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In Silico Models for Acute Systemic Toxicity
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Abstract

In this chapter, we give an overview of the regulatory requirements for acute systemic toxicity information
in the European Union, and we review the availability of structure-based computational models that are
available and potentially useful in the assessment of acute systemic toxicity. The most recently published
literature models for acute systemic toxicity are also discussed, and perspectives for future developments in
this field are offered.
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1 Introduction

Acute systemic toxicity comprises the general adverse effects that
occur after a single or multiple exposure of an animal to a sub-
stance within 24 h and during an observation period of at least
14 days. The substance may be administered orally, by inhalation,
or dermally.

Acute mammalian toxicity tests are often the first in vivo tox-
icity tests to be performed on a chemical. In recent years there
have been considerable efforts to replace, reduce, or refine these
animal tests by applying alternative approaches, including both
in vitro and in silico models. An increasing number of models are
available to predict acute mammalian toxicity. This is partly due to
the fact that a reasonable number of datasets are openly available
for modeling. However, the reliability of the in vivo data can be
highly variable, and the metadata provided is often insufficient to
determine the suitability of the data for modeling purposes.
Another challenge is related to the multiple mechanisms leading
to this complex effect, which is typically expressed as a single
numerical value (LDjs, for oral and dermal toxicity; LCs, for inha-
lational toxicity). In addition there are also differences between
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the routes of administration and species, and different data should
be modeled separately [1].

Target organs, such as the liver, kidneys, heart, lungs, and
brain, can be affected by exogenous chemicals to the extent that
they cease to function. Thus, the use of QSAR models for organ/
system specific toxicity would be extremely helpful when predict-
ing acute systemic toxicity. A limited number of QSAR models for
specific target organ and tissue effects are available.

The information obtained from acute systemic toxicity studies
is used in the hazard assessment of chemicals occurring in food,
industrial chemicals, biocides, pesticides, and cosmetics. In this
chapter, we give an overview of the regulatory requirements for
acute systemic toxicity information in the European Union, the
software packages available for assessment of acute systemic toxic-
ity and organ- and system-specific toxicity, as well as the databases
available for obtaining such data. Since comprehensive reviews of
literature QSAR studies are available elsewhere [2-5], we focus
here on some of the more recently published literature models for
acute systemic toxicity. Some of these software and literature
models are documented in the JRC’s QSAR Model Database
(http://qsardb.jrc.ec.europa.eu/qmrf/).

2 Regulatory Context in the European Union

For the assessment of acute systemic toxicity, only in vivo tests are
currently accepted by regulatory bodies (Table 1). However,
in vivo acute systemic toxicity studies are prohibited for cosmetic
substances and products [14].

The endpoint measured in the majority of the standard assays
is animal morbidity or death. Evident signs of toxicity (i.e., clear
signs of toxicity indicating that exposure to the next highest con-
centration would cause severe toxicity in most animals within the
observation period) are only used in the oral fixed dose procedure
(FDP), which causes less suffering and is, therefore, more humane.

Table 1
In vivo methods currently available for acute systemic toxicity

Exposure route OECD EU test method

Oral TG 420: fixed dose procedure [6] B.1 bis [7]
TG 423: acute toxic class method [8]
TG 425: up and down procedure [9] B.1 tris [7]

Dermal TG 402 [10] B.3[7]

Inhalation TG 403 [11] B.2[12]
TG 436 (acute toxic class method) [13] B.52 [12]
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The assessment of acute systemic toxicity is one component in
the safety evaluation of substances and represents a standard infor-
mation requirement within several pieces of EU chemicals legisla-
tion, including the Regulation on Classification, Labelling and
Packaging (CLP) of substances and mixtures [15], the Regulation
concerning the Registration, Evaluation, Authorisation and
Restriction of Chemicals (REACH) [16], the Biocidal Products
Regulation [17], the Plant Protection Products Regulation [18],
and the Cosmetic Products Regulation [14]. In preclinical drug
development [19], however, these studies are no longer required
to support first clinical trials in man. The information needed can
be obtained from appropriately conducted dose-escalation studies
or short-duration dose ranging studies that define a maximum tol-
erated dose in the general toxicity test species [20, 21]. Further
information on the regulatory requirements in the EU is given in
Prieto et al. [22].

