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  Abstract 

   The toxicological assessment of DNA-reactive/mutagenic or clastogenic impurities plays an important 
role in the regulatory process for pharmaceuticals; in this context, in silico structure-based approaches are 
applied as primary tools for the evaluation of the mutagenic potential of the drug impurities. The general 
recommendations regarding such use of in silico methods are provided in the recent ICH M7 guideline 
stating that computational (in silico) toxicology assessment should be performed using two (Q)SAR pre-
diction methodologies complementing each other: a statistical-based method and an expert rule-based 
method. 

 Based on our consultant experience, we describe here a framework for in silico assessment of muta-
genic potential of drug impurities. Two main applications of in silico methods are presented: (1) support 
and optimization of drug synthesis processes by providing early indication of potential genotoxic impuri-
ties and (2) regulatory evaluation of genotoxic potential of impurities in compliance with the ICH M7 
guideline. Some critical case studies are also discussed.  

  Key words     Genotoxic impurities  ,   In silico methods  ,   (Q)SAR  ,   Statistical-based methods  ,   Expert rule-
based methods  ,   ICH M7  

1      Introduction 

 In silico modeling, such as (quantitative) structure-activity rela-
tionships ((Q)SARs) and molecular modeling, have been widely 
used in drug discovery, drug development, and regulatory pur-
poses. In the current chapter, the focus will be primarily on the use 
of (Q)SARs for the evaluation of the genotoxic potential of drug 
impurities. 

 Drug impurities are defi ned as any component of the drug 
substance or drug product that is not the drug substance or an 
excipient (i.e., inactive constituent) and that can arise from drug 
synthesis or subsequent degradation, as well as from external 
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 contamination. In the regulatory framework for pharmaceuticals, 
specifi c guidelines exist for the qualifi cation and control of the 
majority of the impurities, e.g., the International Conference on 
Harmonisation (ICH) Quality Guidelines Q3A (“Impurities in 
New Drug Substances”) [ 1 ] and Q3B (“Impurities in New Drug 
Products”) [ 2 ] and the ICH Multidisciplinary Guideline M3 
(“Nonclinical Safety Studies for the Conduct of Human Clinical 
Trials and Marketing Authorizations for Pharmaceuticals”) [ 3 ]. 
Recently, a new guideline (ICH M7) was introduced for the iden-
tifi cation, categorization, qualifi cation, and control of DNA-
reactive (mutagenic) impurities to limit the potential carcinogenic 
risk of drugs [ 4 ]. The ICH M7 guideline outlines recommenda-
tions on the use of in silico structure-based methods for genotoxic-
ity assessment of drug impurities. According to ICH M7, 
computational (in silico) toxicology assessment should be per-
formed using two (Q)SAR prediction methodologies complement-
ing each other: a statistical-based method and an expert rule-based 
method. The employed (Q)SAR models should follow the interna-
tionally recognized principles for QSAR validation as defi ned by the 
Organisation for Economic Co-operation and Development 
(OECD) [ 5 ,  6 ]. According to the OECD principles, a QSAR model 
should (1) provide predictions for a defi ned endpoint; (2) be based 
on an unambiguous algorithm; (3) have a defi ned domain of appli-
cability; (4) be internally and externally validated by applying 
appropriate measures of goodness of fi t, robustness, and predictiv-
ity; and (5) provide a mechanistic interpretation of the prediction, 
when possible. The guideline recommendations state also that the 
outcome of any computer system-based analysis should be reviewed 
with the use of expert knowledge in order to provide additional 
supportive evidence on relevance of any positive or negative predic-
tion and to elucidate underlying reasons in case of confl icting 
results. The crucial role of the expert in the fi nal assessment is also 
highlighted in the literature [ 7 – 9 ]. 

 In the present chapter, a practical approach for in silico assess-
ment of mutagenic potential of drug impurities is described. The 
focus is on two main applications: (1) support and optimization of 
drug synthesis processes by providing early indication of potential 
genotoxic impurities and (2) regulatory evaluation of genotoxic 
potential of impurities in compliance with the ICH M7 guideline. 
Different approaches are proposed according to the specifi c appli-
cation of the in silico assessment, and some critical case studies are 
discussed based on our experience.  

2    Materials 

 In the toxicity framework, in silico predictions can be obtained by 
three main computational approaches: QSAR statistical-based 
methodologies, (Q)SAR expert rule-based methodologies, and 
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grouping approaches, which include read-across and chemical cat-
egory formation. A brief description of the three approaches, 
including the underlying theory and examples of tools implement-
ing these methods, is described in the following paragraphs. 

