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    Chapter 5   
 Microfl uidics-based Single Cell Analytical 
Platforms for Characterization of Cancer                     

       Emil     Laust     Kristoffersen    ,     Morten     Leth     Jepsen    ,     Birgitta     R.     Knudsen    , 
and     Yi-Ping     Ho    

    Abstract     Individual cancer cells in a tumor are very diverse both genetically and 
functionally. Moreover, in many cancers, whether a tumor fl ourishes or dies after a 
given treatment depends on a small fraction of cells in the tumor, for instance, the 
cancer stem cells, rather than the bulk population. Traditionally, scientists only 
obtain averaged information from the entire population of cells in a bulk tumor, but 
it is critical to develop an effective and user-friendly platform capable of interrogat-
ing single cells in order to understand and treat the disease better. This chapter 
reviews recent progress of microfl uidics-based tools for single cell analysis that are 
relevant for cancer characterization, as well as how nanotechnology may advance 
the analysis with improved signal responses. We hope that this general introduction 
may catalyze the adoption of these advanced single-cell analysis approaches for 
cancer studies.  

  Keywords     Nanosensors   •   Circulating tumor cells   •   Genomic analysis   •   Enzymatic 
activities  

5.1       The Importance of Single Cell Analyses for Cancer 
Characterization 

 Cells are defi ned as the basic functional unit of living organisms. They sense envi-
ronmental stimuli, respond and adapt to the environmental changes chemically or 
physically in order to form and maintain the distinct tissues in complex biological 
organisms. Therefore, even cells of identical genetic identities can display a wide 
disparity of physical responses (such as cell morphologies) or chemical responses 
(such as RNA or protein expression level regulation).  These   asynchronous responses 
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to the microenvironments, often due to random fl uctuations, or noise in gene 
expression [ 1 – 3 ], make precise characterization of cells in a population diffi cult, 
especially when techniques with single cell sensitivity are not available. Hence, 
currently our understanding of cells are in many aspects limited by the inherent 
ensemble average obtained by analyzing bulk populations of cells, which does not 
necessary precisely represent the individual behavior of each cell within a 
population. 

 While many population-level studies using bulk assays are presented, it remains 
ambiguous whether the population data may faithfully refl ect the dynamic response 
of individual cells. In fact,    cell-to-cell heterogeneity has been evidenced in many 
examples. For instance, the transcription events in mammalian cells are subject to 
random fl uctuations and lead to large variation in messenger RNA (mRNA) copy 
numbers [ 4 ,  5 ]. Moreover, cell heterogeneity is observed to impact cell-fate deci-
sions in mouse multipotent progenitor cells [ 6 ]. In particular, cancers are typically 
characterized by a very high level of cell-to-cell variation in regard to both mor-
phological, physiological and genetic features [ 1 ,  7 ,  8 ]. The obvious reason for 
such heterogeneity is that cancers arise as a consequence of multiple and succes-
sive mutations in the genome of the cell leading to the generation of many different 
subpopulations of cells constituting the tumor. According to the cancer stem cell 
theory, which was presented a few decades ago,  cancer   initiates by the accumula-
tion of mutations in stem cells [ 9 ]. This leads to the transformation of the stem 
cells into cancer stem cells, with self-renewal potential and the capability to 
differentiate into other types of cancer cells. Due to these characteristics, isola-
tion and characterization of individual cells within a population of cancer cells 
(e.g. a tumor) are envisioned of particular value for understanding the origin and 
progression of this disease. 

 Especially as a predictive tool for individualized cancer treatment, single cell 
characterization may prove of tremendous value. Recent studies suggest that the 
drugs developed by  measuring   therapeutic responses from traditional bulk analy-
sis, tend to suppress the growth of bulk tumor cells but not as effective in elimi-
nating cancer stem cells (CSCs), where the relapse of tumor may occur from 
[ 10 ]. The different drug responses between bulk tumor and CSCs further demon-
strate that the fi delity of bulk analysis is insuffi cient for the evaluation of antitu-
mor treatments. Furthermore, a potential innate consequence of the heterogenic 
nature of tumor cells is great fl uctuations in the amount/activity of cellular drug 
targets or important determinants of drug effi ciency, such as growth rate or meta-
bolic activity. 

