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    Chapter 20   

 The Use of In Silico Models Within a Large 
Pharmaceutical Company                     

     Alessandro     Brigo      and     Wolfgang     Muster     

  Abstract 

   The present contribution describes how in silico models are applied at different stages of the drug discov-
ery process in the pharmaceutical industry. A thorough description of the most relevant computational 
methods and tools is given along with an in-depth evaluation of their performance in the context of poten-
tial genotoxic impurities assessment. 

 The challenges of predicting the outcome of highly complex studies are discussed followed by consid-
erations on how novel ways to manage, store, share and analyze data may advance knowledge and facilitate 
modeling efforts.  
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1       Introduction 

 Computational methods (in silico models) are widely used in the 
pharmaceutical industry for optimizing molecules during early 
drug development, not only for effi cacy, but in parallel with regard 
to their toxicological as well as drug disposition properties. It is the 
fi ne balance of target potency, selectivity, favorable ADME (absorp-
tion, distribution, metabolism, excretion), and (pre)clinical safety 
properties that will ultimately lead to the selection and clinical 
development of a potential new drug [ 1 ,  2 ]. As a clinical candidate 
needs rigorous preclinical optimization in various aspects, multidi-
mensional optimization (MDO) is a term often used to describe 
the intensive investigations during the fi rst 3–4 years of drug dis-
covery from the identifi cation of the target to the selection of the 
best drug development compound. The current MDO process 
comprises the use of in silico, in vitro, as well as in vivo techniques. 
In general, in silico tools have the intrinsic advantages to be fast 
and not to need the physical presence of the test compounds and 
can therefore be applied very early in drug development. 
Theoretically, in silico models can be developed for all end points 
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and organisms, but the  availability of large enough, balanced, and 
high-quality datasets is the main drawback for reliable predictions. 
An excellent correlation with the in vitro/in vivo data, that is, 
high-sensitivity as well as high- specifi city, easy-to-use, and easy-to-
interpret in silico model, is a key requirement for its usefulness. In 
the past few years, computational toxicology prediction systems 
tremendously increased their predictive power for end points like 
genotoxicity, carcinogenicity, phototoxicity, phospholipidosis, 
GSH adduct formation, hERG inhibition, and CYP inductions, 
but still have not achieved the major breakthrough due to lack of 
suffi ciently large datasets covering more complex toxicological end 
points (e.g., liver-, kidney-, cardiotoxicity). These are the critical 
toxicity end points, which needs to be addressed in the next years 
to weed out potential safety issues in the clinics. Recent initiatives 
and consortia (e.g., IMI/eTOX, ToxCast, and ToxBank) dealing 
with data sharing of preclinical in vivo toxicology studies and com-
putational approaches have the potential of signifi cantly improving 
these end point predictions and fi lling the data gaps [ 3 – 5 ]. 

 This review will outline general considerations on the mainly 
applied expert systems—rule-based and statistical-based models—
in toxicology and ADME for pharmaceuticals and their application 
in the early drug development process as well as their regulatory 
impact on the assessment of potential impurities arising in the 
manufacturing process. Recent improvements and future perspec-
tives on the main challenge of predicting complex in vivo end 
points will be summarized and discussed.  

2     In Silico Methods for the Prediction of Toxicity 

 As already described in Subheading  1  of this chapter, the thorough 
characterization of the safety profi le of drug candidates is of great 
importance to ensure that no harm is posed to healthy volunteers 
and patients during and after clinical development throughout the 
entire compound lifecycle. 

 Drug toxicity can manifest itself in a number of ways and may 
interest one or more target organs or biological processes. In par-
ticular, carcinogenicity and liver, renal, cardiovascular, reproduc-
tive, and genetic toxicities are among the most signifi cant safety 
issues that can prevent drug candidates to progress through clinical 
development or can cause the withdrawal of already marketed 
products. Overall, between 20 and 30 % of failures can be attrib-
uted to safety reasons [ 6 – 8 ]. 

 Over that past few years, predictive computational approaches 
have found a signifi cant role within drug discovery in helping sci-
entists rank compounds classes and prioritize in vitro and in vivo 
experiments. A number of factors contributed to the increased 
importance of in silico methods in drug discovery: (1) wider avail-
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ability of high- quality datasets (public domain, focused data shar-
ing initiatives), (2) robust computational models that can provide 
reliable predictions[ 9 ], (3) pressure to reduce animal testing, (4) 
need to bring new drugs to the market faster and cheaper, (5) leg-
islation on the assessment of potential genotoxic impurities, and 
(6) greater number of commercially available and open-source 
software tools. 

 The most widely used computational methods for the predic-
tion of toxicity end points can be roughly divided into two main 
categories, rule-based and statistical-based systems, depending on 
what type of methods they use to make their classifi cations. 

   Computational tools included in this category store and manipu-
late knowledge to interpret information. They are often referred to 
as expert systems, which make use of a set of explicit rules (i.e., not 
implicitly embedded in a code) to make deductions and classifi ca-
tions. Such systems have the advantage that rules can be easily rep-
resented and developed by experts in the fi eld of toxicology (or of 
any discipline the systems are applied to), rather than by informa-
tion technology (IT) specialists. In addition, solid expert rules can 
be derived from limited amounts of data, as long as they are suffi -
ciently representative of specifi c chemical and biological spaces. 

 Both commercial and open-source systems are available within 
the rule-based methodologies, and they include, among others, 
Derek Nexus [ 10 – 13 ], Toxtree [ 14 ], CASE Ultra Expert Rules 
[ 15 ], and Leadscope Expert Alerts System [ 16 ]. 

  Derek Nexus  is an expert, knowledge base system which con-
tains structural alerts (SAs) and expert knowledge rules (derived 
from both public and proprietary data by scientists at Lhasa Ltd.) 
for a wide range of toxicological end points and applies these to 
make in silico predictions about the toxicity of chemical entities. 
The knowledge-based expert rules represent knowledge from lit-
erature, academic, industrial, and Lhasa Ltd. scientifi c experts and 
are regularly updated according to newly available experimental 
data and publications. In making predictions, the expert rules take 
into account not only the presence or absence of a structural alert 
but also the species and a few calculated physicochemical parame-
ters (where applicable) in a process akin to the human-based logic 
of argumentation. Proprietary data donated, by Lhasa Ltd. mem-
bers, has been used in the development of approximately 25 % of 
the bacterial in vitro (Ames test) mutagenicity alerts in Derek 
Nexus, and proprietary datasets are used to validate the perfor-
mance of alerts for this, and other end points, to provide an indica-
tion of predictive performance within the chemical space of highest 
interest to users. In addition proprietary and customized alerts can 
be defi ned by users and implemented through the Derek Knowledge 
Editor. 

2.1  Rule-Based 
Systems
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 The most recent version of Derek Nexus contains expert-
derived functionality to provide negative predictions for bacterial 
in vitro mutagenicity in order to give more confi dence on nonposi-
tive predictions. If a query compound does not match a structural 
alert for mutagenicity, then it is compared to a Lhasa reference set 
of Ames test data, and a negative prediction is provided based on 
the features within the query compound [ 17 ]. In case of absence 
of alerts for end points other than mutagenicity, negative calls 
should be made with caution as alerts that are not part of the rule-
base, hence unknown to the system, can still be relevant in the 
induction of certain toxicities. 

 Since Derek is an expert system, it has no training set in a strict 
sense as in QSAR-based systems, but there are example compounds 
for the alerts stored in its knowledge base. 

  Toxtree  [ 14 ,  18 ] is a Java-based, freely available, open-source 
application for toxicity prediction. It was developed by IDEAconsult 
Ltd. (Sofi a, Bulgaria) under the terms of a contract with the 
European Commission Joint Research Centre. The program is 
mainly based on structural alerts but also provides QSAR models 
for distinct chemical classes to refi ne the predictions. For mutagen-
icity, Toxtree implements the Benigni-Bossa rulebase [ 19 ] for car-
cinogenicity and mutagenicity. The alerts are only differentiated 
into genotoxic and a small number of non-genotoxic ones, with-
out distinction between carcinogenicity and mutagenicity. 
Additionally, this module offers QSAR models for aromatic amines 
and α,β-unsaturated aldehydes, which should improve the predic-
tivity for these specifi c chemical classes. However, the mutagenicity 
QSARs refer to  Salmonella typhimurium  TA100 only. With regard 
to structures that do not trigger any alert, the same considerations 
on negative predictions made for Derek Nexus apply. 

