quantum circuit contains not only the local unitary

operations but also the global unitary operations such as CNOT and ACNOT

gates. If the dipole–dipole interaction is very weak, the fidelities of CNOT and

ACNOT gates deteriorate significantly. This holds also for other cases shown later.

On the other hand, comparing the cases NaCl–NaBr (I) and NaCl–NaBr (II), it

can be seen that the distinguishability is better for the case NaCl–NaBr (II) than that

of the case NaCl–NaBr (I) for all the values of R. First, this is because the fidelity of
the first gate, NOT gate, which influences significantly the following gates is higher

for the repulsive configuration than for the attractive configuration. Second, this is

due to the fact that the fidelity of Hdm2 gate for the repulsive case is larger than that

for the attractive case.

Next, we compare the cases NaCl–NaCl (I) and NaCl–NaCl (II). We notice that

the repulsive configuration shows better distinguishability than the attractive con-

figuration in the same manner as in the NaCl–NaBr system shown earlier. In

general, we can see that the probability of population transfer is better for the

repulsive configuration than for the attractive configuration, which leads to the

better distinguishability for the repulsive configuration. Although not shown here,

when R is equal to 12.0 nm, the distinguishability deteriorates significantly for both

the attractive and the repulsive cases in the same manner as in the cases NaCl–NaBr

(I) and NaCl–NaBr (II).

Finally, we concentrate on the case NaBr–NaBr (II). This example is the best

performance of the two-state Deutsch–Jozsa algorithm in all our calculations. In

Fig. 10 Flowchart of the two-state Deutsch–Jozsa algorithm
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this case, constant and balanced functions can be distinguished correctly with an

accuracy of at least 97.95%. In this case, the fidelities of each gate are equally very

high so that the minimum distinguishability also amounts to a large value.

Summarizing, we predict that the fidelity of the general-purpose quantum gates

is very large and the performance of the two-state Deutsch–Jozsa algorithm is very

good when using the intermolecular rotational–rotational qubits.

Let us compare the present Table 6 with Table I of [17] (intramolecular

vibrational–vibrational qubits), Table 5 (12C16O molecule) and the results of 14N16O

[60] (intramolecular vibrational–rotational qubits), and Tables 1, 2, 3, and 4 (intra-
molecular electronic–vibrational qubits). As shown earlier, Table 5 indicates that

constant and balanced functions can be distinguished correctly with an accuracy of

at least 96.11% in 12C16O molecule when the control bit is vibrational and the target

bit is rotational. On the other hand, if the molecular system is 14N16O molecule,

constant and balanced functions can be distinguished correctly with an accuracy of at

least 94.76% when the control bit is rotational and the target bit is vibrational. This

is similar to that for the vibrational–vibrational qubits of the acetylene molecule,

94.28% [17]. However, for the electronic–vibrational qubits of Li2 molecule,

constant and balanced functions can be distinguished correctly with an accuracy of

at least 83.12%. This is the worst distinguishability reported up to now. On the

other hand, our present results show that the distinguishability is 97.95% for the

case NaBr–NaBr (II) with the interval R¼ 5.0 nm, which is the best performance of

the two-state Deutsch–Jozsa algorithm compared with any of the intramolecular

vibrational–vibrational, vibrational–rotational, and electronic–vibrational qubits

reported so far. Therefore, up to now, the intermolecular rotational–rotational qubits

are the most promising candidate for quantum computing when using the molecular

degrees of freedom as qubits.

Although we do not show the details, the average transition probabilities and the

fidelity of CNOT and ACNOT gates can be much more enhanced even if we enlarge

R than R investigated earlier (5.0–12.0 nm). The method for enhancing the average

transition probabilities and the fidelity of CNOT and ACNOT gates is to elongate

T more than that explored in the above examples (T¼ 2000–5000 ps). In fact, in

[61, 62], we have analytically predicted that the temporal duration of the incident

laser fields for generating the maximally entangled Bell states becomes longer for

smaller entangling interaction matrix elements. For example, for the ACNOT gate

for the case NaCl–NaBr (I) with R being equal to 12.0 nm, T demonstrated in

Table 6 was 5242.72 ps, P ¼ 0:8858, and F¼ 0.8332. On the other hand, when T is

equal to 20,971.4 ps, P ¼ 0:9787 and F¼ 0.9755. As a second example, for the

CNOT gate for the case NaCl–NaBr (I) with R being equal to 12.0 nm, T demon-

strated in Table 6 was 5242.72 ps, P ¼ 0:8937, and F¼ 0.7657. On the other hand,

when T is equal to 20,971.4 ps, P ¼ 0:9752 and F¼ 0.9724.

The consequence that the combination of intermolecular rotational qubits gives

the best performance of quantum computing may be attributed to the fact that the

eigenenergies between the nearest levels increase with increasing rotational quan-

tum number so that it becomes difficult to occupy higher energy levels for purely
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rotational modes if the strength of external fields is sufficiently small. Therefore, the

purely rotational states of molecules can be regarded as a “qubit” although the

rotational states constitute a “qudit” in principle. Furthermore, a large number of

rotational states of molecules can be coupled by dipole–dipole interactions and by

selecting appropriate positions and directions of molecules, multiqubit quantum

computing will become possible with high fidelity. This fact satisfies the criterion

of scalability required for realization of quantum computers. However, it seems to

be not so easy to do so if the intramolecular states are regarded as qubits.

4 Free-Time and Fixed End-Point Optimal Control Theory
(FRFP-OCT)

So far, we have used conventional FIFP-OCT to tailor optimal laser pulses,

especially for constructing general-purpose optimal gate pulses for quantum com-

puting. Needless to say, OCT can be used not only for quantum computing but also

for control problems of a variety of physical and chemical phenomena [31, 63].

In our previous publications [61, 62], we have found that the entanglement

generation in general quantum systems crucially rely on the strength of entangling

interactions among distinct quantum systems. We have stressed that if the

entangling interactions are strong, the maximally entangled state can be created

in short time. This in turn implies that if the strength of the entangling interactions is

weak, long laser fields are necessary for creating the maximally entangled states. In

the simplest case, the time duration of the laser pulses by which the maximally

entangled states can be created is inversely proportional to the strength of the

entangling interaction. Although our previous findings have assumed simplified

entangling interactions, the tendency we found there has turned out to be quite

general in the sense that it also holds for the case when the entangling interactions

are complicated as shown in the previous section (Sect. 3.6). Therefore, it can easily

be recognized that we need a new OCT that works well even if we do not know the

necessary time duration of the laser pulses to create the maximally entangled state

efficiently because the actual entangling interactions are usually much more com-

plicated in molecular systems. If this is the case, the necessary OCT will become

free-time and fixed end-point optimal control theory (FRFP-OCT) since the optimal

temporal duration of the laser pulses is not known exactly in advance. Currently,

OCT in quantum systems proposed so far has been limited to the fixed-time and

fixed end-point optimal control theory (FIFP-OCT). Consequently, we have

constructed one of the versions of FRFP-OCTs that can optimize the objective

functional and the temporal duration of the laser pulses simultaneously

[64, 65]. One of the advantages of our theory is that one does not need to try

various final fixed times to achieve the best control of quantum dynamics. To

demonstrate the utility of our theory it has been applied to the optimization of

laser pulses that can create maximally entangled states efficiently, but it may also be
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applied to various physical and chemical quantum control problems. As a demon-

stration, we have applied the theory to entanglement generation in the situation

sketched in panel a of Fig. 8.

On the other hand, realistic quantum systems that we observe experimentally

and calculate theoretically are always interacting with surrounding environment by

way of entangling interactions. If the whole quantum system is the sum of the

system of our interest and the huge surrounding environment, the quantum state is

maintained in pure state (no decoherence). However, the surrounding environment

is traced out and our attention is paid only to our small quantum system, our system

becomes mixed state (decoherence). This can be easily verified by using, e.g., the

von-Neumann entropy used to measure entanglement degree of the pure state of

composite systems. In many quantum control problems, the decoherence is unfa-

vorable and should be suppressed.

Quantum computing and quantum information science are also not exceptions. It

was pointed out that the decoherence might become one of the crucial obstacles for

quantum computers and entanglement generation and manipulation because quan-

tum information processing must be performed in pure states in most cases

[66, 67]. Therefore, to achieve accurate quantum computing and quantum infor-

mation processing in the quantum system in contact with the surrounding environ-

ment, it is crucial to maintain the coherence by external active manipulation of the

target quantum system. It should be noted that the decoherence was completely

neglected in the earlier calculations.

At present, there are two methods to suppress decoherence that are proposed

theoretically. One of these is to utilize quantum error correcting code [68, 69]. The

other promising and efficient method of preventing decoherence is the so-called

bang-bang control by shining repetitive intense laser pulses on the target quantum

system [70].

Although the methods mentioned earlier are proposed to be applied to simple

two-level quantum systems (qubits), most quantum systems are composed of many

eigenstates (qudits), e.g., molecular internal degrees of freedom. Therefore, the

analytical approaches of the error correcting code and the bang-bang control cannot

easily be extended to qudits such as molecular modes. If this is the case, one has to

resort to other methods for the purpose of decoherence suppression of realistic

quantum systems. One of the advantageous methods will be to OCT and apply it to

concrete calculations of realistic multilevel quantum systems in order to control the

dissipative quantum dynamics most efficiently.

In fact, OCT for dissipative quantum dynamics has attracted much attention in

recent years. This is because it is possible to construct laser pulses that can

manipulate quantum dynamics efficiently in the presence of the surrounding envi-

ronment and because it is difficult to predict by intuition what kind of laser pulses

are the most appropriate for achieving the target dissipative quantum dynamics.

OCT for the dissipative quantum dynamics has been developed and improved by

many researchers. For example, the OCT for dissipative quantum systems was

constructed in a fully systematic and rigorous fashion by Cao and coworkers for the

first time [71]. However, their theory can only be applied to the weak response
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regime. Almost at the same time, the OCT in the strong response regime was

developed in terms of the Liouville-space density matrix [72]. Ohtsuki and

coworkers developed a monotonically convergent algorithm for dissipative quan-

tum systems [73] and applied their theory to the control of wave packet dynamics

under the influence of dissipation [74]. Recently, there have appeared several

numerical applications of OCT in realistic dissipative media for a variety of

purposes. For example, simulations of molecular quantum computers using the

vibrational modes of molecules including dissipation have been performed by

Ndong and coworkers [27]. Seideman and coworkers have applied dissipative

OCT to manipulate rotational wave packet dynamics in a dissipative environment

[75, 76]. From the experimental viewpoint, dissipative OCT was used for the

quantum control of I2 in the gas phase and in condensed phase solid Kr matrix [77].

Also for the quantum control in the dissipative environment, only FIFP-OCTs

have been developed. Dissipative quantum dynamics can be regarded as one of the

most time-sensitive processes. The reason is that the decoherence rate Γ governs the

decoherence degree versus time. Therefore, FRFP-OCT also has a significant

importance for dynamical control of dissipative quantum dynamics. If this is the

case for the quantum system under investigation, the equation of motion should be

replaced by, e.g., the Liouville–von Neumann equation in the framework of the

density matrix representation. Consequently, one of the main purposes here is to

generalize FRFP-OCT suitable only for pure states to mixed state FRFP-OCT

following the general Master equation in both Markov approximation and without

any approximations.

4.1 FRFP-OCT in Pure State [64]

We assume that the quantum system of our interest is separated from the surround-

ing environment so that our system can adequately be described by the Schr€odinger
equation. The objective functional of our problem to be maximized is just given by

J ¼ Ψ i Tð ÞjΦf

� �� ��2; ð31Þ

where |Ψ i(t)i is time-dependent wavefunction at time t and |Ψ i(T )i is the time-

dependent wavefunction at the target final time t¼ T. On the other hand, |Φfi is the
final target wavefunction at time t¼ T. Our purpose is to maximize the objective

function, J, at some time T. Note that we do not fix T while J should be maximized.

This kind of problem has not yet been investigated in control problems in quantum

mechanics so far. It should be noticed that the objective functional given by

Eq. (31) is different from that of the optimal control theory investigated so far. In

the conventional FIFP-OCT, the objective functional is usually given by
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J ¼ Ψ i Tð ÞjΦf

� �� ��2 � α

Z T

0

E tð Þ2dt; ð32Þ

where E(t) is the external laser fields and α is usually called penalty factor that is

added to minimize the strength of the external laser fields. Defining the objective

functional as Eq. (32) and adding the constraints that the system obeys, Rabitz and

coworkers proposed, e.g., monotonically convergent OCT [52].

Let us now derive the quantummechanical FRFP-OCT that is necessary, e.g., for

entanglement generation as mentioned earlier. First, we introduce real time t and
fictitious-time τ, which are related by the following equality:

t ¼ T τð Þτ; ð33Þ

where τ is a dimensionless parameter that ranges from zero to unity. In addition, we

have included the implicit dependence of T on dimensionless parameter τ in

Eq. (33). The time-dependent equation for |Ψ i(t)i is given by the conventional

real-time Schr€odinger equation:

ih
∂ Ψ i tð Þj i

∂t
¼ Ĥ � ~μ � ~E tð Þ� �

Ψ i tð Þj i; ð34Þ

where Ĥ is the 0th-order Hamiltonian and �~μ � ~E tð Þ is the laser–molecule interac-

tion. Using the relationship of Eq. (33) for Eq. (34), we obtain

ih
∂ Ψ i τð Þj i

∂τ
¼ Ĥ � ~μ � ~E τð Þ� �

Ψ i τð Þj iT τð Þ: ð35Þ

We call Eq. (35) as fictitious-time Schr€odinger equation.
Usually, the objective functional to be maximized or minimized is constrained

by some of the factors, e.g., the equation of dynamics that the problem in mind

follows. In this case, we can add such constraints into Eq. (31) using Lagrange

multipliers and we obtain the new objective functional,

Ĵ¼ Ψ i τ¼1ð ÞjΦf

� �� ��2�2Re

Z 1

0

Ψ f τð Þ� �� i

h
Ĥ�~μ�~E τð Þ� �þ ∂

T τð Þ∂τ
� �

Ψ i τð Þj iT τð Þdτ
� 


�
Z 1

0

νT τð Þ∂T τð Þ
∂τ

dτ:

ð36Þ

Then, we introduce the variational principle for Eq. (36). In order for Ĵ to be

maximized, we can deduce the following equations:
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ih
∂ Ψ i τð Þj i

∂τ
¼ Ĥ �~μ �~E τð Þ� �

Ψ i τð Þj iT τð Þ subject to the initial condition Ψ i τ¼ 0ð Þj i
¼ Φij i;

ð37Þ

where |Φii is the initial given state.

ih
∂ Ψ f τð Þ�� 

∂τ
¼ Ĥ �~μ �~E τð Þ� �

Ψ f τð Þ�� 
T τð Þ subject to the initial condition Ψ f τ¼ 1ð Þ�� ¼ Φf

�� 
;

ð38Þ
∂νT τð Þ
∂τ

¼ �2

h
Im Ψ f τð Þ� �� Ĥ � ~μ � ~E τð Þ� �

Ψ i τð Þj i� �
subject to the initial condition

νT τ ¼ 1ð Þ ¼ 2Re Ψ i τ ¼ 1ð ÞjΦf

� 
Φf

∂Ψ i τ ¼ 1ð Þ
T τ ¼ 1ð Þ∂τ
����

�� �
;

�
ð39Þ

When Eqs. (37)–(39) are satisfied, we have

δĴ ¼
Z 1

0

dτg τð ÞδE τð Þ þ νT τ ¼ 0ð ÞδT τ ¼ 0ð Þ; ð40Þ

where we have defined

g τð Þ ¼ �2

h
Im Ψ f τð Þ� ��μ Ψ i τð Þj i� �

T τð Þ: ð41Þ

If the correction of the laser amplitude E(τ) is represented as δE(τ), we define

δE τð Þ ¼ αg τð Þ: ð42Þ

On the other hand, if we defined the correction of T(τ) as δT(τ), we choose

δT τð Þ ¼ βνT τ ¼ 0ð Þ: ð43Þ

When Eqs. (42) and (43) are inserted into Eq. (40), we find

δĴ ¼
Z 1

0

dταg τð Þ2 þ βνT τ ¼ 0ð Þ2: ð44Þ

If both α and β are positive, it is expected that the objective reaches maximum

monotonically as is clearly understood from Eq. (44). On the other hand, if both α
and β are negative, it is expected that the objective reaches minimum

monotonically.
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Based on the earlier equations, we have constructed the following FRFP-OCT in

pure state following the Schr€odinger equation. In what follows, the superscript ( j)
is used to denote the quantities for the jth iteration.

1. One chooses initial guess external fields E(0)(τ) and nominal T(0) that is the final
time of quantum dynamics. Here and in the following, the superscript ( j) is used
to denote the quantity of the jth iteration. In addition, the trial positive param-

eters α and β are given because our purpose is to maximize Eq. (31).

2. The Schr€odinger equation (Eq. (37)) is propagated forwardly in time from τ ¼ 0

to τ ¼ 1 and the obtained wavefunction |Ψ ðjÞ
i (τ)i is stored. At the same time, the

objective functional J jð Þ ¼ Ψ jð Þ
i Tð ÞjΦf

D E��� ���2 is calculated.
3. Equations (38) and (39) are propagated backwardly in time from τ ¼ 1 to τ ¼ 0

and the wavefunction |Ψ ðjÞ
f (τ)i is stored. In addition, νT τ ¼ 0ð Þ is calculated.

4. Using Eqs. (42) and (43), the laser amplitude E( j)(τ) and T( j) are updated as

follows,

E jþ1ð Þ τð Þ ¼ E jð Þ τð Þ þ αg τð Þ; ð45Þ

and

T jþ1ð Þ ¼ T jð Þ þ βνT τ ¼ 0ð Þ: ð46Þ

5. One sets the convergence criterion η and if the following criterion

J jþ1ð Þ � J jð Þ�� �� � η ð47Þ

is met, the calculation is terminated.

6. If the convergence is not sufficient, one updates E( j)(τ) and T( j) to E jþ1ð Þ τð Þ and
T jþ1ð Þ, and loops back to the step (2).

To show how our theory works concretely, we have applied the above algorithm

to tailoring optimal laser pulses that can create the maximally entangled Bell states.

One of the calculation examples is shown in Fig. 11.

In Fig. 11, we show the numerical results for the optimization of the quantum

transfer 0; 0j i ! 0; 0j i þ 1; 1j ið Þ= ffiffiffi
2

p
with the nominal T(0)¼ 300 ps. From panel

(a), we can see that the rate of the monotonic convergence of the transition

probability is better for FRFP-OCT than that for FIFP-OCT. In addition, the finally

obtained transition probability is better for FRFP-OCT. On the other hand, from

panel (b), it is seen that the temporal duration of the laser pulse becomes longer with

the optimization iteration. This reflects the fact that the longer temporal duration of

the laser pulse is more favorable than the shorter one because the nominal T(0) was
too short to reach a high transition probability. It is clear from panels (d) and (f), the

maximally entangled Bell state cannot be created by both FRFP-OCT and FIFP-
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OCT. This is because the tailored laser pulses have a short temporal duration so that

it is difficult to reach the maximally entangled state as mentioned earlier. However,

it is clearly seen that FRFP-OCT has attained much higher transition probability

than FIFP-OCT has (see panel (f)). The optimal time duration of the laser pulse

obtained by FRFP-OCT was 327.95 ps. It is expected that the behaviors shown in

these figures are also universal to controls of other physical and chemical

phenomena.

From the above numerical results, we can conclude that our FRFP-OCT is much

more efficient than the conventional FIFP-OCT because the temporal duration of

the laser pulse can also be optimized accurately, which makes OCT more flexible.

4.2 FRFP-OCT in Dissipative Media [65]

Next, we are interested in the situation where the quantum system of interest is

affected by the surrounding environment so that it is necessary to describe the

quantum system in the density-matrix representation. In such a case, we start from

the assumption that the objective functional to be maximized is simply given by
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Fig. 11 (a) Transition probability versus iteration number, (b) temporal duration of the optimized

laser pulse versus iteration number, (c) optimized laser pulse with α and β being equal to2� 10�16

a:u: and 0.0 a.u., respectively, (d) population transfer for panel (c), (e) optimized laser pulse with

α and β being equal to 2� 10�16 a:u: and 2� 1011 a:u:, respectively, and (f) population transfer

for panel (e). The nominal T(0) was set to be 300 ps. The intermolecular distance R is equal to

5.0 nm. In this figure, the target transition 0; 0j i ! 0; 0j i þ 1; 1j ið Þ= ffiffiffi
2

p
was optimized
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J ¼ Ŵ jρ̂ Tð Þ� � 
; ð48Þ

where ρ̂ tð Þ represents the time-dependent reduced density matrix at time t, ρ̂ Tð Þ is
the time-dependent reduced density matrix at the target final time t¼ T, and Ŵ is the

objective reduced density matrix. The notation in Eq. (48), B̂Ĉ
� � 

for arbitrary

matrices B̂ and Ĉ, is defined by

B̂Ĉ
� �  ¼ Tr B̂

{
Ĉ

� �
: ð49Þ

Equation (49) measures the degree of closeness between the matrices B̂ and Ĉ.
Then, our purpose is to maximize the objective function, J, at some time T. Note
that we do not fix T while J should be maximized. It should be noticed that the

objective functional given by Eq. (48) is different from that of the conventional

FIFP-OCT. In the theory, the objective functional is usually given by [73]

J ¼ Ŵ jρ̂ Tð Þ� � � 1

hA

Z T

0

E tð Þ2dt; ð50Þ

where E(t) is the external laser field and the positive constant A is the penalty factor

to weigh the significance of the pulse fluence. Because of this difference, our

derivation of the OCT in dissipative media is also quite different from theirs.

For the FRFP-OCT, we have also introduced the fictitious time defined by

Eq. (33). In real time, the time-dependent equation for the reduced density matrix,

ρ̂ tð Þ, is expressed as:

ih
∂ρ̂ tð Þ
∂t

¼ ^̂L 0 þ ^̂L el tð Þ � ih ^̂Γ
� �

ρ̂ tð Þ; ð51Þ

where

^̂L 0ρ̂ tð Þ ¼ Ĥ 0, ρ̂ tð Þ� �
,

^̂L el tð Þρ̂ tð Þ ¼ Ĥ el tð Þ, ρ̂ tð Þ� �
; ð52Þ

and
^̂Γ is the damping operator due to the interaction between the system of interest

and the surrounding environment. Ĥ0 is the 0th-order Hamiltonian and Ĥ el tð Þ ¼ �
~μ � ~E tð Þ is the laser–molecule interaction with~μbeing the transition dipole moment.

Using the relationship of Eq. (33) for Eq. (51), we obtain the fictitious time Master

equation,

ih
∂ρ̂ τð Þ
∂τ

¼ ^̂L 0 þ ^̂L el τð Þ � ih ^̂Γ
� �

ρ̂ τð ÞT τð Þ: ð53Þ
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When the objective functional to be optimized is constrained by some equations,

we should sum up such constraints into Eq. (48) using Lagrange multipliers. Then,

we obtain the following new objective function,

J¼ Ŵ jρ̂ τ¼ 1ð Þ� � �Z 1

0

σ̂ τð Þh jh i

h
^̂L 0þ ^̂L el τð Þ� ih ^̂Γ
� �

þ ∂
T τð Þ∂τ

� �
T τð Þ ρ̂ τð Þj iidτ

�
Z 1

0

νT τð Þ∂T τð Þ
∂τ

dτ:

ð54Þ

For J to be maximized, it is possible to deduce the following equations by

applying variational principle to Eq. (54):

ih ∂ρ̂ τð Þ
∂τ ¼ ^̂L 0 þ ^̂L el τð Þ � ih ^̂Γ

� �
ρ̂ τð ÞT τð Þ subject to the initial condition

ρ̂ τ ¼ 0ð Þ ¼ Ŵ 0, where Ŵ 0 is the initial fixed reduced density matrix; ð55Þ

ih ∂σ̂ τð Þ
∂τ ¼ ^̂L 0 þ ^̂L el τð Þ � ih ^̂Γ

� �{
σ̂ τð ÞT τð Þ subject to the initial condition

σ̂ τ ¼ 1ð Þ ¼ Ŵ ; ð56Þ

where the superscript, {, denotes Hermitian conjugation,
∂νT τð Þ
∂τ ¼ σ̂ τð Þh jh i

h
^̂L 0 þ ^̂L el τð Þ � ih ^̂Γ
� �

ρ̂ τð Þj ii subject to the initial condition

νT τ ¼ 1ð Þ ¼ 1

T τ ¼ 1ð Þ Ŵ
�� ��∂ρ̂ τ ¼ 1ð Þ=∂τii: ð57Þ

When Eqs. (55)–(57) are satisfied, we have

δJ ¼
Z 1

0

dτg τð ÞδE τð Þ þ νT τ ¼ 0ð ÞδT τ ¼ 0ð Þ; ð58Þ

where we have defined

g τð Þ ¼
i
h σ̂ τð Þhh j∂ ^̂L el τð Þ

∂E τð Þ ρ̂ τð Þij iT τð Þ: ð59Þ

Note that g(τ) is real. If the correction to the laser amplitude E(τ) is expressed as
δE(τ), we define
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δE τð Þ ¼ αg τð Þ: ð60Þ

On the other hand, if we define the correction to T(τ) as δT(τ), we put

δT τ ¼ 0ð Þ ¼ βνT τ ¼ 0ð Þ: ð61Þ

By inserting Eqs. (60) and (61) into Eq. (58), we obtain

δJ ¼ �
Z 1

0

dταg τð Þ2 þ βνT τ ¼ 0ð Þ2: ð62Þ

From this equation, it is clear that if α is negative and β is positive, the objective

function reaches a maximum monotonically. On the other hand, if α is positive and

β is negative, the objective functional reaches minimum monotonically. Here, it

should be noted that the units of α and β are Wcm�2 and fs2, respectively.

From the earlier derivation, we have constructed the following FRFP-OCT in

dissipative media following the Master equation. In what follows, the superscript

( j) is used to denote the quantity for the jth iteration.

1. An initial guess is selected for the external field E(0)(τ) and initial T(0) that is the
final time of the quantum dynamics. In addition, the trial negative and positive

parameters, α and β, are given because our purpose is to maximize Eq. (48).

2. The Liouville–von Neumann equation of Eq. (55) is propagated forward in time

from τ ¼ 0 to τ ¼ 1 and the obtained density matrix ρ̂ jð Þ τð Þ is stored. At the same

time, the objective function J jð Þ ¼ Ŵ jρ̂ jð Þ τ ¼ 1ð Þ
D ED E

is calculated.

3. Equations (56) and (57) are propagated backward in time from τ ¼ 1 to τ ¼ 0and

the density matrix σ̂ jð Þ τð Þ is stored. At the same time, νT τ ¼ 0ð Þ is calculated.
4. The laser amplitude E( j)(τ) and the temporal duration of the external field T( j)

are updated as follows,

E jþ1ð Þ τð Þ ¼ E jð Þ τð Þ þ αg τð Þ; ð63Þ

and

T jþ1ð Þ ¼ T jð Þ þ βνT τ ¼ 0ð Þ: ð64Þ

5. One sets the convergence criterion η and when the following criterion

J jþ1ð Þ � J jð Þ�� �� � η ð65Þ

is met, the calculation is terminated.

