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    Chapter 10   

 In Silico Models for Acute Systemic Toxicity                     

     Julien     Burton    ,     Andrew     P.     Worth     ,     Ivanka     Tsakovska    , 
and     Antonia     Diukendjieva     

  Abstract 

   In this chapter, we give an overview of the regulatory requirements for acute systemic toxicity information 
in the European Union, and we review the availability of structure-based computational models that are 
available and potentially useful in the assessment of acute systemic toxicity. The most recently published 
literature models for acute systemic toxicity are also discussed, and perspectives for future developments in 
this fi eld are offered.  

  Key words     Acute systemic toxicity  ,   Regulation  ,   Organ-specifi c toxicity  ,   In silico model  

1      Introduction 

 Acute systemic toxicity comprises the general adverse effects that 
occur after a single or multiple exposure of an animal to a sub-
stance within 24 h and during an observation period of at least 
14 days. The substance may be administered orally, by inhalation, 
or dermally. 

 Acute mammalian toxicity tests are often the fi rst in vivo tox-
icity tests to be performed on a chemical. In recent years there 
have been considerable efforts to replace, reduce, or refi ne these 
animal tests by applying alternative approaches, including both 
in vitro and in silico models. An increasing number of models are 
available to predict acute mammalian toxicity. This is partly due to 
the fact that a reasonable number of datasets are openly available 
for modeling. However, the reliability of the in vivo data can be 
highly variable, and the metadata provided is often insuffi cient to 
determine the suitability of the data for modeling purposes. 
Another challenge is related to the multiple mechanisms leading 
to this complex effect, which is typically expressed as a single 
numerical value (LD 50  for oral and dermal toxicity; LC 50  for inha-
lational toxicity). In addition there are also differences between 
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the routes of administration and species, and different data should 
be modeled separately [ 1 ]. 

 Target organs, such as the liver, kidneys, heart, lungs, and 
brain, can be affected by exogenous chemicals to the extent that 
they cease to function. Thus, the use of QSAR models for organ/
system specifi c toxicity would be extremely helpful when predict-
ing acute systemic toxicity. A limited number of QSAR models for 
specifi c target organ and tissue effects are available. 

 The information obtained from acute systemic toxicity studies 
is used in the hazard assessment of chemicals occurring in food, 
industrial chemicals, biocides, pesticides, and cosmetics. In this 
chapter, we give an overview of the regulatory requirements for 
acute systemic toxicity information in the European Union, the 
software packages available for assessment of acute systemic toxic-
ity and organ- and system-specifi c toxicity, as well as the databases 
available for obtaining such data. Since comprehensive reviews of 
literature QSAR studies are available elsewhere [ 2 – 5 ], we focus 
here on some of the more recently published literature models for 
acute systemic toxicity. Some of these software and literature 
models are documented in the JRC’s QSAR Model Database 
(  http://qsardb.jrc.ec.europa.eu/qmrf/    ).  

2    Regulatory Context in the European Union 

 For the assessment of acute systemic toxicity, only in vivo tests are 
currently accepted by regulatory bodies (Table  1 ). However, 
in vivo acute systemic toxicity studies are prohibited for cosmetic 
substances and products [ 14 ].

   The endpoint measured in the majority of the standard assays 
is animal morbidity or death. Evident signs of toxicity (i.e., clear 
signs of toxicity indicating that exposure to the next highest con-
centration would cause severe toxicity in most animals within the 
observation period) are only used in the oral fi xed dose procedure 
(FDP), which causes less suffering and is, therefore, more humane. 

   Table 1  
  In vivo methods currently available for acute systemic toxicity   

 Exposure route  OECD  EU test method 

 Oral  TG 420: fi xed dose procedure [ 6 ]  B.1 bis [ 7 ] 
 TG 423: acute toxic class method [ 8 ] 
 TG 425: up and down procedure [ 9 ]  B.1 tris [ 7 ] 

 Dermal  TG 402 [ 10 ]  B.3 [ 7 ] 

 Inhalation  TG 403 [ 11 ]  B.2 [ 12 ] 
 TG 436 (acute toxic class method) [ 13 ]  B.52 [ 12 ] 

Julien Burton et al.
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 The assessment of acute systemic toxicity is one component in 
the safety evaluation of substances and represents a standard infor-
mation requirement within several pieces of EU chemicals legisla-
tion, including the Regulation on Classifi cation, Labelling and 
Packaging (CLP) of substances and mixtures [ 15 ], the Regulation 
concerning the Registration, Evaluation, Authorisation and 
Restriction of Chemicals (REACH) [ 16 ], the Biocidal Products 
Regulation [ 17 ], the Plant Protection Products Regulation [ 18 ], 
and the Cosmetic Products Regulation [ 14 ]. In preclinical drug 
development [ 19 ], however, these studies are no longer required 
to support fi rst clinical trials in man. The information needed can 
be obtained from appropriately conducted dose-escalation studies 
or short- duration dose ranging studies that defi ne a maximum tol-
erated dose in the general toxicity test species [ 20 ,  21 ]. Further 
information on the regulatory requirements in the EU is given in 
Prieto et al. [ 22 ].  