  CASE Ultra Expert Rules : As of version 1.5.2.0 of CASE 
Ultra, an  expert-rule system  is built using rules from expert knowl-
edge or scientifi c literature for the prediction of bacterial mutagen-
icity [ 15 ]. A detailed description of the software is given in the 
section describing the statistical-based systems. 

  Leadscope Expert Alerts System : Leadscope Inc. produces sev-
eral software modules applicable in the context of toxicological 
forecasting, particularly in the fi eld of QSAR models. Recently, 
Leadscope developed a rule-based expert system for the prediction 
of mutagenicity, using an extensive high-quality genetic toxicity 
database containing the results of the bacterial mutagenesis assay 
along with chemical structures [ 20 ]. Firstly, the chemical struc-
tures were merged using a chemical registration system to assign a 
unique identifi er to each chemical and merging entries on the basis 
of this identifi er. Next, the graded end points for  Salmonella  and 
 E. coli  were combined from the different sources, resulting in a 
database of over 7,000 chemicals each with a positive/negative 
overall bacterial mutation call. The reference set also covers a 
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diverse collection of compounds since they have been derived from 
many different sources, including pharmaceuticals, pesticides, 
industrial chemicals, and food additives. Clustering led to 1,220 
clusters with two or more examples and 1,049 singletons (clusters 
with one example). Once substructures are identifi ed for alert defi -
nitions, the selected alerts are consolidated and organized hierar-
chically (i.e., parent/child). This helps in establishing a mechanistic 
explanation particularly where any child alert is lacking or has lim-
ited mechanistic information, as it may be inherited from the par-
ent alert. When the expert alerts are used to make prediction, a 
score is calculated refl ecting the precision of the alert [ 20 ]. In addi-
tion to the primary alert, it is also important to defi ne any factors 
that would deactivate the alerts as a result of electronic or steric 
effects or by blocking an important metabolic step. In this context, 
the Leadscope software identifi ed and quantitatively assessed deac-
tivating factors using the 27,000 predefi ned structural features in 
Leadscope and generated new chemical scaffolds associated with 
negative bacterial mutagenicity. Any deactivating fragments identi-
fi ed were quantitatively evaluated using the reference set.  

   Quantitative structure-activity relationship (QSAR) models are 
regression or classifi cation models used in the chemical and bio-
logical sciences and other disciplines. Like other regression mod-
els, QSAR regression models relate a set of “predictor” variables 
( X ) to the potency of the response variable ( Y ), while classifi cation 
QSAR models correlate the predictor variables to a category value 
of the response variable. 

 The QSAR approach can be generally described as an applica-
tion of data analysis methods and statistics to model development 
that could accurately predict biological activities or properties of 
compounds based on their structures. Any QSAR method can be 
generally defi ned as an application of mathematical and statistical 
methods to the problem of fi nding empirical relationships (QSAR 
models) in the form Pi =  k ′ (D1, D2, …, Dn), where Pi are bio-
logical activities (or other properties) of molecules; D1, D2, …, Dn 
are calculated (or, sometimes, experimentally measured) struc-
tural properties (or molecular descriptors) of compounds;  k ′ is 
some empirically established mathematical transformation that 
should be applied to descriptors to calculate the property values 
for all molecules. The goal of QSAR modeling is to establish a 
trend in the descriptor values, which parallels the trend in bio-
logical activity [ 21 ]. 

 Both commercial and open-source systems are available within 
the QSAR-based methodologies, and they include, among others, 
Sarah Nexus [ 22 ], CASE Ultra [ 15 ], Leadscope Model Applier 
[ 23 ], OECD Toolbox [ 24 ], Bioclipse [ 25 ], admetSAR, and Prous 
Institute Symmetry [ 26 ]. 

2.2  Statistical-Based 
Systems

The Use of In Silico Models Within a Large Pharmaceutical Company
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  Sarah Nexus  is a statistical system which utilizes a self- 
organizing hypothesis network (SOHN) model to generate pre-
dictions for mutagenicity [ 27 ]. This hierarchical model not only 
retrieves matching fragments, it also further refi nes these results by 
considering the structure’s similarity to the query structure. The 
methodology retains those fragments that are perceived to be of 
greater value; fragments may be of various sizes and can even over-
lap, ensuring greater accuracy in predictions. Fragments are gener-
ated from the provided training set of molecules and not selected 
from lists of predetermined fragments. Both global (broad cover-
age, not adequately sensitive to local variations) and local (more 
accurate for fragments that fall inside their chemical space, nar-
rower in scope) models are available in Sarah Nexus. If the query 
structure is not an exact match to a compound within the training 
set (for which a prediction of 100 % confi dence is generated), the 
structure is fragmented and the software will select the most appro-
priate model for each fragment. 

 The structural explanation for the prediction provided by 
Sarah Nexus is conveyed by highlighting those fragment(s) that 
the model considers meaningful. Sarah Nexus provides a confi -
dence score and a structural explanation for each prediction along-
side direct access to supporting data to aid expert analysis [ 28 ]. 

  CASE Ultra : CASE Ultra’s algorithm is mainly infl uenced by 
the original MCASE methodology [ 29 ,  30 ], a traditional QSAR 
system, which can automatically generate a predictive model from 
a training set of non-congeneric compounds with associated bio-
logical or toxicity data. The training set ideally should contain 
examples of both active and inactive chemicals in a non-overly 
skewed ratio. 

 CASE Ultra can identify alerts that are not limited to linear 
paths of limited size or limited branching pattern, and the training 
sets could be larger than 8,000 molecules [ 31 ]. To build a model, 
CASE Ultra picks up one active chemical at a time from the train-
ing set and systematically generates a list of fragments for that 
chemical. Each fragment’s relevance for activity is then determined 
using a two- objective criteria comprised of Shannon’s entropy [ 32 ] 
as a fi tness measure and the number of the active training set mol-
ecules containing this fragment (fragments that are optimal based 
on the two objectives, i.e., the ones that cannot be replaced by any 
other fragment without degrading one or both objectives, are 
selected and then sorted in descending order of the number of 
their active chemicals). A top few fragments (based on the afore-
mentioned two- objective criteria, e.g., fragments that have low 
entropy as well as supported by higher number of active training 
chemicals) are selected. These fragments are considered as poten-
tial positive alerts. The fragment generation procedure produces 
simple linear chains of varying lengths and branched fragments as 
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well as complex  substructures generated by combining simple frag-
ments. When the algorithm has fi nished scanning all the active 
chemicals, a search is made in the accumulated list of the potential 
positive alerts to fi nd the alert that covers the highest number of 
active chemicals, and it is added to the fi nal list of positive alerts. 
This step is repeated until enough positive alerts were identifi ed to 
cover all the active chemicals in the training set. Once a fi nal set of 
positive alerts is identifi ed, CASE Ultra attempts to build separate 
local QSARs for each positive alert in order to explain the variation 
in activity within the training set chemicals covered by that alert. In 
addition, deactivating alerts are found using a very similar process 
but by scanning inactive chemicals and fi nding fragments that 
occur mainly in inactive chemicals. This collection of positive and 
deactivating alerts constitutes a model for a particular end point 
and can be used for predicting activity in test chemicals. During 
prediction, a test chemical is scanned against the list of the model’s 
positive and deactivating alerts, and if no positive alerts could be 
identifi ed in it, the chemical is considered inactive. In general, if 
the test chemical contains one or more positive alerts, it is pre-
dicted as “active.” However, this active prediction call can be 
changed if the local QSAR of the positive alert modifi es the predic-
tion. The presence of a deactivating alert alongside a positive alert 
renders the prediction call as “inactive.” If more than one positive 
alert is present, then the one with the highest number of active 
chemicals is used, and in the case of more than one deactivating 
alert, the one with the highest number of inactive chemicals is 
used. If a test chemical contains a positive alert that has been seen 
in just one or two active training set chemicals, the prediction 
result is considered “inconclusive” because of the alert low statisti-
cal confi dence. CASE Ultra recognizes unusual features/fragments 
in test chemicals that do not match training data (unknown struc-
tural fragments). The presence of more than three unknown struc-
tural fragments in the test chemical results in an “out of domain” 
call. 