6. If the convergence criterion of Eq. (65) is not satisfied, E( j)(τ) and T( j) are

updated to E jþ1ð Þ τð Þ and T jþ1ð Þ, respectively, and loop back to step (2).
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To apply the theory and the algorithm developed earlier and demonstrate

numerical tests, we shall employ the vibrational degrees of freedom of carbon

monoxide adsorbed on the copper (100) surface, CO/Cu(100). In this case, the total

Hamiltonian Ĥ in the absence of the laser fields is expressed as

Ĥ ¼ Ĥ 0 þ V̂ ; ð66Þ

where Ĥ0 is the kinetic energy operator and V̂ is the potential energy operator

defined in the next section. When we introduce three coordinates r, Z, and X for CO

stretch, CO-surface stretch, and frustrated translation modes, respectively, Ĥ0 is

given by

Ĥ 0 ¼ � h2

2μCO

∂2

∂r2
� h2

2mCO

∂2

∂Z2
� h2

2mCO

∂2

∂X2
ð67Þ

where the masses are

μCO ¼ mCmO

mC þ mO

¼ 6:856 amu, mCO ¼ mC þ mO ¼ 27:995 amu: ð68Þ

The eigenstates and eigenenergies of the Hamiltonian, Ĥ, are calculated from

Ĥ nr; nZ; nXj i ¼ En nr; nZ; nXj i; ð69Þ

where we have used the abbreviation nj i� nr; nZ; nXj i and En is the eigenenergy of

the state |ni. Here, nr, nZ, and nX denote the quanta of vibrational modes, CO stretch,

CO-surface stretch, and frustrated translation, respectively.

The Liouville–von Neumann equation in the Markov approximation in the

energy representation is explicitly expressed as

dρnn tð Þ
dt

¼ � i

h
Ez tð Þ

XN
i¼1

μniρin tð Þ � ρni tð Þμinf g þ
XN
i¼1

Γi!nρii tð Þ � Γn!iρnn tð Þf g

ð70Þ

for the diagonal elements (populations) of the reduced density matrix and

dρmn tð Þ
dt

¼ �iωmnρmn tð Þ � i

h
Ez tð Þ

XN
i¼1

μmiρin tð Þ � ρmi tð Þμinf g � γm!nρmn tð Þ ð71Þ

for the off-diagonal elements (coherences). Here, we have defined the energy gap,

ωnm ¼ En � Emð Þ=h: ð72Þ
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The total dephasing rate is given by

γmn ¼
XN
i¼1

Γm!i þ Γn!ið Þ=2þ γ*m!n; ð73Þ

where γ*m!n is the pure dephasing rate and Γm!n is the population transfer rate from

the state m to the state n. In the next section, the values of these parameters were

taken from [78]. For the pure dephasing rate, we have taken into account

γ*0;0;0ð Þ! 1;0;0ð Þ 	 γ*1;0;0ð Þ! 2;0;0ð Þ 	 γ*0;0;0ð Þ! 2;0;0ð Þ=4 with values taken from Table IV

of [78]. For the same reason as mentioned in [78], the precise values of the pure

dephasing rates are of no concern in the present calculations.

To check the mixedness of the reduced density matrix in the Hilbert space of our

interest (CO stretch and CO-surface stretch modes), we explicitly define it by

mixedness ¼ 1� Trfrust ρ tð Þ2
n o

; ð74Þ

where Trfrust denotes the trace over the frustrated translation mode that is of no

concern.

Note that we can apply our algorithm to other types of Master equations in

addition to the Liouville–von Neumann equation.

We have investigated the configuration of the CO/Cu(100) system shown in

Fig. 12. We have taken into account two layers of copper atoms and in each layer

the nearest nine Cu atoms in the same manner as in [79].

The purpose here is twofold. First, we shall tailor the optimal laser pulses that

create maximally entangled Bell state 0; 0; 0j i þ 1; 1; 0j ið Þ= ffiffiffi
2

p
from the separable

Fig. 12 Schematic of the

dissipative CO/Cu(100)

system used to apply FRFP-

OCT in dissipative media.

The solid circles represent

Cu atoms
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state |0, 0, 0i. Of course, this is of fundamental importance for quantum computing

and quantum information science. Second, we assume that the maximally entangled

state, 0; 0; 0j i þ 1; 1; 0j ið Þ= ffiffiffi
2

p
, is prepared at t¼ 0 fs. We shall examine by what

kinds of laser pulses this state is maintained in the presence of dissipation. That is,

our target transition is 0; 0; 0j i þ 1; 1; 0j ið Þ= ffiffiffi
2

p ! 0; 0; 0j i þ 1; 1; 0j ið Þ= ffiffiffi
2

p
. This

problem seems to be important to study in detail because it may be necessary to

maintain some specific entangled sates during other processes in large-scale quan-

tum computers composed of many qubits. Because the effect of decoherence

generally seems to be negligible in low temperatures, it may be difficult to show

the influence of dissipation on the optimal control. Therefore, we shall mainly

present numerical results at high temperatures in the following.

In Fig. 13, we show the case where the initial temporal duration of the laser

pulse, T(0), is 1000 fs. The maximum transition probability is attained at

T¼ 996.219 fs, as shown in panel (c). In this case, the incident laser pulse has a

shape quite different from that of the other cases. As is clear from panel (a), the

laser amplitude from the initial time t¼ 0 fs to around the time t¼ 800 fs is quite

small (~4 MVcm�1). Therefore, we can hardly observe the population transfer due
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Fig. 13 (a) Optimized laser pulse with α and β being equal to �1:755� 109 W cm�2 and

5:851� 102 fs2, respectively, (b) population transfer induced by the optimized laser pulse

of panel (a), (c) temporal duration of the optimized laser pulse versus iteration number. The initial

T(0) was set to be 1000 fs. The temperature was 300 K. The target transition 0; 0; 0j i ! 0; 0; 0j ið
þ 1; 1; 0j iÞ= ffiffiffi

2
p

was optimized
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to the laser pulse. Instead, we can see a significant population transfer from the state

|0, 0, 0i to the state |0, 0, 1i because of the large population transfer rate,

1=Γ 0;0;0ð Þ! 0;0;1ð Þ ¼ 3:3 ps. This transition represents the absorption of the single

reservoir quantum by the frustrated translation mode. From the time t¼ 800 fs to

the optimal final time T¼ 996.219 fs, the amplitude of the optimized laser pulse is

quite large (~60 MVcm�1) so that a significant population transfer from the state |

0, 0, 0i to the target state |1, 1, 0i takes place and coherence between the states, |

0, 0, 0i and |1, 1, 0i, builds up during this period. These trends are reasonable

because if the transition to the target state |1, 1, 0i occurred much earlier as the

result of intense laser pulses, the damping of the population of the state |1, 1, 0i to
other states and the decoherence could be quite significant, which would lead to

much larger mixedness and a lower transition probability.

When the initial temporal duration, T(0), is 1000 fs and the temperature is 300 K,

we observe that the temporal duration becomes a little bit longer, T¼ 1040.56 fs, as

can be seen in Fig. 14. The transition probability and the mixedness at the final time

are 66.3430% and 0.50711 for the free-time case and are 65.8890% and 0.50515
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Fig. 14 (a) Optimized laser pulse with α and β being equal to �1:755� 109 W cm�2 and

5:851� 102 fs2, respectively, (b) population transfer induced by the optimized laser pulse of

panel (a), and temporal duration of the optimized laser pulse versus iteration number. The initial T
(0) was set to be 1000 fs. The temperature was 300 K. The target transition 0; 0; 0j i þ 1; 1; 0j ið Þ=ffiffiffi
2

p ! 0; 0; 0j i þ 1; 1; 0j ið Þ= ffiffiffi
2

p
was optimized
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for the fixed-time case, respectively. In both the free-time and fixed-time cases, the

shape of the optimized laser pulses is interesting (here, we do not show the results

for the fixed-time case). For the initial half time of total duration, the amplitude of

the laser pulse is strong. In the middle of the temporal duration, it becomes weak.

After that, the amplitude of the laser pulse becomes stronger with time. This

tendency can be explained as follows. Because it is known that the population of

the state |0, 0, 0i can be excited to the state |0, 0, 1i during the time evolution

because of the dissipative effect as mentioned earlier, the population of the state |

0, 0, 0i has to increase for the initial half time of total duration using the large

intensity of the laser pulse. During this period, almost all the population of the state |

1, 1, 0i contributes to the population increase of the state |0, 0, 0i. For the last half
period of the total duration, because of the large intensity of the laser pulse, almost

all the population of the state |0, 0, 0i is excited to the state |1, 1, 0i, as in the cases

shown earlier, and the optimized laser pulse tries to recover the initial maximally

entangled state, 0; 0; 0j i þ 1; 1; 0j ið Þ= ffiffiffi
2

p
, as much as possible. The reason for the

lengthening of the temporal duration compared with the initial guess is that the

additional time duration required by the initial recovery of the state |0, 0, 0i was
absent for the target transition 0; 0; 0j i ! 0; 0; 0j i þ 1; 1; 0j ið Þ= ffiffiffi

2
p

shown in

Fig. 13.

Figure 15 shows the case where T(0) is 1000 fs and the temperature is 10 K.

Comparing panel (a) with panel (a) of Fig. 14, the pulse shapes are rather similar

although the temperatures are quite different. However, because of their small

difference, the optimized laser pulse in Fig. 15 creates the population of the state

|0, 0, 0i as much as possible until around t¼ 200 fs. Unlike panel (b) of Fig. 14, that

of Fig. 15 does not show any significant change of population of the state |0, 0, 0i
during the period when the laser pulse is almost off (from around t¼ 200 fs to

around t¼ 900 fs). This is also due to the small population transfer rate,

1=Γ 0;0;0ð Þ! 0;0;1ð Þ ¼ 85300:0 ps. Therefore, the transition probability is much larger
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Fig. 15 (a) Optimized laser pulse with α and β being equal to �1:755� 109 W cm�2 and

2:340� 101 fs2, respectively, (b) population transfer induced by the optimized laser pulse of

panel (a). The initial T(0) was set to be 1000 fs. The temperature was 10 K. The target transition

0; 0; 0j i þ 1; 1; 0j ið Þ= ffiffiffi
2

p ! 0; 0; 0j i þ 1; 1; 0j ið Þ= ffiffiffi
2

p
was optimized
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and the mixedness is much smaller than in the case of Fig. 14. That is, the transition

probability and the mixedness at the final time are 86.9429% and 0.22626 for the

free-time case and are 86.7598% and 0.23058 for the fixed-time case, respectively.

In addition, the optimal temporal duration is also longer than the initial guess:

T¼ 1041.12 fs. The reason is the same as that for Fig. 14.

5 Concluding Remarks

In the present article, we have reviewed our recent main theoretical and numerical

contributions to the development of molecular quantum computing and quantum

information science. In particular, we have paved a new way for applying molecular

internal degrees of freedom (electronic, vibrational, and rotational states) to quan-

tum computing and quantum information science by theoretical and numerical

methods.

Now, quantum computing and quantum information science have become an

unshakeable important research topics, ranging among a variety of disciplines.

However, some basics of the theoretical aspects have not yet been solved and are

still debatable. For instance, the definition of multipartite entanglement degree in

pure and mixed states is still discussed in the recently published papers. In addition,

scalability and decoherence of quantum states in quantum computers have gradu-

ally become obvious to be extremely challenging with the rapid development of

experiments and theories. At the same time, the experimental realization of quan-

tum computers based on the theories is also very important in order to extremely

outperform the present-day classical computers. Although there are a number of

experimental data for physical systems, at present there are few experimental

evidences for molecules which chemists are interested in. Therefore, we suspect

that there may be a number of rooms for improvement in molecular quantum

computers. We chemists hope that molecular quantum computing will be investi-

gated in more detail from the chemical viewpoint in future. In particular, we expect

that our and other’s theoretical and numerical results will provide important guides

to experimental realization of quantum computers and quantum information

processing.

Although we have applied our FRFP-OCT to two specific control problems as

shown in Sect. 4, the theory is so general that it may be possible to apply it to a

variety of quantum dynamics with and without dissipation in future. An experi-

mental application of FRFP-OCTs developed by us for the first time could be

expected in the same manner as closed-loop quantum learning control experiments

[80–83].

Finally, although we have not covered such topics in the present review article,

we would like to recommend the readers to refer to our recent studies on entangle-

ment of angular momenta of atoms and molecules [84], decoherence of vibrational

entanglement by intramolecular vibrational relaxation (IVR) in polyatomic mole-

cules [85], and quantum computing using molecular vibrational and rotational
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modes of open-shell 14N16O molecule [60]. In addition, it will be useful to refer to

our previous researches on the simulation of two-qubit operations in semiconductor

quantum dots using the spatial phase of the incident laser pulse [86], entanglement

generation in the scattering processes [87], and time-resolved entanglement of

bound and dissociative atoms and molecules [88].
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Preface

This review article consists of three major parts: generation of entanglement and

arbitrary superposition states using vibrational and rotational modes of molecules

(Sect. 2), introduction of fundamental theory of quantum algorithms and numerical

demonstrations of their efficiencies using molecular internal degrees of freedom

(Sect. 3), and construction of numerical algorithms of free-time and fixed end-point

optimal control theory (FRFP-OCT) with and without dissipation and its applica-

tion to entanglement generation and maintenance (Sect. 4). The current status of

quantum computing and quantum information science is outlined in “Introduction.”

The sections in this article are based on the following published and/or submitted

materials: K. Mishima, K. Shioya, and K. Yamashita, Chem. Phys. Lett. 442,

58 (2007), K. Mishima, K. Tokumo, and K. Yamashita. Chem. Phys. 343,
61 (2008), K. Shioya, K. Mishima, and K. Yamashita, Mol. Phys. 105, 1283

(2007), K. Mishima and K. Yamashita, Chem. Phys. 379, 13 (2011), K. Mishima

and K. Yamashita, Chem. Phys. 361, 106 (2009), K. Mishima and K. Yamashita,

J. Chem. Phys. 130, 034108 (2009), and K. Mishima and K. Yamashita, J. Chem.

Phys. 131, 014109 (2009).

Finally, we would like to thank CREST, JST for funding. We would also like to

express gratitude to Professors T. Momose (The University of British Columbia),

H. Kanamori (Tokyo Institute of Technology), K. Ohmori (Institute for Molecular

Science), and Y. Ohtsuki (Tohoku University) for stimulating and useful

discussions.

Introduction

Quantum computing and quantum information science are expected to be one of the

newest technologies in the next generation. In this article, we focus on theoretical

and numerical studies on quantum computing and entanglement generation using

molecular internal degrees of freedom (electronic, vibrational, and rotational). We

have proposed one method of creating the Bell states and arbitrary linear
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superposition states in molecular vibrational–rotational modes by using sequential

chirped laser pulses. In addition, the numerical simulations of Deutsch–Jozsa

algorithm using several combinations of the molecular internal states are reported

and compared them from the viewpoint of fidelity of the measurement results of the

sender. It turned out that rotational modes of polar molecules coupled by dipole–

dipole interaction are the most promising candidates for molecular quantum com-

puting. In connection with quantum computing and entanglement manipulation by

external laser fields, we have constructed free-time and fixed end-point optimal

control theories (FRFP-OCTs) for the quantum systems with and without dissipa-

tion. Using the theories, we have performed simulations of entanglement generation

and maintenance. From the numerical results, we have found that FRFP-OCT is

more efficient than the conventional fixed-time and fixed end-point optimal control

theory (FIFP-OCT) because the optimal time duration of the external laser fields

can also be determined exactly using FRFP-OCT.
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Gateway Schemes of Quantum Control
for Spin Networks

Koji Maruyama and Daniel Burgarth

Abstract Towards the full-fledged quantum computing, what do we need?

Obviously, the first thing we need is a (many-body) quantum system, which is

reasonably isolated from its environment in order to reduce the unwanted effect of

noise, and the second might be a good technique to fully control it. Although we

would also need a well-designed quantum code for information processing for fault-

tolerant computation, from a physical point of view, the primary requisites are a

system and a full control for it. Designing and fabricating a controllable quantum

system is a hard work in the first place, however, we shall focus on the subsequent

steps that cannot be skipped and are highly nontrivial.

Keywords Quantum control • Spin networks • Quantum computing • Lie algebra

1 Motivation and Overview

Towards the full-fledged quantum computing, what do we need? Obviously, the

first thing we need is a (many-body) quantum system, which is reasonably isolated

from its environment in order to reduce the unwanted effect of noise, and the second

might be a good technique to fully control it. Although we would also need a well-

designed quantum code for information processing for fault-tolerant computation,

from a physical point of view, the primary requisites are a system and a full control

for it. Designing and fabricating a controllable quantum system is a hard work in the

first place, however, we shall focus on the subsequent steps that cannot be skipped

and are highly nontrivial.

Typically, when attempting to control a many-body quantum system, every

subsystem of it has to be a subject of accurate and individual access to apply

operations and to perform measurements. Such a (near-) full accessibility leads to
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a problem of not only technical difficulties, but also noise (decoherence), as the

system can readily interact with its surrounding environment. In a sense, we are

wishing for two inconsistent demands, namely being able to manipulate a quantum

system fully by controlling the field parameters while suppressing its interaction

with the field.

A good news is that the technological progress over the last decades has been so

great that we are now able to access and control quantum systems quite well,

provided they are not too large. The coherent manipulations of small quantum

systems, in addition to the observations of quantum behaviours, have been reported

for various systems, e.g., NMR/ESR [1–4], semiconductor quantum dots [5–7],

superconducting quantum bits (qubits) [8–10], and NV-centres in diamonds

[11, 12].

Here, we discuss a possible scheme to bridge the gap between what we wish to

achieve and what we can realise today. Namely, we aim at controlling a given

many-body quantum system and identifying it by accessing only a small subsystem,

i.e., gateway. Restricting the size of accessible gateway and minimising the number

of control parameters should be of help in suppressing the effects of noise.

This chapter consists of two parts, each of which is devoted to these two topics,

full quantum control through a gateway and Hamiltonian identification, respec-

tively. Such situations, in which only a subsystem is accessible, arise, for example,

in networks of “dark spins” in diamond and solid state quantum devices[12–14] as

well as spin networks in NMR and ESR setups [1, 4, 15].

In the first part, we present how a system can be controlled through access to a

small gateway. Starting with a general argument on the controllability of a quantum

system, we show a possible scheme to control spin networks under limited access.

The two major issues of our interest in terms of the controllability concern the

algebraic criterion for the form of Hamiltonians and the topological (or graph

theoretical) condition for the choice of gateway. While the consideration about

these aspects will lead to clear insights into the control of spin-1/2 systems, the

theory is general enough to be applied to other systems we encounter in the lab. We

shall also discuss a few issues related to efficiency, such as, can we compute a pulse

sequence for a certain unitary on the chain by a classical computer within polyno-

mial time? Or how much time would a unitary require to be performed?

All these discussions on the controllability assume the complete knowledge of

the system Hamiltonian. The second part of this chapter is devoted to the discus-

sions on how the Hamiltonian can be identified despite the limited access. Without

the knowledge of Hamiltonian, we can never control a quantum system at will: it

will be like going for treasure hunting without a map and a compass. Having

learned the details of the system Hamiltonian, we then attempt to fully control it,

enjoying the quantumness of the dynamics. Nonetheless, both the full information

acquisition and the full control are still very hard. In addition, the operational

complexity of information acquisition (state and process tomographies) grows

rapidly (exponentially) with respect to the system size.

Presumably the most straightforward way to estimate the quantum dynamics is

to apply quantum process tomography (QPT), which is a method to determine a
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completely positive map E on quantum states. The map E on a state ρ can be written

as EðρÞ ¼
X
i

EiρE
{
i , where the operators Ei satisfy

X
i

E{
i Ei ¼ I (if E occurs with

unit probability) [16]. The complexity of QPT grows exponentially with respect to

the system size; for an N qubit system, we need to specify 24N parameters for E and

it is an overwhelming task even for small qubit systems [17–19]. Moreover, QPT

necessitates estimating all the matrix elements of ρ, the state of the whole system,

which is impossible under a restricted access with zero or little knowledge on the

Hamiltonian.

The hardness of the task stems from our complete ignorance about the nature of

the dynamics. However, here we will consider the cases in which some a priori

knowledge or good plausible assumptions are available to us. In reality, it is natural

to have substantial knowledge on a fabricated physical system, which is the subject

of our control, due to the underlying physics we intend to exploit. Thus, here we

will see how such a priori information on the system can help reduce the complexity

of Hamiltonian identification. We will primarily focus on the systems consisting of

spin-1/2 particles. This is largely because they have been attracting much attention

recently as a promising candidate for the implementation of quantum computers.

Yet, it would not make much sense if the size of the gateway is comparable to

that of the entire system. From the viewpoint of noise suppression, the smaller the

gateway size, the better. Then how can we find a minimal gateway that suffices to

obtain full knowledge on the system? As we will see below, the same graph

property we introduce in the first part, i.e., the study of spin network control,

comes in to the discussion as a criterion for estimability of the spin network

Hamiltonian.

This chapter is based on the results from [20–24] as well as some new results.

2 Indirect Control of Spin Networks

2.1 Reachability in Quantum Control

A central question in control theory is provided a system, typically described by

states, interactions, and our influence on them, to characterise the operations that

can be achieved by suitable controls. In (unitary) quantum dynamics, the usual

setup is a time dependent Hamiltonian of the form

HðtÞ ¼ H0 þ
X
k

f kðtÞHk, ð1Þ

where the time dependence fk(t) can be chosen by the experimentator. While in usual

quantum mechanics we solve the Schr€odinger equation for a given fk(t) to obtain a

time evolution unitary U, the question of control is exactly the inverse: provided a
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unitaryU, is there a control fk(t) which achieves it? The unitaries for which this is true
are called reachable.

Given a system (1), how do we characterise the reachable unitaries? It turns out

that it is easier to include those unitaries which are reachable arbitrarily well into
our consideration, and to describe things in terms of simulable Hamiltonians: we
call a Hamiltonian iH simulable if expð�iHtÞ is reachable arbitrarily well for any

t� 0. Clearly, iH0 is effectively reachable by setting f k � 0 and letting the system

evolve for a suitable time t.We could also set f1 � 1 and all others zero, and

simulate iH0 + iH1, and so on. Let us call the simulable setℒ and see which rules it

obeys:

1. A,B2L ) Aþ B2L : this is a simple consequence of Trotter’s formula, which

says that by switching quickly between A and B the system evolves under the

average of A and B.
2. A2L, α > 0 ) αA2L : this follows simply from letting a weaker interaction

evolve longer to simulate a stronger one, and vice versa.

3. A, �A,B, �B2L ) ½A,B�2L : this follows from a not so well-known variant

of Trotter’s formula given by

lim
n!1 eBt=neAt=ne�Bt=ne�At=n

� �n2
¼ e�½A,B�t2 ð2Þ

4. A2L ) �A2L : This is a property which heavily relies on finite dimensions,

where the quantum recurrence theorem holds,

8E, t > 0∃T > t : jje�AT � 1jj � E ð3Þ

which implies e�AðT�tÞ � eþAt:

If we combine all the above properties, we find that the simulable set obeys

exactly the properties of a Lie algebra over the reals. This is very useful; in

particular, if through rules 1–4 arbitrary Hamiltonians can be simulated, then

likewise arbitrary unitaries are reachable: the system is fully controllable [25–27]

(in fact, this condition is necessary and sufficient). It was shown by Lloyd that it is a

generic property: in fact two randomly chosen Hamiltonians are universal for

quantum computing almost surely. We will not prove this here as we are going to

show something stronger: a randomly chosen pair of two-body qubit Hamiltonians

is universal for quantum computing almost surely. That is, Lloyd’s result holds

even when restricting ourselves to physical Hamiltonians.

2.2 Indirect Control

The above equations do not yet take into account the structure of the controls. As

discussed in the introduction, it is interesting to consider the case of composite

system V ¼ C
S
C where only a part C of the system is controlled, while the
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remainder C is completely untouched. In the light of Eq. (1) this means that

Hk ¼ h
ðkÞ
C � 1C : Control is mediated to C only through the drift H0¼HV, which

acts on C and C. If through HV the whole system is controllable, it means that we

have a case of weak controllability: the controls Hk do not themselves generate all

Hamiltonians, the drift evolution is necessary. This implies that HV sets a time limit

for how quickly the system can be controlled. It also reveals many-body properties

of HV and is therefore interesting from a fundamental perspective.

The question is, given HV and a split of the system into CC, how can we decide

if the system is controllable? Is the general result by Lloyd still correct when

restricting ourselves to such a split, and to a physically realistic HV? In the

following, we will aim to answer both questions.

Using the results from the last section, V is controllable if and only if

iHV ,LðCÞh i ¼ LðVÞ, ð4Þ

where, for the sake of simplicity, we have assumed the ihC
(k)’s to be generators of

the local Lie algebraLðCÞ of C and where we use the symbol A,Bh i to represent the
algebraic closure of the operator setsA and B. LðVÞ denotes the full Lie algebra of
the composite system V. The condition (4) can be tested numerically only for

relatively small systems. It becomes impractical instead when applied to large

many-body systems where V is a collection of quantum sites (e.g. spins) whose

Hamiltonian is described as a summation of two-sites terms. For such configura-

tions, a graph theoretical approach is more fruitful.

2.3 Graph Infection

The proposed method exploits the topological properties of the graph defined by the

coupling terms entering the many-body Hamiltonian HV. This allows us to translate

the controllability problem into a simple graph property, infection [28–30]. In

many-body quantum mechanics this property has many interesting consequences

on the controllability and on relaxation properties of the system [20, 28]. Also, the

same property, also called zero-forcing, has been studied in fields of mathematics,

e.g., graph theory, in a different context [31]. Let us start reviewing this infection

property for the most general setup, which will show more clearly where the

topological properties come from.

The infection process can be described as follows. Suppose that a subset C of

nodes of the graph is “infected” with some property. This property then spreads,

infecting other nodes, by the following rule: an infected node infects a “healthy”

(uninfected) neighbour if and only if it is its unique healthy neighbour. If eventually
all nodes are infected, the initial set C is called infecting. Figure 1 would be helpful
to grasp the picture.
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Note that the choice of C that infects V is not unique. Though we are interested in

small C, finding the smallest one is a nontrivial, and indeed hard, problem. Never-

theless, from a pragmatic point of view, the number of nodes we consider for the

purpose of quantum computing would not be too large to deal with as a graph

problem.

2.4 Controllability of Spin Networks

The link to quantum mechanics is that each node n of the graph has a quantum

degree of freedom associated with the Hilbert spaceHn, which describes the nth site
of the many-body system V we wish to control. The coupling Hamiltonian deter-

mines the edges through

HV ¼
X

ðn,mÞ2E
Hnm , ð5Þ

where Hnm¼Hmn are some arbitrary Hermitian operators acting on Hn �Hm.

Within this context we call the Hamiltonian (5) algebraically propagating iff for

all n2V and (n,m)2E one has

iHnm,LðnÞ½ �,LðnÞh i ¼ Lðn,mÞ, ð6Þ

where for a generic set of nodes P 	 V, LðPÞ is the Lie algebra associated with the

Hilbert space �n2PHn
1. The graph criterion can then be expressed as follows:

Theorem Assume that the Hamiltonian (5) of the composed system V is algebra-
ically propagating and that C 	 V infects V. Then V is controllable acting on
its subset C.

