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    Chapter 5   

 In Silico Prediction of Chemically Induced Mutagenicity: 
How to Use QSAR Models and Interpret Their Results                     

     Enrico     Mombelli     ,     Giuseppa     Raitano    , and     Emilio     Benfenati     

  Abstract 

   Information on genotoxicity is an essential piece of information gathering for a comprehensive toxicological 
characterization of chemicals. Several QSAR models that can predict Ames genotoxicity are freely available 
for download from the Internet and they can provide relevant information for the toxicological profi ling 
of chemicals. Indeed, they can be straightforwardly used for predicting the presence or absence of geno-
toxic hazards associated with the interactions of chemicals with DNA. 

 Nevertheless, and despite the ease of use of these models, the scientifi c challenge is to assess the reliability 
of information that can be obtained from these tools. This chapter provides instructions on how to use 
freely available QSAR models and on how to interpret their predictions.  

  Key words     Mutagenicity  ,   Ames test  ,   QSAR  ,   Predictive reliability  ,   Structural alerts  

1      Introduction 

 The assessment of information on mutagenicity represents an impor-
tant component for the evaluation of the toxicological characteristics 
of chemicals [ 1 ]. For instance, in the fi eld of drug discovery the 
detection of mutagenic potential of a chemical can result in the 
rejection of a promising chemotype owing to the deleterious conse-
quences that the introduction of gene mutations can elicit. In addi-
tion, the characterization of genotoxicity is required for the 
regulatory qualifi cation of impurities in drug substances [ 2 ] and it is 
a mandatory requirement for all the different tonnage bands defi ned 
by the overarching REACH regulation [ 3 ]. 

 Mutagenic effects caused by chemical agents can be detected 
by the Ames test that was devised by Bruce Ames during the 
1970s [ 4 ]. This test is still commonly in use in many toxicological 
laboratories around the world because of its good interlaboratory 
reproducibility, aptitude at testing different agents, cost-effectiveness, 
and structure–activity analysis [ 5 ]. The remarkable juxtaposition 
of these attributes has brought the Ames test to the forefront 
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of modern  toxicology. Indeed, this test is a paradigm for the 
development of nowadays in vitro toxicology and it has been nick-
named “the stethoscope of genetic toxicology for the twenty-fi rst 
century” [ 5 ] given that testing strategies for carcinogenicity rely 
on the Ames test as an essential fi rst-tier assay [ 5 ,  6 ]. 

 This test is based upon the ability of  Salmonella typhimurium  
and  Escherichia coli  auxotrophic strains to recover the ability to syn-
thesize an essential amino acid (histidine for  S. typhimurium  and 
tryptophan for  E. coli ) as a consequence of the mutagenic effect of 
chemicals to which they are exposed. The design of the experimental 
protocol enables the detection of bacterial colonies that can grow in 
the absence of essential amino acids as a result of a back mutation 
that restores their biosynthetic capabilities. The detection of this 
back mutation to wild type has the potential to identify point 
mutations that are caused by the substitution, addition, or deletion 
of one or few DNA base pairs. At least fi ve bacterial strains should 
be used when testing a chemical [ 7 ], including strains that are sen-
sitive to oxidizing mutagens, cross-linking agents and hydrazines 
( E. coli  WP2 or  S. typhimurium  TA102,  see   Note 1 ). 

 Anyhow, it is important to note that, as stated in the OECD 
guideline [ 7 ], mammalian tests may be more appropriate when 
evaluating certain classes of drugs. For example, the Ames test is 
not the most appropriate choice for chemicals displaying a high 
bactericidal activity such as certain antibiotics, topoisomerase 
inhibitors, and some nucleoside analogs. 

 The interlaboratory reproducibility of the Ames test is esti-
mated at 85–90 % [ 8 ,  9 ] and these percentages represent the upper 
limit of predictive performance that can be expected from QSAR 
models for the same endpoint. Indeed, these models are derived 
from data obtained by means of the same protocol. In other words, 
these fi ndings mean that 10–15 % of the chemicals that were exper-
imentally tested gave different results when analyzed in different 
laboratories. Therefore, this experimental uncertainty in terms of 
false negative or positive predictions is transposed into the semi-
empirical QSAR models that cannot be expected to be more reliable 
than their experimental counterpart. 