   The statistical-based QSAR method is a quantitative (mathemati-
cal) relationship between a numerical representation of the chemi-
cal structure (i.e., molecular descriptors) and a biological activity,  
physicochemical or fate property. Statistical-based QSARs are 
models based on experimental data, which extract the knowledge 
directly through a process of data mining and knowledge engineer-
ing. Thousands of molecular descriptors encoding for mono-, bi-, 
or tridimensional structural features (e.g., atom counters, topo-
logical descriptors, symmetry and steric descriptors) or chemical 
properties (e.g., LogP or electronic properties) have been pro-
posed and derived from different theories and approaches, with the 
aim to provide an “exhaustive” description of the chemical struc-
ture. At the same time, a wide range of algorithms are now avail-
able to identify the quantitative relationship between the structure 
and the studied property/activity and to build statistically robust 
and predictive QSAR models (e.g., multiple linear regression 
(MLR), partial least squares (PLS) regression, artifi cial neural net-
works (ANN), etc.). It follows that the majority of statistical-based 
QSARs are characterized by robust validation techniques and high 
predicting performances, and can provide predictions also when 
the mechanism of action is unknown. Additionally, several mathe-
matical/chemometrical metrics have been developed to defi ne 
model applicability domain and to measure the level of extrapola-
tion. On the other hand, in some cases, their predictions could 
miss a mechanistic reasoning and a clear interpretation, especially 
when based on complex algorithms and molecular descriptors, 
thus resulting “nontransparent” to the end user. 

 Nowadays, several tools (both commercial and freeware) are 
available coding QSAR statistical models for the prediction of 
mutagenic/genotoxic potential [ 10 – 14 ]. We routinely use an array 
of commercial and freely available tools in a weight of evidence 
approach. All the predictors we use fulfi ll the OECD principles for 
QSAR validation and are characterized by (1) wide and heteroge-
neous training set collected from valid sources (e.g., FDA—US 
Food and Drug Administration), (2) high robustness and external 
predictivity, (3) wide applicability domain, and (4) defi ned param-
eters for reliability assessment. Additionally they allow the user to 
visualize structure and experimental data of structural analogues, 
thus providing supporting information to further assess the predic-
tion. A brief description of these tools is as follows:

 ●     ACD/Percepta Impurity Profi ling  [ 15 ,  16 ] provides a bat-
tery of in silico models to accurately assess the genotoxic 

2.1  QSAR Statistical- 
Based Methodology
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and carcinogenic potential of chemicals. The impurity 
profi ling module is a result of the collaboration between 
ACD/Labs and FDA Center for Food Safety and Applied 
Nutrition (CFSAN). This module includes probabilistic 
predictive models for 21 different endpoints that cover 
various mechanisms of hazardous activity (including 
mutagenicity, clastogenicity, DNA damage mechanisms, 
carcinogenicity, and endocrine disruption mechanisms) 
and that are based on experimental data obtained from 
FDA. Probabilistic predictive models were developed using 
GALAS modeling methodology [ 17 ]. Each GALAS model 
consists of two parts: (1) a global (baseline) model, built 
using binomial PLS method based on fragmental descrip-
tors, that refl ects a “cumulative” mutagenicity potential, 
and (2) local corrections that are applied to baseline pre-
dictions using a special similarity- based routine, after per-
forming an analysis for the most similar compounds used in 
the training set. The reliability of prediction is assessed in 
terms of reliability index (RI), which ranges from 0 to 1 
and takes into account the similarity of the target with the 
training set compounds and the consistency of experimen-
tal values for similar compounds. A “positive” or “nega-
tive” call is then provided if the compound can be reliably 
classifi ed on the basis of p-value (i.e., probability that a 
compound will result in a positive test in the respective 
assay) and RI values (“undefi ned” otherwise).  

 ●    ChemTunes Studio  is a knowledge base software consisting 
of experimental in vitro and in vivo toxicity information 
(QC’ed by experts) and in silico models for a series of 
human health toxicity endpoints, comprising the key 
genetic toxicity endpoints (i.e., Ames mutagenicity, chro-
mosome aberration, and in vivo micronucleus). The soft-
ware is made of multiple components, including genotoxic 
chemotypes (structural alerts); mechanistically informed 
(mode-of-action driven) QSAR models, i.e., an approach 
used at US FDA CERES (Chemical Evaluation and Risk 
Estimation System) [ 18 ,  19 ]; and comparison of the pre-
diction results to structural analogues. A mathematically 
rigorous and quantitative weight of evidence (WoE) deci-
sion theory approach is used to obtain the fi nal overall 
assessment and to provide a quantitative estimation of the 
uncertainty associated with the prediction. All ChemTunes 
Studio QSAR models consist of chemical mode-of-action 
category models as well as a general global model. The 
computational modeling approach is a hybrid of partial 
least squares (PLS)/ordinal logistic regression methods. 
For model building, global molecular and shape descrip-
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tors (from CORINA Symphony [ 20 ]) and quantum-
mechanic parameters are used. The models return 
probabilistic predictions (positive and negative probabili-
ties plus a quantitative estimate of the associated uncer-
tainty) and an overall prediction (positive/negative/
equivocal). Applicability domain analysis reports whether 
the target compound is out of domain. QSARs for bacterial 
reverse mutagenesis (Ames mutagenicity) are based on 
selected studies for more than 2200 structures, compiled 
from various sources, and including  S. typhimurium  and 
 E. coli  strains with and without metabolic activation.  