Fig. 1 An example of graph infection. (a) Initially, three coloured nodes in the region C are

“infected”. As the node l is the only one uninfected node among the neighbours of k, it becomes

infected as in (b). (c) Similarly, l
0
becomes infected by k

0
. (d) Eventually all nodes will be infected

one by one

1Note that the condition (6) is a stronger property than the condition of controlling n,m by acting on n.
According to Eq. (4) the latter in fact reads iHnm,LðnÞh i ¼ Lðn,mÞ, which is implied by Eq. (6).
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Proof. To prove the theorem we have to show that Eq. (4) holds, or equivalently

that LðVÞ 	 iHV ,LðCÞh i (the opposite inclusion being always verified). By infec-

tion there exists an ordered sequence {Pk; k¼ 1, 2, . . .,K} of K subsets of V

C ¼ P1 	 P2 	 
 
 
 	 Pk 	 
 
 
 	 PK ¼ V , ð7Þ

such that each set is exactly one node larger than the previous one,

Pkþ1∖Pk ¼ mkf g, ð8Þ

and there exists an nk2Pk such that mk is its unique neighbour outside Pk:

NGðnkÞ \ V∖Pk ¼ mkf g, ð9Þ

with NGðnkÞ � fn2Vjðn, nkÞ2Eg being the set of nodes of V which are connected

to nk through an element of E. The sequence Pk provides a natural structure on the

graph which allows us to treat it almost as a chain. In particular, it gives us an index

k over which we will be able to perform inductive proofs showing that

LðPkÞ 	 iHV ,LðCÞh i.
Basis. By Eq. (7) we have LðP1Þ ¼ LðCÞ 	 iHV ,LðCÞh i. Inductive step: assume

that for some k<K

LðPkÞ 	 iHV ,LðCÞh i: ð10Þ

We now consider nk from Eq. (9). We have LðnkÞ � LðPkÞ 	 iHV ,LðCÞh i and

iHnk ,mk
,LðnkÞ½ � ¼ iHV ,LðnkÞ½ � �

X
m

iHnk ,m,LðnkÞ½ �,

where the sum on the right-hand side contains only nodes from Pk by Eq. (9). It is

therefore an element ofLðPkÞ. The first term on the right-hand side is a commutator

of an element of LðPkÞ and iHV and thus an element of iHV ,LðCÞh i by Eq. (10).

Therefore iHnk ,mk
,LðnkÞ½ � 	 iHV ,LðCÞh i and by algebraic propagation Eq. (6) we

have

iHnk,mk
,LðnkÞ½ �,LðnkÞh i ¼ Lðnk,mkÞ 	 iHV ,LðCÞh i:

But LðPkÞ,Lðnk,mkÞh i ¼ LðPkþ1Þ by Eq. (8) so LðPkþ1Þ 	 iHV ,LðCÞh i. Thus by
induction

LðPKÞ ¼ LðVÞ 	 iHV ,LðCÞh i 	 LðVÞ: ■ ð11Þ

The above theorem has split the question of algebraic control into two separate

aspects. The first part, the algebraic propagation Eq. (6) is a property of the coupling

that lives on a small Hilbert space Hn �Hm and can therefore be checked easily
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numerically. The second part is a topological property of the (classical) graph. An

important question arises here if this may be not only a sufficient but also necessary

criterion. As we will see below, there are systems where C does not infect V but the

system is controllable for specific coupling strengths. However the topological

stability with respect to the choice of coupling strengths is no longer given.

An important example of the above theorem are systems of coupled spin-1∕2
systems (qubits). We consider the two-body Hamiltonian given by the following

Heisenberg-like coupling,

Hnm ¼ cnm XnXm þ YnYm þ ΔZnZmð Þ, ð12Þ

where the cnm are arbitrary coupling constants, Δ is an anisotropy parameter, and X,
Y, Z are the standard Pauli matrices. The edges of the graph are those (n,m) for
which cnm 6¼ 0.

To apply our method we have first shown that the Heisenberg interaction is

algebraically propagating. In this case the Lie algebra LðnÞ is associated with the

group su(2) and it is generated by the operators {iXn, iYn, iZn}. Similarly the algebra

Lðn,mÞ is associated with su(4) and it is generated by the operators

fiXnIm, iXnXm, iXnYm, . . . , iZnZmg. The identity (6) can thus be verified by observ-

ing that

Xn,Hnm½ � ¼ ZnYm � YnZm

Zn,ZnYm � YnZm½ � ¼ XnZm

Yn,XnZm½ � ¼ ZnZm

Xn,ZnZm½ � ¼ YnZm,

where for the sake of simplicity irrelevant constants have been removed. Similarly

using the cyclicity X ! Y ! Z ! X of the Pauli matrices we get

XnZm ! YnXm ! ZnYm

ZnZm ! XnXm ! YnYm

YnZm ! ZnXm ! XnYm:

Finally, using

ZnZm,ZnYm½ � ¼ Xm,

and cyclicity, we obtain all 15 basis elements of Lðn,mÞ concluding the proof.

According to our Theorem we can thus conclude that any network of spins coupled
through Heisenberg-like interaction is controllable when operating on the subset

C if the associated graph can be infected. In particular, this shows that Heisenberg-

like chains with arbitrary coupling strengths admit controllability when operated at

one end (or, borrowing from [25], that the end of such a chain is a universal

quantum interface for the whole system).
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2.5 General Two-Body Qubit Hamiltonians

Using the graph criterion we found that the dynamical Lie algebra for a Heisenberg

spin chain with full local control on the first site

HHsbg þ gðtÞY1 þ f ðtÞZ1 ð13Þ

is su(2N), where HHsbg is the Hamiltonian describing the Heisenberg-type interac-

tion, HHsbg ¼
X

ðn,mÞ2EHnm with Hnm in Eq. (12). We can also see that the algebra

generated by

HHsbg þ Y1 þ f ðtÞZ1 ð14Þ

is su(2N).

Extending further, we can consider the Lie algebra generated by A ¼ HHsbg þ Y1

and B ¼ Z1 þ 1: Because X1¼ p(A,Z1),where p is a (Lie) polynomial in A and Z1,
replacing Z1 with Z1 + 1 we obtain pðA,Z1 þ 1Þ ¼ X1 þ c1: Commuting with B we

find that Y1 and therefore also Z1 and 1 separately are in the algebra generated

by A and B. This has an interesting implication—namely, that the two Hamiltonians

A ¼ HHsbg þ Y1 and B ¼ Z1 þ 1 generate u(2N). These are physical Hamiltonians,

because they consist of two-body interactions only. The fact that such pair exists can

be used to prove that almost all pairs of two-body qubit Hamiltonians are universal: to
do so, we first observe that we can construct a basis of u(2N) through repeated

commutators and linear combinations of A and B:

uð2NÞ ¼ span p1ðA,BÞ, . . . , p22N ðA,BÞf g

where the pk are (Lie) polynomials in A and B. The fact that this is a basis can be

expressed equivalently through

D � det jp1Þ, . . . , jp22N Þf g 6¼ 0, ð15Þ

where j pk) is the vector corresponding to the matrix pk(A,B). Now, parametrising

A and B through

A ¼
X

n,m, α, β
aαβnmσαnσ

β
m ð16Þ

B ¼
X

n,m, α, β
bαβnmσαnσ

β
m ð17Þ

with σð0,1, 2, 3Þn � ð1n,Xn,Yn, ZnÞ we can expand D in Eq. (15) as a multinomial in

aαβnm and bαβnm. Our result implies that this multinomial is not identical to zero, and

therefore its roots have measure zero. Therefore the set of parameters (aαβnm, bαβnm)
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for which the system is not controllable is of measure zero. But the parametrisation

(16) holds for arbitrary two-body qubit Hamiltonians, which concludes the argu-

ment. We note that this argument is easily extended to general many-body

Hamiltonians.

2.6 Efficiency Considerations

The above results are interesting from the theoretical point of view; however, can

they be practically useful from the quantum computing perspective? The two main

problems we need to contemplate before attempting to build a large quantum

computer using quantum control are as follows. First, the precise sequence of actual

controls (or “control pulses”) is generally not computable without already simulat-

ing the whole dynamics. We need to find an efficient mapping from the quantum

algorithm (usually presented in the gate model) to the control pulse. Second, even if

such a mapping can be found, the theory of control tells us nothing about the overall

duration of the control pulses to achieve a given task, and it might take far too long

to be practically relevant.

One approach to circumvent these scaling problems focuses on systems that are

sufficiently small, so that we do not already require a quantum computer to check

their controllability and to design control pulses. In such a case, the theory of time

optimal control [32] can be used to achieve impressive improvements in terms of

total time or type of pulses required in comparison with the standard gate model.

More complicated desired operations on larger systems are then decomposed

(“compiled”) into sequences of smaller ones. Yet, the feasibility of this approach

is ultimately limited by the power of our classical computers, therefore constrained

to low-dimensional many-body systems only.

The goal of this section is to provide an example where one can efficiently

compute control pulses for a large system, using the full Hilbert space, and to show

that the duration of the pulses scales efficiently (i.e., polynomially) with the system

size. We will use a Hamiltonian that can be efficiently diagonalised for large

systems through the Jordan–Wigner transformation. A similar scheme was devel-

oped independently in [33]. The control pulses are applied only to the first two spins
of a chain (see Fig. 2). The control consists of two parts: one where we will use the

Jordan–Wigner transformation to efficiently compute and control the information

transfer through the chain (thus using it as a quantum data bus), and a second part

where we will use some local gates acting on the chain end to implement two-qubit

operations. To be efficiently computable, these local gates need to be fast with

respect to the natural dynamics of the chain. Combining the two actions allows us to

implement any unitary operation described in the gate model.

More specifically, we consider a chain of N spin-1∕2 particles coupled by the

Hamiltonian
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H ¼ 1

2

XN�1

n¼1

cn½ð1þ γÞXX þ ð1� γÞYY�n,nþ1 þ
XN
n¼1

BnZn,

where X,Y,Z are the Pauli matrices, the cn are generic coupling constants, and the

Bn represent a magnetic field. Variation of the parameter γ encompasses a wide

range of Hamiltonians, including the transverse Ising model (γ¼ 1; for this case, we

require the fields Bn 6¼ 0) and the XX model (γ¼ 0). We assume that the value of B1

can be controlled externally. This control will be used to induce information

transfer on the chain and realise swap gates between arbitrary spins and the two

“control” spins 1, 2 at one chain end. Hence such swap gates are steered indirectly
by only acting on the first qubit.

In order to focus on the main idea we now present our method for γ¼ 0 and Bn¼ 0

for n> 1. The general case follows along the same lines, though more technically

involved. Our first task is to show that by only tuning B1(t),we can perform swap

gates between arbitrary pairs of qubits. First we rewrite the Hamiltonian using the

Jordan–Wigner transformation an ¼ σþn
Y
m<n

Zm, into H ¼
XN�1

n¼1

cnfa{nanþ1 þ a{nþ1ang:
The operators an obey the canonical anticommutation relations {an, am

{}¼ δnm and

{an, am}¼ 0. The term we control by modulating B1(t) ish1 ¼ Z1 ¼ 1� 2a{1a1:From
Sect. 2.1, we know that the reachable set of unitary time-evolution operators on the

chain can be obtained from computing the dynamical Lie algebra generated by ih1
and iH. It contains all possible commutators of these operators, of any order, and their

real linear combinations. For example, it contains the anti-Hermitian operators

ih12 � ½ih1, ½ih1, iH��=ð4c1Þ ¼ iða{1a2 þ a{2a1Þ, ih13 � iH, ih12½ �=c2 ¼ a{1a3 � a{3a1

and ih23 � ih12, ih13½ � ¼ iða{2a3 þ a{3a2Þ: We observe that taking the commutator

with h12 exchanges the index 1 of h13 with 2. Taking the commutator with iH we find

that ih14 � ih13, iH½ � þ ic1h23 � ic2h12 ¼ iða{1a4 þ a{4a1Þ and ih24 � a{2a4 � a{4a2 are

Fig. 2 Our approach for universal quantum computation works on a chain of N spins. By

modulating the magnetic field B1(t) on qubit 1, we induce information transfer and swap gates

on the chain (red and green lines). The states of the qubits from the uncontrolled register can be

brought to the controlled part. There, the gates from a quantum algorithm are performed by local

operations. Afterward, the (modified) states are swapped back into their original position
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also elements of the dynamical Lie algebra. Hence the effect of taking the commu-

tator with H is raising the index of the hkl. Generalising this, we find that the

algebra contains the elements ihkl, with k< l, ihkl � a{kal � a{l ak for (k � l) even,

ihkl � iða{kal þ a{l akÞ for (k � l) odd, and hk ¼ Zk ¼ 1� 2a{kak: We thus know that

the time evolution operators expð�πihkl=2Þ (which will turn out to be very similar to

swap gates) can be achieved through tuning B1(t). The main point is that because both

h1 and H are free-Fermion Hamiltonians, the corresponding control functions can be

computed efficiently in a 2N-dimensional space (we will do so explicitly later).

Ultimately, we need to transform the operators back to the canonical spin represen-

tation. Using a{kal ¼ σ�k σ
þ
l

Y
k<j<l

Zj, we find expð�πihkl=2Þ ¼ ðj00iklh00j þ j11iklh11

jÞ � 1þ ðj01iklh10j � j10iklh01jÞ � Lkl for (k � l) even. The operator Lkl ¼
Y
k<j<l

Zj

arises from the non-local tail of the Jordan–Wigner transformation and acts only on

the state of the spins between k and l, controlled by the state of the qubits k, j in the

odd parity sector.

In order to use the chain as a quantum data bus, our goal is to implement swap
gates Skl ¼ j00iklh00j þ j11iklh11j þ j10iklh01j þ j01iklh10j, so the fact that we

have achieved some modified operators with different phases on k, l instead, and
also the controlled non-local phases Lkl, could potentially be worrisome. We will

use a method suggested in [33] that allows us to tackle these complications. That is,

rather than using the physical qubits, we encode in logical qubits, consisting of two
neighbouring physical qubits each. They are encoded in the odd parity subspace

j01i, j10i. Although this encoding sacrifices half of the qubits, the Hilbert space

remains large enough for quantum computation, and the encoding has the further

advantage of avoiding macroscopic superpositions of magnetisation, which would

be very unstable. Swapping a logical qubit n to the control end of the chain then

consists of two physical swaps expð�πih1 2n�1=2Þ and expð�πih2 2n=2Þ. Since both
physical swaps give the same phases, the resulting operation is indeed a full logical

swap. Any single-qubit operation on the logical qubits can be implemented by

bringing the target qubit to the control end, performing the gate there, and bringing

it back again. We could equally decide to perform single logical qubit

gates directly, without bringing them to the control end. This is possible because

expð�ih2n�1 2ntÞ in the physical picture translates to expð�iXL,ntÞ in the logical

picture, and because Z2n�1 is in the algebra generated by Z1, which allows us to

perform the operation expð�iZ2n�1tÞ ¼ expð�iZL,ntÞ.
For quantum computation, we need to be able to perform at least one entangling

two-qubit operation. We choose a controlled-Z operation, which can be performed

by operating only on one physical qubit from each of the two logical qubits

involved; to perform a controlled-Z between logical qubit n and m, we bring the

physical qubits (2n � 1) and (2m � 1) to the control end, perform a controlled-Z

between them, and bring them back. It is easy to check that again all unwanted

phases cancel out. The controlled-Z could not be efficiently computed in the

interplay with the many-body Hamiltonian H, because it cannot be generated by a
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quadratic Hamiltonian in the Jordan–Wigner picture. Therefore, this gate must be

implemented on a time-scale tg much faster than the natural evolution of the chain,

i.e., tg � minj 1=cj
� �

: We can soften this requirement by using control theory to

generate expð�iZ1X2tÞ by modulating β1ðtÞY1 (this is a linear term in the Jordan–

Wigner picture), and then using a fast Hadamard gate on the second site to obtain

expð�iZ1Z2tÞ, which, together with expð�iZ1tÞ and expð�iZ2tÞ, gives the

controlled-Z gate. This leads to a remarkable conclusion: besides a fast Hadamard

gate on the second qubit, all other controls required for quantum computation can

be computed efficiently within the framework of optimal control.

The crucial question left open above, is how long does it actually take to

implement the gates? In order to evaluate the efficiency, we have numerically

simulated a range of chain lengths and studied the scaling of the logical swap

operation time T with the (physical) chain length N. We set the coupling strength

constant, namely cn ¼ J 8 n. To provide evidence of a polynomial scaling, we

set the simulation time TN¼N2 (all times are in units of 1∕J andh ¼ 1) and verify for

each N that we can find a specific B1
∗(t) that performs the logical swap.

We quantify our success by calculating the error of the operation ε ¼ 1� F,

where F ¼ ðjtrU{Ugj=NÞ2 is the gate fidelity between the time evolution U and the

goal unitary Ug. This standard choice of fidelity is used for evaluating generic

unitaries, and for our case it is well suited confirming that the swap gate Skl � 1rest
acts as the identity almost everywhere. However the normalissation factor 1∕N2

could in principle wash out errors in the part of the gate that acts on qubits k and

l only, resulting in the wrong scaling. Therefore, we checked the reduced gate

fidelity (tracing out the rest of the system) on those qubits alone, finding that its

fidelity remains above 1�10�4 for all N considered.

The function B1(t) is obtained using techniques from optimal control theory

[32, 34]. Briefly, the procedure is as follows: (1) an initial guess is made for the

function B1(t); (2) we run the optimal control algorithm to generate a new B1(t)
which decreases the error of our operation; (3) steps 1 and 2 are iterated until the

final error reaches a preselected threshold ε. In practice, it suffices to choose a

threshold which is of the same order of magnitude as the error introduced by the

Hadamard gate.

If the algorithm converges for each N and the corresponding TN, giving the

optimal pulse sequence B1
∗(t), then we can assert that the scaling of the operation

time is at least as good as TN¼N2, up to a given precision. Simulating chain lengths

up to N¼ 40, we find that TN¼N2 can be achieved. We stress here that the chosen

scaling law TN may not necessarily describe the shortest time on which the physical

swap gate can be performed. However, the dynamical Lie algebra of quasi-free

fermions has a dimension of the order N2, indicating that such scaling might be

optimal.
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2.7 Conclusions

We have seen that control theory provides a powerful framework for indirect

control, and therefore for potential control schemes of large many-body systems.

We could furthermore show that almost all physical relevant Hamiltonians provide

full control, and that at least in some cases efficient mappings from the gate model

to quantum control are possible. Under which conditions this is true, and if—and

how—such schemes can furthermore be made fault-tolerant in the presence of noise

remains an active area of research. One thing that is clear, however, is that in order

to apply such schemes, good knowledge about the system Hamiltonian H0 is

required. In the next part, we will consider how such knowledge can be obtained

using similar indirect schemes.

3 Indirect Hamiltonian Tomography of Spin Networks

3.1 The Gateway Scheme of Hamiltonian Tomography

It has recently been studied how a priori knowledge on the system could reduce the

complexity of QPT. A noteworthy example is the method developed on the basis of

compressed sensing [35, 36], which is originally a scheme to make a best estimation

for all elements of a sparse matrix despite limited amount of data. Assuming the

sparsity under physically plausible settings has been also a key in other works on

indirect Hamiltonian identification. The results on which we base the most of the

following description exploited the polynomial dimensionality of a subspace we

probe [22, 23]. That is, there is already an exponential reduction for the number of

parameters to be determined. While this assumption puts a condition on the type of

Hamiltonians, it was shown that a larger class of Hamiltonians (for 1D spin chains)

could also be estimated through a gateway Di Carlo et al. [37]. We shall see below

that this is a special case of the generic estimation of quadratic Hamiltonians, which

might describe the dynamics of either bosons or fermions on not only 1D chains but

also more general networks.

Suppose that we have a network consisting of N spin-1/2 particles, such as the

one in Fig. 3. Our aim is to estimate all the non-zero coupling strengths between

spins and the intensities of the local magnetic fields. The assumptions we make are

as follows:

1. The topology of the network is known. That is, information on the graph

G¼ (V, E) corresponding to the network is available, where nodes V of the

graph correspond to spins and edges E connect spins that are interacting with

each other.

2. The type of the interaction between spins, such as the Heisenberg, XX, etc., is a

priori known.
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3. The inhomogeneous magnetic field is applied in the z-direction.
4. The values of coupling strengths are all real and their signs are known.

Assumptions 1 and 2 are the key for reducing the complexity of the problem. In

many experimental situations, these information are available due to the conditions

for fabrication, albeit a number of exceptions. In the following, we describe the

estimation scheme assuming Hamiltonians that have the following form:

H ¼
X

ðm, nÞ2E
cmn XmXn þ YmYn þ ΔZmZnð Þ þ

X
n2V

bnZn, ð18Þ

for simplicity. Here, Xm,Ym, and Zm are the standard Pauli operators for spin-1/2,

cmn are the coupling strengths between the mth and nth spins, bn are the intensity of
local magnetic field at the site of nth spin, and Δ is an anisotropy factor that is

common for all interacting pairs.

The Hamiltonians of the type of Eq. (18) have a nice property, ½H,
P

nZn� ¼ 0,

i.e., the total magnetisation is preserved under the dynamics generated by H. Thus
the whole 2N-dimensional Hilbert space is decomposed into the direct sum of

subspaces, each of which corresponds to a specific number of total magnetisation.

For the purpose of Hamiltonian tomography, analysing the dynamics in the single

excitation sectorH1, which has only a single up spin j"i among N spins, turns out to

be sufficient. We will write a single excitation state as jni2H1 when only the spin

n2V is in j"i with all others in j#i, and j0i ¼ j# . . . #i: In Sect. 3.5, we will treat

more general cases, i.e., Hamiltonians that do not conserve the total magnetisation,

such as the generic XX- or Ising-type Hamiltonians.

The task of Hamiltonian tomography is to estimate cmn and bn under the limited

access to a small gateway C � V only. Naturally, the challenge here is to obtain

Fig. 3 All coupling strengths (solid lines) and local magnetic fields (background) of a

2-dimensional network G¼ (V,E) of spins (white circles) can be estimated indirectly by quantum

state tomography on a gateway C (enclosed by the dashed red line). The coupling strengths and

field intensities are represented by the width of lines and the density of the background colour,

respectively
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information about the inaccessible spins in C � V∖C, which could be a large

majority of V. The question is, however, how small can C be such that we can

(in principle) still learn all the couplings and fields in V?
This can be answered by using the infecting property, which has been introduced

in Sect. 2.3 for a given graph G and a subset C � V of nodes. The main theorem

about hamiltonian identification under a limited access can be presented in terms of

the infection property as follows. That is, if C infects V, then all cmn and bn can be
obtained by acting on C only. Therefore, C can be interpreted as an upper bound on

the smallest number of spins we need to access for the purpose of

Hamiltonian tomography, i.e., given by the cardinality jC j of the smallest set

C that infects V. To prove this statement, let us assume that C infects V and that

all eigenvalues Ej ( j¼ 1, . . ., jV j ) in H1 are known. Furthermore, assume that for

all orthonormal eigenstates jEji inH1 the coefficients hnjEji are known for all n2C.
We show how these information lead to the full Hamiltonian identification, and

then in Sect. 3.2 show how these necessary data, Ejð8jÞ in H1 and hnjEji for all

j2 1, . . ., jV j and all n2C, can be obtained by simple state tomography

experiments.

Observe that the coupling strengths between spins within C are easily obtained

because of the relation cmn ¼ hmjHjni ¼PEkhmjEkihEkjni, where we defined

cmm � hmjHjmi for the diagonal terms. Since C infects V there is a k2C and a

l2C � V∖C such that l is the only neighbour of k outside of C, i.e.

hnjHjki ¼ 0 8n2C∖flg: ð19Þ

For an example see Fig. 1. Using the eigenequation, we obtain for all j

EjjEji ¼ HjEji ¼
X
m2C

hmjEjiHjmi þ
X

n2V∖C

hnjEjiHjni:

Multiplying with hkj and using Eq. (19) we obtain

EjhkjEji �
X
m2C

ckmhmjEji ¼ cklhljEji: ð20Þ

By assumption, the left-hand side (LHS) is known for all j. This means that up to an

unknown constant ckl the expansion of jli in the basis jEji is known. Through

normalisation of jliwe then obtain ckl2, thus ckl (by using the assumed knowledge on

its sign) and hence hljEji. Redefining C ) C [ fkg, it follows by induction that all

cmn are known. Finally, we have

cmm ¼ hmjHjmi ¼ E0 � Δ
X

n2NðmÞ
cmn þ 2bm, ð21Þ

where N(m) stands for the (directly connected) neighbourhood of m, and

182 K. Maruyama and D. Burgarth



E0 ¼ 1

2
Δ
X

ðm, n Þ2V

cmn �
X
n2V

bn ð22Þ

is the energy of the ground state j0i. Summing Eq. (21) over all m2V and using

Eq. (22), we can have the value of
X
n2V

bn, thus that of E0 as well, since all other

parameters are already known. Then we obtain the strength of each local magnetic

field, bm, from Eq. (21).

An interesting application of the above scheme is a one-dimensional(1D) spin

chain with non-nearest neighbour interactions [38]. If spins interact with the next-

nearest neighbours in addition to the nearest ones, the whole graph can be infected

by setting the two end spins as C, as shown in Fig. 4. Similarly, if spins interact with

up to rth nearest neighbours, all coupling strengths can be estimated by including

the r spins at the chain end, from the first to the rth, in C.

3.2 Data Acquisition

In order to perform the above estimation procedure, we need to know the energy

eigenvalues Ej in H1 and the coefficients hnjEji for all n2C by controlling/

measuring the spins in C. Suppose the spin 1 is in C. To start, we initialise the

system as j0iand apply a fast π∕2-pulse on the spin 1 to make 1ffiffi
2

p ðj0i þ j1iÞ:This can
be done efficiently by acting on the spin 1 only; the basic idea is that by measuring

the spin 1, and flipping it quickly every time when it was found in j"i, the state of
the network becomes j0i within a polynomial time with respect to the network size

N¼ jV j . The reason for this is twofold: the excitation-preserving property of the

Hamiltonian guarantees that an up-spin cannot be observed more than N times and

the propagation time of up-spins in the network is polynomial in N [39]. Then, we

perform quantum state tomography on the spin n2C after a time lapse t. By
repeating the preparation and measurements on spin n, we obtain the following

matrix elements of the time evolution operator as a function of t:

Fig. 4 An example of graphs for non-nearest neighbour interactions. The graph for next-nearest

interaction (left) can be infected by C as it is easily seen after deforming (right)
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eiE0thnjUðtÞj1i ¼
X
j

hnjEjihEjj1ie�iðEj�E0Þt: ð23Þ

If we take n¼ 1 and Fourier transform Eq. (23) we can get information on the

energy spectrum in H1. Up to an unknown constant E0, which turns out to be

irrelevant, we learn the values of all Ej from the peak positions. The height of the jth

peak gives us the value of jh1jEjij2 for all eigenstates. Thanks to the arbitrariness of
the global phase, we can set h1jEji > 0: Hence observing the decay/revival of an
excitation at n¼ 1 we can learn some Ej and all the h1jEji.

In order to determine hnjEji for other n2C, we prepare a state at 1 and measure

at n. Namely, setting n( 6¼ 1) in Eq. (23) allows us to extract the coefficient hnjEji
correctly, including their relative phase with respect to h1jEji. Continuing this

analysis over all sites in C, we get all information necessary for the Hamiltonian

tomography. It could be problematic if there were eigenstates in H1 that have no

overlap with any n 2 C, i.e., hnjEji ¼ 0: Fortunately, such eigenstates do not exist,

as shown in [28]. Therefore we can conclude that all eigenvalues in the H1 can be

obtained. Although tomography cannot determine the extra phase shift E0, it does

not affect the estimation procedure (it is straightforward to check that it cancels out

in the above estimation).

Note that in order for the information about hnjEji (n2C) to be attained there

should be no degeneracies in the spectrum of Eq. (23). For example, suppose there

are two orthogonal states jEð1Þ
k i and jEð2Þ

k i, both of which are the eigenstates of

H corresponding to the same eigenvalue Ek. The height of the peak at Ek in the

Fourier transform of h1jUðtÞj1iwould be jh1jEð1Þ
k ij2 þ jh1jEð2Þ

k ij2. There is no means

to estimate the value of each term from this sum, let alone the values of hnjEð1Þ
k i and

hnjEð2Þ
k i. Also even if there are no degeneracies, thus if Ej are all distinct, the peaks

need to be sharp enough to be resolved. The issues on degeneracies and resolving

peaks are discussed in the following Sects. 3.3 and 3.3.