  Leadscope Model Applier : The Leadscope software employs a 
fragment-based QSAR paradigm; however, the fragments are not 
paths of distinct lengths but are predefi ned in a hierarchically orga-
nized dictionary that is closely related to common organic/medici-
nal chemistry building blocks. For binary classifi cation problems, 
such as the Ames test results, the algorithm identifi es toxicity mod-
ulating fragments using a  χ  2 -test. Furthermore, the software is able 
to build superstructures from smaller fragments if they improve 
predictivity. Together with eight global molecular properties, the 
set of fragments is then used as a descriptor set in a partial least 
squares (PLS) logistic regression model of the activity class. 
Therefore, the predictions from this algorithm are continuous 
probabilities of class membership rather than binary outputs. The 
program also assesses the applicability domain by measuring the 
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distance to training set molecules. Typically, probabilities greater 
than 0.5 can be used to give an “active” prediction and probabili-
ties smaller than 0.5 an “inactive” prediction, which is the standard 
procedure used by the Model Applier for pretrained models. The 
system can also annotate compounds as “out of domain” or with 
“missing descriptors” when a conclusive prediction cannot be 
made [ 23 ]. 

  OECD Toolbox : The OECD Toolbox [ 24 ,  33 ] represents a free 
source of various models. The Toolbox is a software application 
intended to the use of governments, chemical industry, and other 
stakeholders in fi lling gaps in (eco)toxicity data needed for assess-
ing the hazards of chemicals. The Toolbox incorporates informa-
tion and tools from various sources into a logical workfl ow. Crucial 
to this workfl ow is grouping chemicals into chemical categories. 
The seminal features of the Toolbox are (1) identifi cation of rele-
vant structural characteristics and potential mechanism or mode of 
action of a target chemical, (2) identifi cation of other chemicals 
that have the same structural characteristics and/or mechanism or 
mode of action, and (3) use of existing experimental data to fi ll the 
data gap(s). The Toolbox includes a number of models predicting 
several toxicological end points, such as skin sensitization, Ames 
mutagenicity, acute and repeat-dose toxicity, aquatic toxicity, and 
others [ 34 ]. 

  Bioclipse  [ 25 ]: It is an open-source cheminformatics toolkit 
with a wide array of toxicity models integrated, such as carcinoge-
nicity, mutagenicity (Ames), hERG, aquatic tox (Daphnia), and a 
wide array of models from OpenTox [ 35 ]. The Ames mutagenicity 
model in Bioclipse is built using the dataset published by Kazius 
et al. in 2005 [ 36 ] containing 4337 chemical structures of which 
2401 were classifi ed as mutagen and 1936 non-mutagen. The 
datasets can be downloaded, and the software can be used to gen-
erate many molecule descriptors (using the CDK) [ 37 ,  38 ] and 
then QSAR models (through integration with the R statistical soft-
ware). The software is considered not as user friendly as some com-
mercial tools [ 39 ]. 

  admetSAR : admetSAR [ 40 ] is a free website (  http://lmmd.
ecust.edu.cn:8000/    ) [ 41 ] that enables a single input SMILES 
structure to be used to rapidly predict scores against a wide range 
of ADME/Tox models (at the time of writing, 26 qualitative 
classifi cation and 5 quantitative regression models). These datas-
ets can also be downloaded as most are based on other publica-
tions. Each model has some statistics describing the model as well 
as a probability to provide more confi dence in the result. The 
software is simple to use, and drawbacks appear to be the lack of 
batch processing operation, the “black box” nature of the mod-
els, and the lack of capability to build or update the models on 
the website [ 39 ]. 
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  Symmetry : Symmetry [ 26 ] is a platform that applies advanced 
machine learning techniques to a variety of structural features and 
physico-chemical properties of small molecules to provide quality 
predictions about biological effects. Available Symmetry algo-
rithms include binary classifi cation for active/inactive datasets, 
meta- classifi ers to achieve consensus predictions for sets of binary 
models, and multi-label learning that yields ranking and probabi-
listic estimates of the possible outcomes. Symmetry offers a wide 
range of predictive models, including mechanism of action and 
phenotypic models, toxicity [ 42 ], and human adverse effects.   

3    Assessment of Potential Genotoxic Impurities 

     The European Medicines Agency Committee for Medicinal 
Products for Human Use (CHMP) released in 2006 [ 43 ] a 
“Guideline on the Limits of Genotoxic Impurities,” which 
describes an approach for assessing genotoxic impurities of 
unknown carcinogenic potential based on the TTC concept. In 
2007 a question and answer document was published on the EMA 
website addressing several aspects of the practical implementation 
of the recommendations contained in the Guideline. 

 Genotoxicity is a broad term that typically describes a deleteri-
ous action on cellular genetic material. Chemicals may induce 
DNA damage by directly interacting with it (e.g., alkylating agents) 
or by acting on non-DNA targets (e.g., mitotic spindle poisons, 
inhibitors of topoisomerase, etc.). For DNA-reactive genotoxins, 
the mechanism by which they induce genetic damage is assumed to 
follow a linear no-threshold model; on the other hand, for mole-
cules not interacting directly with DNA, the existence of a thresh-
old concentration required to induce the damage is by and large 
accepted [ 44 ]. Impurities that belong to the second category of 
substances can be regulated according to the ICH Quality 
Guideline Q3C [ 45 ] which includes class 2 solvents. The thresh-
olds or permissible daily exposures (PDE) are calculated from the 
no-observed-effect level (NOEL) obtained in the most relevant 
animal studies with the use of conservative conversion factors used 
to extrapolate the animal data to humans. 

 The CHMP Guideline suggests that the TTC concept should 
be applied to those genotoxic impurities that do not have suffi cient 
evidence of a threshold-related mechanism of action. The refer-
ence values are taken from Kroes et al. [ 46 ], where a TTC of 0.15 
μg/day is proposed for impurities presenting a structural alert for 
genotoxicity, corresponding to a 10 −6  lifetime risk of cancer. In the 
case of pharmaceuticals, the Guideline suggests a 1 in 100,000 risk 
be applied, resulting in a TTC of 1.5 μg/day. 

 For drug substances, the identifi cation thresholds above which 
impurities are required to be identifi ed are within the range of 0.05 

3.1  ICH M7 Guideline

3.1.1  Background
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and 0.1 %. ICH Guidelines Q3A(R) [ 47 ] and Q3B(R) [ 48 ] state 
that even though the identifi cation of impurities is not necessary at 
levels lower than or equal to the identifi cation threshold, “analyti-
cal procedures should be developed for those potential impurities 
that are expected to be unusually potent, producing toxic or phar-
macological effects at a level not more than the identifi cation 
threshold.” The Guideline recommends carrying out a thorough 
evaluation of the synthetic route along with chemical reactions and 
conditions, with the aim of identifying reagents, intermediates, 
starting materials, and readily predicted side products which may 
be of potential concern. Once all potential impurities are theoreti-
cally identifi ed and listed, an initial assessment for genotoxicity is 
carried out by a scientifi c expert using computer tools such as 
QSAR and knowledge base expert systems. A thorough literature 
and internal archive (when applicable) search also needs to be com-
pleted, as a number of intermediates and reagents have often been 
tested in genotoxicity or carcinogenicity assays. The potential 
genotoxic impurities which may be present in an API are then clas-
sifi ed into one of fi ve classes described by Müller et al., in 2006 
[ 49 ]; the purpose is to identify those impurities that pose a high 
risk and need to be limited to very low concentrations. 

