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    Chapter 11   

 In Silico Models for Hepatotoxicity                     

     Mark     Hewitt      and     Katarzyna     Przybylak     

  Abstract 

   In this chapter we review the challenges of predicting human hepatotoxicity. Principally, this is our partial 
understanding of a very complex biochemical system and our ability to emulate that in a predictive capacity. 
We give an overview of the published modeling approaches in this area to date and discuss their design, 
strengths, and weaknesses. It is interesting to note the shift during the period of this review in the direction 
of evidenced-based approaches including structural alerts and pharmacophore models. Proposals on how 
best to utilize the data emerging from modeling studies are also discussed.  

  Key words     Liver  ,   Hepatotoxicity  ,   In silico or computational prediction  ,   QSAR  ,   Expert system  

1      Introduction 

 Toxicity of new medicinal compounds to the liver is perhaps the most 
signifi cant hurdle to overcome during drug development. Often 
termed “drug-induced liver injury (DILI),” these adverse effects can 
range in nature from subtle elevations in serum enzymes, to acute 
and chronic hepatocellular injuries (steatosis, necrosis, cirrhosis), 
cholestatic injuries, and neoplasia [ 1 ]. Unfortunately, DILI accounts 
for a signifi cant proportion of drugs (>25 %) being terminated 
during development or withdrawn from the market [ 2 ]. 

 Given the protective/metabolic function of the liver, it is per-
haps not surprising that hepatotoxicity is frequently encountered. 
Given the livers high blood fl ow and fi rst-pass metabolism it is a 
certainty that a proportion of the diverse pharmaceutical products 
in use today are hepatotoxic (via metabolic conversion). Unwanted 
interaction between the liver and pharmaceuticals is a major hurdle 
which can often result in the loss of drug effi cacy and/or hepato-
toxicity. Despite preclinical and clinical safety assessments, liver 
toxicity remains a main cause of drug development failures and 
subsequent market withdrawal due to the poor predictivity of idio-
syncratic toxicity in animal models [ 3 ,  4 ]. 
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 The need to predict whether a new drug is likely to lead to 
hepatotoxicity is clear. Information relating to the likelihood of 
liver toxicity is critical in order to increase patient safety, reduce the 
frequency of drug withdrawals/failures and to further increase our 
understanding of liver toxicity. 

 Interestingly, despite a clear need to predict these effects, com-
putational studies in this area have only started to emerge in the 
last decade [ 1 ,  5 ]. Such methods are well-suited to the rapid 
screening of large numbers of compounds, offering signifi cant 
time and cost savings over traditional animal-based screening 
approaches. Furthermore, computational screening has been suc-
cessfully established for other endpoints, including skin sensitiza-
tion and mutagenicity [ 6 ,  7 ]. When coupled with supporting 
in vitro data they provide a powerful tool capable of predicting 
toxicity and, in certain cases, determining the mechanism of that 
toxicity. However, as stated, computational models for DILI have 
only recently started to surface and those that have been published 
are often limited in their scope and predictive capability. 

 The reason for this is simple; predicting toxicity to the liver is 
far from simple! 

 The task of predicting DILI is diffi cult because (a) the liver is 
an intricate and complex organ with numerous biological and met-
abolic pathways that can lead to downstream toxicities and (b) 
many of these toxicological pathways are poorly understood or 
remain unknown. Furthermore, as already introduced, DILI can 
take many forms and range in severity. With the absence of a single 
“catch all” biomarker that can be used as a metric of hepatotoxic-
ity, actually measuring these affects in patients is very challenging. 

 Furthermore, toxicity to the liver can occur in a dose depen-
dent manner (termed intrinsic toxicity) or in a non-dose depen-
dent manner (termed idiosyncratic toxicity) [ 8 ]. Typically, intrinsic 
liver toxicity accounts for approximately 80 % of cases, where the 
observed toxicity can be related to a particular mechanism of action 
(pharmacological, toxicological, or chemical) triggered by the 
drug or its metabolite(s). Idiosyncratic toxicity is very diffi cult to 
predict and is thankfully a relatively rare occurrence. The suscepti-
bility of particular patients to idiosyncratic DILI has been the focus 
of much research [ 9 ], but the prediction of idiosyncratic effects 
remains a herculean task.  

2    Prediction of Hepatotoxicity 

 It is crucial to develop predictive screening systems and mechanistic 
models capable of detecting hepatotoxicity as early as possible in 
the drug development process. However, accurate prediction of 
organ toxicity is very challenging due to the complexity of the 
underlying mechanisms, which are very often not known. 
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Moreover, the lack of specifi c and selective biomarkers that can be 
used to detect hepatotoxicity leads to a shortage of reliable in vivo 
and in vitro data from which to derive predictive models. Most 
likely as a result of these limitations, the fi rst in silico models were 
described in the literature only at the beginning of the last decade 
[ 10 ,  11 ]. The bulk of available computational models for liver tox-
icity have been published more recently [ 1 ]. 

 Published models for the prediction of hepatotoxicity can be 
classifi ed as belonging to one of two approaches [ 12 ]:

    (A)    The development of statistically based structure–activity rela-
tionship (SARs) of varying complexity. This modeling approach 
utilizes existing DILI data to derive a model able to predict a 
quantitative estimation of hepatotoxicity.   

   (B)    The development of qualitative “models” based on expert 
knowledge, directly related to chemical structure and molecu-
lar features. Most often, these qualitative approaches result in 
the development of structural alerts or three-dimensional phar-
macophore models.    

  These models can be further subdivided based upon (1) the 
endpoint being modeled (general hepatotoxicity or a specifi c aspect 
(e.g., steatosis)), (2) the type of variable(s) (descriptors) used to 
develop the model, or (3) the type of data being modeled (in vivo 
or in vitro). Figure  1  depicts how the 21 published models that are 
the subject of this chapter can be divided using these four differen-
tiating criteria.

   Statistical models are generally built from a training dataset of 
chemical structures and their associated toxicity data, expressed 
either in quantitative or qualitative terms, using an appropriate algo-
rithm. Therefore, they are often referred to as “(quantitative) struc-
ture–activity relationships” ((Q)SARs). In contrast, expert systems 
apply expert knowledge to a predictive environment and are usually 
not statistically based. The knowledge is based on the observed tox-
icity of known compounds, together with an understanding of toxi-
cological mechanisms, metabolism and chemical reactivity [ 13 ]. 

 The development of statistical models is usually faster (if suit-
able data are available) than that of expert systems, since expert 
systems require extensive study and integration with existing litera-
ture sources and are usually evidence-based (examples and sup-
porting documentation is supplied along with a prediction). 
Therefore, statistical models are the most common. Approximately 
75 % of the existing predictive models for liver toxicity have been 
developed using an array of different statistical methodologies, 
including  discriminant analysis [ 14 ], Bayesian models [ 15 ,  16 ], 
Artifi cial Neutral Networks (ANN) [ 14 ], k-Nearest Neighbor 
(kNN) [ 17 ,  18 ], Random Forest (RF) [ 18 ,  19 ], and specialist 
QSAR software [ 20 ]. 

In Silico Models for Hepatotoxicity
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 In terms of endpoint, most in silico models are focused towards 
the prediction of general hepatotoxicity (positive/negative irre-
spective of the mechanism/toxicity outcome) [ 5 ,  10 ,  14 ,  15 ,  18 , 
 19 ,  21 – 26 ]. However, it is important to stress that this trend seems 
to be changing in recent years as the number of approaches consid-
ering more specifi c endpoints is increasing. Examples of these spe-
cifi c endpoints include elevations of liver serum enzymes [ 17 ], 
cholestasis and jaundice [ 20 ], hepatosteatosis [ 27 ,  28 ], and hepatic 
histopathologic effects including hypertrophy, injury, and prolif-
erative lesions [ 29 ]. 

 It is interesting to see that the majority of in silico approaches 
have utilized variables representing only chemical structure [ 10 , 
 11 ,  14 – 17 ,  20 ,  21 ,  23 – 25 ]. It is perhaps not surprising given that 
QSAR models traditionally relate chemical structure to observed 
activity, but it seems here that the complex nature of the liver may 
warrant the use of biological descriptors to describe the biological 
process/systems at work. Only three models, discussed later, 
employed both chemical and biological descriptors and are referred 
to as hybrid models [ 18 ,  19 ,  29 ]. 

 Finally, considering the nature of endpoint data used for mod-
eling, most models have been developed using in vivo data. This 
can be broken down further into human data [ 10 ,  14 – 17 ,  19 ,  20 , 
 24 – 26 ] and animal data [ 18 ,  29 ] which may be further subdivided 
into data from different species [ 23 ]. Only two models have been 
built using in vitro data [ 11 ,  21 ] and a further two models utilizing 
both in vitro and in vivo data [ 23 ,  30 ]. The 21 in silico models 
considered in this chapter can be subdivided by their differentiat-
ing characteristics as described by Fig.  1 . The models will be dis-
cussed in the context of these categories and the strengths and 
weaknesses of different modeling methods will be highlighted. 
Potential future developments in the area are also speculated. 

  Fig. 1    Summary of published in silico models for predicting liver toxicity between 2000 and 2015       
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   A large proportion of the published hepatotoxicity models are sta-
tistical in their nature. The predictive element of these models is 
the statistical correlation of toxicity with one or more dependent 
variables. The approach used to identify and model this correlation 
varies considerably both in terms of methodology and complexity. 
Usually, statistically derived models are developed using sophisti-
cated modeling software and tools. 

 The premise of any (Q)SAR model is the relationship between 
chemical structure (described using a number of descriptors) and 
biological activity (e.g., liver toxicity). This enables predictions of 
such activity to be made for new substances based on their chemi-
cal structure. The algorithms used to construct these models com-
prise of simple linear regression, complex multi-variant data 
modeling, data mining, and classifi cation approaches [ 31 ]. Every 
statistical model has to be internally and externally validated to 
show its true predictive power and reliability [ 32 ,  33 ]. The predic-
tive performance is usually evaluated by sensitivity (correctly pre-
dicted positive chemicals), specifi city (correctly predicted negative 
chemicals) and accuracy (correctly predicted positive and negative 
chemicals). High sensitivity and specifi city of a model guarantees 
correct classifi cation of toxicologically active and inactive com-
pounds. Therefore, it is the most important feature when aiming 
to detect potential hepatotoxic drugs in early drug development, 
since the consequences of misclassifying a toxic (positive) drug are 
severe (i.e., the possibility of a toxic drug reaching clinical trials) 
[ 14 ]. Of course, in drug development poor specifi city can be a 
signifi cant problem since many negative compounds may be 
dropped from further development unnecessarily. 

 Table  1 , at the end of this section, describes the 15 diverse 
hepatotoxicity models discussed in this chapter and gives details of 
the methodologies employed, the endpoint modeled, the type of 
descriptors utilized, and the source of hepatotoxicity data.

     As already stated, most of the available in silico models have been 
developed based on in vivo data and are used to predict a general 
hepatotoxicity endpoint. These models consider intrinsic hepato-
toxicity, idiosyncratic hepatotoxicity or a combination of these. 
The majority have been developed based only on the chemical fea-
tures of the training set. 

 One of the fi rst published in silico models was developed by 
Cheng and Dixon (ID 1 in Table  1 ) and is predicting intrinsic liver 
toxicity in humans [ 10 ]. Data for 382 drug and drug-like com-
pounds (of various therapeutic classes) were collected from the lit-
erature. Amongst them, there were 149 chemicals which caused 
dose- dependent hepatocellular, cholestatic, neoplastic and other 
liver injuries. The authors employed a modeling method known as 
recursive partitioning (RP) [ 34 ,  35 ] with an ensemble approach 
[ 36 ], wherein the overall model is actually an average of numerous 

2.1  Statistically 
Derived Quantitative 
Models

2.1.1  Statistical Models 
for In Vivo General 
Hepatotoxicity Endpoint 
Using Chemical 
Descriptors

In Silico Models for Hepatotoxicity



206

    Ta
bl

e 
1  

  St
at

is
tic

al
ly

 b
as

ed
 in

 s
ili

co
 m

od
el

s 
to

 p
re

di
ct

 h
ep

at
ot

ox
ic

ity
 a

va
ila

bl
e 

in
 th

e 
lit

er
at

ur
e   

 ID
 

 St
at

is
tic

al
 

m
et

ho
d 

 En
dp

oi
nt

 
 De

sc
rip

to
rs

 
 Ty

pe
 a

nd
 s

iz
e 

of
 d

at
a 

 Va
lid

at
io

n 
 Pr

ed
ic

tiv
e 

pe
rf

or
m

an
ce

 
 Re

f 

 1 
 E

ns
em

bl
e 

re
cu

rs
iv

e 
pa

rt
iti

on
in

g 

 D
os

e-
 de

pe
nd

en
t 

he
pa

to
to

xi
ci

ty
 

 C
he

m
ic

al
: 2

5 
1D

 a
nd

 
2D

 d
es

cr
ip

to
rs

 
fi l

te
re

d 
by

 M
on

te
 

C
ar

lo
 

 In
 v

iv
o 

da
ta

 fo
r 

38
2 

ch
em

ic
al

s 

 IV
: L

O
O

, 
le

av
e 

10
 %

 o
ut

 
 E

V
: 5

4 
ch

em
ic

al
s 

 IV
: 7

8 
%

 (
L

O
O

),
 7

6 
%

 (
le

av
e 

10
 %

 o
ut

) 
SE

N
; 9

0 
%

 (
L

O
O

),
 7

5 
%

 (
le

av
e 

10
 %

 
ou

t)
 S

PE
; 8

5 
%

 (
L

O
O

),
 7

6 
%

 (
le

av
e 

10
 %

 o
ut

) 
A

C
C

 
 E

V
: 8

1 
%

 A
C

C
 

 [ 1
0 ]