3.3 Degeneracy

What if there were degenerate energy levels in the single excitation subspace H1?

While 1D spin chains have no degeneracies [40], there could be in general spin

networks. Of course “exact degeneracy” is highly unlikely; however, approximate

degeneracy could make the scheme less efficient. In this section, we show that there

always exists an operator BC, which represents extra fields applied on C, such that it
lifts all degeneracies of H inH1. Because C is only a small subset, the existence of

such an operator is not a trivial problem at all. In the following, we demonstrate the

existence of such a BC by explicitly constructing it, assuming the full knowledge

about H. Without the full knowledge of H (as is the case in the estimation scenario),

we could only guess a BC and have it right probabilistically. Nevertheless, as it is
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clear from the discussion below, the parameter space for BC that does not lift all the

degeneracies has only a finite volume. Thus even choosing BC randomly can make

the probability of lifting the degeneracies to converge exponentially fast to one.

Once all degeneracies are lifted, we can estimate the full Hamiltonian H þ λBC

�IC and subtracting the known part λBC � IC completes our identification task.

Here, λ is a parameter for the strength of the fields. Although the extra fields on C do

not necessarily have to be a small perturbation, let us consider a small λ to see the

effect of λBC on the energy levels, making use of the perturbation theory.

Let us denote the eigenvalues of H as Ek and the eigenstates as jEd
ki, where

d¼ 1, . . .,D(k) is a label for the D(k)-fold degenerate states. Let us first look at one

specific eigenspace jEd
ki, d ¼ 1, . . . ,DðkÞ� �

corresponding to an eigenvalue Ek.

Since the eigenstates considered here are in H1, we can always decompose them as

jEd
kiCC ¼ jϕd

kiC � j0iC þ j0iC � jψd
kiC ,

where the unnormalised states jϕd
kiC and jψd

kiC are in the single excitation subspace

on C and C, respectively. The state jϕd
kiC ð8dÞ cannot be null, i.e., jϕd

kiC 6¼ 0,

because if there was an eigenstate in the form of j0iC � jψd
kiC then applying

H repeatedly on it will necessarily introduce an excitation to the region C, in
contradiction to being an eigenstate [28]. Furthermore, the set

jϕd
kiC, d ¼ 1, . . . ,DðkÞ� �

must be linearly independent: for, if there were

complex numbers αkd such that
X

d
αkdjϕd

kiC ¼ 0, then a state in this eigenspaceX
d
αkdjEd

kiCC ¼
X

d
αkdj0iC � jψd

kiC would be an eigenstate with no excitation in

C, again contradicting the above statement. This leads to an interesting observation

that the degeneracy of each eigenspace can be maximally jCj -fold, because there

can be only jCj linearly independent vectors at most inH1 on C. Thus, the minimal

infecting set of a graph, a topological property, is related to some bounds on

possible degeneracies, a somewhat algebraic property of the Hamiltonian.

Now suppose that λkBkC is a perturbation that we will construct so that it lifts all

the degeneracies for an energy eigenvalue Ek. AssumingBkCj0iC ¼ 0 turns out to be

sufficient for our purpose. The energy shifts due to BkC in the first order are given as

the eigenvalues of the perturbation matrix CChEd
k jBkC � IC jEd

0

k iCC¼Chϕd
k jBkCjϕd

0

k iC:
We want the shifts to be different from each other to lift the degeneracy. To this end,

recall that jϕd
kiC

� �
are linearly independent, which means that there is a

similarity transform Sk (not necessarily unitary, but invertible) such that the vectors

jχdkiC � S�1
k jϕd

kiC are orthonormal. The perturbation matrix can then be written as

Chχdk jS{kBkCSkjχd
0

k iC: If we set S{kBkCSk ¼
X

d
εkdjχdkiChχdk j, the Hermitian operator

BkC �
X
d

εkd S{k

� ��1

jχdkiChχdk jS�1
k ð24Þ

gives us energy shifts εkd. Therefore, as long as we choose mutually different εkd,
the degeneracy in this eigenspace is lifted by BkC. This happens for an arbitrarily
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small perturbation λk: So we choose λk such that the lifting is large while no new
degeneracies are created, i.e. jjλkBkCjj 6¼ ΔEij, where ΔEij¼Ei � Ej are the energy

gaps of H.
There may be some remaining degenerate eigenspaces of the perturbed Hamil-

tonianH
0 ¼ H þ λkBkC. Fortunately, since BkC conserves the number of excitations

[see Eq. (24)], we can still consider onlyH1 and repeat the above procedure to find

operators Bk0C to lift degeneracy in each eigenspace spanned by jEd
0

k
0 i. Eventually

we can form a total perturbation BC ¼
X

k
BkC that lifts all degeneracies inH1. By

perturbation theory a ball of finite volume around BC has the same property. In

practice, we expect that almost all operators will lift the degeneracy, with a good

candidate being a simple homogeneous magnetic field on C. This is confirmed by

numerical simulations [23].

3.4 Efficiency

The efficiency of the coupling estimation can be studied using standard properties

of the Fourier transform (see [41] for an introduction). In experiments, the function

hnjUðtÞjmiðm, n2CÞ is sampled for discrete times tk, rather than for continuous

time t, with an interval Δt¼ tk+1 � tk. Therefore an important cost parameter is the

total number of measured points, being proportional to the sampling frequency,

f¼ 1∕Δt. The minimal sampling frequency is given by the celebrated Nyquist–

Shannon sampling theorem as 2fmin ¼ Emax, where Emax is the maximal eigenvalue

of H in the first excitation sector.

Due to decoherence and dissipation, the other important parameter is the total

time length Tð¼ maxðtkÞÞ over which the functions need to be sampled to obtain a

good resolution. This is given by the classical uncertainty principle that states that

the frequency resolution is proportional to 1∕T. Hence the minimal time duration

over which we should sample scales as Tmin ¼ 1=ðΔEÞmin, where ðΔEÞmin is the

minimal gap between the eigenvalues of the Hamiltonian. Also, in order for all

peaks in the Fourier transform to be resolved, the height of the peaks, which are

given by jhnjEjihEjjmij, should be high enough. That is, all energy eigenstates need
to be well delocalised, otherwise most of hEjjmi would have almost zero modulus.

Although a coherence time that is as long as Tmin has been assumed so far to

make the scheme work by letting the signal propagate back and forth many times,

the gateway scheme is also applicable to systems with short coherence times by

modifying it. For example, as shown in [42], instead of measuring the spin state in

the accessible area, we may be able to measure in the energy eigenbasis jEni, and
then the Hamiltonian can be estimated. Such a global measurement is actually

easier in some cases than measuring the state of a single component. With this

modification to the scheme, however, the graph condition for the accessible area

C needs to be slightly changed; it should be expanded, depending on the graph

structure.
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Another potential concern is the (Anderson) localisation. The localisation of

excitation (or spin-up) will take place, if there is too much disorder in the coupling

strengths (see, for example, [43]). Then couplings far away from the controlled

region C can no longer be probed. In turn, this suggests a way of obtaining

information on localisation lengths indirectly. That we cannot “see” beyond the

localisation length would not be a serious problem as our primary purpose is to

identify a quantum system we can control.

When localisation is negligible, the numerical algorithm to obtain the coupling

strengths from the Fourier transform is very stable [40]. The reason is that the

couplings are obtained from a linear system of equations, so errors in the quantum-

state tomography or effects of noise degrade the estimation only linearly.

Let us also look at the scaling of the problem with the number of spins. Typically

the dispersion relation in one-dimensional systems of length N is cos kN, which

means that the minimal energy difference scales as ðΔEÞmin  N�2 and thus the total

time interval should be chosen as Tmin  N2. This agrees well with our numerical

results tested up to N¼ 100. For each sampling point a quantum-state tomography

of a signal of an average height of N�1 needs to be performed. Since the error of

tomography scales inverse proportionally to the square root of the number of

measurements, roughly N2 measurements are required for each tomography.

3.5 Quadratic Hamiltonians

So far, we have focused on the Hamiltonians that preserve the total magnetisation.

Nevertheless, it is possible to generalise the above argument to a more general

class. They are those that are quadratic in terms of annihilation and creation

operators, that is

H ¼
X

m, n2E

Amna
{
man þ

1

2
Bmna

{
ma

{
n þ B∗

mnanam
� �

, ð25Þ

which does not preserve the number of quasi-particles
P

a{nan. Here, E is again the

set of interacting nodes as in Eq. (18). For H to be Hermitian we must have A¼A{

and BT¼�ε B, where ε¼ 1 for fermions and ε¼�1 for bosons, depending on the

particle statistics described by a and a{. For one-dimensional spin chains, the

operators a and a{ are defined with the standard spin (Pauli) operators through

the Jordan–Wigner transformation [44, 45],

a{nan ¼ σþn
Y
m<n

Zm, and a{n ¼
Y
m<n

Zm

 !
σ�n , ð26Þ
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where σ�n ¼ ðXn � iYnÞ=2. The operators hereby defined, an and an
{, satisfy the

canonical anti-commutation relations for fermions, i.e., am, anf g ¼ 0 and

am, a
{
n

� � ¼ δmn. A 1D XX-type Hamiltonian

H ¼
XN�1

m¼1

cm½ð1þ γÞXmXmþ1 þ ð1� γÞYmYmþ1� þ
XN
m¼1

bmZm ð27Þ

with anisotropy factor γ 2 [0, 1] can be rewritten in the form of Eq. (25) through the

Jordan–Wigner transformation, and the matrices A and B will look like

A ¼
�2b1 c1
c1 �2b2 c2

c2 �2b3
⋱

0
BB@

1
CCA, and B ¼

0 γc1
�γc1 0 γc2

�γc2 0

⋱

0
BB@

1
CCA:

A physically important example of quadratic Hamiltonians is the Ising chain of

spins with transverse magnetic fields, which is expressed by Eq. (27) with γ¼ 1 and

is relevant for systems, such as superconducting qubits [9] and NMR. Note also that

once the Hamiltonian of a given system is described in quadratic form, the operators

a and a{ can represent not only fermions, but also bosons by requiring them to obey

the bosonic commutation relations, [am, an]¼ 0 and ½am, a{n� ¼ δmn. In the following,
we shall consider the problem of Hamiltonian tomography of Eq. (25) for 1D chains

for simplicity, although the generalisation to more complex graphs is possible.

Since the Hamiltonian Eq. (25) does not preserve the number of particles,

initialising the chain to be j0 . . . 0i just by accessing the end node appears to be

impossible. Nevertheless, this difficulty can be circumvented by making use of

the property of such Hamiltonians. The quadratic Hamiltonian above can be

diagonalised as H ¼
X
k

Ekb
{
kbk þ const: by transforming α ¼ ða1, . . . ,aN , a{1, . . . ,

a{NÞt into β ¼ ðb1, . . . ,bN ,b{1, . . . ,b{NÞt as β¼ T α, so that operators b and b{ still

satisfy the canonical (anti-)commutation relations. So, the quasi-particles described

by b and b{ behave as free particles that almost do not interact with each other.

The “initialisation” works then as follows. Suppose we can initialise the chain to

be in a fixed, but not necessarily known, state ρ0. Though ρ0 can be any state, a

realistically plausible one might be a thermal state. We prepare two different states

ψ1 and ψ2 locally at the end site after initialising the chain to be ρ0. For each initial

state we observe the time evolution at the same end site to get a reduced density

matrix ρ(t jψ i) (i¼ 1, 2) as a function of time. Because the evolution of internal state

of the chain is independent of that of the state at the chain end and vice versa

(thanks to the insensitivity between quasi-particles), we can extract the pure

response of the chain due to the difference between ψ1 and ψ2, by comparing

ρ(t jψ1) and ρ(t jψ2).
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The Hamiltonian of Eq. (25) can be rewritten as

H ¼ 1

2
α{Mα,

where M is a 2N � 2N matrix

M � A B
�εB∗ �εA∗

	 

, ð28Þ

with ε¼ 1 for fermions and ε¼�1 for bosons. As in the previous case of the

magnetisation-preserving Hamiltonians, we assume that all coupling strengths are

real and their signs are known. Also the factor γ¼Bn, n+1∕An, n+1 (anisotropy) is

assumed to be constant and known.

Now that we can take it for granted that this 2N� 2NmatrixM is symmetric and

its entries are all real, a key observation is to reinterpret M as a Hamiltonian that

describes the hopping of excitations over a graph of 2N nodes [24]. That is, the

“Hamiltonian” M preserves the number of excitations in the 2N-“spin” network,

therefore we can apply the scheme discussed in previous sections. Of course, the

state on which the HamiltonianM acts is not a physical spin network, instead it is a

fictitious state represented by a 2N� 1 vector (a1, . . ., a1
{, . . .)T. So the eigenvectors

of M are something different from physical state vectors.

The graph for a 1D spin chain of Eq. (27) is shown in Fig. 5. Accessing the spin

1 in the real chain corresponds to accessing the nodes 1 and N + 1, since what we

obtain from the measurement (and Fourier transform) are the values of Ej, h1jEji,
and hNþ 1jEji[24]. Here the state jni stands for the localised state on the fictitious

2N-node graph.
Let us take an Ising chain of N spins with transverse magnetic fields, i.e., γ¼ 1 in

Eq. (27), as a specific example to demonstrate how the estimation goes. To make

use of the symmetry the graph in Fig. 5 possesses, let us define

jn�i :¼ 1ffiffiffi
2

p ðjni þ jNþ niÞ:

We already have the information about h1�jEji, as well as Ej, from the measurement

on the spin 1. The estimation procedure proceeds as in Sect. 3.1, namely by looking

at h1þjMjEji we have

Ejh1þjEji ¼ �2b1h1�jEji,

whose LHS is known, thus b1 can be obtained through the normalisation condition

for h1�jEji: Similarly, evaluating h1�jMjEji gives
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Ejh1�jEji ¼ 2c1h2þjEji � 2b1h1þjEji,

from which c1 and h2þjEji can be known. Also, from Ejh2þjEji ¼ 2c1h1�jEji � 2b2
h2�jEji we have b2 and h2�jEji, therefore we have obtained all parameters up to the

second spin, so effectively expanded the accessible area to two spins. Then, this

procedure can go on one by one till we reach the other end of the chain, i.e., the Nth
spin, identifying all the parameters in the matrixM.

A remark on the initialisation follows. It was shown in [37] that, in the case of

1D XX chains of spins-1/2, the estimation of Hamiltonian parameters is possible

without initialising the chain state. The smart trick there was that the spin 1 was

initialised so that the average value of the z-component of spin, i.e., hZ1i, was made

zero at t¼ 0. The rationale behind it stems from the Jordan–Wigner transform.

Since an ¼ σþn
Y
m<n

Zm, if we set hZ1i ¼ 0, the averages of all an and an
{ (n> 1) at

t¼ 0 become zero. Their time evolution is expressed as (in the form of the vector α)

αnðtÞ ¼
X
m, k

e�iEktT�1
nk T�1
� �{

km
αmð0Þ, ð29Þ

from which we can see that, in the Jordan–Wigner picture, the initial state of spins

from the second to the Nth gives no effect on the measurement result of the first

spin. Here, T is a matrix that transforms α into β¼ Tα as mentioned above to

diagonalise the Hamiltonian. Hence the above initialisation of the first spin is

equivalent to that of the whole chain in the Jordan–Wigner (fermionic) picture,

and thus corresponds to a special case of our description on initialisation.

Fig. 5 A graph corresponding to the matrixM with A and B of Eq. (28) and ε¼ 1 (fermionic). For

bosonic systems, there will be additional edges connecting nodes m (1�m�N ) and N + m,
because B is symmetric, rather than antisymmetric. For both fermionic and bosonic cases, there are

edges extruding and returning to the same node, corresponding to the diagonal elements of A,
which are not shown here to illustrate the principal structure of the graph
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3.6 Conclusions

We have seen that despite a severe restriction on our accessibility a large quantum

system can be controlled and its Hamiltonian can be identified. As a matter of fact,

it is unrealistic for any existing control scheme to have a full access to the system,

i.e., a full modulability for the d2 � 1 parameters for independent Hamiltonians

with d being the system dimensionality. In the case of methods based on electron/

nuclear spin resonance, for instance, all we modulate is the external magnetic field

and we do not have a full control over all inter-spin couplings. Therefore, a guiding

theory of quantum control is needed to systematically understand and design

feasible control schemes under a limited access. The results we have reviewed in

this chapter are an example towards the more generic theory, already showing how

powerful a restricted access can be. Although the limitation for the control in

laboratories would vary, the same or modified methods as what we have seen

here will be of help in making a shortcut towards the realisation of the full quantum

control.
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NMR Quantum Information Processing

Dawei Lu, Aharon Brodutch, Jihyun Park, Hemant Katiyar,

Tomas Jochym-O’Connor, and Raymond Laflamme

Abstract Quantum computing exploits fundamentally new models of computation

based on quantum mechanical properties instead of classical physics, and it is

believed that quantum computers are able to dramatically improve computational

power for particular tasks. At present, nuclear magnetic resonance (NMR) has been

one of the most successful platforms amongst all current implementations. It has

demonstrated universal controls on the largest number of qubits, and many

advanced techniques developed in NMR have been adopted to other quantum

systems successfully. In this review, we show how NMR quantum processors can

satisfy the general requirements of a quantum computer, and describe advanced

techniques developed towards this target. Additionally, we review some recent

NMR quantum processor experiments. These experiments include benchmarking

protocols, quantum error correction, demonstrations of algorithms exploiting quan-

tum properties, exploring the foundations of quantum mechanics, and quantum

simulations. Finally we summarize the concepts and comment on future prospects.

Keywords Nuclear magnetic resonance • Quantum information processing •

Quantum computing • Quantum simulation

1 Introduction

With each passing year, computers are used to solve more problems, faster and

more efficiently. Nevertheless it seems that many problems are, and will remain,

unsolvable by computers based on standard technologies. Three gigantic obstacles,
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on the road leading to future computers, cannot be circumvented by classical

means. (A) Microscopic quantum effects: Moore’s law [1] states that the number

of transistors in a dense integrated circuit doubles approximately every 18 months.

At this rate in a few years, we will have to store each of bit information at the atomic

scale, and microscopic quantum effects will play a dominant role. (B) Dissipation:
All processes in classical computers are irreversible and dissipative. The energy for

implementing a single logical gate is an order of magnitude larger than the Laudaur

energy [2], which is the minimal cost consumed by the erasure of single bit

information. This leads to problems of heating and energy consumption that grow

with the number of operations per unit time. (C) Computational complexity: Some

problems are simply intractable on a classical computer. For instance, storing

the state of 71 spins demands 2:4� 1021 bits, approximately the content of all

information currently stored by mankind [3]! These limitations require us to seek

out radically new technologies for processing and storing information. While the

first two problems may be temporarily circumvented by switching to new platforms

that implement classical algorithms, there is no doubt that quantum effects must be

dealt with in the near future. Moreover, quantum algorithms are currently the only

known way to transverse the obstacle of computational complexity for an important

class of problems that include quantum simulations.

Quantum information processors [4] exploit fundamentally new models of

computation based on quantum mechanical properties instead of classical physics.

While there is no fixed physical platform or the underlying information processing

model, most of the known candidates must, almost by definition, deal with quantum

effects. Moreover, most known models are in principle reversible, and minimize the

erasure of information and thermal dissipation [5]. Most importantly, there is a

good reason to believe that quantum computers can solve some problems exponen-

tially faster than a classical computer [4]. For example, fifty quantum bits (qubits)

are sufficient to simulate the dynamical behaviour of fifty spins.

Although fascinating and stimulating, the enthusiasm for building large-scale

quantum computers [6, 7] is partly challenged by the substantial practical difficulty

in controlling quantum systems. At present, a number of physical systems can be

used to implement small-scale quantum processors. These include [6] trapped ions

and neutral atoms, superconducting circuits, spin-based magnetic resonance, impu-

rity spins in solids, photons and others. Amongst all current implementations,

nuclear magnetic resonance (NMR) [8, 9] has been one of the most successful

platforms: having demonstrated universal controls on the largest number of qubits.

Meanwhile, many advanced techniques developed in NMR have been adapted to

other quantum systems successfully. Therefore, despite the huge difficulties in

initialization and scalability, NMR remains indispensable in quantum computing

as it continues to provide new ideas, new methods and new techniques, as well as

implement quantum computing tasks in this interdisciplinary field.

In Sect. 2 below, we present the basics of quantum information processing (QIP)

and the implementation of NMR quantum processors. We show how these pro-

cessors can satisfy the general requirements of a quantum computer, and describe

advanced techniques developed towards this target. In Sect. 3, we review some
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recent NMR quantum processor experiments. These experiments include

benchmarking protocols, quantum error correction, demonstrations of algorithms

exploiting quantum properties, exploring the foundations of quantum mechanics,

and quantum simulations. Finally in Sect. 4, we summarize the concepts and

comment on future prospects.

2 NMR Basics

As of 2015, there are many different proposals for quantum computing architec-

tures and it is unclear which architecture will result in a quantum computer. While

the computational model is well defined, the underlying physical implementations

are still unknown. There are however, five well-accepted physical requirements

[10] that must be satisfied by any potential candidate. The so-called DiVincenzo

criteria are: (1) a scalable physical system with well characterized qubits; (2) the

ability to initialize the state of the qubits to a simple fiducial state, such as
��000 . . .i;

(3) a universal set of quantum gates; (4) a qubit-specific measurement capability;

(5) long relevant decoherence times, much longer than the gate operation time. In

this section, we describe how NMR completely or partially satisfies the require-

ments one by one, and interpret the relevant techniques exploited for each aspect.

All concepts, unless specified, refer to liquid-state NMR which is more

comprehensible.

2.1 Well-Defined Qubits

A two-level quantum system which is analogous to a spin-1/2 particle can encode a

qubit. The two levels, usually labeled
��0i and ��1i, are the equivalent of σzþ1 and�1

eigenstates, respectively. These are often referred to as the computational basis

states. Spin-1/2 systems, such as 1H, 13C and 19F nuclear spins, are natural qubits,

and are thus used in vast majority of NMR quantum computation experiments.1

When a nuclear spin is placed in a static magnetic field B0 along z direction, the
dynamical evolution will be dominated by the internal Hamiltonian (set h ¼ 1)

Hω ¼ � 1� σð ÞγB0Iz ¼ �1

2
ω0

1 0

0 �1

� �
; ð1Þ

where γ is the nuclear gyromagnetic ratio, σ is the chemical shift arising from the

partial shielding of B0 by the electron cloud surrounding the nuclear spin, and ω0

¼ 1� σð ÞγB0 is the Larmor precession frequency. Iz is the angular momentum

1 For simplicity, we only consider spin ½ systems in this chapter.
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operator related to Pauli matrix σz as σz ¼ 2Iz, and so on for Ix and Iy. The

energy difference between the computational basis states
��0i and ��1i is the Zeeman

splitting ω0.

For multiple-spin systems, heteronuclear spins are easily distinguished due to

the distinct γ and thus very different ω0 in the magnitude of hundreds of MHz, while

homonuclear spins are often individually addressed by the distinct σ due to different
local environments. Furthermore, the qubit-qubit interactions are the natural medi-

ated spin-spin interactions called Hamiltonian J-coupling terms. The dipole-dipole

interactions are averaged out due to rapid tumbling in liquid solution. The Hamil-

tonian is

HJ ¼
X

2πJij I ixI
j
x þ I iyI

j
y þ I izI

j
z

� �
�

X
2πJijI

i
zI

j
z: ð2Þ

The approximation is valid when the weak coupling approximation Δω0 � 2π Jij
�� ��

is satisfied, which is always the case for heteronuclear spins and moderately distinct

homonuclear spins.

Therefore, the total internal Hamiltonian for an n-spin system is

Hint ¼ �
X

ω i
0I

i
z þ

X
2πJijI

i
zI

j
z; ð3Þ

which forms a well-defined multi-qubit system used in most NMR quantum com-

puting experiments.

2.2 Initialization

Initialization is a process to prepare the system in a known state such as the ground

state
��00 . . .i, which is generally a pure state. The Boltzmann distribution requires

extremely low temperature, about tens of mK at 1 GHz, to prepare such state in

liquid-state NMR. To avoid working at such low temperatures, a pseudo-pure state

(PPS) [11, 12] is used in almost all NMR experiments.

An n-qubit PPS is described as

ρPPS ¼ 1� ε

2n
bI þ ε 00 . . .j i 00 . . .h j; ð4Þ

where bI denotes the identity matrix and ε � 10�5 is the polarization. In NMR, the

identity term is invariant under unital operations; these include pulses, free Ham-

iltonian evolution, and T2 decoherence. Moreover, the identity does not contribute

to measured signal as we will see later. Thus the dynamical behaviour of the PPS is

the same as that of a pure state. The creation of PPS from thermal equilibrium

inevitably involves non-unitary transformations since the eigenvalues of the PPS

and thermal equilibrium state are different. Several approaches such as temporal
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averaging [13], spatial averaging [11], logical labeling [12], and cat-state [14] have

been proposed to date. However, none of these methods are scalable due to

exponential signal decay as a function of the number of qubits [15]. There are

scalable methods for preparing qubits in a PPS. One such method, algorithmic

cooling, is presented in detail in Chap. 8.

2.3 Universal Gates

Physically, a quantum algorithm is a dynamical process taking the initial state to a

final state. One of the breakthroughs of quantum computing was the realization that

it is possible to efficiently break this dynamical process into a finite set of elemen-

tary gates such as the set that includes finite single-qubit rotations and the

controlled-NOT (CNOT) gate [4]. In NMR, we can apply external radiofrequency

(RF) pulses in the transversal x–y plane to realize single-qubit rotations. The

external Hamiltonian for a single qubit in the lab frame is written as

Hext ¼ �γB1 cos ωrf tþ φð ÞIx � sin ωrf tþ φð ÞIy
� �

; ð5Þ

where B1 is the amplitude of the RF pulse, ωrf is the frequency, and φ is the phase.

For simplicity, we often set ωrf ¼ ω0 and work in the rotating frame at frequency

ωrf, where the internal Hamiltonian vanishes and the external one remains station-

ary. Using the propagator in the rotating frame

U ¼ eiγB1 cos φIx� sin φIyð Þt ð6Þ

and choosing appropriate B1, φ and pulse width t, one can approximate arbitrary

angle rotations around any axis in the x–y plane. Using Bloch’s theorem, we can

decompose single-qubit unitary into rotations around two fixed axes

eiαRx βð ÞRy γð ÞRx δð Þ: ð7Þ

A CNOT gate is a unitary gate which has two input qubits usually called control and

target. The gate flips the target when the control is in the
��1i state, and does nothing

if the control is in the
��0i state. In NMR pulse notation, the gate can be written as

UCNOT ¼
ffiffi
i

p
R1
z π=2ð ÞR2

z �π=2ð ÞR2
x π=2ð ÞU 1=2Jð ÞR2

y π=2ð Þ; ð8Þ

where U 1=2Jð Þ ¼ exp �iπI1z I
2
z


 �
indicates the J-coupling evolution for time

t ¼ 1=2J. The undesired terms in the internal Hamiltonian can be removed via

refocusing techniques by inserting π pulses in appropriate positions during the

evolution. Note that this refocusing scheme is inefficient to design when the size

of system increases. Alternatively, the sequence compiler technique which can
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track the off-resonance and coupling effects followed with correcting the phase and

coupling errors is scalable and particularly powerful [16].

In principle, any quantum circuit can be implemented by RF pulses and internal

Hamiltonian evolutions. In practice however, the requirement for ultra-high preci-

sion is hard to implement. Conventional composite pulses are accurate in small-size

systems but hard to scale due to relaxation during the relatively long duration. To

overcome this problem, optimized pulse engineering techniques inspired by opti-

mal control theory for NMR quantum computing have been developed in recent

years. Here we primarily focus on the GRadient Ascent Pulse Engineering

(GRAPE) techniques [17].