 ●    Leadscope Model Applier/Genetox QSAR Statistical Suite  
[ 21 ] is a chemoinformatic platform that provides QSARs 
for the prediction of potential toxicity and adverse human 
clinical effects, including the microbial in vitro  Salmonella  
mutagenicity model that is used by the US FDA (Food and 
Drug Administration) in their testing under the ICH M7 
Guidance for impurities [ 22 – 24 ]. The in vitro  Salmonella  
mutagenicity QSAR model was constructed by the FDA 
scientists based on a training set of over 3500 compounds 
(including both proprietary and nonproprietary data). The 
model is based on a wide set of molecular descriptors, 
including 369 substructural features and seven calculated 
properties, and on partial logistic regression (PLS) model-
ing technique. Model predictions consist of four possible 
results, i.e., “positive,” “negative,” “indeterminate,” or 
“not in domain,” and probability of a positive result. 
Predictions are provided together with several parameters, 
which can be used to assess the prediction in terms of appli-
cability domain (e.g., the presence in the target compound 
of model training set structural features and the presence of 
structural analogues in the training set).  

 ●    VEGA/CAESAR Mutagenicity  model is a QSAR model 
predicting mutagenicity developed under the EU project 
CAESAR [ 25 ] and implemented in the VEGA platform 
[ 26 ]. The QSAR model is based on a dataset  of 4225 com-
pounds and consists of an integrated model made of two 
complementary techniques: a machine learning algorithm 
(SVM), to build an early model with the best statistical 
accuracy, equipped with an expert facility for false negative 
removal based on known structural alerts, to refi ne its pre-
dictions. The reliability of predictions is assessed using an 
Applicability Domain Index (ADI) that ranges from 0 to 1 
and is calculated by grouping several other indices, each 
one taking into account a particular issue of the applicabil-
ity domain (i.e., the presence of similar compounds in the 
training set, the consistency of their experimental data and 
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their prediction accuracy, the presence in the target of 
structural fragments possessed by training set compounds, 
and the range of values of modeling descriptors).     

   The (Q)SAR expert rule-based (or knowledge-based) method 
relies on rules derived from toxicological knowledge, which are 
likely to have strong mechanistic basis, used to make predictions 
about a defi ned adverse effect. In the expert rule-based systems, 
human experts identify structural fragments related to the studied 
effect. The examination of a series of chemicals sharing the same 
fragment (“structural alert”—SA) is used to detect the toxic effect 
(e.g., genotoxic or not); the chemical information is simply the 
fragment and the algorithm is, in this case, the rule. The expert 
rule-based systems have several advantages, e.g., they are mecha-
nistically connected to the predicted activity, provide reasoning for 
the predictions, and in many cases support the prediction with lit-
erature references or expert knowledge. On the other side, applica-
bility domain measures for expert systems are not well defi ned 
[ 27 ], and usually it is not possible to discriminate active from inac-
tive chemicals bearing the same structural alert. The accuracy in 
prediction is mostly comparable to statistical-based QSARs; how-
ever, expert systems tend to exhibit a higher sensitivity at the cost 
of a lower specifi city (SAs are conservative), whereas the statistical-
based QSARs show the opposite behavior [ 28 ]. 

 Several tools (both commercial and freeware) are now available 
coding expert rule-based systems [ 10 – 14 ]. In some tools, expert 
systems are combined with statistical-based models (the so-called 
hybrid systems), in order to provide supporting knowledge-based 
evidence to QSAR predictions. For our consultant activities, we 
routinely use an array of commercial and freely available tools in a 
weight of evidence approach. The predictors in use are based on 
wide sets of chemicals and alerts and provide means to assess the 
reliability of predictions. A brief description of these tools is as 
follows:

