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    Chapter 19   

 A Round Trip from Medicinal Chemistry to Predictive 
Toxicology                     

     Giuseppe     Felice     Mangiatordi    ,     Angelo     Carotti    ,     Ettore     Novellino    , 
and     Orazio     Nicolotti      

  Abstract 

   Predictive toxicology is a new emerging multifaceted research fi eld aimed at protecting human health and 
environment from risks posed by chemicals. Such issue is of extreme public relevance and requires a mul-
tidisciplinary approach where the experience in medicinal chemistry is of utmost importance. Herein, we 
will survey some basic recommendations to gather good data and then will review three recent case studies 
to show how strategies of ligand- and structure-based molecular design, widely applied in medicinal chem-
istry, can be adapted to meet the more restrictive scientifi c and regulatory goals of predictive toxicology. 
In particular, we will report:

 ●    Docking-based classifi cation models to predict the estrogenic potentials of chemicals.  
 ●   Predicting the bioconcentration factor using biokinetics descriptors.  
 ●   Modeling oral sub-chronic toxicity using a customized k-nearest neighbors (k-NN) approach.     

  Key words     Docking-based classifi cation models  ,   Estrogenic potentials of chemicals  ,   Bioconcentration 
factor  ,   Biokinetics descriptors  ,   Oral sub-chronic toxicity  

1      Introduction 

 Predicting the effects of xenobiotics, not solely drugs, is far from 
being a winning bet. Their interplay with living organisms is in fact 
responsible for biological/toxicological actions which are often 
not easy to predict. On the other hand, predictions can be made on 
the basis of (a) in vivo experiments based on direct animal testing, 
(b) in vitro experiments making use of tissue culture cells, and (c) 
in silico simulations by employing computer models. It is widely 
acknowledged that in vivo and in vitro experiments are time 
demanding and expensive. Great efforts have been thus directed to 
develop in silico approaches. Such computational strategies allow a 
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signifi cant save in terms of money, time, and, above all, laboratory 
animals and provide reliable toxicological evidence in order to 
minimize or replace in vivo assays according to the “three Rs” 
principle (replacement, reduction, refi nement) [ 1 ]. In our opin-
ion, computational methods are thus complementary to experi-
mentation and prospectively capable of replacing empirical testing. 
The tendency is thus that of moving from experiments to explor-
atory toxicology which can provide timely go/no-go decisions and 
represents a viable alternative for the prediction of biological/toxi-
cological effects [ 2 ,  3 ]. 

 In the present survey, we will review some ad hoc examples 
taken from our recent studies showing how adapting consolidated 
drug discovery strategies to the scientifi c and regulatory goals of 
exploratory toxicology. First of all, we will emphasize the impor-
tance of having high-quality data to ensure the derivation of trust-
able models. In this respect, some practical recommendations will 
be given. Then, we will discuss how applying molecular docking, 
perhaps the most popular structure-based method employed by 
medicinal chemists, to obtain classifi ers for discerning estrogenic 
from non-estrogenic substances. In the second case studies, we will 
present how QSAR models can be derived and applied to predict 
the bioconcentration factor, a relevant ecotoxicological endpoint. 
In this respect, attention will be paid to the appropriate use of bio-
kinetics descriptors and to the defi nition of the applicability domain 
to ensure both model transparency and adequacy. Finally, we will 
describe how customizing a k-NN algorithm to properly model 
oral sub-chronic toxicity. We will show how the implementation of 
user- adjustable rules can be very effective to increase the confi -
dence in data prediction, which is the ultimate aim of computa-
tional toxicology.  

