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Chapter 3

Modeling Pharmacokinetics

Frederic Y. Bois and Céline Brochot

Abstract

Pharmacokinetics is the study of the fate of xenobiotics in a living organism. Physiologically based pharma-
cokinetic (PBPK) models provide realistic descriptions of xenobiotics’ absorption, distribution, metabolism, 
and excretion processes. They model the body as a set of homogeneous compartments representing organs, 
and their parameters refer to anatomical, physiological, biochemical, and physicochemical entities. They offer 
a quantitative mechanistic framework to understand and simulate the time-course of the concentration of a 
substance in various organs and body fluids. These models are well suited for performing extrapolations 
inherent to toxicology and pharmacology (e.g., between species or doses) and for integrating data obtained 
from various sources (e.g., in vitro or in vivo experiments, structure–activity models). In this chapter, 
we describe the practical development and basic use of a PBPK model from model building to model simu-
lations, through implementation with an easily accessible free software.
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1 Introduction

The therapeutic or toxic effects of chemical substances not only 
depend on interactions with biomolecules at the cellular level, but 
also on the amount of the active substance reaching target cells 
(i.e., where the effects arise). Therefore, conceptually, two phases 
can be distinguished in the time course of such effects: the absorp-
tion, transport, and elimination of substances into, in, and out of 
the body including target tissues (pharmacokinetics), and their 
action on these targets (pharmacodynamics). Schematically, phar-
macokinetics (or toxicokinetics for toxic molecules) can be defined 
as the action of the body on substances, and pharmacodynamics as 
the action of substances on the body. Pharmacokinetic and pharma-
codynamics first aim at a qualitative understanding of the underlying 
biology. They also use mathematical models to analyze and extrapo-
late measurements of various biomarkers of exposure, susceptibility 
or effect, in order to quantitatively predict effects. This chapter 
focuses on toxicokinetic models and in particular on physiologically 
based pharmacokinetic (PBPK) models.
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Toxicokinetic models aim to link an external exposure to an 
internal dosimetry in humans (e.g., concentration in blood, urine, 
or in tissues) by describing the process of absorption, distribution, 
metabolism, and excretion (ADME) that undergoes a substance in 
living organisms. A class of toxicokinetic models, the physiologi-
cally based pharmacokinetic (PBPK) models, bases the description 
on the ADME processes on the physiology and the anatomy of indi-
viduals, and the biochemistry of the compounds. A PBPK model 
subdivides the body in compartments representing organs con-
nected through a fluid, usually blood. Model parameters correspond 
to physiological and biochemical entities specific to the body and 
compounds, such as organ volumes, tissue blood flows, affinities of 
the compounds for the tissues, or the metabolic clearance.

The first works in pharmacokinetic modeling were based on 
physiological descriptions of the body [1–6]. However, at the time, 
the corresponding mathematical models were too complex to be 
solved. Research and applications then focused on simpler one-, 
two-, or three-compartment models [7], which proved to be ade-
quate for describing and interpolating concentration–time profiles 
of many drugs in blood or other biological matrices. However, for 
substances with complex kinetics, or when inter-species extrapola-
tions were required, simple models were insufficient and research 
continued on physiological models [8–12].

Over the years, the ever-increasing computing capabilities and 
the advent of statistical approaches applicable to uncertainty and 
population variability modeling have turned PBPK models into 
well- developed tools for safety assessment of chemical substances 
[13]. A significant advance has been the development of quantita-
tive structure–properties models for the chemical-dependent 
parameters of PBPK models (e.g., tissue affinities) [14, 15]. Those 
developments are still ongoing and have led to large generic mod-
els which can give quick, even if approximate, answers to pharma-
cokinetic questions, solely on the basis of a chemical’s formula and 
limited data [16–18].

The mechanistic basis of PBPK models is particularly well 
adapted to toxicological risk assessment [19, 20] and also in the 
pharmaceutical industry for the development of new therapeutic 
substances [21], in particular for dealing with extrapolations inher-
ent to these domains (in vitro to in vivo, laboratory animals to 
human populations, various exposure or dosing schemes, etc.). 
PBPK models can be applied in two different steps of the risk 
assessment framework. First, these models can be used to better 
characterize the relationship between the exposure dose and the 
adverse effects by modeling the internal exposure in the target tis-
sues (i.e., where the toxic effects arise) [22]. Secondly, PBPK mod-
els can be used in the exposure assessment to estimate the external 
exposure using human biomonitoring data, like the concentrations 
of chemicals in blood or urine [23, 24]. These predictions can then 
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be compared to existing exposure guidance or reference values 
such as tolerable daily intakes [25].

To provide a general overview of the basis and applications of 
PBPK modeling, the first section of this chapter describes the 
development of a PBPK model (model formulation, parameter 
estimation). We then propose to illustrate the different steps with 
1,3-butadiene, a volatile organic compound that is carcinogenic to 
humans (group 1 in the IARC classification).

2 Development of a PBPK Model

In this section, we present the steps to follow in developing a PBPK 
model. Recently, the International Programme on Chemical Safety 
provided guidance on the characterization and application of 
PBPK models in risk assessment [20]. The guidance aimed to pro-
pose a standardized framework to review and critically evaluate the 
available toxicological data, and describe thoroughly the develop-
ment of the model, i.e., structure, equations, parameter estima-
tion, model evaluation, and validation. The ICRP framework also 
aimed to harmonize good modeling practices between risk assessors 
and model developers [26–28].

A PBPK model represents the organism of interest—human, rat, 
mouse, etc.—as a set of compartments, each corresponding to an 
organ, group of organs or tissues (e.g., adipose tissue, bone, brain, 
gut) having similar blood perfusion rate (or permeability) and affin-
ity for the substance of interest. Transport of molecules between 
those compartments by blood, lymph, or diffusion, and further 
absorption, distribution, metabolism, or excretion (ADME) pro-
cesses are described by mathematical equations (formally differential 
equations) whose structure is governed by physiology (e.g., blood 
flow in exit of gut goes to liver) [29, 30]. As such, PBPK modeling 
is an integrated approach to understand and predict the pharmaco-
kinetic behavior of chemical substances in the body.