3 Software for Predicting Acute Systemic Toxicity

Several software tools capable of predicting endpoints related to
systemic toxicity are available, as reviewed previously [23]. An
updated list is given in Table 2 and some updates on the programs
are described below.

Among the commercial software programs covering a broad
spectrum of systemic toxicological effects is ACD/Labs Percepta,
which is developed and marketed by Advanced Chemistry develop-
ment Inc. (http://www.acdlabs.com/). The platform has two
modules related to systemic toxicity prediction—Acute Toxicity
Prediction Module and Health Effects Prediction Module. The
Acute Toxicity predictor has been built using experimental data for
more than 100,000 compounds extracted from the Registry of
Toxic Effects of Chemical Substances (RTECS) and former
European Chemical Substances Information System (ESIS) data-
bases. It provides three different software components related to
acute mammalian toxicity:

e LDsy—Provides predictions of LDj, values for rats and mice
according to various routes of administration. Prior to model-
ing, the original experimental data were converted to loga-
rithmic form (pLDsp) in order to maintain linear relationship
with used descriptors. The final prediction results returned to
the user are converted back to LDs, values (mg/kg). The pre-
dictive model for pLD;s, has been derived using GALAS
(Global, Adjusted Locally According to Similarity) modeling
methodology.

e Hazards—A knowledge-based expert system that identifies
and visualizes hazardous structural fragments.
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e Categories—Classifies compounds into one of five Globally
Harmonised System (GHS) categories for acute oral toxicity.

The Health Effects module predicts the probability of a com-
pound having a health effect on a particular organ or organ sys-
tem (blood, cardiovascular system, gastrointestinal system,
kidney, liver, and lungs). The models are based on data collected
from chronic, sub-chronic, acute toxicity and carcinogenicity
studies with adverse effects reported in particular organs or organ
systems.

A common goal of toxicity prediction is to distinguish between
toxicologically active and inactive compounds. Since multiple
mechanisms are involved in systemic toxicity, this requires the
availability of predictive tools that are able to cover a wide region
of the activity space. This is the main feature of the expert systems
that make assessments on the basis of structural alerts covering a
spectrum of structural properties associated with the complex end-
point. One commonly used expert system, developed and mar-
keted by Lhasa Ltd (http://www.lhasalimited.org/), is Derek
Nexus which is a development of the former Derek for Windows
(DfW). This contains knowledge rules derived from the known
relationship between a given substructure and a toxicological effect
of the molecule and applies these rules to predict potential toxico-
logical effects of compounds. Derek Nexus generates a prediction
by comparing the structural features of the target compound with
a toxicophore encoded as structural pattern(s) in its knowledge
base. The final predictions are derived from a reasoning scheme
which takes into account the presence of a toxicophore in the
query structure (‘structural alert’) and a limited number of calcu-
lated molecular properties, which, taken together, return an
“uncertainty term” for the prediction itself. For some alerts, sup-
porting examples are provided and the system states whether the
query compound already exists as an example in the knowledge
base. Literature references are also included to enable the user to
assess the applicability of the structural alert to the predicted struc-
ture and to allow for an expert knowledge assessment. Derek
Nexus covers multiple endpoints, including hepatotoxicity, neph-
rotoxicity, and cardiotoxicity.

CASE Ultra (http://www.multicase.com/) is further devel-
opment of MCASE methodology and falls in the range of frag-
ment based QSAR expert systems [24]. The CASE Ultra model
mainly consists of a set of “positive alerts” (biophores), and “deac-
tivating alerts” (biophobes), i.e., those fragments that are identi-
fied as statistically significant for increasing/decreasing the activity.
The improvement of CASE Ultra over its predecessor is related to
the identified alerts that are no longer limited to linear paths of
limited size or limited branching pattern. In addition the training
sets can be larger than 8000 molecules. The applicability domains
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of individual toxicity alerts within the models quantitatively define
the necessary structural environment of the toxicity alerts.