2    Looking for High-Quality Data: Some Practical Recommendations 

 The advent of new regulations concerning the protection of human 
health and environment has strengthened the role of QSAR. Such 
methodology has today assumed the  status  of a mature discipline 
for both scientifi c and regulatory purposes. The pressing need of 
regulatory bodies and industries for the derivation of adequate 
QSAR models has led to issue some best practices, which are, at 
present, key elements for successful predictive in silico toxicologi-
cal studies. Some seminal papers [ 4 – 6 ] have clearly demonstrated 
that the predictive potential of QSAR models is mostly dependent 
from the quality of chemical descriptors rather than from the 
sophistication of the employed optimization techniques. A high-
quality data is therefore essential for obtaining trustable models. In 
this respect, several preliminary checks need to be taken into 
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account for steering away from even small structural mistakes 
whose occurrence can result in inaccurate molecular descriptors, 
which in the end are responsible for disappointing predictions. To 
circumvent this pitfall [ 7 ], great attention has been given to the 
data curation, a preprocessing treatment necessary to discard or 
amend chemical records, which are diffi cult to handle with conven-
tional cheminformatics techniques. Normally, data curation is 
applied to fi lter out inorganic and organometallic compounds, 
counterions, salts, and mixtures. In addition, data curation is car-
ried out to standardize the ring aromatization, to uniform specifi c 
chemotypes, to assign tautomeric forms, and to remove 
duplicates. 

 Since model reliability is strictly dependent on data quality 
(i.e., garbage in, garbage out), QSAR developers should also pay 
high attention in appropriately sizing the dataset and in fairly bal-
ancing structural classes or categories, which in real-life investiga-
tions are often unevenly represented. It would be advisable that the 
number of compounds in the dataset should not be too small since 
this could lead to the occurrence of chance correlation and overfi t-
ting; both these phenomena can deteriorate the real predictive 
power of models. Moreover, a small-sized dataset would be unsuit-
able for validation analyses. On the other hand, there is not an 
upper limit to defi ne a maximum size. In this respect, a key role is 
played by the algorithm implemented for deriving QSAR as well as 
by the available resources (e.g., computer and time). For practical 
reasons, a too large dataset can be reduced by selecting a given 
subset of chemically diverse compounds or can be partitioned in 
clusters from which deriving multiple and independent models. 
However, some golden rules should be observed to split the initial 
dataset into a training set for model derivation and into a test and 
external set for model validation. In case of continuous response 
variables, at least 40 compounds should be considered: 20 com-
pounds in the training set and 10 compounds in both test and 
external sets. Moreover, the response variables should cover a 
range at least fi ve times larger than the experimental error and 
should be fairly distributed over such entire range. In case of clas-
sifi cation or category response variables, at least 20 compounds per 
class are recommended: the training set should be made of no less 
than 10 compounds per class while test and external sets no less 
than 5 each. 

 Another reason of attrition in QSAR derivation is given by 
compounds, which are typical chemical singletons, being their 
structural features far away from those of all the other compounds 
within a dataset. In other words, they could behave as leverage (or 
structural) outliers. Other compounds could instead act as activity 
outliers as they rebut the basic QSAR assumption stating that simi-
lar compounds have similar properties. As reported in a number of 
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seminal works [ 8 ,  9 ], these compounds could originate the so-
called cliffs of the descriptor space where a given response property 
(i.e., biological/toxicological response) changes dramatically for 
an even subtle structural variation. Actually, both these types of 
outliers can be real or sometimes due to accidental errors in report-
ing the chemical structure or in annotating the response variable. 
Normally, it is wise to remove them prior to model derivation as 
they will likely cause model instability and deeply affect 
predictions. 

 Moreover, high-quality molecular descriptors are essential to 
derive predictive and interpretable QSAR models [ 10 ]. Nowadays, 
it is quite easy to quickly calculate an overwhelming number of 
descriptors [ 11 ] related to two- or three-dimensional molecular 
aspects, although their mechanistic interpretation remains some-
what obscure to mid-level QSAR practitioners. Needless to say 
that medicinal chemists have long debated about chemical desir-
ability, a concept inherent to the chemical meaning of QSAR 
model [ 12 ,  13 ]. We can guess that descriptors referring to the pas-
sage of xenobiotics across cellular membranes, for instance, may be 
desirable in a toxicological context. In this respect, we do believe 
that ADMET (absorption, distribution, metabolism, excretion, 
and toxicity) properties would make the descriptors space more 
attractive for toxicological purposes and of adequate transparency 
for molecular and numerical modeling. ADMET properties are in 
fact important to study the fate and disposition of drugs and to 
monitor their behavior in the body at therapeutic doses (i.e., phar-
macokinetic properties). Importantly, the studies of ADMET 
properties are not limited to drugs but can be extended to any 
chemical, including environmental pollutants, potentially affecting 
human health. In this respect, the term toxicokinetics and, even 
better, the more inclusive term biokinetics [ 14 ] are normally used 
to describe and, then, to predict unwanted toxic effects of xenobi-
otics on living system exposed to chemicals at any dosage regimen. 
The masterpiece by Waterbeemd [ 15 ] describes the progress made 
by medicinal chemistry in the attempt of refi ning ADMET proper-
ties in order to reduce the costly late-stage failures in drug devel-
opment and thereby accelerating the drug discovery process. Such 
efforts have resulted in the wide introduction of ADMET-related 
descriptors implemented in in silico methods to predict the most 
relevant pharmacokinetic, metabolic, and toxicity endpoints.  