Drug distribution into a tissue can be rate-limited by either 
perfusion or permeability. Perfusion-rate-limited kinetics apply 
when the tissue membranes present no barrier to diffusion. Blood 
flow, assuming that the drug is transported mainly by blood, as is 
often the case, is then the limiting factor to distribution in the vari-
ous cells of the body. That is usually true for small lipophilic drugs. 
A simple perfusion-limited PBPK model is depicted in Fig. 1. 
It includes the liver, well-perfused tissues (lumping brain, kidneys, 
and other viscera), poorly perfused tissues (muscles and skin), and 
fat. The organs have been grouped into those compartments under 
the criteria of blood perfusion rate and lipid content. Under such 
criteria, the liver should be lumped with the well-perfused tissues, 
but is left separate here as it is supposed to be the site of 

2.1 Principles 
and Model Equations
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metabolism, a target effect site, and a port of entry for oral absorption 
(assuming that the gut is a passive absorption site which feeds into 
the liver via the portal vein). Bone can be excluded from the model 
if the substance of interest does not distribute to it. The substance 
is brought to each of these compartments via arterial blood. Under 
perfusion limitation, the instantaneous rate of entry for the quan-
tity of drug in a compartment is simply equal to the (blood) volu-
metric flow rate through the organ times the incoming blood 
concentration. At the organ exit, the substance’s venous blood 
concentration is assumed to be in equilibrium with the compart-
ment concentration, with an equilibrium ratio named “partition 
coefficient” or “affinity constant” [30]. In the following we will 
note Qi the quantity of substance in compartment i, Ci the corre-
sponding concentration, Vi the volume of compartment i, Fi the 
blood flow to that compartment, and PCi the corresponding tissue 
over blood partition coefficient. Note that all differentials are writ-
ten for quantities, rather than concentrations because molecules 
are transported. Arguably, they are proportional to differentials for 
concentrations, but only if volumes are constant (and they may not 
be). For consistency, we strongly suggest you work with quantities. 
The rate of change of the quantity of substance in the poorly 
perfused compartment, for example, can therefore be described by 
the following differential equation:
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Fig. 1 Schematic representation of a simple, perfusion-limited, PBPK model. The 
model equations are detailed in Subheading 2 of the text
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where Qpp is the quantity of substance at any given time in the 
poorly perfused compartment, Fpp the blood volumetric flow rate 
through that group of organs, Cart the substance’s arterial blood 
concentration, Ppp the poorly perfused tissues over blood partition 
coefficient, and Vpp the volume of the poorly perfused compart-
ment. Since Qpp kinetics are governed by a differential equation, it 
is part of the so- called “state variables” of the model. The tissue 
over blood partition coefficient Ppp measures the relative affinity of 
the substance for the tissue compared to blood. It is easy to check 
that, at equilibrium,

 

¶

¶
= Þ - = Þ =

Q

t
C

Q

P V
P

C

C
pp

art
pp

pp pp
pp

pp

art

0 0
 

(2)

if we denote by Cpp the concentration of the substance in the poorly 
perfused compartment. Similarly, for the well-perfused and the fat 
compartments we can write the following equations for the two 
state variables Qwp, and Qfat, respectively:
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The equation for the last state variable, Qliv (for the liver) is a bit 
more complex, with a term for metabolic clearance, with first-order 
rate constant kmet, and a term corresponding to the oral ingestion 
rate of the compound (quantity absorbed per unit time), Ring which 
corresponds to the administration rate if gut absorption is complete, 
or to a fraction of it otherwise:
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Obviously, this is a minimal model for metabolism, and much more 
complex terms may be used for saturable metabolism, binding to 
blood proteins, multiple enzymes, metabolic interactions, extra- 
hepatic metabolism, etc. If the substance is volatile, and if accumu-
lation in the lung tissue itself is neglected, the arterial blood 
concentration Cart can be computed as follows, assuming instanta-
neous equilibrium between blood and air in the lung:
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where Ftot is the blood flow to the lung, Fpul the pulmonary ventila-
tion rate, rds the fraction of dead space (upper airways’ volume 
unavailable for blood-air exchange) in the lung, Pa the blood over 
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air partition coefficient, and Cinh is the concentration inhaled. 
Equation 6 can be derived from a simple balance of mass exchanges 
between blood and air under equilibrium conditions. Cven is the 
concentration of compound in venous blood and can be obtained 
as the sum of compound concentrations in venous blood at the 
organ exits weighted by corresponding blood flows:
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Finally, the substance’s concentration in exhaled air, Cexh, can be 
obtained under the same equilibrium conditions as for Eq. 6:
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Note that Cart, Cven, and Cexh, are not specified by differential equa-
tions, but by algebraic equations. Those three variables are not 
fundamental in our model and could be expressed using only 
parameters and state variables. They are just (very) convenient 
“output variables” that we may want to record during simulation 
and that facilitate model writing.

The above model assumes that all the substance present in blood 
is available for exchange with tissues. This may not be true if a frac-
tion of the substance is bound, for example to proteins, in blood or 
tissues. In that case it is often assumed that binding/unbinding is 
rapid compared to the other processes. The equations are then writ-
ten in terms of unbound quantities and the rapid equilibrium 
assumption is used to keep track of the balance bound/unbound 
quantity in each organ or tissue [30].