The statistically based program TOPKAT (http://accelrys.
com/) uses multiple QSARs on small and homogenous sets of
data. It is now a part of QSAR, ADMET and Predictive Toxicology
module within Biovia Discovery Studio platform. The rat oral
LDsy module in TOPKAT comprises 19 regression analyses devel-
oped using experimental values of approx. 4000 chemicals from
RTECS, including pesticides and industrial chemicals. The rat oral
LDsy module in MCASE (named A56) is based on and comprises
data for 7920 chemicals from the FDA, WHO, and NTDP datasets.
Tunkel and coworkers [25] compared the performance of the
TOPKAT and MCASE rat LDs, modules against an external test
set of 73 organic compounds covering 32 chemical categories
retrieved from submissions to the EPA High Production Volume
(HPV) Challenge Program (http://www.epa.gov/chemrtk/).
The predictive accuracy of each software tool was assessed by
applying the EPA’s New Chemical classification approach (http://
www.epa.gov,/oppt/newchems/index.htm), from the low-concern
class (>2000 mg/kg) to the high-concern class (<15 mg/kg).
While neither model was able to classify all 73 compounds,
TOPKAT correctly classified 67 % of the chemicals, while MCASE
classified 70 % correctly. However, it should be noted that the test
set used was significantly skewed toward “low concern” chemicals,
which both models predicted correctly with a high degree of accu-
racy (82 % and 100 % correct for TOPKAT and MCASE, respec-
tively). Moreover, a high degree of false negatives was found for
moderate and high concern HPV chemicals (TOPKAT, 72 %;
MCASE, 100 %), suggesting that these programs are less reliable
for the identification of more toxic compounds. The authors also
compared the model outputs against the GHS five-tier scheme for
classification of rat oral acute toxicants (<5, 5-50, 50-300, 300-
2000, and 2000-5000 mg,/kg), which is similar to the one adopted
by EPA (<15, 15-50, 50-500, 500-2000, >2000 mg/kg). When
compared against the GHS scheme, the ability of TOPKAT and
MCASE to produce correct classifications was 73 % and 70 %,
respectively, for the HPV test set chemicals, thereby changing
slightly with respect to the EPA scheme, albeit enough to invert
the rank order of these models.

VirtualToxLab is an in silico technology for estimating the
toxic potential of chemicals [26] based on an automated protocol
that simulates and quantifies the binding of small molecules
towards a series of proteins, known or suspected to trigger adverse
effects. The interface to the technology allows building and
uploading molecular structures, viewing and downloading results
and rationalizing any prediction at the atomic level by interac-
tively analyzing the 3D binding mode of a compound with its tar-
get protein(s) in real-time. The VirtualToxLab has been used to
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predict the toxic potential for over 2500 compounds and the free
platform, OpenVirtualToxLab, is accessible (in client-server mode)
over the Internet. It is free of charge for universities, governmen-
tal agencies, regulatory bodies, and nonprofit organizations.

The LeadScope software (http://www.leadscope.com) links
chemical and biological data that allows exploration of large sets of
chemical compounds, their properties, and biological activities.
Chemical structures are organized in a taxonomy of familiar struc-
tural features each combined with common substituents—the
common building blocks of medicinal chemistry [27]. LeadScope
provides QSAR models for diverse physiological adverse effects
including cardiological, hepatobiliary, and urinary endpoints.

Other software tools available for predicting acute toxicity
(LDsg) to rat/mouse are also available, such as TerraQSAR
(http:/ /www.terrabase-inc.com/), ADMET Predictor (http://
www.simulations-plus.com), Molcode Toolbox (http://molcode.
com/). The TerraQSAR software is based on neural network
methodology and includes models for predicting both oral and
intravenous LDj5, values in mice and rats. ADMET Predictor
includes a number of in-built models for ADMET, and allows new
predictive models to be built from the user’s data. ADMET
Predictor’s Toxicity Module provides predictions of various toxic-
ity endpoints including hepatotoxicity, carcinogenicity, acute rat
toxicity, and cardiotoxicity. Molcode Toolbox has a range of mod-
ules for predicting toxicological endpoints, including intravenous
acute LDj values and in vitro cytotoxicity (I1Cs, values) (from the
Registry of Cytotoxicity). The models are well documented and
the underlying experimental data is made available with references
and structure files (MDL molfiles).

4 Databases Containing Information on Acute Systemic Toxicity

Sources of rat LDs, values which may be suitable for the develop-
ment of QSARs are listed in Table 3. Some recent updates are
discussed in the section below.

In particular, Acutoxbase [29] was developed in the context
of the EU FP6 project ‘A-Cute-Tox’ (http://www.acutetox.eu/),
which aimed to optimize and “pre-validate” an in vitro testing
strategy for predicting acute human toxicity ([ 30, 31]; Prieto and
Kinsner-Ovaskainen 2015). While the database is not available,
the in vitro and animal data are published in several publications
[30-32].