 For example, the heterogeneity of prostate cancer poses a signifi cant challenge to 
effective targeted therapy [ 11 ,  12 ], such as those involved introduction of a homolo-
gous double-stranded RNA (dsRNA), or RNA interference (RNAi) [ 13 ], simply 
because the individual cancerous cells respond very differently to the same treat-
ment. Survival of only a few cancer cells after initial systemic treatment may result 
in recurrent tumors, which may be even more aggressive or chemoresistant than the 
initial tumor. Therefore, the identifi cation of these rare cells may be imperial  for 
  tailoring treatment to the individual patient in the best possible way. 
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 Finally, when it comes to detection of cancers for diagnostic purposes, the capture 
and registration of single tumor cells from the bloodstream may prove a  powerful 
tool. Indeed, in combination with protocols for fast and reliable single-cell charac-
teristics of captured cells, such techniques may pave the road for future diagnosis 
integrated with  individually   tailored treatment. 

 Previous development of microfl uidics has shown great success  in   biomedical 
applications, but mainly centered on the analysis of targeting biomolecules from 
minute amount of samples, typically nanoliters to hundreds of picoliters. More 
recently, the exploitation of microfl uidics for cell manipulation and analysis, taking 
advantages of the matching length scale of microfl uidics and the size of individual 
cells (tens of micrometers) has increased. Of particular importance is the detection 
and analysis of diseased cells, which are typically rare among the whole cell popu-
lation, diffi cult to detect and retrieve, and yet critical for accurate analysis of the 
biological processes. In this chapter, we intend to review the existing development 
of microfl uidics-based tools for single cell analysis that are relevant for cancer char-
acterization, as well as how nanotechnology may advance the analysis with 
improved signal responses. We hope that this chapter will give the audience a gen-
eral introduction and catalyze  the   adoption of these advanced single-cell analysis 
approaches [ 2 ,  4 ,  14 ] for cancer studies.  

5.2     Enrichment of Circulating Tumor Cells 

5.2.1     What Are Circulating Tumor Cells? 

 Metastasis, the spread  of   cancer cells from the primary site to other organs in the 
body, represents the major cause of cancer-related patient death. Previous evidence 
suggests that the tumor cells are shed from the primary tumor at an early stage of 
metastasis development, break through the vascular wall, travel via the peripheral 
blood to sites distant from the primary tumor, and form a secondary tumor [ 15 ]. 
Cells escaping from the primary tumor, are called circulating tumor cells (CTCs). 
The signifi cant role of CTCs in the metastatic spread of tumor has rendered them 
valuable biomarkers for both detection of the onset of cancer metastasis and clinical 
evaluation of treatment outcome. Moreover, detecting CTCs as a cancer marker is 
advantageous in the clinics because it makes noninvasive detection possible through 
capturing CTCs in a liquid biopsy, such as a blood sample. Recent evidence on how 
the CTCs may refl ect the molecular features of the primary tumor cells further dis-
plays the importance of CTCs in cancer biology [ 15 ,  16 ]. For instance, the presence 
 of   mesenchymal markers on CTCs envisages more accurate prognosis than the 
expression of cytokeratins alone, implying that the currently used assays based on 
epithelial antigens may overlook the most aggressive subpopulation. However, 
CTCs are extremely rare and appear in very low concentrations down to one per 
millions of normal blood cells. Therefore, their detection remains a great challenge 
in cancer characterization [ 15 ,  17 ].  
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5.2.2     State-of-Art 

 CTC  isolation   is typically evaluated by many factors, including the capture effi -
ciency (i.e. 100 % capture effi ciency being isolation of all of the CTCs in the liquid 
biopsy, therefore, allowing identifi cation of the cancer occurrence), isolation purity 
(i.e. 100 % isolation purity being isolation of only the CTCs, with no other cell 
types), isolation speed and the required sample volume. A large panel  of   macro- 
scale sorting techniques have been previously reported for CTC enrichment, such as 
immunomagnetic beads separation [ 18 ], laser scanning cytometry [ 19 ], fi ber-optic 
array scanning technology (FAST) [ 20 ], as detailed in previously published reviews 
[ 18 ,  21 ]. In general,    these approaches utilize the differences between CTCs and 
normal hematologic blood cells in physical (size, density, electric charges, deform-
ability) or biochemical (surface protein expression, invasion capacity) properties, as 
illustrated in Fig.  5.1 . For example, separation without labeling through the physical 
properties of the cells is adopted in the isolation by size of epithelial tumor cells 
(ISET) [ 22 – 24 ].  Dielectrophoretic fi eld-fl ow fractionation (DEP-FFF)      utilizes 
membrane resistance in combination with size to sort different responses to dielec-
trophoresis.  Biochemical separation   relies on immunological procedures using anti-
bodies against tumor-associated antigens and common leukocytes antigens. For 
instance, the CellSearch ®  and the Ariol ®  select CTCs by utilizing magnetic beads 
coated with antibodies against genes that are highly expressed in CTCs [ 18 ,  21 ,  25 ]. 
Subsequently, the antigen-antibody complex is separated from the liquid phase  via  
exposure to a magnetic fi eld. However, many of the currently available approaches 
remain relatively ineffective in isolation effi ciency with CTC identifi cation in 
50–90 % of patients, while 5–10 mL of sample volume is typically required [ 21 ]. 
Therefore, the search for sensitive, specifi c, and economical analytical techniques 
continues.