Diffusion across vascular barriers or cellular membranes can be 
slower than perfusion. This condition is likely to be met by large 
polar molecules. In that case, to account for diffusion limitation, a 
vascular sub-compartment is usually added to each organ or tissue 
of interest. Diffusion between that vascular sub-compartment and 
the rest of the tissue is modeled using the Fick’s law. A diffusion 
barrier can also exist between the extracellular and intracellular 
compartments. Consequently, PBPK models exhibit very different 
degrees of complexity, depending on the number of compartments 
used and their eventual subdivisions [31].

A PBPK model needs a considerable amount of information to 
parameterize. At the system level, we find substance-independent 
anatomical (e.g., organ volume), physiological (e.g., cardiac output), 
and some biochemical parameters (e.g., enzyme concentrations). 
All those are generic, in the sense that they do not depend on the 
substance(s) of interest, and are relatively well documented in 

2.2 Parameter 
Estimation
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humans and laboratory animals [29, 32–36]. They can be assigned 
once for ever, at least in first approximation, for an “average” 
individual in a given species at a given time.

There are also, inevitably, substance-specific parameters which 
reflect the specific interactions between the body and the substance 
of interest. In many cases, values for those parameters are not read-
ily available. However, such parameters often depend, at least in 
part, on the physicochemical characteristics of molecule studied 
(e.g., partition coefficients depend on lipophilicity, passive renal 
clearance depends on molecular weight). In that case, they can be 
estimated, for example by quantitative structure–activity relation-
ships (QSARs) [37, 38], also referred to as quantitative structure–
property relationships (QSPRs) when “simple” parameter values 
are predicted. Molecular simulation (quantum chemistry) models 
can also be used [39, 40], in particular for the difficult problem of 
metabolic parameters’ estimation. QSARs are statistical models 
(often a regression) relating one or more parameters describing 
chemical structure (predictors) to a quantitative measure of a 
property or activity (here a parameter value in a PBPK model) 
[15, 41–44]. However, when predictive structure–property mod-
els are not available (as is often the case with metabolism, for exam-
ple), the parameters have to be measured in vitro (for an extensive 
review see [45, 46]) or estimated from in vivo experiments and are 
much more difficult to obtain.

However, using average parameter values does not correctly 
reflect the range of responses expected in a human population, nor 
the uncertainty about the value obtained by QSARs, in vitro exper-
iments or in vivo estimation [47]. Inter-individual variability in PK 
can have direct consequences on efficacy and toxicity, especially for 
substances with a narrow therapeutic window. Therefore, simula-
tion of inter-individual variability should be an integral part of the 
prediction of PK in humans. The mechanistic framework of PBPK 
models provides the capacity of predicting inter-individual variabil-
ity in PK when the required information is adequately incorpo-
rated. To that effect, two modeling strategies have been developed 
in parallel: The first approach has been mostly used for data-rich 
substances. It couples a pharmacokinetic model to describe time-
series measurements at the individual level and a multilevel (ran-
dom effect) statistical model to extract a posteriori estimates of 
variability from a group of subjects [48, 49]. In a Bayesian context, 
a PBPK model can be used at the individual level, and allows easy 
inclusion of many subject-specific covariates [50]. The second 
approach also takes advantage of the predictive capacity of PBPK 
models but simply assigns a priori distributions to the model 
parameters (e.g., metabolic parameters, blood flows, organ volumes) 
and forms distributions of model predictions by Monte Carlo 
simulations [51].

Modeling Pharmacokinetics
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Many software programs can actually be used to build and simulate 
a PBPK model. Some are very general simulation platforms—R 
[52], GNU MCSim [53, 54], Octave [55], Scilab [56], Matlab® 
[57], Mathematica® [58], to name a few. Those platforms usually 
propose some PBPK-specific packages or functionalities that ease 
model development. An alternative is to use specialized software 
(e.g., PK-Sim® [59], Simcyp® [60], GastroPlus® [61], Merlin-expo 
[62]), which has often an attractive interface. However, in that 
case the model equations cannot usually be modified and only the 
parameter values can be changed or assigned pre-set values or 
distributions.

The evaluation (checking) of the model is an integral part of its 
development to objectively demonstrate the reliability and rele-
vance of the model. Model evaluation is often associated with a 
defined purpose, such as a measure of internal dosimetry relevant 
to the mode of action of the substance (e.g., the area under the 
curve or maximal concentration in the target tissues during critical 
time windows). The objective here is to establish confidence in the 
predictive capabilities of the model for a few key variables. A com-
mon way to evaluate a model’s predictability is to confront its pre-
dictions to an independent data set, i.e., that has not been used for 
model development. That is called cross-validation in statistical 
jargon. For example, the evaluation step could check that the 
model is able to reproduce the peaks and troughs of tissue concen-
trations under repeated exposure scenarios. Model evaluation is 
not limited to a confrontation between model predictions and 
data, but also requires checking the plausibility of the model struc-
ture, its parameterization and the mathematical correctness of 
equations (e.g., the conservation of mass, organ volumes, and 
blood flows). Because of their mechanistic description of ADME 
processes, PBPK model structures and parameter values must be in 
accordance with biological reality. Parameter values inconsistent 
with physiological and biological knowledge limit the use of the 
model for extrapolation to other exposure scenarios, and ultimately 
need to be corrected by the acquisition of new data, for example.

Most models are valid only on a defined domain. That is true even 
for the most fundamental models in physics. The term “validation” 
is rarely used in the context of toxicokinetic modeling as it is almost 
impossible to validate in all generality a model of the whole body. 
Actually, it is not done because it is bound to fail. It would require 
experimental data for all state variables (time evolution of concen-
tration in all compartments) and model parameters under innu-
merable exposure scenarios. In that context, to be useful, the 
validation process should first define a validity domain. For exam-
ple, we should not expect PBPK models to give accurate descrip-
tions of within- organ differences in concentrations (organs are 

2.3 Solving 
the Model Equations

2.4 Evaluation 
of the Model

2.5 Model Validation 
and Validity Domain
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described as homogeneous “boxes”). There is actually an avenue 
of research for improved organ descriptions. As far as time scale is 
concerned, we are doing pretty well for long-term [17], but for 
inhalation at the lung level in particular, PBPK models are not suit-
able for time scales lower than a couple of minutes (the cyclicity of 
breathing is not described). Metabolism and the description of 
metabolites distribution is a deeper problem, as it branches on the 
open-ended field of systems biology [63]. In that area the domain 
of validity becomes harder to define and is usually much smaller 
than that of the parent molecule. The model’s domain of validity 
should be documented, to the extent possible, and even more 
carefully as we venture into original and exotic applications. 
Fortunately, the assumptions consciously made during model 
development usually help in delineating the domain of validity.