3    Software for Predicting Acute Systemic Toxicity 

 Several software tools capable of predicting endpoints related to 
systemic toxicity are available, as reviewed previously [ 23 ]. An 
updated list is given in Table  2  and some updates on the programs 
are described below.

   Among the commercial software programs covering a broad 
spectrum of systemic toxicological effects is ACD/Labs Percepta, 
which is developed and marketed by Advanced Chemistry develop-
ment Inc. (  http://www.acdlabs.com/    ). The platform has two 
modules related to systemic toxicity prediction—Acute Toxicity 
Prediction Module and Health Effects Prediction Module. The 
Acute Toxicity predictor has been built using experimental data for 
more than 100,000 compounds extracted from the Registry of 
Toxic Effects of Chemical Substances (RTECS) and former 
European Chemical Substances Information System (ESIS) data-
bases. It provides three different software components related to 
acute mammalian toxicity:

 ●    LD 50 —Provides predictions of LD 50  values for rats and mice 
according to various routes of administration. Prior to model-
ing, the original experimental data were converted to loga-
rithmic form (pLD 50 ) in order to maintain linear relationship 
with used descriptors. The fi nal prediction results returned to 
the user are converted back to LD 50  values (mg/kg). The pre-
dictive model for pLD 50  has been derived using GALAS 
(Global, Adjusted Locally According to Similarity) modeling 
methodology.  

 ●   Hazards—A knowledge-based expert system that identifi es 
and visualizes hazardous structural fragments.  

In Silico Models for Acute Systemic Toxicity
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 ●   Categories—Classifi es compounds into one of fi ve Globally 
Harmonised System (GHS) categories for acute oral toxicity.    

 The Health Effects module predicts the probability of a com-
pound having a health effect on a particular organ or organ sys-
tem (blood, cardiovascular system, gastrointestinal system, 
kidney, liver, and lungs). The models are based on data collected 
from chronic, sub-chronic, acute toxicity and carcinogenicity 
studies with adverse effects reported in particular organs or organ 
systems. 

 A common goal of toxicity prediction is to distinguish between 
toxicologically active and inactive compounds. Since multiple 
mechanisms are involved in systemic toxicity, this requires the 
availability of predictive tools that are able to cover a wide region 
of the activity space. This is the main feature of the expert systems 
that make assessments on the basis of structural alerts covering a 
spectrum of structural properties associated with the complex end-
point. One commonly used expert system, developed and mar-
keted by Lhasa Ltd (  http://www.lhasalimited.org/    ), is Derek 
Nexus which is a development of the former Derek for Windows 
(DfW). This contains knowledge rules derived from the known 
relationship between a given substructure and a toxicological effect 
of the molecule and applies these rules to predict potential toxico-
logical effects of compounds. Derek Nexus generates a prediction 
by comparing the structural features of the target compound with 
a toxicophore encoded as structural pattern(s) in its knowledge 
base. The fi nal predictions are derived from a reasoning scheme  
which takes into account the presence of a toxicophore in the 
query structure (‘structural alert’) and a limited number of calcu-
lated molecular properties, which, taken together, return an 
“uncertainty term” for the prediction itself. For some alerts, sup-
porting examples are provided and the system states whether the 
query compound already exists as an example in the knowledge 
base. Literature references are also included to enable the user to 
assess the applicability of the structural alert to the predicted struc-
ture and to allow for an expert knowledge assessment. Derek 
Nexus covers multiple endpoints, including hepatotoxicity, neph-
rotoxicity, and cardiotoxicity. 

 CASE Ultra (  http://www.multicase.com    /) is further devel-
opment of MCASE methodology and falls in the range of frag-
ment based QSAR expert systems [ 24 ]. The CASE Ultra model 
mainly consists of a set of “positive alerts” (biophores), and “deac-
tivating alerts” (biophobes), i.e., those fragments that are identi-
fi ed as statistically signifi cant for increasing/decreasing the activity. 
The improvement of CASE Ultra over its predecessor is related to 
the identifi ed alerts that are no longer limited to linear paths of 
limited size or limited branching pattern. In addition the training 
sets can be larger than 8000 molecules. The applicability domains 

Julien Burton et al.
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of individual toxicity alerts within the models quantitatively defi ne 
the necessary structural environment of the toxicity alerts. 