5.2.3        Microfl uidics Based CTC Enrichment 

 Microfl uidics based CTC  enrichment   has garnered considerable attention, due to 
the matching length scale of microfl uidic channels to the cell sizes. Secondly, the 
micron-sized geometric features used in microfl uidics greatly reduce the sample 
consumption. To date, microfl uidics-based CTC enrichment has shown great prom-
ise by identifi cation of CTCs in close to 99 % of patients [ 26 ], while requiring very 
minute sample size of 10 μl [ 27 ]. 

 The very early demonstration of microfl uidics based CTC enrichment is the 
so- called “CTC-chip” developed by Toner’s group [ 26 ]. The CTC-chip consists of 
an array of microposts coated with anti-EpCAM antibodies, as shown in Fig.  5.2 , 
where the positive selection is implemented by the antibodies against the epithelial 
cellular adhesion molecule (EpCAM), relevant to epithelial growth and differentia-
tion. Over expression of EpCAM has been observed in many human carcinomas 
including prostate, colon and rectum, breast, lung, esophagus, and pancreas. 
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In contrast, hematologic cells do not express EpCAM [ 28 ,  29 ]. Hence, EpCAM 
appears as an effective cancer biomarker and an appropriate target molecules for 
CTCs enrichment in a liquid biopsy. Combining immunolabeling with controlled 
laminar fl ow conditions in the microfl uidic chip, the CTC-chip has shown to suc-
cessfully identify CTCs in peripheral blood from 99 % of patients carrying meta-
static lung, prostate, pancreatic, breast, and colon cancer, or more precisely, 115 
identifi cations out of 116 investigated samples [ 26 ]. The capture effi ciency, as 
 defi ned   previously, is improved by two essential parameters operated in microfl uid-
ics: (a) Low fl ow speed: permitting cells to interact with the microposts for extended 
duration and, thus, increasing the likelihood of cells sticking to the posts and (b) 
Low shear stress: enabling the cells to fl ow through the channel with minimum physical 

  Fig. 5.1    Strategies to isolate circulating tumor cells (CTCs): Isolation of CTCs from normal 
hematologic blood cells, such as leukocyte, lymphocyte and erythrocyte, typically relies on dis-
similar physical or biochemical properties of CTCs. ( a ) Separation by physical properties nor-
mally does not involve additional labeling, such as isolation by size of epithelial tumor cells 
(ISET), or the dielectrophoretic fi eld-fl ow fractionation (DEP-FFF) that isolates cells by their 
responses to dielectrophoresis, which is determined by the size and membrane resistance. ( b ) 
Separation by biological properties: This category of separation usually involves immunological 
procedures which involve antibodies against tumor-associated antigens and common leukocytes 
antigens. The CTCs-specifi c antibodies are typically bound to micron-sized magnetic beads, 
which allow a separation when applying a magnetic fi eld. ( c ) Microfl uidics-based separation: 
Typical form of microfl uidics-based CTC enrichment consists of microposts functionalized with 
antibodies specifi c to the surface-markers of tumor cells, such as epithelial cellular adhesion mol-
ecule (EpCAM). The microposts may be constructed by a solid structure, or by a pile of magnetic 
beads as recently demonstrated in the Ephesia CTC chip       
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distress. The CTC chip appears very gentle to the cells with a shear force of less 
than 0.4 dyn/cm 2 . The low shear supplied in the CTC-chip even allows capture of 
T-24 cells, which have a relatively low expression of EpCAMs. Other than EpCAM, 
current characterization of CTCs is typically through immunostaining of the cells 
with markers such as KLK3 (prostate specifi c antigen) for prostate cancer or 
TTF-1 (thyroid transcription factor-1) for lung adenocarcinoma. Furthermore, to 
accelerate the isolation speed, Stoot et al. later demonstrated an automated system 
for prostate cancers with enrichment and quantitative analysis of positive CTCs for 
prostate specifi c antigen (PSA) [ 30 ].