2.3.1 Pulse Engineering Based on GRAPE Algorithm

Given some theoretical unitary evolution Uth, the aim of a pulse engineering

algorithm is to find an experimental pulse sequence Uexp which, together with the

free evolution, produces the desired unitary up to some error. The distance between

the theoretical and experimental pulse is given by the Hilbert-Schmidt fidelity

Φ ¼ tr UthU
{
exp

� ���� ���2=4n: ð9Þ

In NMR, the experimental unitary is an N step digitized pulse where unitary

operator for the mth step is

Um ¼ e
�i Hintþ

X
uk mð ÞHext

h i
Δt
; ð10Þ

where uk(m), the controllable RF fields, remains constant at each step. The optimi-

zation process starts with a guess for the optimal sequence. At each subsequent

iteration, we alter uk(m) according to the gradient

uk mð Þ ! uk mð Þ þ E
ΔΦ

Δuk mð Þ : ð11Þ

After a number of iterations, the fidelity Φ will reach a local maximum, and will

usually provide a high-fidelity GRAPE pulse to implement Uth.

The GRAPE optimization method is much faster than conventional numerical

optimization methods. It is robust to RF inhomogeneities and drift of chemical

shifts, as well as friendly to the spectrometer due to its smoothness. The major

drawback of GRAPE technique is the inefficiency with respect to the system size.

However, separating the entire system into small subsystems may moderately

reduce the complexity [16]. Another drawback is possible discrepancies between

the designed pulse and implemented pulse. A feedback system called pulse fixing

can be employed to correct these systematic imperfections.
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2.3.2 Pulse Fixing

Non-linearities in pulse generation and amplification, and bandwidth constraints of

the probe-resonant circuit, prohibit a perfect match between the designed pulse and

real one. The solution is measuring the control field at the sample and closing a

feedback loop which can iteratively adjust the control pules so that the real field at

the sample matches the designed one. First, a pickup coil is used to measure the

fields in the vicinity of the sample, and the data is fed back to compare with the

target pulse. Then a new pulse attempting to compensate the imperfection is

generated based on the measurement result, and sent back to the pulse generator.

A good match between design and experiment is typically reached after 8–10 loops.

2.4 Measurement

The measurement in NMR is accomplished with the aid of an RF coil positioned at

the sample. This apparatus can detect the transversal magnetization of the ensem-

ble, and transform the time-domain signals into frequency-domain NMR spectra via

Fourier transform. The detection coil is very weak coupled to the nuclear spins, and

does not contribute much to decoherence. However, due to the interactions with the

heat bath and inhomogeneity of the static field, the nuclear spins still decohere,

leading to free induction decay (FID) of the time-domain signal. The weak mea-

surement process cannot extract much information from a single spin and is not

projective. Nonetheless, the ensemble averaged measurement provided by bulk

identical spins can, for some purposes, provide more information than a projective

measurement.

The FID measurement allows us to extract the expectation values of the readout

operators in the x–y plane in a single experiment. Pauli observables outside the x–y
plane can be rotated into the x–y plane first and then measured in the allowed basis.

In this way, full quantum state tomography [18, 19] is achievable in NMR to

determine all elements of the density matrix describing the quantum state.

2.5 Decoherence

Decoherence remains a fundamental concern in quantum computation as it leads to

the loss of quantum information. It is traditionally parameterized by the energy

relaxation rate T1 and the phase randomization rate T2. T1 originates from couplings

between the spins and the lattice, which are usually tens of seconds in an elaborate

liquid sample. T2 originates from spin-spin interactions such as the unaccounted

terms in the internal Hamiltonian. For NMR quantum computing, the timescale T�2
which involves the effect of inhomogeneous fields is often more important than the
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intrinsic T2 time. Characteristic T�2 ranges from tens of milliseconds to several

seconds, compared to the two-qubit gate time about several milliseconds. For

simple quantum tasks, it is sufficient as hundreds of gates can be finished before

T�2 has elapsed. However, for complex algorithms, other ideas have to be employed

to counteract the decoherence and preserve the information. Here we introduce how

to use RF selection technique to improve T�2.

2.5.1 RF Selection

In NMR, the RF inhomogeneity can be mostly eliminated by running an RF

selection sequence. This is a sequence of pulses followed by a gradient field that

removes polarization on all but a small part of the sample. The part which is left

polarized is restricted to a more homogeneous field strength. We have used the RF

selection sequence as

Rx π=2ð Þ R�x πð Þ½ �64 Rθi πð ÞR�θi πð Þ½ �64Ry π=2ð Þ þ Gradient; ð12Þ

where the sum over θi should be π/8 and the number of loops can be varied

according to the requirement of homogeneity. The RF selection sequence is applied

prior to computation sequences in the experiment, and the signals produced by the

inhomogeneous portion of the sample are discarded after the gradient pulse. RF

selection improves the timescale T�2 significantly at the cost of signal loss. For

instance, raising the homogeneity to 	2% will result in around 12% residual

signal.

3 Recent Experiments

3.1 Benchmarking

Characterizing the level of coherent control is important in evaluating quantum

devices. It allows for a comparison between different devices, and indicates the

prospects of these devices with respect to the fault-tolerant quantum computing

[20]. The traditional approach for characterizing any quantum process is known as

quantum process tomography [21, 22], which has been realized in up to 3-qubit

systems in experiment [23–28]. However an arbitrary process on a n-qubit system
has O(24n) free parameters. So, while quantum process tomography fully charac-

terizes the process, it requires exponential number of experiments, making it

impractical even for moderately large systems. For most practical purposes how-

ever, we do not need to determine the value of all free parameters experimentally.

For quantum error correction, a few parameters related to the level of noise are

required. Several useful techniques such as twirling [29–31], randomized
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benchmarking [32–34], and Monte Carlo estimations [35, 36] can be used to

characterize a given quantum process. In the following, we describe an experimen-

tal realization of the twirling process.

Twirling is the process of conjugating a quantum process by random (Harr-

distributed) unitaries. The quantum process is then reduced to a depolarizing

channel with a single parameter to describe the strength of the noise. The twirling

procedure provides a way to estimate the average fidelity of an identity operation

with a few experiments depending only on the desired accuracy. It can be extended

to characterize the noise of various unitary operations such as those in the Clifford

group.2 It is however, not useful for separating preparation and measurement errors.

Randomized benchmarking is the generalization of twirling by applying a sequence

of Clifford gates and measuring the fidelity decay as the function of an increasing

number of gates. The decay rate is independent of the preparation and readout errors

up to an additional normalization, but the shortcoming is it cannot provide the

information for a particular quantum process. Monte Carlo estimations have the

same scaling as the twirling protocol in the case of Clifford gates, but are not as

natural as twirling if the probability of a given weighted error is required.

In this section, we focus on the twirling and randomized benchmarking pro-

tocols, and describe the relevant NMR experiments [29, 31, 34, 37] briefly. We

show that reliable coherent control has been achieved in NMR quantum computing

up to seven qubits.

3.1.1 Characterization of a Quantum Memory

Ideally, qubits in a quantum memory do not evolve dynamically, i.e., the dynamical

evolution is the identity. The original twirling protocol, proposed by Emerson

et al. [29], considers noisy quantum memories, where the quantum process is a

faulty identity Λ. The average fidelity of this process is defined as

F Λð Þ ¼
Z

dμ ψð Þhψ��Λ ψj i ψh jð Þ��ψi; ð13Þ

where dμ(ψ) is the unitary invariant distribution of pure states known as Fubini-

Study measure [32]. It is equivalent to average over random unitaries distributed

according to the Harr measure dμ(V ) [32].

F Λð Þ ¼
Z

dμ Vð Þhψ��V{ΛV ψj i ψh jð Þ��ψi; ð14Þ

2 The Clifford group is the group of unitary operations that leave take Pauli operators to Pauli

operators.
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Formally, the continuous integral of Eq. (14) can be replaced by a finite sum over a

unitary 2-design [30] such as the Clifford group C.

F Λð Þ ¼ 1

Cj j
X
Ci2C

hψ��Ci
{ΛCi ψj i ψh jð Þ��ψi: ð15Þ

It is possible to show [29] that the average fidelity above can be derived from an

experiment where instead of conjugating by elements of the Clifford group C we

conjugate over the single-qubit Clifford group C1 applied to each qubit individually

together with a permutation. In this way, Λ is symmetrized to a Pauli channel

instead of a depolarizing channel; however, the task of noise characterization is

simplified to the finding probability of no error Pr(0) in this channel.

F Λð Þ ¼ 2nPr 0ð Þ þ 1

2n þ 1
; ð16Þ

where n is number of qubits.

To measure the probability of no error Pr(0), we can probe the Pauli channel with

the input state
��00 . . . 0i, followed by a projective measurement in the n-bit string

basis. For an ensemble system such as NMR, we can use n distinct input states

ρw ¼ ZwIn�w, where w is the Pauli weight defined as the number of nonidentity

factors in the Pauli operator. This is followed by a random permutation operation πn
and a random 1-qubit Clifford. The average of the output states returns the scaled

parameter of the input. Figure 1 shows the circuit for both cases.

To estimate Pr(0) to precision δ, it is enough to perform log(2n/δ2) experiments

[29] such that each experiment requires random conjugation by a 1-qubit Clifford

and permutation.

The NMR experiments to demonstrate the above protocol were implemented on

both a 2-qubit liquid sample chloroform CHCl3 and 3-qubit single-crystal sample

Malonic acid C3H4O4. To evaluate the level of quantum memories, C48 pulse

sequence [38] was utilized to suppress the evolution of the internal Hamiltonian.

Two experiments including one cycle of a C48 sequence with 10 μs pulse spacing
and two cycles C48 with 5 μs pulse spacing were performed to characterize the

Fig. 1 Quantum circuit to implement the twirling protocol for the purpose of quantum memories.

The standard one requires one input state
��00 . . . 0i and conjugation by Ci, whereas the ensemble

one requires n distinct input states and an additional permutation πn
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unknown residual noise. The results show that the probabilities of one-, two-, and

three-body noise terms all decrease substantially by using the latter sequence. For

instance, Pr(0) increases from 0.44 for the one-cycle case to 0.84 for the

two-cycle case.

3.1.2 Characterization of Clifford Gates

Moussa et al. proposed [31] a slight modification of the original twirling protocol,

to efficiently estimate the average fidelity of a Clifford gate, by inserting an identity

process in the original twirling protocol. If a noisy quantum operation UN ¼ U∘Λ
can be represented by a noisy process Λ followed by the application of the target

unitary U, an identity process written as U{U can be inserted between C{
i and Λ in

Eq. (15). Thus, the average fidelity of a noisy identity Λ transforms to the average

fidelity of a noisy unitary gate UN

F Λð Þ ¼ 1

Cj j
X
Ci2C

ψ
��Ci

{U{∘UN∘Ci ψj i ψh jð Þ��ψ� 
: ð17Þ

This is further simplified by combining the pieces following UN into a new

measurement Mnew ¼ UCiMCi
{U{. Note that for an ensemble system, the permu-

tation operations πn need to be applied accordingly, see Fig. 2. In general, this new

measurement is difficult to implement as U is usually impossible to realize in

experiment. However, if U is an element of the Clifford group and the original

measurement M is a Pauli measurement (always the case in NMR), Mnew can be

calculated efficiently. The remaining steps are the same as the characterization of

quantum memories described in the original twirling protocol.

Despite the limitation of the protocol to characterize only Clifford gates, the

modified twirling protocol is still significant since Clifford gates construct the

elementary units in the vast majority of fault-tolerant quantum computations

based on stabilizer codes, where universality is granted by magic state preparations

[39]. In addition, the evolution of states under Clifford gates can be tracked

efficiently, as mentioned above.

Fig. 2 Quantum circuit for modified twirling protocol to certify noisy Clifford gates. An identity

process U{U is inserted to generate the aim UN. ρi ¼ Ciπn ZwIn�wð Þπ{nCi
{ is a random Pauli state

andMnew ¼ UCiπnMπ{nCi
{U{ is an efficiently pre-computed Pauli operator if U is a Clifford gate
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The first experiment for certifying Clifford gates was implemented by a 3-qubit

single-crystal sample Malonic acid C3H4O4 in NMR. The aim was to certify the

encoding operation of the phase variant of the 3-qubit quantum error correcting

code [40]. This can be decomposed into two CNOT gates and three single qubit

Hadamard gates. A GRAPE pulse [17] with the length 1.5 ms was designed to

implement this encoding operation, and was rectified by pulse fixing in experiment.

The estimation of the average fidelity before and after the rectification is 86.3% and

97.3%, respectively. After factoring out the preparation and measurement errors,

the average fidelity of the rectified implementation was improved to be over 99%.

Another experiment of certifying a 7-qubit Clifford gate in NMR was carried out

recently [37]. The sample was Dichlorocyclobutanone and the seven carbons

formed a 7-qubit quantum processor. The target Clifford gate was chosen as the

one to generate the maximal coherence from single coherence with the aid of a few

local gates. A 80 ms GRAPE pulse was obtained to realize this operation with a

theoretical fidelity over 99%, followed with the rectification by pulse fixing in

experiment. 1656 Pauli input states were randomly sampled out of the entire Pauli

group, which consists of 16,383 elements, to achieve a 99% confidence level. The

average fidelity of this Clifford gate is 55.1%, which is reasonable because high-

weight Pauli states are extremely fragile to the effect of decoherence. To assess the

gate imperfections, the decoherence effect was simulated under the assumption that

it could be factored out. The average fidelity with the elimination of decoherence

increased to 87.5%. As the Clifford gate involved about six two-qubit gates and

twelve single-qubit gates, the average error per gate was estimated about 0.7%,

attributed to the imperfections in designing and implementing the GRAPE pulse.

The NMR spectra observed after applying this Clifford gate were used as further

evidence of the level of control.

3.1.3 Randomized Benchmarking of Single- and Multi-qubit Control

The twirling protocol requires a lower error rate in preparation and measurement

than the quantum gate being certified, and cannot identify errors that are due to

preparation and measurement. As a result, randomized benchmarking was devel-

oped as a modification of the twirling protocol that enables the estimation of error

rates per gate for a particular quantum system, independent of the preparation and

measurement errors.

The idea is similar to the one used for characterizing a single Clifford gate, but

replacing the single Clifford gate with a sequence of one- and two-qubit Clifford

gates, that are uniformly sampled from the Clifford group. The outcome is the

fidelity decay as a function of the number of Clifford gates in the sequence.

Assuming that the errors are independent of the gates, the preparation and mea-

surement errors provide only an additional normalization to the fidelity decay

curve. Note that the sequence must be constructed by Clifford gates, to enable the

output state tracking and reversal gate designing.
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Both single- and three-qubit experiments have been performed in NMR [34]. For

the single-qubit experiment, the sample was unlabeled chloroform. The Clifford

gates were randomly chosen from π/2 and π rotations around x, y, or z axis, and
applied sequentially for utmost 190 times. Traditional Gaussian pulses, BB1 com-

posite pulses, and GRAPE pulses were all tested, with the average fidelity

2:1� 10�4, 1:3� 10�4, and 1:8� 10�4, respectively. The results were initially

somewhat surprising as the optimized GRAPE pulses could not surpass the perfor-

mance of the BB1 pulses. The explanation is that GRAPE pulses are more sensitive

to implementation imperfections such as finite bandwidth effects.

3-qubit experiments were performed using 13C-labeled trissilane-acetylene,

and the Clifford group generating set was chosen to be the Hadamard, PHP{

(a Hadamard conjugated by a phase gate) and nearest-neighbour CNOT gates.

The sequence was constructed by randomly choosing the gates from the above

group, with 2/3 probability to implement the single-qubit gates and 1/3 probability

to implement the two-qubit CNOT gates. All the operations were optimized by

99.95% fidelity GRAPE pulses. Starting from a fixed initial state ZII, the theoret-
ical output could be tracked and recovered to return to ZII in the end. By comparing

the signal loss as a function of number of gates and fitting the exponential fidelity

decay, the average error per gate is about 4:7� 10�3, which is an order of

magnitude higher than the expected error 4:4� 10�4 obtained from the GRAPE

imperfection and decoherence. This implies there are still unknown factors which

have yet to be handled in the pulse design.

3.2 Error Correction and Topological Quantum Computing

To build a reliable and efficient QIP device, a quantum system should be resilient to

errors caused by unwanted environmental interaction and by imperfect quantum

control. The progressive development of quantum error correction codes (QECC)

and fault-tolerant methods in the past two decades have been central to determining

the feasibility of implementing a quantum computer. The threshold theorem proves

that implementing a robust quantum computer is possible in principle, provided that

the error correction schemes can be implemented physically above certain accuracy

[41–43]. Using error correction methods, a quantum computer can tolerate faults

below a given threshold that depends on the error correction scheme used. Despite

many outstanding achievements in the theoretical field, implementing such

schemes in physical experiments remains a significant challenge, in large due to

the requirement for a relatively large number of qubits. NMR was one of the early

platforms used to take up the challenge of demonstrating fault tolerance in real

experiments. In this section, we outline some of the fundamentals of fault tolerance

and review some experimental implementations of QECC in NMR.

The basic ideas behind quantum error correction schemes [4, 44] are similar to

those used in classical error correction methods, which exploit the idea of
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redundancy. Suppose the information carried in a classical bit is copied (encoded)

onto two other bits. The logical bit is now the encoded three physical bits. For
simplicity, let us assume we are interested only in storing the information. During

the storage time, bit flipping errors can occur, and the errors need to be corrected.

For this purpose, we need to check repeatedly whether the three bits are all in the

same state. Whenever a discrepancy occurs, we can use a majority vote to bring all

three bits to the same states. The method assumes that the probability of two

erroneous bits is much lower than the probability of a single erroneous bit.

Extending the classical scheme to the quantum case requires some care. First of

all, we need to avoid direct measurement on an encoded state to prevent a quantum

superposition from collapsing. As shown in Fig. 3, this can be done by adding

ancilla qubits to the circuit and applying appropriate gates to obtain sufficient

information about the error without learning the state of the logical qubit. Subse-

quently, the ancilla qubits can be measured to obtain an error syndrome, which

ideally contains the relevant information about which qubit is affected by what kind

of error. Secondly, a quantum encoding scheme can exists without violating the ‘no
cloning principle’ of quantum states. The quantum encoding step repeats the state

only on a computational basis, which is different from copying a state (i.e.,

α 0j i þ β 1j i !encoding
α 000j i þ β 111j i:, not α

��0
 i þ β
��1i�
3).

Any decoherence phenomenon can be decomposed into two types of errors:

X and Z. Here, X and Z are Pauli matrices. X (or bit flip) errors flip the spin states,

from
��0i to ��1i and vice versa, whereas Z (or phase flip) errors have the effect

1ffiffiffi
2

p 0j i þ ��1� �,
Z

1ffiffiffi
2

p 0j i � ��1� �: ð18Þ

Fig. 3 To detect the error in the encoded state, the ancilla qubits are used to obtain information

about the error. Subsequently, the error syndromes can be used to detect and identify the errors.

With this knowledge, we can recover the state by applying appropriate recovery operation to the

erroneous state
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In an NMR system, Z errors are similar to the T2 decoherence effect, while T1 is in
the class of X errors although it is not symmetric. Depending on circumstances, a

code might focus on correcting one of the two types. Since the two types are closely

related, a code that corrects one type can be easily modified to fix the other type. To

correct for both types of errors, a larger code might be necessary. For example,

Shor’s nine qubit code [45] is a code based on two 3-qubit codes, one for X errors

and one for Z errors.

Several early QECC, such as the three-qubit phase error correcting code and five

qubit error correcting code, were first implemented using an NMR QIP device

[44, 46, 47]. The three-qubit phase error and five-qubit error correction codes

correct a single qubit phase error and an arbitrary single qubit error, respectively

[48]. These implementations demonstrated the benefits of quantum error correction,

showing that error correction indeed protects the quantum information even in

the presence of gate imperfections. Ideally, to protect quantum information from

decoherence, the error corrections should be applied repeatedly. This requires

resetting ancilla qubits to a pure state after each error correction state such

that they can be reused for the next round. To achieve this, the time it takes to

reset ancilla qubits should be considerably shorter than the duration of a desired

circuit. In NMR, the natural reset time is T1. Consequently, the lifetime of the

circuit is comparable to the time it takes to reset the ancilla qubits. Moreover,

even if the T1 values of ancilla qubits are an order of magnitude shorter, these

qubits will reset to a thermal equilibrium state (in NMR systems) instead of the

desired pure state. Therefore, existing NMR implementations are limited to a single

round of correction. A single round includes encoding, decoherence, decoding, and

error correction steps. The solution to this problem is an active area of research.

Methods such as algorithmic cooling can be used to increase the number of

rounds [49].

Recently, Zhang et al. [50] realized the implementation of logical gates (Iden-

tity, Not, and Hadamard) on encoded qubits to demonstrate the use of quantum

error correcting codes in an information processing task. The previous demonstra-

tion of single round of the five-qubit error correction code [44] was extended by

applying a logical gate after the encoding step. To realize this additional step, they

used a dipolar coupled system which reduced the duration of the experiment by the

order of magnitude compared to Ref. [44], which was about 300 ms. To implement

each gate, each of the five physical qubits was subjected to I, X, Z, and XZ errors

(16 possible errors). Comparing the averaged fidelities of the 16 outgoing states

with and without the error correction, they showed that the gates perform better

when error correction is applied. The improvement in terms of average fidelity was

0.0837, 0.0528, and 0.0196, for Identity, Not, and Hadamard gates, respectively.

To perform fault-tolerant quantum computing, it is important that errors do not

propagate badly. It is critical to ensure that when qubits interact, errors from one

qubit do not propagate uncontrollably to the rest of the system. One way to do

so is to compute and correct errors transversally [51, 52]. For example, consider
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applying a CNOT gate between two logical qubits (see Fig. 4), a bit flip error on the

control qubit will propagate to the target qubit.3

In an error correction model, different methods to implement the logical gates

can lead to different models for error propagation. For example, there are two ways

to apply a CNOT between two logical qubits, encoded using the three-qubit code,

α 0j i þ β 1j i ! α 000j i þ β 111j i (see Fig. 5). In the first case, an error occurs on the
first qubit of the first block. This error will propagate to all the qubits in the second

block, causing a logical error which is not correctable. By implementing a CNOT

gate as shown in the second case, we can avoid this bad propagation of errors. One

error on the logical control qubit will propagate to at-most one error in the logical

Fig. 4 A bad propagation

of errors. An error in the

control qubit propagates to

the target qubit as well

Fig. 5 Two different ways to implement a CNOT gate between the two three-qubit codes: the

example on the left is an example of a bad implementation of a CNOT gate between the two three-

qubit codes. An error on the first qubit of the first block can propagate to all the qubits in the second

block. On the contrary, the right example propagate to at most one error on the bottom encoded

qubit and thus remains correctable

3 In general, a protected space does not necessarily encode a single qubit, and single qubit gates are

often not transversal.
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target qubit. Each can be corrected individually. This second case is an example of a

transversal CNOT gate.

By applying the gates transversally between the encoded blocks, we can ensure

errors propagate in a controllable manner. Unfortunately, for any given code, it is

not possible to implement a universal set of gates transversally [53]. One way to

overcome this problem in constructing a universal fault-tolerant quantum computer

is to use special states known as magic states along with the transversal gates [54–

57]. These special states can be used together with transversal gates to perform an

operation which is otherwise not transversal. Other proposed techniques include

concatenation of two different codes [58], transversal gates with the addition of

gauge fixing [59], as well as code conversion [60]. However, magic state prepara-

tion is currently one of the most well-studied techniques. One method of special

interest is the transversal Clifford plus the use of the T-type magic state used to

implement the remaining gate in the universal gate set [39].

Preparation of a high fidelity magic state may be critical for universal fault-

tolerant quantum computation. Magic state distillation is a method to prepare a

number of high fidelity magic states from the larger number of low fidelity magic

states. Souza et al. [61] demonstrated magic state distillation for the first time using

NMR. They showed that they have sufficient control to distill five imperfect magic

states into a single higher fidelity magic state. The higher fidelity target T-type
magic state

ρM ¼ I þ σx þ σy þ σz

 �

=
ffiffiffi
3

ph i
=2 ð19Þ

was prepared from the five copies of imperfect states

ρ ¼ I þ p σx þ σy þ σz

 �

=
ffiffiffi
3

ph i
=2 ð20Þ

where p ¼ sin α, α 2 π, 3=2π½ �. To quantify how close the imperfect state is from

the target magic state, they measured the m-polarization defined as pm ¼ 2Tr ρMρð Þ.
They showed that the m-polarization increases after performing the magic state

distillation based on the five qubit error correction code, if the input m-polarization

(m-polarization averaged over the five imperfect states) is large enough (> ~ 0.65).

3.2.1 Topological Quantum Computing Using Anyons

If the quantum error correction method introduced above is an algorithmic way to

protect quantum information, topological quantum computation is the work

towards realizing a physical medium that is naturally resilient to decoherence.

Anyons, exotic quasi-particles, can be used to realize such a medium. In anyonic

topological codes, the computation is encoded in a degenerate ground state of a

two-dimensional system that supports anyons [62].
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Due to their fault-tolerant nature, anyonic systems have been gaining much

attention lately for their prospects in building quantum memories and topological

quantum error correction architectures [62, 63]. Currently, most of the contributions

to the field have been theoretical, due to the difficulty in building the relevant

topological systems. Here we will briefly discuss the past and future contributions

of NMR to the field of experimental topological quantum computation. To lead to

this discussion, we will first introduce anyons and their properties. For simplicity,

we will treat anyons as fundamental particles, although a more correct term would

be quasi-particles, excitations that behave like particles. After discussing the basic

properties, we will discuss how fault-tolerant quantum computation can be

achieved with anyons in a general setting, and we shall conclude the topic with

an explanation of a specific anyonic error correction scheme which has been

demonstrated in NMR.

Anyons are particles that can be created in a two-dimensional system, such as a

spin lattice system [64]. They have a unique property which distinguishes them

from other fundamental particles such as bosons or fermions. This property, known

as fractional statistics, plays a key role in Topological Quantum Computing (TQC).

Unlike bosons and fermions, anyons behave in a non-trivial way under particle

exchange.

This operation of exchanging the positions of particles is referred to as a

‘braiding operation’ [62] in general. Here, we will focus on an operation where

we exchange the positions of two particles twice. Intuitively, we would expect the

system to come back to its original state as in the case of bosons and fermions.

However, if we exchange the positions of two anyons twice, the wavefunction can

either obtain a phase factor, ranging from 0 to 2π (abelian anyon), or evolve

according to a unitary matrix (non-abelian anyon).

This interesting phenomenon is the result of different topologies that can be

manifested in the two-dimensional case. Exchanging the positions of two particles

twice is equivalent to moving one particle around the other as shown in Fig. 6. Such

a braiding path can always be contracted to a point for a three-dimensional case,

whereas the braiding path confined on a plane (a two-dimensional case) cannot be

contracted to a point (for more detailed explanation, refer to Fig. 7). This may result

in anyons with non-trivial statistics.

Although we cannot build a truly two-dimensional system [62, 63], we can

physically realize an effective two-dimensional system. Therefore, anyons do not

Fig. 6 The operation that

exchanges the particles

twice is equivalent to

circulating one particle

around the other. The effect

of this operation in two

dimensions depends on the

topology
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appear as fundamental particles, but as quasi-particles, usually localized defects or

excitations of quantum systems.

The quantum states of anyons can be used for QIP. By creating and moving

anyons around, we can encode our information in the anyonic state space. As long

as the quasi-particles are stable, the information stays safe. Gate operations can be

implemented by braiding anyons. In this way, we ensure that the state evolves

exactly, since the statistics constitute a unique particle property. This property is

exact and path independent. It does not matter which paths we use to braid the

anyons, as long as the topology of the paths are the same. In other words, the path

depends only on its global (topological) property, not a local property. This feature

provides flexibility when implementing a braiding operation, since there is no need

to form a precise loop and small wiggles in the path have no effect.