 The statistically based program TOPKAT (  http://accelrys.
com/    ) uses multiple QSARs on small and homogenous sets of 
data. It is now a part of QSAR, ADMET and Predictive Toxicology 
module within Biovia Discovery Studio platform. The rat oral 
LD 50  module in TOPKAT comprises 19 regression analyses devel-
oped using experimental values of approx. 4000 chemicals from 
RTECS, including pesticides and industrial chemicals. The rat oral 
LD 50  module in MCASE (named A56) is based on and comprises 
data for 7920 chemicals from the FDA, WHO, and NTP datasets. 
Tunkel and coworkers [ 25 ] compared the performance of the 
TOPKAT and MCASE rat LD 50  modules against an external test 
set of 73 organic compounds covering 32 chemical categories 
retrieved from submissions to the EPA High Production Volume 
(HPV) Challenge Program (  http://www.epa.gov/chemrtk/    ). 
The predictive accuracy of each software tool was assessed by 
applying the EPA’s New Chemical classifi cation approach (  http://
www.epa.gov/oppt/newchems/index.htm    ), from the  low- concern 
class (>2000 mg/kg) to the high-concern class (<15 mg/kg). 
While neither model was able to classify all 73 compounds, 
TOPKAT correctly classifi ed 67 % of the chemicals, while MCASE 
classifi ed 70 % correctly. However, it should be noted that the test 
set used was signifi cantly skewed toward “low concern” chemicals, 
which both models predicted correctly with a high degree of accu-
racy (82 % and 100 % correct for TOPKAT and MCASE, respec-
tively). Moreover, a high degree of false negatives was found for 
moderate and high concern HPV chemicals (TOPKAT, 72 %; 
MCASE, 100 %), suggesting that these programs are less reliable 
for the identifi cation of more toxic compounds. The authors also 
compared the model outputs against the GHS fi ve-tier scheme for 
classifi cation of rat oral acute toxicants (<5, 5–50, 50–300, 300–
2000, and 2000–5000 mg/kg), which is similar to the one adopted 
by EPA (<15, 15–50, 50–500, 500–2000, >2000 mg/kg). When 
compared against the GHS scheme, the ability of TOPKAT and 
MCASE to produce correct classifi cations was 73 % and 70 %, 
respectively, for the HPV test set chemicals, thereby changing 
slightly with respect to the EPA scheme, albeit enough to invert 
the rank order of these models. 

 VirtualToxLab is an in silico technology for estimating the 
toxic potential of chemicals [ 26 ] based on an automated protocol 
that simulates and quantifi es the binding of small molecules 
towards a series of proteins, known or suspected to trigger adverse 
effects. The interface to the technology allows building and 
uploading molecular structures, viewing and downloading results 
and rationalizing any prediction at the atomic level by interac-
tively analyzing the 3D binding mode of a compound with its tar-
get protein(s) in real- time. The VirtualToxLab has been used to 

In Silico Models for Acute Systemic Toxicity
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predict the toxic potential for over 2500 compounds and the free 
platform, OpenVirtualToxLab, is accessible (in client-server mode) 
over the Internet. It is free of charge for universities, governmen-
tal agencies, regulatory bodies, and nonprofi t organizations. 

 The LeadScope software (  http://www.leadscope.com    ) links 
chemical and biological data that allows exploration of large sets of 
chemical compounds, their properties, and biological activities. 
Chemical structures are organized in a taxonomy of familiar struc-
tural features each combined with common substituents—the 
common building blocks of medicinal chemistry [ 27 ]. LeadScope 
provides QSAR models for diverse physiological adverse effects 
including cardiological, hepatobiliary, and urinary endpoints. 

 Other software tools available for predicting acute toxicity 
(LD 50 ) to rat/mouse are also available, such as TerraQSAR 
(  http://www.terrabase- inc.com/    ), ADMET Predictor (  http://
www.simulations- plus.com    ), Molcode Toolbox (  http://molcode.
com/    ). The TerraQSAR software is based on neural network 
methodology and includes models for predicting both oral and 
intravenous LD 50  values in mice and rats. ADMET Predictor 
includes a number of in-built models for ADMET, and allows new 
predictive models to be built from the user’s data. ADMET 
Predictor’s Toxicity Module provides predictions of various toxic-
ity endpoints including hepatotoxicity, carcinogenicity, acute rat 
toxicity, and cardiotoxicity. Molcode Toolbox has a range of mod-
ules for predicting toxicological endpoints, including intravenous 
acute LD 50  values and in vitro cytotoxicity (IC 50  values) (from the 
Registry of Cytotoxicity). The models are well documented and 
the underlying experimental data is made available with references 
and structure fi les (MDL molfi les).  

4    Databases Containing Information on Acute Systemic Toxicity 

 Sources of rat LD 50  values which may be suitable for the develop-
ment of QSARs are listed in Table  3 . Some recent updates are 
discussed in the section below.