   As an alternative to the microposts based CTC-chip, an innovative geometric 
improvement termed the Herringbone-chip (HB-chip) [ 31 ], has been demonstrated 
to prime the enrichment of CTC. The chevrons, or the herringbones, as depicted in 
Fig.  5.3 , function by disrupting the laminar fl ow, which would then enhance the 
mixing between streamlines and encourage the collisions of cells and the antibody- 
coated herringbone structures. The HB-chip has shown a 26.3 % improvement in 
capture effi ciency compared to the previously discussed CTC-chip, along with sig-
nifi cantly higher purity of the captured CTCs. Moreover, the use of transparent and 
chemically stable materials allows imaging of the captured cells with standard 
staining or assays such as Fluorescent In Situ Hybridization (FISH).

  Fig. 5.2    Typical design of 
the CTC-Chip: The 
microfl uidic-based 
separation takes 
advantages of the 
comparable size of 
microfl uidic channel and 
the cell sizes, that allows 
effective capture of CTCs. 
This chip usually consists 
of an array of micron-sized 
pillar posts functionalized 
by antibodies specifi c to 
CTCs. The microposts are 
used to disturb the 
fl ow-streamline and 
enhance cell-microposts 
interactions. Current 
development has centered 
on the design and 
production of microposts 
to scale up for large-scale 
clinical applications       
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   Saliba et al. have recently developed a system, named Ephesia, in which they 
combine superparamagnetic beads with microfl uidic technology [ 27 ]. In this plat-
form, superparamagnetic beads are pre-functionalized with antibodies. When intro-
duced into the chip, upon application of an external magnetic fi eld, the beads would 
stack up due to dipole-dipole interactions, forming microposts out of stacks of 
beads. To reduce production cost and technical complexity, the magnetic pattern is 
generated through microcontact printing with water-based ferrofl uid, or “magnetic 
ink”. Major benefi ts of this method, compared to the conventional design of CTC- 
chip, are the greatly reduced production  cost   and possible batch-functionalization of 
the magnetic beads. It is also of particular note that the proposed self-assembly 
process offers an aspect ratio beyond the most sophisticated nanofabrication tech-
niques. In summary, the microfl uidic technologies have emerged as an attractive 
micro-scale CTC isolation system. The unique features of fl uidic mechanics at the 
micro- and nano-scale, such as channel dimensions, fl ow operated at the laminar 
fl ow regime, and surface area to volume ratio, have enabled improved capture effi -
ciency and isolation purity of CTC. However, perhaps similar to the challenges for 
other microfl uidics-based applications, it is necessary to validate the reproducibility 
and robustness of technology with extensive clinical relevant testing. Further, it is 
expected that the reduced technical complexity, together with low cost of produc-
tion and testing, would encourage the widespread adoption of microfl uidics-based 
CTC enrichment in the clinics. Audiences interested in the latest development of 
microfl uidics-based CTC detection are referred to recently published reviews 
[ 32 – 34 ].   

  Fig. 5.3    The Herringbone (HB)-Chip: Conventional design of CTC-Chip relies on laminar fl ow, 
which limits the interactions of target cells with surfaces, and the complex micropost structure is 
also challenging to scale up for high-throughput production. The HB-chip represents an alternative 
strategy, which takes advantages of the design of herringbones, hence the name. ( a ) The surface 
ridges help to break up streamlines, maximizing collisions between target cells and the antibody- 
coated walls. ( b ) As a comparison, there is a lack of mixing under low Reynolds number regime in 
traditional fl at-walled design. Figure adapted from Ref.  31  with permission       
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5.3     Nanoscaled Molecular Techniques for Analysis 
of Single Cells 

 Nanotechnology based molecular techniques, including nanoscale molecular 
manufacturing, nanosensors, and single molecule detection, represent a signifi cant 
evolution towards investigation of cell population heterogeneity. As described 
above, single cell analysis  and   cell population heterogeneity investigation is neces-
sary in order to elucidate how the rare cells may contribute to tumor development 
and treatment outcome. In the following section, we overview and comment on how 
nanoscaled molecular techniques may join the effort of microfl uidics in single-cell 
analysis for the characterization of cancers from three perspectives: The genomic-, 
transcriptomic- and proteomic-level (as illustrated in Fig.  5.4 ).