 

 2 
 M

ol
ec

ul
ar

 
in

te
ra

ct
io

n 
fi e

ld
s 

an
d 

SI
M

C
A

 

 C
el

l p
ro

lif
er

at
io

n;
 

L
D

H
 a

ct
iv

ity
; A

T
P 

le
ve

ls
; C

as
pa

se
s 

3 
an

d 
7 

le
ve

ls
 

 C
he

m
ic

al
: s

te
ri

c 
an

d 
el

ec
tr

os
ta

tic
 I

FO
 

de
sc

ri
pt

or
s 

fr
om

 
SY

B
YL

 

 In
 v

itr
o 

(h
um

an
 

he
pa

to
cy

te
 

ce
lls

) 
fo

r 
65

4 
ch

em
ic

al
s 

 C
V

 fo
r 

27
 

N
SA

ID
s 

 IV
: 5

2 
%

 A
C

C
 

 C
V

: 9
3 

%
 S

E
N

; 8
5 

%
 S

PE
; 8

3 
%

 A
C

C
 

(f
or

 6
 N

SA
ID

s)
 

 [ 1
1 ]

 

 3 
 Q

SA
R

 (
M

L
R

 
us

in
g 

Si
gm

a 
St

at
) 

 L
C

 50
  (

m
M

) 
 C

he
m

ic
al

: l
og

  P
  

E
H

O
M

O
 a

nd
  μ

  
ca

lc
ul

at
ed

 b
y 

M
O

PA
C

 

 In
 v

itr
o 

fo
r 

ra
t 

an
d 

hu
m

an
 

ce
lls

 fo
r 

12
 

ha
lo

be
nz

en
es

 

 N
ot

 r
ep

or
te

d 
  r  2   =

 0
.9

66
 fo

r 
ra

t 
ce

ll,
 0

.9
93

 fo
r 

hu
m

an
 

ce
ll,

 0
.8

46
 fo

r 
in

du
ce

d 
ra

t 
ce

ll 
 [ 2

1 ]
 

 4 
 L

D
A

, A
N

N
, 

O
ne

R
 

 Id
io

sy
nc

ra
tic

 
he

pa
to

to
xi

ci
ty

 
 C

he
m

ic
al

: 3
D

 R
D

F 
de

sc
ri

pt
or

s 
 In

 v
iv

o 
hu

m
an

 
fo

r 
74

 d
ru

gs
 

 C
V,

 E
V

 fo
r 

13
 d

ru
gs

 
an

d 
th

re
e 

pa
ir

s 
of

 
si

m
ila

r 
ch

em
ic

al
s 

w
ith

 o
pp

os
ite

 t
ox

ic
 

po
te

nt
ia

l 

 L
D

A
 m

od
el

 
 T

ra
in

: 8
8 

%
 S

E
N

, 9
3 

%
 S

PE
, 9

0 
%

 A
C

C
 

 T
es

t:
 8

4 
%

 S
E

N
, 9

1 
%

 S
PE

, 8
8 

%
 A

C
C

 
 A

N
N

 m
od

el
 

 T
ra

in
: 9

2 
%

 S
E

N
, 9

0 
%

 S
PE

, 9
1 

%
 A

C
C

 
 T

es
t:

 7
5 

%
 S

E
N

, 8
0 

%
 S

PE
, 7

8 
%

 A
C

C
 

 O
ne

R
 m

od
el

 
 T

ra
in

: 7
7 

%
 S

E
N

, 1
00

 %
 S

PE
, 8

4 
%

 A
C

C
 

 T
es

t:
 7

5 
%

 S
E

N
, 9

8 
%

 S
PE

, 8
1 

%
 A

C
C

 
 E

V
: f

or
 3

 p
ai

rs
: 8

3 
%

 A
C

C
; f

or
 1

3 
dr

ug
s 

69
 %

 A
C

C
 

 [ 1
4 ]

 

Mark Hewitt and Katarzyna Przybylak



207

 5 
 Q

SA
R

 s
of

tw
ar

e:
 

M
C

4P
C

, 
B

io
E

pi
st

em
e,

 
M

D
L

-Q
SA

R
, 

L
ea

ds
co

pe
 

 (1
) 

H
ep

at
ob

ili
ar

y:
 

liv
er

 d
is

or
de

rs
; 

ja
un

di
ce

 a
nd

 
ch

ol
es

ta
si

s;
 li

ve
r 

en
zy

m
es

; g
al

l 
bl

ad
de

r 
di

so
rd

er
s;

 
bi

le
 d

uc
t 

di
so

rd
er

s,
 

(2
) 

ur
in

ar
y 

tr
ac

t.
 

 C
he

m
ic

al
 2

D
 

de
sc

ri
pt

or
s 

 In
 v

iv
o 

hu
m

an
 

fo
r 

16
60

 
ch

em
ic

al
s 

 IV
: L

M
O

, L
O

O
 

 E
V

 fo
r 

18
 t

ox
ic

 
ch

em
ic

al
s 

 IV
: f

or
 L

M
O

 3
9 

%
 S

E
N

, 8
6 

%
 S

PE
 

 Fo
r 

co
ns

en
su

s 
m

od
el

: 5
6 

%
 S

E
N

, 7
8 

%
 

SP
E

 
 E

V
: 8

9 
%

 A
C

C
 

 [ 2
0 ,

  4
5 ,

 
 46

 ] 

 6 
 L

ig
an

d-
ba

se
d 

B
ay

es
ia

n 
m

od
el

 

 Id
io

sy
nc

ra
tic

 
he

pa
to

to
xi

ci
ty

 
 C

he
m

ic
al

 2
D

 
de

sc
ri

pt
or

s 
an

d 
FC

FP
 o

f m
ax

im
um

 
di

am
et

er
 o

f 6
 

 In
 v

iv
o 

hu
m

an
 

fo
r 

29
5 

ch
em

ic
al

s 

 E
V

 fo
r 

23
7 

ch
em

ic
al

s 
 E

V
: 5

6 
%

 S
E

N
, 6

7 
%

 S
PE

, 6
0 

%
 A

C
C

 
 [ 1

5 ]
 

 7 
 kN

N
 

 Fi
ve

 li
ve

r 
se

ru
m

 
en

zy
m

es
: A

L
P,

 
A

L
T

, A
ST

, L
D

H
, 

G
G

 

 C
he

m
ic

al
: 

M
ol

C
on

nZ
- 

to
po

lo
gi

ca
l i

nd
ic

es
 

an
d 

D
ra

go
n 

de
sc

ri
pt

or
s 

 In
 v

iv
o 

hu
m

an
 

fo
r 

49
0 

ch
em

ic
al

s 

 IV
, Y

-r
an

do
m

iz
at

io
n,

 
E

V
 

 E
V

: f
or

 c
om

po
si

te
 li

ve
r 

en
zy

m
es

: 7
4 

%
 

SE
N

, 9
4 

%
 S

PE
, 8

4 
%

 A
C

C
 

 [ 1
7 ]

 

 8 
 SV

M
 a

nd
 

cl
us

te
ri

ng
 b

y 
ch

em
ic

al
 

si
m

ila
ri

ty
 

 H
ep

at
ot

ox
ic

ity
 

 C
he

m
ic

al
: 2

D
 

m
ol

ec
ul

ar
 

fr
ag

m
en

ts
 a

nd
 

D
ra

go
n 

de
sc

ri
pt

or
s 

 In
 v

iv
o 

an
d 

in
 v

itr
o 

hu
m

an
, 

ro
de

nt
, a

nd
 

no
n-

ro
de

nt
 

fo
r 

95
1 

ch
em

ic
al

 

 Fi
ve

fo
ld

 C
V,

 E
V

 fo
r 

24
6 

ch
em

ic
al

s 
an

d 
18

 c
he

m
ic

al
s 

to
xi

c 
in

 n
on

-r
od

en
ts

 

 Fi
ve

fo
ld

 C
V

 in
te

rn
al

: 6
2–

67
 %

 A
C

C
 

 Fi
ve

fo
ld

 C
V

 e
xt

er
na

l: 
62

–6
7 

%
 A

C
C

 
 E

V
: f

or
 2

46
 c

he
m

ic
al

s 
65

–6
7 

%
 A

C
C

 

 [ 2
3 ]

 

 9 
 kN

N
, S

V
M

, R
F,

 
D

W
D

 
 H

ep
at

ot
ox

ic
ity

 
 C

he
m

ic
al

: D
ra

go
n 

an
d 

M
O

E
 

 B
io

lo
gi

ca
l: 

to
xi

co
ge

no
m

ic
s 

 In
 v

iv
o 

ra
t 

fo
r 

12
7 

ch
em

ic
al

s 

 Fi
ve

fo
ld

 C
V

 
 Fo

r 
ch

em
ic

al
 d

es
cr

ip
to

rs
: 

 C
V

: 4
5–

56
 %

 S
E

N
, 6

0–
77

 %
 S

PE
, 

55
–6

1 
%

 A
C

C
 

 Fo
r 

bi
ol

og
ic

al
 d

es
cr

ip
to

rs
: 

 C
V

: 5
7–

67
 %

 S
E

N
, 7

7–
84

 %
 S

PE
, 

69
–7

6 
%

 A
C

C
 

 Fo
r 

hy
br

id
 d

es
cr

ip
to

rs
: 

 C
V

: 7
6–

77
 %

 A
C

C
 

 [ 1
8 ]

 

(c
on

tin
ue

d)

In Silico Models for Hepatotoxicity



208

Ta
bl

e 
1

(c
on

tin
ue

d)

 10
 

 E
ns

em
bl

e 
of

 
m

ix
ed

 
le

ar
ni

ng
 

al
go

ri
th

m
s 

 H
ep

at
ot

ox
ic

ity
 

 C
he

m
ic

al
: P

aD
E

L
 

de
sc

ri
pt

or
s 

 In
 v

iv
o 

hu
m

an
 

fo
r 

10
87

 
ch

em
ic

al
s 

 Fi
ve

fo
ld

 C
V,

 
Y-

ra
nd

om
iz

at
io

n,
 

E
V

 fo
r 

18
7 

ch
em

ic
al

s 
di

vi
de

d 
in

to
 t

hr
ee

 s
et

s 

 C
V

: 6
4 

%
 S

E
N

, 6
3 

%
 S

PE
, 6

4 
%

 A
C

C
 

 E
V

1:
 6

8 
%

 S
E

N
, 7

1 
%

 S
PE

, 7
0 

%
 A

C
C

 
 E

V
2:

 6
4 

%
 S

E
N

, 3
7 

%
 S

PE
, 5

1 
%

 A
C

C
 

 E
V

3:
 6

2 
%

 S
E

N
, 6

2 
%

 S
PE

, 6
2 

%
 A

C
C

 

 [ 2
4 ]

 

 11
 

 13
 Q

SA
R

 
m

od
el

s 
de

ve
lo

pe
d 

us
in

g 
B

ay
es

ia
n 

m
et

ho
do

lo
gy

 

 13
 h

ep
at

ot
ox

ic
 s

id
e 

ef
fe

ct
s 

 C
he

m
ic

al
: f

un
ct

io
na

l 
cl

as
s 

fi n
ge

rp
ri

nt
s 

(F
C

FP
_6

) 

 In
 v

iv
o 

hu
m

an
 

fo
r 

88
8 

ch
em

ic
al

s 

 IV
: L

O
O

 
 E

V
 fo

r 
th

re
e 

se
ts

: 
L

T
K

D
, P

fi z
er

, a
nd

 
O

’B
ri

en
 

 L
O

O
 fo

r 
13

 m
od

el
s:

 >
71

 %
 S

E
N

, >
94

 %
 

SP
E

, >
93

 %
 A

C
C

 
 E

V
 L

T
K

D
: 6

6 
%

 S
E

N
, 6

7 
%

 S
PE

, 6
6 

%
 

A
C

C
 

 E
V

 P
fi z

er
: 5

2 
%

 S
E

N
, 7

3 
%

 S
PE

, 6
0 

%
 

A
C

C
 

 E
V

 O
’B

ri
en

: 5
6 

%
 S

E
N

, 9
3 

%
 S

PE
, 7

0 
%

 
A

C
C

 

 [ 1
6 ]

 

 12
 

 M
ac

hi
ne

 
le

ar
ni

ng
 

m
et

ho
do

lo
gy

 
D

T
 

 H
ep

at
ot

ox
ic

ity
 

 C
he

m
ic

al
: 8

2 
M

ol
d 

de
sc

ri
pt

or
s 

 In
 v

iv
o 

hu
m

an
 

fo
r 

19
7 

ch
em

ic
al

s 

 T
en

fo
ld

 C
V

 
 E

V
 fo

r 
th

re
e 

se
ts

 
 C

V
: 5

8 
%

 S
E

N
, 7

8 
%

 S
PE

, 7
0 

%
 A

C
C

 
 E

V
1:

 6
6 

%
 S

E
N

, 7
2 

%
 S

PE
, 6

9 
%

 A
C

C
 

 E
V

2:
 5

8 
%

 S
E

N
, 6

7 
%

 S
PE

, 6
2 

%
 A

C
C

 
 E

V
3:

 6
1 

%
 S

E
N

, 6
6 

%
 S

PE
, 6

3 
%

 A
C

C
 

 [ 2
5 ]

