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Abstract

Three approaches applicable to the analysis of forensic ancestry-informative marker data—STRUCTURE,
principal component analysis, and the Snipper Bayesian classification system—are reviewed. Detailed step-
by-step guidance is provided for adjusting parameter settings in STR UCTURE with particular regard to
their effect when differentiating populations. Several enhancements to the Snipper online forensic classifi-
cation portal are described, highlighting the added functionality they bring to particular aspects of ances-
try-informative SNP analysis in a forensic context.
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1 Introduction

Classifying individuals into populations is often useful in popula-
tion genetics applications. But the definition of populations is
commonly subjective, based on linguistic, cultural, or physical
characters, as well as the geographical location of sampled indi-
viduals. This is a sensible way of incorporating diverse types of
information but it may be difficult to know whether a given assign-
ment of individuals to populations based on these subjective crite-
ria matches an assignment in genetic terms. For this reason, it can
be useful to confirm that the subjective classifications are consis-
tent with genetic information and hence appropriate for the
intended classification regime [1, 2]. A possible approach starts
with a set of predefined populations and then classifies individuals
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of unknown origin into these populations. This involves sampling
DNA from members of potential source populations to estimate
allele frequencies in each population at a series of unlinked loci.
Allele frequencies can be used to compute a set of likelihoods that
a given profile of genotypes originates in each population. These
likelihoods allow the assignment of individuals of unknown origin
to populations based on the highest likelihood ratio [2].

Bayesian population analysis methods infer a simple relation-
ship between the allele frequencies of a population and the allele
frequencies observed in the individuals identified as part of that
population. An advantage of such methods is that prior informa-
tion about the samples can be used to progress the analysis. But the
ability to differentiate populations in a sample set can be limited
when applying a small number of samples and /or markers. Two
valid approaches for comparing profiles from forensic casework
DNA to reference population data will be considered here: a sys-
tematic Bayesian clustering approach (STRUCTURE software)
and a naive Bayesian likelihood ratio (LR) based calculator (under-
lying the Swmipper web portal). STRUCTURE is a flexible
approach—different types of markers such as STRs, SNPs, and
indels can be readily combined in the same genotype input file
(Snipper also allows such flexibility but the systems are not yet
implemented). However STRUCTURE analysis of single profiles,
typical of forensic testing, is not so straightforward since the whole
set of parental data plus the unknown profile must be re-analyzed
in combination each time and this can be both time-consuming
and cumbersome to perform for a small number of casework sam-
ples in turn. For this reason Sunipper (http://mathgene.usc.es/
snipper/) was developed to provide a simple alternative for making
ancestry assignments of single profiles in real time. Both
STRUCTURE and Smipper use a Bayesian approach which, put
simply, computes likelihood of membership to each class (in this
case ancestry) using the observed frequency of variables in each
class (in this case allele frequencies). The difference between both
methods lies in how the likelihood is computed (more information
about these algorithms is detailed in [2, 3]). Therefore both algo-
rithms require reference data to calculate allele frequencies for
comparison to alleles recorded in profiles of unknown origin. In
the case of Snipper, the reference data allows construction of train-
ing sets for calculation of allele frequencies and these can comprise
ready-to-use fixed five-population group data (African, European,
East Asian, Native American, and Oceanian) already in place for 34
SNPs [3,4] and/or 46 AIM-indels [5]. It can alternatively consist
of end user’s own data for any populations and binary marker set
where reference genotypes are available, which can then be
uploaded as a custom data set. Each algorithm makes the same
prior assumption, often untested: that the variables, i.e., the com-
ponent loci, are independent. For this reason, uniparental data (in
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the form of haplotypes where all markers are linked) is not readily
incorporated into either analysis system, though STRUCTURE
has scope for the analysis of linked loci.

As the number of populations increases, the number of dimen-
sions needed to visually represent the pairwise genetic distances
also increases. The main idea of multivariate analyses is to help to
represent, in a comprehensive way, those multiple dimensions.
This is done through the reduction of the dimensionality of a data
set composed of a large number of interrelated variables maintain-
ing the maximum proportion of the variation present on that data
[1]. Principal component analysis (PCA) is a commonly used mul-
tivariate analysis method, especially as an exploratory tool and to
summarize genetic similarities and differences between groups of
populations. This is possible through the transformation of those
variables into a new set of metrics (principal components: PCs)
that are not related and can be ordered in a way that the first PCs
retain most of the variation present in the original data—the graph-
ical representation of the first two or three PCs summarizes as
much of the variation as possible in a comprehensive, graphical way
[1, 6]. In the graphics that PCA generates, individuals are repre-
sented by points distributed according to their coordinates in two-
way or three-way PC comparisons (two or three dimensional plots,
respectively). PCA can also be used to represent the relation of an
unknown study sample with a set of reference population samples,
i.e., the study sample will be represented by a point superimposed
onto the PCA plot of the reference population samples.

2 Materials

1. SPSmart browser home: http://Apsmart.cesga.es/

2. SPSmart SNPforID 52-plex and 34-plex variability browser:
http: /Apsmart.cesga.es/snpforid.php

3. Entire genome interface for exploring SNPs (ENGINES)
a 1000 Genomes variability browser: http: //Apsmart.cesga.cs/
engines.php?dataSet=engines

4. pop.STR: http: /Apsmart.cesga.es/popstr.php

5. Sunipper portal: http: //mathgene.usc.es/snipper,/

6. STRUCTURE software: http:/pritchardlab.stanford.edu/
structure.html

7. Structure harvester: http:/ /taylor0.biology.ucla.edu/
structureHarvester /#

8. CLUster Matching and Permutation Program (CLUMPP soft-

ware): http: /Avww.stanford.edu,/group /rosenberglab /clumpp.
html
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9. distruct software: http:/Avww.stanford.edu/group /rosenber-
glab /distruct.html

10. For more information about R software: http: /Avww.r-project.
org/ [7].

3 Methods

3.1 Collection

of Ancestry Reference
Data with the SPSmart
Browser

The statistical analysis of a profile requires reference training sets,
i.e., parental populations of interest used to classify casework pro-
files. Collection of such data previously required locus-by-locus
scrutiny of dbSNP or HapMap SNP databases [8], but fortunately
SPS (SNPs for Population Studies) makes this task much more
straightforward for any number of AIM-SNPs as well as up to 52
STRs in routine forensic use.
SPS comprises the following genomic variability browsers:

e SPSmart home: http:/Apsmart.cesga.es/ [9].

e SPSmart SNPforID 52-plex and 34-plex variability
browser: http: //Apsmart.cesga.es/snpforid.php [10].

e ENGINES (Entire Genome Interface for Exploring SNPs)
a 1000 Genomes variability browser enabling a review of
all SNP sites found from 1092 complete genome sequences
(1000 Genomes Phase I): http:/Apsmart.cesga.es/
engines.php?dataSet=engines [11].

e pop.STR: http: /Apsmart.cesga.es/popstr.php [12].

SPSmart [9] is a simple pre-processing engine that includes
five different population-based genotype databases: (1) 1000
Genomes Phase I May 2011; (2) HapMap Release #28; (3)
Perlegen complete data set; (4) HGDP-CEPH Stanford study; and
(5) HGDP-CEPH NIH-Michigan study (see Note 1). SPSmart
also generates common population genetics indices such as allele
frequencies, heterozygosity, Fsr, or In (summarized in the down-
loads tab of each query).

1. Choose the database(s) to search or choose SEARCH in the
SNPforID “global map” homepage.

2. Choose the populations to merge into groups by ticking selec-
tions up to a maximum of five. If opting to review multiple
databases, e.g., HapMap and Perlegen, only one population
grouping can be made. Populations are already arranged into
sets of genetic diversity based on Rosenberg’s original analyses
of HGDP-CEPH populations [3, 13], though note that
Eurasians are subdivided into European, South Asian, and
Middle Eastern subgroups.