 In 2006, a task force established under the umbrella of the US 
Pharmaceutical Research and Manufacturers of America (PhRMA) 
for the fi rst time proposed the “staged TTC” concept to be applied 
to pharmaceuticals [ 49 ]. The task force was established as a 
response to various clinical holds imposed by the FDA on investi-
gational drugs in clinical trial phases based on suspicions to contain 
genotoxic impurities at levels potentially associated with a risk for 
the volunteers or patients involved in these trials [ 50 ]. The staged 
approach allows levels of daily intake of mutagenic impurities 
higher than 1.5 μg as defi ned by the lifetime TTC, namely, 10 μg 
(for a 6–12-month duration), 20 μg (3–6 months), 40 μg (1–3 
months), and 120 μg for not more than 1 month. The EMA 
adopted the staged TTC approach for limits of genotoxic impuri-
ties in clinical trials in the 2007 Q&A document (EMA 2010), but 
to be more conservative, it reduced the staged TTC limits pro-
posed in the PhRMA paper by a factor of 2. 

 In 2008, the FDA issued a draft “guidance for Industry on 
Genotoxic and Carcinogenic Impurities in Drug Substances and 
Products: Recommended Approaches” (FDA 2008) which was 
largely similar to the EU guidance. However, this document has 
not been fi nalized because in 2009 the topic “genotoxic impuri-
ties” was adopted by ICH for development of a new internation-
ally harmonized guideline. Since the topic was considered to 
include both safety and quality aspects, the projected Guideline 
was assigned to the M (multidisciplinary) series of the ICH process 
and designated as ICH M7 with the title “Assessment and Control 
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of DNA-Reactive (Mutagenic) Impurities in Pharmaceuticals to 
Limit Potential Carcinogenic Risk” [ 51 ]. 

 In February 2013 a draft of the M7 Guideline was published 
in the three ICH regions for public consultation (step 3 of the 
ICH process). The document was adopted as a step 4 ICH 
Harmonised Tripartite Guideline in June 2014 (ICH 2014) and is 
currently on step 5, adopted by CHMP on 25 September 2014 
and issued as EMA/CHMP/ICH/83812/2013 [ 51 ].  

   The ICH M7 Guideline combines many of the principles set by the 
EU and the draft FDA Guidelines on genotoxic impurities. Some 
aspects, though, have been updated and clear recommendations 
can be identifi ed. A thorough description of all key aspects of the 
ICH M7 Guideline, which are described elsewhere [ 50 ], is beyond 
the scope of the present contribution. It is nonetheless worthwhile 
mentioning few of the critical aspects that the ICH M7 Guideline 
does enforce:

    1.    Structure-based assessment of potentially mutagenic impuri-
ties has to be carried out using two in silico systems that com-
plement each other: one should be a rule-based and one a 
statistics-based method ( see  Subheading  2  in this chapter).   

   2.    The impurities classifi cation system proposed by the ICH M7 
Guideline has been derived from the scheme proposed by 
Müller et al. in 2006 [ 49 ], which identifi es fi ve classes of impu-
rities as a function of data availability for the characterization of 
their mutagenicity and carcinogenicity potential.   

   3.    ICH M7 replaced the term “genotoxic impurities” as applied 
by the EU Guideline on the Limits of Genotoxic Impurities 
with the term “DNA-reactive impurities” in order to specify 
that DNA-reactive compounds (i.e., that typically covalently 
bind to DNA- generating adducts, which, if unrepaired, can 
lead to point mutations and/or strand breakage) are those that 
fall within the scope of the Guideline. There is also the assump-
tion that DNA-reactive (Ames- positive) compounds are likely 
carcinogens with no threshold mechanism.   

   4.    For DNA-reactive (Ames-positive) compounds lacking rodent 
carcinogenicity data, a generic TTC value would be applied as 
an acceptable intake level that poses a negligible risk of 
carcinogenicity.   

   5.    If rodent carcinogenicity data is available for a (potentially) 
mutagenic impurity, the application of the TTC concept is not 
warranted, and a compound-specifi c calculation of acceptable 
levels of impurity intake is recommended as is described in 
more detail in the Note 4 of the Guideline [ 51 ].   

   6.    Compound-specifi c calculations for acceptable intakes can be 
applied case-by-case for impurities which are chemically similar 

3.1.2  Key Aspects 
of the ICH M7 Guideline
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to a known carcinogen compound class (class-specifi c accept-
able intakes) provided that a rationale for chemical similarity 
and supporting data can be demonstrated (Note 5) [ 44 ,  51 ].   

   7.    The acceptable intakes derived from compound-specifi c risk 
assessments can be adjusted for shorter duration of exposure. 
The TTC-based acceptable intake of 1.5 μg/day is considered 
to be protective for a lifetime of daily exposure. To address 
less-than- lifetime (LTL) exposures to mutagenic impurities in 
pharmaceuticals, a formula is applied in which the acceptable 
cumulative lifetime dose (1.5 μg/day × 25,550 days = 38.3 mg) 
is uniformly distributed over the total number of exposure days 
during LTL exposure. This allows higher daily intakes of muta-
genic impurities than would be the case for lifetime exposure 
and still maintain comparable risk levels for daily and non-daily 
treatment regimens. 

   Table  1  summarizes the levels for different duration.
       8.    As far as multiple impurities are concerned, when there are more 

than two mutagenic (i.e., Ames-positive) or alerting impurities, 
total mutagenic impurities should be limited as described in 
Table  2  for clinical development and marketed products.

            In silico methods for the prediction of mutagenic activity have 
been available for many years, and they have been continuously 
improved in terms of technology and prediction results, also for 
greater availability of high-quality data. 

 The specifi c use of such in silico tools in the pharmaceutical 
industry, in the context of the evaluation of genotoxic impurities, 
has been recently summarized and reviewed by Sutter et al. [ 52 ]. 
The authors, representing a total of 14 pharmaceutical compa-
nies, compared the predictive value of the different methodolo-
gies analyzed in two surveys conveyed in the US and European 

3.2  Performance 
of Commercial 
Systems 
on Proprietary 
Compounds

   Table 1  
  Acceptable intakes for an individual impurity   

 Duration of treatment  ≤1 month  >1–12 months  >1–10 years  >10 years 

 Daily intake (μg/day)  120  20  10  1.5 

   Table 2  
  Acceptable total daily intakes for multiple impurities   

 Duration of treatment  ≤1 month  >1–12 months  >1–10 years  >10 years 

 Daily intake (μg/day)  120  60  30  5 
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pharmaceutical industry: most pharmaceutical companies used a 
rule-based expert system as their primary methodology, yielding 
negative predictivity values of ⩾78 % in all participating compa-
nies. A further increase (>90 %) was often achieved by an addi-
tional expert review and/or a second statistics-based methodology. 
Also in the latter case, an expert review was encouraged, espe-
cially when confl icting results were obtained. The conclusion was 
that a rule-based expert system complemented by either expert 
knowledge or a second (Q)SAR model is appropriate. Overall, 
the procedures for structure-based assessment presented in the 
article by Sutter et al. [ 52 ] were already considered appropriate 
for regulatory submissions within the scope of ICH M7, which 
mandates the use two different methodologies: one expert-rule 
based and one statistical-based. 

 In order to comply with such Guideline specifi cation, addi-
tional commercial in silico tools and novel models have been 
recently made available to the scientifi c community. Brigo  et al.  
[ 53 ] evaluated three expert-rule systems ( Derek Nexus v.4.0.5  [ 13 ], 
 Toxtree v.2.6.6  [ 14 ],  Leadscope Expert Alerts v.3.2.4-1  [ 16 ]) and 
three statistical systems ( Sarah v.1.2.0  [ 22 ],  Leadscope Model 
Applier v.3.2.4-1  [ 23 ],  three models of CASE Ultra v.1.5.1.8  [ 15 ] —
GT1_7B, SALM2013, SALM2013PHARMA ) in an individual and 
combined fashion. 

 The evaluation was carried out using a large validation set of 
Ames mutagenicity data comprising over 10,000 compounds, 30 % 
of which are Roche proprietary data (Table  3 ). The Roche datasets 
include the vast majority of compounds (not only impurities) 
tested in the Ames Standard [ 54 ] and Microsuspension [ 55 ] 
protocols.

   All programs have been applied as commercially available, 
without internal customization or follow-up expert knowledge. 