 

 13
 

 R
F 

 H
ep

at
ot

ox
ic

ity
 

 C
he

m
ic

al
: C

D
K

, 
D

ra
go

n,
 M

O
E

 
 B

io
lo

gi
ca

l: 
H

IA
T

s 

 In
 v

iv
o 

hu
m

an
 

fo
r 

29
2 

ch
em

ic
al

s 

 Fi
ve

fo
ld

 C
V

 
 C

V
 fo

r 
ch

em
ic

al
 d

es
cr

ip
to

rs
: 

 67
 %

 S
E

N
, 5

4 
%

 S
PE

, 6
0 

%
 A

C
C

 
 C

V
 fo

r 
bi

ol
og

ic
al

 d
es

cr
ip

to
rs

: 
 67

 %
 S

E
N

, 8
7 

%
 S

PE
, 7

7 
%

 A
C

C
 

 C
V

 fo
r 

hy
br

id
 d

es
cr

ip
to

rs
: 

 71
 %

 S
E

N
, 7

4 
%

 S
PE

, 7
3 

%
 A

C
C

 

 [ 1
9 ]

 

ID
St

at
is

tic
al

 
m

et
ho

d
En

dp
oi

nt
De

sc
rip

to
rs

Ty
pe

 a
nd

 s
iz

e 
of

 d
at

a
Va

lid
at

io
n

Pr
ed

ic
tiv

e 
pe

rf
or

m
an

ce
Re

f

Mark Hewitt and Katarzyna Przybylak



209

 14
 

 Si
x 

m
ac

hi
ne

 
le

ar
ni

ng
 

an
al

ys
is

 

 H
ep

at
ic

 
hi

st
op

at
ho

lo
gi

c 
ef

fe
ct

s:
 

hy
pe

rt
ro

ph
y,

 
in

ju
ry

 a
nd

 
pr

ol
ife

ra
tiv

e 
le

si
on

s 

 C
he

m
ic

al
: 7

26
 

de
sc

ri
pt

or
 

 B
io

lo
gi

ca
l: 

12
4 

bi
oa

ct
iv

ity
 fr

om
 

T
ox

C
as

t2
1 

 In
 v

iv
o 

ra
t 

 T
en

fo
ld

 C
V

 
 C

V
: 8

4 
%

 A
C

C
 fo

r 
hy

pe
rt

ro
ph

y;
 8

0 
%

 
A

C
C

 fo
r 

in
ju

ry
; a

nd
 8

0 
%

 A
C

C
 fo

r 
pr

ol
ife

ra
tiv

e 
le

si
on

s 

 [ 2
9 ]

 

 15
 

 PL
S-

D
A

 
 L

X
R

 b
in

di
ng

 
po

te
nt

ia
l i

nv
ol

ve
d 

in
 li

ve
r 

st
ea

to
si

s 

 C
he

m
ic

al
: 

 6 
Pa

D
E

L
 a

nd
 5

 
R

D
K

it 

 L
X

R
β 

bi
nd

in
g 

af
fi n

ity
 fo

r 
35

6 
L

X
R

 
bi

nd
er

s 

 N
ot

 r
ep

or
te

d 
 [ 5

2 ]
 

   IV
  in

te
rn

al
 v

al
id

at
io

n,
  E

V
  e

xt
er

na
l v

al
id

at
io

n,
  C

V
  c

ro
ss

-v
al

id
at

io
n,

  L
O

O
  le

av
e-

on
e-

ou
t,

  S
E

N
  s

en
si

tiv
ity

, 
 SP

E
  s

pe
ci

fi c
ity

, 
 A

C
C

  a
cc

ur
ac

y,
  S

IM
C

A
  S

of
t 

In
de

pe
nd

en
t 

M
od

el
in

g 
of

 C
la

ss
 

A
na

lo
gy

, 
 LD

H
  la

ct
at

e 
de

hy
dr

og
en

as
e,

  A
T

P  
ad

en
os

in
e 

tr
ip

ho
sp

ha
te

, 
 IF

O
  I

di
ot

ro
pi

c 
Fi

el
d 

O
ri

en
ta

tio
n,

  N
SA

ID
s  

no
ns

te
ro

id
al

 a
nt

i-
in

fl a
m

m
at

or
y 

dr
ug

s,
  Q

SA
R

  q
ua

nt
ita

tiv
e 

st
ru

ct
ur

e–
ac

tiv
ity

 r
el

at
io

ns
hi

p,
  M

LR
  m

ul
tip

le
 li

ne
ar

 r
eg

re
ss

io
n,

  E
H

O
M

O
  e

ne
rg

y 
of

 h
ig

he
st

 o
cc

up
ie

d 
m

ol
ec

ul
ar

 o
rb

ita
l, 

 LD
A

  li
ne

ar
 d

is
cr

im
in

an
t 

an
al

ys
is

, 
 A

N
N

  a
rt

ifi 
ci

al
 n

eu
ra

l n
et

w
or

ks
, 

 R
D

F  
ra

di
al

 d
is

tr
ib

ut
io

n 
fu

nc
tio

n,
  L

M
O

  le
av

e 
m

an
y 

ou
t,

  F
C

FP
  fu

nc
tio

na
l c

la
ss

 fi 
ng

er
pr

in
t,

  k
N

N
  k

-N
ea

re
st

 N
ei

gh
bo

r, 
 A

LP
  a

lk
al

in
e 

ph
os

ph
at

as
e,

  A
L

T
  a

la
ni

ne
 a

m
in

ot
ra

ns
fe

ra
se

,  A
ST

  a
sp

ar
ta

te
 

am
in

ot
ra

ns
fe

ra
se

,  G
G

  g
lu

ta
m

yl
 t

ra
ns

pe
pt

id
as

e,
  S

V
M

  s
up

po
rt

 v
ec

to
r 

m
ac

hi
ne

,  R
F  

ra
nd

om
 fo

re
st

,  D
W

D
  d

is
ta

nc
e 

w
ei

gh
te

d 
di

sc
ri

m
in

at
io

n,
  M

O
E

  m
ol

ec
ul

ar
 o

pe
ra

tin
g 

en
vi

ro
nm

en
t,

  D
T

  
de

ci
si

on
 t

re
e,

  C
D

K
  c

he
m

is
tr

y 
de

ve
lo

pm
en

t 
ki

t,
  H

IA
T

  h
ep

at
oc

yt
e 

im
ag

in
g 

as
sa

y 
te

ch
no

lo
gy

  

In Silico Models for Hepatotoxicity



210

models developed from random subsets of the training set. The RP 
technique involves the use of a decision tree to split the training 
dataset into predominantly toxic or predominantly nontoxic mol-
ecules based on the independent variables. Twenty-fi ve descriptors 
were selected from 1D molecular similarity scores and 2D struc-
tural information using a Monte Carlo linear regression algorithm. 
As a result, 151 different trees were generated with the RP 
approach. A compound was predicted using each of the 151 trees 
as being toxic or nontoxic and then the ensemble average was used 
to obtain the fi nal prediction. Leave-one-out (LOO) and leave-10 
%-out validation techniques yielded an overall concordance of 85 % 
and 76 %, respectively. The external validation of 54 compounds 
(23 toxic) gave a similar order of accuracy (81 %). This study 
showed the usefulness of the ensemble approach, using a diverse 
training dataset to build a model that can be applied to a broad 
range of chemical classes. Furthermore, a measure of predictive 
confi dence is also supplied. However, a potential drawback of an 
ensemble approach is observed when the combination of models 
makes the method less transparent and more diffi cult (or impossi-
ble) to investigate the underlying mechanisms. 

 The next model (ID 4), developed by Cruz-Monteagudo, 
employed a number of different modeling methods to predict hepa-
totoxicity; linear discriminant analysis (LDA), artifi cial neural net-
works (ANN), and machine learning algorithms [ 14 ]. In this study, 
33 compounds associated with idiosyncratic hepatotoxicity and 41 
chemicals not associated with liver toxicity were collected from the 
literature. The models used 3D Radial Distribution Function (RDF) 
descriptors, which give information about interatomic distances in 
the entire molecule, ring types, planar and nonplanar systems, atom 
types, and bond distances. The best predictive performance was 
obtained with the LDA model, which correctly classifi ed 86.4 % of 
compounds. Furthermore, based on the LDA model, a “desirabil-
ity” analysis was performed in order to ascertain the characteristics, 
or descriptor values, that a drug candidate should have to ensure a 
lower idiosyncratic hepatotoxicity potential. For the external valida-
tion, two small datasets were used. The fi rst set consisted of three 
pairs of chemically and pharmacologically related drugs having 
opposite observed toxicological profi les, including toxic troglitazone 
vs. nontoxic pioglitazone (insulin resistance drugs), toxic tolcapone 
vs. nontoxic entacapone (catechol- O -methyltransferase (COMT) 
inhibitors), and toxic clozapine vs. nontoxic olanzapine (psychotro-
pic drugs). In this case, LDA and OneR predicted hepatotoxicity 
with the same accuracy of 83.3 %. The second external set was cre-
ated from 13 published drugs, all hepatotoxic, and was used to vali-
date the LDA model. Nine out of the 13 drugs were classifi ed 
correctly and provide evidence that the computational approaches 
could be applied in early drug discovery to minimize the selection of 
chemicals with idiosyncratic hepatotoxicity. 
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 Another model (ID 6) for idiosyncratic hepatotoxicity was 
developed by Ekins et al. [ 15 ]. They used a training set of 295 com-
pounds (containing 158 DILI-inducers) and an external validation 
set of 237 molecules (114 DILI-inducers) to develop a liver toxicity 
prediction model using a Bayesian classifi cation approach [ 37 ]. 2D 
molecular descriptors and extended connectivity functional class 
fi ngerprints of maximum diameter 6 (ECFC_6) were used to dif-
ferentiate the active from inactive molecules and also to highlight 
chemical substructures known to be important for DILI, such as 
ketones, diols, and α-methyl styrene. In addition, the authors 
applied SMILES Arbitrary Target Specifi cation (SMARTS) fi lters 
published by several pharmaceutical companies to all 532 molecules 
to evaluate whether such reactive substructures could be readily 
detected by any of these fi lters. The best predictivity was obtained 
for the Bayesian model which correctly classifi ed 56.0 % of active 
chemicals and 66.7 % of inactive compounds. The external valida-
tion resulted in 59.9 % accuracy. Regarding the SMARTS fi lters, the 
Abbott fi lters resulted in more stringent classifi cation, giving a rea-
sonable sensitivity of 66.9 %, but a relatively low specifi city of 40.3 
%. A signifi cant outcome of this study was the provision of the 
structural and DILI classifi cation data that can be used as a founda-
tion for developing future computational models, as well as fi lters, 
in the early stages of the drug development process. It is evident 
that approaches such as the one above are not yet capable of deliv-
ering acceptable levels of predictivity. However, their potential 
application of drug screening makes them of great interest. 

 Exploring the premise that no single learning algorithm is 
optimal for toxicity modeling problems, Liew et al. applied an 
ensemble of mixed learning algorithms and mixed features to 
develop a model to predict hepatic adverse effects (ID 10) [ 24 ]. 
The authors obtained the list of available drugs on the market from 
the US Food and Drug Administration (US FDA) Orange Book 
[ 38 ], which were then screened for adverse hepatic effects by 
checking the reports on adverse reaction in each drug’s mono-
graph. A fi nal set of 1274 drugs was obtained which were split into 
a modeling set of 1087 and a validation set of 187 compounds. 
Using PaDEL descriptors [ 39 ] calculated for the training set, a 
total of 617 base classifi ers were selected using three algorithms: 
support vector machine (SVM), k-nearest neighbor (kNN), and 
Naiv̈e Bayes (NB). The remaining 187 compounds were divided 
into three different external validation sets. Two of them were 
aimed at verifying the model’s ability to predict “severely” toxic 
compounds and structurally similar chemicals but of opposing tox-
icity status. The outcome of this was that 22 of 23 withdrawn 
drugs or those with black warnings were predicted correctly. 
However, for the structurally similar chemicals with opposite hepa-
totoxicity potential, only 30 % of nontoxic drugs were predicted 
correctly. The inability of the model to separate the non-hepatoxic 
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chemicals was probably due to the similarity of the true negative 
compounds to positive training compounds, coupled with the 
inherent diffi culty to separate highly similar compounds by QSAR, 
which by defi nition expects that structurally related chemicals have 
similar activities. The third external set of 120 drugs gave the most 
reliable evaluation of model performance resulting in a sensitivity 
of 81.9 %, specifi city of 64.6 % and overall accuracy of 75 %. The 
ensemble model was able to identify the positive compounds quite 
well, but it was less successful in classifying negative chemicals, 
especially when they were structurally similar. In general, this study 
again demonstrated the usefulness of an ensemble methodology 
when applied to large and diverse datasets similarly to the Cheng 
and Dixon study [ 10 ]. 