3    Docking-Based Classifi cation Models to Predict the Estrogenic Potentials 
of Chemicals 

 Predicting the endocrine disruptor potential of chemicals and, 
more specifi cally, their ability to interfere with the estrogen recep-
tors (ERs) is a theme of utmost relevance [ 16 ]. Unlike previous 
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predictive  models [ 17 – 19 ], we have recently described how the 
current availability of X-ray-solved target structures can be 
employed [ 20 ]. Importantly, accounting for physicochemical 
information on the biological target allows a larger applicability 
domain with respect to classical QSAR-like models. 

 We used a three-dimensional (3D) training dataset (hereafter 
referred to as EPA-ERDB) consisting of 1677 chemical structures 
shared by US EPA. For each chemical, the estrogenic/nonestro-
genic action was derived from concentration-response data result-
ing from 18 high-throughput assays probing several sites of the 
mammalian ER pathway. Challengingly, the 1677 chemicals were 
unevenly distributed, being only 237 (14.13 %) chemicals desig-
nated as ER binders. To possibly cover a broader spectrum of pos-
sible biological actions of compounds comprised within the 
EPA-ERDB training dataset, eight ER crystal structures were 
retrieved from the Protein Data Bank (PDB) for docking simula-
tions. All four possible ER classes were considered: (1) ERα bound 
to agonist, (2) ERα bound to antagonist, (3) ERβ bound to ago-
nist, and (4) ERβ bound to antagonist. The 3D conformations of 
the 1677 chemicals in the training dataset were subjected to dock-
ing simulations performed by both GLIDE v.6.5 [ 21 ] and GOLD 
v.5.2 [ 22 ], two very popular software largely adopted in drug dis-
covery projects. The ability of the selected docking protocols to 
discern binders from nonbinders was assessed using typical confu-
sion matrix, which includes information about experimental and 
predicted matches and mismatches returned for each classifi cation 
system. Next, docking performance was evaluated using the enrich-
ment factor (EF), which represents the percentage of known bind-
ers found at a given percentage of the ranked database. In addition, 
we reported the EF at the early 1 % of the ranked dataset (i.e., 
EF1%). Predictive docking-based classifi cation models are expected 
to return similar values for both EF1% and EFmax (a reference 
ideal value obtained by dividing the total number of chemicals by 
the total number of binders). All these data were derived from the 
obtained receiver operating characteristic (ROC) curves ( see  
Fig.  1 ). The thresholds for defi ning the classes were set on the basis 
of the desired sensitivity (SE) values. The value of SE estimates the 
proportion of true positives that are correctly identifi ed. In order to 
designate the estrogenic or nonestrogenic potential, two SE values 
equal to 0.25 and to 0.75 were set as thresholds to defi ne, for each 
ER crystal, three probability binding classes as follows:

    (a)    SE ≤0.25, the class with high probability of binding (i.e., 
binder molecules).   

  (b)    SE >0.75, the class with low probability of binding (i.e., 
nonbinder molecules).   

  (c)    0.25 < SE ≤ 0.75, the class with medium probability of 
binding (i.e., suspicious molecules).    
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  At a given threshold, the goodness of the classifi cation was 
assessed using two parameters: (a) the positive predictive value 
(PPV) that is related to the probability that a chemical predicted as 
a binder (over-threshold) is actually a binder and (b) the nega-
tive predictive value (NPV) that is related to the probability that a 
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  Fig. 1    ROC curves derived from ERα (PDB entries: 1L2I, 1A52, 3DT3, and 1SJ0) and ERβ structures (PDB 
entries: 3OLS, 2NV7, 1QKN, and 1L2J) are shown on the  left  and  right hand side , respectively (taken from  20 )       
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chemical predicted as a nonbinder (under-threshold) is actually a 
nonbinder. However, the pronounced asymmetry of data prompted 
us to compute the positive (+LR) and the negative likelihood ratio 
(−LR) for each of the SE-considered thresholds. Briefl y, the greater 
the +LR is at a given threshold, the better the performance of the 
classifi cation model. It is worthy to say that these likelihood ratios 
are independent from the data distribution within the training set. 