   In particular, Acutoxbase [ 29 ] was developed in the context 
of the EU FP6 project ‘A-Cute-Tox’ (  http://www.acutetox.eu/    ), 
which aimed to optimize and “pre-validate” an in vitro testing 
strategy for predicting acute human toxicity ([ 30 ,  31 ]; Prieto and 
Kinsner- Ovaskainen 2015). While the database is not available, 
the in vitro and animal data are published in several publications 
[ 30 – 32 ]. 

 Recently the COSMOS database has been developed as a part 
of the COSMOS project (  http://www.cosmostox.eu/    ), one of 
seven projects forming the Seurat-1 research cluster (  http://
www.seurat-1.eu/    ). Version 1 of the COSMOS database (  http://
cosmosdb.cosmostox.eu/    ) contains 12,538 toxicity studies for 

Julien Burton et al.
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1660 compounds across 27 endpoints, including acute toxicity 
data for 1697 compounds tested on different animal species, as 
well as in vitro data. 

 The Hazardous Substances Data Bank (HSDB) is a part of 
NLM’s Toxicology Data Network (TOXNET) [ 33 ]. It contains 
chemical substance information with one record for each specifi c 
chemical or substance, or for category of chemicals or substances. 
HSDB has approximately 5600 chemicals and substances, with 
information for toxicity and human exposure. All data comes from 
public scientifi c sources. HSDB’s content is peer-reviewed by a 
group of experts. 

 The Registry of Toxic Effects of Chemical Substances (RTECS) 
database includes basic toxicity information for: prescription and 
non-prescription drugs, food additives, pesticides, fungicides, her-
bicides, solvents, diluents, chemical wastes, reaction products of 
chemical waste, and substances used in industrial and household 
situations. It covers six categories of toxicity data including acute 
toxicity data. In vitro toxicology data has been added as well. 
Accelrys now produces the RTECS fi les using existing data selec-
tion criteria and rules established by NIOSH  (  http://accelrys.
com/products/databases    ). 

 In order to be useful for QSAR development, datasets should 
be fi rst curated, i.e., the accuracy of the structures should be veri-
fi ed and the quality of biological data should be reviewed. It is 
useful to provide a reference to the source of the experimental 
data. In addition, inorganic and organometallic compounds, salts, 
and compound mixtures are often removed from the analysis. For 
the development of QSARs, LD 50  values should be converted to 
log[1/(mol/kg)] (if originally expressed as mol/kg or mg/kg). 
Finally, approximate LD 50  values should be converted to discrete 
values, and multiple LD 50  values from different labs/experiments 
should be converted to a single value. The ChemIDplus and 
ZEBET databases have been recently employed as data sources for 
QSAR analyses [ 34 ,  35 ].  

5    Prediction of Organ-Specifi c and System-Specifi c Toxicity 

   Some currently available software tools (e.g., TOPKAT and 
MCASE) are useful for predicting acute toxicity in categorical 
terms (e.g., in terms of GHS classifi cations). The performance of 
different software tools in predicting acute toxicity has been inves-
tigated [ 36 ,  37 ]. In these studies, ACD and T.E.S.T. have per-
formed well. 

 In the scientifi c literature, local QSAR models have been gen-
erated for sets of congeneric compounds (organophosphates, aro-
matic amines, anilines, etc.) and are scattered over many original 
publications. Some of these studies have also explored the use of 

5.1  Ability to Predict 
In Vivo Toxicity

In Silico Models for Acute Systemic Toxicity
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in vitro data as additional descriptors in the derivation of so-called 
quantitative structure activity-activity relationships, QSAAR [ 38 ]. 
QSAAR modeling revealed good potential for acute toxicity pre-
diction, particularly in cases when a signifi cant correlation exists 
between in vivo data (LD 50 ) and in vitro cytotoxicity (IC 50 ), and 
the additional inclusion of physicochemical parameters serves to 
improve the correlation. In practical terms, QSAAR could be par-
ticularly useful if high-throughput screening methods are used to 
generate the in vitro data. 

 Despite their limited applicability when taken individually, 
local QSAR models might be usefully combined into an expert 
system for toxicity predictions. As a part of the efforts to develop 
global QSAR models for acute toxicity Raevsky and coworkers 
[ 39 ] proposed the so-called Arithmetic Mean Toxicity (AMT) 
modeling approach, which produces local models based on a 
k-nearest neighbors approach. Arithmetic mean toxicity values of 
one or more pairs of analogues (nearest neighbors) are considered 
as the toxicity of the chemical of interest. Recently a classifi cation 
model based on 436 Munro database chemicals and developed 
using Dragon descriptors has been proposed as a tool for chemical 
screening [ 40 ]. Kleandrova et al. [ 3 ] have developed a multitask-
ing (mtk) QSTR model based on ANN (artifi cial neural networks) 
for simultaneous prediction of acute  toxicity by considering differ-
ent routes of administration, different breeds of laboratory ani-
mals, and the reliability of the experimental conditions. The model 
is based on a diverse dataset comprising 1494 chemicals retrieved 
from CHEMBL (  http://www.ebi.ac.uk/chembldb    ). 