 Consequently, one key issue that should be given attention 
when judging the reliability of a QSAR model predicting Ames 
genotoxicity is whether or not this model predicts with a reliability 
that is comparable to the reproducibility of the test. It is worth 
mentioning that this comparison has to be critically assessed as a 
function of the number and chemotypes of the chemicals that 
compose the external test set that was adopted in order to validate 
the model. For example, if the external test set does not include all 
the chemotypes that are covered by the training set, the estimated 
predictive performance of the model will only be representative of 
a subset of chemical structures. 
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 One fi nal word of caution should be added with respect to 
models whose alleged performance is much higher than the experi-
mental test they are meant to replace. This special situation could 
indicate a potential overfi tting of the model and its lack of ability 
to provide reliable prediction for new cases (i.e. molecules that are 
not included in its training set). 

 The theory of electrophilic reactivity by Miller and Miller [ 10 ] 
adequately describes the molecular mechanisms that control the 
genotoxicity of chemicals as detected by the Ames test. Indeed, 
this theory has proved to be in agreement with the observations 
ever since it was formulated in the late 1970s. According to this 
theory, the vast majority of known chemical carcinogens are also 
genotoxic since they are (or are metabolized to) reactive electro-
philes that react with nucleic acids. The (Q)SAR models described 
in this chapter ( see  Subheading  2.6 ) conform to this theory by 
identifying structural fragments that trigger electrophilic reactions 
as formalized by E-state values and fragments (e.g. CAESAR) and 
by structural alerts (SA) validated by experts (e.g. Toxtree SA) or 
automatically extracted by learning algorithms (e.g. SARpy). 

 Because of the complementary nature of these tools, this chap-
ter illustrates the practical application of models covering the three 
main categories of in silico tools for the prediction of the mutagenic 
potential of chemicals: (Q)SAR models that are based on numerical 
descriptors (e.g. partition coeffi cients, topological descriptors, 
functional group counts), rule-based expert systems that are 
based on structural alerts (molecular fragments that are associ-
ated with the occurrence of adverse outcomes), and hybrid mod-
els combining these two approaches. Models based on all these 
approaches are implemented within the freely available VEGA 
platform (version 1.0.8): CAESAR, SARpy, and ToxTree-VEGA 
(TT-VEGA) ( see   Note 2 ). A brief description of the models is 
given in the following paragraphs and more detailed information 
can be found in the literature therein cited.  

2    Materials 

   The performance of models predicting the presence and absence of 
toxicological hazards is usually described by Cooper statistics [ 11 ] 
that characterize the predictive capabilities of diagnostic tests: sen-
sitivity, specifi city, and accuracy (or concordance). Sensitivity is the 
ability to identify a chemical that presents a toxicological hazard as 
toxic; specifi city is the ability to correctly identify chemicals that do 
not present toxicological hazards as safe; and accuracy describes 
the overall concordance between predicted and experimental values. 
Their mathematical defi nitions are the following:

2.1  Performance 
Characterization 
of (Q)SAR Models

In Silico Prediction of Chemically Induced Mutagenicity: How to Use QSAR Models…
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TP

TP FN
=

+    

  
Specificity

TN

TN FP
=

+    

  
Concordance

TP TN

TP FN TN FP
=

+
+ + +    

where TP = number of true positive predictions, TN = number of 
true negative predictions, FP = number of false positive predictions, 
FN = number of false negative predictions. 

 In the presence of skewed data sets (e.g. a data set including a 
majority of non-mutagenic chemicals), Cooper statistics are not fully 
reliable. It is therefore more appropriate to compute the Matthews 
correlation coeffi cient (MCC) which is defi ned as follows:

  
MCC
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+
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The MCC ranges from −1 to +1. A MCC value of +1 represents a 
total agreement between experimental results and predictions; a value 
of 0 no better than random prediction, and a value of −1 indicates a 
total disagreement between predicted and observed values.  