 Individual systems showed adequate performance statistics 
with public domain datasets (concordance, 74–95 %; sensitivity, 
58–99 %; specifi city, 51–96 %;  see  Fig.  1 ); however, there was a 
consistently signifi cant drop in sensitivity with the Roche datasets, 

   Table 3  
  External validation sets   

 Dataset  Number of compounds  Positive  Negative 

 Roche Ames Standard  1,335  254  1,081 

 Roche Ames Microsuspension  1,785  190  1,595 

 LSDB  4,699  2,068  2,631 

 Hansen [ 56 ]  2,647  1,773  874 

 Total  10,466  4,285  6,181 
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down, in one case, to single digit (concordance, 66–88 %; sensitiv-
ity, 8–54 %; specifi city, 69–95 %;  see  Fig.  2 ). All systems showed 
good performance with “public validation sets,” also due to the 
training set overlap, which went up to 91 % for Sarah (Fig.  1 ).

    Expert-rule-based tools showed lower specifi city with public 
domain datasets versus the statistical-based programs. Statistical 
tools showed a much higher number of compounds (up to 39 % in 
one case) outside of their applicability domains and, hence, not 
predicted (Fig.  2 ). 

 To evaluate the performance of the combined approach rec-
ommended by the ICH M7 Guideline, the Roche validation sets 
have been submitted to all possible combinations of one expert-
rule- based and one statistical-based system (Figs.  3  and  4 ).

  Fig. 1    Performance of individual systems on public datasets Hansen [ 56 ] and LSDB       

  Fig. 2    Performance of individual systems on Roche Ames Standard and Ames Micro datasets       
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  Fig. 3    Performance of combined systems on the Roche Ames Standard dataset       
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  Fig. 4    Performance of combined systems on the Roche Ames Micro dataset       
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    The combinations of all systems, compared to their individual 
performance with both Roche validation sets, improve the sensitiv-
ity to consistently above 50 %, up to 71 % for the combination 
“LSMA Alerts + SALM2013.” As expected, specifi city is generally 
lower than with individual systems, but its reduction is limited for 
the majority of combinations. 

 In order to assess the prediction tools with chemicals that fall 
within the potential genotoxic impurities chemical space, four sub-
sets of both Roche validation sets have been generated with molec-
ular weights (MW) ≤400, ≤350, ≤300, and ≤250. Such subsets 
cover the chemical space of the large majority of the potential 
genotoxic impurities tested in Roche over the past decade. 

 All programs have been tested against these subsets individu-
ally (Figs.  5  and  6 ) and in combination (Figs.  7  and  8 )[ 53 ].

      With individual systems, sensitivity shows a clear trend to 
increase proportionally to the decrease of MW. For example, in the 
Roche Ames Microsuspension set, sensitivity improves as follows: 
Derek from 27 to 64 %, Sarah from 51 to 76 %, Toxtree from 42 
to 85 %, and CASE Ultra SALMPHARM2013 from 45 to 71 %. 
LSMA Alerts and LSMA Stats show an increase in sensitivity to 60 
% up to MW ≤300, but there is a fl ection down to ~55 % for both 
programs for MW ≤250. In general, sensitivity increases signifi -
cantly with low-MW subsets with almost all programs and models 
(Figs.  5  and  6 ). The only exception is CASE Ultra SALM2013 
model, which keeps the same sensitivity values throughout all sub-
sets (between 29 and 33 %) [ 53 ]. 

 The evaluation of combined systems with low-MW Roche 
subsets shows a signifi cant increase in sensitivity, up to over 90 % 
for sets with MW ≤300 and ≤250 with several combinations (Figs. 
 7  and  8 ). The increase in sensitivity is proportional to the decrease 
in MW; at the same time, there is a considerable decrease in speci-
fi city (<30 % in some cases). Such deltas are generally more pro-
nounced in the Ames Micro dataset (Fig.  8 ) compared to the 
Roche Ames Standard dataset (Fig.  7 ). In the Ames Standard sub-
sets, specifi city and sensitivity values are consistently comprised 
between 70 and 80 % in nearly all Derek Nexus and LSMA Alerts 
combinations. In the latter combinations, values are a bit lower 
than 70 % at higher MW. Toxtree combinations show lower sensi-
tivity and specifi city values at higher molecular weights and greater 
gaps between sensitivity and specifi city within the subsets MW 
≤300 and MW ≤250 [ 53 ]. 

 As far as the Roche Ames Micro set is concerned, the sensitiv-
ity is in the range of 90 % in the subset with MW ≤250 with several 
combinations, such as Derek Nexus + Sarah and Derek 
Nexus + GT1_A7B; LSMA Alerts + Sarah; LSMA Alerts + CASE 
Ultra models. Nearly all combinations with Toxtree gave sensitivity 
in the range of 90 %. Nearly all combinations of LSMA Alerts 
showed high sensitivity also in the subset with MW  ≤ 300. 
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 Looking at the plots in Fig.  8 , it is evident that more balanced 
results are obtained with all Derek Nexus combinations: in other 
words, the sensitivity increases proportionally to the decrease of 
the MW at a moderate expense of specifi city. Compared to this, 
LSMA Alerts combinations have overall lower specifi city than 
Derek combinations. At the same time, Toxtree combinations, 
despite showing good sensitivity, have a greater corresponding 
decrease in specifi city.  

   Validation exercises such as those described in Subheading  3.2  for 
mutagenicity or for other end points are typically very useful for 
the identifi cation of specifi c gaps in the chemical space represented 
by the assessed models and tools. 

 In particular, when proprietary data are used as external valida-
tion sets, false predictions represent a valuable opportunity to 
improve the models and expand their overall applicability domain. 

3.3  Improvement 
of In Silico Predictions 
with Proprietary Data
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 Roche recently undertook a similar exercise with Lhasa Ltd. in 
order to systematically include proprietary knowledge into the in 
silico prediction tools that are routinely used for early safety assess-
ment. Data collected from Ames test, embryonic stem cell assay 
(teratogenicity), hERG inhibition in vitro screening, and micro-
nucleus in vitro (chromosome damage) have been used to fi ll the 
gaps identifi ed in the models adopted within the company. 

 These collaborative efforts, aimed at incorporating proprietary 
knowledge in prediction models, quickly translated into a signifi -
cant increase in the prediction metrics ( see  Table  4 ), with sensitivity 
values that showed up to 60 % improvements.
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  Fig. 7    Performance of combined systems on the  Roche Ames Standard  dataset fi ltered by MW           
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Fig. 7 (continued)
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  Fig. 8    Performance of combined systems on the  Roche Ames Micro  dataset fi ltered by MW           
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4        Role of In Silico Models in the Prediction of Toxicity in Drug Discovery 

 In silico approaches to predict potential toxicities and drug metab-
olism on the basis of the chemical structure are of particular inter-
est to the pharmaceutical industry as having the potential to impact 
the early drug discovery process as well as in the candidate selec-
tion phase. Prediction models for the identifi cation of metabolic 
soft spots and potentially toxic substructures can be easily applied 
to a large number of chemical structures and are therefore inte-
grated already during HTS (high-throughput screening) or even 
earlier as an automatically attributed alert for all new chemical enti-
ties. At this early stage, only a basic in silico profi ling can be done, 
as only the most well-validated end points can be reliably applied 
automatically and generated on the fl y without an expert interven-
tion. Later in the development, at the latest before the fi nal candi-
date is selected, a more detailed in silico profi ling also considering 
the whole profi le of the compound is thoroughly conducted. 
According to the development scheme provided in Fig.  9 , the fur-
ther in silico tools and in vitro downstream activities are 
conducted.

     The fi rst step after the target has been identifi ed as potential devel-
opment opportunity is a target assessment (TA) conducted by 
nonclinical safety experts, using appropriate databases and public 
sources. A proper target/functionality assessment in healthy and 
diseased status contains pathway mapping, information from 
knockout and transgenic models, a target expression profi le in rel-
evant species, as well as a critical evaluation of potential off-target 

4.1  Target 
Identifi cation (TI), 
Target Assessment 
(TA), 
and Exploratory Work

    Table 4  
  Improvement in predictive performance of an in silico prediction tool including Roche 
proprietary data   

 End point 
 Sensitivity 
(%) 

 Specifi city 
(%) 

 Positive 
predictivity 
(%) 

 Negative 
predictivity 
(%) 

 Balanced 
accuracy 
(%) 

 Mutagenicity  Previous  36  92  45  89  64 
 Updated  69  89  55  94  79 

 Chromosome 
damage 

 Previous  5  97  34  76  51 
 Updated  65  92  72  89  78 

 hERG inhibition  Previous  21  90  70  50  55 
 Updated  63  67  69  61  65 

 Teratogenicity  Previous  3  96  17  79  50 
 Updated  59  92  66  90  76 
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safety alerts (selectivity). Various software systems are available to 
assist the experts in these assessments (e.g., MetaCore [ 57 ], 
Symmetry [ 26 ]). 