 We observed that, unequivocally, GLIDE detects a higher num-
ber of binders in the earliest fraction of the rank despite the lower 
AUC values. For all ER crystal structures, the ability to minimize FPs 
is higher with GLIDE with respect to GOLD, in agreement with the 
already discussed EF1% factors. Importantly, an opposite trend can 
be detected if the second threshold (SE = 0.75) is considered. GOLD 
returns PPV values higher than GLIDE. In other words, GLIDE 
ensures better performances in terms of ability to minimize FPs, 
whereas the interest is mostly oriented to the upper part of the rank-
ing. Our results would suggest that the use of GLIDE or GOLD 
depends on the pursued goals. As shown, there is not a winning 
model, but rather a case-by-case evaluation should be made. 
Docking-based classifi cation models have allowed to employ the 
wealth of physicochemical information contained in the native pro-
tein structures to screen large chemical collections and demonstrated 
to be helpful for immediately obtaining a preliminary idea of the 
estrogenic activity by simply comparing the docking score of a target 
chemical with those reported at the different SE-based thresholds.  

4    Predicting the Bioconcentration Factor Using Biokinetics Descriptors 

 The bioconcentration factor (BCF) represents the ratio of the con-
centration of a substance in an aquatic organism with respect to 
that in water [ 23 ]. It is an endpoint of utmost relevance due to its 
costs and its (eco)toxicological impact. Its assessment should be 
done following the experimental test OECD 305, which requires 
for each substance more than hundreds of fi shes, months for test 
execution, and tens of thousands of Euros [ 24 ]. The herein used 
data [ 25 ] comprises 851 chemicals, retrieved from the ANTARES 
dataset. The obtained dataset was split into three subsets: about 10 
% (78 out of 851) of the compounds were randomly selected to 
form the blind set (BS), required for fi nal validation. The remaining 
chemicals were split to ensure a uniform distribution of their exper-
imental BCF values, applying the Venetian blinds method [ 26 ], to 
form training set (TS) and validation set (VS) containing 620 and 
153 chemicals, respectively. These selection criteria were used to 
obtain two different and independent sets for model validation and 
to ensure the most realistic situation for the external compounds, 
so that statistics could explain the real capability of the model to 
predict new compounds, as it should be for regulatory purposes. 
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 Many commercial and free software programs are available for 
the calculation of thousands of two-dimensional (2D) or three- 
dimensional (3D) descriptors. In the present work, we preferred to 
calculate a smaller number (i.e., 51) of ADMET (absorption, dis-
tribution, metabolism, excretion, and toxicity)-relevant descriptors 
that are closely related to pharmaceutical properties of organic 
molecules. To this end, we used QikProp 3.4 [ 27 ] included in 
Schrödinger 2011-1 suite [ 28 ]. Note that, as already mentioned, 
descriptors referring to the permeation of the membrane may be 
more desirable for a toxicological or pharmacological audience. 
A number of models were derived using the Monte Carlo approach 
(simulated annealing), multiple linear regression (MLR), and neu-
ral network algorithm (NN). Importantly, the obtained models 
could be fl exibly adapted to play as classifi ers using as thresholds 
those established in Annex XIII of REACH to classify chemicals. 
All substances that exceed the fi rst threshold of log BCF = 3.3 are 
classifi ed as bioaccumulative (B), while those having log BCF < 3.3 
are classifi ed as nonbioaccumulative (nB) according to the PBT 
(persistent, bioaccumulative, and toxic) defi nition; on the other 
hand, all substances that exceed the second threshold of log 
BCF = 3.7 are classifi ed as very bioaccumulative (vB). 