 ●     ACD/Percepta Impurity Profi ling  [ 15 ,  16 ] is supplemented 
with a knowledge-based expert system that identifi es 
potentially hazardous structural fragments that could be 
responsible for genotoxic and/or carcinogenic activity of 
the compound of interest. The expert system contains a list 
of 70 alerting groups of toxicophores, of which 33 repre-
sent mutagens, 24 clastogens, and 13 epigenetic carcino-
gens (androgens, peroxisome proliferators, etc.). The alert 
list is not limited to directly acting substructures, such as 
planar polycyclic arenes, aromatic amines, quinones, and 
N-nitro and N-nitroso groups, but also includes various 
fragments that may undergo biotransformation to reactive 
intermediates. Each hazardous fragment is provided with a 

2.2  (Q)SAR Expert 
Rule-Based 
Methodology
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description of its mechanism of action, literature refer-
ences, and  z -scores.  z -Scores show whether the presence of 
the fragment leads to a statistically signifi cant increase in 
the proportion of compounds with a positive test result for 
a particular assay. The identifi ed alerting groups are high-
lighted on the structure of the molecule and the fi ve most 
structurally similar structures from the training set, along 
with experimental results, are shown.  

 ●    ChemTunes Studio  includes, in addition to QSAR statistical- 
based models, genotoxic chemotypes (structural alerts), 
developed from mechanistic hypothesis; each alert is pro-
vided with likelihood prioritization, so that alerts can be 
used when combining the different information at the 
WoE stage. A knowledgebase was built and curated for a 
large dataset (over 8000 compounds) of Ames mutagenic-
ity data from public sources. The reliability of each alert is 
determined by exploring the ability of the alert to hit posi-
tive compounds in a large training set. Different training 
sets were used for the QSAR models and the alerts, so that 
predictions from these are independent.  

 ●    Leadscope Model Applier/Genetox Expert Alerts Suite  is 
implemented as part of the Leadscope Model Applier (in 
addition to the existing statistical-based QSAR model) 
[ 21 ]. To develop this system, an initial library of mutagen-
icity structural alerts was identifi ed from the literature. 
Information on plausible mechanisms was collected as well 
as the structural defi nitions. Factors that deactivate the 
alerts were also identifi ed from the literature and through 
an analysis of the corresponding data using the Leadscope 
data mining software. Over 200 distinct alerts are encoded 
in the system. These alerts were further validated against a 
reference database of over 7000 chemicals with known 
bacterial mutagenesis results. A confi dence score based 
upon information collected for each alert is provided 
alongside the positive or negative call. Up to ten structur-
ally similar structures from the alert reference set, along 
with experimental results, are provided.  

 ●    Toxtree  [ 29 ] is a fl exible and user-friendly open-source 
application that places chemicals into categories and pre-
dicts various kinds of toxic effects by applying decision tree 
approaches. The decision tree for estimating mutagenicity 
is based on discriminant analysis and structural rules as 
described in Benigni et al. [ 30 ]. It estimates in vitro (Ames 
test) mutagenicity, based on a list of 30 structural alerts 
(SAs). As one or more SAs embedded in a molecular struc-
ture are recognized, the system fl ags the potential muta-
genicity of the chemical. The use of Toxtree Benigni-Bossa 
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decision tree implemented in VEGA platform [ 26 ] allows 
the user to assess the reliability of predictions by means of 
the Applicability Domain Index (ADI) calculated in VEGA 
and to visualize chemical structure and experimental data 
for the most similar structures in Toxtree alert training set.     

   Chemical grouping approaches are based on the formation of 
chemical “categories” or “analogues,” composed by groups of 
chemicals whose physicochemical, (eco-)toxicological, and/or 
environmental fate properties are likely to be similar or follow a 
regular pattern. This can be the result of a structural similarity or 
other similarity characteristics (e.g., common mechanism of 
action). In principle, the chemical category is composed by several 
members, enabling the detection of trends across endpoints, while 
the grouping by analogue approach is based on a limited number 
of chemicals, where trends in properties are not apparent [ 31 ]. In 
these cases, predictions are generated by applying the “read-across” 
method. In the read- across technique, the endpoint information 
for one chemical is used to predict the same endpoint for another 
chemical, which is considered “similar” in some way (usually based 
on structural similarity). The chemical(s) being used to make an 
estimate is commonly referred to as a “source chemical(s),” 
whereas the chemical for which the endpoint is being estimated is 
referred to as a “target chemical.” The read-across methodology is 
currently accepted to fi ll data gaps in the regulatory framework, 
basically for the transparency and interpretability of the approach 
and of the fi nal outcome. However, read-across is not a formalized 
approach (i.e., it is not based on a defi ned and reproducible algo-
rithm), and the obtained predictions strongly depend on the expert 
judgment. For these reasons, specifi c guidelines on how to per-
form a read-across study in order to be accepted for regulatory 
purposes (e.g., REACH) have been developed [ 32 ]. According to 
this guideline, any read-across analysis should be supported by a 
detailed documentation to be provided according to the defi ned 
read-across reporting formats [ 31 ,  33 ]. 