3. Add the SNP RefSeq (rs-number) identifiers in the search by
SNP window. Search by chromosome region or gene name is
also available. Click the “next” button below.
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Fig. 1 Example of a reference ancestry genotype data file obtained from SPSmart. The data obtained from
SPSmart was reorganized (original data was transposed so that samples are now organized in rows and mark-
ers in columns) and population information (downloaded from SPSmartin a separate file) was added
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3.2 STRUGTURE
Software

3.2.1 Background
on STRUCTURE Analysis

7. The genotypes can be formatted for input to STRUCTURE,
Snipper, or PCA custom data analysis (outlined later). SNaPshot
genotypes may need checking against the reference data if they
come from different typing platforms, e.g., a SNaPshot C/T
SNP may be an A/G SNP in HapMap requiring base inver-
sions of one dataset. For this reason symmetrical SNPs (C/G
and A/T) require particular care (see Note 3).

STRUCTURE uses genotypic data of several loci to: (1) infer pop-
ulation structure; (2) identify subpopulations (subsets of samples
with distinct allele frequencies); (3) assign individuals to subpopu-
lations (based on probabilities); and (4) study admixture between
populations. It uses a population structure model where studied
samples represent a mixture of K unknown populations—each
characterized by unknown allele frequencies for the loci used and
where these are assumed to be in Hardy-Weinberg equilibrium
(HWE) and independent (not in linkage disequilibrium). The
objective is to classify individuals into K clusters in a way that devi-
ations from HWE and independence are minimized.

Assuming HWE and independence in each subpopulation, the
probability that the genotype of an individual belongs to subpopu-
lation % is given by the product of the allele frequencies. Using
Bayes rule (see Note 4) it is possible to calculate the probability of
an individual belonging to subpopulation %. If allele frequencies in
a population were known in advance, it would be easy to allocate
individuals. Equally, if individual allocations were known it would
be easy to estimate the frequencies. In practice, we do not know
either, but using a Markov Chain Monte Carlo (MCMC) algorithm
(see Note 5) it is possible to obtain a sensible estimate of both.

The estimation of the optimum K value is performed in an
independent way: for each simulation a posterior probability value
Pr(K) is calculated. In general, for K values under the optimum,
Pr(K) is low but it tends to stabilize with higher K values, so a
platean is commonly observed. When several K values have similar
Ln Pr(K) estimates, the smallest of them is usually the most appro-
priate estimate—generally corresponding to the inflection point of
the probability plot. However, it is not always possible to know the
real K value, so it is best to choose the lowest value that captures
the maximum structure present in the data [15]. Evanno et al.
described a method to estimate K based on a second-order change
of probability value taking into account the variability of the prob-
ability value between different replicates of each K value—delta K
[16]. This method is implemented in Structure Harvester [17] (see
Note 6). However Kis not an absolute value, defined values should
be carefully considered taking into account any known characteris-
tic of the studied populations. There are several factors that can
affect the clustering of the samples: (1) number of markers; (2)
number of samples; (3) number of clusters; and (4) allele frequency
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correlation. Endogamy or genotyping errors can have the same
effects as true population structure as they can simulate linkage
disequilibrium in unlinked markers and deviations from HWE.

STRUCTURE has several models for ancestry (Fig. 2, see Note
7) and allele frequencies (see Note 8). For more details refer to the
STRUCTURE manual and articles describing the different models
[2, 18-20]. Considering the type of analysis required in a forensic
context, the admixture POPFLAG ancestry model is appropriate.
This combines two important features: consideration of admixture
between populations (individuals can have recent ancestors from
multiple populations so ancestry membership proportions from
each ancestral population can be calculated); and some individuals
can be used as a reference to help infer the ancestry of the samples
under study. Regarding the allele frequencies model, it is advisable
to use the correlated allele frequencies model because it will guar-
antee that an undetected correlation will be identified without
affecting the results should it be absent.

Data to be analyzed with STRUCTURE needs to be organized in
a single matrix (as a text file) where optional information can be
considered to complement the genotypic data. Such information
should be included in a predefined order and it is important to
highlight that only the genotypic data is required for the analysis.
We will focus the construction of an input file on the information
of greater relevance when analyzing a casework profile (Tables 1
and S1). For more information about constructing STRUCTURE
input files (especially formatting information on recessive alleles,
marker distance, phase information, or phenotype), refer to
STRUCTURE software manual or to a recent overview [20].
e First line: header line. Headers are only included in the
markers columns.
e First column: sample name information that can be an
alpha-numerical code which can introduce errors when

iz B

| USEPOPINFO ]

[No admixture| | Admixture | | Linkage |

| LOCPRIOR |

POPFLAG

Fig. 2 Schematic representation of STRUCTURE ancestry models and their rela-
tionship. The central models are no admixture and admixture; both can be used
together with LOCPRIOR information. The admixture model is the basis for the
linkage model. All three models (no admixture, admixture, and linkage) can be
used in conjunction with the USEPOPINFO model. All the above models can be
used considering POPFLAG information
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Table 1
STRUCTURE input file format

M M2 Mn
S1 1 1 1 Extra Extra 1 2 1
S1 1 1 1 Extra Extra 3 4 1
S2 1 1 2 Extra Extra 3 2 2
S2 1 1 2 Extra Extra 3 2 3
S10 1 1 3 Extra Extra 1 4 1
S10 1 1 3 Extra Extra 1 4 2
S11 2 1 4 Extra Extra 1 2 2
S11 2 1 4 Extra Extra 3 4 2
S12 2 1 5 Extra Extra 3 2 1
S12 2 1 5 Extra Extra 3 2 2
$20 2 1 6 Extra Extra 1 4 2
$20 2 1 6 Extra Extra 1 4 2
S21 n 0 7 Extra Extra 1 2 1
S21 n 0 7 Extra Extra 2 4 1
S22 n 0 8 Extra Extra 2 2 2
S22 n 0 8 Extra Extra 2 2 2
Sn n 0 9 Extra Extra 1 4 -9
Sn n 0 9 Extra Extra 1 4 -9

Samples S1...S» from populations 1...7 analyzed with genotypic data from markers M1...M#. Samples 1...10 belong
to population 1 and can be divided into three locations (1-3). Samples 11...20 belong to population 2 and can be
divided into three locations (4—6). Samples 21...Sz belong to population 7 and can be divided into three locations
(7-9). Samples from populations 1 and 2 are reference (POPFLAG=1) and study samples are from population 7
(POPFLAG=0)

running CLUMPP, easily solved in Structure Harvester (see
Note 6).

*  Second column: a numerical code representing the popula-
tion of origin as defined by the researcher. By default this
information is not used by the clustering algorithm but can
help organize the output file.

e Third column: PopFlayinformation. This is a Boolean vari-
able where 1 (TRUE) represents the samples that should
be used as reference and 0 (FALSE) the casework/study
samples.
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Fourth column: LocPrior information. A numerical code
that denotes subpopulation groups, geographical loca-
tions, or other shared characteristic between individuals
inside the population groups defined in the second col-
umn. This information is used when considering the
LOCPRIOR ancestry model.

Any number of extra columns can list useful information
for the researcher. For example, as the population and
LocPrior information is numeric, extra columns with the
names can be included as an easy way to cross check data
later.

The following columns include genotypic data for any
number of markers (SNPs, indels, or multiallelic markers
such as STRs). Genotypes should be coded as numbers.
For SNPs, we routinely use A=1, C=2, G=3, and T=4
STRs are already numerically coded but in the case of
intermediate alleles the “.” should be removed, i.e.,
19.3=193 (see Note 9).

Missing data is usually coded as -9 but any other code not
present in the file can be used.