 It is very important, especially in the case of such a complex 
endpoint as hepatotoxicity, to correctly annotate a drugs’ potential 
to induce toxicity. The accuracy and utility of a predictive model 
depends largely on how to annotate the potential of a drug to 
cause hepatotoxicity in a reliable and consistent way. To address 
this issue, Chen et al. used the high quality US FDA-approved 
drug labeling DILI dataset to construct a QSAR model for hepa-
totoxicity (ID 12) [ 25 ]. Within this dataset most DILI-concern 
drugs are (1) withdrawn from the market; (2) labeled with a boxed 
warning; or (3) indicated in the warning and precautions section. 
The authors divided the 387 drugs into a training set of 197 drugs 
(containing 81 positives) and test dataset of 190 drugs (95 posi-
tives). They then used a Decision Tree (DT) algorithm and Mold 
molecular descriptors to develop a QSAR model to predict hepato-
toxicity in humans. The model consisted of six decision trees using 
82 descriptors. Its predictive performance was fi rst assessed by ten-
fold cross validation giving an overall accuracy of 69.7 %. Then 
external validation was undertaken applying the test set and two 
additional (independent) validation datasets: Green dataset con-
sisting of 214 hepatotoxins and 114 drugs with no evidence of 
hepatotoxicity [ 22 ] and the Xu dataset consisting of 132 hepato-
toxins and 109 negative compounds [ 40 ]. The accuracy obtained 
in each external validation was between 61.6 and 68.9 %. The 
external validation also showed that the drugs with consistent 
annotations among these three validation sets were better pre-
dicted (69.1 % accuracy) than drugs with inconsistent annotations 
(58.8 % correctly predicted). Finally, the applicability of the model 
was examined. To this aim, 2000 repetitions of cross- validation 
based on the training set were performed to identify therapeutic 
subgroups in which the QSAR model had higher or lower accuracy 
than the overall accuracy. As a result, 22 therapeutic subgroups 
with high-prediction confi dence and 18 therapeutic categories 
with low prediction confi dence were identifi ed. Some drugs in the 
higher confi dence subgroups, such as: analgesic, antibacterial 
agents and antihistamines, are well documented either to cause or 
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not to cause DILI. Focusing only on the therapeutic categories 
with high prediction confi dence, the accuracy of model increased 
to 73.6 %. So, the therapeutic categories can be used to defi ne the 
chemical structure space, where the model has better predictive 
power. This study demonstrates that using relatively large datasets 
with high quality annotations and focusing on the therapeutic sub-
groups where the model performs best is crucial in developing reli-
able predictive models, especially for very complex endpoint, such 
as liver toxicity.  

   Considering the scarcity of in vitro data, only one study employed 
such data to predict general hepatotoxicity (ID 3). It is not a typi-
cal in silico predictive model, as it focuses mostly on the validation 
of the in vitro method itself using isolated hepatocytes, which 
includes QSARs examining physicochemical properties of chemical 
congeners responsible for observed cytotoxic activity [ 21 ]. The 
authors investigated the molecular mechanism of hepatotoxicity 
for 12 halobenzenes in rat and human hepatocytes. A relatively 
good correlation ( r  2  = 0.90) between LC 50  measured in phenobar-
bital (PB)-induced rat hepatocytes and in vivo toxicity in 
PB-induced male Sprague- Dawley (SD) rats was found. Moreover, 
the QSAR was used to identify the metabolic activating pathway in 
halobenzene toxicity. It was found that toxicity in normal rat and 
human hepatocytes was strongly correlated with hydrophobicity 
(log  P ), ease of oxidation (energy of Highest Occupied Molecular 
Orbital (EHOMO)) and the asymmetric charge distribution 
according to the arrangement of halogen substituents (dipole 
moment,  μ ). This suggests that the mechanism of toxicity is similar 
in both species and involves the interaction between halogens and 
cytochrome CYP450 for oxidation. In the case of PB-induced rat 
hepatocytes, halobenzene toxicity was correlated only with log  P  
and dipole moment, but not EHOMO. This can indicate that ease 
of oxidation is no longer of signifi cance in the underlying toxicity. 
This study is signifi cant as it allows for better understanding of 
hepatotoxic mechanism(s) for that class of chemical. This knowl-
edge is critical for the future prediction of hepatotoxicity.  

   Only a single example could be found where a combination of 
in vivo and in vitro data was used to develop a computational 
model for hepatotoxicity (ID 8) [ 23 ]. Given the success of ensem-
ble modeling approaches previously applied, pooling together all 
supporting or descriptive data seems a logical step in order to try 
to explain and increase user confi dence when predicting complex 
endpoints. Fourches et al. constructed a large and diverse dataset 
for liver toxicity using a novel approach of text mining from the 
published literature. The authors extracted 14,000 assertions link-
ing compounds to different degrees, or types, of hepatotoxicity 
(from the cellular level to the whole organ) across different species: 

2.1.2  Statistical Models 
for In Vitro General 
Hepatotoxicity Using 
Chemical Descriptors

2.1.3  Statistical Models 
for In Vivo and In Vitro 
General Hepatotoxicity 
Using Chemical 
Descriptors

In Silico Models for Hepatotoxicity



214

including humans and rodents (mostly rat and mouse). A fi nal 
dataset of 951 compounds was obtained following a data curation 
process. The data were classifi ed into “class 1” consisting of 248 
chemicals inducing liver effects in humans only and “class 2” con-
sisting of 283 compounds inducing no liver toxicity in humans, 
but causing liver effects in rodents. The authors used hierarchical 
cluster analysis to identify groups of chemicals sharing similar 
molecular motifs corresponding to similar liver effect profi les in 
humans and rodents. As reported by Liew et al. [ 24 ] in their previ-
ous study, Fourches et al. again identifi ed clusters of structurally 
similar molecules that possessed different liver effect profi les. This 
presents a signifi cant challenge for modeling approaches funda-
mentally based on the premise that structurally similar compounds 
should act in a similar manner. It is possible that, descriptor-based 
approaches such as these are not sensitive enough to distinguish 
these compounds and opens the door to structural alert-based 
approaches which are discussed later in this chapter. 

 In addition, the authors also developed Support Vector 
Machine (SVM)-based models to predict whether a compound 
would be expected to produce adverse liver effects in humans. 
Predictive performance was assessed by internal and external fi ve-
fold cross- validation, giving accuracies ranging from 61.9 to 67.5 
% and 55.7–72.6 % for internal and external validation, respec-
tively. After removal of structural outliers using an implementation 
of the applicability domain, an accuracy of 67.8 % was obtained for 
an external validation dataset of 222 compounds. 

 Further examination of the external validation set highlighted 
18 chemicals reported as liver toxicants in non-rodents only. This 
study confi rmed low cross-species concordance of liver effects (40–
45 %), which is in agreement with previous investigations [ 41 ,  42 ]. 
On the other hand, it showed the reasonably good predictivity of 
cheminformatics techniques using data generated by automated 
text mining with limited manual curation. The data mining tech-
nique seems to be feasible to search for the evidence of toxicity for 
compounds of interest that can be used to create in silico models.  

   Hepatotoxicity is a complex beast, a result of multiple mechanisms, 
many of which are still poorly understood or are not yet known. 
Moreover, there are various types of liver injury which can occur, 
such as acute and chronic hepatocellular injuries (steatosis, necro-
sis, cirrhosis); cholestatic injuries; neoplasia; and elevated levels of 
liver serum enzymes (aspartate aminotransferase (AST), alanine 
aminotransferase (ALT), alkaline phosphatase (ALP)) [ 8 ,  43 ]. 
That given, “global” modeling of general hepatotoxicity seems 
almost like trying to paint the Mona Lisa using only one brush 
with a single color. Much information would be lost. If you truly 
aim to be able to understand and predict hepatotoxicity with 
confi dence, it seems logical that models should be developed for 

2.1.4  Statistical Models 
for In Vivo Specifi c 
Hepatotoxicity Endpoints 
Using Chemical 
Descriptors
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specifi c endpoints of liver injury initiated by a single mechanism of 
action. Indeed, the focus in many areas of toxicity is shifting in the 
direction of trying to predict single molecular initiating events 
(MIEs) which then, once triggered, cause a cascade of effects lead-
ing to one or more toxicity outcomes. Such information is being 
termed an Adverse Outcome Pathway (AOP) ( see  also Chapter 
  14    ). Indeed, an AOP specifi cally for liver steatosis is one such 
development by the Organisation for Economic Cooperation and 
Development (OECD) [ 44 ]. A battery of such models used in 
combination would provide an incredibly powerful tool. 

 The US FDA conducted a three-part investigation to create a 
human health effects database and subsequently developed QSAR 
models to predict the hepatobiliary (liver enzyme disorders, cyto-
toxic injury, cholestasis and jaundice, bile duct disorders, gall blad-
der disorders) and urinary tract (acute renal disorders, 
nephropathies, bladder disorders, kidney function tests, blood in 
urine, urolithiases) adverse effects of drugs. Furthermore, they 
described specifi c properties of drugs that caused these adverse 
effects (ID 5) [ 20 ,  45 ,  46 ]. A dataset of about 1660 chemical 
structures was constructed from two pharmaceutical post-market 
surveillance databases maintained by the US FDA: a Spontaneous 
Reporting System (SRS) and an Adverse Event Reporting System 
SRS (AERS), and from the published literature. Five specifi c end-
points were considered: liver enzyme disorders, cytotoxic injury, 
cholestasis and jaundice, bile duct and gall bladder disorders. The 
authors employed four QSAR modeling programs to construct 
predictive models and model performance was optimized by 
adjusting the ratio of active to inactive drug molecules in the train-
ing sets. An average sensitivity of 39.3 % and specifi city of 86.5 % 
was obtained in the internal leave many out (LMO) validation pro-
cedure of the four programs. To improve the low sensitivity, con-
sensus models were constructed by a combination of two programs. 
This resulted in an average sensitivity and specifi city of 56.2 % and 
78.4 %, respectively. In the external validation of 18 new drugs, 
which were removed from market because of serious hepatotoxic-
ity effects, 16 compounds were predicted correctly by at least one 
program, but only two drugs were assigned as hepatotoxic by all 
four programs. These studies demonstrated that QSAR technology 
is a useful (albeit data-hungry) tool providing decision support 
information in drug discovery. However, given its multifaceted 
nature, prediction of hepatotoxicity remains a signifi cant challenge 
and the use of multiple models in combination could be a method 
of increasing performance and user confi dence. Moreover, the US 
FDA study also provided molecular insights into the mechanisms 
responsible for some adverse effects, and this was investigated fur-
ther in the third part of this study [ 46 ]. 

 Rogers et al. employed the US FDA Human Liver Adverse 
Effects Database (HLAED) containing 490 chemicals with fi ve 
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serum enzyme markers of liver toxicity: ALP, ALT, AST, lactate 
dehydrogenase (LDH), and γ-glutamyl transpeptidase (GGT) to 
build QSAR models using a kNN method (ID 7) [ 17 ]. 
Approximately 200 compounds covering a wide range of clinical 
data, structural similarity, and balanced (40/60) active/inactive 
ratios were selected for modeling and divided into multiple train-
ing/test and external validation sets. Since the kNN technique is 
based on interpolating activities of the nearest neighbors, it was 
necessary to introduce an applicability domain to avoid making 
predictions for compounds that differed substantially from the 
training set molecules [ 47 ]. Four hundred topological descriptors 
generated by MolConnZ (eduSoft LC, Ashland, VA) and 1664 
Dragon descriptors (v.5.4, Talete SRL, Milano, Italy) were used to 
construct the models for the fi ve endpoints as well as for the com-
posite liver endpoint created from all fi ve liver enzymes endpoints. 
Sensitivities >73 % and specifi cities >94 % were obtained in external 
validations. It was interesting to note that only three endpoints 
(ALT, AST, and the composite score) had a relatively broad cover-
age among the 490 drugs in the database. This is in agreement 
with the fact that ALT and AST are routine, widely used clinical 
chemistry biomarkers for liver toxicity. The examination of the 
applicability of these developed models, using three chemical data-
bases: World Drug Index (WDI), Prestwick Chemical Library 
(PCL), and Biowisdom Liver Intelligence Module, showed low 
coverage. For example, 80 % of chemicals in the WDI database 
were outside the applicability domain of the models. The authors 
also verifi ed the predictions for compounds from these three exter-
nal datasets, by comparing model-based classifi cation with reports 
in the publically available literature. For many compounds, the 
predictions could not be verifi ed, because of the lack of reports of 
toxicity in the literature. This is a common problem encountered 
in many hepatotoxicity modeling studies. The lack of data is a 
limiting factor as is the questionable quality and relevance of what 
is available. 

 The model for the composite endpoint was also further vali-
dated using fi ve pairs of structurally similar chemicals with oppos-
ing liver toxicity effects. The outcome of this external validation 
was equivocal. Two pairs were outside of the models applicability 
domain and only one pair was predicted correctly. Building on the 
similar experiences noted above, this may suggest that in some 
cases chemical mechanism(s) alone may not account for the toxic 
potential. It is possible in these cases that the differential toxicity 
may arise from metabolic transformations, complex disease path-
ways, or other risk factors dependent on genetic polymorphism 
and/or environmental conditions. This study clearly illustrates that 
the limitations of in silico methodologies result from their restricted 
applicability domains as well as a lack of understanding of the 
complexities of human risk factors and DILI pathways. 
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 Liu et al. utilized the clinical and post-marketing data from the 
computer-readable side effect resource (SIDER) database [ 48 ] and 
identifi ed 13 types of hepatotoxic side effects (HepSEs) based on 
MedDRA ontology, including bilirubinemia, cholecystitis, choleli-
thiasis, cirrhosis, elevated liver function tests, hepatic failure, 
hepatic necrosis, hepatitis, hepatomegaly, jaundice, liver disease, 
fatty liver, and liver function test abnormalities [ 16 ]. Firstly, these 
13 side effects were used to discriminate drugs that do and do not 
cause DILI using the Liver Toxicity Knowledge Base Benchmark 
Dataset (LTKB-BD) [ 49 ] and the Pfi zerData [ 22 ]. For the 
LTKB-DB, classifi cation accuracy was 91 %; for the Pfi zerData the 
accuracy was signifi cantly lower (74 %). In the next step, using the 
SIDER database, QSAR models for every HepSEs were generated 
using a Bayesian methodology and these were then combined to 
form a DILI prediction system (DILIps) (ID 11). Finally, the 
authors implemented a “rule of three” (RO3) criterion (a chemical 
being positive in at least three HepSEs) into DILIps which 
increased classifi cation accuracy. The predictive performance of 
DILIps was examined using three external databases: LTKB-DB, 
Pfi zerData and a dataset published by O’Brien et al. [ 50 ] and 
yielded prediction accuracies of 60–70 %. 