 The OECD QSAR Toolbox [ 34 ] is the main tool we use to 
perform read-across predictions [ 35 ]. It was developed by the 
OECD to use (Q)SAR methodologies to group chemicals into cat-
egories and to fi ll data gaps by read-across and trend analysis. It is 
currently recommended and released by the European Chemicals 
Agency (ECHA) in collaboration with OECD. The Toolbox incor-
porates information and tools from various sources into a logical 
workfl ow, which supports the user to carry out read-across studies 
through the identifi cation of relevant structural characteristics and 
potential mechanism or mode of action of a target chemical, the 
identifi cation of other chemicals that have the same structural 
characteristics, and/or mechanism or mode of action and the use 
of existing experimental data to fi ll the data gaps. Another freely 

2.3  Grouping 
Approaches: Read-
Across Methodology
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available software useful to assist users for read-across evaluations 
is ToxRead [ 36 ]. ToxRead was recently developed by IRCCS 
(Istituto di Ricerche Farmacologiche Mario Negri), Politecnico di 
Milano, and KODE within a joint collaboration between the LIFE 
projects CALEIDOS and PROSIL and offers a workfl ow to gener-
ate read-across predictions with high reproducibility.  

   Any predictive model is by defi nition a simulation of reality, and 
therefore it will never be completely accurate. The same applies to 
(Q)SARs. As discussed in the previous paragraphs, each computa-
tional approach, i.e., statistical-based, expert rule-based, or read- 
across approach, has its own advantages and weaknesses. Likewise, 
each (Q)SAR model is characterized by distinctive predictive per-
formances (e.g., sensitivity versus specifi city) and a defi ned applica-
bility domain (i.e., no QSAR model can be applied to every 
chemical of interest), thus providing different partial “views” of 
the whole picture. Thus, the most reasonable way to get the best 
out of several views and achieve accurate predictions is to combine 
predictions from different models and approaches in a weight of 
evidence approach [ 37 – 39 ]. A weight of evidence (WoE) approach 
involves an assessment of the values and relative weights of differ-
ent pieces of available information [ 40 ]; in our case, it implies an 
assessment of different in silico predictions taking into account the 
reliability of each prediction and the concordance among different 
predictions. This can be achieved either in an objective way by 
using a formalized procedure or by using expert judgment. Some 
tools, such as ChemTunes and Leadscope Model Applier, provide 
algorithms for the calculation of WoE (or consensus) predictions 
based on the combination of predictions from statistical- and 
expert rule-based models as well as experimental data. It has been 
broadly demonstrated that the complementary use of statistical-
based and expert-based approaches, supplemented by expert 
knowledge, improves prediction accuracy [ 8 ,  11 ,  14 ,  41 ].   

3    Methods 

    In silico methods can be effi ciently employed in the early stages of 
drug development for the screening and identifi cation of potential 
genotoxic impurities, thus providing useful information to opti-
mize the design of the synthesis scheme. When in silico methods 
are used for screening purposes, the integration of statistical-based 
and knowledge-based approaches is not mandatory, and a less 
detailed documentation of the burden of proof is required. Our 
procedure for an early indication, by means of in silico methods, of 
the potential genotoxicity of impurities is described and summa-
rized in Fig.  1 .

2.4  Weight 
of Evidence Approach

3.1  Early Indication 
of Potential Genotoxic 
Impurities
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     1.    Characterization of the target impurity by means of chemical 
names, registry number, structure identifi ers (e.g., SMILES, 
InChI), chemical structure, and properties (e.g., molecular 
weight, molecular formula).   

   2.    QSAR statistical-based prediction of bacterial mutagenicity:
    (a)     Combined use of multiple tools for the prediction of geno-

toxicity as microbial in vitro  Salmonella  (Ames test). For 
 screening purposes, statistical-based QSAR models are usu-
ally preferred than knowledge-based approaches because of 
their higher accuracy and wider applicability [ 42 ]. Among 
the available predictors based on a statistical approach, we 
are currently using ACD/Labs Percepta, Leadscope Model 
Applier, and the CAESAR Mutagenicity model imple-
mented in VEGA, while ChemTunes is going to be inte-
grated. These predictors are particularly indicated for 
screening purposes since they are characterized by wide and 
heterogeneous training set (including drug substances), 
external predictivity, and wide applicability domains.   