3 A PBPK Model for 1,3-Butadiene

In this section, we propose to apply the model development process 
presented above to the development of a PBPK model for 
1,3- butadiene, a volatile organic compound. First, some background 
information on 1,3-butadiene will be provided to fulfill some require-
ments of the guidance defined by the International Programme on 
Chemical Safety [20]. Because the aim here is not to run a risk assess-
ment on butadiene, most sections of the guidance will be omitted 
(e.g., the comparison with the default approaches).

An extensive literature exists on 1,3-butadiene human uses, exposures, 
toxicokinetics, and mode of action, see for example [64, 65].

1,3-Butadiene (CAS No. 106-99-0) is a colorless gas under 
normal conditions. It is used for production of synthetic rubber, 
thermoplastic resins and other plastics, and is also found in cigarette 
smoke and combustion engine fumes. It enters the environment 
from engine exhaust emissions, biomass combustion, and from 
industrial on-site uses. The highest atmospheric concentrations 
have been measured in cities and close to industrial sources. The 
general population is exposed to 1,3-butadiene primarily through 
ambient and indoor air. Tobacco smoke may contribute significant 
amounts of 1,3- butadiene at the individual level. It is a known 
carcinogen, acting through its metabolites [65].

1,3-Butadiene metabolism is a complex series of oxidation and 
reduction steps [65]. Briefly, the first step in the metabolic conver-
sion of butadiene is the cytochrome P450-mediated oxidation to 
1,2-epoxy-3-butene (EB). EB may subsequently be exhaled, con-
jugated with glutathione, further oxidized to 1,2:3,4-diepoxybu-
tane (DEB), or hydrolyzed to 3-butene-1,2-diol (BDD). DEB 
can then be hydrolyzed to 3,4-epoxy-1,2-butanediol (EBD) or 
conjugated with glutathione. BDD can be further oxidized to EBD. 

3.1 Setting 
Up Background
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EBD can be hydrolyzed or conjugated with glutathione. The 
metabolism for 1,3- butadiene to EB is the rate-limiting step for 
the formation of all its toxic epoxy metabolites. It makes sense, 
given the above, to define the cumulated amount of 1,3-butadiene 
metabolites formed in the body as the measure of its internal dose 
for cancer risk assessment purposes.

In our butadiene example, we will use the R software and its pack-
age deSolve. We will assume that the reader has a minimal working 
of knowledge of R and has R and deSolve installed. R is freely 
available for the major operating systems (Unix/Linux, Windows, 
Mac OS) and deSolve provides excellent functions for integrating 
differential equations. R is easy to use, but not particularly fast. If you 
need to run many simulations (say several thousands or more) you 
should code your model in C language, compile it, and have 
deSolve call your compiled code (see the deSolve manual for that). 
An even faster alternative (if you need to do Bayesian model cali-
bration, for example) is to use GNU MCSim. You can actually use 
GNU MCSim to develop C code for deSolve.

Our research group has previously developed and published a 
PBPK model for 1,3-butadiene on the basis of data collected on 
133 human volunteers during controlled low dose exposures. We 
used it for various studies and as an example of Bayesian PBPK 
analysis [66–68]. That model (see Fig. 2) is a minimal description 
of butadiene distribution and metabolism in the human body after 
inhalation. Three compartments lump together tissues with similar 
perfusion rate (blood flow per unit of tissue mass): the 
“well-perfused” compartment regroups the liver, brain, lungs, 

3.2 Model 
Development 
and Evaluation

3.2.1 Software Choice

3.2.2 Defining the Model 
Structure and Equations

Fig. 2 Representation of the PBPK model used for 1,3-butadiene. The model 
equations and parameters are detailed in Subheading 3 of the text
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kidneys, and other viscera; the “poorly perfused” compartment 
lumps muscles and skin; and the third is “fat” tissues. Butadiene 
can be metabolized into an epoxide in the liver, kidneys, and lung, 
which are part of the well-perfused  compartment. Our model will 
therefore include four essential “state” variables, which will each 
have a governing differential equation: the quantities of butadiene 
in the fat, in the well-perfused compartment, in the poorly perfused 
compartment, and the quantity metabolized. Actually, the latter is a 
“terminal” state variable which depends on the others state vari-
ables and has no dependent. We could dispense with it if we did not 
want to compute and output it. That would save computation time, 
which grows approximately with the square of the number of state 
variables of the model.

In an R script code for use with deSolve, we first need to define 
the model state variable and assign them initial values (values they 
will take at the start of a simulation, those are called “boundary 
conditions” in technical jargon). The syntax is quite simple (the 
full script is given in Appendix):

         y = c("Q_fat" = 0,   # Quantity of butadiene in fat (mg)
      "Q_wp"  = 0,   # ~        in well-perfused (mg)
      "Q_pp"  = 0,   # ~        in poorly-perfused (mg)
      "Q_met" = 0)   # ~        metabolized (mg)
That requests the creation of y as a vector of four named 

components, all initialized here at the value zero (i.e., we assume 
no previous exposure to butadiene, or no significant levels of buta-
diene in the body in case of a previous exposure). The portions of 
lines starting with the pound sign (#) are simply comments for the 
reader and are ignored by the software. We have chosen milligrams 
as the unit for butadiene quantities and it is useful to indicate it 
here. In R indentation and spacing do not matter and we strive for 
readability.