Each allele needs to be represented in a separate cell: both
alleles in the same line but in different columns or both
alleles in the same column but in different lines (we will
focus on the latter as shown in Table 1).

Spaces should not be included.

3.2.3 How toRun The first stage when running STRUCTURE (http:/ /pritchardlab.
STRUCTURE Software stanford.edu/structure.html) is to create a new project (File > New
project) following four established steps:

Step 1—project information: name of the project, direc-
tory where the project will be saved, and input file.

Step 2—information of input data set (se¢ Note 10): num-
ber of individuals, ploidy of data, number of markers, and
missing data value.

Steps 3 and 4—format of input data set (se¢e Note 11):
information contained in rows and columns (e.g., row of
marker names or individual ID for each individual).

Before creating the project, STRUCTURE presents a sum-
mary where it is possible to confirm the selected options. If there
are no errors, the project opens and the data is visible.

The next stage is to create a new parameter set (Parameter
set>New):

Run length—a burnin period of 100,000 is more than suf-
ficient to allow a progressive convergence towards reliable
allele frequency estimates in each population and probabil-
ities for membership of individuals to a population.
Measurement of the assumed number of populations uses
the MCMC estimation and is performed separately from
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the burnin. About 100,000 MCMC repeats have been
shown to provide good ancestry membership proportions
estimates. But burnin and MCMC repeat number should
be adjusted depending on the study objectives and infor-
mation contained in the data set (see Note 12).

Select ancestry model—depending on the study objectives
and the data to be analyzed, different ancestry models can
be considered. For the admixture POPFLAG model select
“Use admixture model” under the “Ancestry model” tab
and “Update allele frequencies using only individuals with
POPFLAG=1 data” under the “Advanced” tab.

Select allele frequencies model—for the correlated allele
frequencies model select the “Allele frequencies correlated”
option under the “Allele frequencies model” tab.

Leave the “Compute probability of the data (for estimat-
ing K)” option under the “Advanced” tab selected so that
posterior Lz Pr(K) values are calculated—those will be
used to estimate the optimum K value.

Save the new parameter set with the desired name and con-
firm the selected options in the summary window that
opens after saving. A tree on the left side of the screen will
include all the parameter sets created, indicating the one
active at the moment.

There are two ways of starting a simulation:

Run a single K value—in the “Parameter set” menu select
“Run” and set the assumed number of populations (K).
This option only allows a single K value and replicate at a
time.

Schedule multiple runs—in the “Project” menu select
“Start a job”. A new window opens—select the parameter
set(s) to be analyzed, the K values, and the number of iter-
ations for each K (see Note 13). For example, two differ-
ent parameter sets can be programmed to run from K=2
to K= 6, three replicates for each K—this sums up to 30
scheduled runs. This option is advantageous for large proj-
ects—a new run starts automatically after the previous one
has finished so there is no need for constant attention on
the progress of the job (see Note 14).

3.24 STRUCTURE Software associated with STRUCTURE, for example, CLUMPP
Associated Software [21], contains three algorithms for the alignment of multiple repli-
cate analyses of the same data set which allows the transformation of
any number of replicate simulations for each Kin a single set of data
(see Note 15). Such data is suitable for analysis with another sup-
porting program distruct [22] which allows the visualization of the
estimated membership coefficients: populations are represented as
colors and individuals as bars portioned into colored segments that
correspond to membership coefficients in the groups (sec Note 16).
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STRUCTURE output files include information on the estimated
clusters, i.e., the population groups generated not the input popu-
lations. However when the populations are defined in a way that
they closely match the calculated clusters, the inferences of the
population ancestry membership proportions in each of the pre-
defined clusters can be considered to be the proportions of the
input populations. When attempting to classify a population or
individual, the use of reference populations closely matching the
inferred clusters is important, especially when analyzing admixed
samples where it is important to define the contributing parental
populations. The ancestry membership proportions for each indi-
vidual in each cluster are also calculated by STRUCTURE.

Allele frequency divergence among populations, average dis-
tances (expected heterozygosity) between individuals in the same
cluster, mean Fgr values, and estimated allele frequencies in each
cluster (including estimated ancestral frequencies) are calculated.
As a way of quantifying the information given by a particular
STRUCTURE run and estimating the optimum K value it calcu-
lates the estimated probability of the data, the mean likelihood
value, and associated variance. And it calculates the mean value of
alpha (a) as a measure of the relative admixture levels between pop-
ulations—when a>>1 the individuals are highly admixed; for val-
ues of a<< 1 each individual has its origin mainly in one population
(from our experience with the HGDP-CEPH panel of samples,
a<0.05—this value varies depending on the population groups
considered and the differentiation power of the marker sets used).

The population and individual ancestry membership pro-
portions can be represented in two distinct types of plot:

e A bar plot where each individual of the data set is repre-
sented by a vertical line divided into K colored segments
proportional to the estimated membership into each of the
K inferred clusters. To visualize the bar plot in
STRUCTURE choose the appropriate result file in the tree
on the left side of the window—on the simulation result
window menu select Bar plot>Show.

e Each individual is represented as a colored point in a trian-
gle (on the simulation result window menu select Triangle
plot>Show). Colors correspond to the population tag in
the input file. The estimated ancestry vector for an indi-
vidual is formed by K components that sum up to 1. This
type of plot is particularly useful to represent K=3 data
because the vectors can be represented in one triangular
plot. For each point, the distance to the triangle vertices
gives each of the three components. Individuals located in
one of the vertices are completely assigned to the popula-
tion represented in it.
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3.3 The Snipper
Web Portal

3.3.1 Background
on Snipper Analysis

3.3.2 Preparation of a
Snipper Input File

Despite the advantages of the triangular plot when visualizing
K= 3 data, bar plots are usually easier to interpret, especially
for K> 3.

In the case of forensic casework analysis, STR UCTURE gives
information on the training set (allowing the assessment of the
used reference data set—the optimum K value matches the num-
ber of reference populations, which are completely differentiated
among them) and it also gives us the individual ancestry member-
ship proportions (such information has considerable potential in
guiding investigators to more clearly defined suspect pools, this
being particularly true when no eyewitness is available or STR pro-
files fail to match DNA database records). This is illustrated in
Subheading 3.5.

The Snipper portal includes a straightforward Bayesian system for
predicting ancestral origin and estimating the misclassification
rate. It uses a set of samples of each population as training sets
and assigns individuals to the population that maximizes the pos-
terior probability (maximum likelihood calculation) [3]. The
likelihood parameters are estimated from training set allele fre-
quencies assuming HWE and independence for the used loci (see
Note 17).

Snipper was originally designed to provide a real-time ancestry
assignment system for 34-plex profiles with reference to default
pre-typed AFR-EUR-E ASN training sets and this still represents
the simplest approach for assessment of a single casework profile to
obtain an immediate overview of ancestry. The portal has been
updated to include 34-plex [3, 4] and AIM-indel [5] fixed refer-
ence data for five populations groups: AFR-EUR-E ASN-AME-
OCE. But the ancestry analyses can be extended beyond the default
settings. For example, custom Excel files (including any binary
markers that are of interest for the researcher) or frequency based
Excel files (helpful when working with STRs or haplotypes) can be
used as reference training sets.

A new version of Suipper is being prepared (Snipper App suite
version 2.0) to include new functionalities including turn on/off
the HWE assumption; prediction of admixture components; batch
analysis (multiple profiles); fine-tuning of a training set; classifica-
tion of single profiles; and analysis of training sets through multi-
nomial logistic regression (beta version). At the time of writing a
publication describing Snipper 2.0 is in preparation.