5.3.1       Single Cell Genome Analysis for Cancer Characterization 

 Cancers are typically caused by errors, or mutations, induced in the genome, which 
subsequently prompt the cells to malfunction, or grow uncontrollably. Such mutations 
can either be  subtle   genomic alterations (such as single base mutations) or gross 

  Fig. 5.4    Overview of how microfl uidic systems may assist in single cell analysis: High-throughput 
cell-based screens can benefi t considerably from the unique liquid-handling capabilities offered by 
microfl uidic systems       
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genomic alterations (such as deletions, translocations, insertions, rearrangement or 
even loss or gain of entire chromosomes) [ 35 ]. As the disease progresses, the evolu-
tional accumulation of cancer causing mutations result in a high degree of genetic 
diversity between or among cancer cells [ 36 – 38 ]. Furthermore, it is becoming 
established that CSCs, which account for only a minor part of the bulk tumor, exist 
in a variety of cancers, such as colon, ovarian, and small cell lung cancers [ 39 ]. 
CSCs are known to have a distinct gene expression phenotype, rendering them 
highly resistant to chemotherapeutic treatments [ 39 – 42 ]. 

 Identifi cation of genomic alterations at the single cell level are routinely accom-
plished today by standard cancer diagnostic techniques such as chromosome stain-
ing and FISH [ 43 – 45 ], or FISH based on nanoparticles-labeled probes [ 46 ]. These 
refi ned techniques are based on microscopic readouts, and can be used to identify 
large genomic alterations in single cells. In some cases FISH can even be used to 
detect Single Nucleotide Polymorphisms (SNPs) if the site and polymorphism is 
known [ 47 ]. In recent years,  genomic   sequencing has been adapted for single human 
cell genome analysis [ 48 ,  49 ]. This late arrival of DNA-sequencing as a tool for 
single cell analysis refl ects the preceding barriers: (1) suffi ciently sensitive sequenc-
ing techniques for single cell analysis have emerged not until the last decade, (2) the 
data obtained by sequencing is often very comprehensive and the analysis of which 
requires well-established bioinformatics tools and/or statistics as well as appropri-
ate references. With this said, a combination with microfl uidics might provide a 
unique means for isolation and/or enrichment of specifi c populations of cells, for 
example the CSCs. 

 As a pioneer in the full genome sequencing  of   single human cells using single 
cell based approaches,   Wigler    ’s group combined fl ow-sorting, Whole Genome 
Amplifi cation (WGA) and next-generation sequencing for the investigation of 
 single breast cancer cells [ 49 ]. More than 400 cells were sequenced with around 
6 % genome coverage of each cell. Due to the suboptimal genome coverage (~6 %), 
sequencing data was clustered in 54 kilo base (kb) sized “bins”, to obtain proper 
statistical signifi cance. These bins were then used to determine the copy numbers of 
genomic areas mapped to the healthy genome, which enabled the analysis of the 
evolutionary history of the cancer. Another example of genome sequencing of single 
cells is provided by Frumkin and colleagues [ 48 ] however, this was done without 
the use of any microfl uidics or fl ow based techniques. In this study, cancer lineage 
relations were investigated by cutting out single tumor cells from tissue sections of 
mouse lymphoma by microdissection. Around 50 single cells were genotyped using 
Sanger sequencing and data was used to produce a “lineage tree” for the analyzed 
cells populating the tumor. 

 These studies provide a demonstration of the need  of   single cell sequencing in 
characterization of cancer, along with pros and cons of the utilized approaches. 
For example, microdissection on tissue samples allows the selection of specifi c 
cells. However, microdissection holds a general limitation in relation to number of 
analyzed cells: ~50 in Frumkin’s study compared to >400 in the study by Navin 
et al. using a fl ow based single cell analysis. Moving forward, microfl uidics based 
approaches are expected to ease the handling of sample and enhance the enrichment 
effi ciency prior to the genome analysis. Moreover, the automation offered by 
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microfl uidics also makes the experiments less prone towards human errors, such as 
the biased selection of cells by manually picking, and contamination of sample by 
human handling.  