To use anyons for quantum computing, we should first come up with a consistent

mathematical model which describes the braiding and fusion statistics of different

types of anyons [62, 65]. Working out a mathematical model with appropriate

braiding and fusion statistics to implement a desired circuit is non-trivial. More-

over, having a mathematical anyonic model which can perform universal set of

quantum gates using only topological operations, i.e., the Fibonacci anyonic

(non-abelian) model [62], does not necessarily mean we can realize the model

experimentally. In fact, although there has been experimental demonstration of

existence of abelian anyons [66], the experimental evidence of non-abelian anyons

is still not conclusive, despite extensive ongoing progress [67].

While TQC is fascinating, there is a lot of interest in using anyons for only part

of the design, for example in quantum memories and QECC. Since many of these

ideas rely on exploiting abelian anyons, they can be physically realized with near

future technology.

One well-known topological quantum error correction scheme is the quantum

double model [62, 63]. In this model, quantum information is encoded into a

collective state of interacting spins on a two-dimensional surface. This encoding

Fig. 7 The topological difference of the braiding path between the three-dimensional (left) and
the two-dimensional (right) cases (circles with A and B represent particles): the braiding path

(black), can be smoothly deformed to the red path for the three dimensional case (imagine the

situation where we are pulling one end of the black loop, and we also have freedom to move this

loop up and down). Similarly, this red loop can be further deformed to a point, which is effectively

doing nothing on the system. However, in a two-dimensional case, since the black loop is confined
in a plane, we cannot continuously deform the path to the red one (unless we make a cut). Here,

again, imagine pulling one end of the black loop, but without the freedom of moving the loop up
and down. The loop gets stuck because of the particle B
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scheme takes the spatial relationship between the qubits into account, unlike

conventional QECC. These topological systems have certain important properties.

First of all, the Hamiltonian of these systems possesses a finite energy gap between

degenerate ground states and the excited states. Information encoded in the ground

state is therefore protected by this energy gap, since a jump from the ground state to

the excited state has an associated energy cost. Also, the information is encoded in a

non-local way, for example, not only in one particular spin but rather in the state of

the entire system. Hence, local errors cannot alter the information. Most impor-

tantly, any local errors (excitations) are realized as the creation of a pair of anyons.

This is the critical underlying feature which gives rise to the properties mentioned

above. Thus, the errors can be corrected by annihilating the anyons, connecting the

two through a topologically trivial loop which is contractible to a point. Some gate

operations can be realized by moving anyons through topologically non-trivial

loops. Such encoding schemes have several desirable features: high feasibility,

requiring only nearest-neighbor interaction; robustness to local perturbations; and

access to topological operations.

Since the underlying Hamiltonian that supports anyons is not the natural Hamil-

tonian of a molecule in a magnetic field, anyonic systems are not directly

implementable in an NMR system. However, there has been an experimental dem-

onstration of the toric code [63], an example of quantum double models. Feng

et al. [68] took a state preparation approach. Instead of realizing the Hamiltonian of

the toric code, they prepared its ground state, which is a highly entangled state. This

approach cannot realize all the properties of the toric code, notably the protection of

the ground states by the energy gap. However, it can be used to study the properties of

the codespace (the grounds state) that are independent of the Hamiltonian. Particu-

larly, how those properties behave under non-ideal noise and whether we have

sufficient control to realize the braiding operations on the codespace with current

technology. With the state preparation approach, Feng et al. [68] simulated a small

instance (six-qubit system) of the toric code [69] and demonstrated operations

equivalent to the creation, manipulation, and braiding operations of anyons in the

toric code system. The experiment showed that we have a sufficient control to realize

such operations. Similar experiments were also performed in quantum optics

[70, 71]. Extending such experiments, we can also explore the path independence

property of anyonic braiding operations with NMR. Such small-system experiments

of NMR QIP make small steps towards experimental TQC.

3.3 DQC1

While liquid-state NMR was the first test bed for QIP, objections about the

‘quantumness’ of this platform were raised early on due to the amount of noise in

the system. One objection [72] was that liquid-state NMR systems at room tem-

perature could not produce entanglement—Schrodinger’s “characteristic trait of

quantum mechanics” [73]—and are therefore not quantum in the real sense of the
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word. To challenge that idea, Knill and Laflamme [74, 75] came up with an

algorithm which is specifically tailored to NMR systems. The algorithm called

Deterministic quantum computing with 1 qubit (DQC1) was designed for a proces-

sor that has highly mixed input states, intermediate unitary operations, and ensem-

ble readout. The input state has n spins in the maximally mixed state and one

pseudo-pure spin.

For simplicity, we describe a specific version of the DQC1 algorithm for

estimating the normalized trace of a 2n � 2n unitary matrix. This task is expected

to be hard to compute (i.e., it scales exponentially with n) due to the exponential

number of elements in the sum.4 Consider the circuit in Fig. 8; the input is the nþ 1

qubit state,

1

2nþ1
2E
��0� 

0
��þ 1� Eð ÞI� �
 I
n

�
: ð21Þ

We call the first (pseudo-pure) qubit the control and the other n maximally mixed

qubits the target. The output is

1

2nþ1
2E
��0� 

0
��
 I
n

� �
þ 1� E

2nþ1

���1i 1
��
 UnI


nU{
n þ

��1� 
0
��
 UnI


n þ ��0� 
1
��
 I
nU{

n

�
:

� ð22Þ

Fig. 8 The DQC1 circuit for evaluating the normalized trace of a unitary matrix with 2n diagonal

elements. The output state shown by Eq. (23) on the control qubit is measured to estimate the

normalized trace of U. This task is believed to be computationally hard for a classical computer

4 The argument regarding the number of elements to be summed is somewhat simplistic, since we

only require an estimate. Nevertheless, there is good reason to expect the computation scale

exponentially with n [78].
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Tracing out the target, we get the final state for the control,

ρ c
f ¼ 1

2
I þ 1

2nþ1
Re Tr Unð Þ½ �σx þ 1

2nþ1
Im Tr Unð Þ½ �σy: ð23Þ

The readout hσx i and h σyi is natural for NMR. We assume that U has an efficient

description in terms of a quantum circuit so that the algorithm is relatively easy to

implement.

To prepare the initial state, it is possible to use the thermal state and depolarize

the n target qubits. One way to achieve this is to rotate them into the x–y plane and
then apply a gradient to the magnetic field. The gradient randomizes the phase and

the target system is left in a maximally mixed state.

The DQC1 computational complexity class is the class of problems that can be

solved efficiently using the DQC1 model. This class is unchanged even if we allow

a constant k pseudo-pure qubits (DQC-k), instead of a single pseudo-pure qubit. To

show that a processor has the computing power to solve problems in this class, it is

sufficient to show that it can solve a single problem which is complete for this

class.5 The first experimental implementation of a complete problem for DQC1 was

an algorithm for approximating the Jones polynomial at the fifth root of unity

[76, 77], which is a problem derived from knot theory. Details of the problem are

given in Ref. [77]; for our purposes, it is sufficient to note that the algorithm is a

special case of the algorithm in Fig. 8. The unitary gate Un is the braid represen-

tation of the relevant knot, and the Jones polynomial at the fifth root of unity is

approximated using the weighted trace of Un, a block diagonal matrix in the

computational basis. The exact structure of the relevant matrices Un (as n grows)

makes the problem complete for DQC1.

The algorithm requires two pseudo-pure qubits, so the target system is prepared

in the state

1

2n
2E0

��00� 
00

��þ 1� E0ð ÞI� �
 I
n�1
�
: ð24Þ

As noted above, this does not change the complexity class. The matrix Un is block

diagonal and the pseudo-pure qubit on the target system is rotated so that the final

result is a weighed sum of the trace of the two blocks. The experiment [76] was

performed on trans-chrotonic acid, a 4-qubit molecule prepared in an initial state of

two pseudo-pure qubits and two maximally mixed qubits. The aim was to distin-

guish between six distinct Jones polynomials corresponding to braid representa-

tions encoded in the two blocks of the 8� 8 unitary matrix.

Decoherence was a major source of noise in the experiment. To compensate, the

reference spectrum was measured using a similar experiment with the identity

instead of the controlled unitary. The other sources of error were gate fidelities;

5 Strictly speaking, it should also be scalable.
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these were maximized using GRAPE [17]. The algorithm was implemented for

18 different braids that had to be divided into six different groups corresponding to

the six distinct values of the Jones polynomials. The results gave a 91% success

rate at distinguishing different values.

While this experiment demonstrates good control, it is not clear how far it is

possible to scale the number of qubits with similar gate fidelities. The issue of noise

in DQC1 is problematic, since there is no known error correction procedure within

this scheme. It is not yet known at which point this approximation algorithm fails

due to errors.

The DQC1 model undermines the claim that entanglement is the essence from

which quantum computer derive their power. It is known that for any bipartite cut,

the DQC1 algorithm can generate only a small amount of entanglement [78]. Per-

haps more importantly, in the trace estimation algorithm, the control is never

entangled with the target. Since entanglement seems to play a major role in pure

state QIP, it was suggested [74, 78] that a more general form of quantum correlation

called quantum discord [79, 80] plays a similar role to in DQC1. Studies on the

relation between quantum discord and quantum computing were extended to other

measures with some success [79]. One issue with these quantities is that they are

usually hard to calculate. However, a DQC1 algorithm can be used for calculating

one quantum correlation measure called the geometric discord [81]. An experiment

for measuring the geometric discord in DQC1 was also implemented in NMR using

similar methods to the experiment for estimating the Jones polynomial [81].

3.4 Foundation

One of the first suggested uses for quantum computers was to test the foundations of

quantum mechanics [82]. One may say that fault-tolerant quantum computers will

be the ultimate test of the theory, but for the time being simpler experiments have

been carried out on small quantum processors. In NMR, such tests are sometimes

problematic due to the major downsides of ensemble QIP: the noise and the lack of

projective measurements. Nevertheless, a number of experiments related to foun-

dations have been carried out on NMR processors. In the following, we describe

two experiments, a state-independent test of contextuality that avoids the need for

pure states and a weak measurement protocol that overcomes the inability to

perform projective measurements.

3.4.1 Quantum Measurement and the Von Neumann Scheme

Both of the protocols below rely on a particular implementation of the von

Neumann measurement scheme. For a Pauli observable σn̂ and a spin ½ system S

initially in the state α "j i þ βj #i (written in the eigenbasis of σn̂ ), a projective

measurement has the following properties: (a) The outcome is 	1 with probability
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given by the Born rule P þ1ð Þ ¼ αj j2, P �1ð Þ ¼ βj j2 and (b) the state of S after the

measurement is the corresponding eigenstate of σn̂ .
In the von Neumann scheme, the measurement result is recorded on an ancillary

system called the meter, in our case a spin ½ initially prepared in the
��0i state. The

measurement is a unitary interaction between the meter and the system such that,

after the interaction, the state is α "j i��0i þ βj #i��1i. We can then say that a meter

readout of
��0 i corresponds to a + 1 or " result and

��1 i corresponds to a� 1 or #
result. In NMR, the meter can interact with single quantum system and then we take

the average of this meter.

3.4.2 Testing Contextuality

One difference between quantum and classical systems is that measurements are

inherently probabilistic and disturbing. Since the early days of quantum theory

there were suggestions that the probabilistic nature of the theory is due to an

incomplete description and that an underlying ontological hidden variable can be

used to make the theory deterministic. Theoretical results give bounds often called

no-go theorems regarding the possibility of an underlying hidden variable theory,

the most famous of these is Bell’s theorem [83] regarding local realism. Another

theorem often attributed to Bell is the Kochen-Specker theorem regarding

contextuality [84]. Simply stated, the theorem shows that a hidden variable theory

cannot give probabilities to measurement results independently of the context of

these measurements.

Contextuality inequalities involve degenerate observables and must therefore

apply to systems with at least three Hilbert space dimensions. They usually involve

specific states that violate the inequality, usually pure states. Cabello [85] came up

with a simple inequality which is state independent and therefore more natural for

NMR. The inequality involves measurements on two spins. There are nine observ-

ables (the entries in Table 1) and six correlation measurements (the rows and

columns of Table 1). Each measurement is a correlation measurement of the

Table 1 The six

measurements and nine

observables for the test

of contextuality

c1 c2 c3

r1 IZ ZI ZZ +1

r2 XI IX XX +1

r3 XZ ZX YY +1

+1 +1 �1

For any quantum states, the measurements yield the same

deterministic result. However, if one tries to assign a

deterministic value to each of the nine observables, the

table cannot be completed. A simple analysis shows that

if one assigns values to each observable, the measure-

ments obey an inequality β¼ r1 + r2 + r3 + c1 + c2�c3� 4;

however, for any quantum state we get β¼ 6
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product of three commuting (or co-measurable) observables O1, O2, O3 (e.g., R1

¼ IZ � ZI � ZZ). Now let us assume that quantum mechanics is an incomplete theory

and that there is a more complete description of nature (a hidden variable) such that

we know that the outcomes of independent measurements of these observables

should be o1, o2, o3. Since the observables commute, we know that the result of a

measurement of the product O1O2O3 must give the outcome o1o2o3. Looking at

Table 1, we can see that these products (for each row or column) are proportional to

the identity, so regardless of the state they should give +1 for all row measurement

and the two column measurements c1, c2 and �1 for the final column c3. Adding
these up, we get β ¼ r1 þ r2 þ r3 þ c1 þ c2 � c3 ¼ 6. However, if we try to give

values to each measurement (i.e., each observable in the table), we cannot possibly

reach the value of 6. The upper bound is 4. So, the inequality reads β ¼ r1 þ r2
þr3 þ c1 þ c2 � c3 � 4 for all non-contextual hidden variable theories.

An experimental test of these inequalities requires six correlation measurements

(the rows and columns of Table 1). In NMR, these correspond to different exper-

imental setups. Each measurement is a set of three unitary interactions with a single

meter spin. Each single interaction corresponds to the von Neumann scheme

presented above; however, since the spin ½ meter is modular i.e., two π rotations

are equivalent to no rotation, the meter only records the correlations. Aþ 1 result

on the meter corresponds to an even number ofþ1 results for the three observables

anda� 1 result corresponds to an odd number. The readout is an ensemble average.

Since the experiment can be done with any initial system state, including the

maximally mixed state, the model requires only that the meter spin is pseudo-

pure. It is therefore within the class DQC1 (see Sect. 3.3).

The experiment [86] was performed using a macroscopic single crystal of malonic

acid with ~3% of the molecules triply abled with 13C. The gates were generated

using GRAPE with an average fidelity of 99.8% and time of 1.5 ms. Following the

six experiments, a value of β ¼ 5:2	 0:1 was obtained, giving a violation of more

than 25% with respect to the maximal classical value. Deviations from the predicted

value, β ¼ 6, can be explained by taking decoherence into account.

3.4.3 Weak Measurements

Weak measurements are performed by taking the standard von Neumann measure-

ment and making the interaction very weak. The result of such a measurement is a

shift of the meter’s wave function by a value proportional to the expectation value

of the system S. An interesting phenomenon occurs if after the weak measurement,

S is measured in a different basis. In this case the shift is proportional to a weak

value ϕ
��σn̂ ��ψ� 

= ϕ
��ψ� ��, where ��ψ i is the preparation, ��ϕ i is the post-selection (i.e.,

the state corresponding to the result of the final measurement) and σn̂ is the weakly

measured observable. For non-trivial post-selection, the weak value can be complex

and arbitrarily large.

The challenge in NMR is post-selection. Since there are no projective measure-

ments, it is impossible to post-select those molecules that gave the desired result for
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the final measurement. However, by using the von Neumann procedure for post-

selecting, and furthermore getting rid of the systems that fail post-selection by

adding noise, it is possible to perform the full weak measurement [87].

Large and complex weak values are a signature of non-trivial post-selection. In an

experiment [87], the final signal is diminished by ϕ
��ψ� �� �� due to the noise added in

the post-selection step. This makes very large weak values hard to observe. However,

complex weak values are not difficult to observe as long as ϕ
��ψ� �� �� is not too small.

In addition, decoherence causes the calculated weak values to be slightly lower than

the ideal result, this is more apparent as ϕ
��ψ� �� �� grows. Overall, in the experiment

weak values of 2.3 (compared with a maximal eigenvalue of 1) as well as complex

weak values of magnitude 1 were observed with good precision. Attempts to observe

larger weak values did not reach the theoretical predictions due to decoherence and

relatively strong coupling that had to be used to counter the small signal.

3.5 Quantum Simulation

Simulating a generic quantum system is believed to be a hard problem for a

classical computer. Due to the exponential size of the Hilbert space as a function

of subsystems a simulation may require an exponential number of parameters that

need to be stored and updated. In 1982 Feynman suggested that a controllable

quantum system can be used to simulate other quantum systems [88]. Feynman’s
idea was one of the motivating forces for quantum computing. However, in many

cases, quantum simulators are easier to construct than universal quantum com-

puters. In the past decades, progress has been made in making the first steps in using

one quantum system to simulate another one [89]. In the following, we outline a few

quantum simulation experiments done in NMR.

3.5.1 Digital Quantum Simulation of the Statistical Mechanics

of a Frustrated Magnet [90]

The straightforward approach to simulate the evolution of a quantum system is by

directly implementing a similar Hamiltonian on a different system. This method

often called analog [91] requires the design of a very specific physical system that

can simulate a very specific set of Hamiltonians. In digital quantum simulations, the

initial state is represented by qubits and the time evolution is approximated by

applying a sequence of short-time unitary gates [92]. The digital simulators are

more general and usually require better control, often to the level of universal

quantum computers.

To study the ground state of an Ising Hamiltonian, it is possible to use an

adiabatic (analogue) method; however, this method requires that the energy gap

between the ground state and first excited state is large enough to avoid excitations.
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In general it is very hard to determine energy gap efficiently [93]. In the digital

simulation [86], the ground state is prepared using a quantum circuit which is

composed efficiently from the Hamiltonian.

An Ising Hamiltonian for 3 spin ½ particles is given by [94]

H ¼ J Z1Z2 þ Z2Z3 þ Z1Z3ð Þ þ h Z1 þ Z2 þ Z3ð Þ; ð25Þ

where Zi is the Pauli-Z matrix for the spin i. For J > 0, the coupling is anti-

ferromagnetic, and the spins tend to align in opposite direction to minimize energy.

On the other hand, h has the effect of aligning spins in same direction. These two

opposite forces result in a frustrated ground states and a very rich phase diagram.

At h ¼ 0, there are six possible configuration of ground state possible i.e., the

ground state is sixfold degenerate, so the entropy of the system can be non-zero

even at T ! 0. Now if by changing h a little bit in either positive or negative

direction, three of the six configurations are preferred. By increasing h further such
that it becomes the dominant factor in the Hamiltonian, all the spins will align in the

same direction and the ground state will be non-degenerate at h ¼ � 2J and 2J,
see Fig. 9. The purpose of the simulation was to study the magnetization, Z1 þ Z2

Fig. 9 (a) The six possible configuration for the ground state of Ising spin chain with a magnetic

field h¼ 0, (b) the configuration ath ¼ 	2J, and (c) The configurations preferred as a function of h
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þ Z3 and entropy equals to Tr(ρ log ρ), where ρ is the density matrix of Ising spin

chain of the three spin system as a function of h.
The total magnetization as a function of h is a step function. For h < �2J the

spins all the spins will point upwards, giving maximum magnetization in upward

direction. For �2J < h < 0, the tendency to align anti-parallel due to the first part

of the Hamiltonian makes one out of three spins to point downwards, similarly, for

0 < h < 2J, two of three spins face downwards and for h > 2J, all of them point

downwards. For h ¼ 0, all six combinations are equally likely, the system has zero

net magnetization.

As for entropy, in the regionh < �2J and h < 2J all the spins are aligned in the
same direction the entropy is minimal, similarly in �2J < h < 2J (excluding the

point h ¼ 0) the ground state is threefold degenerate and the entropy is higher. The

maximum entropy being at h ¼ 0. Two more points with higher entropy are

h ¼ �2J and h ¼ 2J.
In the experiment 13C-labeled trans-crotonic acid was used as the four qubit

processor. Three carbons were used to simulate the three spin chain while the fourth

one was used to measure the expectation value of various Pauli operators at the end

of the protocol and reconstruct the density matrix. This way of reading off elements

from the fourth carbon’s spectra was useful due to its well resolved spectra

compared to the other three. The starting state was a coherent encoding of the

thermal states [95, 96]. Different unitary evolutions corresponded to variation in the

Hamiltonian parameters. These were decomposed into single-qubit gates and

2-qubit evolutions so that the variation in the Hamiltonian parameters required

only phase shift in the applied RF pulses. This method exploits the ability to

manipulate phases in the RF pulses to high precision (resolution of 104 per rad).

Since entropy is a non-linear function of the state, small errors in the density matrix

result in higher errors in the calculated entropy.

3.5.2 Quantum Simulation of Entanglement in Many Body

Systems [79]

At zero temperature all the thermal fluctuations resulting in phase transition cease,

but as seen in the previous experiment, quantum fluctuation can still occur. These

quantum fluctuations give rise to quantum phase transitions (QPTs), under specific

conditions. These conditions can be tuned by controlling a parameter in the

Hamiltonian of the system, for example, the magnetic field. The result of these

quantum fluctuations is an abrupt change in the ground state wave function [97]. It

is not always possible to keep track of the ground state wave function to see when

the QPT has occurred, but one can use different properties which are easier to track.

One quantity that plays a role is entanglement; however, measuring entanglement

in a many-body system is a challenging task [98, 99]. In Ref. [79], the ground state

of an XXZ spin chain [100] was simulated and the geometric entanglement

(GE) was measured to study QPTs.
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The GE of a pure state
��Φi is given by the expression [101, 102]:

E
��Φi ¼ � log2Λ

2
max, with Λmax ¼ max

Ψ
Ψ
��Φ� �� �� ð26Þ

Where maximization is over all pure product states. Λmax can be interpreted as the

distance from the closest product state
��Ψi which is equivalent to the probability to

end up in this state after performing the optimal local projective measurement on

every spin. Experimentally GE can be obtained by an iterative method, which

converges very quickly to its maximal value as a function of number of iterations.

The iterative method is: choose a random local measurement basis and pick one

direction for each spin. Vary the basis of the ith spin, to find the measurement that

yields the largest measurement probability. Next, move on to the next, iþ 1ð Þth spin
and perform the same procedure. Repeat the procedure by sweeping back and forth

until the global maximum is reached.

The XXZ spin chain is described by the Hamiltonian

HXXZ ¼
XN
i¼1

XiXiþ1 þ YiYiþ1 þ γZiZiþ1ð Þ ; ð27Þ

Where Xi, Yi, and Zi denote the Pauli matrices acting on ith spin, γ is a control

parameter and the boundary condition are periodic i.e., N þ 11. The XXZ chain

can be solved exactly [100] and its ground states have a rich phase diagram. For

γ < �1, the ground state is in a ferromagnetic Ising phase. At γ ¼ �1, first-order

phase transition occurs and from�1 < γ � 1 the ground state is in a gapless phase.

Again at γ ¼ 1 there is an1 order phase transition and for γ > 1 the ground state is

in the anti-ferromagnetic phase [103].

The calculation of ground state energy shows discontinuity at γ ¼ �1, whereas it

is analytic across γ ¼ 1 and so is any correlation function. As a consequence

measures based on correlation functions are insensitive to the 1 order transition.

GE on contrast shows a jump at γ ¼ �1 and a cusp (i.e., the derivative is

discontinuous) at γ ¼ �1, making it a better measure to study QPTs [104].

In principle, the closest product state is not known and the iterative method

described above provides an efficient method to find the maximum overlap and

hence the GE. The advantage of measuring GE was that both first and 1 order

quantum phase transition were detected, with the transition points being when

either GE or its first-order derivative is discontinuous. On the other hand, all the

traditional statistical-physical methods for QPTs, such as correlation functions and

low-lying excitation spectra, will be continuous at the 1 order phase transition,

since the ground state energy is continuous.

The experiment was performed using the four carbons in crotonic acid dissolved

in acetone-d6. Various ground states could be prepared by only varying single spin

rotations and the quantum gates were prepared using the GRAPE algorithm

[17]. For γ < �1, the experimental value of Λ2
i was measured to be 0.92, 0.048,
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and 0.019 compared to theoretical values of 1, 1/16, and 0 respectively. A polyno-

mial fit of Λ2
2 and Λ2

3 shows that they intersect at γ ¼ 0:92 compared with the

theoretical value, γ ¼ 1. To account for this discrepancy an inverse decay parameter

was added to experimental data. The new experimental value decay into account

gives an intersection of Λ2
2 and Λ2

3 at γ ¼ 1:02.

3.5.3 Quantum Data Bus in Dipolar Coupled Nuclear Spin Qubits [105]

In both (quantum and classical) forms of computation and communication, one

important task is to transfer an arbitrary state from one (qu)bit to another. Many

quantum state transfer (QST) protocols exists [106–109] such as applying a SWAP

gate between the qubits. The SWAP gate can be applied by evolving the qubits of

interest under the dipolar coupling, but experimentally it is difficult when the spins

cannot be addressed individually, for example, in large-size solid state systems. In

Ref. [105] a QST protocol was implemented by exploiting a scheme of applying

gates iteratively to only two qubits at one end of the qubit chain, irrespective of the

size of the chain. Each iteration transfers part of the information from the point of

origin to the desired location in the chain, and with fidelity of transfer reaching

unity with more number of iteration performed. Dipolar couplings of a liquid

crystal sample were used. These are much stronger than the scalar couplings,

making gate time significantly shorter [110]. The benefit of this scheme is that

one does not need a global control of the spin, or individual control of all the spins

in the chain. Two individually addressable qubits are sufficient to perform this

protocol.

The aim is to transfer an arbitrary state α
��0i þ β

��1i from j to N in a N-spin

system. The Hamiltonian for the spins up to N � 1 is given by

H ¼ 1

2
π

XN�1ð Þ

j, k¼1;k>jð Þ
Djk 2σ j

zσ
k
z � σ j

xσ
k
x � σ j

yσ
k
y

� �
ð28Þ

where σjx;y; z represents the Pauli matrices with j representing the spin on which it

acts. Evolving the N-1 spins under this Hamiltonian for time τ gives Uτ ¼ e�iτH

with Uτ 0j i ¼ eiθ 0j i ; Uτ jj i ¼
XN�1

k¼1

ak
��ki ð29Þ

where 0j i and
��ji represent all spin pointing up and all spins up except the spin

j pointing down, respectively. The bold characters indicate multiple spin state. Now

the main iterative gate is carefully chosen such that after n iterations the following

transformations occur α
��0
 i þ β þ jj i� ! αeinθ

��0i þ β
��Ni, where einθ is a known

phase induced by the gate Uτ. Since the process is unitary we can invert it to
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transfers arbitrary state from position N to j. Hence one can prepare an arbitrary

state at any location of the spin chain by having control on only two spins of the

chain. Another useful extension of this method is to be able to prepare an entangled

state between any two locations of the spin chain. This can be easily achieved by

slightly changing the way in which the iterative gate is calculated.

The experiments were performed on a 4 spin chain provided by the four protons

of the orthochlorobromobenzene (C6H4ClBr) dissolved in a liquid crystal solvent

ZLI-1132. We transferred σx, σy, and σz from spin 1 to spin 4 on the four spin system

we have, the experimental fidelities were 0:654	 0:046, 0:660	 0:052, and 0:693
	0:037 respectively after 100 iterations. The next part of experiment involved

entangled state where spin 1 and 4 are entangled. The experimental fidelity was

calculated as 0.77. The major sources of imperfections are attributed to the inho-

mogeneities of the magnetic field, imperfect implementation of the GRAPE pulses,

and to the decoherence.