Careful preparation of the Excel file containing the custom train-
ing set profiles and precise matching of unknown profiles to train-
ing set data for bases and locus order is important. Therefore it is
recommended to sort component SNPs/indels into ascending rs-
number order as an aid to data checking.
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For Swuipper analysis using binary markers, an .x/sx Excel file
(.xls can still be used for certain previous options) with sample,
population, and genotype information listed (Tables 2 and S2)—
how that information is organized is also important so the follow-

ing considerations should be taken into account:

¢ Cell 1A indicates the number of samples; cell 1B the num-
ber of markers; and cell 1C the number of populations.

e Line 1 (from column D onwards) specifies the marker

name (represented by an alpha-numerical code).

e Lines 2-5 can be left empty or can be used to include use-
ful notes (e.g., one of the lines can be used to store the
study/casework sample profile and other line can be used

Table 2
Snipper input file format

A B C D E XFC XFD
1 # Samples # Markers # Populations M1 M2 Mn
2
3 Profile AG TT AC
4 Concatenate =D3&E3&...&XFC3
5
6 1 P1 S1 AG CT AA 1
7 2 P1 S2 GG CC CG 1
8 3
9 4 P1 S10 AA TT AG 1
10 5 P2 S11 AG CT GG 1
11 6 P2 S12 GG CC AC 1
12 7
13 8 P2 S20 AA TT CC 1
14 9 Pn S21 AG CT AA 0
15 10 Pn S22 GG CC GG 0
1048576 n Pn Sn AA TT NN 0

Samples S1...Sz from populations 1...P# analyzed with genotypic data from markers M1...M#z. Samples 1...10 belong
to population 1; samples 11...20 belong to population 2, and samples 21...S% belong to population Pzn. An extra col-
umn after the last marker (in this case column XFD) should be included when trying to classify several study samples
simultaneously—samples from populations 1 and 2 are reference (labeled as 1) and samples from population Pz are the
unknown study (labeled with 0). Lines 2-5 can be used to include useful information—e.g., when a single profile is
being classified it can be included (here in line 3) and concatenated (cell D4)—the concatenated profile can then be

copy-pasted directly into Snipper
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3.3.3 How to Run
Snipper

to concatenate that profile—ready for copying and past-
ing, i.c., if the profile is in line 3 type = D3&E3¢F3... in
the desired cell).

Column A (from line 6 onwards) has a numeric value that
usually represents a sample.

Column B (from line 6 onwards) has the population names.
Column C (from line 6 onwards) has the sample names
(which can be represented by an alpha-numerical code).
Column D onwards (from line 6 onwards) includes the
genotypes (coded as nucleotide bases—ACGT). Missing
data should be coded as NN. Other symbols in the file
(e.g. 2, spaces) are not recognized. Triallelic markers can
be included in the analysis.

A new batch analysis option was implemented in Snipper
»2.0 which allows for simultaneous classification of more
than one profile. In this case, the input file should be con-
structed as described in the previous points. An extra col-
umn after the last marker (with no headers—start in line
6) needs to be included: training samples are to be marked
as 1 and study samples to be classified as 0.

Snipper includes several options to classify individuals and analyze
populations. For forensic analysis the two most applicable options
are: “Classification as Europe-East Asia-Africa-America-Oceanin
(34 SNPs, 46 Indels, or both sets)” and “ Classification with a custom
Excel file of populations”. There is an additional option that works
in the same way but allows batch analysis: “Classification of multi-
ple profiles with a custom Excel file of populations”.

1. The

“Classification as Europe-East Asia-Africa-America-

Oceanin (34 SNPs, 46 Indels, or both sets)” option uses fixed
training sets and provides a simple system to classify single
profiles.

Step 1—go to http://mathgene.usc.es/snipper/pop-
choosing5groups.html

Step 2—choose the marker set from three options: 34-plex
SNPs (the original marker set [ 3] or the revised set [4] can
be selected), 46-plex AIM-indels [5], or a combination of
80 binary markers (Indels combined with the revised
34-plex set). SNPs are listed in rs-number order and AIM-
indels in electrophoretic order—on the left side links give
images listing the marker order in each option.

Step 3—choose populations. Three to five main popula-
tion groups are available (Africa, Europe, East Asia plus
America plus Oceania).

Step 4—choose the classifier. Four options are now avail-
able: naive Bayesian analysis (considering whether the
Hardy-Weinberg principle applies or not), multinomial
logistic regression, and genetic distance algorithm.


http://mathgene.usc.es/snipper/popchoosing5groups.html
http://mathgene.usc.es/snipper/popchoosing5groups.html
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e Step 5—data input. Depending on the option selected in
Step 1, a profile including 34, 46, or 80 markers (68, 92,
or 160 bases respectively) should be typed (see Note 18).
As described before, a profile can be built by concatenat-
ing data in Excel (using the “&” operand) allowing indi-
vidual scrutiny of composite genotypes before direct
copy-pasting into the query window left of the “Classify”
button (se¢ Note 19).

2. “Classification with a custom Excel file of populations”—this
option allows extension of ancestry analyses beyond the default
five-population group comparisons and 34, 46, or 80 binary
markers using Snipper.

e Step 1—go to http://mathgene.usc.es/snipper/analy-
sispopfile_new.html

e Step 2—data input (population). An Excel file prepared as
described above (Table 2 without the final column) is
uploaded.

e Step 3—<choose classifier. Options as described above.

e Step 4—data input (individual). A profile string contain-
ing the same number of markers in the same order as they
appear in the data file uploaded in Step 1 (sec Note 18) is
entered in the query window.

3. “Classification of multiple profiles with a custom Excel file of pop-
ulations”—go to http://mathgene.usc.es/snipper/analysis-
multipleprofiles.html. This option works as above but without
the need for individual profile submission. Profiles to be classi-
fied are indicated as previously described (Table 2). The multi-
nomial logistic regression classifier function is not currently
available for this option.

Snipper also includes an option to analyze training sets to gauge
characteristics of the component binary markers—*“Thorough anal-
ysis of population data of a custom Excel file” (http://mathgene.usc.
es/snipper/analysispopfile2_new.html). This is useful to assess the
informativeness of new candidate AIM binary markers for ancestry
inference. After uploading the Excel file of custom data and defin-
ing Hardy-Weinberg, choose “Perform a verbose cross-validation
analysis of my population data with the best _ SNPs” adding the rel-
evant number of markers to assess. Cross-validation removes each
component sample in turn, recalculates the allele frequencies in the
training set, and then assigns ancestry for the removed profile. The
other options “Try to classify all individuals in the sample” , “ Perform
a non verbose cross-validation analysis of my population data”, and
“Compute bootstrap errov of my population data” provide choice of
alternative assignment error estimators. Multinomial logistic regres-
sion can also be applied to the population data—in this case infor-
mation given in Step 2 about HWE will be ignored. Once a training
set has been assessed for informativeness, users can choose options


http://mathgene.usc.es/snipper/analysispopfile_new.html
http://mathgene.usc.es/snipper/analysispopfile_new.html
http://mathgene.usc.es/snipper/analysismultipleprofiles.html
http://mathgene.usc.es/snipper/analysismultipleprofiles.html
http://mathgene.usc.es/snipper/analysispopfile2_new.html
http://mathgene.usc.es/snipper/analysispopfile2_new.html
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3.3.4  Evaluating Snipper
Output

3.4 Principal
Gomponent Analysis
(PCA)

3.4.1 Background
on PCA

3.4.2 Preparation of PCA
Input Files

2 and 3 described above to compare single or multiple profiles from
unknown samples to the custom reference data and assign ancestry
in identical fashion to using the fixed training sets.