We then need to define similarly, as a named vector, the model 
parameters:

         parameters = c(
  "BDM"    = 73,          # Body mass (kg)
  "Height" = 1.6,         # Body height (m)
  "Age"    = 40,          # in years
  "Sex"    = 1,           # code 1 is male, 2 is female
  "Flow_pul"      = 5,    # Pulmonary ventilation rate (L/min)
  "Pct_Deadspace" = 0.7,  # Fraction of pulmonary deadspace
  "Vent_Perf"     = 1.14, # Ventilation over perfusion ratio
  "Pct_LBDM_wp"   = 0.2,  # wp tissue as fraction of lean mass
  "Pct_Flow_fat"  = 0.1,  # Fraction of cardiac output to fat
  "Pct_Flow_pp"   = 0.35, # ~                          to pp
  "PC_art" = 2,           # Blood/air partition coefficient
  "PC_fat" = 22,          # Fat/blood ~
  "PC_wp"  = 0.8,         # wp/blood  ~
  "PC_pp"  = 0.8,         # pp/blood  ~
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  "Kmetwp" = 0.25)        # Rate constant for metabolism (1/min)
We will see next how those parameters are used in the model 

equations, but you notice already that they are not exactly, except 
for the partition coefficients and metabolic rate constant, the 
parameters used in Eqs. 1, and 3–5. They are in fact scaling coef-
ficients used to model parameter correlations in an actual subject.

Before we get to the model core equations, we need to define 
the value of the concentration of butadiene in inhaled air. This is 
an “input” to the model and we will allow it to change with time, 
so it is a dynamic boundary condition to the model (deSolve uses 
the term “forcing function”). We use here a convenient feature of 
R, defining Cinh as an approximating function.

         C_inh = approxfun(x = c(0, 100), y = c(10, 0),
                  method = "constant", f = 0, rule = 2)
The instruction above defines a function of time Cinh(t), right 

continuous (option f = 0) and constant by segments (the option 
method = “linear” would yield a function linear by segments). At 
times 0 and 100 (x values), it takes values y 10 and then 0, respec-
tively. Before time zero and after time 100, Cinh(t) will take the 
closest y value defined (option rule = 2). Figure 3 shows the behavior 
of the function Cinh(t) so defined.

Formally you do not necessarily need such an input function in 
your model. Cinh could simply be a constant, or no input could be 
used if you were to model just the elimination of butadiene out of 
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Fig. 3 Plot of the time–concentration profile of butadiene inhaled generated by 
the function Cinh(t) of the example script. Cinh(t) is used as a forcing function for 
the model simulations
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body following exposure. Indeed, the initial values of the state 
variables would have to be non-null in that case.

Now we need to define a function that will compute the deriv-
atives at the core of the model, as a function of time t—used for 
example when parameters are time varying, or for computing 
Cinh(t), of the current state variable values y, and of the parameters. 
Here is the (simplified) code of that function which we called “bd.
model” (intermediate calculations have been deleted for clarity, we 
will see them later):

    bd.model = function(t, y, parameters) { # function header
     # function body:
     with (as.list(y), {
      with (as.list(parameters), {
      # … (part of the code omitted for now)
      # Time derivatives for quantities
      dQ_fat = Flow_fat * (C_art - Cout_fat)
      dQ_wp  = Flow_wp  * (C_art - Cout_wp) - dQmet_wp
      dQ_pp  = Flow_pp  * (C_art - Cout_pp)
      dQ_met = dQmet_wp;
      return(list(c(dQ_fat, dQ_wp, dQ_pp, dQ_met),   # 

derivatives
           c("C_ven" = C_ven, "C_art" = C_art)))     # extra 

outputs
      }) # end with parameters
     }) # end with y
    } # end of function bd.model()
The first two “with” nested blocks (they extend up to the end 

of the function) are an obscure but useful feature of R. Remember 
that y and “parameters” are arrays with named components. In R, 
you should refer to their individual components by writing for 
example “parameters[“PC_fat”]” for the fat over blood partition 
coefficient. That can become clumsy and the “with” statements 
allow you to simplify the notation and call simply “PC_fat”.

The most important part of the “bd.model” function is the 
calculation of the derivatives. As you can see they are given an 
arbitrary name and computed similarly to the equations given 
above (e.g., Eq. 1). Obviously we need to have defined the tem-
porary variables “Cout_fat”, “Cout_wp”, and “dQmet_wp” but 
they are part of the omitted code and we will see them next. 
Finally, the function needs to return (as a list, that is imposed by 
deSolve) the derivatives computed and eventually the output 
variables we might be interested in (in our case, for example Cven 
and Cart).

The code we omitted for clarity was simply intermediate 
calculations. First some obvious conversion factors:

    # Define some useful constants
    MW_bu = 54.0914    # butadiene molecular weight (in 

grams)
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    ppm_per_mM = 24450 # ppm to mM under normal 
conditions

    # Conversions from/to ppm
    ppm_per_mg_per_l = ppm_per_mM / MW_bu
    mg_per_l_per_ppm = 1 / ppm_per_mg_per_l
The following instructions scale the compartment volumes to 

body mass. The equation for the fraction of fat is taken from [69]. 
That way, the volumes correlate as they should to body mass or 
lean body mass:

    # Calculate fraction of body fat
    Pct_BDM_fat = (1.2 * BDM / (Height * Height) - 10.8 

*(2 - Sex) +
                   0.23 * Age - 5.4) * 0.01
    # Actual volumes, 10% of body mass (bones…) receive no 

butadiene
    Eff_V_fat = Pct_BDM_fat * BDM
    Eff_V_wp  = Pct_LBDM_wp  * BDM * 

(1 - Pct_BDM_fat)
    Eff_V_pp  = 0.9 * BDM - Eff_V_fat - Eff_V_wp
The blood flows are scaled similarly to maintain adequate per-

fusion per unit mass:
    # Calculate alveolar flow from total pulmonary flow
    Flow_alv = Flow_pul * (1 - Pct_Deadspace)
    # Calculate total blood flow from Flow_alv and the V/P 

ratio
    Flow_tot = Flow_alv / Vent_Perf
    # Calculate actual blood flows from total flow and percent 

flows
    Flow_fat = Pct_Flow_fat * Flow_tot
    Flow_pp  = Pct_Flow_pp  * Flow_tot
    Flow_wp  = Flow_tot * (1 - Pct_Flow_pp - Pct_Flow_fat)
We have now everything needed to compute concentrations at 

time t in the various compartments or at their exit:
    # Calculate the concentrations
    C_fat = Q_fat / Eff_V_fat
    C_wp  = Q_wp  / Eff_V_wp
    C_pp  = Q_pp  / Eff_V_pp
    # Venous blood concentrations at the organ exit
    Cout_fat = C_fat / PC_fat
    Cout_wp  = C_wp  / PC_wp
    Cout_pp  = C_pp  / PC_pp
The next two lines are typical computational tricks. The right- 

hand sides will be used several times in the subsequent calculations. 
It is faster, and more readable to define them as temporary 
variables:

      # Sum of Flow * Concentration for all compartments
      dQ_ven = Flow_fat * Cout_fat + Flow_wp * Cout_wp +
               Flow_pp * Cout_pp
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      # Quantity metabolized in liver (included in 
well-perfused)

      dQmet_wp = Kmetwp * Q_wp
      C_inh.current = C_inh(t) # to avoid calling C_inh() twice
The last series of intermediate computations obtain Cart—as 

in Eq. 6, with a unit conversion for Cinh(t), Cven as in Eq. 7 (those 
two will be defined as outputs in the function’s return statement), 
the alveolar air concentration Calv, and finally the exhaled air con-
centration Cexh:

    # Arterial blood concentration
    # Convert input given in ppm to mg/l to match other units
    C_art = (Flow_alv * C_inh.current * mg_per_l_per_ppm + 

dQ_ven) /
            (Flow_tot + Flow_alv / PC_art)
    # Venous blood concentration (mg/L)
    C_ven = dQ_ven / Flow_tot
    # Alveolar air concentration (mg/L)
    C_alv = C_art / PC_art
    # Exhaled air concentration (ppm!)
    if (C_alv <= 0) {
      C_exh = 10E-30 # avoid round off errors
    } else {
      C_exh = (1 - Pct_Deadspace) * C_alv * ppm_per_mg_per_l 

+
              Pct_Deadspace * C_inh.current
    }
The calculation of Cexh just above is an example of computa-

tional trick to avoid rounding errors (useful if you later want to 
take the log of Cexh, you want to avoid values like −7 × 10−16 for 
example). It also illustrates one idiosyncrasy of R: spacing and 
disposition do not matter except that “} else {” must be on the 
same line.

The R script we detailed above is almost ready to perform simulations. 
We just need to define the output times (times at which we will 
want to look at the results, here a sequence from zero to 1440 min, 
every 10 min), load the deSolve library (so far we have only used 
standard R functions) and call the integration routine “ode”, 
storing its results in the variable “results”:

    # Define the computation output times (minutes)
    times = seq(from=0, to=1440, by=10)
    # Call the ODE solver
    library(deSolve)
    results = ode(times = times, func = bd.model, y = Y, parms 

= parms)
By default, deSolve uses the lsode integration routine for 

stiff systems [70]. This is a very efficient solver, but you have the 
choice of several integrators (see the deSolve manual for details). 

3.2.3 Running the Model
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The content of results can be looked at, saved to a file, further 
manipulated or simply plotted:

    # results is basically a table
    results
    # Plot the results of the simulation
    plot(results)
Figure 4 shows the plot obtained (just for the four butadiene 

quantities state variables). That is in essence all it takes to write and 
simulate a PBPK model.

Running Monte Carlo simulations in R, for uncertainty or sensi-
tivity analyses [49], is rather easy. R is fundamentally a statistical 
software and is well equipped for random numbers generation. 
The skeleton for a Monte Carlo simulation script is simply a loop 
of n iterations:

         for (iteration in 1:1000) { # 1000 Monte Carlo 
simulations

  # Sample randomly some parameters
…
  # Reduce output times eventually
  times = c(0, 1440)

3.2.4 Running Monte 
Carlo Simulations
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Fig. 4 Simulated time courses of the quantities of butadiene in the compartments of the sample PBPK model. 
Inhalation exposure was specified as shown in Fig. 3

Frederic Y. Bois and Céline Brochot



53

  # Integrate
tmp = ode(times = times, func = bd.model, y = y,
            parms = parameters)
  # Accumulate results in a table
…
         } # end Monte Carlo loop
Here too the ellipsis (…) refers to pieces of code we will detail 

below. The full script is given in Appendix). The calculations inside 
the “for” loop are performed a thousand time. At each iteration, 
new parameter values are randomly sampled. For example, if we 
choose to sample only four parameters (we could sample all) from 
normal distributions, the code would look like:

  # Sample randomly some parameters
  parameters["BDM"]      = rnorm(1, 73,   7.3)
  parameters["Flow_pul"] = rnorm(1, 5,    0.5)
  parameters["PC_art"]   = rnorm(1, 2,    0.2)
  parameters["Kmetwp"]   = rnorm(1, 0.25, 0.025)
For each parameter, one normal random variable is drawn with 

a mean set to the value used in the simple script above, and a stan-
dard deviation equal to 10 % of the mean. When doing Monte 
Carlo simulations, you usually do not want to look at the distribu-
tions of state or output variables at thousands of different times 
(that is heavy). Here we decided to look at them only at time 1440 
min, so we reset the times array. Note that the starting time (here 
zero) still needs to be defined among the times. The integrator is 
then called and its results stored in the “tmp” table. But that is only 
one set of results in a thousand and we need to accumulate those 
results. The following few lines of code show how to keep only the 
results obtained at time 1440 (line 2 or the tmp table) but without 
the output time (which is always 1440) (the “-1” in “tmp[2,-1]” 
removes the first column). It is also very useful to store the sampled 
parameter values:

      if (iteration == 1) { # initialize
       results = tmp[2,-1]
       sampled.parms = c(parameters["BDM"],    

parameters["Flow_pul"],
                         parameters["PC_art"], parameters["Kmetwp"])
      } else { # accumulate
       results = rbind(results, tmp[2,-1])
       sampled.parms = rbind(sampled.parms,
                        c(parameters["BDM"],    

parameters["Flow_pul"],
                          parameters["PC_art"], parameters["Kmetwp"]))
      }
When the Monte Carlo loop is finished we probably want to 

save the accumulated results in a file (unless the simulations are 
very fast to compute):

         # Save the results
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         save(sampled.parms, results, file="MTC.dat.xz", 
compress = "xz")

         # use load(file="MTC.dat.xz") to read them back in
Finally, such large amounts of information are best handled 

with statistical and graphical methods. Figure 5 shows a nicer 
version of the three simple plots which would be produced by the 
following lines:

         # Plot the results
         hist(sampled.parms[,1])
         hist(results[,1])
         plot(sampled.parms[,1], results[,1])
Figure 5 shows the relationship between the Monte Carlo 

sampled body mass values and the resulting prediction for the 
quantity in fat after a day. You can observe an obvious and expected 
correlation between the two (butadiene storage in fat increases 
with the fat compartment volume which in turn increases with 
body mass). The increase in butadiene storage is roughly propor-
tional to body mass, so that is a sensitive parameter. The relation-
ship is not perfect because three other parameters were sampled. 
We can that way study the sensitivity of any model prediction, at 
any time, with respect to any model parameter [49]. The plot also 
shows the marginal distributions of body masses and butadiene 
quantities in fat. The uncertainty attached to predictions is about 
±50 %. That type of histogram can give an idea of the reliability of 
any model prediction.
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Fig. 5 Illustration of the PBPK model Monte Carlo simulation results. The dot plot 
shows the quantity of butadiene in fat after 1 day as a function of sampled body 
mass. The random sampling of other parameters explains the dispersion of the 
results, however the quantity in fat is clearly sensitive to body mass. The mar-
ginal histograms show the distributions of the sampled values for body mass and 
of the predicted quantities of butadiene in fat. A sizeable uncertainty affects 
those results
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A thousand Monte Carlo simulations took us a few minutes on 
a laptop computer. A thousand is actually a small number if you 
want to accurately characterize upper or lower percentiles of the 
resulting distributions. If computation time becomes an issue you 
can divide it by a factor 10 if you compile your model in C—GNU 
MCSim [53, 54] can actually produce a C code compatible with 
deSolve without having to learn the C language. A factor 100 can 
be gained if you work only with GNU MCSim.

4 Conclusion

PBPK modeling is more and more used in research, development, 
and regulation [71, 72]. Obviously, the precision and accuracy of 
PBPK model will be only as good as those of the QSAR predictions 
or in vitro data used to set their parameters. Quality assurance of 
those components is therefore an important issue [26, 73], and we 
have seen that in several areas (metabolism in particular), research 
work is still needed. As to the models themselves, their validity will 
probably be easier to check if they are generic and with a stable and 
well- documented structure [74]. This requirement, however, runs 
somewhat contrary to the next challenge: Coupling PBPK models 
to predictive pharmacology or toxicity models, both at the cellular 
level and at the organ level [75]. We hope however, that this step-
by- step introduction to PBPK model development and simulation 
will help the reader in his/her first steps into that exciting area.
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5 Appendix

R script for the butadiene PBPK model:
#==============================================

===================
# Butadiene human PBPK model
# Define and initialize the state variables
y = c("Q_fat" = 0,   # Quantity of butadiene in fat (mg)
      "Q_wp"  = 0,   # ~        in well-perfused (mg)
      "Q_pp"  = 0,   # ~        in poorly-perfused (mg)
      "Q_met" = 0)   # ~        metabolized (mg)
# Define the model parameters
# Units:
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# Volumes: liter
# Time:    minute
# Flows:   liter / minute
parameters = c(
  "BDM"    = 73,          # Body mass (kg)
  "Height" = 1.6,         # Body height (m)
  "Age"    = 40,          # in years
  "Sex"    = 1,           # code 1 is male, 2 is female
  "Flow_pul"      = 5,    # Pulmonary ventilation rate (L/min)
  "Pct_Deadspace" = 0.7,  # Fraction of pulmonary deadspace
  "Vent_Perf"     = 1.14, # Ventilation over perfusion ratio
  "Pct_LBDM_wp"   = 0.2,  # wp tissue as fraction of lean mass
  "Pct_Flow_fat"  = 0.1,  # Fraction of cardiac output to fat
  "Pct_Flow_pp"   = 0.35, # ~                          to pp
  "PC_art" = 2,           # Blood/air partition coefficient
  "PC_fat" = 22,          # Fat/blood ~
  "PC_wp"  = 0.8,         # wp/blood  ~
  "PC_pp"  = 0.8,         # pp/blood  ~
  "Kmetwp" = 0.25)        # Rate constant for metabolism 