   TTVEGA, CAESAR, and SARpy models are embedded within the 
standalone software application VEGA (v. 1.0.8) that allows for a 
secure in-house execution of the three models without the need to 
send information to any external server [ 12 ]. VEGA can be also 
used for batch processing of multiple chemical structures. The 
software application can be freely downloaded for the VEGA web-
site [ 12 ] and it can be installed and used on any operative system 
supporting JAVA.  

   Any software application that allows to draw chemical structures 
and convert them into two types of chemical fi le formats supported 
by VEGA: “Simplifi ed Molecular Input Line Entry specifi cation” 
(SMILES) [ 13 ] or “Structure Data Format” (SDF) can be used in 
order to generate input structures. Several chemical drawing pro-
grams can perform this task: VEGA ZZ [ 14 ], ACD/ChemSketch 
[ 15 ], MarvinSketch [ 16 ], and the OECD QSAR Toolbox [ 17 ] 
(for SMILES formats only). 

 This list is not exhaustive and these applications are subjected 
to different software licenses and terms and conditions of use.  

   VEGA has a simple workfl ow which is schematically depicted in 
Fig.  1 . Basically, a user types or pastes a SMILES string in the blank 
space at the top of the user interface and then adds it to a working 
list of molecules to be analyzed. Once that a SMILES string is 
added at the working list, it is possible to highlight it and visually 

2.2  Software 
Requirement

2.3  Optional 
Software

2.4  VEGA: 
The Workfl ow
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check the two- dimensional structure encoded by the text line. 
This checkpoint is crucial. Indeed, several structural inaccuracies 
can take place at this stage and compromise the reliability of the 
predictions [ 18 ].

   If needed, users can also input multiple molecules at once 
(“import File” button at the top right of the user interface). In this 
case the fi le contains a list of SMILES codes saved in “txt” or “smi” 
format. 

 Thanks to the “Select” button it is then possible to choose the 
model(s) of interest, to specify the desired output format (PDF or 
csv fi les), and to indicate where the prediction reports should be 
saved (“Export” button). Finally, the selected model(s) can be 
executed by clicking on the “Predict” button.  

    All the models that will be described in the following paragraphs 
adopt the VEGA defi nition of applicability domain [ 19 ] ( see   Note 3 ). 
According to this defi nition, the degree of membership of a query 
chemical to the applicability domain of the model is described by 
an Applicability Domain Index (ADI) with values that range from 0 
(no membership) to 1 (full membership). Chemicals characterized 
by ADI values that are less than 0.7 are to be regarded as potentially 
not belonging to the AD. ADI values that are within the range 
0.7–0.9 represent a critical region since the query chemical could 
be out of the applicability domain. Finally, ADI values that are 
greater than or equal to 0.9 indicate chemicals that should be 
regarded as belonging to the applicability domain of the model. 

 These reference values represent a general guideline and they 
should be interpreted in the light of a thorough inspection of 
the sub-indexes that compose the ADI: the similarity index, 

2.5  Applicability 
Domain

  Fig. 1    Workfl ow of VEGA.  The SMILES string corresponding to 1-butanol was used as input structure        
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the concordance index, the accuracy index, and the atom-centered 
fragments index. If, as in the case of the CAESAR model, the 
chemical structures are characterized by numerical descriptors the 
ADI takes also into account a check of the ranges in descriptor 
values ( see   Note 4 ). 

 These critical factors should always be analyzed when interpret-
ing results and they will be described in the following paragraphs. 

   This index takes into account the degree of similarity between the 
query chemical and the three most similar chemicals. Values close 
to 1 indicate that the chemotype of the query chemical is well rep-
resented by the training set of the model ( see   Note 5 ). On the 
other hand, lower values could indicate that the prediction is an 
extrapolation since the query chemicals is located in regions of the 
chemical space that are scarcely populated. In this case the predic-
tion cannot be supported by the evaluation of similar chemicals. 
This does not mean that the prediction is wrong. It means that the 
user should gather further elements to support the model results. 
In particular, additional models should be run to get support.  

   This index provides information on the concordance between the 
predicted value for the query chemical and the experimental values 
of the three most similar chemicals. Values that are close to zero 
may indicate an unreliable prediction and the possible identifi ca-
tion of a region in the chemical space whose structure–toxicity 
behavior is not adequately described by the model. Therefore, a 
careful inspection of chemicals that give rise to confl icting predic-
tions is requested. Indeed, one or more structural analogs  can be 
characterized by experimental values that are at odds with the pre-
diction for the target compound. 