Results from the analysis of a profile comprise the submitted pro-
file; the assumed classifier; the -log likelihoods (use of -log likeli-
hoods permits easier comparison of the very small likelihood ratio
figures normally generated) and percentiles for the training set
population groups; the likelihood ratios in verbose format and pre-
dicted admixture components and ancestry; a set of plots summa-
rizing the classification; the apparent success of the classification;
and a list of the markers in descending order of divergence (see
Note 20). Missing genotypes are flagged in red in the divergence
list to allow some assessment of the potential contribution of gaps
in the profile, in other words, assignments made with several red
markers at the top of the list will be much less reliable than those
with gaps at the bottom, although this will be clear from the prob-
abilities obtained. Apparent success measures the rate of correct
assignment of training set samples using the markers of the profile.
These values are 100 % for a complete set of markers, but drop
when significant numbers of gaps occur in the submitted profile (in
the case of the three group 34-plex fixed training set this is particu-
larly true for EUR:E ASN comparisons).

Principal component analysis or PCA is a multivariate data analysis
technique allowing the reduction of dimensionality, i.e., it uses
fewer variables, while preserving much of information in the data.
Usually two or three principal components are made, constructed
as linear combinations of the original variables. Working with only
two or three variables allows graphical representation of the data in
a 2D plane or 3D graphic, providing fast visual recognition of pat-
terns or clusters. Numerous software packages are available to per-
torm PCA analysis when numerical variables are used. When SNP
data is considered, an initial transformation (or recodification) is
needed to access this existing software. The next section details
SNP data preparation using the statistical package R.

SNP analysis with PCA requires two text files with sample, popula-
tion, and genotype information. One of the files should include
training set data and the other the study samples to be compared.
Both files have the same format (Tables 3, S3 and S4)—the system
for organizing this data is important so the following consider-
ations should be carefully taken into account:

e The first column includes sample name information in the
form of an alpha-numerical code. The column header is
“Sample”.

e The second column has the populations/groups names.
The header is “Population”.
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Table 3

Principal component analysis SNP input file format

Sample Population M, M, Mn
S1 P1 AG CT AA
S2 P1 GG CC CG
S10 Pl AA TT AG
S11 P2 AG CT GG
S12 P2 GG CC AC
S20 P2 AA TT CC
S21 Pn AG CT AA
S22 Pn GG CC GG
Sn Pn AA TT NN

Samples S1...S% from populations P1...P# analyzed with genotypic data from markers M1...M#n

3.4.3 Creating a PCA Plot

The following columns have genotype data, one marker
per column. Each column header will have the correspond-
ing marker name, which can be an alpha-numerical code.
Genotypes are coded with nucleotide bases (ACGT) and
missing data as NN. Note that markers must be in the same
order in both input files.

Spaces can be included in the file except as part of the gen-
otype data (they will be considered as a new genotype, i.e.,
TT#TT).

Triallelic markers can be included in the input file but they
will not be considered for the principal components
calculation.

In this subheading we include R scripts that can be used to gener-
ate 2D principal components graphics (only if the number of vari-
ables (SNDPs) is smaller than the number of samples). The script
commands can be copied and pasted into the R console. With the
main focus on graphics, R offers a range of options to manipulate
data and generate plots that adjust to user needs. In the case of this
script, command lines were added to allow changes in color, shape,
and size of the symbols representing individuals (se¢ Note 21).

All text after the # symbol represents notes for the user and will
not be computed. A R version of the script is included as supple-
mentary in the digital version of this chapter.
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### Script to make a 2D PCA ###

# Important Note: this script can only be used when the number of samples is equal to, or higher than, the
number of SNPs.

# First open SNPassoc library - this is an association package that allows you to recode SNP data
library(SNPassoc)

TEST<-function(x){try(snp(x,sep=""),silent=TRUE}} # homemade function that detects if a SNP is bi- or tri-
allelic

# To read the data from two input files. The computer will prompt for the location of the reference samples
file and the study samples file, in that order
e S S S e S S e s

RefData<-read.table(file.choose(), sep="\t",header=TRUE,na.strings=c("NN")} # function that reads the
reference data input file and stores it in the dat object

NRefSamples<-dim(RefData)[1] # get the number of reference samples

StudyDaota<-read.table(file.choose(), sep="\t",header=TRUE,na.strings=c("NN")) # function that reads the file
with the study samples and stores it in the StudyData object

NStudySamples<-dim(StudyData)[1] # get the number of study samples

### Because tri-allelics are not considered when making the PCA, they are removed from both data sets using
the function TEST.

apply(RefData,2,TEST)->RT
deletedSNPs<-which(as.numeric(summary(RT)[,1])==1) # defines which SNPs have to be removed

RefData2<-RefData[,-deletedSNPs] # for the reference samples, only the columns with bi-allelic SNP data are
kept

StudyData2<-StudyDatal[, -deletedSNPs] # for the study samples, only the columns with bi-allelic SNP data are
kept
# this removes tri-allelic SNPs if there were any

# To recode and typify the data
B e S S e

ComData<-rbind(RefData2,StudyDataZ) # combines the reference and study samples in one variable (ComData) -
this needs to be done prior recoding the SNP daota to guarantee the coding uniformity

datSNPT<-apply(ComData,2, function(x) {additive(snp(x,sep=""))}) # the additive function recodes each bi-
allelic SNP in the data as numeric (@=homozygous for the most frequent allele, l=heterozygous, 2=
homozygous for the least frequent allele)

datSNP<-datSNPT[1:NRefSamples,] # after recoding, the reference data set is temporarily isolated into a new
variable (datSNP) to make some computations

m<-apply(datSNP,2,mean,na. rm=TRUE) # this calculates a vector with the mean value of each "numeric" SNP

s<-apply(datSNP,2,sum,na.rm=TRUE) # this calculates a vector with the number of occurrences of the least
frequent allele for each SNP

n<-apply(datSNP,2, function(x) sum(!is.na(x))) # this calculates a vector with the number of valid genotypes
for each SNP (NN genotypes are not considered valid)

p<-s5/(2*n) # vector with the freguency of least frequent allele for each SNP

XT<-scale(datSNPT, center=m,scale=sqrt(p*(1-p))) # this typifies the SNPs (to each "numeric" SNP value the
average is subtracted and then divides by the standard deviation)
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XT[is.na(XT)]<-@ # replaces missing values with @

X<-XT[1:NRefSamples,] # after recoding and typifying, the reference doto set is isolated into a new wvariable
(€9)]

Y<-XT[-c(1l:NRefSamples),] # after recoding and typifying, the study dotao set is isolated into a new variable
m

i f(NStudySamples==1){ # this forces Y to be a matrix if there is only one study sample

dim(Y)<-c({NStudySamples,length(Y3)
colnames(Y)<-colnames(X)

1

Hpsunini R R R e e R
# Some computations before preparing the plot

princomp(X, scale = FALSE)->X.PCA # computes the PC of the reference samples
X.PCASloadings->M # gets the rotation matrix

CY¥*aM)[,1:2]->5tudyCoordinates # computes the new coordinates of the study samples

i f(NStudySamples==1){StudyCoordinates<-t(StudyCoordinates)} # forces StudyCoordinates to be a matrix

per<-eigen{cov(X))$values/sum(eigen(cov(X))ivalues) # this calculates the percentage of explained variance
for each principal component

per<-round(per*10@,2) # values are rounded to two decimal positions

# In this part colours in the plot must be chosen (if you have more than three populations)
mycolours<-c("orange”, "pink", "skyblue2") # choose the colours you want to use for each population
(considering that populations are in alphabetic order). A complete list of colour names can be obtained
with the command colours() or with the help of the Chart of R colours available at http://research.stowers-
institute.org/efg/R/Color/Chart/

colours<-as.character(factor{RefData$Population, labels=mycolours)) # population names are converted to the
corresponding colour name

B
# The plot starts here
B

quartz() # opens a new graphic display window if you use Mac0S
# windows() # is the alternative command for windows 05 that opens a new graphic display window if you use a
Windows PC (remove # here and replace # in front of previous line)

plot(X.PCA$scores[,1:2],col=colours,pch=28,main="put here your plot title",xlab=paste("PC1
" per[1],"%",sep=""),ylab=paste("PC2 ",per[2],"%",sep=""),cex=1.5)
# this plots the two first principal components. The plot title, pch and cex values can be changed

legend("topleft”,legend=levels{factor(RefData%Population)}),col=mycolours,pch=2@,cex=0.5,y.intersp=1)
# this adds a legend to the plot. Its position can be changed using "topleft”, "topright", "bottomleft" or
"bottomright”. Pch should match the one used in the plot.