 Liu et al. also applied the RO3 criterion to drugs in DrugBank 
to investigate their DILI potential in terms of protein targets and 
therapeutic categories. Two therapeutic categories showing a 
higher risk for causing DILI were identifi ed (anti-infective for 
systemic use and musculoskeletal system drugs). These fi ndings are 
consistent with current knowledge that most of the anti-infective 
drugs are very often associated with liver injuries. One hundred 
thirty-four protein targets related to drugs inducing liver toxicity 
have been identifi ed using pathway analysis and co-occurrence text 
mining with most of these targets being associated with multiple 
HepSEs. This study provides an interesting example of the transla-
tion of clinical observations into an in silico tool which can be used 
to screen and prioritize new drug candidates or chemicals and to 
avoid those that might cause hepatotoxicity. 

 In recent years, a number of new initiatives and international 
projects have been undertaken to develop in silico models to pre-
dict the harmful effects of chemicals to humans considering differ-
ent endpoints such as liver injury. One such example is the 
COSMOS project [ 51 ] (belonging to the larger research initia-
tive—SEURAT-1). The main aim of COSMOS is to develop publi-
cally available tools and workfl ows to predict the safety to humans 
following the use of cosmetic ingredients. Among them is the 
development of computational methods to evaluate the potential 
of chemicals to bind to liver X receptor (LXR), activation of which 
leads to liver steatosis (ID 15) [ 52 ]. Using different techniques 
such as molecular modeling to assess the LXR binding potential 
and applying PaDEL or RDKit descriptors, QSAR models based 
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on Partial Least Squares Discriminant Analysis (PLS-DA) were 
developed and implemented into the freely available KNIME 
Platform [ 52 ]. These models, used together with the molecular 
modeling methods and structural alerts as discussed within this 
chapter, are forming integrated in silico strategies for screening of 
potential steatosis inducers.  

   Only one in silico model (ID 2) has been found that predicts 
in vitro specifi c hepatotoxicity endpoints measured by cell prolif-
eration, lactate dehydrogenase (LDH) for membrane integrity, 
intracellular ATP levels for cell vitality, and levels of caspases 3 and 
7 for cell apoptosis [ 11 ]. The authors applied molecular interaction 
fi elds (Idiotropic Field Orientation for Comparative Molecular 
Field Analysis (IFO- CoMFA)) as structural descriptors and Soft 
Independent Modeling of Class Analogy (SIMCA) to classify the 
hepatotoxicity of 654 drugs from the Sigma-RBI Library of 
Pharmaceutically Active Compounds (LOPAC) [ 11 ]. Each of the 
four assays showed good discrimination between the toxic and 
nontoxic chemicals. The greatest accuracy of 52 % was obtained for 
a hierarchical ranking model, which combined all four assays (again 
demonstrating that ensemble/consensus models show promise). 
A signifi cant improvement in predictive performance (accuracy of 
88 %) was achieved with a model constructed for a set of 27 non-
steroidal anti-infl ammatory drugs (NSAIDs) using data from the 
LDH assay. The cross-validation confi rmed the good performance 
of this model giving an accuracy of 71 % and 83 % for a training set 
of 21 NSAIDs and a test set of six NSAIDs, respectively. The poor 
predictivity of the global IFO-SIMCA approach for the large, 
diverse dataset of biologically active compounds and signifi cant 
improvement for single pharmacological class chemicals’ model 
showed that for endpoints based on specifi c cytotoxicity indicators 
only models for closely related class of chemicals may be useful. This 
possibly indicates that they are applicable only to a single mechanism 
of action within structurally related compounds. This is the main 
limitation of this approach, as it constricts the applicability of the 
model. However, local models such as this often demonstrate supe-
rior levels of predictivity, hence are useful in limited chemical space.  

   Signifi cant progress has been made in analytical and biomedical 
techniques in recent years which has resulted in the development 
of hundreds of new high-throughput screening (HTS) assays. The 
US Environment Protection Agencies (EPA’s) Toxicity Forecaster 
(ToxCast) program uses these HTS assays to screen environmental 
chemicals for bioactivity [ 53 – 55 ]. Within two phases of this pro-
gram, 1057 chemicals were measured using more than 800 HTS 
assay endpoints including biochemical assays, cell-based assays, 
cell-free assays, and multiplexed transcription reporter assays. 
These data provide valuable information about the molecular 
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mechanism(s) of toxicity and help to identify the pathways related 
to adverse effects. Three studies using both chemical and biological 
descriptors have been identifi ed. The main objective of these studies 
was to investigate if chemical descriptors and biological descriptors 
could be complementary in the prediction of hepatotoxicity. 

 One of the fi rst studies applying chemical and biological 
descriptors to develop models for hepatotoxicity was conducted by 
Low et al. (ID 9) [ 18 ]. In contrast to many other in silico studies, 
the authors utilized only the animal data obtained from subchronic 
(28 days of treatment) assay in rats for 127 drugs studied in the 
Japanese Toxicogenomics Project [ 56 ]. The chemical was assigned 
as a liver toxicant if it exhibited histopathological characteristics of 
hepatotoxicity. Conversely, a compound was deemed non-hepato-
toxic if it did not result in adverse histopathological features. When 
the observations were inconclusive, serum chemical indicators 
including ALT, AST, ALP, TBL, and gamma-glutamyl transpepti-
dase (GGT) were considered. The authors built conventional 
QSAR models using only chemical descriptors. They then applied 
toxicogenomic data to differentiate the hepatotoxins from non-
hepatotoxins and fi nally hybrid hepatotoxicity classifi ers were 
developed. For modeling purposes, statistical methodologies 
including: kNN, SVM, RF and Distance Weighted Discrimination 
(DWD) were applied using internal and a fi vefold external cross-
validation. The evaluation of predictivity showed that the accuracy 
of QSAR models based on chemical descriptors was generally poor 
(55–61 %). Conversely, models employing 85 selected toxicoge-
nomics descriptors showed signifi cantly improved predictive per-
formance with accuracies as high as 76 %. The authors examined 
the spatial distribution of compounds in their chemical and toxi-
cogenomics descriptor space which showed that 50 % of structur-
ally similar pairs of compounds had opposing toxicities. On the 
other hand, amongst pairs of compounds with the most similar 
gene expression profi lers, only 23 % exhibited opposing toxicity. It 
shows that pairs of compounds with similar gene expression pro-
fi les are more likely to have the same hepatotoxicity potential than 
pairs of chemically similar compounds. Of note here is that when 
hybrid models, combining both chemical and biological descrip-
tors, were constructed they demonstrated similar accuracy (68–77 %) 
to those models based only on toxicogenomics data but the use of 
both chemical and biological descriptors provides additional insights 
into understanding DILI. The study confi rmed that hepatotoxicity 
is a very complex endpoint and cannot be predicted effectively 
based only on the chemical characteristics of drugs. Such hybrid 
models look very promising as predictive and prioritization tools 
and allow for a better understanding of the mechanisms of 
hepatotoxicity. 

 A second study employing hybrid descriptors was conducted 
by Zhu et al. (ID 13) [ 19 ]. The authors constructed models based 

In Silico Models for Hepatotoxicity



220

on chemical descriptors and in vitro cell-imaging information taken 
from human hepatocyte imaging assay technology (HIAT) that 
 measures the intensity of biochemical indicators, such as lipids, 
glutathione (GSH), reactive oxygen species (ROS) [ 40 ]. The models 
were built based on a dataset of 292 diverse chemicals (156 posi-
tive) using RF and fi vefold cross validation methodologies. For 
each model the applicability domain was defi ned to control the 
distance between the predicted compound and its closest neighbor 
in the dataset. The main purpose of this research was comparing 
the prediction performance of models with a single type of descrip-
tor (chemical or HIAT) with hybrid models. The hybrid models 
were constructed by combination of HIAT descriptors with chemi-
cal descriptors calculated using three programs (CDK-HIAT, 
Dragon-HIAT, and MOE-HIAT). These three hybrid models 
were combined into a consensus model. The models with chemical 
descriptors alone showed the poorest predictivity with accuracies 
between 57 % (for CDK descriptors) and 63 % (for MOE descrip-
tors). Similar to the study conducted by Low et al. [ 18 ], this 
research confi rmed that structural properties alone are incapable of 
capturing the complex mechanisms of liver toxicity. The highest 
accuracy (77 %) and specifi city (87 %) were obtained from the 
HIAT model. However, the consensus hybrid model showed the 
greatest sensitivity (74 %). Since the HIAT model had the highest 
specifi city and consensus model-best sensitivity, both models were 
applied together to distinguish liver toxicants from nontoxic chem-
icals. Ninety-eight of 158 DILI-inducers and 96 of 136 non-
inducers were predicted correctly by both models. Careful 
investigation of the 39 false negative compounds revealed that at 
least three types of mechanisms are not captured by the models: 
(1) drugs that may cause liver toxicity only in high dosage, e.g., 
naltrexone; (2) metabolic activation, e.g., tianeptine; and (3) 
blockage of bile secretion, e.g., norethindrone. Ideally, QSAR 
models should be mechanistically interpretable to help understand 
the underlying mechanisms of toxicity. In this study, the distribu-
tion of molecular fragments among the toxic and nontoxic chemi-
cals was investigated together with the analysis of biological 
descriptors. Forty-seven molecular fragments showed a signifi -
cantly higher probability of being present in DILI- inducers than in 
non-inducers. Most of these fragments were associated with amine-
derivatives, aromatic rings and alkyl chloride fragments. 
Furthermore, three of HIAT descriptors: the tetramethylrhoda-
mine methyl ester (TMRM) intensity, ROS and a reduced intracel-
lular GSH level were ranked as the most important indicators of 
DILI. These fi ndings proved, for example, that the redox cycling 
of nitroaromatic drugs can generate reactive oxygen species (repre-
sented as ROS intensity HIAT descriptor) which are indicators of 
oxidative stress in hepatocytes. A further HIAT descriptor, TMRM, 
is an indicator of mitochondrial abnormality which can generate 
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superoxide and damage endogenous macromolecules. This study 
showed that chemical and biological  descriptors can be comple-
mentary and enhances the prediction accuracy of hepatotoxicity 
and can aid in rational mechanistic interpretation.  

   A recent study conducted by Liu et al. utilized the in vitro bioactivity 
data from ToxCast together with chemical structure descriptors 
for 677 chemicals to predict in vivo hepatotoxicity (ID 14) [ 29 ]. 
Of the 677 compounds, 214 were classifi ed as hepatotoxic based 
on rat liver histopathological observations in chronic studies and 
were categorized into three hepatotoxicity groups: (1) hypertro-
phy (161), (2) injury (101), and (3) proliferative lesions (99). The 
remaining 463 chemicals were classifi ed as non-hepatotoxic. The 
authors built the models using six machine learning algorithms: 
LDA, NB, SVM, classifi cation and regression trees (CART), kNN, 
and an ensemble of these classifi ers (ENSMB). Three types of 
descriptors were used to build the models: 726 chemical descrip-
tors from QikProp, OpenBabel, PaDEL, and PubChem; 125 
ToxCast HTS bioactivity descriptors and hybrid descriptors (the 
combination of chemical and bioactivity descriptors). Because of 
the skewed ratio of positive to negative chemicals in every hepato-
toxicity category, undersampled, balanced datasets have been pre-
pared: 160 positive and negative chemicals for hypertrophy, 100 
positive and negative chemicals for injury, and 90 positive and 
negative chemicals for proliferative lesions. For each of the three 
categories, classifi ers of hepatotoxicity were built using imbalanced 
and balanced datasets for three types of descriptors: chemical, bio-
activity, and hybrid. Predictive performance was evaluated using 
tenfold cross-validation and repeated 100 times. For each step in 
the cross-validation loop, the subset of best descriptors was fi l-
tered. The best predictive accuracy for hypertrophy (84 %), injury 
(80 %) and proliferative lesions (80 %) was obtained for hybrid 
descriptors. Using undersampled balanced datasets improved the 
sensitivity, but reduced the specifi city of classifi ers compared to the 
imbalanced datasets. 

 In general, classifi ers with bioactivity descriptors have better 
specifi city than models with chemical descriptors only, but have 
lower sensitivity. However, the best predictive statistics in terms of 
balanced accuracy, sensitivity and specifi city were obtained for 
hybrid classifi ers for both balanced and imbalanced datasets. This 
study showed that using both types of descriptors is more relevant 
for building predictive models, since they refl ect the synergies 
between structural features, molecular mechanisms and cellular 
functions. The interpretation of these selected descriptors is impor-
tant for the understanding of underlying mechanisms of hepato-
toxicity and can help to establish the adverse outcome pathways 
(AOPs) as highlighted previously in this chapter. The analysis of the 
descriptors suggested that the classifi ers may be related to AOPs 
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initiated by the pregnane X receptor (PXR), farnesoid X receptor 
(FXR), and vitamin D receptor (VDR). Overall, this study demon-
strates the  usefulness of HTS assays for characterizing the in vivo 
hepatotoxicity and the benefi t of using both types of descriptors 
refl ecting bioactivity and chemical structure.  