Recently the COSMOS database has been developed as a part
of the COSMOS project (http://www.cosmostox.eu/), one of
seven projects forming the Seurat-1 research cluster (http://
www.seurat-1.eu/). Version 1 of the COSMOS database (http://
cosmosdb.cosmostox.eu/) contains 12,538 toxicity studies for
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1660 compounds across 27 endpoints, including acute toxicity
data for 1697 compounds tested on different animal species, as
well as in vitro data.

The Hazardous Substances Data Bank (HSDB) is a part of
NLM’s Toxicology Data Network (TOXNET) [33]. It contains
chemical substance information with one record for each specific
chemical or substance, or for category of chemicals or substances.
HSDB has approximately 5600 chemicals and substances, with
information for toxicity and human exposure. All data comes from
public scientific sources. HSDB’s content is peer-reviewed by a
group of experts.

The Registry of Toxic Effects of Chemical Substances (RTECS)
database includes basic toxicity information for: prescription and
non-prescription drugs, food additives, pesticides, fungicides, her-
bicides, solvents, diluents, chemical wastes, reaction products of
chemical waste, and substances used in industrial and household
situations. It covers six categories of toxicity data including acute
toxicity data. In vitro toxicology data has been added as well.
Accelrys now produces the RTECS files using existing data selec-
tion criteria and rules established by NIOSH (http://accelrys.
com/products/databases).

In order to be useful for QSAR development, datasets should
be first curated, i.e., the accuracy of the structures should be veri-
fied and the quality of biological data should be reviewed. It is
useful to provide a reference to the source of the experimental
data. In addition, inorganic and organometallic compounds, salts,
and compound mixtures are often removed from the analysis. For
the development of QSARs, LDs, values should be converted to
log[1/(mol/kg)] (if originally expressed as mol/kg or mg/kg).
Finally, approximate LDs, values should be converted to discrete
values, and multiple LDs, values from different labs/experiments
should be converted to a single value. The ChemIDplus and
ZEBET databases have been recently employed as data sources for
QSAR analyses [ 34, 35].

5 Prediction of Organ-Specific and System-Specific Toxicity

5.1 Ability to Predict
In Vivo Toxicity

Some currently available software tools (e.g., TOPKAT and
MCASE) are useful for predicting acute toxicity in categorical
terms (e.g., in terms of GHS classifications). The performance of
different software tools in predicting acute toxicity has been inves-
tigated [36, 37]. In these studies, ACD and T.E.S.T. have per-
formed well.

In the scientific literature, local QSAR models have been gen-
erated for sets of congeneric compounds (organophosphates, aro-
matic amines, anilines, etc.) and are scattered over many original
publications. Some of these studies have also explored the use of
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5.2 Ability to Predict
Non-apical Toxicities

in vitro data as additional descriptors in the derivation of so-called
quantitative structure activity-activity relationships, QSAAR [38].
QSAAR modeling revealed good potential for acute toxicity pre-
diction, particularly in cases when a significant correlation exists
between in vivo data (LDsg) and in vitro cytotoxicity (ICsp), and
the additional inclusion of physicochemical parameters serves to
improve the correlation. In practical terms, QSAAR could be par-
ticularly useful if high-throughput screening methods are used to
generate the in vitro data.

Despite their limited applicability when taken individually,
local QSAR models might be usefully combined into an expert
system for toxicity predictions. As a part of the efforts to develop
global QSAR models for acute toxicity Raevsky and coworkers
[39] proposed the so-called Arithmetic Mean Toxicity (AMT)
modeling approach, which produces local models based on a
k-nearest neighbors approach. Arithmetic mean toxicity values of
one or more pairs of analogues (nearest neighbors) are considered
as the toxicity of the chemical of interest. Recently a classification
model based on 436 Munro database chemicals and developed
using Dragon descriptors has been proposed as a tool for chemical
screening [40]. Kleandrova et al. [3] have developed a multitask-
ing (mtk) QSTR model based on ANN (artificial neural networks)
for simultaneous prediction of acute toxicity by considering differ-
ent routes of administration, different breeds of laboratory ani-
mals, and the reliability of the experimental conditions. The model
is based on a diverse dataset comprising 1494 chemicals retrieved
from CHEMBL (http://www.ebi.ac.uk /chembldb).