### With the next set of commands it is possible to include the study individuals superimposed onto the
previously plotted principal components graphic.

points(StudyCoordinates, col="black",pch=20, cex=2)
# this estimates the coordinates for the study individuals and plots them onto the previously generated
principal component graphic. colour, pch and cex can be adjusted.

text(StudyCoordinates,as.character(StudyData[,1]),cex=1,pos=1)
# this adds study individual's descriptors to the plot
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3.4.4 What Information
Can Be Obtained
from PCA?

3.5 Casework
Example of a Custom
Ancestry Inference:
The 11-M Madrid
Bomb Attack

PCA allows the exploration of data sets and shows proximity
between individuals. In fact, it is possible to include a casework
sample in the PCA plot generated for the reference populations
helping to infer, through visual inspection, the most probable clas-
sification of that individual (Fig. 3).

In the 11-M Madrid bomb attack investigation, standard DNA
analysis with STRs was supplemented with Y-filer and standard
mtDNA analysis in most exhibits. But seven complete STR pro-
files, originating from five personal items together with a handprint
on the handle of the bag containing an undetonated device, failed
to match any of the suspects so these DNAs became the focus of
specialist genotyping to analyze ancestry, specifically confined to
the comparison of European with North African variability. This
differentiation can be difficult to achieve for Y-chromosome and
mtDNA due to differences in the scope and depth in the databases
between European and North African data, so the 34-plex AIM-
SNP set was chosen [24].

Example PCA - Reference + Study samples

AFRICA
EAST ASIA
EUROPE
0
32
<
©
8§ o-
[aV)
O
a
°
Study"Sample
L(I') -
T T T T
-5 0 5 10

PC1 29.56%

Fig. 3 PCA plot generated using the R script described in Subheading 3.4.3.
Three population groups from the HGDP-CEPH panel of samples are used as
reference data: Africa (orange), Europe (blue), and East Asia (pink). One study
sample was plotted in the reference PCA (black). It is possible to infer that the
study sample is likely to be African. Both reference and study samples genotypes
are supplemented as text files in the online version of this chapter
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The approach followed in this case is a good example of the
integration in one analysis of the different techniques described in
this chapter. Two training sets were made using 48 Moroccans
and 48 Spanish from Madrid. Using Sunipper a cross-validation
assessed the accuracy (assignment success/error) and performance
(range of likelihoods) of the training sets and to generate pairwise
likelihood plots to assess patterns of possible admixture (Fig. 4).
Such plots compare two ancestries and enable a simple compari-
son of the range of likelihoods observed in the unknowns along-
side their closest parental population vs. another alternative
population. The charts are made in Excel by converting Snipper
likelihoods to whole numbers (using the = EXP formula in Excel),
making each pairwise ratio (in this case, lk Moroccan/lk Spanish)
and ranking values in descending order. Charting these with a
logarithmic scale provides a simple visual check of the range of
divergence between the populations compared as points with
varying distances from the midline of 1 (equating to balanced
odds of ancestry assignment to ecither population). The most dis-
tant points from the midline represent the strongest assignments.
In populations without admixture, points are fully separated;
when admixture occurs, a significant proportion of values are close
to or cross the midline. Using STRUCTURE, admixture patterns
were assessed in the training set. Some individuals, corresponding
to likelihood ratios between 0.01 and 100, presented admixed
ancestry. Considering this information, an area of uncertainty was
defined, with individuals falling in that area not assigned to a par-
ticular population group.

When comparing PCA (see Fig. 2 in [24]), STRUCTURE, and
Snipper results (Fig. 4), they were concordant for all case samples:
three were classified as North African, one as European, and three
were left unassigned. Those three unassigned profiles probably
represent individuals with highly admixed parentage and genomic
backgrounds: a reasonable scenario given the proximity of Southern
Europe and North Africa.

One 34-plex assignment contradicted the uniparental analy-
sis—although mtDNA and Y-chromosome markers routinely dem-
onstrate informative geographic differentiation, this is not always
true when recent gene flow has occurred or populations show
strong sex bias (i.e., males are mainly from one population and
females from another). The individual inferred to be European
from uniparental data gave strong indications to be North African
from the 34 SNP genotypes and was later identified by the investi-
gation to be Algerian.
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Fig. 4 11-M Madrid bomb attack STRUCTURE and Snipper analysis results. STRUCTURE analysis was per-
formed to compare Snipper pairwise plots with an established alternative system of ancestry assessment.
STRUCTURE runs were performed using the admixture ancestry model with 200,000 MCMC steps after a
burnin of length 200,000. In the Snipper pairwise plot, samples are organized from most probable Moroccan
to most probable Spanish, defining a separation from likelihood ratios represented on a logarithmic scale with
values higher than 1 =higher probability North African and ratios smaller than 1 = higher probability European.
Individuals in the STRUCTURE plot are in the same order as the Snipper pairwise plot, allowing direct compari-
son of both analyses. Some admixture patterns are present and this helped to establish an uncertainty area
(ratios between 0.01 and 100) where individuals would have more probability of being misclassified, so the
decision was to leave these unassigned

4 Notes

1. Of all databases included in SPSmart, 1000 Genomes and
HapMap are of most utility as they have more markers and
larger sample sizes (including admixed ancestry populations).
This is particularly true for 1000 Genomes—the ENGINES
browser allows scrutiny of SNP variation across the whole
genome (down to a minor allele frequency of ~1 %) from
Africans, Europeans, and East Asians previously used by
HapMap. In contrast, the HGDP-CEPH (Human Genome
Diversity Panel) samples 1050 individuals with wide currency
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in population genetics studies [25, 26]. The geographic cov-
erage is patchy in certain regions but all continents and all
major genetic ancestry groups defined by studies of variabil-
ity are represented. Smallest sampling is 28 Oceanians from
two populations and just six San from Namibia. SPSmart
provides freely downloadable genotype data from 650,000
SNPs (obtained with Illumina 650K arrays [27]) for each
HGDP-CEPH sample in the Stanford University study of
this panel.

2. Please note that, despite Excel software is referred as the one
to be used, any spreadsheet software such as Numbers in
MacOS or the free and open-source OpenOffice Calc or
LibreOffice Calc can replace it.

3. Symmetrical base SNPs, comprising an A /C on one strand and
a T/G on the other, are a particular problem and source of
error when comparing genotypes generated on different plat-
forms or listed in different databases. The SPSmart SNPforID
browser makes allowance for most base inversions by showing
the HapMap (or other) allele frequency summary charts with
different allele segments if these differ from the strand inter-
rogated by the 34-plex and 52-plex extension primers. For
example, rs2304925 is listed as a SNPforID GT SNP but a
HapMap AC SNP and this applies equally to GC or AT SNPs,
e.g., 1s10141763. The SPSmart help file provides a clear and
carefully worded guide in the “Symmetrical bases” section.
There are four symmetrical bases in the 34-plex: rs773658,
rs10141763, rs1335873, and rs16891982. The last of these is
the most informative SNP for differentiating component pop-
ulations within Eurasia so it is particularly important to be
clear about differences between SNaPshot and database allele
calls for this marker.