 Modern in silico prediction software is able to calculate thou-
sands of chemical structures on the fl y and can be therefore applied 
very early in the drug development process. Immediately after the 
chemical structure is known, meaning chemical libraries are added 
to the companies’ chemical database, a basic in silico prediction 
panel is applied using reliably validated toxicological end points 
like genotoxicity and carcinogenicity. As always, a large, homoge-
neous, and high-quality database is the prerequisite for reliable 
predictions. Therefore, in vitro screens which have been used 
within pharmaceutical companies for years containing data gener-
ated often in one single lab are the best sources for the develop-
ment of highly predictive models. For example, an in silico model 
predicting the potential of drug-induced phospholipidosis (a 
reversible storage disorder characterized by accumulation of phos-
pholipids within cells) has been developed. Based on more than 
600 in vitro assay, an accuracy of 86 % led to a replacement of the 
in vitro by the in silico method. The model is calculating the free 
energy of amphiphilicity (ΔΔ G  AM ) and log  P  value [ 58 ] of cationic 
amphiphilic drugs and can be applied in a high-throughput mode. 

  Fig. 9    Use of in silico tools and safety screening during the early drug development process       
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Further end points, which can be used for on-the-fl y predictions, 
are teratogenicity, GSH adduct formation, irritation, and skin 
sensitization. 

 At this early stage of development, the potential safety hazards 
identifi ed by the application of an expert system in combination 
with a set of statistical models contribute to the overall compound 
profi le, but are not used as a decision pathway ( see  Fig.  10 ).

      The main goal during lead identifi cation is to identify valid chemi-
cal templates for further optimizing the effi cacy and selectivity on 
the target, ideally multiple discrete series. Besides computational 
chemistry tools to calculate physicochemical properties, virtual 
screening, structure-based design, QSAR analysis of both the 
desired target and off-target activities, and chemical structures are 
analyzed continuously in silico for possible structure-related safety 
concerns to identify major issues with the templates. Insights into 
the toxicological potential of a scaffold or series of structures early 
in the drug discovery process could help medicinal chemists to 

4.2  Lead 
Identifi cation (LI) 
Phase: Target Selected 
(TS) to Lead Series 
Identifi ed (LSI)

  Fig. 10    Downstream activities following in silico alerts in the drug development process       
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prioritize particular scaffolds. Components of early avoidance of 
chemical structure safety liabilities include predictions for genotox-
icity, carcinogenicity, hERG channel blockade, reactive metabolite 
formation, phospholipidosis, structural similarity to problematic 
molecules, CYP  inductions, GSH adduct formation, and DMPK 
properties (cell penetration, microsomal stability, CYP3A inhibi-
tion). The in silico tools offer good guidance on what additional 
tests may be necessary or whether further characterization is war-
ranted; however, they also have limitations [ 59 ]. 

 Drug, metabolism and pharmacokinetics (DMPK) properties 
play a major role during lead identifi cation. Numerous commer-
cially available tools for the prediction of metabolites exist, such as 
METEOR [ 11 ,  17 ], MetabolExpert [ 60 ], and MetaSite [ 61 ]. 
Most software packages correctly predict metabolites that are 
detected experimentally. However, a relatively high incidence of 
false predictions of metabolites is common to most unspecifi ed 
computerized systems. In the hand of drug metabolism experts, 
these software packages have a certain value for hypothesis genera-
tion and guiding to experimental approaches for the identifi cation 
of drug metabolites. However, the generation of additional new 
local rules, intended to predict the activity of a single enzyme (and 
often only within a chemical series), can signifi cantly improve the 
prediction accuracy. 

 Experimental follow-up of potential issues are conducted to 
build/refi ne safety plans moving forward. Even if in vitro assays 
clearly disprove identifi ed in silico alerts, further spot-checking of 
the distinctive end point will be conducted to avoid creeping in of 
a structural liability. The in vitro results always overrule the in silico 
warnings provided that the corresponding assays could have been 
conducted under reliable conditions (e.g., solubility, stability). 
Chemical templates with identifi ed and confi rmed intrinsic meta-
bolic and/or safety concerns will be eliminated ( see  Fig.  10 ).  

   The task of the LO phase is to take a lead and convert it into a 
candidate for preclinical evaluation. This phase is intensively 
accompanied by early safety in vitro screening in various areas: 
genotoxicity, hERG and other ion channels, cytotoxicity, hepatic 
toxicity, bone marrow toxicity, transporters, metabolite identifi ca-
tion, metabolic stability, CYP induction/inhibition, reactive 
metabolites, off-target pharmacology/secondary pharmacology, 
and cross-species comparisons, where applicable. Further screens 
might be applied based on the target liabilities or already identifi ed 
potential safety issues. If adverse in vitro activities appear, specifi ed 
structure-activity relationships (SARs), so-called local SARs, will 
be established to support the discovery projects in optimizing the 
clinical candidates toward safety/DMPK in parallel to effi cacy. 

4.3  Lead 
Optimization (LO) 
Phase: Lead Series 
Identifi ed (LSI) 
to Clinical Candidate 
Selected (CLS)
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 At this stage, fi rst, fi t for purpose in vivo studies are conducted 
to address early target or chemistry related safety concerns. The 
fi rst general toxicology studies are maximal tolerated dose (MTD) 
and dose-range fi nding (DRF) studies generally performed in 
rodents and non-rodents. The value of performing exploratory 
drug safety studies before candidate nomination is to identify 
unwanted toxicities evident in a study of up to 14 days duration, as 
well as any potential toxicities anticipated based on a known cause 
for concern. In the absence of fi ndings or the presence of fi ndings 
that are judged manageable, these studies provide a greater com-
fort in the selection of a molecule for advancement into develop-
ment with higher likelihood of success. Additional benefi ts of these 
studies are the identifi cation of target organs to monitor in devel-
opment and the selection of doses for the GLP toxicology studies. 
In addition, identifi cation of the toxicity profi le of a lead com-
pound can be useful for the backup program where the goal is 
often an improved safety margin. In silico safety concerns might be 
included as part of pharmacokinetics/pharmacodynamics (PK/
PD) characterization in vivo (disease) models to extract safety-rel-
evant information and to build confi dence in safety before expand-
ing into larger regulatory animal studies. 

 During LO, every in silico alert is immediately followed up by 
the corresponding in vitro screen, in case, even in vivo studies 
might be frontloaded. To avoid late failures of optimized candi-
dates, spot- checking of the potential development candidates with-
out alerts is conducted if the resources and throughput of the assay 
allows. In case of screening alerts, creation of local SARs can result 
in signifi cant acceleration of project by optimizing the chemical 
improvement rounds. Specifi c and tailor-made local models nor-
mally have a signifi cantly higher accuracy, if continuously updated 
with new incoming screening results. Learnings and newly identi-
fi ed alerting substructures should be implemented in general rules 
and models (customized systems) to continuously improve the 
performance of the computational tools used for drug optimiza-
tion ( see  Fig.  10 ).  

   The main usage of in silico tools after the fi nal candidate has been 
selected encompasses the assessment of potentially genotoxic 
impurities according to the ICH M7 Guideline as described in 
Chapter   3    , as well as cross-reading and pathway analysis following 
an unexpected event in preclinical studies. Furthermore, a backup 
or fast- follower program will trigger dedicated in silico profi ling 
and screening of the new molecules, based on experiences and 
identifi ed issues of the frontrunner compound. 

 Apart from the use of in silico tools to assess genotoxic impuri-
ties, there are no computational assessments which are mandatory 
requirements from regulatory agencies, but in case in silico models 
have been applied during drug development and infl uenced the 
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testing strategy or triggered addition investigations, the informa-
tion should be included in regulatory documents and adequately 
described.   