 Among others, our attention was mostly engaged by a nine- 
descriptor model. Apart from robust statistics, particular attention 
was paid to the defi nition of the applicability domain (AD). 
Needless to say that predictions provided by models without a 
clearly defi ned AD are meaningless [ 29 – 31 ]. As previously 
described, its importance has also been remarked in REACH 
Annex XI, BPR Annex IV, and OECD principles for the derivation 
of acceptable QSARs. In our studies, we implemented a multi-step 
fi lter system to confi dently designate chemicals within the AD only 
those having the matching criteria requested at any step. Such pro-
cedure ensures higher confi dence and transparency irrespective of 
the accuracy of predictions [ 32 ]. 

 The fi rst independent fi lter accounted for the dataset structural 
diversity. Briefl y, the occurrence of organic functional group 
(nested) was assessed using the QSAR Toolbox 3.0 software, 
released by OECD—2013. The second independent fi lter 
accounted for the chemical descriptors range. The minimum and 
maximum values of the nine descriptors in the model for TS chem-
icals were used a criterion of interval validity. In this respect, VS or 
BS chemicals whose descriptors violated even only one range were 
placed outside AD. The third independent fi lter was a geometrical 
trap based on the interpolation region space representing the 
smallest convex area whose borders describe the perimeter of a 
polygon containing TS compounds. In particular, the interpola-
tion polygon was drawn using spatial coordinates of the fi rst two 
principal components of the multivariate descriptor space of the 
nine-term model. The  polygon area was reduced to include the top 
98 % TS compounds (considering their closeness to TS centroid) 
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to avoid the inclusion of underrepresented areas likely increasing 
the prediction uncertainty. Finally, the leverage method was applied 
as fourth independent fi lter. Briefl y, the leverage represents the com-
pound distance from the model experimental space (that is the cen-
ter of TS observations) and, thus, provides a measure of the degree 
of infl uence that a particular TS chemical structure has on the model 
or the degree of extrapolation for the prediction of VS and BS com-
pounds. In this respect, VS and BS compounds having leverages 
exceeding the widely acknowledged threshold of  h * = 3 p ′/ n  (where 
 p ′ is the number of model variables plus one and  n  is the number of 
TS compounds) were placed outside model AD being poor reliable 
predictable [ 33 ]. 

 The simultaneous application of multi-fi lter system has the 
effect of leaving outside AD: (a) a number of 20 (13 % of the ini-
tial) VS compounds with an indirect gain of  r  2  from 0.635 to 0.765 
and of RMSE from 0.794 to 0.616 and (b) a number of 7 (9 % of 
the initial) BS compounds with an indirect gain of  r  2  from 0.623 
to 0.659 and of RMSE from 0.841 to 0.817 ( see  Fig.  2 ).

   The harmonic application of consolidated QSAR approaches 
employing pharmaceutically relevant descriptors and a multi-step 
fi lter system to designate chemicals inside/outside AD  demonstrated 
to be very effective for modeling BCF data, an endpoint of utmost 
importance in both toxicological and regulatory terms.  

  Fig. 2    Comparison of the experimental and predicted log BCF values obtained through the nine- descriptor BCF 
model. TS, VS, and BS chemicals are represented by  white diamonds ,  gray squares , and  upside triangles , 
respectively. VS and BS outside AD chemicals are represented by  black squares  and  upside triangles , respec-
tively. The continuous line represents the case of ideal correlation (taken from  25 )       
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5    Modeling Oral Sub-chronic Toxicity Using a Customized k-Nearest Neighbors 
(k-NN) Approach 

 Repeated dose toxicity (RDT) is an important endpoint to toxico-
logically profi le a given chemical after repeated administration. 
RDT studies are focused on the no observed (adverse) effect level 
(NO(A)EL) and on the lowest observed (adverse) effect level 
(LO(A)EL). The former is the higher experimental dose at which 
there is no appreciable response [ 34 ]; the latter indicates the low-
est dosage at which adverse effects occur in comparison with a 
control group (e.g., onset of an adverse effect) [ 35 ]. The NO(A)
EL and LO(A)EL are assessed by means of in vivo studies that can 
be based on various protocols accounting for different exposure 
period, animal model (rodent or non-rodent species) and exposure 
route (oral, inhalation or dermal) [ 36 ]. As a result, regulators 
explicitly require data relative to repeated dose toxicity. 