   (b)     Assessment of the prediction reliability taking into account 
multiple issues, e.g., (i) whether the target impurity falls 
within the applicability domain of the model, (ii) whether 
and how the target impurity is represented in the training 
set by analyzing the structural analogues included in the 
training sets, (iii) prediction accuracy of the identifi ed ana-
logues, and (iv) consistency between the analogues’ exper-
imental test results (Ames test) and the prediction for the 
target impurity. Identifi cation of the proper analogues is a 
critical step and depends on the methodology used to 
measure chemical similarity. Defi ning chemical similarity 
measures to infer mutagenic potential as well as approaches 
to assess the reliability of predictions is still an open chal-
lenge [ 43 ].   

   (c)     Generation of a WoE prediction, i.e., positive/negative for 
microbial in vitro  Salmonella , taking into account only 

  Fig. 1    Workfl ow for early indication of potential genotoxic impurities       
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reliable predictions. If different predictors, based on differ-
ent training molecules, molecular descriptors, and model-
ing approaches, lead to consistent results, then a higher 
level of confi dence in the in silico prediction is achieved. If 
equally reliable but not consistent results are provided by 
different predictors, then the most conservative outcome, 
i.e., positive, should be concluded. Examples on how to 
deal with critical case studies, e.g., not consistent and/or 
unreliable predictions, are commented in Subheading  4  
( Notes 1 – 5 ).       

   3.    Documentation of the results. The predictions provided by the 
different tools together with the performed WoE analysis are 
described in a detailed report.    

     According to ICH M7 guideline, hazard assessment of genotoxic 
impurities fi rst involves an analysis of actual and potential impuri-
ties, based on experimental carcinogenicity and bacterial mutagen-
icity data available from database and literature. If such data are not 
available, in silico (Q)SAR assessment of the impurities should be 
performed to provide predictions for bacterial mutagenicity. As a 
result of the hazard assessment, drug impurities are assigned to one 
of the fi ve classes summarized in Fig.  2 , and specifi c control actions 
are suggested [ 4 ].

3.2  Regulatory 
Evaluation 
of Genotoxic Potential 
of Impurities (ICH M7 
Guideline)

  Fig. 2    Impurities classifi cation with respect to mutagenic and carcinogenic potential       
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    The ICH M7 guideline states that the computational toxi-
cology assessment should be performed by using two (Q)SAR 
prediction methodologies that complement each other, i.e., a 
statistical-based and an expert rule-based methodology. In addi-
tion, expert analysis including read-across is applied to provide 
additional supportive evidence on the predictions and/or to 
solve confl icting results. It is here described our stepwise proce-
dure for regulatory in silico assessment of genotoxic impurities. 
The procedure is also summarized in the workfl ow of Fig.  3 .

     1.    Characterization of the target impurity (i.e., chemical names, 
structure identifi ers, chemical structure, and properties)   

   2.    QSAR statistical-based prediction of bacterial mutagenicity:

    (a)     Combined use of multiple statistical-based QSAR models 
for the prediction of genotoxicity as microbial in vitro 
 Salmonella  (Ames test).   

   (b)     Assessment of the reliability of the predictions provided by 
the individual statistical-based tools as described in 
Subheading  3.1  ( step 2b ).   

   Table 1  
  Examples of critical case studies for in silico assessment of genotoxic impurities   

 No.  Statistical-based WoE  Expert rule-based WoE  Read-across study 

 Conclusive 
in silico 
assessment 

 1  NEGATIVE  OUT OF DOMAIN/
INCONCLUSIVE 

 NEGATIVE based on 
negative source 
chemical(s) (e.g., the 
API or structural 
related impurities) 

 NEGATIVE 

 2  OUT OF DOMAIN/
INCONCLUSIVE 

 NEGATIVE  NEGATIVE based on 
negative source 
chemical(s) 

 NEGATIVE 

 3  OUT OF DOMAIN/
INCONCLUSIVE 

 POSITIVE based on alert X  NEGATIVE based on 
negative source 
chemical(s) possessing 
the same alert X 

 NEGATIVE 

 4  NEGATIVE  POSITIVE based on alert X  NEGATIVE based on 
negative source 
chemical(s) possessing 
the same alert X 

 NEGATIVE 

 5  NEGATIVE  POSITIVE based on alert X  NOT FEASIBLE/
POSITIVE positive 
source chemical(s) 
possessing the same 
alert X 

 POSITIVE 
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   (c)     Computation of the statistical-based WoE prediction, i.e., 
positive/negative for microbial in vitro  Salmonella , based 
on the employed statistical-based tools. The level of confi -
dence of the WoE prediction (e.g., unreliable, borderline, 
moderate, or highly reliable) is defi ned taking into account 
the reliability and consistency of the predictions obtained 
by the individual employed statistical-based tools.       