A consensus approach has been exploited in some studies
where the models are built by using a combinatorial QSAR mod-
eling approach, including multiple descriptors and employing
several statistical modeling methods. It has been claimed that the
predictive accuracy of consensus QSAR models is superior to the
individual ones [34, 41]. In addition, several research studies
[35, 42, 43] have demonstrated the ability to improve quantita-
tive predictions for structurally diverse datasets when high
throughput bioactivity data are used in combination with tradi-
tional molecular descriptors. This can also be regarded as an
example of the QSAAR approach. These hybrid approaches and
their underlying datasets are publicly available via the ChemBench
web portal (https://chembench.mml.unc.edu/).

The feasibility of using in vitro cytotoxicity data for the prediction
of in vivo acute toxicity has been investigated in a number of
research programs [28, 44, 45]. Over 70 % correlation has been
established between in vitro basal cytotoxicity and rodent LDs, val-
ues [46]. The applicability of 313 Neutral Red Uptake Cytotoxicity
Assay for the identification of substances with an LD5y>2000 mg/
kg has been evaluated by the EURL ECVAM Scientific Advisory
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Table 3
Databases containing acute toxicity information

Database Availability Information
Acutoxbase, linked to the EU Database not available, but The following data are available for 97
FP6 project ‘A-Cute-Tox’; the data are included in reference chemicals (i.e., 52 % drugs,
http://www.acutetox.eu,/ several publications (see 31 % industrial chemicals, 12 %
text) pesticides, 5 % others):

¢In vitro: approx. 100 in vitro assays
including general acute cytotoxicity,
metabolism-mediated toxicity,
biokinetics, and organ-specific toxicity.

eIn vivo: Over 2200 LDs, values in
rodents (rat and mouse) and other
animals (e.g., guinea pig, dog) with
various administration routes (oral,
intravenous, etc.) compiled from
published literature.

For 97 reference chemicals, nearly 2800
human acute poisoning cases from
clinical /forensic reports are also

available.
COSMOS Database; http:// Freely available through the Includes US FDA PAFA acute
cosmosdb.cosmostox.eu,/ Internet after registration  toxicity data.

CEBS, developed by the US  Freely available through the Includes in vivo study data and acute
NIEHS; http://cebs.nichs.  Internet dose of a small number of known
nih.gov/ hepatotoxicants to rat.

ChemIDplus, developed by  Freely available through Toxicity data is available for over

the US NLM; http:// the Internet, 400,000 chemical records, of which
chem.sis.nlm.nih.gov/ structure-searchable over 300,000 include chemical
chemidplus/ structures that are retrieved from

TOXNET® (TOXicology Data
NETwork; http://toxnet.nlm.nih.
gov). It includes HSDB (Hazardous
Substances Data Bank, an older subset
of the RTECS database). A search for
rat and mouse oral LDs, values found
15,866 and 33,009 records,

respectively.

Food Safety Acute Toxicity Commercial Contains acute oral toxicity (LDs,) data
Database; https: //www. from US FDA CFSAN PAFA database
leadscope.com /toxicity_ tor1070 food additives and 1633
databases/ tests.
regulatory_databases/ Test systems include mainly

*Rats: 950 chemicals

®Mice: 366 chemicals

Other test systems include rabbits,
guinea pigs, dogs, and monkey.

(continued)
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http://cosmosdb.cosmostox.eu/
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Table 3
(continued)
Database Availability Information
RTECS, originally compiled ~ Commercial Rat acute oral toxicity (LDs,) and acute
and maintained (until inhalation toxicity (LCs) data are
2001) by the US NIOSH compiled from the open scientific
and currently maintained literature for approx. 7000
by Accelrys Technologies. compounds (organic, inorganic and
Structure-searchable mixtures), including approx. 4000
through the Accelrys organic compounds.

Toxicity Database; http://
accelrys.com/products/
databases/bioactivity /
toxicity.html

Also searchable via other
databases including the
Leadscope Toxicity
Database; http://www.
leadscope.com/databases/

HSDB—TOXNET database; Freely available through the Toxicology database that focuses on
http: //toxnet.nlm.nih.gov internet potentially hazardous chemicals.
Contains nonhuman toxicity values
for almost 3000 chemicals.