5.3.2     Single Cell Transcription Analysis for Cancer 
Characterization 

  The genetic information held by the genome is transcribed into RNA either as coding 
RNA such as messenger RNA (mRNA), or as non-coding RNAs such as transfer 
RNA (tRNA), ribosomal RNA (rRNA) and the regulatory RNAs (miRNA, siRNA 
and other types) [ 50 ]. The set of all the RNA molecules is henceforth termed 
transcriptome. The noncoding RNAs play direct roles in the cellular functions in 
e.g. constituting the core elements of protein synthesis, regulating gene expression 
or protection against viral infection. In contrast, the coding RNA, such as mRNAs 
in most cases are categorized as mediator molecules without direct cellular effect of 
their own. Rather, mRNAs convey the genetic information from DNA to the ribo-
some, where they are then translated into a polymer of amino acids, or a protein, as 
stated in the central dogma of molecular biology. The transcriptome in a cell, 
regardless of their functions, is extensively regulated by the cellular microenviron-
ments and the request of the cells. Therefore, probing the transcriptome would provide 
important information about the cell. But why is “single cell” transcription analysis 
necessary? It has been reported that the cells encode a subtle set of analogue param-
eters to modulate the responses to environmental stimuli, e.g. Tay et al. have 
observed a heterogeneous activation of mouse fi broblast (3T3) cells in response to 
the signaling molecule tumor-necrosis factor (TNF)-α [ 51 ]. In this scenario, bulk 
measurements provide relatively limited biologically relevant information in the 
development of cancers, especially how individual cells respond to the changes of 
environment differently. Moreover, considerable cell-to-cell variation with regard to 
transcription is an inherent feature of cancers [ 52 ,  53 ]. Therefore, methods for ana-
lyzing the transcriptomic level of single cells is of critical need to bring forth new 
and insightful information about cancer development and the potential treatment 
against the diseases. 

 In the clinical settings, RNA based methods, such  as   quantitative polymerase 
chain reaction (qPCR), are widely used in cancer diagnosis and prognosis [ 54 – 56 ], 
where the expression level of specifi c genes is analyzed mainly in bulk set-ups. 
Hitherto, transcription analyses in the single cell manner have not yet found its way 
to the clinic. Nevertheless, microfl uidics based single cell studies at the transcrip-
tomic level, made possible by the commercialized system supplied by Fluidigm, 
have been widely adopted for scientifi c purposes by combining quantitative Reverse 
Transcriptase Polynucleotide Chain Reaction (qRT-PCR) and microfl uidics in cancer 
characterization [ 57 – 63 ]. The commercialized single cell qRT-PCR platform is 
based on the prototype reported by Quake’s group (Fig.  5.5 ) [ 64 ]. The basic principle 
is to trap single cells sorted by Fluorescence-Activated Cell Sorting (FACS) in 
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confi ned wells, and perform qRT-PCR reactions in the individual wells. The tiny 
nanoliter wells are generated by a fl uidic circuit composed of a fl uidic layer and a 
valve layer. These are separated by a thin elastomeric rubber member, as shown in 
Fig.  5.6 . When pressurized, gas is applied to the valve layer, the membrane defl ects 
and interrupts the fl ow in the fl uidic layer [ 65 ]. As a result, trapped single cells may 
be analyzed within the individualized well without cross-contamination. Using this 
platform, Dalerba and colleagues have shown that human colon cancer tissues con-
tain distinct cell populations of which the transcriptional identities mirror those of 
the different cellular lineages of the normal colon tissue [ 57 ]. In their work, more 
than 230 genes were evaluated in 336 single cells of three different colon epithelial 
cells and cancer cell lineages. Other reports have used a similar approach to inves-
tigate transcription in breast cancers [ 58 ,  59 ] and leukemia [ 60 ]. As an alternative 
to  the   commercial qRT-PCR platform, White and colleagues have developed a fully 
integrated microfl uidic qRT-PCR device that implements all steps, including cell 
entrapment, lysis, reverse transcription and qPCR analysis in one single device, 
which produces a throughput of 300 cells per run [ 66 ]. The device is capable of 

  Fig. 5.5    Single-cell mRNA isolation and cDNA synthesis: ( a ) Overview of the device, which 
implements fi ve steps, including cell capture, cell lysis, mRNA purifi cation, cDNA synthesis, 
cDNA purifi cation, in one integrated device. Flow channels and control channels are depicted in 
green and blue, respectively. The red unrounded (rectangular profi le) fl ow channels are where 
designed for affi nity column construction. White boxed regions are zoomed in ( b ) and ( c ), indi-
vidually. ( b ) The lysis ring and an NIH/3T3 cell captured in the ring. ( c ) The affi nity column 
construction area and a stacked column. Scale bars are 400 μm. Figure adapted from Ref.  62  with 
permission (Color online)       
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measuring RNA levels, as well as performing single nucleotide variant detection of 
single cells in a high throughput manner.