 For instance, a visual inspection may easily identify the pres-
ence of a specifi c toxic SA within the structure of the structural 
analog(s). 

 Consequently, two compounds that are similar from a chemical 
point of view may differ for the presence/absence of structural alerts, 
and this fact can explain differences in their property values. 

 If the user does not recognize SA, it is possible to run VEGA 
on the similar compound with the confl icting value; VEGA will list 
the SA, which can then be compared.  

   When assessing the reliability of predictions, it is important to 
understand how well a model predicts the toxicity in the region of 
the chemical space where the query chemical is located. This index 
informs on such a local reliability by taking into account the 
 classifi cation accuracy of the three most similar chemicals. Low val-
ues for this index should warn about a lack of predictive accuracy. 
In this case, additional models should be run, to see if they have 
better accuracy.  

2.5.1  Similarity Index

2.5.2  Concordance Index

2.5.3  Accuracy Index
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   This index takes into account the presence of one or more frag-
ments that are not found in the training set, or that are rare frag-
ments. An index value equal to 1 implies that all atom-centered 
fragments of the target compound were found in the training set. 
On the other hand, a value that is less than 0.7 implies that a prom-
inent number of atom-centered fragments of the target compound 
have not been found in the compounds of the training set or are 
rare fragments of the training set. 

 Also in this case, it is recommended to run additional models, 
because each model can bring new information as a function of its 
own training set.  

   Computed only for the CAESAR model, this index checks if the 
descriptors calculated for the predicted compound are inside the 
range of descriptors of the training and test set. The index has 
value 1 if all descriptors are inside the range, 0 if at least one 
descriptor is out of the range.   

     To compare the performance of three VEGA models, we applied 
them to the same evaluation set. This data set counts more than 
6000 compounds evenly distributed between mutagens and non- 
mutagens and was used within the European LIFE project 
ANTARES for the evaluation of different QSAR models [ 20 ]. 

 In the next paragraphs, for each model we report the statistical 
values referred to the entire evaluation set (6064 compounds) and 
to the molecules belonging to the applicability domain that are out 
of its training set. 

   TT-VEGA (version 1.0.0-DEV) is based on a series of rules defi ned 
by Benigni and Bossa that detects mutagenic chemicals [ 21 ]. This 
rulebase was originally implemented within the Toxtree application 
freely distributed by the European Joint Research Center [ 21 ]. 

   Data were extracted from the ISSCAN database [ 22 ] and includes 
730 compounds, 350 of which are mutagenic.  

   Toxtree is a rule-based system that includes alerts for genotoxic 
carcinogenicity and non-genotoxic carcinogenicity. Genotoxic 
carcinogenicity alerts can be considered as a valuable tool for the 
detection of compounds that yield positive results during an Ames 
test. The version of Toxtree implemented within the VEGA plat-
form offers the same compilation of rules as the original version 
[ 21 ]. This model offers a compilation of SA that refers mainly to 
knowledge on the mechanism of action for genotoxic carcinoge-
nicity (i.e. they are also pertinent for mutagenic activity in bacteria). 
The SAs detecting non- genotoxic carcinogens are not to be taken 
into account when applying this model since non-genotoxic 
carcinogens cannot, by defi nition, be detected by the Ames test.  

2.5.4  Atom-Centered 
Fragments (ACF) Index

2.5.5  Model Descriptors 
Range Index

2.6  Models 
Description

2.6.1  Benigni-Bossa 
Mutagenicity (TT-VEGA)

 Toxicity Data Source

 Description of the Model

In Silico Prediction of Chemically Induced Mutagenicity: How to Use QSAR Models…
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 –        Global performance  (calculated on 6064 compounds): 
 –  Accuracy = 0.75, Specifi city = 0.65, Sensitivity = 0.83, MCC = 0.49.  
 –    Performance in ADI out of training  (calculated on 1419 

compounds with ADI > 0.9): 
 –  Accuracy = 0.87, Specifi city = 0.75, Sensitivity = 0.94, MCC = 0.72.     