Registry of Cytotoxicity (RC) Freely available on request ~ Based on the publication by Halle [28],
database from BfR ZEBET this comprises rodent acute oral LD50
(zebet@bfr.bund.de) values and published IC50 values
from diverse in vitro cytotoxicity
assays on approximately 550 chemicals

CEBS chemical effects in biological systems, HSDB Hazardous Substances Data Bank, RTECS registry of toxic effects
of chemical substances; TOXNET NLM’s Toxicology Data Network, US NLM US National Library of Medicine, US
NIEHS US National Institute of Environmental Health Sciences, US NIOSH US National Institute of Occupational
Safety and Health, BfR ZEBET Centre for Documentation and Evaluation of Alternatives to Animal Experiments of the
German Federal Institute for Risk Assessment

Committee (ESAC). It was recommended however that the results
should always be used in combination with other information
sources. For instance, the assay is recommended as a component of
an Integrated Approach to Testing and Assessment (IATA) [47].
A reason for the absence of a clear relationship between basal cyto-
toxicity and in vivo acute toxicity could be that specific organ tox-
icity is the most sensitive parameter for acute toxicity. Common
sensitive systems and organs include nervous, cardiovascular,
immune system, kidneys and liver, lungs and blood. IATA pro-
posed for acute systemic toxicity are a combination of complemen-
tary approaches (in vitro, ex vivo, in silico, in chemico) that address
functional mechanistic endpoints tied to adverse outcomes of reg-
ulatory concern [48].
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As summarized in Table 4, there is a limited number of literature
models for predicting toxicities at tissue and organ levels. A list of
software applications is provided in Table 2. They are based on
expert system or regression/categorical QSAR models. In the case
of ligand—protein interactions, molecular modeling approaches
are mainly used. Among the commonly used software tools,
Derek Nexus provides over 500 structural alerts for a range of
organ and system-specific toxicities, and other miscellaneous end-
points. Models for predicting liver toxicity are further covered in
Chapter 11 (Hewitt et al.).

Some of these models are based on the concept of reactivity-
based toxicity. The covalent binding of reactive electrophiles to
cellular targets (i.e., nucleophilic sites of macromolecules) has the
potential to initiate a chain of biological effects (e.g., depletion of
glutathione and protein thiols) resulting in specific organ and sys-
tem toxicities.

Among the few comprehensive studies covering a range of
organ toxicities and relying on a broad structural space in the train-
ing set are the models published by Matthews et al. [49]. These
models were developed for urinary tract toxicities of drugs. For
each organ, a number of toxicity endpoints were considered in the
QSAR analysis. The investigation utilizes four software programs:
MCA4PC (versions 1.5 and 1.7); BioEpisteme (version 2.0); MDL-
QSAR (version 2.2); Leadscope Predictive Data Miner (LPDM
version 2.4). The four QSAR programs were demonstrated to be
complementary and enhanced performance was obtained by com-
bining predictions from two programs. The best QSAR models
exhibited an overall average 92 % coverage, 87 % specificity, and 39
% sensitivity. These results support the view that a consensus pre-
diction strategy provides a means of optimizing predictive ability.

In the work of Myshkin et al. [51], a detailed ontology of toxic
pathologies for 19 organs was created from the literature in a con-
sistent way to capture precise organ toxicity associations of drugs,
industrial, environmental, and other compounds. Models for
nephrotoxicity and for more specific endpoints related to these
organ injuries were developed using a recursive partitioning algo-
rithm. The models performed better at the prediction of distinct
organ toxicity subcategories than general organ toxicity, reflecting
the well-known tendency of QSAR models to have a better predic-
tive performance for more specific endpoints.

In a more recent study, Lee et al. [50] present QSAR models
for three common patterns of drug-induced kidney injury, i.e.,
tubular necrosis, interstitial nephritis, and tubulo-interstitial
nephritis. Binary classification models of nephrotoxin versus non-
nephrotoxin with eight fingerprint descriptors were developed
based on heterogeneous pharmacological compounds data. Two
types of data sets were used for construction of the training set,
i.e., parent compounds of pharmaceuticals (251 nephrotoxins and
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387 non-nephrotoxins) and their major urinary metabolites (307
nephrotoxins and 233 non-nephrotoxins). Thus the study reflects
the fact that the nephrotoxicity of a pharmacological compound is
induced by the parent compound as well as its metabolites. The
results of a tenfold cross-validation and external validation proce-
dures showed a high accuracy of the models (better than 83 % for
external validation sets).