    In contrast to the techniques mentioned above, capable of handling many cells 
simultaneously but only allowing a limited number of RNAs per cell (up to 96 RNAs) 
to be analyzed, Ramsköld et al. have recently presented a non-microfl uidic based 
whole  transcriptomic   analysis of 12 single human CTCs using mRNA- sequencing 
[ 67 ]. The mRNA-sequencing study was performed on fewer cells compared to the 
microfl uidic based qRT-PCR studies (12 cells in Ramsköld et al. [ 67 ] compared to 
>500 by qRT-PCR in Dalerba et al. [ 57 ]). In future studies, incorporation of micro-
fl uidics with mRNA-sequencing is expected to improve the throughput of transcrip-
tional analyses of single cells .  

5.3.3     Single Cell Protein Analysis for Cancer Characterization 

  The human genome codes for ~25,000 genes that are transcribed and translated 
into proteins [ 68 ]. The process of mRNA splicing makes the number of different 
proteins expressed by the cell many fold higher than the number of genes [ 69 ]. 

  Fig. 5.6    Valve control in microfl uidics: Monolithic valves in microfl uidic devices are typically 
produced by soft-lithography techniques using polydimethylsiloxane (PDMS). Shown here is a 
typical two-layer PDMS “push-down” microfl uidic valve. ( a )  Side view : A thin elastomeric mem-
brane is placed in between the fl ow and control channels. ( b )  Top view : When the control channel 
is pressurized, the thin membrane would be “pushed” downward and close the fl ow in the fl ow 
channel. The fl ow channel is typically positioned orthogonal to the control channel       
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These proteins, which include active enzymes, are the main determinants for the 
cellular processes. Many currently used drugs in cancer therapy function by targeting 
specifi c enzymatic reactions in the cell [ 70 – 73 ]. Consistently, changes in the activity 
of the target enzyme may result in elevated chemo-resistance. Since the activity of 
enzymes are often modifi ed on the post-translational level, such changes may not 
always be recognized at the genomic or transcriptional level [ 74 ], posing a need for 
analysis at the post-translational protein level. 

 Various methods have been applied for analysis of proteins at the single cell 
level, including mass spectrometry, enzyme-linked immunosorbent assay (ELISA), 
enzymatic detection or optical approaches [ 75 – 80 ]. Such analyses can involve 
measurement of the “expressed protein amounts” or “protein activity”. For exam-
ple, Qihui et al. have proposed a microfl uidic device that can isolate 0–5 cells in a 
2 nL volume chamber and assay up to 11 different proteins per chamber on the chip 
using immunostaining procedures [ 78 ]. Regarding the throughput, the microfl uidic 
device is able to isolate and assay 100 single cells per chip. 

 The strategy of detecting protein amount by immunohistochemistry is well 
established and antibodies can be designed to recognize almost all proteins and 
even specifi c features of a protein such as posttranslational modifi cations (e.g. 
phosphorylation and other modifi cations) [ 81 – 84 ]. However, in most cases it is the 
function of the proteins, such as the catalytic activity for enzymes, and not the 
amount per se, that determines the effect of the given protein on cellular condi-
tions, such as health, drug response etc. From that perspective, our group has 
developed an array of DNA nanosensors that measure cancer relevant enzymatic 
activities, such as human topoisomerase I (hTopI) [ 85 – 87 ], topoisomerase II (hTo-
pII) [ 88 ], tyrosyl- DNA phosphodiesterase 1 (Tdp1) [ 89 ,  90 ], which are emerging 
targets for anticancer therapy. The major working principle, termed rolling circle 
enhanced enzyme activity detection (REEAD), utilizes the catalytic activity of the 
target enzyme to generate an intrinsic amplifi cation. Take the detection of hTopI 
activity for example (Fig.  5.7a ), the DNA nanosensors are designed as a linear 
DNA substrate which fold upon itself, forming a dumbbell shape. hTopI is able to 
recognize the substrate, cleave from the 3′ end and religate the 5′ hydroxyl group, 
turning the linear DNA into a circularized one. Subsequent process is designed to 
differentiate the circles from the linear pieces by isothermal rolling circle amplifi -
cation (RCA). As a result, the measured fl uorescence represents the individual 
cleavage-religation event  generated by  active   hTopI. Perhaps the best example 
demonstrating the potential of combining the microfl uidics with nanotechnology 
for single cell analysis, water-in- oil droplets generated by a fl ow-focusing type of 
droplet generator is introduced to encapsulate individual cells along with the 
above-mentioned DNA nanosensors. The droplets provide a confi ned environment 
for the serial of biochemical reactions, enabling the enzymatic activities to be 
observed at the single cell level .
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  Fig. 5.7    Combining DNA nanosensors and microfl uidics for single cell based analysis of 
enzymatic activities: ( a ) DNA substrates S(TopI) and S(Flp) are oligonucleotides that target cleav-
age-ligation by human topoisomerase I (TopI) and Flp, respectively. The detection, termed rolling 
circle enhanced enzyme activity detection (REEAD), initiates by recognition of enzymes to the 
substrates, which results in a circularized product. Subsequently, the circles allow a solid-support 
rolling circle amplifi cation (RCA), which generate ~10 3  tandem repeat of amplifi ed products. The 
results are visualized by fl orescence microscopy at the single-molecule level by hybridization of 
fl uorescently labeled probes. ( b ) The droplet microfl uidics is introduced to encapsulate individual 
Fig. 5.7 (continued) cells along with DNA substrates and lysis buffer, in picoliters of water-in-oil 
droplets. ( c ) The droplets containing circularized DNA are then confi ned in a drop-trap on a 
primer-coated glass slide, where the RCA takes place. ( d ) The observed enzymatic activities from 
single cells are visualized as fl uorescence signals:  green  (TopI) and  blue  (control). Figure adapted 
from Ref.  78  with permission (Color online)       
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5.4         Conclusion 