   TT-VEGA classifi es query chemicals as mutagenic when one or 
more SAs are detected within their molecular structure or as a non- 
mutagenic if no SA is identifi ed.   

     The CAESAR model [ 23 ] was developed on the basis of 4204 
chemicals (2348 mutagenic and 1856 non-mutagenic) extracted 
from the Bursi data set [ 24 ]. This initial set was then split into 
training set (3367 chemicals, 80 % of the entire data set) and external 
test set (837 chemicals, 20 % of the entire data set) [ 24 ].  

   The algorithm of the model is described in Ferrari and Gini [ 23 ]. 
CAESAR-VEGA automatically calculates chemical descriptors for 
the chemicals of interests and contains a subset of Toxtree rules 
( see  previous paragraph) to enhance the sensitivity of the model. 
The model integrates two complementary predictive approaches 
in series (statistical and rule-based): a support vector machine 
(SVM) algorithm coupled to two sets of structural alerts rules 
aimed at reducing the false negative rate. In order not to infl ate 
the false positive rate a chemical which is identifi ed as negative 
during the fi rst two steps (SVM output and fi rst SA fi lter) and 
positive by the second set of rules is fl agged as a suspicious muta-
genic chemical. 

 If the user wants only the results of the statistical model, (s)he 
can check if the model identifi es SA and discard this approach.  

 –        Global performance  (calculated on 6064 compounds): 
 –  Accuracy = 0.81, Specifi city = 0.69, Sensitivity = 0.91, 

MCC = 0.63.  
 –    Performance in ADI out of training  (calculated on 942 

compounds with ADI > 0.9): 
 –  Accuracy = 0.79, Specifi city = 0.61, Sensitivity = 0.93, 

MCC = 0.57.    

 During this evaluation, compounds predicted as suspicious 
mutagens were considered as mutagens.  

   CAESAR-VEGA classifi es chemicals as mutagenic, non-mutagenic, 
and suspicious mutagenic. Suspicious chemicals are associated with 
higher predictive uncertainty.   

 Model Statistics

 Interpretation of the Output

2.6.2  Mutagenicity 
Model (CAESAR) 
(Version 2.1.12)

 Toxicity Data Source

 Description of the Model

 Model Statistics

 Interpretation of the Output
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     The data set employed for rule extraction was retrieved from the 
CAESAR model for Ames mutagenicity ( see  previous paragraph). 
This model and VEGA CAESAR share the same training set.  

   SARpy (SAR in python) is a QSAR method that identifi es relevant 
fragments and extracts a set of rules directly from data without any a 
priori knowledge [ 25 ]. The algorithm generates substructures; rel-
evant SAs are automatically selected on the basis of their prediction 
performance for a training set. The application of this modeling 
approach to the CAESAR data set extended the previous work [ 25 ] 
by extracting two sets of rules: one for mutagenicity (112 rules) and 
the other for non-mutagenicity (93 rules) ( see   Note 6 ). 

 The SARpy application is available through a graphic interface 
or through the VEGA platform.  

 –        Global performance  (calculated on 6064 compounds): 
 –  Accuracy = 0.77, Specifi city = 0.71, Sensitivity = 0.82, 

MCC = 0.54.  
 –    Performance in ADI out of training  (calculated on 880 

compounds with ADI > 0.9): 
 –  Accuracy = 0.81, Specifi city = 0.67, Sensitivity = 0.92, MCC = 0.62.     

   If the target compound matches one or more mutagenicity rules, 
the prediction will be “mutagenic”; if the target compound 
matches one or more non-mutagenicity rules (or no rules), the 
prediction will be “non-mutagenic.”     

3    Methods 

 A critical assessment of predictions is the most demanding aspect 
related to the interpretation of the output of (Q)SAR models. VEGA 
facilitates the interpretability of (Q)SAR predictions by breaking 
down several critical aspects of the applicability domain as described 
in Subheading  2.5 . Nevertheless, possible misinterpretations can still 
take place and the following examples will provide further insights 
into the analysis of (Q)SAR results. 

 The fi rst two examples illustrate predictions characterized by a 
clear output which is concordant across all VEGA models. On the 
contrary, the last example is more challenging and it will advise the 
reader about complex cases. The purpose of this section is to pro-
vide an insight into the critical assessment of QSAR predictions 
and to highlight relevant aspects that should be taken into account 
when analyzing (Q)SAR outputs. 