   The performance of statistical models generally suffers when 
predicting complex toxicity endpoints such as hepatotoxicity, a 
phenotype with multiple complex mechanisms and many that 
remain unknown. This literature review of the existing statistical 
models for predicting hepatotoxicity has confi rmed that there is no 
easy solution to the problem of correctly identifying hepatotoxins. 
The shortage of reliable data, the lack of sensitive biomarkers and 
the multifaceted nature of hepatotoxicity itself, all serve to compli-
cate an already complex problem. Since hepatotoxicity is so com-
plex a phenomenon, it could not be predicted with high confi dence 
based solely on the structural properties of the chemicals. It was 
found that the application of both chemical and biological infor-
mation together and modeling specifi c endpoints of liver injury, 
initiated by a single mechanism of action rather than the effect as a 
whole, can signifi cantly improve the identifi cation of potential 
hepatotoxins. Moreover, multiple studies showed that the ensem-
ble methodology that combines different models had improved 
the fi nal performances when compared with the best performing 
individual model.   

   In contrast to the quantitative models discussed up to this point, a 
number of qualitative approaches have also been explored. These 
are summarized later in this section by Table  2  following the 
discussion of these models.

     The development of structural alerts has been an area of considerable 
interest in recent years. Their transparency and ability to incorpo-
rate (or elucidate) mechanistic information offers an advantage 
over other, statistically derived, approaches. 

  
 Over a decade ago, Egan et al. provided an excellent review of in 
silico methods to predict various aspects of drug safety (ID 1 in 
Table  2 ) [ 5 ]. The authors own contribution to this review was the 
development of a structural alert-based approach for the predic-
tion of liver toxicity. From a dataset of 244 drugs (54 of which 
were withdrawn from the market or abandoned during develop-
ment owing to hepatotoxicity) a series of 74 computational alerts 
were developed. These alerts were based on an extensive review of 
the literature and were often accompanied with mechanistic rea-
soning for their observed hepatotoxicity. It is interesting to note 
that 56 of the 74 alerts were based on functional groups and were 
related to the formation of reactive (or otherwise toxic) 
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metabolites. The remainder were based on whole molecule similarity 
and were more complex, often with limited or no mechanistic 
rationale. No attempt was made here to assess their predictive per-
formance since the authors aim was to extract and investigate 
structural alerts for hepatotoxicity. 

 Unlike the statistical models in the previous section of this 
chapter, qualitative methods such as structural alerts are not statis-
tically derived models. In fact, they should not be considered as 
“models” at all. They serve as a direct link showing that a particular 
molecular fragment/feature is associated with observed hepato-
toxicity. No quantitative measure is provided. Interest in structural 
alerts is increasing. Since they are developed in an evidence-based 
manner and may contain mechanistic information, they are com-
pletely transparent and user confi dence in their application is gen-
erally higher than that of statistical models. 

 This is not to say that structural alerts are simple to generate. 
Each structural alert must be carefully defi ned. Too general in nature 
and it will be fl agged up in almost all compounds and will not 

     Table 2  
  Table summarizing expert knowledge-based models for liver toxicity   

 ID  Endpoint 
 Type and size of 
data 

 No. of structural 
alerts  Validation 

 Predictive 
performance  Ref 

 1  Hepatotoxicity  In vivo human 
data for 244 
compounds 

 74 developed  No data  No data  [ 5 ] 

 2  Hepatotoxicity  In vivo data for 
1266 
compounds 

 38 developed  External validation 
using 626 
chemicals 

 SEN (46 %), 
SPE (73 %), 
and ACC 
(56 %) 

 [ 22 ] 

 3  Hepatotoxicity  In vivo human 
data for 951 
compounds 

 16 developed  N/A  N/A  [ 30 ] 

 4  Hepatosteatosis  PDB and 
ChEMBL 

 N/A  Validation using 
the 251 
ChEMBL 
compounds and 
951 Fourches 
et al. dataset 

 N/A  [ 28 ] 

 5  Hepatotoxicity  In vivo human 
data for 577 
compounds 

 12 molecular 
fragments 

 Not reported  Not reported  [ 29 ] 

 6  Steatosis  Pharmacophore 
built on the 
three most 
active agonists 

 None—
pharmacophore 
model 

 External validation 
using a test set 
of 21 agonists 

 N/A  [ 27 ] 
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differentiate toxicity classes. Too specifi c (rigid) may restrict its 
application to a single compound and not extend to derivatives con-
taining the actual fragment initiating the toxicity. All of this, coupled 
with the need to research and defi ne mechanistic rationale makes 
structural alert defi nition a complex and time-consuming task. 

 Irrespective of their origins, the beauty of structural alerts is 
that they can be coded into computational systems which allow for 
rapid screening of compound libraries. Egan et al. packaged the 
knowledge extracted from the literature, linked this to defi ned 
structural alerts and developed a system capable of making mecha-
nistically supported predictions of likely hepatotoxicity in humans.  

   Green et al. further develop the concept of generating structural 
alerts for hepatotoxicity (ID 2) [ 22 ]. The authors highlight the 
presence of Derek for Windows (DfW), a commercial prediction 
system developed by Lhasa Ltd. [ 56 ]. In recent years this has been 
rebranded as Derek Nexus as already introduced in Chapter   10    . 
This knowledge- based expert system emulates human reasoning 
and utilizes the approach described by Egan et al. [ 5 ] to make pre-
dictions based on structural alerts and associated mechanistic 
knowledge. Version 8 of this software contained structural alerts for 
several endpoints, many of which were well established (e.g., carci-
nogenicity). However, at the time this study was performed, only 
two structural alerts for hepatotoxicity were present in DfW’s 
knowledgebase. 

 Green et al. highlighted this shortfall and published a study 
aimed at developing a number of additional structural alerts. 
Importantly, this study investigated whether it is possible to use 
publically available data to develop structural alerts for hepatotoxic 
potential. This study goes into some detail of how a dataset of 
known hepatotoxins was divided into various chemical/therapeu-
tic classes. This article also starts to introduce the concept of using 
structural similarity to generate structural alerts from clusters of 
structurally related compounds. 

 Thirty-eight new structural alerts were identifi ed in this study 
based on human and/or animal data. Each was incorporated into 
a customized version of DfW ( see  Fig.  2 ) together with supporting 
examples and mechanistic information gathered from the litera-
ture. Importantly, these alerts were externally validated using a 
large Pfi zer-developed dataset of 626 compounds ( see  Fig.  3  for 
examples of compounds containing identifi ed alerts). The predic-
tive performance of these alerts in the customized DfW knowledge 
base are summarized in Table  2 .

    The importance of developing structural alerts and embedding 
these into a tool such as DfW is clear. SARs in the form of structural 
alerts for complex endpoints can be elucidated from the open litera-
ture. The additional support of case studies and mechanistic  rationale 
extracted from the literature is where a structural alert approach 

2.2.1.2  Greene et al. 
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differs from traditional quantitative modeling. As a screening tool, a 
prediction along with transparent supporting evidence is very 
powerful. Of course, at the same time, the approach of developing 
structural alerts in this manner drives research into mechanisms of 
liver toxicity and injury which is of equal importance.  

   Driven by the continued need to predict hepatotoxicity and the 
growing utilization of structural alerts, our contribution to this area 
has been in the development of a general scheme for structural alert 
development (ID 3) [ 30 ]. Focusing purely on publically accessible 
data, our aim was to develop an approach (using freely available 
tools) capable of yielding mechanistically supported structural alerts 
as previously described [ 5 ,  22 ]. Given the scarcity of high quality 
hepatotoxicity data, the broad spectrum of possible endpoints to 
consider and the complex nature of the mechanisms involved, 

2.2.1.3  Hewitt et al. 
(2013): A Scheme 
for Generating Structural 
Alerts for Human 
Hepatotoxicity

  Fig. 2    Example alert describing SARs developed for tetracyclines and thiophenes. Reprinted with permission 
from Green et al. Chem. Res. Toxicol. 23, 1215–1222. Copyright 2015 American Chemical Society       
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  Fig. 3    Drugs containing a thiophene ring and associated with hepatotoxicity. Reprinted with permission from 
Green et al. Chem. Res. Toxicol. 23, 1215–1222. Copyright 2015 American Chemical Society       
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defi ning such alerts is a considerable challenge. Furthermore, our 
focus was set solely on predicting human hepatotoxicity utilizing 
compiled clinical data for 951 structural diverse compounds. Given 
that hepatotoxicity is often not evident until identifi ed during 
post- marketing surveillance, it seems logical to conclude that cur-
rent histopathological liver fi ndings in rats do not model the idio-
syncratic effects seen in humans [ 41 ,  42 ]. Conversely, Lhasa Ltd. 
(the developers of Derek Nexus) recently presented a poster show-
ing that the alerts available in Derek Nexus which are developed 
using human data cannot predict the liver fi ndings in rats [ 57 ]. 

 In our study, structural similarity scores were used to highlight 
chemical categories of structurally related (and hepatotoxic) com-
pounds (using the freely available Toxmatch software [ 58 ]). 
Eighty- two such categories were identifi ed and each was manually 
inspected for validity. Following this validation step, 16 unique 
structural categories were identifi ed and researched in detail to 
propose a mechanistic rationale. The common structural fragment 
of each category was extracted and taken to be the structural alert 
for that class. Each alert was further validated by using that struc-
tural alert to repopulate the original category. Examination of the 
resulting hits proved useful in highlighting alerts that were too 
general or restricted in terms of their defi nition. 

 An example of an alert generated from a small chemical cate-
gory (Table  3 ) is shown in Fig.  4 . This category contains a number 
of phenothiazine derivatives commonly used as antipsychotics. 
The common structural fragment was extracted and formed the 
structural alert as shown in Fig.  4 . Searching the literature for a 
mechanistic rationale to explain the observed hepatotoxicity for 
this chemical class quickly revealed multiple implications in mitochon-
drial toxicity ( see  Hewitt et al. for more details). As was often the 
case, categories contained one or more members which were 
recorded as non- hepatotoxins. Here, perphenazine was classifi ed as 
such in the Fourches et al. dataset. However, further literature 

    Table 3  
  Showing the category members formed using structural alert 6 (depicted)   

 Compound  Hepatotoxicity 

 Chlorpromazine  Positive 

 Perazine  Positive 

 Perphenazine  Negative 

 Prochlorperazine  Positive 

 Thioridazine  Positive 

 Trifl upromazine  Positive 

  ( See  also Fig.  4 )  
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searching suggested this to be an incorrect classifi cation since 
perphenazine has been associated with liver effects in humans.

    As such, this is not solely a process of extracting knowledge from 
a given dataset, but acts to highlight instances where the literature 
can be used synergistically to support and extend our current 
knowledge. 

 The aim of the article by Hewitt et al. was not to create a compre-
hensive suite of hepatotoxicity alerts, but to develop and publish a 
generic scheme for their development using freely available tools. 
Given the limitations of publically assessable data and our incomplete 
understanding of hepatotoxicity, developing a system suffi ciently 
capable of predicting hepatotoxicity in humans is a herculean task. 
A dynamic scheme such as that proposed by Hewitt et al., updated 
regularly with new data leading to new alerts and renewed mechanis-
tic understanding, is likely to be the most productive approach. 

 The general 7-step strategy proposed in this work is summarized 
in Fig.  5 . As with all modeling approaches, the fi rst step is to acquire 
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  Fig. 4    Showing the category members formed using structural alert 6 (depicted) 
( see  also Table  3 )       

  Fig. 5    Strategy for the development of structural alerts for the prediction of hepatotoxicity (taken with permission 
from Hewitt et al. [ 30 ])       
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an appropriate dataset suitable for modeling (defi ned chemical 
structures, clear toxicity annotations, etc.). The second step is to 
form groupings of structurally related compounds (often termed 
chemical categories). A manual validation step is then required in 
order to remove any duplicate categories or those exhibiting too 
wide a range of chemical diversity. Step 4 is when each category is 
inspected and a common structural feature is identifi ed. This fea-
ture becomes the structural alert. In order to assess the selectivity 
of the alerts generated, step 5 involves using these alerts to screen 
the original dataset. Step 6 then examines the resulting  category 
members (which may contain compounds with the alert but not 
previously assigned to the category) This stage quickly highlights 
alerts that are too general in nature since the repopulated category 
tends to contain multiple new compounds (many of which often 
demonstrate no toxicity). If developed well, this category adds a 
supportive element to the alert demonstrating a category of exam-
ple toxic compounds. The second stage of step 6 adds mechanistic 
support to the structural alert. Each alert (and its category mem-
bers) is investigated in detail to defi ne or propose a mechanistic basis 
for the toxicity observed. This stage is time consuming with no 
guarantee of success, but in most cases mechanistic rationale could 
be identifi ed and this gives a much greater weighting (and user con-
fi dence) in their use. The fi nal step proposed in the Hewitt et al. 
article (step 7) highlights that, at this stage, the structural alerts are 
read to be used to screen query datasets. Furthermore, it is stressed 
that the chemical categories themselves should not be forgotten and 
have a potential role in read-across; a process whereby measures of 
structural similarity can be used to match a query chemical to those 
in a library. These reference compounds (or category members) can 
then be used to estimate the properties/toxicity of the query com-
pound based on their similarity.