 Microfl uidics-based approaches have been promoted for many biochemical applica-
tions, such as drug screening [ 91 ], nucleic acid amplifi cation [ 92 ], and analysis of 
chemical reactions [ 93 ]. Therefore, it becomes a natural extension to take advantage 
of microfl uidics for single cells interrogation. The device can be tailored to exploit 
physical and/or biological differences for isolation of particular cell types from a 
population of cells, such as enrichment of CTCs, and separation of CSCs from non- 
stem cells. The small dimensions of microfl uidic devices have also enabled many 
unique features, such as gentle capture of live or rare cells [ 34 ], which avoids 
possible interferences for the subsequent analysis. Microfl uidics also presents an 
opportunity to integrate many functions, such as isolation, biochemical reaction and 
detection, in a single device. For example, recent evidence has shown a high degree 
of heterogeneity even within a population of CTCs [ 94 ]. Therefore, combining CTC 
enrichment and molecular analysis at the single cell level is clinically important for 
the characterization of rare cell phenotypes, including CTCs in various stages dur-
ing the cancer progression or perhaps study of how CSCs behave differently com-
pared to non-stem cells. Furthermore, the isolated cells can be directed to next-stage 
analysis on-chip (e.g., genomic, transcriptomic or proteomic analysis), or on-chip 
cell culture as part of the analysis. Such integration will speed up the cancer charac-
terization process while eliminating the intermediate sample transfer procedures 
typically required in macro-scale approaches. 

 Furthermore, advancement in cellular, microscopic, or nanoscaled molecular 
techniques is pivotal to the single cell analysis. The development of reliable bio-
markers shall closely follow, if not precede, the emergence of microfl uidics. For this 
purpose, immunostaining remains the prevailing technique for cellular or protein 
recognition. Recent progress in nanotechnology has joined the league by providing 
immunomodulatory agents engineered with nanostructure materials, including 
metallic nanoparticles, quantum dots, or nanotubes, to either improve the effi ciency 
immunorecognition or enhance the detection sensitivity [ 95 ]. On the other hand, 
nanoparticles possessing unique photophysical properties, such as semiconductor 
nanocrystals and noble metal nanoclusters, also serve as unique fl uorescence ana-
logs in illuminating various forms of biological analytes through different signal 
transduction pathways. Taken together, the latest development of both nanotechnol-
ogy and microfl uidics is expected to encourage new excitement in the fi eld of single 
cell analysis. 

 Despite the large variety of available approaches targeting and analyzing single 
cells, we are still in the infancy to uncover the implications of cellular heterogeneity. 
Many challenges have yet to come. One of the foremost, existing available approaches 
for single cell analysis is still expensive and technically complex, in particular those 
require high precision pumps or delicate valving control, which prevent the adapta-
tion in the clinical studies. Future development of microfl uidics- based single cell 
analysis is expected to reduce the production cost, sample consumption and to avoid 
human operational error by integration of sample preparation and subsequent data 
acquisition onto one single device. However, tradeoff of microfl uidics remains on the 
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analysis speed, especially when it comes to large sample volume. The capability of 
parallel processing, when made possible, will hopefully accelerate the adoption of 
microfl uidics for large-scale single cell analysis. Accessible single cell analysis, 
however, requires collective efforts including further engineering optimization of 
microfl uidic systems and suitable nanoscaled molecular analysis approaches on the 
chip. The new possibility to reveal the characteristics of rare cells is expected to ulti-
mately lead to clinical implications in the combat of cancers.     
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