 A consensus approach has been exploited in some studies 
where the models are built by using a combinatorial QSAR mod-
eling approach, including multiple descriptors and employing 
several statistical modeling methods. It has been claimed that the 
predictive accuracy of consensus QSAR models is superior to the 
individual ones [ 34 ,  41 ]. In addition, several research studies 
[ 35 ,  42 ,  43 ] have demonstrated the ability to improve quantita-
tive predictions for structurally diverse datasets when high 
throughput bioactivity data are used in combination with tradi-
tional molecular descriptors. This can also be regarded as an 
example of the QSAAR approach. These hybrid approaches and 
their underlying datasets are publicly available via the ChemBench 
web portal (  https://chembench.mml.unc.edu/    ).  

   The feasibility of using in vitro cytotoxicity data for the prediction 
of in vivo acute toxicity has been investigated in a number of 
research programs [ 28 ,  44 ,  45 ]. Over 70 % correlation has been 
established between in vitro basal cytotoxicity and rodent LD 50  val-
ues [ 46 ]. The applicability of 3T3 Neutral Red Uptake Cytotoxicity 
Assay for the identifi cation of substances with an LD 50  > 2000 mg/
kg has been evaluated by the EURL ECVAM Scientifi c Advisory 

5.2  Ability to Predict 
Non-apical Toxicities

Julien Burton et al.

http://www.ebi.ac.uk/chembldb
https://chembench.mml.unc.edu/


187

   Table 3  
  Databases containing acute toxicity information   

 Database  Availability  Information 

 Acutoxbase, linked to the EU 
FP6 project ‘A-Cute-Tox’; 
  http://www.acutetox.eu/     

 Database not available, but 
the data are included in 
several publications (see 
text) 

 The following data are available for 97 
reference chemicals (i.e., 52 % drugs, 
31 % industrial chemicals, 12 % 
pesticides, 5 % others): 

 •In vitro: approx. 100 in vitro assays 
including general acute cytotoxicity, 
metabolism- mediated toxicity, 
biokinetics, and organ-specifi c toxicity. 

 •In vivo: Over 2200 LD 50  values in 
rodents (rat and mouse) and other 
animals (e.g., guinea pig, dog) with 
various administration routes (oral, 
intravenous, etc.) compiled from 
published literature. 

 For 97 reference chemicals, nearly 2800 
human acute poisoning cases from 
clinical/forensic reports are also 
available. 

 COSMOS Database;   http://
cosmosdb.cosmostox.eu/     

 Freely available through the 
Internet after registration 

 Includes US FDA PAFA acute 
toxicity data. 

 CEBS, developed by the US 
NIEHS;   http://cebs.niehs.
nih.gov/     

 Freely available through the 
Internet 

 Includes in vivo study data and acute 
dose of a small number of known 
hepatotoxicants to rat. 

 ChemIDplus, developed by 
the US NLM;   http://
chem.sis.nlm.nih.gov/
chemidplus/     

 Freely available through 
the Internet, 
structure-searchable 

 Toxicity data is available for over 
400,000 chemical records, of which 
over 300,000 include chemical 
structures that are retrieved from 
TOXNET ®  (TOXicology Data 
NETwork;   http://toxnet.nlm.nih.
gov    ). It includes HSDB (Hazardous 
Substances Data Bank, an older subset 
of the RTECS database). A search for 
rat and mouse oral LD 50  values found 
15,866 and 33,009 records, 
respectively. 

 Food Safety Acute Toxicity 
Database;   https://www.
leadscope.com/toxicity_
databases/
regulatory_databases/     

 Commercial  Contains acute oral toxicity (LD 50 ) data 
from US FDA CFSAN PAFA database 
for1070 food additives and 1633 
tests. 

 Test systems include mainly 
 •Rats: 950 chemicals 
 •Mice: 366 chemicals 
 Other test systems include rabbits, 

guinea pigs, dogs, and monkey. 

(continued)

In Silico Models for Acute Systemic Toxicity
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Table 3
(continued)

 Database  Availability  Information 

 RTECS, originally compiled 
and maintained (until 
2001) by the US NIOSH 
and currently maintained 
by Accelrys Technologies. 
Structure- searchable 
through the Accelrys 
Toxicity Database;   http://
accelrys.com/products/
databases/bioactivity/
toxicity.html     

 Also searchable via other 
databases including the 
Leadscope Toxicity 
Database;   http://www.
leadscope.com/databases/     

 Commercial  Rat acute oral toxicity (LD 50 ) and acute 
inhalation toxicity (LC 50 ) data are 
compiled from the open scientifi c 
literature for approx. 7000 
compounds (organic, inorganic and 
mixtures), including approx. 4000 
organic compounds. 