   As with the study by Greene et al., the power of structural alerts 
is their ability to be built into a platform capable of screening large 
numbers of compounds for the presence of each alert. The 16 alerts 
developed in his study were combined into a predictive tool and 
were made available on the predictive modeling platform developed 
within the eTOX Project [ 59 ]. Here, the structural alerts were 
coded as SMARTS and were incorporated into the KNIME plat-
form [ 52 ]. This automated the screening procedure and allowed 
for an input fi le to be uploaded and rapidly screened.  

   Working as part of the COSMOS Project, Steinmetz et al. (ID 4) 
[ 28 ] employed a slightly different approach to the problem. Instead 
of elucidating structural alerts and then investigating their 
mechanism(s) of action, they began with a known mechanism of 
interest (interaction with the retinoic acid receptor (RAR) which 
has been linked with liver steatosis) (It is interesting to note that 
the retinoid class was previously highlighted as a structural alert in 

2.2.1.4  Steinmetz et al. 
(2015): Focusing 
the Search
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Hewitt et al. [ 30 ].) Subsequent analysis then solely focuses on 
known RAR ligands to identify structural alerts for this mechanism 
of action. This is synonymous with the local versus global model-
ing approaches previously discussed with regards to the statistically 
derived models (multiple versus single mechanisms of action). 

 In contrast to previous works, Steinmetz at al. combined a 
small number of structural alerts together with a set of physico-
chemical property fi lters to highlight potential RAR ligands. These 
fi lters were based on the physicochemical characteristics of the 
known RAR ligands considered in the study. 

 Again, predictions were made via the development of a KNIME 
workfl ow containing the alerts as well as automated physicochemi-
cal property calculations and fi lters ( see  Fig.  6 ). The KNIME work-
fl ow then acts as a very powerful screening tool able to identify 
potential RAR ligands.

      The most recent example of structural alerts for human liver toxicity 
at the time of writing this chapter was an article by Liu et al. (ID 5) 
[ 29 ]. Their focus was on the validity of structural alerts. As stated 
in the article, a limitation of employing libraries of structural alerts 
is that they will effectively reduce the chemical space available for 
new drug discovery. Liu et al. highlight that more than half of the 
oral drugs currently on the market match to one or more structural 
alerts published for hepatotoxicity, suggesting that these alerts are 
either too general in their design or they are failing to take into 

2.2.1.5  Liu et al. (2015): 
Boosting the Validity 
of Structural Alerts

  Fig. 6    KNIME workfl ow developed by Steinmetz et al. to predict RAR ligands (taken with permission from 
Steinmetz et al. [ 28 ])       
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account other factors, such as metabolism. They go on to discuss 
the development of robust, statistically validated, structural alerts. 

 In the publication of Hewitt et al., structural alerts were often 
developed using categories containing both hepatotoxic and non- 
hepatotoxic compounds. The confl icting “non-hepatotoxic” com-
pounds could often be rebuttled following detailed literature 
searches suggesting these classifi cations to be false. Furthermore, 
with the dataset considered in the Hewitt et al. study, the absence 
of clinical reports for hepatotoxicity lead to a non-hepatotoxic 
classifi cation. 

 Liu et al. proposed to ensure the relationship of alert and toxicity 
using a statistical approach (utilizing  p  values) to highlight the 
robustness of this relationship in a quantitative manner. Alerts 
based on categories containing nontoxic compounds will therefore 
show reduced statistics and less robustness than those based solely 
on toxic compounds. However, as mentioned previously, it is 
important to ensure the validity of the nontoxic classifi cation before 
proceeding in this manner.   

   As introduced earlier in this chapter, the development of pharma-
cophore models is another qualitative approach to the prediction 
of hepatotoxicity. It is important to stress from the outset that 
pharmacophore models, depending upon how they are utilized, 
can provide quantitative information. Pharmacophore models can 
be seen to extend the theory of structural alerts and transform the 
two- dimensional representation of a structural alert into a three- 
dimensional scaffold, overlaid with information of important phys-
icochemical features. (This is not to be confused with chemotypes 
which are effectively two-dimensional structural alerts with 
encoded physicochemical data). 

   Tsakovska et al., partners in the COSMOS Project, recently pub-
lished a pharmacophore study focussing on a particular mechanism 
of action thought to be a key factor in the elucidation of liver ste-
atosis (ID 6) [ 27 ]. As in the Steinmetz et al. study, efforts are 
focused onto a single mechanism of action, in this case concentrat-
ing on the activation of the peroxisome proliferator-activated 
receptor gamma (PPARγ). 

 A pharmacophore model was developed following analysis of 
the interactions between PPARγ and the three most active full ago-
nists (rosiglitazone and two compounds termed compound 544 
and 570). The pharmacophore was evaluated using a dataset of full 
agonists and the pharmacophore features were evaluated. 

 The structure of one of the full PPARγ agonist (rosiglitazone) 
is shown in Fig.  7 .

   The three most active agonists are aligned on top of one 
another to defi ne the characteristics of the PPARγ pharmacophore 
(Fig.  8 ). In this study, four polar atoms and functional groups 

2.2.2  Development 
of Pharmacophore Models

2.2.2.1  Tsakovska et al. 
(2014)
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capable of performing hydrogen bonding and ionic interactions 
(F1, F2, F4 and F6) and three hydrophobic and aromatic features 
(F3, F5 and F7) were determined to be important pharmaco-
phore features of the most active agonists. The role of each fea-
ture and its interactions within the binding region of PPARγ are 
then considered.

   This scaffold can be used to screen libraries of compounds for 
likely PPARγ binders. In its most simplistic form, the presence/
absence of each pharmacophore feature can be used to predict 
activity. More complex application included assessment of the 
three-dimensional positioning of these features and the interactions 
these have with the PPARγ complexes. 

 Pharmacophore models extend beyond structural alerts in their 
ability to tease out information relating to the binding interactions 
between receptor and ligand. As such, if a particular interaction is 
known to be a prerequisite for activity, it can be explored and 
extended to fi nd other groups/molecules which possess this ability. 
They therefore have a signifi cant role in the drug development 
process given their possible applications in rational drug design.     
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  Fig. 7    Structure of rosiglitazone       

  Fig. 8    Pharmacophore model of PPARγ full agonists (rosiglitazone, carbon atoms in  magenta ; compound 544, 
carbon atoms in  green ; compound 570, carbon atoms in  grey ) (taken from Tsakovska et al. [ 27 ])       
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3    Fitting Together the Different Pieces of the Puzzle and Future Directions 

 The mechanisms by which a compound can elicit toxicity to the 
liver are complex and diverse in nature. Attempting to then predict 
the hepatotoxicity of a new compound using a single approach is a 
very diffi cult task. It has already been seen that, on multiple 
occasions, authors have combined not only model predictions, but 
also model types in search of better and more reliable hepatotoxicity 
prediction [ 10 ,  24 ]. 

 An emerging theme from all of these studies is that individual 
models have differing abilities to predict hepatotoxicity within a 
defi ned region of chemical space. As such, it is unlikely that a single 
model will ever be able predict such a complex endpoint as hepa-
totoxicity. Further integration of available datasets, mechanistic 
insights and available models for DILI is likely the only way to 
increase both prediction accuracy and application across chemical 
space. A system combining quantitative statistically derived mod-
els, structural alerts and pharmacophore models each bringing 
strengths (and weaknesses) is an exciting prospect and something 
that should be further explored. It is foreseeable that mechanisti-
cally based structural alerts could be used to screen large databases 
and populate a defi ne category relating to a single mechanism of 
action. Local QSAR models could then be developed on this sub-
set of data based on relevant descriptors. Moreover, it has been 
shown that most predictive methods discussed are based solely on 
descriptors of chemical structure and properties. Consideration 
and inclusion of biological information, such as toxicogenomics, 
can further help detect potential liver toxicants. Such biological 
descriptors may also provide further insights in the mechanisms at 
play in liver toxicity. 

 One of the major limitations currently is the lack of high qual-
ity hepatotoxicity data. To improve the prediction of potential 
hepatotoxins more effort should be focused towards developing 
specifi c and sensitive biomarkers for DILI. If this were possible, it 
would lead to more reliable hepatotoxicity data which then can be 
used for developing models to predict DILI. Similarly, a more 
detailed understanding of the mechanisms of liver injury would be 
of tremendous benefi t and may invert the current approach of 
modeling with the subsequent addition of mechanistic reasoning. 
If we could better understand a causal mechanism of DILI (again 
relating to AOPs), perhaps we could design a model/alert based 
purely on the mechanism (e.g., what are the characteristics a chem-
ical must possess in order to trigger mitochondrial toxicity?). These 
characteristics can then be used for screening and possibly further 
structural alert generation. 

 The generation of predictive systems for liver toxicity is rapidly 
gaining pace. With emerging modeling methods, technologies and 
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advances in all areas of science, it is likely that we are standing on 
the precipice of a modeling explosion. Careful consideration must 
now be made in how best to manage this emerging knowledge to 
best effect. In recent years, many regulatory agencies, institutions, 
EU Projects and working groups have established programs to 
help understand and detect DILI. These include the Virtual Liver 
Project (v-Liver™) established by US EPA [ 60 ], the Drug-Induced 
Liver Injury Network (DILIN) set up by the National Institute of 
Diabetes and Digestive and Kidney Diseases (NIDDK) in the USA 
[ 61 ], the Virtual Liver Network project initiated by the German 
Federal Ministry for Education and Research [ 62 ], and multiple 
EU Projects such as Mechanism based Integrated systems for the 
prediction of Drug Induced Liver Injury (MIP-DILI) [ 63 ]. Whilst 
duplication of effort is inevitable to some degree, what must be 
ensured is that both data and knowledge generated by these initia-
tives is shared. Just as combining models to form an ensemble seems 
to be benefi cial for predictive performance, it is likely that a com-
bined international ensemble effort is the only way we can success-
fully begin to tackle the prediction of liver toxicity in humans.  

4    Conclusions 

 Hepatotoxicity has been a problem for many years. Unfortunately, 
the same can also be said for predictive models aimed at predicting 
these effects. It is only in the past decade that models/systems for 
predicting hepatotoxicity have started to emerge. It is fair to say 
that the modeling community are currently limited by the amount 
and quality/reliability of the data available to them. Coupled with 
an endpoint as complex as hepatotoxicity, the scale of the challenge 
is obvious. That said, it can be seen from the models discussed in 
this chapter that progress is being made, our knowledge of the 
processes behind liver toxicity is growing and our ability to tackle 
this problem is increasing. Given the diversity of the modeling 
approaches seen in these studies and the general transition towards 
ensemble/consensus approaches in this area, it is likely that the 
next decade will be equally as productive.     

  Acknowledgement 

 The funding provided by the eTOX project, grant agreement 
number 115002, under the Innovative Medicines Initiative Joint 
Undertaking (IMI-JU), the European Community’s Seventh 
Framework Program (FP7/2007-2013) COSMOS project under 
grant agreement number 266835, and from Cosmetics Europe is 
gratefully acknowledged.  

In Silico Models for Hepatotoxicity



234

   References 

      1.    Przybylak KR, Cronin MTD (2012) In silico 
models for drug-induced liver injury—current 
status. Expert Opin Drug Metab Toxicol 
8:201–217  

    2.    Schuster D, Laggner C, Langer T (2005) Why 
drugs fail—a study on side effects in new chem-
ical entities. Curr Pharm Des 11:3545–3559  

    3.    Holt MP, Ju C (2006) Mechanisms of drug- 
induced liver injury. AAPS J 8:E48–E54  

    4.    Kaplowitz N (2005) Idiosyncratic hepatotoxic-
ity. Nat Rev Drug Discov 4:489–499  

         5.    Egan WJ, Zlokarnik G, Grootenhuis PDJ 
(2004) In silico prediction of drug safety: 
despite progress there is abundant room for 
improvement. Drug Discov Today 1:381–387  

    6.    Patlewicz G, Dimitrov SD, Low LK et al (2007) 
TIMES-SS-a promising tool for the assessment 
of skin sensitization hazard. A characterization 
with respect to the OECD validation principles 
for (Q)SARs and an external evaluation for pre-
dictivity. Regul Toxicol Pharmacol 48:225–239  

    7.    Benigni R, Bossa C (2008) Structure alerts for 
carcinogenicity, and the salmonella assay system: 
a novel insight through the chemical relational 
databases technology. Mutat Res 659:248–261  

     8.    Zimmerman HJ (1999) Hepatotoxicity: the 
adverse effects of drugs and other chemicals on 
the liver. Lippincott Williams & Wilkins, 
Philadelphia, PA  

    9.    Li AP (2002) A review of the common proper-
ties of drugs with idiosyncratic hepatotoxicity 
and the “multiple determinant hypothesis” for 
the manifestation of idiosyncratic drug toxicity. 
Chem Biol Interact 142:7–23  

           10.    Cheng A, Dixon SL (2003) In silico models 
for the prediction of dose-dependent human 
hepatotoxicity. J Comput Aided Mol Des 
17:811–823  

         11.    Clark RD, Wolohan PR, Hodgkin EE et al 
(2004) Modelling in vitro hepatotoxicity using 
molecular interaction fi elds and SIMCA. J Mol 
Graph Model 22:487–497  

    12.    Marchant CA (2006) Virtual ADMET assess-
ment. In: Testa B, Turski L (eds) Target selec-
tion and maturation. IOS Press, Amsterdam, 
p 237  

    13.    Marchant CA, Fisk L, Note RR et al (2009) 
An expert system approach to the assessment 
of hepatotoxic potential. Chem Biodivers 
6:2107–2114  