2.6.3  Mutagenicity 
SARpy Model (Version 
1.0.6—DEV)

 Toxicity Data Source

 Description of the Model

 Model Statistics

 Interpretation of the Output
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 ●           CAESAR results :  Prediction is non-mutagenic and the result 
appears reliable.     

 The CAESAR model does not identify any SA linked to muta-
genic activity. 

 Similarity values for the six most similar compounds are very high 
(ranging from 0.989 to 0.903). Furthermore, experimental and 
predicted toxicities agree for all the similar molecules that were found 
in the training set. Indeed, predicted and experimental toxicities 
systematically designate non-mutagenic chemicals ( see   Note 7 ). 

 On the basis of this information and in particular thanks to a 
visual inspection of the fi rst three similar compounds, the predicted 
substance is considered into the applicability domain of the model 
(ADI = 0.978) ( see  Fig.  3 ).

 ●      SARpy results :  Prediction is non-mutagenic and the result 
appears reliable.     

 The model fi nds within the structure of the query chemical 
only SAs for non-mutagenicity (“Inactive” rules) ( see  Fig.  4 ).

   Also in this case, the query chemical falls into the applicability 
domain (ADI = 0.978) and the predicted and experimental toxici-
ties for the most similar compounds are the same. This behavior is 
not completely surprising since CAESAR and SARpy are based on 
the same training set. Nevertheless, this result corroborates the 
prediction computed by CAESAR by assessing toxicities according 
to a complementary analysis executed by a different algorithm.

 ●     TT-VEGA results :  Prediction is non-mutagenic and the result 
appears reliable.     

 Similarly to what described for the CAESAR model, Toxtree 
does not fi nd any SA for mutagenicity. 

 The most similar compounds shown in the output are different 
from those of CAESAR and SARpy since the corresponding train-
ing sets are different. These structural analogs are characterized by 
lower similarity values (ranging from 0.823 to 0.773) and this lower 
degree of similarity is refl ected by the ADI (0.906). This degree of 
overall similarity combined with a lack of identifi cation of SA 
substantiates the validity of the prediction ( see   Note 8 ).

3.1  Case Study: 
Valproic Acid (Fig.  2 )

  Fig. 2    Valproic acid structure, chemical information, and experimental activity [ 26 ]       
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 ●     Overall evaluation :  for this case there is agreement between the 
three models, and each model is corroborated by the high ADI 
value.      

 ●           CAESAR results:   Prediction is mutagenic and the result 
appears reliable.     

 The model identifi es one fragment related to mutagenic activity 
included within the Benigni-Bossa rulebase [ 21 ]: Nitro aromatic, 
SA27 ( see  Fig.  6 ).

3.2  Case Study: 
Nifuratel ( See  Fig.  5 )

  Fig. 3    A particular of the three on six most similar compounds that are shown in the pdf outputs of the models 
for Valproic acid. SARpy and CAESAR display the same molecules       

SAi 51 SAi 57 SAi 70

  Fig. 4    Inactive SAs identifi ed by SARpy in Valproic acid molecule       
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   In addition to the six most similar molecules found in the 
training set, the model shows the three most similar compounds 
having the same fragment ( see  Fig.  7 ).

   The similarity index is high, 0.9. The concordance for similar 
molecules and the accuracy index are both equal to 1. 

 For these reasons the predicted substance is considered into 
the applicability domain (ADI = 0.948).

 ●     SARpy results:   Prediction is mutagenic and the result appears 
reliable.     

 In this case the identifi ed fragments are four and all linked to 
mutagenic activity ( see  Fig.  8 ).

   SARpy also shows the most similar compounds that are char-
acterized by the presence of the identifi ed fragments. In this case 
predictions and experimental values agree for all the structural 
analogs. 

 This prediction is characterized by the same ADI (and his sub- 
indexes) as the prediction computed by the CAESAR model.

 ●     Toxtree results :  Prediction is mutagenic and the result appears 
reliable.     