 HSDB—TOXNET database; 
  http://toxnet.nlm.nih.gov     

 Freely available through the 
internet 

 Toxicology database that focuses on 
potentially hazardous chemicals. 
Contains nonhuman toxicity values 
for almost 3000 chemicals. 

 Registry of Cytotoxicity (RC) 
database 

 Freely available on request 
from BfR ZEBET 
(zebet@bfr.bund.de) 

 Based on the publication by Halle [ 28 ], 
this comprises rodent acute oral LD50 
values and published IC50 values 
from diverse in vitro cytotoxicity 
assays on approximately 550 chemicals 

   CEBS  chemical effects in biological systems,  HSDB  Hazardous Substances Data Bank,  RTECS  registry of toxic effects 
of chemical substances;  TOXNET NLM’s  Toxicology Data Network,  US NLM  US National Library of Medicine,  US 
NIEHS  US National Institute of Environmental Health Sciences,  US NIOSH  US National Institute of Occupational 
Safety and Health,  BfR ZEBET  Centre for Documentation and Evaluation of Alternatives to Animal Experiments of the 
German Federal Institute for Risk Assessment  

Committee (ESAC). It was recommended however that the results 
should always be used in combination with other information 
sources. For instance, the assay is recommended as a component of 
an Integrated Approach to Testing and Assessment (IATA) [ 47 ]. 
A reason for the absence of a clear relationship between basal cyto-
toxicity and in vivo acute toxicity could be that specifi c organ tox-
icity is the most sensitive parameter for acute toxicity. Common 
sensitive systems and organs include nervous, cardiovascular, 
immune system, kidneys and liver, lungs and blood. IATA pro-
posed for acute systemic toxicity are a combination of complemen-
tary approaches (in vitro, ex vivo, in silico, in chemico) that address 
functional mechanistic endpoints tied to adverse outcomes of reg-
ulatory concern [ 48 ]. 

Julien Burton et al.
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 As summarized in Table  4 , there is a limited number of literature 
models for predicting toxicities at tissue and organ levels. A list of 
software applications is provided in Table  2 . They are based on 
expert system or regression/categorical QSAR models. In the case 
of ligand–protein interactions, molecular modeling approaches 
are mainly used. Among the commonly used software tools, 
Derek Nexus provides over 500 structural alerts for a range of 
organ and system-specifi c toxicities, and other miscellaneous end-
points. Models for predicting liver toxicity are further covered in 
Chapter   11     (Hewitt et al.).

   Some of these models are based on the concept of reactivity- 
based toxicity. The covalent binding of reactive electrophiles to 
cellular targets (i.e., nucleophilic sites of macromolecules) has the 
potential to initiate a chain of biological effects (e.g., depletion of 
glutathione and protein thiols) resulting in specifi c organ and sys-
tem toxicities. 

 Among the few comprehensive studies covering a range of 
organ toxicities and relying on a broad structural space in the train-
ing set are the models published by Matthews et al. [ 49 ]. These 
models were developed for urinary tract toxicities of drugs. For 
each organ, a number of toxicity endpoints were considered in the 
QSAR analysis. The investigation utilizes four software programs: 
MC4PC (versions 1.5 and 1.7); BioEpisteme (version 2.0); MDL-
QSAR (version 2.2); Leadscope Predictive Data Miner (LPDM 
version 2.4). The four QSAR programs were demonstrated to be 
complementary and enhanced performance was obtained by com-
bining predictions from two programs. The best QSAR models 
exhibited an overall average 92 % coverage, 87 % specifi city, and 39 
% sensitivity. These results support the view that a consensus pre-
diction strategy provides a means of optimizing predictive ability. 

 In the work of Myshkin et al. [ 51 ], a detailed ontology of toxic 
pathologies for 19 organs was created from the literature in a con-
sistent way to capture precise organ toxicity associations of drugs, 
industrial, environmental, and other compounds. Models for 
nephrotoxicity and for more specifi c endpoints related to these 
organ injuries were developed using a recursive partitioning algo-
rithm. The models performed better at the prediction of distinct 
organ toxicity subcategories than general organ toxicity, refl ecting 
the well- known tendency of QSAR models to have a better predic-
tive performance for more specifi c endpoints. 

 In a more recent study, Lee et al. [ 50 ] present QSAR models 
for three common patterns of drug-induced kidney injury, i.e., 
tubular necrosis, interstitial nephritis, and tubulo-interstitial 
nephritis. Binary classifi cation models of nephrotoxin versus non-
nephrotoxin with eight fi ngerprint descriptors were developed 
based on heterogeneous pharmacological compounds data. Two 
types of data sets were used for construction of the training set, 
i.e., parent compounds of pharmaceuticals (251 nephrotoxins and 

In Silico Models for Acute Systemic Toxicity
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387 non-nephrotoxins) and their major urinary metabolites (307 
nephrotoxins and 233 non- nephrotoxins). Thus the study refl ects 
the fact that the nephrotoxicity of a pharmacological compound is 
induced by the parent compound as well as its metabolites. The 
results of a tenfold cross- validation and external validation proce-
dures showed a high accuracy of the models (better than 83 % for 
external validation sets). 