           14.    Cruz-Monteagudo M, Cordeiro MN, Borges 
F (2008) Computational chemistry approach 
for the early detection of drug-induced idio-
syncratic liver toxicity. J Comput Chem 
29:533–549  

       15.    Ekins S, Williams AJ, Xu JJ (2010) A predictive 
ligand-based Bayesian model for human drug- 
induced liver injury. Drug Metab Dispos 
38:2302–2308  

      16.    Liu Z, Shi Q, Ding D, Kelly R et al (2011) 
Translating clinical fi ndings into knowledge in 
drug safety evaluation—drug induced liver 
injury prediction system (DILIps). PLoS 
Comput Biol 7(12):e1002310. doi:  10.1371/
journal.pcbi.1002310      

         17.    Rodgers AD, Zhu H, Fourches D et al (2010) 
Modeling liver-related adverse effects of drugs 
using k-nearest neighbor quantitative structure- 
activity relationship method. Chem Res Toxicol 
23:724–732  

           18.    Low Y, Uehara T, Minowa Y et al (2011) 
Predicting drug-induced hepatotoxicity using 
qsar and toxicogenomics approaches. Chem 
Res Toxicol 24:1251–1262  

         19.    Zhu XW, Sedykh A, Liu SS (2014) Hybrid in 
silico models for drug-induced liver injury 
using chemical descriptors and in vitro cell-
imaging information. J Appl Toxicol 
34:281–288  

         20.    Matthews EJ, Ursem CJ, Kruhlak NL et al 
(2009) Identifi cation of structure-activity rela-
tionships for adverse effects of pharmaceuticals 
in humans: part B. Use of (Q)SAR systems for 
early detection of drug induced hepatobiliary 
and urinary tract toxicities. Regul Toxicol 
Pharmacol 54:23–42  

        21.    Chan K, Jensen NS, Silber PM, O’Brien PJ 
(2007) Structure–activity relationships for 
halobenzene induced cytotoxicity in rat and 
human hepatoctyes. Chem Biol Interact 
165:165–174  

        22.    Greene N, Fisk L, Naven RT et al (2010) 
Developing structure-activity relationships for 
the prediction of hepatotoxicity. Chem Res 
Toxicol 23:1215–1222  

        23.    Fourches D, Barnes JC, Day NC et al (2010) 
Cheminformatics analysis of assertions mined 
from literature that describe drug-induced liver 
injury in different species. Chem Res Toxicol 
23:171–183  

        24.    Liew CY, Lim YC, Yap CW (2011) Mixed 
learning algorithms and features ensemble in 
hepatotoxicity prediction. J Comput Aided 
Mol Des 25:855–871  

      25.    Chen M, Hong H, Fang H et al (2013) 
Quantitative structure-activity relationship 
models for predicting drug-induced liver injury 
based on FDA- approved drug labeling annota-
tion and using a large collection of drugs. 
Toxicol Sci 136:242–249  

Mark Hewitt and Katarzyna Przybylak

http://dx.doi.org/10.1371/journal.pcbi.1002310
http://dx.doi.org/10.1371/journal.pcbi.1002310


235

     26.    Liu J, Mansouri K, Judson RS et al (2015) 
Predicting hepatotoxicity using ToxCast 
in vitro bioactivity and chemical structure. 
Chem Res Toxicol 28:738–751  

       27.    Tsakovska I, Al Sharif M, Alov P et al (2014) 
Molecular modelling study of the PPARγ 
receptor in relation to the mode of action/
adverse outcome pathway framework for liver 
steatosis. Int J Mol Sci 15(5):7651–7666  

       28.    Steinmetz FP, Mellor CL, Meinl T et al (2015) 
Screening chemicals for receptor-mediated toxi-
cological and pharmacological endpoints: using 
public data to build screening tools within a 
KNIME workfl ow. Mol Inform 34:171–178  

          29.    Liu R, Yu X, Wallqvist A (2015) Data-driven 
identifi cation of structural alerts for mitigating 
the risk of drug-induced human liver injuries. 
J Cheminform 7:4  

        30.    Hewitt M, Enoch SJ, Madden JC et al (2013) 
Hepatotoxicity: a scheme for generating chem-
ical categories for read-across, structural alerts 
and insights into mechanism(s) of action. Crit 
Rev Toxicol 43(7):537–555  

    31.    Tralau T, Oelgeschläger M, Gürtler R et al 
(2015) Regulatory toxicology in the twenty-
fi rst century: challenges, perspectives and pos-
sible solutions. Arch Toxicol 89:823–850  

    32.    Golbraikh A, Tropsha A (2002) Predictive 
QSAR modeling based on diversity sampling of 
experimental datasets for the training and test 
set selection. J Comput Aided Mol Des 
16:357–369  

    33.    Williams A, Tkachenko V, Lipinski C et al 
(2010) Free online resources enabling crowd-
sourced drug discovery. Drug Discov World 
10:33–39  

    34.    Breiman L, Friedman JH, Olshen RA et al 
(1984) Classifi cation and regression trees. 
Wadsworth International Group, Belmont, CA  

    35.    Hawkins DM, Kass GV (1982) Automatic 
interaction detection. In: Hawkins DH (ed) 
Topics in applied multivariate analysis. 
Cambridge University Press, Cambridge, UK, 
pp 269–302  

    36.    Dixon SL, Villar HO (1999) Investigation of 
classifi cation methods for the prediction of 
activity in diverse chemical libraries. J Comput 
Aided Mol Design 13:533–545  

    37.    Xia X, Maliski EG, Gallant P, Rogers D (2004) 
Classifi cation of kinase inhibitors using a 
Bayesian model. J Med Chem 47:4463–4470  

    38.   Orange book: approved drug products with 
therapeutic equivalence evaluations.   http://
www.accessdata.fda.gov/scripts/cder/ob/     
default.cfm  

    39.    Yap CW (2011) PaDEL-descriptor: an open 
source software to calculate molecular descrip-

tors and fi ngerprints. J Comput Chem 
32(7):1466–1474  

     40.    Xu JJ, Henstock PV, Dunn MC et al (2008) 
Cellular imaging predictions of clinical drug-
induced liver injury. Toxicol Sci 105:97–105  

     41.    Olson H, Betton G, Stritar J et al (1998) The 
predictivity of the toxicity of pharmaceuticals 
in humans from animal data. An interim assess-
ment. Toxicol Lett 10:535–538  

     42.    Olson H, Betton G, Robinson D et al (2000) 
Concordance of the toxicity of pharmaceuticals 
in humans and in animals. Regul Toxicol 
Pharmacol 32:56–67  

    43.    Farrell GC (1994) Drug-induced liver disease. 
Churchill Livingstone, New York  

    44.     https://aopkb.org/index.html      
     45.    Ursem CJ, Kruhlak NL, Contrera JF et al 

(2009) Identifi cation of structure activity rela-
tionships for adverse effects of pharmaceuticals 
in humans. Part A: use of FDA post-market 
reports to create a database of hepatobiliary 
and urinary tract toxicities. Regul Toxicol 
Pharmacol 54:1–22  

      46.    Matthews EJ, Kruhlak NL, Benz RD et al 
(2009) Identifi cation of structure-activity rela-
tionships for adverse effects of pharmaceuticals 
in humans: Part C. Use of QSAR and an expert 
system for the estimation of the mechanism of 
action of drug-induced hepatobiliary and uri-
nary tract toxicities. Regul Toxicol Pharmacol 
54:43–65  

    47.    Tropsha A, Golbraikh A (2007) Predictive 
QSAR modelling workfl ow, model applicability 
domains, and virtual screening. Curr Pharm 
Des 13:3494–3504  

    48.    Kuhn M, Campillos M, Letunic I et al (2010) 
A side effect resource to capture phenotypic 
effects of drugs. Mol Syst Biol 6:6  

    49.    Chen M, Vijay V, Shi Q, Liu Z, Fang H et al 
(2011) FDA-approved drug labelling for the 
study of drug-induced liver injury. Drug 
Discov Today 16:697–703  

    50.    O’Brien PJ, Irwin W, Diaz D et al (2006) High 
concordance of drug-induced human hepato-
toxicity with in vitro cytotoxicity measured in a 
novel cell-based model using high content 
screening. Arch Toxicol 80:580–604  

    51.     http://cosmostox.eu      
       52.     http://knimewebportal.cosmostox.eu/web-

portal/#/Public/Nuclear%20Receptor%20
Binding/LXR%20Binding%20Potential      

    53.    Berthold MR, Cebron N, Dill F et al (2008) 
KNIME: the Konstanz Information miner. In: 
Preisach C, Burkhardt H, Schmidt-Thieme L, 
Decker R (eds) Studies in classifi cation, data 
analysis, and knowledge organization. Springer, 
Berlin  

In Silico Models for Hepatotoxicity

http://www.accessdata.fda.gov/scripts/cder/ob/
http://www.accessdata.fda.gov/scripts/cder/ob/
https://aopkb.org/index.html
http://cosmostox.eu/
http://knimewebportal.cosmostox.eu/webportal/#/Public/Nuclear Receptor Binding/LXR Binding Potential
http://knimewebportal.cosmostox.eu/webportal/#/Public/Nuclear Receptor Binding/LXR Binding Potential
http://knimewebportal.cosmostox.eu/webportal/#/Public/Nuclear Receptor Binding/LXR Binding Potential


236

   54.    Kavlock RJ, Chandler K, Houck KA et al 
(2012) Update on EPA’s ToxCast program: 
providing high throughput decision support 
tools for chemical risk management. Chem Res 
Toxicol 25:1287–1302  

    55.    Judson RS, Houck KA, Kavlock RJ et al (2010) 
In vitro screening of environmental chemicals 
for targeted testing prioritization: the ToxCast 
project. Environ Health Perspect 118:
485–492  

     56.    Uehara T, Ono A, Maruyama T et al (2010) 
The Japanese toxicogenomics project: applica-
tion of toxicogenomics. Mol Nutr Food Res 
54:218–227  

    57.   Lhasa Ltd (2015) Analysis of human and 
in vivo data for hepatotoxicity modelling. 
  http://www.lhasal imited.org/Publ ic/

Library/2015/Analysis%20of%20human%20
and%20in%20vivo%20data%20for%20hepato-
toxicity%20modelling.pdf      

    58.   Ideaconsult Ltd (2012) Toxmatch structural 
similarity tool (version 1.07).   http://ihcp.jrc.
ec.europa.eu/our_labs/computational_toxi-
cology/qsar_tools/toxmatch      

    59.     http://www.etoxproject.eu/      
    60.     http://www.epa.gov/ncct/virtual_liver      
    61.    Fontana RJ, Watkin PB, Bonkovsky HL et al 

(2009) DILIN Study Group, Drug-Induced 
Liver Injury Network (DILIN) prospective 
study: rationale, design and conduct. Drug Saf 
32:55–68  

    62.     http://www.virtual-liver.de      
    63.   http://www.mip-dili.eu/    

Mark Hewitt and Katarzyna Przybylak

http://www.lhasalimited.org/Public/Library/2015/Analysis of human and in vivo data for hepatotoxicity modelling.pdf
http://www.lhasalimited.org/Public/Library/2015/Analysis of human and in vivo data for hepatotoxicity modelling.pdf
http://www.lhasalimited.org/Public/Library/2015/Analysis of human and in vivo data for hepatotoxicity modelling.pdf
http://www.lhasalimited.org/Public/Library/2015/Analysis of human and in vivo data for hepatotoxicity modelling.pdf
http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/qsar_tools/toxmatch
http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/qsar_tools/toxmatch
http://ihcp.jrc.ec.europa.eu/our_labs/computational_toxicology/qsar_tools/toxmatch
http://www.etoxproject.eu/
http://www.epa.gov/ncct/virtual_liver
http://www.virtual-liver.de/

	Chapter 11: In Silico Models for Hepatotoxicity
	1 Introduction
	2 Prediction of Hepatotoxicity
	2.1 Statistically Derived Quantitative Models
	2.1.1 Statistical Models for In Vivo General Hepatotoxicity Endpoint Using Chemical Descriptors
	2.1.2 Statistical Models for In Vitro General Hepatotoxicity Using Chemical Descriptors
	2.1.3 Statistical Models for In Vivo and In Vitro General Hepatotoxicity Using Chemical Descriptors
	2.1.4 Statistical Models for In Vivo Specific Hepatotoxicity Endpoints Using Chemical Descriptors
	2.1.5 Statistical Models for In Vitro Specific Hepatotoxicity Endpoints Using Chemical Descriptors
	2.1.6 Statistical Models for In Vivo General Hepatotoxicity Using Hybrid Descriptors
	2.1.7 Statistical Models for In Vivo Specific Hepatotoxicity Endpoints Using Hybrid Descriptors
	2.1.8 Statistical Models Summary

	2.2 Qualitative (Expert Knowledge-�Based) Models
	2.2.1 Development of Structural Alerts
	2.2.1.1 Egan et al. (2004): Structural Alerts for Hepatotoxicity
	2.2.1.2 Greene et al. (2010): The Interest in Structural Alerts Grows
	2.2.1.3 Hewitt et al. (2013): A Scheme for Generating Structural Alerts for Human Hepatotoxicity
	2.2.1.4 Steinmetz et al. (2015): Focusing the Search
	2.2.1.5 Liu et al. (2015): Boosting the Validity of Structural Alerts

	2.2.2 Development of Pharmacophore Models
	2.2.2.1 Tsakovska et al. (2014)



	3 Fitting Together the Different Pieces of the Puzzle and Future Directions
	4 Conclusions
	References