4 Conclusion and Perspective

Liquid-state NMR, one of the first proposals for quantum processors [11, 12], has

clearly demonstrated major steps towards the realization of ideas and concepts of

quantum information science in the laboratory. However, NMR is an unlikely

candidate for a quantum computer due to the lack of scalability in practice. Despite

impressive control, the ratio of gate time to decoherence is still too small as the

sizes of systems grow to more than a dozen qubits. One way to address this

limitation is to extend liquid-state NMR to solid-state NMR, where various dynam-

ical nuclear polarization techniques can be employed and the speed of gate oper-

ations can be increased via much larger dipolar couplings. Another way to achieve

scalability is to involve electrons as actuators in electron spin resonance (ESR)

systems [111], to achieve indirect control of nuclear spins in a much faster

approach [112].

Even if other platforms will be used to implement an eventual quantum com-

puter, NMR still plays a leading role in progressing towards this goal. The exper-

iments and techniques reviewed in this chapter should convince the reader that most

quantum computing schemes within seven qubits or less are reasonably straight-

forward to implement in NMR. The control demonstrated in NMR exceeds the

capabilities of any other system used today. The advanced techniques developed in

NMR quantum computation, such as GRAPE pulses and pulse fixing, have been

extended to many other systems successfully to realize high-fidelity control. The

lessons learned in the history of NMR quantum computation have and continue to

be indispensable in the development of experimental quantum computation.
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Heat Bath Algorithmic Cooling with Spins:
Review and Prospects

Daniel K. Park, Nayeli A. Rodriguez-Briones, Guanru Feng,

Robabeh Rahimi, Jonathan Baugh, and Raymond Laflamme

Abstract Application of multiple rounds of Quantum Error Correction (QEC) is an

essential milestone towards the construction of scalable quantum information

processing devices. The requirements for multiple rounds QEC are high control

fidelity and the ability to extract entropy from ancilla qubits. Nuclear Magnetic

Resonance (NMR) based quantum devices have demonstrated high control fidelity

with up to 12 qubits. On the other hand, the major challenge in the NMR QEC

experiment is to efficiently supply ancilla qubits in highly pure states at the

beginning of each round of QEC. Purification of spin qubits can be accomplished

through Heat Bath Algorithmic Cooling (HBAC). It is an efficient method for

extracting entropy from qubits that interact with a heat bath, allowing cooling

below the bath temperature. For practical HBAC, hyperfine coupled electron-

nuclear spin systems are more promising than conventional NMR quantum pro-

cessors, since electron spin polarization is about 103 times greater than that of a

proton under the same experimental conditions. We provide an overview on both
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theoretical and experimental aspects of HBAC focusing on spin and magnetic

resonance based systems, and discuss the prospects of exploiting electron-nuclear

hyperfine coupled systems for the realization of HBAC and multiple-round QEC.

Keywords Electron spin resonance • Electron nuclear double resonance •

Quantum information processing • Heat bath algorithmic cooling

1 Introduction

Quantum Information Processing (QIP) has the potential to perform exponentially

faster computation and revolutionize current technology by harnessing the systems

governed by the laws of quantum mechanics. To reach this goal, we need to be able

to control imperfections and imprecision occurring when theoretical ideas are

implemented in the physical world. Quantum Error Correction (QEC) is a theory

that aims to bridge this. The first steps towards developing experimental QEC have

been taken, but there is still more to be done. Application of multiple rounds of

QEC is an essential milestone towards the construction of scalable QIP devices, but

experimental realizations of it are still in their infancy. The requirements for

multiple round QEC are high control fidelity and the ability to extract entropy

from ancilla qubits. Nuclear Magnetic Resonance (NMR)-based quantum devices

have demonstrated high control fidelity with up to 12 qubits [1]. Hence, these

devices are excellent test beds that can be explored in the lab today for the ideas

of quantum control and QEC. More details on NMR QIP can be found in [2, 3]. The

major challenge in the NMR QEC experiment is to efficiently supply ancilla qubits

in highly pure states at the beginning of each round of QEC. This challenging

requirement was recently alleviated by Criger et al. in [4]. They showed that QEC

could still suppress the error rate using mixed ancilla qubits as long as the
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polarization or purity of the ancilla qubits is above certain threshold value. Purify-

ing qubits in NMR can be obtained through Heat Bath Algorithmic Cooling

(HBAC). It is an efficient method for extracting entropy from qubits that interact

with a heat bath, allowing cooling below the bath temperature. In a nutshell, HBAC

recurrently applies two steps: Given n number of system qubits each with polari-

zation E0, cool n� m qubits by compressing entropy into m qubits. The polarization

ofm qubits is exchanged with the heat bath polarization Eb. By repeating these steps,
n� m qubits can attain a final polarization Ef that is greater than Eb. There is an

asymptotic limit for Ef that depends on n and Eb. Proof-of-principle experiments for

3-qubit HBAC have been performed in a solid state NMR (SSNMR) system,

demonstrating sufficient level of control to execute multiple rounds of HBAC.

However, under typical experimental conditions, nuclear spin polarization at ther-

mal equilibrium is very small, and therefore precise control over tens of nuclear

spin qubits is required for reaching polarization of order unity on one qubit. For

practical HBAC and QEC, hyperfine-coupled electron-nuclear spin systems are

more promising than conventional NMR Quantum Computing (QC), since electron

spin polarization is about 103 times greater than that of a proton under the same

experimental conditions. This is due to the higher gyromagnetic ratio of the electron

spin. Another consequence is that the electron spin relaxation rate is typically about

103 faster than that of nuclear spins. Faster spin relaxation and higher polarization

makes the electron an excellent heat bath for cooling nuclear spins.

In this review, we provide an overview on both theoretical and experimental

aspects of HBAC focusing on spin and magnetic resonance-based systems. The

chapter is organized as follows. The challenge of preparing nearly pure ancilla

qubits in conventional NMR system is discussed in Sect. 2. Section 3 discusses the

theory of HBAC in detail. Section 4 reviews SSNMR experiments that demon-

strated sufficient control fidelity for realizing HBAC and motivates the use of

electron spins by explaining the shortcomings of NMR QC. Section 5 introduces

electron-nuclear spin ensemble QC and the prospects of implementing HBAC in

this type of system.

2 State Preparation Challenge in Ensemble Quantum
Computation

NMR QIP is one example of ensemble quantum computation models, where

an ensemble of identical quantum systems is manipulated in parallel, and the

only measurable quantities are expectation values of certain observables. That is,

there is no access to projective measurement. In this section, we review

concepts related to spin polarization and present the challenge of preparing nearly

pure spin qubits.
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2.1 Polarization

For a spin at temperature T, the occupancy of a state with energy E is calculated by

the Gibbs distribution n Eð Þ ¼ e�E=kBT=Z, where kB is the Boltzmann constant and

Z is the partition function. The polarization E is defined as the population difference
between two energy levels normalized by the total number of spins. When the

Zeeman energy dominates the energy splitting, the polarization of a spin-1/2 system

can be expressed as

E ¼ n E0ð Þ � n E1ð Þ ¼ tanh
ΔE
2kBT

� �
¼ tanh

hγB0

2kBT

� �
; ð1Þ

where ΔE is the energy difference between the two levels, γ is the gyromagnetic

ratio, and B0 is the strength of the external magnetic field. Equation (1) establishes

the relationship between polarization and gyromagnetic ratio, magnetic field

strength, and temperature.

2.2 Pseudo-Pure State

The density matrix describing a spin ensemble at thermal equilibrium can be

written in the eigenbasis of σz, corresponding to the direction of the applied static

magnetic field, as

ρ ¼ 1

2

1þ E 0

0 1� E

� �
¼ 1

2
þ Eσzð Þ; ð2Þ

where  is the unit matrix and σz is the Pauli operator. For n spin qubits, the thermal

equilibrium state can be transformed to a pseudo-pure state through non-unitary

processes using standard NMR techniques of temporal or spatial averaging [5, 6]:

ρn
pps ¼ 1� αð Þn þ α

��ψ� ψ
���
; ð3Þ

α ¼ 1þ Eð Þn � 1

2n � 1
; ð4Þ

where jψihψ j is a pure state, n is 2n � 2n normalized unit matrix, and α quantifies

the purity of the state. A typical NMR experiment operates at B0 � 7 T and room

temperature in which nuclear spin polarizations are extremely small (E � 10�5 for

proton). Moreover, in the absence of methods like algorithmic cooling which can

compress entropy, the signal of a pseudo-pure state decreases exponentially in the

number of qubits.
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2.3 NMR QEC with Mixed Ancilla Qubits

In [4], Criger et al. showed that even if ancilla qubits are not pure, augmented QEC

can still suppress the error rate as long as the polarization of ancilla qubits exceeds

certain values which depend on the error correction code. For example, in the

conventional 3-qubit QEC code for phase flip error, one can imagine that two

ancilla qubits in the NMR experiment are in mixed states with polarizations E1
and E2, respectively. The probability amplitude of the lowest energy state of the

two qubit has to be greater than 0.5 in order for the augmented QEC to suppress the

error rate and improve the fidelity of a state exposed to the noisy channel, i.e.,

1þ E1ð Þ 1þ E2ð Þ=4 > 0:5. If E1 ¼ E2 ¼ E, then E >
ffiffiffi
2

p � 1 � 0:41must be satisfied.

This is far above what can be achieved in a reasonable NMR setup. One can

imagine having a SSNMR setup in which the experiment can be carried out at

low temperature. However, in order to meet the polarization requirement given

above, the temperature must be below 17mK for 1H at a field of 7 T. As the

temperature is lowered, the nuclear T1 relaxation time is increased and therefore the

wait time for thermal state initialization can become impractically long.

In the following sections, we present the main ideas and experimental realiza-

tions of HBAC, which is a promising tool for preparing nearly pure spin qubits in

experiments that are feasible with today’s technology.

3 Theory of Algorithmic Cooling

Purification of quantum states is essential for realizing fault tolerant quantum

information processors. The procedure is needed not only for initializing the

physical system for many algorithms, but also to dynamically supply fresh pure

ancilla qubits for error correction. For quantum computation models that rely on

ensemble of identical systems such as NMR or Electron Spin Resonance (ESR) QC,

acquisition of nearly pure quantum states in a scalable manner is extremely

challenging [7]. A potential solution is algorithmic cooling (AC), a protocol

which purifies qubits by removing entropy from subset of them, while increasing

the entropy of the rest [8, 9]. An explicit way to implement this idea in quantum

computations was given by Schulman et al. [10]. They showed that it is possible to

reach polarization of order unity using only a number of qubits which is polynomial

in the initial polarization. However, their method was limited by the Shannon

bound, which imposes a constraint on the entropy compression step in closed

systems.

This idea was further improved by adding contact with a heat bath to pump

entropy out of the system and transfer it into the heat bath [11], a process known as

Heat Bath Algorithmic Cooling (HBAC). Based on this new idea, many practical

cooling algorithms have been designed [12–16]. In short, HBAC purifies qubits by
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applying alternating rounds of entropy compression and pumping out entropy from

the system of interest to a thermal bath. Theoretical details are explained below.

As an example, we consider a system consisting of a string of qubits: one target

qubit (a spin-1/2) which is to be cooled, a spin-l system which aids in the entropy

compression, and m reset qubits that can be brought into thermal contact with the

heat bath. When l is a half integer, having spin-l is equivalent to having n
0 ¼ log2d

qubits, where d is the dimension of the Hilbert space of spin-l. The spin-1/2 and the
spin-l are referred to as computational qubits (Fig. 1).

The idea of the first step of HBAC is to redistribute the entropy among the string

of qubits by applying an entropy compression operation U. This is a unitary

(reversible) process that extracts entropy from n computational qubits as much as

possible and moves it tom reset qubits, resulting in the cooling of the computational

qubits while warming the reset qubits (Fig. 2).

In the second step, m reset qubits are brought into thermal contact with a

heat bath and reset to the cold bath temperature, resulting in the cooling of the

total nþ m qubit system. This step is equivalent to tracing over the reset qubits and

replacing them with qubits from the heat bath. The heat bath is assumed to be very

large so that the action of qubit–bath interaction on the bath is negligible (Fig. 3).

The total effect of these two steps on a system with initial state ρ can be

expressed as follows:

ρ!C ρ
0 ¼ UρU{ ð5Þ

Fig. 1 Heat bath algorithmic cooling can cool the target spin-1/2 by compressing entropy into

d-dimensional spin-l (equivalent to a string of n0 ¼ log2d qubits if l is a half integer), and

exchanging the entropy of spin-l with that of the reset qubits that are in contact with a cold heat

bath. The target spin-1/2 and the spin-l are referred to as the computational qubits
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ρ
0 !R ρ

00 ¼ Trm ρ
0


 �
� ρ�m

Eb ð6Þ

where C and R stand for compression and reset, Trm() is the partial trace operation

over m reset qubits, and ρEb ¼ 1
2

1þ Eb 0

0 1� Eb

� �
represents a qubit possessing

the heat bath polarization Eb.
These reversible compression and refreshing steps are iteratively applied until

the target qubit reaches the desired temperature, or the cooling limit is reached. The

physical requirements for reset and computational qubits are different. A reset qubit

should strongly interact with the bath in order to rapidly relax and attain the bath

temperature, and a computational qubit should have long relaxation time to remain

polarized after being cooled through entropy compression.

In [13], Schulman et al. introduced the optimal (optimal in terms of entropy

extraction per cooling step) algorithm for HBAC, the Partner Pairing Algorithm

(PPA). The PPA is explained in detail in the following section.

Fig. 2 Entropy compression step. A compression operationU raises the entropy on one side of the

system, while lowering it on the other. In the figure, the top part represents the string of qubits

before the compression. Dotted lines indicate redistribution of entropy among all qubits, resulting

in the separation of cold and hot regions as shown in the bottom part

Fig. 3 The refresh step.

The reset qubits are brought

into thermal contact with a

heat bath and the entropy of

the qubit system is reduced.

In the figure, two reset

qubits are used as an

example
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3.1 Partner Pairing Algorithm

Consider a system with n� 1 computational qubits and one reset qubit. Let ρ and

ρEb be the density matrices of the n qubits and of the reset qubit after contact with the

thermal bath, respectively. ρ can be partitioned into 2n�1 � 2n�1 blocks Mij by the

basis states {j0i, j1i} of the reset qubit:

ρ ¼

ρ11 ρ12
ρ21 ρ22

� �
ρ13 ρ14
ρ23 ρ24

� �
ρ31 ρ32
ρ41 ρ42

� �
ρ33 ρ34
ρ43 ρ44

� � � � �

⋮ ⋱ ⋮
� � � ρ2n�1, 2n�1 ρ2n�1, 2n

ρ2n, 2n�1 ρ2n, 2n

� �

0
BBBBBBBB@

1
CCCCCCCCA

¼
M11 M12

M21 M22
� � �

⋮ ⋱ ⋮
� � � M2n�1, 2n�1

0
BB@

1
CCA

ð7Þ

whereMij is the ij-block of ρ (for example,M11 ¼ ρ11 ρ12
ρ21 ρ22

� �
,M12 ¼ ρ13 ρ14

ρ23 ρ24

� �
,

and etc.)

Refreshing the reset qubit (Eq. (6)) has the effect of changing every blockMij to

M
0
ij as follows:

M
0
ij ¼

Tr Mij

� 
2

1þ Eb 0

0 1� Eb

� �
: ð8Þ

In the PPA, entropy compression operation permutes the diagonal elements of the

density matrix of the system, rearranging them such that states in increasing

lexicographic order have nonincreasing probability. For example, the probability

amplitude of states starting with 0 (0 . . . 00, 0 . . . 01, etc.) is increased while that of

states starting with 1 is decreased. This operation aims to increase the polarization

of the first qubit. The compression can no longer improve the polarization of the

first qubit once the states are already ordered as described above.

3.2 Illustrative Example: PPA for Three Qubits

We take a system of three qubits (one reset qubit and two computational qubits) as

an example to illustrate the PPA. ρ0 is the initial density matrix of the three qubit

system and without loss of generality, ρ0 is in a maximally mixed state, and the heat

bath has polarization Eb.
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First, contact between the reset qubit and the heat bath is established. Then, the

compression operator U permutes the probabilities of the basis states and sorts them

in nonincreasing order:

d ρ0ð Þ ¼ 1

8

1

1

1

1

1

1

1

1

2
66666666664

3
77777777775
!R d ρ

0
0


 �
¼ 1

8

1þ εb
1� εb
1þ εb
1� εb
1þ εb
1� εb
1þ εb
1� εb

2
66666666664

3
77777777775
!C d ρ

00
0


 �
¼ 1

8

1þ εb
1þ εb
1þ εb
1þ εb
1� εb
1� εb
1� εb
1� εb

2
66666666664

3
77777777775
; ð9Þ

where d(ρ) are the eigenvalues of ρ, and R and C stand for refresh and compression

steps, respectively. This compression is equivalent to swapping the first computa-

tional qubit with the reset qubit. After this iteration, the polarization of the first

qubit is increased from 0 to Eb. Upon repeating above two steps again, we effec-

tively swap the second computational qubit with the reset qubit that is at thermal

equilibrium with the bath:

d ρ1ð Þ :¼ d ρ
00
0


 �
!R d ρ

0
1


 �
¼ 1

8

1þ εbð Þ2
1� εb2

1þ εbð Þ2
1� εb2

1� εb2

1� εbð Þ2
1� εb2

1� εbð Þ2

2
66666666664

3
77777777775
!C d ρ

00
1


 �
¼ 1

8

1þ εbð Þ2
1þ εbð Þ2
1� εb2

1� εb2

1� εb2

1� εb2

1� εbð Þ2
1� εbð Þ2

2
66666666664

3
77777777775
: ð10Þ

In this iteration, the polarization of the first computational qubit remains the same,

while the polarization of the second qubit is increased from 0 to Eb. If the refresh and
compression steps are repeated once more,

d ρ2ð Þ :¼ d ρ
00
1


 �
!R d ρ

0
2


 �
¼ 1

8

1þ εbð Þ3
1þ εbð Þ2 1� εbð Þ
1þ εbð Þ2 1� εbð Þ
1þ εbð Þ 1� εbð Þ2
1þ εbð Þ2 1� εbð Þ
1þ εbð Þ 1� εbð Þ2
1þ εbð Þ 1� εbð Þ2

1� εbð Þ

2
66666666664

3
77777777775
!C d ρ

00
2


 �
¼ 1

8

1þ εbð Þ3
1þ εbð Þ2 1� εbð Þ
1þ εbð Þ2 1� εbð Þ
1þ εbð Þ2 1� εbð Þ
1þ εbð Þ 1� εbð Þ2
1þ εbð Þ 1� εbð Þ2
1þ εbð Þ 1� εbð Þ2

1� εbð Þ3

2
66666666664

3
77777777775
:

ð11Þ

In this iteration, the polarization of the first qubit increases to 1:5Eb � 0:5E3b.
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The gate representations of three entropy compression steps are shown in

Fig. 4a, b, and c, respectively. Three iterations complete the first round of 3-qubit

HBAC. In the next round, the required compression gates are alternating applica-

tions of the operations shown in Fig. 4b and c.

The evolution of the polarization of the first qubit under the PPAwith Eb � 1=2 is
shown in Fig. 5. The circuit asymptotically boosts the polarization on the first qubit

up to twice the heat bath polarization; this limit is discussed in the next section.

An interesting question is to know what is the maximum achievable cooling

using this method, and how many iterations of HBAC are necessary to obtain a

certain polarization.

3.3 Cooling Limit

Through numerical simulations, Moussa [17] (see also [13]) observed that if

Eb � 1=2n�2, where n is the number of computational plus reset qubits, the max-

imum polarization the target qubit can have is 2n�2 Eb. But when Eb > 1=2n�2, a

polarization close to one can be reached. Recently, the cooling limit of the PPA

(starting with completely mixed qubits) was solved analytically: the maximum

polarization of the target qubit can be expressed as a function of the number of

computational and reset qubits and the heat bath polarization [18, 19]. This exact

solution is consistent with the upper bound found by Schulman et al. [15]. The

cooling limit corresponds to the stage at which it is not possible to continue

extracting entropy from the system, i.e., when the state of the system is not changed

by the compression and refresh steps. The system achieves this limit asymptoti-

cally, converging to a steady state. Starting from the completely mixed state, the

Fig. 4 Matrices and circuit symbols representing the unitary operations of the PPA on three qubits

that are initially in a completely mixed state. In the circuit diagram, the top qubit is the target qubit

(denoted T ) and the bottom qubit is the reset qubit (denoted R). A swap operation is represented as

two Xs located on the qubits that are exchanged connected by a vertical line. A controlled-not

(CNOT) gate is denoted by a dot and an open circle connected by a vertical line. The open circle is
on the target qubit of the CNOT operation, and the dot is on the controlled qubit. (a) In the first

iteration, the compression gate swaps the target qubit and the reset qubit. (b) In the second

iteration, the second qubit and the reset qubit are swapped. (c) The third iteration boosts the first

qubit polarization to1:5Eb � 0:5E3b. From the second round of HBAC and on, entropy compressions

are the repetition of the second and third gates of the first round
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density matrix always remains in a diagonal form after each HBAC step. In general,

the state of the computational qubits ρcomp is therefore completely described by its

diagonal elements: d ρcomp

�  ¼ At
1, At

2 . . . , At
2d

� 
after t iterations of HBAC (see

Fig. 1 for the meaning of d).
The cooling limit is reached when there is no operation that can compress

the entropy of the computational qubits, or equivalently, when the diagonal

elements of the total state are already sorted. This limit occurs when the elements

of ρcomp satisfy the following condition (see Fig. 1 for the meaning of m):

Ai 1� Ebð Þm ¼ Aiþ1 1þ Ebð Þm: ð12Þ

This condition together with normalization gives the exact solution of the steady

state of the computational qubits, eρcomp:

d eρcomp

�  ¼ A1 1, Q, Q2, Q3, . . . , Q2d�1
� 

; ð13Þ

where A1 ¼ 1�Q

Q 1�Q2dð Þ and Q ¼ 1�Eb
1þEb


 �m
.

Fig. 5 Evolution of the target qubit polarization under the PPAmethod, using a system of 3 qubits,

for three values of heat bath polarization Eb. Each iteration consists of a reset and a compression

procedure. Note the asymptotic polarization is 2Eb, as expected for Eb � 1=2 in the case of three

qubits
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The maximum achievable polarization corresponds to the polarization of the

state in the cooling limit. From the steady state, the maximum polarization of the

target qubit is as follows:

Emax ¼ 1þ Ebð Þmd � 1� Ebð Þmd
1þ Ebð Þmd þ 1� Ebð Þmd : ð14Þ

In the limit of low heat bath polarization, Eb � 1= mdð Þ, the polarization of the

steady state is proportional to md, in agreement with simulations. As the value of

the heat bath polarization increases beyond md, the final polarization grows arbi-

trarily close to 1. The final polarization of the target qubit as a function of the heat

bath polarization is shown in Fig. 6 for different numbers of qubits.

In order to see how quickly Emax approaches 1, we introduce δmax ¼ 1� Emax.

Using Eq. (14), δmax can be expressed as:

δmax ¼ 2

e
md ln

1þEb
1�Eb


 �
þ 1

¼ 2

e
m2n

0
ln

1þEb
1�Eb


 �
þ 1

: ð15Þ

This expression shows that the maximum polarization reaches 1 exponentially in

the size of the Hilbert space d (or doubly exponentially in n0, the number of

computational qubits excluding the target qubit).

Fig. 6 Maximum polarization achievable for the target qubit versus heat bath polarization Eb and
the number of qubits. The maximum polarization increases doubly exponentially in n ’, the number

of computational qubits excluding the target qubit. This plot shows the results for n¼ 3, 4, 5, 6, 7,

and 8, where n is the sum of computational qubits and one reset qubit (i.e., n ’¼ 1, 2, 3, 4, 5, and 6)
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4 Experimental Algorithmic Cooling with NMR QIP

Experimental realization of algorithmic cooling requires high fidelity control and

the ability to reset qubits. Liquid State NMR (LSNMR) QIP has successfully

demonstrated precise quantum control of up to 12 qubits, and hence it can provide

sufficient quantum control for the experimental demonstration of algorithmic

cooling. Nevertheless, the only way to reset qubits in LSNMR relies on spin-

lattice relaxation, characterized by the time scale T1. Reset qubits must have very

short T1 values compared to the computational qubits. One can imagine a molecule

in which one nuclear spin has a very rapid T1 and the reset to 99% of the thermal

polarization can be achieved by waiting 5T1. However, other spin qubits must have

much slower T1 process in order to maintain their polarizations during the reset

step. Furthermore, the short T1 on the reset qubit limits its T2 and the fidelity of

control. Despite these limitations, some preliminary steps towards full PPA have

been experimentally realized in LSNMR by using protons (1H nuclei) as reset

qubits and 13C nuclei as computational qubits [20, 21]. These experiments showed

selective reset operations to polarize all three spin qubits close to the bath temper-

ature. Nevertheless, the final compression step which polarizes a target qubit colder

than the heat bath was not implemented. Meanwhile, Chang et al. implemented

cooling solely by the final compression gate (Fig. 4c) on three fluorines in C2F3Br

using LSNMR [22]. Full implementation of HBAC in LSNMR was accomplished

much later in [23].

On the other hand, a network of dipolar coupled spins in SSNMR offers a reset

step that does not require a relaxation process in the system of interest. A large

number of dipolar coupled spins can be thought of as a spin bath, and other spins

can be brought in thermal contact with the bath and reach thermal equilibrium at the

spin bath temperature. Moreover, SSNMR experiments can be operated at low

temperature, providing a higher bath polarization. In this section, we review the

experimental demonstration of 3-qubit algorithmic cooling using a molecular single

crystal.

4.1 Brief Review of Solid State NMR QC

SSNMR QIP makes use of the techniques developed in LSNMR QIP, and offers

several advantages: the decoherence rates can be made slow using refocusing

techniques, while spin-spin couplings much larger than in LSNMR can be exploited

to realize faster quantum gates [24].

Features of the internal Hamiltonian of SSNMR that differ from LSNMR are the

anisotropic chemical shift and dipole–dipole couplings between nuclei. The aniso-

tropic chemical shift should be described by a tensor δ. In the secular approximation

(at large dc magnetic field), the form of the dipole–dipole interaction Hamiltonian
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depends on whether the interacting spins belong to the same isotopic species or not

and can be written as follows:

Homonuclear : Hij
D ¼ dij 3Î

i

z Î
j

z � Î
i � Î j


 �
; ð16Þ

Heteronuclear : Hij
D ¼ dij 2Î

i

z Î
j

z


 �
; ð17Þ

dij ¼ �h
μ0
4π

γiγj
r3ij

3 cos 2θij � 1

2
; ð18Þ

where μ0 is the permeability of free space, γi is the gyromagnetic ratio of spin i, rij is
the distance between interacting spins, and θij is the angle between the vector

connecting the two spins and the external magnetic field. There are also

J-couplings in SSNMR, which are usually an order of magnitude smaller than the

dipole–dipole couplings, and for which the isotropic component cannot be distin-

guished from dipolar couplings. Nuclei with S > 1=2 interact with external electric

field gradients, a phenomenon known as quadrupolar interaction. In this chapter, we

limit our discussions to spin-1/2 systems, and hence quadrupolar interactions do not

appear in the internal Hamiltonian.

Because of the orientation dependence of the internal Hamiltonian and the

ensemble nature of NMR QIP, the solid sample should be a single crystal, where

each unit cell contains only one molecule (or >1 magnetically equivalent

molecules).