For kidney toxicity, local QSARs have been developed for spe-
cific chemical classes, such as the haloalkenes. These high-volume
chemicals used in industrial, synthetic, and pharmaceutical applica-
tions are common environmental pollutants. Many haloalkenes are
known to be nephrotoxic in rodents after bioactivation via the cys-
teine conjugate beta-lyase pathway, which is triggered by forma-
tion of hepatic glutathione S-conjugates, a reaction catalyzed by
cytosolic and microsomal glutathione transterases [68]. The study
by Jolivette and Anders [53] relates the nephrotoxicity of nine
haloalkenes to their lowest unoccupied molecular orbital energies,
Eiumo, reflecting their propensity for conjugation reactions cata-
lyzed by glutathione transferase enzymes.

Very few QSAR studies of neurotoxicity have been published.
An example is the work of Estrada et al. [57]. Their models are
based on the TOPS-MODE approach, which provides a means of
estimating the contributions to neurotoxicity in rats and mice of a
series of structural fragments.

Organophosphorus (OP) compounds are well-known neuro-
toxic agents. These chemicals are potent inhibitors of serine ester-
ases, the most critical of which is the widely distributed nervous
system enzyme acetylcholinesterase (AChE). This well established
mechanism of action underlies the usefulness of molecular model-
ing approaches like 3D QSAR and pharmacophore modeling to
predict the inhibition potency of OPs. Several published models
are based on these approaches [54, 55, 58, 63].

Among the commonly used software tools, Derek Nexus
estimates neurotoxicity using a number of structural alerts:
gamma-diketone or precursor, acrylamide or glycidamide, nitro-
imidazole, carbon disulfide or precursor, pyrethroid, 1-methyl-1,
2,3,6-tetrahydropyridine, lead or lead compound, and organo-
phosphorus ester.

Few studies have been published in relation to other organs/
systems. Immunotoxicity can refer to immunosuppression in
humans (caused, for example, by benzene and halogenated aro-
matic hydrocarbons), autoimmune disease (for example the pes-
ticide dieldrin induces an autoimmune response against red blood
cells, resulting in hemolytic anemia), and allergenicity (chemicals
which stimulate the immune system can cause allergies or hyper-
sensitivity reactions such as anaphylactic shock). Thus, immuno-
toxicity refers to a wide variety of biological effects, many of
which involve complex biochemical networks. Tenorio-Borroto



194

Julien Burton et al.

et al. [62] have trained and validated a multi target-QSAR model
for high-throughput screening of drug immunotoxicity using
TOPS-MODE approach. Yuan et al. [63] have studied the key
molecular features of polychlorinated dibenzodioxins, polychlo-
rinated dibenzofurans, and polychlorinated biphenyls for deter-
mining binding affinity to the aryl hydrocarbon receptor
(AhR)—an intracellular receptor which has been correlated to
immunotoxicity, thymic atrophy, weight loss and acute lethality.
CoMFA (Comparative Molecular Field Analysis) was applied to
generate 3D QSAR models. In a study by Hui-Ying et al. [64],
linear relationships between immunotoxicity values (log EDs)
and other biological activities of polychlorinated diphenyl ethers
and their structural descriptors were established by multiple lin-
ear regression. It was shown that the structural descriptors derived
from molecular electrostatic potentials together with the number
of the substituting chlorine atoms on the two phenyl rings can be
used to express the quantitative structure—property relationships
of polychlorinated diphenyl ethers.

Evaluation of hematotoxicity is important step in early drug
design. Particularly it is a common dose-limiting toxicity associated
with anticancer drugs. The first attempt to build in silico models to
predict the myelosuppressive activity of drugs from their chemical
structure was made by Crivori et al. [65]. Two sets of potentially
relevant descriptors for modeling myelotoxicity (i.e., 3D Volsurf
and 2D structural and electrotopological E-states descriptors) were
selected and PCA (Principal Component Analysis) was carried out
on the entire set of data (38 drugs). The first two principal compo-
nents discriminated the highest from the least myelotoxic com-
pounds with a total accuracy of 95 %. In addition, a highly predictive
PLS (Partial Least Squares) model was developed by correlating a
selected subset of in vitro hematotoxicity data with Volsurf descrip-
tors. After variable selection, the PLS analysis resulted in a one-
latent-variable model with 72 of 0.79 and ¢4 of 0.72.