 For kidney toxicity, local QSARs have been developed for spe-
cifi c chemical classes, such as the haloalkenes. These high-volume 
chemicals used in industrial, synthetic, and pharmaceutical applica-
tions are common environmental pollutants. Many haloalkenes are 
known to be nephrotoxic in rodents after bioactivation via the cys-
teine conjugate beta-lyase pathway, which is triggered by forma-
tion of hepatic glutathione S-conjugates, a reaction catalyzed by 
cytosolic and microsomal glutathione transferases [ 68 ]. The study 
by Jolivette and Anders [ 53 ] relates the nephrotoxicity of nine 
haloalkenes to their lowest unoccupied molecular orbital energies, 
 E  LUMO , refl ecting their propensity for conjugation reactions cata-
lyzed by glutathione transferase enzymes. 

 Very few QSAR studies of neurotoxicity have been published. 
An example is the work of Estrada et al. [ 57 ]. Their models are 
based on the TOPS-MODE approach, which provides a means of 
estimating the contributions to neurotoxicity in rats and mice of a 
series of structural fragments. 

 Organophosphorus (OP) compounds are well-known neuro-
toxic agents. These chemicals are potent inhibitors of serine ester-
ases, the most critical of which is the widely distributed nervous 
system enzyme acetylcholinesterase (AChE). This well established 
mechanism of action underlies the usefulness of molecular model-
ing approaches like 3D QSAR and pharmacophore modeling to 
predict the inhibition potency of OPs. Several published models 
are based on these approaches [ 54 ,  55 ,  58 ,  63 ]. 

 Among the commonly used software tools, Derek Nexus 
estimates neurotoxicity using a number of structural alerts: 
gamma- diketone or precursor, acrylamide or glycidamide, nitro-
imidazole, carbon disulfi de or precursor, pyrethroid, 1-methyl-1,
2,3,6- tetrahydropyridine, lead or lead compound, and organo-
phosphorus ester. 

 Few studies have been published in relation to other organs/
systems. Immunotoxicity can refer to immunosuppression in 
humans (caused, for example, by benzene and halogenated aro-
matic hydrocarbons), autoimmune disease (for example the pes-
ticide dieldrin induces an autoimmune response against red blood 
cells, resulting in hemolytic anemia), and allergenicity (chemicals 
which stimulate the immune system can cause allergies or hyper-
sensitivity reactions such as anaphylactic shock). Thus, immuno-
toxicity refers to a wide variety of biological effects, many of 
which involve complex biochemical networks. Tenorio-Borroto 
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et al. [ 62 ] have trained and validated a multi target-QSAR model 
for high- throughput screening of drug immunotoxicity using 
TOPS-MODE approach. Yuan et al. [ 63 ] have studied the key 
molecular features of polychlorinated dibenzodioxins, polychlo-
rinated dibenzofurans, and polychlorinated biphenyls for deter-
mining binding affi nity to the aryl hydrocarbon receptor 
(AhR)—an intracellular receptor which has been correlated to 
immunotoxicity, thymic atrophy, weight loss and acute lethality. 
CoMFA (Comparative Molecular Field Analysis) was applied to 
generate 3D QSAR models. In a study by Hui-Ying et al. [ 64 ], 
linear relationships between immunotoxicity values (log ED 50 ) 
and other biological activities of polychlorinated diphenyl ethers 
and their structural descriptors were established by multiple lin-
ear regression. It was shown that the structural descriptors derived 
from molecular electrostatic potentials together with the number 
of the substituting chlorine atoms on the two phenyl rings can be 
used to express the quantitative structure–property relationships 
of polychlorinated diphenyl ethers. 

 Evaluation of hematotoxicity is important step in early drug 
design. Particularly it is a common dose-limiting toxicity associated 
with anticancer drugs. The fi rst attempt to build in silico models to 
predict the myelosuppressive activity of drugs from their chemical 
structure was made by Crivori et al. [ 65 ]. Two sets of potentially 
relevant descriptors for modeling myelotoxicity (i.e., 3D Volsurf 
and 2D structural and electrotopological E-states descriptors) were 
selected and PCA (Principal Component Analysis) was carried out 
on the entire set of data (38 drugs). The fi rst two principal compo-
nents discriminated the highest from the least myelotoxic com-
pounds with a total accuracy of 95 %. In addition, a highly predictive 
PLS (Partial Least Squares) model was developed by correlating a 
selected subset of in vitro hematotoxicity data with Volsurf descrip-
tors. After variable selection, the PLS analysis resulted in a one-
latent-variable model with  r  2  of 0.79 and  q  2  of 0.72. 