   3.    (Q)SAR expert rule-based prediction of bacterial mutagenicity:
    (a)     Combined used of multiple expert rule-based methods for 

the prediction of genotoxicity as microbial in vitro 
 Salmonella  (Ames test). Among the available knowledge-
based tools, we are currently using ACD/Labs Percepta, 
Leadscope Model Applier, and the Toxtree in vitro muta-
genicity (Benigni-Bossa) decision tree implemented in 
VEGA. The novel expert system implemented in 
ChemTunes based on genotoxic chemotypes is going to 
be integrated in our in silico assessment. These tools pro-
vide a positive, negative, or inconclusive prediction based 
on the identifi cation of one or more structural alerts for 
mutagenicity, as well as the means to assess the reliability 
of the prediction (as discussed in the next step). Particular 
attention is paid to negative (“non-genotoxic”) predic-
tions based on the absence of structural alerts. In fact, the 
absence of any known structural alerts is NOT a suffi cient 
evidence for a lack of effect, and there is the possibility that 
the target impurity may act through an unknown mecha-
nism of action, for which structural alerts have not been 
developed yet.   

   (b)     Assessment of the reliability of the predictions provided by 
the expert SA-based tools. Although structural alerts often 
lack an adequately defi ned applicability domain [ 27 ], the 

  Fig. 3    Workfl ow for regulatory evaluation of potential genotoxic impurities       
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level of confi dence of the predictions can be assessed focus-
ing on the following issues: (i) whether the target impurity 
is suffi ciently represented in the training set, in terms of 
structural similarity, chemical fragments, or other struc-
tural features represented in the training set; (ii) relevance 
of the identifi ed alert, i.e., the alert is characterized by a 
statistically signifi cant higher frequency in genotoxic com-
pounds compared to non-genotoxic (from the training 
set); (iii) precision of the identifi ed alert, i.e., accuracy of 
the alert in the correctly predicted genotoxic compounds 
(i.e., true positive rate); and (iv) consistency between the 
experimental test results (Ames test) of the identifi ed ana-
logues (particularly those sharing the same alert(s)) and 
the predicted outcome of the target impurity. If no struc-
tural alerts for genotoxicity are identifi ed, a proper reliabil-
ity assessment is not applicable. In these cases, a detailed 
analysis of the structural analogues with no alerts and the 
precision of the expert system toward training compounds 
with no alerts is recommended [ 13 ].   

   (c)     Generation of the expert rule-based WoE prediction, i.e., 
positive/negative for microbial in vitro  Salmonella , based 
on the employed expert rule-based tools. The level of con-
fi dence of the WoE prediction is defi ned taking into 
account the reliability and consistency of the predictions 
obtained by individual tools.       

   4.    Generation of the fi nal WoE prediction, i.e., positive/negative 
for microbial in vitro  Salmonella , based on the integration of 
the outcome of the statistical-based and expert rule-based 
WoE predictions. The level of confi dence of the WoE predic-
tion is defi ned taking into account the reliability and consis-
tency of the predictions obtained by the two approaches. In 
case of confl icting results and/or weak WoE assessment (i.e., 
low reliability), either we conclude for a predicted genotoxic 
potential (conservative scenario) or, preferably, we integrate 
the in silico assessment with a read-across study (as described 
in  step 5 ). It is important to highlight that the WoE approach 
is not an automatic procedure, rather an assessment based on 
expert judgment performed on a case-by-case analysis of the 
predictions. Examples on how to deal with some critical case 
studies, e.g., not consistent and/or unreliable predictions, 
are commented in Subheading  4  ( Notes 1 – 5 ).   

   5.    Read-across study to provide additional supportive evidence 
on the predictions and/or to solve confl icting results. From 
our consultancy experience, the source chemical(s) is often 
suggested by the commissioner and could be either the API 
(active  pharmaceutical ingredient), compounds related to the 
drug substance (e.g., process intermediates), or structurally 
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related impurities, for which the commissioner already con-
ducted an experimental Ames test. Alternatively, an extensive 
search in the literature and in open databases (e.g., DSSTox 
[ 44 ], ECHA CHEM [ 45 ], NTP [ 46 ], GENE-TOX [ 47 ], etc.) 
is performed to identify the most appropriate source(s) for the 
target impurity. The read-across study is performed and docu-
mented according to the guidance document on the grouping 
of chemicals (including read-across and chemical categories) 
[ 31 – 33 ]. The OECD QSAR toolbox is employed to identify 
the functional groups (by applying the Organic Functional 
Groups (OFG) system) and to profi le the source and target 
chemicals by describing their foreseen mechanism of action 
relevant for mutagenic activity. Two general mechanistic pro-
fi lers, namely, DNA binding by OECD and DNA binding by 
OASIS v.1.2, and three endpoint-specifi c profi lers, namely, 
DNA alerts for AMES, MN, and CA by OASIS v.1.2, in vitro 
mutagenicity (Ames test), and in vivo mutagenicity (micronu-
cleus) alerts by ISS, are used being the most meaningful profi l-
ers for genotoxicity available in the toolbox [ 48 ].   