5    Prediction of Complex End Points 

   When the goal is the prediction of the outcome of certain assays, 
such as the Ames assay [ 54 ], in which the results can be roughly 
considered as binary, i.e., “yes” or “no” answer, in silico models 
have a higher chance to give a better performance if compared to 
more complex assays and studies. 

 The mechanism of action of a molecule leading to a specifi c 
readout plays a critical role in the predictive performance of in 
silico models as it is one of the biggest challenges of, for instance, 
QSAR models. “Do the descriptors have any physicochemical 
interpretation that is consistent with a known biological mecha-
nism? [ 62 ]” is often a very diffi cult question to answer. In vitro 
chromosome damage (an assay used to establish the clastogenicity 
potential of test compounds) can also be considered binary (i.e., 
the test item is “clastogenic” or “not clastogenic”). However, the 
mechanisms of action that may lead to clastogenicity are manifold 
and may involve the interaction of the compound with a number 
of proteins or enzymes, the disruption of one or more biological 
pathways that ultimately lead to a clastogenicity outcome. This 
complexity is refl ected in the performance of the in silico predic-
tion tool described in Table  4  for the chromosome damage end 
point. Before the update of the model based on internal data and 
structures, the sensitivity was in the single digit, showing that the 
model was practically unable to identify any clastogenic compound 
within the validation set used. The update was successful in increas-
ing the sensitivity value to 65 %; nonetheless, we need to bear in 
mind that due to the various mechanisms of action that can lead to 
clastogenicity, minor structural changes within a chemical class can 
have a large impact on the mechanism of action (e.g., the interac-
tion with one or more proteins may be hampered, hence changing 
the fi nal outcome of the assay). 

 Even greater challenges are offered to the prediction of the 
outcome of single-dose and repeat-dose toxicity in vivo studies. In 
the pharmaceutical industry, such studies are typically used to iden-
tify a maximum tolerated dose (MTD) and the NOAEL (non-
observed- adverse-effect level) for a test compound, in addition to 
the identifi cation of a general toxicity profi le and signifi cant target 
organs that may show toxicity upon exposure to the compound 
tested. 

 Since animal models are very complex and the number of read-
outs collected in such studies is extremely wide, the development 
of in silico models that can reliably predict such outcomes is 

5.1  Challenges 
in the Prediction 
of the Outcome 
of In Vivo Safety 
Studies

The Use of In Silico Models Within a Large Pharmaceutical Company



502

extremely challenging. For example, a typical repeat-dose study 
requires the use of a control group plus three dose groups: each 
animal is then carefully examined for clinical observations through-
out the in-life part, including body weight and food consumption 
measurements as well as some behavioral evaluations; clinical 
pathology values are collected at different time points; urine analy-
sis is performed; macroscopic and microscopic examinations are 
carried out on a number of selected organs; toxicokinetics values 
are then calculated using the test item concentrations measured in 
blood from the samples collected throughout the study, which 
could be of different durations, from 5 days till 39 weeks (up to 2 
years for the rodent bioassays for the evaluation of carcinogenic-
ity), and in different species. 

 The variations, permanent or transient, of the parameters and 
values briefl y described above may depend on the pharmacological 
target, on the chemical structure and related physicochemical 
properties, and on background incidences due to adaptations or 
other factors, such as major differences in plasma exposures. 
Because of this variability, building an in silico model capable of 
predicting all these different “degrees of freedom” or “dimen-
sions” is extremely challenging, in particular due to the fact that 
the identifi cation of unequivocal mechanisms of action for what-
ever fi ndings have been identifi ed is not trivial. In addition, the 
development of robust SARs using the outcome of such studies is 
diffi cult because of the limited amount of publicly available data, 
and, even within large pharmaceutical companies, the number of 
chemically similar compounds tested in such long and expensive 
studies for each investigated pharmacological target is small (less 
than 5). This, of course, hampers the possibility to even develop 
local models since the number of similar compounds, designed for 
the same target, undergoing the same type of studies is rather 
limited. 

 Even if some sophisticated in silico models may become avail-
able for the prediction of the potential fi ndings identifi ed in, for 
example, repeat-dose studies, all the limitations described above 
and the diffi culties to conduct a proper validation would make very 
diffi cult, within the pharmaceutical industry, to accept them for 
decision making on compounds prioritization or as guidance for 
chemical optimization.  

    Within the industry, it has been recently recognized that the con-
solidation of the results of in vivo toxicity within appropriate tools 
making use of the right technology would allow the full exploita-
tion of the knowledge that such data can provide. 

 Large pharma organizations can typically count on many years 
of drug discovery and research conducted across several sites on a 
signifi cant number of therapeutic areas, pharmacological targets, 
and molecules. This translates into a large amount of complex 
datasets, stored in different repositories or Laboratory Information 
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Management Systems (LIMS) each designed specifi cally to accom-
modate the data type of interest (e.g., histopathology, clinical 
observation, clinical pathology, PK, etc.). The organization of such 
wealth of information to generate specifi c knowledge from the 
integration of all of these data types has been considered several 
times in the past by many pharmaceutical companies. However, 
due to limited resources or inadequate technology, the outcome of 
such initiatives has often been disappointing. 

 In more recent years, there has been a tremendous focus across 
industries, not only pharma, to extract knowledge and identify pat-
terns or trends from large amounts of data, being either omics, 
market research, public preferences on digital movies rental [ 63 ], 
airplane estimated times of arrivals, or others. A lot of these initia-
tives often fall under the term “Big Data,” generally underlying the 
intention of large organizations to look deeper into their databases 
and assess whether an improvement in the way such data are orga-
nized, stored, made accessible, and mined may provide any advan-
tage for the business in terms of saving resources or increasing 
effi ciency via surfacing hidden value. 

 Along this line, Roche has been working on a number of “Big 
Data” projects across several areas of research and IT. One of them 
had the goal to integrate all in vivo nonclinical safety data gener-
ated by the company over the past 30 years across three research 
sites, two in the USA and one in Switzerland. The goal was to 
ensure that all different data types that are part of in vivo studies 
(i.e., histopathology, clinical observations, PK, clinical pathology, 
etc.) were brought together electronically in such a way that they 
could all be searched and made available at the same time to the 
user community. The scope for such a platform, internally called 
SDI (i.e., Safety Data Integration), is to allow scientists to identify 
specifi c patterns of fi ndings across species and their historical rele-
vance and correlations between molecular structures and toxico-
logical effects and, eventually, use the data to generate more reliable 
prediction algorithms. The application of a semantic data integra-
tion approach [ 64 ] for the harmonization of terms, formats, units, 
and taxonomy allowed the implementation of a nonclinical study 
warehouse including approximately 5,000 studies of different types 
which can be interrogated with very complex queries such as 
“Which compounds showed spleen hyperplasia and liver necrosis 
and lung leukocytosis and an AST increase >50 %?”, returning an 
answer in a matter of seconds. The identifi cation of studies and 
compound matching the query above, in the absence of properly 
designed data integration efforts, would have been extremely labor 
intensive and time consuming, if possible at all. 

 In addition, the SDI platform has been interfaced with other, 
already existing, internal databases, such as the chemical structures 
and the in vitro biology data repositories to further expand the 
data integration beyond toxicology allowing the users to assess the 
compound profi le in almost its entirety.  
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   As far as model development is concerned, the advantage of the 
platform described in Subheading  5.2  is the high data granularity 
available, down to the single animal level. 