4.2 SSNMR Algorithmic Cooling Experiment

Experimental HBAC using SSNMR was first demonstrated by Baugh et al. in 2005

[25]. They implemented the PPA for three qubits using a single crystal of malonic

acid CH2(COOH)2 (Fig. 7) as the quantum processor at B0 ¼ 7:1 T and room

temperature.

In each unit cell of malonic acid, there are two molecules that are related by a

center of symmetry and magnetically equivalent to each other (P1 space group).

The molecules in which all three carbons are isotopically labelled as 13C (3-13C)

were used as quantum information processors, while the 100% abundant 1H spins

in the crystal were used as the heat bath. The concentration of 3-13C molecules in

the crystal was 3.2%. There were also about 1.1% molecules with one 13C spin and

about (1.1%)2 molecules with two 13C spins due to natural abundance of 13C spins,

the latter being a small enough concentration to neglect. The small fraction of

molecules with one 13C produces detectable NMR signal, but these are inconse-

quential for QIP purposes. The structure of the molecule, spin Hamiltonian param-

eters used for the experiment that were obtained from spectral fitting, and 1H-

decoupled 13C spectrum are shown in Fig. 7.
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The quantum circuit for 3-qubit PPA is shown in Fig. 8. The experiment was

designed to increase the polarization of C1, and Cm was the qubit interacting with

the heat bath. As discussed in Sect. 3, the algorithm combines two steps: refreshing

step and reversible polarization compression step. The refreshing step, illustrated in

Fig. 8, is realized via the SWAP gate between Cm and Hm1. As shown in the spin

Hamiltonian parameters in Fig. 7, the orientation of the crystal with respect to the

magnetic field was chosen in such a way that only Hm1 had a large coupling with

Cm. The other heteronuclear couplings were negligibly small and all the homonu-

clear couplings were refocused during the refresh step.

Fig. 7 From [25]. Characteristics of the dilute 3-13C malonic acid spin system. On the right is the 1

H-decoupled 13C spectrum. The blue dashed line is the experimental NMR spectrum, and the red
line is the fit. The peaks are grouped into three multiplets which can be assigned to C1, C2, and Cm.

In each multiplet, the central peak comes from the natural abundance of 13C, and is inconsequen-

tial for QIP purposes. The table gives the parameters of the Hamiltonian. The diagonal values are

chemical shifts and the off-diagonal values are dipolar couplings. All values are in kHz. Reprinted

by permission from Macmillan Publisher Ltd: Nature 438, 470–473 (2005), copyright (2005)

Fig. 8 The schematic circuit of the solid state NMR PPA experiment (reproduced from [25]). The

circuit contains three iterations: three refresh steps and three reversible polarization compression

steps, which are labelled as “register operation”. Reprinted by permission from Macmillan

Publisher Ltd: Nature 438, 470–473 (2005), copyright (2005)
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The SWAP is implemented by “time-suspension” sequence [26] (Fig. 9) which

induces effective spin-exchange Hamiltonian in the form

Hij
eff ¼

dij
3

Î
i � Î j


 �
; ð19Þ

where spin i and spin j correspond to Cm and Hm1. The evolution of duration

τ ¼ 3= 2dij
� 

under this spin-exchange Hamiltonian is equivalent to the SWAP.

Due to experimental imperfections, only about 83% of the thermal 1H polari-

zation is transferred to Cm, which is referred to as the effective bath polarization.

The final compression step was realized using strongly modulating pulses [27]. The

pulse was designed to be robust to radio frequency (RF) field inhomogeneity.

During the application of permutation gates, 1H spins in the crystal were strongly

decoupled from 13C spins, and “spin-locked” by a transverse, phase-matched RF

field, which preserved the 1H polarization and allowed the Hm1 to re-equilibrate

with the hydrogen bath through spin diffusion mediated by hydrogen–hydrogen

dipolar couplings. In the beginning of the experiment, all 13C spins were initialized

in completely mixed states by rotating the thermal polarization to a transverse

Bloch sphere axis and dephasing it. After first five steps of the experiment as

illustrated in Fig. 8, ideally the polarization of all three 13C spins should equal to

the bath polarization EB. Then in principle, the final gate boosts the polarization of

C1 to 1.5EB to first order in EB. In the experiment, the final polarization of C1 was

Fig. 9 From [17]. The “time-suspension” sequence of hard pulses for implementing the 1H-13C

SWAP gate. Each rectangle corresponds to a π/2 rotation about a Bloch sphere axis (�x or �y)
denoted by the orientation of the rectangle, and δ is the shortest time delay between pulses. The

sequence decouples homonuclear couplings, and transforms the heteronuclear Hamiltonian to an

exchange Hamiltonian. The total time of the pulse sequence is τ ¼ 3= 2dij
� 
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1:22� 0:03 times the effective bath polarization. Major sources of error were a

nonideal process of spin diffusion that prevented perfect refresh of Cm as shown in

Fig. 10, and RF control imperfections. In spite of experimental errors, C1 attained

polarization higher than that of the heat bath.

In 2008, Ryan et al. experimentally demonstrated four rounds of algorithmic

cooling that consist of nine iterations (Fig. 11) in the same experimental system

(malonic acid) [28]. Perfect control without decoherence would theoretically result

in improving one of the 13C polarizations to 1.94EB after four rounds of the PPA.

The experiment resembles the work in [25] in the sense that three 13C spins were

used as the computational qubits, and the abundant 1H spins were used as the heat

bath. But the refresh and the polarization compression steps were implemented

differently. In the refresh step, the polarization was transferred from Hm1 and Hm2 at

Fig. 10 From [25]. Theoretical and experimental qubit polarizations at each step for C1, C2, and

Cm. Bars indicate ideal qubit polarizations; shaded bands are experimental values. The thickness of

shaded bands indicates experimental uncertainty. Reprinted by permission from Macmillan

Publisher Ltd: Nature 438, 470–473 (2005), copyright (2005)

Fig. 11 The schematic circuit of the four-round PPA experiment, reproduced from [28]. Theoret-

ical values of attainable polarizations are provided with respect to the heat bath polarization E at
each stage of the experiment. Reprinted figure with permission from C. A. Ryan, O. Moussa,

J. Baugh, and R. Laflamme, Phys. Rev. Lett. 100, 140501 (2008). Copyright (2008) by the

American Physical Society
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the same time. The orientation of the sample was chosen in such a way that both

Hm1 and Hm2 have large dipolar couplings with Cm. Instead of applying a multi-

pulse sequence to realize the refreshing step, cross polarization (CP) [29] which

was found to be better in preserving the heat bath polarization was used.

The permutation gates applied on 13Cs were numerically optimized using the

GRadient Ascent Pulse Engineering (GRAPE) algorithm [30]. The pulse design

takes several error sources into considerations: distributions of the static magnetic

field and the RF control field, and the finite bandwidth of the NMR probe resonant

circuit. Also, the optimized pulses were corrected for nonlinearities in the pulse

generation and transmission to the sample through a procedure that measures the

RF pulse at the sample and corrects it via feedback. With all these tools, the level of

control was improved and enabled four rounds of PPA. The polarization of each 13C

at the end of each round is shown in Fig. 12.

After four rounds of PPA, the polarization of C2 reached 1.69E
0
B, where E

0
B is the

polarization of Cm after the first reset. Experimental error was dominated by two

factors—imperfection of 1H decoupling and the network of dipolar coupled protons

in the bath leading to a nonideal process of spin diffusion.

These experiments were significant milestones towards implementation of

active error correction in solid state spin ensemble QIP. It demonstrated sufficient

control fidelity to realize HBAC to prepare an ancilla qubit whose polarization is

higher than the cold bath polarization. Now the control tools are available, and what

Fig. 12 From [28]. Table of the measured polarization (with respect to the initial refresh step) of

each spin after each round of PPA. The spectra show a comparison of the first refresh step

(swapped to C2) and the final signal after four rounds of PPA. It shows clearly that the polarization

of C2 is boosted well beyond the bath polarization. Reprinted figure with permission from

C.A. Ryan, O. Moussa, J. Baugh, and R. Laflamme, Phys. Rev. Lett. 100, 140501 (2008).

Copyright (2008) by the American Physical Society
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remains a challenge of experimental QEC is to identify a system that provides a

heat bath that can be polarized to much higher values than the thermal nuclear bath.

4.3 Limitations to HBAC Using NMR

The SSNMR experiment discussed in this section successfully improved polariza-

tion of one nuclear spin beyond the heat bath polarization. Nevertheless, the

ultimate goal of dynamical supply of nearly pure ancilla qubits for QEC is still

far from reach. For example, the 3-qubit dephasing QEC code requires two ancilla

qubits with polarizations of 0.41 at minimum (see Sect. 2.3). In order to achieve this

polarization on one nuclear spin at room temperature and B0 � 7 T, perfect

quantum control on 17 coupled 1H with no losses due to decoherence would be

required. The condition can be relaxed if the heat bath temperature is colder.

However, operating NMR HBAC at cryogenic temperatures is not an ideal solution

for preparing cold heat bath since T1 of nuclear spins become undesirably long at

low temperature. This naturally leads to exploiting electron spin since the electron

gyromagnetic ratio is much higher than that of nuclei which results in higher

thermal equilibrium polarization and faster T1 relaxation.
In the following section, we discuss implementation of HBAC using a combi-

nation of electron and nuclear spin resonance in hyperfine-coupled quantum

processors.

5 HBAC with Hyperfine-Coupled Electron-Nuclear Spin
Ensemble

The fundamentals of ESR QC are analogous to NMR QC, and many of the

techniques used for manipulating nuclear spins can also be applied to control

electrons. One obvious advantage is that higher gyromagnetic ratio of an electron

γe (about 660 times greater than that of proton) leads to higher polarization.

Decoherence and relaxation rates also scale with γ, and hence electron T1 relaxation
rate is about 3 orders of magnitude larger than that of nuclei. Thus, the electron spin

is an excellent candidate for the reset qubit, and the reset can be done simply by

waiting for a time about 5T1. Anisotropic hyperfine interaction is an advantage for

designing nuclear quantum gates since it provides a control handle for fast manip-

ulations of nuclear spins. However, in the case of HBAC, strong anisotropic

hyperfine interaction can be a disadvantage because electron T1 relaxation process

induces nuclear polarization decay in the presence of anisotropic hyperfine inter-

action. If the interaction is strong, the loss of nuclear polarization while resetting the

electron can be significant. Fortunately, one can choose the crystal orientation to

reduce the anisotropic hyperfine coupling strength so that the nuclear spin decay
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induced by electron T1 is small enough to allow cooling of a target spin species

below bath temperature [31]. We discuss the spin Hamiltonian in more detail in the

following section, and also discuss the crystal orientation selection for realistic

implementations.

5.1 The Electron-Nuclear Spin Hamiltonian

The spin Hamiltonian for a 1 electron, k nuclear spin-1/2 system can be written as

H ¼ βegμνBμŜ ν þ
Xk
n¼1

A n
μνŜ μ Î

n

ν � γnÎ
n

μBμ


 �
; ð20Þ

where Ŝ and Î represent electron and nuclear spin operators, βe is Bohr magneton,B
*

is the external magnetic field, and γn is the gyromagnetic ratio for nuclear spin n.
We set h¼ 1 so that all Hamiltonians will appear in angular frequency units. The

second rank tensors g and An are the electron g-tensor and the nth nuclear spin

hyperfine coupling tensor, respectively. The nuclear dipole–dipole interaction is

neglected since it is typically at least two orders of magnitude weaker than the

hyperfine terms.

Pulsed ESR spectrometers are classified according to the frequency of the

microwave source. Most commonly, ESR experiments are conducted at X-band

(8–12 GHz) frequency, mainly due to the relatively low cost of microwave ampli-

fiers and other components in this frequency range. In X-band ESR, the electron

Zeeman interaction is the dominating term of the Hamiltonian. By convention, the

coordinate system is chosen such that B
* ¼ B0ẑ , and the electron spin is quantized

along that direction. When the magnitudes of nuclear Zeeman energy and the

hyperfine interaction are comparable and much smaller than the electron Zeeman

energy, the spin Hamiltonian is well approximated as

H ¼ ωSŜ z þ
Xk
n¼1

�ωn
I Î

n

z þ Ŝ z anÎ
n

z þ bnÎ
n

x


 �h i
: ð21Þ

Here, ωS ¼ βegzzB0 and ωn
I ¼ γnB0 are electron and nuclear Larmor frequencies,

respectively, and an ¼ An
zz and bn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
An
zx

� 2 þ An
zy


 �2
r

.

There are two schemes for achieving universal control in electron nuclear

systems. In the first scheme, the nuclear spins are directly manipulated by external

RF pulses that are on resonance with NMR transition frequencies. This technique

is known as Electron Nuclear Double Resonance (ENDOR) [32]. The second

approach is to exploit the anisotropic hyperfine coupling and indirectly manipulate

nuclear spins via microwave (MW) pulses acting on the electron. For brevity, we
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will name the latter approach Anisotropic Hyperfine Control (AHC). In the follow-

ing section, we explain how to achieve universal control of electron-nuclear

coupled systems through AHC in more detail.

5.2 Indirect Control via Anisotropic Hyperfine Coupling

The anisotropy of hyperfine coupling permits nuclear spin manipulation solely by

irradiating MW pulses at electron spin transitions. The control universality of a

1 electron, N nuclear spin coupled system via anisotropic hyperfine interaction was

proved in [33], and demonstrated experimentally in [34] for a single nuclear spin

qubit gate and in [35] for a gate involving two nuclear spin qubits. The advantage of

the indirect control technique is that it simplifies the instrumentation as additional

RF excitations are not needed, and faster gate implementation relative to ENDOR

can be achieved when the hyperfine coupling strength exceeds the Larmor fre-

quency of the nucleus in a given external field. Here we use 1 electron, 1 nuclear

spin system as an example to illustrate the idea. In the presence of B
* ¼ B0ẑ and the

hyperfine interaction, the nuclear spin is quantized along the direction of an

effective field

B
*

n ¼ B0 � a

2γn

� �
ẑ � b

2γn
x̂ ; ð22Þ

and the � sign depends on whether the electron spin is parallel (spin up) or

antiparallel (spin down) to the external field. As a consequence, when b 6¼ 0, the

direction of the nuclear spin quantization axis is dictated by the electron spin state.

We introduce θ" ¼ arctan �b
aþ2ωI


 �
and θ# ¼ arctan �b

a�2ωI


 �
to denote the angle of

nuclear spin quantization axes from bz axis, and Θ ¼ θ" � θ#
� 

=2. Then, the

eigenstates of the coupled spin system are [32]:

1j i ¼ "j i � cos
θ"
2

� �
"j i � sin

θ"
2

� �
#j i

� �
,

2j i ¼ "j i � sin
θ"
2

� �
"j i þ cos

θ"
2

� �
#j i

� �
,

3j i ¼ #j i � cos
θ#
2

� �
"j i � sin

θ#
2

� �
#j i

� �
,

4j i ¼ #j i � sin
θ#
2

� �
"j i þ cos

θ#
2

� �
#j i

� �
:

ð23Þ

In the eigenbasis of the spin Hamiltonian shown in Eq. (21), the rotating-frame

electron control Hamiltonian Hc ¼ ω1Ŝ x becomes
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eHc ¼ ω1

2

0 0 cos Θð Þ � sin Θð Þ
0 0 sin Θð Þ cos Θð Þ

cos Θð Þ sin Θð Þ 0 0

� sin Θð Þ cos Θð Þ 0 0

2
664

3
775: ð24Þ

From Eq. (24), one can see that the control Hamiltonian is able to induce all

transitions between any eigenstates of the electron spin up manifold and the

electron spin down manifold provided Θ 6¼ nπ=2, where n is an integer and

eigenstates are nondegenerate. The energy level connectivity can be represented

as a graph, and the complete connectivity of the graph generated by the control

Hamiltonian and nondegenerate energy levels guarantee universal control of the

system [34, 36, 37]. Since the spin Hamiltonian does not consider nuclear–nuclear

dipolar interactions, the idea presented for 1 electron, 1 nuclear spin system can be

easily extended to larger number of nuclear spins, provided that suitable and

distinct hyperfine couplings exist. The loss of nuclear spin polarization due to

electron T1 in the presence of anisotropic hyperfine interaction can be intuitively

understood from Eq. (24). When sin(Θ) is non-zero, there is a finite probability for

the nuclear spin to flip to its low energy state through electron-nuclear double spin

relaxation.

5.3 HBAC Simulations in Electron-Nuclear Coupled
Systems

The ancilla qubits for the 3-qubit dephasing QEC code must be polarized to at least

41% in order to correct errors at all. In theory, X-band ESR algorithmic cooling at

4.2 K can yield greater than 40% polarization on one nuclear spin using 1 electron

and 4 hyperfine-coupled nuclei. This is a significant reduction in the number of

necessary qubits compared to NMR case at room temperature, which required

17 protons (both examples here assume error-free controls).

In this section, we explain how to experimentally implement the control, and

present proof-of-principle simulation results that reflect more realistic control and

decoherence parameters to examine the feasibility of HBAC in the electron-nuclear

coupled systems. Simulations were carried out for both ENDOR and AHC control

schemes. We consider gamma-irradiated malonic acid in which one carbon is

isotopically labelled as 13C (Fig. 13) as an example. The idea can, in principle, be

extended to larger electron-nuclear spin ensemble systems. More details about the

feasibility test with malonic acid and its extension to 5-qubit version can be found

in [31].

In the simulation, electron T1 and T2 processes are modelled as a Markovian

dynamical map, and simulated by solving a master equation of the Lindblad form

[38, 39]. Inhomogeneous line broadening of the electron spin resonances is taken

into account by averaging the simulation over a set of spin Hamiltonians in which
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the magnitude of electron Zeeman energy is a Lorentzian-distributed random

variable. We use experimentally measured electron T1 and T2 values to determine

the Lindblad operators, and the measured ESR line width to determine the T2*
Hamiltonian distribution.

5.3.1 HBAC Using ENDOR Control

In ENDOR, nuclear spin flip transitions are directly excited by RF pulses oscillating

at the nuclear frequencies. As shown in Fig. 14, all the gates used in the PPA can be

decomposed into controlled-not (CNOT) gates that are realized by transition

selective π-pulses. For example, a CNOT gate with the electron as the control

qubit and a nuclear spin as the target is implemented by irradiating the sample with

RF pulse at the frequency that corresponds to the energy difference between "e"nj i
and "e#nj i, at pulse amplitude ω for duration τ such thatωτ ¼ π. A Toffoli gate that

flips the electron if two nuclei are both in the spin up state can be realized by

exciting the transition between "e"n"nj i and #e"n"nj iwith a MW pulse of amplitude

ω for duration τ such that ωτ ¼ π.
Since the spin Hamiltonian depends on the dc magnetic field orientation with

respect to the crystallographic axes, we aim to select an orientation that maximizes

the polarization improvement on the target spin qubit. In the ENDOR experiment,

the orientation selection requirements are as follows: (1) the electron-nuclear

double spin flip rate is as slow as possible by minimizing sin(Θ) in Eq. (24);

(2) all allowed transitions (as opposed to forbidden transitions) should be separated

by more than the relevant ESR or NMR line width; and (3) the bandwidth of

microwave control is narrow enough to obtain control faster than T2
e, but wide

enough to irradiate all relevant ESR transitions.

Using g, AH, and AC that are determined from continuous-wave ESR (CW ESR)

measurement at X-band, we determined a crystalline orientation in which all

Fig. 13 Schematic of the gamma-irradiated malonic acid with three qubits (electron, α-1H and

methylene 13C). The electron density distribution is represented by the blue shaded region.

Relaxation parameters of the electron T1
e, T2

e, and T2
*e are measured in an X-band pulsed ESR

spectrometer at room temperature
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conditions above are reasonably well satisfied. We performed a simulation of

3-qubit ENDOR algorithmic cooling designed to increase the polarization of the

electron (see Fig. 14).

In principle, a single round of 3-qubit HBAC increases the target spin polariza-

tion to 1.5 times the heat bath polarization. The simulation takes finite pulse width,

T1
e, T2

e, and T2*
e into account. The reset is done by waiting for 5 times the T1 of the

electron. The simulation uses 50 ns Gaussian-shaped pulses for MW, and 15 μs and
60 μs square pulses for RF. Gaussian-shaped pulses are used in the MW channel in

order to maintain selectivity of a particular transition while exciting over the full

ESR line width. The amplitudes of the RF pulses are chosen to reflect typical RF

amplifier output power levels. Since the RF pulses are similar in duration to T1
e at

room temperature, the algorithm does not yield polarization increase at room

temperature. A solution is to increase T1
e by performing the experiment at low

temperature. We use the experimentally determined value of T1
e ¼ 2:6ms at 43K.

Taking into account all the relaxation parameters and simulating the experiment at

T ¼ 43K yield a final polarization (after one round of the PPA) of 1.36 times the

bath polarization.

5.3.2 HBAC Using Anisotropic Hyperfine Control

When the universal control is achieved through anisotropic hyperfine coupling and

electron spin excitation [34, 35], the orientation selection criteria are modified as

following: (1) the electron-nuclear double spin flip rate (i.e., forbidden rate) is

strong enough that nuclear gates can be implemented quickly compared to the

electron T2; (2) however, this forbidden transition rate must also be weak enough

that it does not significantly speed up the nuclear T1 process; and (3) the frequencies

Fig. 14 Quantum circuit and corresponding pulse sequence for the 3-qubit PPA using pulsed

ENDOR to control the electron, α-proton and methylene 13C of gamma irradiated malonic acid.

Blue and red rectangles indicate MW and RF pulses that selectively excite particular transitions for

a single electron spin flip and a single nuclear spin flip, respectively. The reset (indicated by R) is
accomplished by waiting for 5 times the T1 of the electron. This single round of HBAC boosts the

polarization of the electron spin approximately 1.5 times compared to its thermal equilibrium

polarization
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of all transitions (allowed and forbidden) should be separated from each other by at

least the ESR line width to achieve high fidelity control.

Using the same electron g-tensor and hyperfine interaction tensors, a crystal

orientation can be found that satisfies new conditions above. The GRAPE algorithm

[30] is then used to design the swap and compression gates via microwave control

of the electron spin. The corresponding quantum circuit is illustrated in the figure

below (Fig. 15). All three pulses are designed to have 99% unitary fidelity, and the

pulse lengths are 840 ns, 840 ns, and 900 ns for electron-1H swap, electron-13C

swap, and compression, respectively.

The simulated final polarization of the electron after one round of the PPA is

1.21 times the bath polarization. The polarization improvement here is worse

compared to the previous ENDOR simulation results due to the fact that T2
e is

only about 5 times longer than the duration of each GRAPE pulse, and that nuclear

polarizations decay faster due to anisotropic coupling during the reset steps. On the

other hand, one immediate advantage of this control scheme compared to ENDOR

experiment is that the experiment can be done at room temperature since pulse

durations are much shorter than room temperature T1
e. Moreover, the ability to

implement nuclear gates solely through MW pulses greatly simplifies the experi-

mental hardware.

5.4 Prospects: Exploiting Larger Hilbert Spaces
and the High Field Regime

Achieving high control fidelity and realization of electron-nuclear spin HBAC in

the proof-of-principle level remains to be experimentally demonstrated. Never-

theless, given sufficient control, HBAC can potentially be explored using molecules

with a greater number of nuclear spin qubits coupled to an electron. One example

is the diphenyl nitroxide radical (see Fig. 16) [41, 42]. Diphenyl nitroxide as

an open-shell molecular sample is an extremely stable nitroxide radical with

Fig. 15 Quantum circuit and corresponding pulse sequence for the 3-qubit PPA using electron, 1H

and 13C spins and microwave-only control. Swap and compression gates are realized by shaped

pulses found using the GRAPE algorithm [30]. The reset steps are done by waiting for 5 times the

T1 of the electron. One round of HBAC boosts the electron spin polarization to 1.5 times its

thermal equilibrium polarization
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electron spin-1/2. Mixed single crystals of diphenyl nitroxide in benzophenone are

grown with a sufficiently dilute concentration of the radical to suppress electron-

electron dipolar interactions. Diphenyl nitroxide isostructurally replaces the ben-

zophenone molecules. This provides 10 protons that are hyperfine coupled to the

electron and are spectrally distinguishable through ENDOR. Nitrogen can

be isotopically labelled as 15N to provide an additional strongly coupled nuclear

spin-1/2. This spin system therefore affords the possibility of implementing HBAC

with up to 12 qubits [40].

The maximum polarization that can be reached by one nuclear spin in 12-qubit

HBAC atX-band is 0.67 at room temperature. It can be improved tomore than 0.99 at

liquid nitrogen temperature 77K, and a polarization arbitrarily close to 1 is possible

at liquid helium temperature 4.2 K. Figure 17 shows the theoretical polarization of a

target spin as a function of the number of HBAC iterations at various temperatures.

One iteration of HBAC consists of a reset and a compression. Note that in order to

achieve high polarization, a very large number of iterations are required unless the

experiment is performed at a temperature below 77K (see Fig. 17).

HBAC in high field ESR, such as W-band in which the Larmor frequency of the

free electron is about 94 GHz, is also a possible solution to reach necessary

polarization for QEC. Although high fidelity unitary quantum control in the high

frequency regime has not been demonstrated, in theory only four rounds of 3-qubit

HBAC at 8K can supply a qubit with 50% polarization, and above 80% and 97%

polarizations at 4K and 2K, respectively.

6 Conclusions and Prospects

NMR experiments on spin ensembles have provided an excellent ground for

developing and testing ideas of QIP in the few-qubit regime, owing to the ability

to implement quantum control. However, it has lacked the ability to prepare high

Fig. 16 Left: Molecular structure of the diphenyl nitroxide radical. Crystal axes are labelled as x,
y, and z. Right: ENDOR spectrum of diphenyl nitroxide in a crystalline benzophenone matrix.

20 ENDOR peaks in the neighborhood of 12 and 16 MHz correspond to the nuclear frequencies of

10 proton spins. This spectrum indicates that all 10 nuclear spins are spectrally distinct and may be

selectively controlled using ENDOR. These figures are reproduced from [40]
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purity ancilla qubits that are essential for QEC. The challenge for systems like

NMR in which projective measurement is not available is that qubit initialization is

normally only attainable via thermal equilibration, which results in very low

polarizations (i.e., highly mixed qubit states). Dynamic nuclear polarization

[43, 44] and algorithmic cooling are two means by which nonequilibrium polari-

zations can be achieved, with this review having discussed the latter. In this chapter,

we reviewed HBAC, an efficient method for extracting entropy from spin qubits,

allowing cooling below the cold bath temperature. The theory of HBAC has been

extensively studied, and sufficient quantum control to operate several rounds of

HBAC in a 3-qubit system was demonstrated using SSNMR. In standard NMRQIP,

achieving qubit polarizations necessary for QEC is a practical impossibility, given

the small values of thermal equilibrium nuclear polarizations even at cryogenic

temperatures. Electron-nuclear hyperfine-coupled systems are more promising for

HBAC than conventional NMR processors since the electron spin has about 3 orders

of magnitude larger Zeeman energy, and thus its polarization and spin-lattice

relaxation rates are correspondingly higher. The fast T1 process is exploited for

the reset step in HBAC. Experiments to demonstrate HBAC in electron-nuclear

systems are in progress, but in this review we have presented realistic simulation

results indicating that polarization enhancements on the order of the theoretical

values are possible.

HBAC is an implementation independent approach, and it can also be applied in

other spin systems and other QIP implementations. For example, nitrogen-vacancy

Fig. 17 Polarization of a target nuclear spin in the diphenyl nitroxide radical plotted as a function

of the number of HBAC iterations at three different temperatures. Each iteration consists of one

refresh and one compression step
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centers in diamond or a photo-excited triplet state can provide highly polarized

spins at room temperature by optical pumping and dynamic nuclear polarization

[45–47], and HBAC can be utilized to further purify spin qubits in these systems.
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