In contrast to other organ-specific effects, the in silico model-
ing of cardiotoxicity has been a rather productive field. This is
because drug cardiotoxicity is one of the main reasons for drug
related fatalities and subsequent drug withdrawals. In recent years,
the hERG channel has been extensively investigated in the field of
cardiotoxicity prediction as it has been found to play a major role
in both cardiac electrophysiology and drug safety. Because hERG
assays and QT animal studies are expensive and time consuming,
numerous in silico models have been developed for use in early
drug discovery. The earliest attempts to identify whether a mole-
cule is a hERG blocker include a set of simple rules based on
structural and functional features, but these rules are not always
reliable predictors for identifying hERG blockers. In order to give
more accurate predictions of hERG blockage, a wide range of
QSAR models have been developed based on a variety of statistical
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techniques and machine learning methods, including multiple
linear regression, partial least square (PLS), k-nearest neighbor
algorithm (kNN), linear discriminant analysis (LDA), artificial
neural networks (ANN), support vector machine (SVM), self-
organizing mapping (SOM), recursive partitioning (RP), random
forest, genetic algorithm, and naive Bayesian classification (NBC).
Most of these QSAR models are classifiers and only a few regres-
sion models have been reported.

Pharmacophore modeling has also been employed to develop
ligand-based prediction models of hERG channel blockers. Since
the crystal structure of the hERG channel is not available, all
structure-based studies on its blockage are performed on homol-
ogy models and are more qualitative and descriptive rather than
predictive. For example they have been used for molecular dock-
ing, molecular dynamics simulations and free energy calculations
to explore the hERG-blocker interactions.

Reviews by [66] and Villoutreix and Taboureau [67] sum-
marize the advances and challenges in computational studies of
hERG channel blockage. It is expected that the development of
in silico models for hERG-related cardiotoxicity will stay active in
the coming years in order to design drugs without undesirable
side effects.

6 Conclusions

The modeling of acute systemic toxicity has largely focused on
QSARs for predicting LDsq values and for categorizing chemicals
according to ranges of LDjs, values. For these purposes, which are
potentially useful in the regulatory assessment of chemicals, the in
silico models seem to perform as well as in vitro cytotoxicity meth-
ods. The developments in this field can be attributed to the avail-
ability of extensive LDs, datasets and a wide range of machine
learning techniques. Many of these datasets, and software tools
derived from the datasets, are in the public domain.

The emergence of mechanism-based toxicology (e.g., adverse
outcome pathways) is a tremendous opportunity to improve cur-
rent models with better biological knowledge. Indeed, the time of
global (and scientifically dubious) QSARs predicting LDs, based
on chemical properties for the whole chemical space is probably
coming to an end. Future models should target specific toxicity
mechanisms on the basis of current biological knowledge.
Historically, this was actually done implicitly by focusing model
building on very limited chemical classes (supposedly acting via
the same mechanism). According to this approach, global LDs,
models would be the sum of a multitude of accurate predictors
dedicated to describe well-defined mechanisms of action. In this
context, the use of biological (in vitro) descriptors in combination
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with traditional molecular descriptors provides a promising means
of building local QSAARs based on mechanistically based chemi-
cal classes.

In general, the modeling of organ-specific and system-specific
effects represents an underdeveloped field, ripe for future research
but far from regulatory applications, which typically rely on the
assessment of lethality. A notable exception concerns the modeling
of receptors and ion channels implicated in specific organ patholo-
gies, such as the hERG channel in relation to cardiotoxicity. The
development of models for upstream (molecular and cellular)
effects represents a more scientifically meaningful exercise which
also promises to unify the traditional regulatory distinction between
the acute and repeat dose toxicity.

A future research initiative could include, for example, reex-
amination of the datasets for hepatobiliary and urinary tract toxici-
ties of drugs with a view to developing more accessible models and
assessing their applicability to chemicals other than pharmaceuti-
cals. In addition, the concept of reactivity-based toxicity, now
established as a plausible mechanism for hepatocyte toxicity, could
be further exploited using data from hepatocyte cultures and cell
lines. In some areas, such as immunotoxicity, short-term progress
seems unlikely. The complexity of such effects probably means that
systems biology approaches will be more appropriate.

In general, the development of models for organ-specific and
system-specific effects will depend on a new generation of data-
bases, such as the COSMOS database, which contain high quality
data that are structured and annotated according to meaningful
chemical and biological ontologies.
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