 One of the challenges in the development of predictive models 
for complex end points, such as hepatotoxicity, is that the modeler 
is forced to make a generic classifi cation (hepatotoxic vs. non- 
hepatotoxic), often neglecting safety margins (vs. pharmacological 
activity), doses at which specifi c toxicity is seen, and ignoring the 
specifi c fi ndings and whether it is transient or not. This is because, 
more often than not, such information is not easily available. All 
these factors make such classifi cation relatively inaccurate: for 
example, paracetamol (or acetaminophen), an over-the-counter 
mild analgesic, commonly used to relieve headaches and reduce 
fever, is commonly classifi ed as hepatotoxic (as its overdose can 
cause fatal liver damage [ 65 ]). However, at doses as high as up to 
4 g per day in adults, paracetamol is regarded as totally safe and can 
comfortably be used (at lower doses, of course) even in infants. 
This example explains how critical and challenging a correct clas-
sifi cation is: it is correct to classify paracetamol as hepatotoxic, 
since an overdose would likely cause a fatal liver failure? However, 
in drug development settings, what type of decision can be made 
on a compound predicted to be hepatotoxic by a model based on 
the information gathered, among others, from paracetamol? 
Should this molecule be discontinued and any further investigation 
stopped before knowing what safety margins might there be with 
regard to its intended therapeutic indication? Disregarding this 
molecule immediately after a positive prediction bears the risk of 
losing a potentially valuable compound. Continuing the investiga-
tions to further profi le the molecule for future clinical develop-
ment may be the best option to get to a more solid data-driven 
decision on its potential to become a drug. The bottom line is that, 
in this context, the prediction model will have a negligible impact 
on the decision. 

 In order to strengthen the reliability of in silico models for the 
prediction of complex end points, all information generated by 
in vivo single- and repeat-dose studies should be made available in 
a clear and searchable way at the highest possible level of details. 
This would allow experts to generate very specifi c models by mak-
ing the correct compound classifi cations for very specifi c fi ndings 
via a preliminary and careful data analysis. For example, it will be 
possible to have models for AST and ALT increases above 50 % vs. 
control groups or for the prediction of bilirubinemia, moving away 
from a nonspecifi c, for example, “hepatotoxicity” classifi cation. 
This approach would, in principle, also make the identifi cation of 
sound mechanisms of action for the specifi c observed toxicities a 
bit easier to address.   

5.3  Possible Model 
Generation
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6    Future Perspectives 

   On December 18, 2014, FDA issued the binding guidance titled 
“Providing Regulatory Submissions In Electronic Format—
Standardized Study Data” [ 66 ] that requires Investigational New 
Drug (IND), New Drug Application (NDA), Abbreviated New 
Drug Application (ANDA), and Biologics License Application 
(BLA) submissions to be made in a standardized electronic format. 
The Clinical Data Interchange Standards Consortium (CDISC) 
Standard for Exchange of Nonclinical Data (SEND) is intended to 
guide the structure and format of standard nonclinical datasets for 
interchange between sponsors and contract research organizations 
(CROs) and for submission to the US FDA. 

 The current version of the SEND Implementation Guide 
(SENDIG v.3.0) is designed to support single-dose general toxi-
cology, repeat- dose general toxicology, and carcinogenicity 
studies. 

 The guidance requires submission of nonclinical safety studies 
in SEND format for the study types currently supported. In the 
near future, the standard will be expanded to include additional 
study types, such as safety pharmacology (cardiovascular and respi-
ratory) and developmental and reproductive toxicology, which will 
also be required. 

 The guidance further stipulates that published FDA-specifi c 
SEND validation rules will be enforced for all submitted datasets. 
The agency may refuse to fi le (for NDAs and BLAs) or refuse to 
receive (for ANDAs) an electronic submission that does not have 
study data in conformance to the required standards. 

 Under the guidance, supported studies (included in NDA, 
ANDA, and certain BLA submissions) starting after December 18, 
2016, must be submitted in SEND. 

 For IND submissions supported studies starting after 
December 18, 2017 must be submitted in SEND. 

 Currently nonclinical safety data is provided as tabulated data 
within PDF study reports. Original electronic data, generated in- 
house, is normally stored on the originating LIMS systems until it 
is archived. In the case of CRO studies, original electronic data is 
typically not made available unless explicitly requested by the spon-
sor. The FDA now requires that, in addition to the PDF reports, 
the original electronic data also be submitted in SEND format.  

 While it is possible to build a SEND dataset manually, the pro-
cess is labor intensive, error prone, and very diffi cult to validate. 
Given the fact that data comprising a study may come from mul-
tiple data sources, the challenge becomes unworkable. 

 An automated or semiautomated computerized system that 
can accurately and consistently transform original non-SEND data 
from multiple sources to the SEND standard and validate SEND 

6.1  SEND Model 
and Data Exchange 
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data following published rules is required. Oversight, tools, and 
processes for ensuring that source datasets are collected, curated, 
transformed to SEND, and made available for submission in an 
effective manner are also required. 

 Currently, FDA pharm/tox reviewers analyze the submitted 
study reports by manually extracting the tabulated data contained 
in the appendices of the PDF documents and loading them into 
any number of tools they see fi t for visualizing and reviewing it. 
This fi rst step is labor intensive and time consuming. 

 With the recently issued guidance for e-submissions, FDA 
reviewers have the opportunity to receive the study data directly in 
the appropriate format into one single platform called Nonclinical 
Information Management System (NIMS). FDA will use NIMS 
also to visualize the data, run their analyses, and draw their conclu-
sions on the studies under review. 

 This approach will allow FDA reviewers to save time on data 
curation and formatting aspects and free resources for more in- 
depth scientifi c analyses, also leveraging the large amount of infor-
mation and knowledge that NIMS will be capturing over the 
coming years. 

 Since clinical data is also electronically exchanged via standard-
ized models (  www.cdisc.org    ), it can be expected that one day, clini-
cal and nonclinical data will be integrated under one single 
platform, which would represent a signifi cant milestone in transla-
tional medicine arena.  

   Analysis of reasons for previous failures and exploitation of them 
should help in improving the effi ciency of clinical development of 
new drugs and their safety profi les. So far, preclinical study reports 
have been rarely stored in a format that supports data mining or 
statistical analysis. Some pharmaceutical companies have realized 
these hidden treasures in their archives and started internal work to 
improve retrievability of their report data. It would clearly be of 
benefi t to the whole industry to analyze these data across multiple 
companies in order to expand the chemical and biological space. 
However, extracting these data from the reports and building such 
a database requires considerable investment. Recent advances 
achieved in international initiatives, including IMI’s eTOX project, 
have shown that sharing of preclinical data, both private and pub-
lic, is achievable through the combination of legal (IP), IT, and 
honest broker concepts ([ 3 ,  67 ];  see  Fig.  11 ).

   The eTOX project aims to collect, extract, and organize pre-
clinical safety data from pharmaceutical industry legacy study 
reports and publically available toxicology data into a searchable 
database to facilitate data mining and the development of innova-
tive in silico models and software tools to predict potential safety 
liabilities of small molecules. The eTOX consortium consists of 13 
pharmaceutical companies, 11 academic institutions, and 6 SMEs 

6.2  Data Sharing 
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working together under the sponsorship of the Innovative 
Medicines Initiative (IMI) since 2010. The participating partners 
embrace expert knowledge in computational modeling, toxicol-
ogy, pathology, and database design, liaising within the project in 
an integrative working environment. 

 After establishing an effective data sharing intellectual property 
(IP) protection within an “honest broker” approach ( see  Fig.  11 ), 
the project was able to compile a unique, well-curated dataset of 
currently more than 6,000 study reports, corresponding to ca. 
1800 test compounds. The concept to divide the results from the 
legacy reports of the pharmaceutical companies in different “con-
fi dentiality classes” was fundamental to facilitate data sharing and 
overcome IP and legal hurdles. Public data (class 1) are accessible 
to the public on request, nonconfi dential data (class 2) are open 
for eTOX consortium members, confi dential data (class 3) are only 
accessible within the consortium with an additional secrecy agree-
ment, and private data (class 4) are only for EFPIA data owners, 
but can be shared for model generation on request. 

 Treatment-related fi ndings have been classifi ed within the 
database, refl ecting the interpreted study outcome of every report. 
A suite of ontologies, built through OntoBrowser now released by 
eTOX to the public domain, enables the user to directly compare 
observed effects or toxicities of chemically similar structures 
(read-across). 

  Fig. 11    The overall setup of the eTOX project       
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 A new in silico tool—eTOXsys—has been developed with a 
single user interface, which manages search queries on the high- 
quality preclinical database and organizes requests to a steadily 
growing collection of independent prediction models. Aspects of 
IP rights for data sharing, defi nition of ontologies, design of data-
base structure, development of in silico models, data analysis, vali-
dation, and sustainability are key aspects of the eTOX project.      
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