 As explained in Subheading  2.6 , CAESAR contains a subset of 
Toxtree rules and both models identify the same nitro aromatic 
fragment that plays a key role in supporting the prediction. 

 The ADI value (0.933) is slightly lower than what observed for 
CAESAR and SARpy; this is related only to the index of similarity 
(0.871) while the other indices are all excellent.

 ●     Overall evaluation :  all models agree, and there are good examples 
of similar compounds suggesting the predictions.      

  Fig. 5    Nifuratel structure, chemical information, and experimental activity [ 27 ]       

(Aromatic or heteroaromatic ring) N

O

O

  Fig. 6    Nitro aromatic structural alert no. 27       
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      Unlike the previous examples, in this case the output is equivocal 
because the prediction models are in disagreement and show very 
low values of ADI.

 ●     CAESAR results :  Prediction is non-mutagenic but the result 
may not be reliable.     

3.3  Case Study: 
Dexamethasone 
( See  Fig.  9 ).

Nitro aromatic (Benigni/Bossa structural alert no. 27).

Following, the most similar compounds from the model’s dataset having the same fragment.

Fragment found: Nitro aromatic

CAS: 67-45-8
Dataset id: 1522 (training set)
SMILES: O=C2OCCN2(N=Cc1oc(cc1)[N+](=O)[O-])
Similarity: 0.922

CAS: 23256-30-6
Dataset id: 2794 (training set)
SMILES: O=[N+]([O-])c2oc(C=NN1CCS(=O)(=O)CC1C)cc2
Similarity: 0.899

CAS: 75888-03-8
Dataset id: 3089 (training set)
SMILES: O=C2NCCCN2(N=Cc1oc(cc1)[N+](=O)[O-])
Similarity: 0.882

Experimental value: Mutagen
Predicted value: Mutagen

Experimental value: Mutagen
Predicted value: Mutagen

Experimental value: Mutagen
Predicted value: Mutagen

o
o

o

o

o o

o

o

o
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N
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  Fig. 7    Part of the CAESAR output in Nifuratel prediction: three of the most similar compounds within training 
set that have the same SA27 fragment found in the target       
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O
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SA 4 SA 94 SA 98 SA 103

  Fig. 8    Four active fragments identifi ed by SARpy       
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 Although similarity, concordance, and accuracy indices are high 
(respectively 0.875, 1 and 1), ADI is equal to 0.795, therefore 
Dexamethasone could be out of the applicability domain of the 
model. This lack of reliability is caused by a low (0.85) value of 
the ACF index.

 ●     SARpy results :  Prediction is non-mutagenic but the result may 
not be reliable.     

 The model identifi es nine inactive fragments. Some of these 
fragments are depicted in Fig.  10 .

   Even if the values of similarity and ACF indexes are the same 
than what observed when using CAESAR, the ADI (0.721) value is 
lower because the accuracy does not reach the minimal recommended 
threshold (0.676) ( see  Fig.  11 ).

F

O

O

O

O

O

  Fig. 9    Dexamethasone structure, chemical information, and experimental activity [ 28 ]       

SAi 1 SAi 33 SAi 45 SAi 50
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  Fig. 10    Examples of inactive fragments identifi ed by SARpy       
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 ●      TT-VEGA results :  Prediction is mutagenic but the result may 
not be reliable.     

 The model identifi es the presence of the SA10 as a cause of 
mutagenicity of the target compound ( see  Fig.  12 ).

   Conversely to what observed for Nifuratel, the predictions 
yielded by CAESAR and TT-VEGA are in disagreement since 
CAESAR does not contain the SA10 fragment in its subset of rules 
(see above). 

 The unreliability of the TT-VEGA prediction is highlighted by 
the poor value of its ADI (0) that is determined by low values of 
the concordance, accuracy, and ACF indices (0, 0, and 0.6 
respectively). 

  Fig. 11    The  red circle  indicates the different predictions of CAESAR and SARpy for the second most similar 
compound. Since the prediction computed by SARpy does not match the experimental activity, its accuracy is 
lower than what observed when using CAESAR       
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  Fig. 12    SA10 (α, β unsaturated carbonyl)       
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 Indeed, even if the prediction yielded by TT-VEGA is charac-
terized by a similarity index which is greater (0.922) than the corre-
sponding index of CAESAR and SARpy, the experimental and the 
predicted values are in disagreement for all the similar compounds 
in the output. 