4. Bayesian population analysis methods calculate a simple rela-
tionship between allele frequencies in a population and allele
frequencies observed in the tested individuals. STRUCTURE
analyzes differences in the distribution of genetic variants
between populations through an iterative Bayesian algorithm
that tries to group samples into clusters whose members share
similar patterns of variation. Bayesian methods have the advan-
tage of allowing the use of prior information about the samples
to progress analysis. But the ability to differentiate populations
in a sample set can be limited when a small number of samples
and/or markers are used.

5. STRUCTURE uses an MCMC algorithm that starts by ran-
domly assigning individuals to a predetermined number of K
populations. Allele frequencies of each population are estimated
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considering the individuals assigned to each population.
Individuals are then re-assigned to populations taking into
account the estimated frequencies for each population in a
process repeated up to 10,000-100,000 times.

. Structure Harvester implements the delta K method of Evanno

et al. [23] to estimate the optimum K value [16, 17]. After
running STRUCTURE, pass the zipped folder containing the
results files (named x_run_y_f; where x represents the param-
eter set name and y the run number) to the Structure Harvester
browser and click Harvest! to start the analysis. Conditions
are: aminimum of three sequential Kvalues should be included,
with more than one replicate for each K value (same number
of replicates for all K values). Posterior probability and delta K
plots are available to download (Fig. 5)—the optimum K is
usually the point with the highest delta K value or the one
which immediately precedes the Lz Pr(K) plateau. This soft-
ware is also useful as it automatically generates input files to
run CLUMPP.

. There are two basic ancestry models: no admixture and admix-

ture [2]. The first is used if there is no prior knowledge about
the origin of the populations under study or if there is a reason
to consider each population as completely discrete. But
because admixture between populations is a common charac-
teristic, knowing the approximate median value of the ances-
tral population proportions for each individual and their
populations of origin is very important for the characteriza-

a LK} (mean +- SD) b Deltak = mean{ [L"(K)| } / sd{ LK) }

=T600
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Fig. 5 Example of posterior probability and de/ta K plots obtained with Structure Harvester for the same analy-
sis. In this case, the optimum K value is 4—the point where the plateau in the posterior probability starts with

maximum delta K value
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tion of a study population or, in a forensic context, a casework
sample. In this case the admixture model is more appropriate.
The LOCPRIOR option [19] can be used when there is addi-
tional sample characteristic data available, e.g., linguistic, geo-
graphical, cultural, or phenotypic information. The
LOCPRIOR parameter is particularly informative when there
are weak population structure signals—a situation that can
result from using reduced number of markers, small sample
sizes, or due to close relationships between populations. It has
two main advantages: (1) generally it will not find population
structure when this is not present; and (2) it can ignore loca-
tion information when individual ancestry is not related with
it. When admixture LD is present, the lLnkage model [18]
(which is based on the admixture model) can be applied to
obtain more accurate estimates of statistical uncertainty from
use of linked markers. Population labels can be used to calcu-
late the probability that each individual originates from the
assumed population—individuals with low probabilities can
be considered as migrants or having high co-ancestry. This
option is included in the USEPOPINFO model [2] and should
only be used when population labels are well defined before-
hand and correspond almost exactly to the groups ultimately
defined by the STRUCTURE results. The last model consid-
ers the specified information about the population of origin of
a portion of individuals to help infer the ancestry of other
samples with unknown origin: the POPFLAG model [2]. This
option needs caution as selected samples are treated as the
“reference” set (pre-assigned POPFLAG=1) meaning allele
frequencies estimates are based on a reduced subset of samples
and will directly affect the grouping of unknowns (pre-
assigned POPFLAG=0). This model can be useful when
grouping individuals/populations by comparison with very
well-defined reference data—this option is particularly useful
in the forensic context.

8. There are two allele frequencies models: independent allele
Sfrequencies and corvelated allele frequencies. The first is used
when frequencies are reasonably different in distinct popula-
tions—this implies that knowledge about the correlation level
across the population is needed. The second assumes a non-
independence level and offers more power to detect distinct
populations that are closely related (e.g., Chinese and
Japanese)—in the absence of high correlation levels, this
model gives the same results as the independent allele frequen-
cies model.
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10.

11.

12.

13.

14.

. STRUCTURE does not assume a particular mutation process

so the scale of the number of repeat units in STRs is not con-
sidered (only allele frequencies are important). For this reason
there is no need to multiply all other alleles by 10 to compen-
sate the transformation of intermediate alleles (19.3=193).

To confirm the number of markers and individuals select “Show
data file format” showing total lines and columns. As an exam-
ple, the data file format information for Table 1 would state: one
line with m columns (m corresponds to the number of markers)
and # lines with m+6 columns (four columns with prior infor-
mation and two with extra information) with 7/2 individuals
(two lines per genotype).

When preparing the input file following the example presented
in Table 1, there is no need to select the “special format”
option because by default STRUCTURE assumes genotypes
are arranged as two consecutive rows (diploid species) per indi-
vidual. If both alleles are in the same line but in consecutive
columns select “Data file stores data for individuals in a single
line”.

A burnin period of 10,000-100,000 is sufficient to observe
convergence to an equilibrium point of parameters such as
a—the relative admixture levels between populations. To
check the variation of the parameter values go to the “Data
plot” option in the simulation results window. When excessive
variation is observed at the end of the burnin period, it is nec-
essary to increase its length. To select an appropriate number
of MCMUC steps after the burnin, it is advisable to perform
several simulations for each K value considering different
lengths to see if the results are consistent—usually 10,000—
100,000 MCMC steps are enough but to obtain precise pos-
terior probability estimates longer simulations might be
needed.

STRUCTURE performs individual analyses for each assumed
population number from one up to a reasonable number for
the sampling regime—at least three K values more than the
number of expected population. If a platean on the posterior
probabilities is not reached, larger K values might be needed.
Furthermore, clustering algorithms such as the one imple-
mented in STRUCTURE can show stochastic variation from
the simulations. To diminish their effect, several replicates for
each K value should be made (at least three to five replicates
advised).

Computational times can vary depending on the number of
markers and samples to be analyzed, but also on the analysis
parameters selected. As a point of reference, running a project
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15.

using the example input file supplemented with the online ver-
sion of this chapter took approximately 3 h 45 min in a com-
puter with a 2.7GHz Intel Core i7 processor. The project
included two parameter sets: admixture and admixture
POPFLAG—both were performed through 100,000 burnin
steps, 100,000 MCMC repeats, three replicates from K=2 to
K=06, and correlated allele frequencies.

Independently of the origin of differences between clustering
results, a method to deal with replicate results is needed.
CLUMPP uses replicates of the estimated membership pro-
portion matrices for any K number—the result is a set of per-
mutated matrices so that all the replicates have the best
correspondence possible. It also generates a matrix that cor-
responds to the median of the permutated matrices. This is
done for the population and individual proportions matrices.
Currently the easiest way to prepare input files for CLUMPP is
with Structure Harvester (see Note 6). Two files are needed:
.ndfile includes individual ancestry membership proportions
tables from all replicates per K value and .popfile includes pop-
ulation ancestry membership proportions tables for all repli-
cates per K. In both a blank line separates each table. If the
input files are prepared manually take care with the sample
name, which must be numeric; if alpha-numerical an error
message appears. Both .indfile and .popfile files, together with
paramfile and others, must be saved in the software folder
together with the executable file. The paramfile includes
important parameters that must be adjusted: DATATYPE
defines which data is going to be considered for analysis
(0 =individual; 1 =population); K is the number of clusters; C
is the number of individuals or populations (depending on the
selected DATATYPE); R is the number of replicates; M is the
algorithm used. We recommend M= 1 so all possible permuta-
tions are performed, but with large K or R values M=2(10,000
random input repeats) is sufficient and for K values above 15
M= 3is advisable. Metric Sis the pairwise matrix similarity sta-
tistic and we recommend the standardized G’ (select §=2). It
is important to note that to obtain a population and individual
mean matrices, two runs are required, adjusting the .ouzput file
name (no name change overwrites the first run), DATATYPE
and C in between runs. In the Windows version, just execute
the CLUMPPexe file—a cmd window opens showing the
progress of the simulation. In the MacOS version execute the
software through the terminal command line: change the
directory to the CLUMPP folder location (type cd>drag the
folder into the terminal>ENTER) and then type ./
CLUMPP>ENTER to run the software.