   6.    Conclusion from the in silico assessment on the potential 
genotoxicity of the target impurity, based on results of the two 
QSAR prediction methodologies, i.e., a statistical-based 
method and an expert rule-based method, and the supporting 
evidence coming from the read-across study.   

   7.    Documentation of the results. The predictions provided by the 
different tools and approaches, together with the performed 
WoE analysis, are described in a detailed report.    

4         Notes 

 The interpretation of results from a (Q)SAR assessment of geno-
toxic impurities is not always straightforward, and several issues are 
commonly encountered. Thus, the role of the expert is crucial to 
build up a WoE prediction by an integrated approach, which con-
siders information gained by various techniques, to provide addi-
tional supportive evidence on relevance of any positive or negative 
prediction and to elucidate underlying reasons in case of confl ict-
ing or inconclusive results. Some examples of critical and real case 
studies are reported and illustrated in Table  1 . In all cases, three 
statistical-based models, i.e., ACD/Percepta Impurity Profi ling (in 
vitro  Salmonella  model), Leadscope Model Applier/Genetox 
QSAR Statistical Suite (microbial in vitro  Salmonella  model), and 
VEGA/CAESAR Mutagenicity model, were employed together 
with three expert rule-based systems, i.e., ACD/Percepta Impurity 
Profi ling (in vitro  Salmonella  expert system), Leadscope Model 
Applier/Genetox QSAR Expert Suite (Bacterial Mutation), and 
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the Toxtree in vitro mutagenicity (Benigni-Bossa) decision tree 
implemented in VEGA platform.

    1.    Case study 1: The target impurity is reliably predicted as nega-
tive by the statistical-based approach, while the prediction 
obtained by the expert rule-based approach is not reliable 
(“out of domain”) or inconclusive. In this case, it is not possi-
ble to derive a robust WoE prediction, since two approaches 
are required by the ICH M7 regulation, and the read-across 
approach is suggested to provide further evidence of the nega-
tive prediction.   

   2.    Case study 2: The prediction obtained from the statistical-
based approach is not reliable (“out of domain”), or inconclu-
sive, while the outcome of the expert rule-based approach is 
negative, based on the absence of structural alerts for genotox-
icity. Again, a read-across study is suggested to provide further 
evidence of the negative prediction.   

   3.    Case study 3: The prediction obtained from the statistical-
based approach is not reliable, or inconclusive, while the out-
come of the expert rule-based approach is a reliable positive 
prediction, based on the detection of one or more structural 
alerts for genotoxicity. In this case, it is not possible to derive a 
robust WoE prediction, and the read-across approach is sug-
gested to verify whether the presence of the alert induces (or 
not) a positive effect. If the identifi ed source chemical (e.g., 
the API or structural related impurities) shares with the target 
impurity the same structural alert (e.g., same structural alert in 
the same position and environment in the impurity and the 
source) and the source chemical is non-mutagenic, then the 
target impurity is predicted negative by the read-across (Class 
4 according to ICH M7). In this case, in agreement with the 
ICH M7 guideline, the read-across study overturns the expert 
rule-based prediction, and the fi nal in silico assessment con-
cludes for a negative prediction.   

   4.    Case study 4: Confl icting predictions are obtained applying 
the two different methodologies, e.g., negative outcome 
obtained with the statistical-based approach and positive out-
come obtained with the expert rule-based system. The WoE 
assessment, based on a precautionary approach, would con-
clude for a positive prediction, leading possibly to a false posi-
tive. The read- across approach is thus suggested to solve 
confl icting results. As discussed in case study 3, if the impurity 
shares with the source chemical the same structural alert and 
the source chemical is non-mutagenic, then the target impurity 
is predicted negative by the read-across (Class 4 according to 
ICH M7). Thus, the read- across study overturns the WoE 
assessment based on statistical- based and expert rule-based 
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predictions, and the fi nal in silico assessment concludes for a 
negative prediction.   

   5.    Case study 5: Confl icting predictions are obtained applying 
the two different methodologies, e.g., negative outcome 
obtained with the statistical-based approach and positive out-
come obtained with the expert rule-based system. As discussed 
in case study 4, the target impurity is predicted as suspect posi-
tive following a precautionary approach, and the read-across 
approach is suggested. If no structural analogues justifying the 
read-across study can be identifi ed or if the source chemical(s) 
possessing the structural alert identifi ed in the target impurity 
shows positive experimental Ames test results, then the in silico 
assessment concludes for a positive prediction. Hence, the tar-
get impurity must be submitted for experimental assessment of 
mutagenicity.    
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