 Difficult cases such as this example could benefit from 
tools such as ToxRead ( see  Chapter   13    ) that can perform read-
across analysis while providing p-values calculated by using the 
Fisher's test and accuracies for each structural alert. In this 
case ToxRead could provide an insight into the analysis of the 
SA10 fragment by showing its low accuracy (0.49) and  p -value 
(0.015). 

 On the contrary, the nine fragments identifi ed by SARpy have 
accuracies ranging from 0.7 to 0.9 and  p -values <10 −6 . 

 The examples detailed in the previous paragraphs highlight 
the fact that a thorough analysis of all the factors that infl uence 
the predictive accuracy of a model should be taken into account 
instead of simply relying on the fi nal prediction. Several potential 
pitfalls can be prevented by analyzing all the sub-indices that 
compose the ADI and by a visual inspection of the input mole-
cule versus all the identifi ed structural analogs. Particularly, the 
pertinence of such a visual inspection can be corroborated by the 
recognition of SA within the query chemical and/or its structural 
analogs. 

 It is also important to point out that QSAR and read-across 
predictions are not mutually exclusive and that such a synergy can 
potentially provide relevant information in diffi cult cases that are 
characterized by fuzzy QSAR predictions (e.g. the case of 
Dexamethasone). Indeed, an expert can always compare the results 
computed by a model with its own read-across prediction on the 
basis of the identifi ed analogs. These concepts will be discussed in 
Chapter   13    .   

4    Notes 

     1.    The predictive models discussed in this chapter do not pre-
dict for a specifi c  S. typhimurium  strain. On the other hand, 
ADMET predictor (Absorption, Distribution, Metabolism, 
Elimination, and Toxicity of chemical substances), a com-
mercial tool, includes ten different models for different 
strains of  S. typhimurium  with and without microsomal acti-
vation [ 29 ]. We notice that the performance of the “gen-
eral” mutagenicity models was superior compared to the 
strain-specifi c models, when tested in a large set of com-
pounds [ 20 ].   
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   2.    There are several commercial or freely available software pro-
grams that can predict mutagenic hazards. In addition to the 
VEGA platform, other examples of free models are T.E.S.T. 
(Toxicity Estimation Software Tool) [ 30 ] and Toxtree 
(Estimation of Toxic Hazard—A Decision Tree Approach) by 
Ideaconsult Ltd. [ 31 ].   

   3.    VEGA calculates the applicability domain through a program 
which is different from the (Q)SAR model predicting the value 
of interest.   

   4.    The ADI measurement within VEGA is composed of a series 
of sub-indices which vary depending on the (Q)SAR model.   

   5.    For the models embedded within the VEGA platform, the 
expression “training set” refers to the set of molecules used dur-
ing the calibration of the models and their internal validation. 
The membership of the most similar structural analogs of the 
query chemical (training or test set) is specifi ed in the output 
provided by the software.         The output format is different for 
TEST. In this case the output shows the most similar structural 
analogs of the query chemical that are found in the test set 
and, if prompted by the user, it also shows the most similar 
compounds identifi ed in the training set.   

   6.    SARpy adopts SAs but these fragments are not based on “a 
priori” knowledge of the biochemical mechanism of action like 
for the rules-based systems (such as Toxtree and DEREK); it is 
more correct to refer to SARpy as a statistical model, which is 
highly transparent and communicates the extracted knowledge 
by means of rules.         Another major difference between SARpy 
and the rule-based models is that SARpy shows rules associated 
with lack of toxicity. These fragments are most frequently pres-
ent in the non- mutagenic compounds of the training set. 
However, considering the SA for mutagenicity there are strong 
similarities with rule-based models.   

   7.    The evaluation on the similar compounds carried out by using 
VEGA can be regarded as a kind of read-across approach. The 
user may also apply VEGA for read across, without considering 
the prediction done by the model.   

   8.    Please notice that each model in VEGA has its own data set. 
Also the ADI is based on this data set. It may be that the same 
chemical is characterized by confl icting properties value (muta-
genic or non-mutagenic) depending on the data set.         
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