 We recently conducted a toxicological study [ 37 ] focused on 
RDT data for sub-chronic oral exposure (i.e., 90 days) in rats. 
Training set data was retrieved from different sources (i.e., Munro 
database, Hazard Evaluation Support System, EPA’s Integrated 
Risk Information System). In particular, 254 chemicals were 
selected being the ones having unequivocal values of chronic toxic-
ity studies (from 84 to 98 days) of oral exposure (gavage, diet, or 
drinking water). An external dataset comprising 179 chemicals was 
also used to challenge the predictive power of our models. External 
dataset data were taken and properly selected from the RepDose 
database. 

 A customized k-nearest neighbors (k-NN) approach for pre-
dicting sub-chronic oral toxicity in rats was used ( see  Fig.  3 ). The 
basic idea was that of predicting a given response on the basis of 
those observed in the most structurally similar chemicals. The 
straight application of the k-NN was however very disappointing. 
To overcome this limitation, the algorithm was ad hoc adapted by 
implementing several rules to better control the reliability of pre-
dicted chemicals. The gain in prediction and confi dence was 
obtained for a given percentage of the dataset; the reasonable price 
to pay was that a number of compounds (those unmatching the 
new rules implemented in the k-NN) were left unpredicted as a 
precautionary measure. However, the use of restrictive conditions 
in modeling such a complex endpoint meets both the scientifi c and 
regulatory purposes established by international bodies for the 
protection of human health. In fact, providing few but highly reli-
able predictions represents a valuable prioritization strategy to 
generate trustable toxicological information on the substances 
and, at the same time, to support the use of alternative methods 
and thus to reduce the number of animals needed for in vivo 
testing.
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6       Conclusions and Perspectives 

 Exploratory toxicology employs in silico methods for their impor-
tance in scientifi c and regulatory context. Indeed, the need of pro-
tecting human health and environment has prompted public 
authorities, such as the US Environmental Protection Agency (US 
EPA) and the European Chemicals Agency (ECHA) to play a 
frontline role in the promotion of programs of predictive toxicol-
ogy to assess the risk posed by chemicals. For instance, the 
European Commission (EC) has issued, in Annex XI of REACH 
and Annex IV of BPR, four conditions for using in silico in place 
of in vivo testing: (1) results have to be derived from a QSAR 
model whose scientifi c validity has been well established, (2) the 
substances are expected to fall within the applicability domain of 
the QSAR model, (3) results need to be adequate for the purpose 
of classifi cation and labeling and/or risk assessment, and (4) ade-
quate and reliable documentation of the applied method has to be 

  Fig. 3    Flowchart for the selection of the output predictions. SI or similarity index between the target chemical 
and its nearest neighbors; Δ exp values are the difference between experimental values of nearest neighbors; 
error in pred is the error in prediction returned in cross validation of a neighbor in the TS (taken from  37 )       
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provided. Importantly, these recommendations for the implemen-
tation of the so-called non-testing methods are perfectly known to 
medicinal chemists, whose community is continuously discussing 
roles and goals. It is well known that medicinal chemists have in 
recent years already openly deplored the frequent temptation of 
discussing highly speculative computational predictions that are 
often the result of over-interpreted but not properly validated 
models. In this respect, a blacklist of simply decorative and colorful 
QSAR models has been matter of a strong skepticism, as recently 
pointed out by Cramer [ 38 ]. In this continuing debate, we do 
believe that modern medicinal chemists should be strongly com-
mitted to face the new challenge of exploratory toxicology, which 
implies more restrictive scientifi c and regulatory purposes (i.e., 
chemical prioritization, selecting compounds for further experi-
mental testing, reducing the number of false negatives, harmful 
compounds predicted as safe). By discussing three case studies, we 
reported how successfully adapting consolidated structure- and 
ligand-based strategies, largely applied in drug discovery programs, 
to the goal of exploratory toxicology. Needless to repeat that a 
critical case-by-case assessment is necessary to prove the result reli-
ability and to make trustable the adopted approach. Indeed, an 
informed interpretation of the results can make the difference. 
However, we are just at the beginning of a new fascinating journey 
requiring new scientifi c efforts and challenges.     
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