(1/min)
# The input air concentration (in parts per million) can vary 

with time
C_inh = approxfun(x = c(0,120), y = c(10,0), 

method="constant", f=0, rule=2)
# Check the input concentration profile just defined
plot(C_inh(1:300), xlab = "Time (min)",
     ylab = "Butadiene air concentration (ppm)", type = "l")
# Define the model equations
bd.model = function(t, y, parameters) {
 with (as.list(y), {
  with (as.list(parameters), {
  # Define some useful constants
  MW_bu = 54.0914    # butadiene molecular weight (in grams)
  ppm_per_mM = 24450 # ppm to mM under normal 

conditions
  # Conversions from/to ppm
  ppm_per_mg_per_l = ppm_per_mM / MW_bu
  mg_per_l_per_ppm = 1 / ppm_per_mg_per_l
  # Calculate Flow_alv from total pulmonary flow
  Flow_alv = Flow_pul * (1 - Pct_Deadspace)
  # Calculate total blood flow from Flow_alv and the V/P ratio
  Flow_tot = Flow_alv / Vent_Perf
  # Calculate fraction of body fat
  Pct_BDM_fat = (1.2 * BDM / (Height * Height) - 10.8 

*(2 - Sex) +
                 0.23 * Age - 5.4) * 0.01
  # Actual volumes, 10% of body mass (bones…) get no 

butadiene
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  Eff_V_fat = Pct_BDM_fat * BDM
  Eff_V_wp  = Pct_LBDM_wp  * BDM * (1 - Pct_BDM_fat)
  Eff_V_pp  = 0.9 * BDM - Eff_V_fat - Eff_V_wp
  # Calculate actual blood flows from total flow and percent 

flows
  Flow_fat = Pct_Flow_fat * Flow_tot
  Flow_pp  = Pct_Flow_pp  * Flow_tot
  Flow_wp  = Flow_tot * (1 - Pct_Flow_pp - Pct_Flow_fat)
  # Calculate the concentrations
  C_fat = Q_fat / Eff_V_fat
  C_wp  = Q_wp  / Eff_V_wp
  C_pp  = Q_pp  / Eff_V_pp
  # Venous blood concentrations at the organ exit
  Cout_fat = C_fat / PC_fat
  Cout_wp  = C_wp  / PC_wp
  Cout_pp  = C_pp  / PC_pp
  # Sum of Flow * Concentration for all compartments
  dQ_ven = Flow_fat * Cout_fat + Flow_wp * Cout_wp + 

Flow_pp * Cout_pp
  C_inh.current = C_inh(t) # to avoid calling C_inh() twice
  # Arterial blood concentration
  # Convert input given in ppm to mg/l to match other units
  C_art = (Flow_alv * C_inh.current * mg_per_l_per_ppm + 

dQ_ven) /
          (Flow_tot + Flow_alv / PC_art)
  # Venous blood concentration (mg/L)
  C_ven = dQ_ven / Flow_tot
  # Alveolar air concentration (mg/L)
  C_alv = C_art / PC_art
  # Exhaled air concentration (ppm!)
  if (C_alv <= 0) {
    C_exh = 10E-30 # avoid round off errors
  } else {
    C_exh = (1 - Pct_Deadspace) * C_alv * ppm_per_mg_per_l +
            Pct_Deadspace * C_inh.current
  }
  # Quantity metabolized in liver (included in well-perfused)
  dQmet_wp = Kmetwp * Q_wp
  # Differentials for quantities
  dQ_fat = Flow_fat * (C_art - Cout_fat)
  dQ_wp  = Flow_wp  * (C_art - Cout_wp) - dQmet_wp
  dQ_pp  = Flow_pp  * (C_art - Cout_pp)
  dQ_met = dQmet_wp
  # The function bd.model must return at least the derivatives
  list(c(dQ_fat, dQ_wp, dQ_pp, dQ_met),     # derivatives
       c("C_ven" = C_ven, "C_art" = C_art)) # extra outputs
  }) # end with parameters
 }) # end with y
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} # end bd.model
# Define the computation output times
times = seq(from=0, to=1440, by=10)
# Call the ODE solver
library(deSolve)
results = ode(times = times, func = bd.model, y = y, parms = 

parameters)
# results is basically a table
results
# Plot the results of the simulation
plot(results)
# End
# End Simple Simulation.
#==============================================

===================
#==============================================

===================
# Monte Carlo simulations
# We assume that a simple simulation has already been run, so 

that
# y, parameters, C_inh, and bd.model have all been defined 

and that
# deSolve has been loaded.
for (iteration in 1:1000) { # 1000 Monte Carlo simulations…
  # Sample randomly some parameters
  parameters["BDM"]      = rnorm(1, 73,   7.3)
  parameters["Flow_pul"] = rnorm(1, 5,    0.5)
  parameters["PC_art"]   = rnorm(1, 2,    0.2)
  parameters["Kmetwp"]   = rnorm(1, 0.25, 0.025)
  # Reduce output times eventually. We only care about time 

1440,
  # but time zero still needs to be specified
  times = c(0, 1440)
  # Integrate
  tmp = ode(times = times, func = bd.model, y = y, parms = 

parameters)
  if (iteration == 1) { # initialize
   results = tmp[2,-1]
   sampled.parms = c(parameters["BDM"],    

parameters["Flow_pul"],
                     parameters["PC_art"], parameters["Kmetwp"])
  } else { # accumulate
   results = rbind(results, tmp[2,-1])
   sampled.parms = rbind(sampled.parms,
                    c(parameters["BDM"],    

parameters["Flow_pul"],
                      parameters["PC_art"], parameters["Kmetwp"]))
  }
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} # end Monte Carlo loop
# Save the results, specially if they took a long time to 

compute
save(sampled.parms, results, file="MTC.dat.xz", compress 

= "xz")
# use load(file="MTC.dat.xz") to read them back in
# Plot the results
hist(sampled.parms[,1])
hist(results[,1])
plot(sampled.parms[,1], results[,1])
# End Monte Carlo Simulations.
#==============================================

===================
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