282

Carla Santos et al.

16.

17.

18.

19.

A convenient way of visualizing STRUCTURE results (espe-
cially for K> 3) is to show each individual as a straight segment
divided into K colors that represents the estimated ancestry
membership proportions. STRUCTURE gives such bar plots
but their format cannot be changed and they only present rep-
licate results for one K value. Distruct ofters a great variety of
options to generate more informative cluster plots. As with
CLUMPP, distruct uses a set of files stored in the same folder
of the executable file. The input files include the population
Q-matrix (.popq file) and the individual Q-matrix (.zndivg file)
obtained directly from STRUCTURE (in the case of a single K
replicate) or from CLUMPP. Files: .names and .languages
define the labels above and below the plot. Both files have the
same format: in each line write the population numeric code,
space, and preferred name. To define the color of each cluster
open the .perm file—with a minimum K lines each defining a
color. Colors are assigned to each cluster and not to each pre-
defined population, i.e., if population 1 appears in orange and
this population is defined in cluster 3 in .perm, define “3
orange” and not “1 orange”. The drawparams file has several
modifiable parameters, notably: K, NUMPOPS (number of
populations) and NUMINDS (number of individuals).
Remaining parameters adjust graphical aspects of the plot: let-
ter size, distance between text and plot, height of the plot,
thickness of the columns representing individuals, thickness of
the contour lines, horizontal /vertical orientation, and others
(Fig. 6). The “//” symbol indicates that the following text is a
comment describing the parameter function and that it will
not be used by the software. When computations are complete
a PostScript (.ps) file containing the plot is created To visualize
the plot with Windows, specific software such as GhostView
(freely available online), Acrobat Distiller or Illustrator is
needed. With MacOS plots can be opened with preview and
exported as a pdf.

A new option has been added to Snipper: the ability to apply
or not apply the HWE principle. The assumption of HWE
when not valid may result in inaccurate genotype frequency
estimates and, in turn, an inaccurate classification.

Each missing genotype is entered as two Ns per SNP, so only
ACGTN characters are permitted. Blank spaces are ignored.
Format errors from incorrect bases (either due to incorrect
SNP order or inverted bases) are flagged by Snipper with a
warning for the relevant SNP position(s).

In the supplementary Excel input file included in the online
version of this chapter, an example concatenated profile is
given. This individual will be classified as African—use Option
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File Path » : /Applications /distructl.]/drawparams

drawparams

Main usage options

#define

#define PRINT_LABEL_ATOP 1
#define PRINT_LABEL_BELOW

#define

PRINT_INDIVS

PRINT_SEP

Figure appearance

#define
#define
#define
#define
#define

FONTHEIGHT 1@

DIST_ABOVE 5

DIST_BELOW -7
BOXHEIGHT 100

INDIWIDTH 5

Extra options

#define ORIENTATION 3

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

Line 37 Col 21

(none)

1 // (B) 1 if indiv q's are to be printed, @ if only population q's

// (B) print labels above figure
// (B) print labels below figure

1 // (B) print lines to separate populations

/7 (d)
/7 (d)
/1 (d)
/7 (d)
/7 (d)

size of font

distance above plot to place text
distance below plot to place text
height of the figure

width of an individual

// (int) @ for horizontal orientation (default)
1 for vertical orientation
2 for reverse horizontal orientation

1

/"

I
XORIGIN 2080 /7 (d)
YORIGIN 788 /7 (d)
XSCALE 1 /7 (d)
YSCALE 1 /4 (d)
ANGLE_LABEL_ATOP @ //

ANGLE_LABEL_BELOW @

3 for reverse vertical orientation
lower-left x-coordinate of figure
lower-left y-coordinate of figure
scale for x direction
scale for y direction
(d) angle for labels atop figure (in [@,180])
// (d) angle for labels below figure (in [@,180])
(d) width of "pen" for rim of box
(d) width of "pen" for separators between pops and for tics

LINEWIDTH_IND @ // (d) width of "pen" used for individuals

LINEWIDTH_RIM 3 I/
LINEWIDTH_SEP 8.5 //
GRAYSCALE @ '
ECHO_DATA 1
REPRINT_DATA 1

PRINT_INFILE_NAME @

PRINT_COLOR_BREWER 1

* | Unicode (UTF-8)

(B) use grayscale instead of colors

/7 (B) print some of the data to the screen

// (B) print the data as a comment in the ps file

// (B) print the name of INFILE_POPQ above the figure

1 this option is meant for use only with ORIENTATION=0

// (B) print ColorBrewer settings in the output file

1 this option adds 1689 lines and 184656 bytes to the output
17 and is required if using ColorBrewer colors

 |Unix (LF) = |s | Last saved: 01/09/13 12:15:02 3428 [ 489 f 82

L]

283

Fig. 6 Example of distruct parameters. Considering an output file resembling an A4 sheet lying horizontally
(longer side down), and depending on the number of samples and the desired effect, it is worth taking advan-
tage of available space. Reverse horizontal orientation uses the longest side of the virtual sheet. Changing the
XORIGIN and YORIGIN values also helps—for example, XORIGIN=200 moves the plot away from the margin of
the sheet and YORIGIN=788 leaves just enough space to separate the plot from the margin without leaving
much unused space. The individual bar width (/NDIWIDTH) can then be adjusted to an appropriate value that
allows all the individuals to be included in the virtual sheet

20.

1 or Option 2 in Sunipper as described above (for Option 2 use
the supplementary Excel file as population data input—remove
the last two samples (unknown ancestry) and the last column;
adjust the number of individuals in cell 1A to 479 and the
number of populations in cell 1C to 3). Note that
-log(LIKELIHOOD) values are returned, so lower values are
better.

Divergence is calculated based on the number of populations

included in the comparison. For example, on the fixed training
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plot symbols : points (... pch=*cex=2.5)

0[}—5> 10D 15200257

1O 6\ 11%X - 16@ 21000

27 12T A 2280 ()

348K 13186 23O 0()

4 9 147 19@ 24/

Fig. 7 Symbols available in R to define the points shown in plots (pch
command)

21.

22.

set option, divergence will be calculated based on 3, 4, or 5
groups depending on the option selected in Step 2.

When generating PCA plots, it is possible to change graphical
parameters to user needs. In the R script, command lines are
included so the “Population” information can be used to
define color of the symbols in plots. In this case, population
names are transformed into color names, in population alpha-
betical order and not input order (a complete list of color avail-
able in R can be obtained with the command colours()
(alternatively colors()) or with the help of the Chart of R colours
available at http://research.stowers-institute.org/efg /R /
Color/Chart/). The symbol shape can also be changed—for
information on available symbols use the pck help page by typ-
ing ¢pch in R console (Fig. 7). The cex command changes the
size of the points.

If you are using SNPassoc package for the first time, you need
to install it in R. Two options are available: (1) install it from
the Package installer option in the R console; or (2) download
the package zip file from http://cran.r-project.org/web/
packages,/SNPassoc/index.html and perform a local zip file
installation.


http://research.stowers-institute.org/efg/R/Color/Chart/
http://research.stowers-institute.org/efg/R/Color/Chart/
http://cran.r-project.org/web/packages/SNPassoc/index.html
http://cran.r-project.org/web/packages/SNPassoc/index.html
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