 In contrast to other organ-specifi c effects, the in silico model-
ing of cardiotoxicity has been a rather productive fi eld. This is 
because drug cardiotoxicity is one of the main reasons for drug 
related fatalities and subsequent drug withdrawals. In recent years, 
the hERG channel has been extensively investigated in the fi eld of 
cardiotoxicity prediction as it has been found to play a major role 
in both cardiac electrophysiology and drug safety. Because hERG 
assays and QT animal studies are expensive and time consuming, 
numerous in silico models have been developed for use in early 
drug discovery. The earliest attempts to identify whether a mole-
cule is a hERG blocker include a set of simple rules based on 
structural and functional features, but these rules are not always 
reliable predictors for identifying hERG blockers. In order to give 
more accurate predictions of hERG blockage, a wide range of 
QSAR models have been developed based on a variety of statistical 
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techniques and machine learning methods, including multiple 
linear regression, partial least square (PLS), k-nearest neighbor 
algorithm (kNN), linear discriminant analysis (LDA), artifi cial 
neural networks (ANN), support vector machine (SVM), self-
organizing mapping (SOM), recursive partitioning (RP), random 
forest, genetic algorithm, and naive Bayesian  classifi cation (NBC). 
Most of these QSAR models are classifi ers and only a few regres-
sion models have been reported. 

 Pharmacophore modeling has also been employed to develop 
ligand-based prediction models of hERG channel blockers. Since 
the crystal structure of the hERG channel is not available, all 
structure- based studies on its blockage are performed on homol-
ogy models and are more qualitative and descriptive rather than 
predictive. For example they have been used for molecular dock-
ing, molecular dynamics simulations and free energy calculations 
to explore the hERG-blocker interactions. 

 Reviews by [ 66 ] and Villoutreix and Taboureau [ 67 ] sum-
marize the advances and challenges in computational studies of 
hERG channel blockage. It is expected that the development of 
in silico models for hERG-related cardiotoxicity will stay active in 
the coming years in order to design drugs without undesirable 
side effects.   

6    Conclusions 

 The modeling of acute systemic toxicity has largely focused on 
QSARs for predicting LD 50  values and for categorizing chemicals 
according to ranges of LD 50  values. For these purposes, which are 
potentially useful in the regulatory assessment of chemicals, the in 
silico models seem to perform as well as in vitro cytotoxicity meth-
ods. The developments in this fi eld can be attributed to the avail-
ability of extensive LD 50  datasets and a wide range of machine 
learning techniques. Many of these datasets, and software tools 
derived from the datasets, are in the public domain. 

 The emergence of mechanism-based toxicology (e.g., adverse 
outcome pathways) is a tremendous opportunity to improve cur-
rent models with better biological knowledge. Indeed, the time of 
global (and scientifi cally dubious) QSARs predicting LD 50  based 
on chemical properties for the whole chemical space is probably 
coming to an end. Future models should target specifi c toxicity 
mechanisms on the basis of current biological knowledge. 
Historically, this was actually done implicitly by focusing model 
building on very limited chemical classes (supposedly acting via 
the same mechanism). According to this approach, global LD 50  
models would be the sum of a multitude of accurate predictors 
dedicated to describe well- defi ned mechanisms of action. In this 
context, the use of biological (in vitro) descriptors in combination 
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with traditional molecular descriptors provides a promising means 
of building local QSAARs based on mechanistically based chemi-
cal classes. 

 In general, the modeling of organ-specifi c and system-specifi c 
effects represents an underdeveloped fi eld, ripe for future research 
but far from regulatory applications, which typically rely on the 
assessment of lethality. A notable exception concerns the modeling 
of receptors and ion channels implicated in specifi c organ patholo-
gies, such as the hERG channel in relation to cardiotoxicity. The 
development of models for upstream (molecular and cellular) 
effects represents a more scientifi cally meaningful exercise which 
also promises to unify the traditional regulatory distinction between 
the acute and repeat dose toxicity. 

 A future research initiative could include, for example, reex-
amination of the datasets for hepatobiliary and urinary tract toxici-
ties of drugs with a view to developing more accessible models and 
assessing their applicability to chemicals other than pharmaceuti-
cals. In addition, the concept of reactivity-based toxicity, now 
established as a plausible mechanism for hepatocyte toxicity, could 
be further exploited using data from hepatocyte cultures and cell 
lines. In some areas, such as immunotoxicity, short-term progress 
seems unlikely. The complexity of such effects probably means that 
systems biology approaches will be more appropriate. 

 In general, the development of models for organ-specifi c and 
system-specifi c effects will depend on a new generation of data-
bases, such as the COSMOS database, which contain high quality 
data that are structured and annotated according to meaningful 
chemical and biological ontologies.     
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