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    Chapter 19   

 Inference of Ancestry in Forensic Analysis II: Analysis 
of Genetic Data                     

     Carla     Santos     ,     Chris     Phillips    ,     A.     Gomez-Tato    ,     J.     Alvarez-Dios    , 
    Ángel     Carracedo    , and     Maria   Victoria     Lareu     

  Abstract 

   Three approaches applicable to the analysis of forensic ancestry-informative marker data— STRUCTURE , 
principal component analysis, and the  Snipper  Bayesian classifi cation system—are reviewed. Detailed step-
by-step guidance is provided for adjusting parameter settings in  STRUCTURE  with particular regard to 
their effect when differentiating populations. Several enhancements to the  Snipper  online forensic classifi -
cation portal are described, highlighting the added functionality they bring to particular aspects of ances-
try-informative SNP analysis in a forensic context.  

  Key words     Genetic ancestry  ,   Reference data  ,   SPSmart browser  ,   Bayesian methods  ,    STRUCTURE   , 
   Snipper   ,   PCA    

1     Introduction 

 Classifying individuals into populations is often useful  in   popula-
tion genetics applications. But the defi nition of populations is 
commonly subjective, based on linguistic, cultural, or physical 
characters, as well as the geographical location of sampled indi-
viduals. This is a sensible way of incorporating diverse types of 
information but it may be diffi cult to know whether a given assign-
ment of individuals to populations based on these subjective crite-
ria matches an assignment in genetic terms. For this reason, it can 
be useful to confi rm that the subjective classifi cations are consis-
tent with genetic information and hence appropriate for the 
intended classifi cation regime [ 1 ,  2 ]. A possible approach starts 
with a set of predefi ned populations and then classifi es individuals 
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of unknown origin into these populations. This  involves   sampling 
DNA from members of potential source populations to estimate 
allele frequencies in each population at a series of unlinked loci. 
Allele frequencies can be used to compute a set of likelihoods that 
a given profi le of genotypes originates in each population. These 
likelihoods allow the assignment of individuals of unknown origin 
to populations based on the highest likelihood ratio [ 2 ]. 

 Bayesian population analysis methods infer a simple relation-
ship between the allele frequencies of a population and the allele 
frequencies observed in the individuals identifi ed as part of that 
population. An advantage of such methods is that prior informa-
tion about the samples can be used to progress the analysis. But the 
ability to differentiate populations in a sample set can be limited 
when applying a small number of samples and/or markers. Two 
valid approaches for comparing profi les from forensic casework 
DNA to reference population data will be considered here: a sys-
tematic Bayesian clustering approach (    STRUCTURE  software) 
and a naïve Bayesian likelihood ratio (LR) based calculator (under-
lying  the    Snipper  web portal).  STRUCTURE  is a fl exible 
approach—different types of markers such as STRs, SNPs, and 
indels can be readily combined in the same genotype input fi le 
(    Snipper  also allows such fl exibility but the systems are not yet 
implemented).  However    STRUCTURE  analysis of single profi les, 
typical of forensic testing, is not so straightforward since the whole 
set of parental data plus the unknown profi le must be re-analyzed 
in combination each time and this can be both time-consuming 
and cumbersome to perform for a small number of casework sam-
ples in turn. For this  reason    Snipper  (  http://mathgene.usc.es/
snipper/    ) was developed to provide a simple alternative for making 
ancestry assignments of single profi les in real time.  Both 
   STRUCTURE  and   Snipper    use a Bayesian approach which, put 
simply, computes likelihood of membership to each class (in this 
case ancestry) using the observed frequency of variables in each 
class (in this case allele frequencies). The difference between both 
methods lies in how the likelihood is computed (more information 
about these algorithms is detailed in [ 2 ,  3 ]). Therefore both algo-
rithms require reference data to calculate allele frequencies for 
comparison to alleles recorded in profi les of unknown origin. In 
the case of  Snipper , the reference data allows construction of train-
ing sets for calculation of allele frequencies and these can comprise 
ready-to-use fi xed fi ve- population group data (African, European, 
East Asian, Native American, and Oceanian) already in place for 34 
SNPs [ 3 ,  4 ] and/or 46 AIM-indels [ 5 ]. It can alternatively consist 
of end user’s own data for any populations and binary marker set 
where reference genotypes are available, which can then be 
uploaded as a custom data set. Each algorithm makes the same 
prior assumption, often untested: that the variables, i.e., the com-
ponent loci, are independent. For this reason, uniparental data (in 
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the form of haplotypes where all markers are linked) is not readily 
incorporated into either analysis system,  though    STRUCTURE  
has scope for the analysis of linked loci. 

 As the number of populations increases, the number of dimen-
sions needed to visually represent the pairwise genetic distances 
also increases. The main idea of multivariate analyses is to help to 
represent, in a comprehensive way, those multiple dimensions. 
This is done through the reduction of the dimensionality of a data 
set composed of a large number of interrelated variables maintain-
ing the maximum proportion of the variation present on that data 
[ 1 ].    Principal component analysis (PCA) is a commonly used mul-
tivariate analysis method, especially as an exploratory tool and to 
summarize genetic similarities and differences between groups of 
populations. This is possible through the transformation of those 
variables into a new set of metrics (principal components: PCs) 
that are not related and can be ordered in a way that the fi rst PCs 
retain most of the variation present in the original data—the graph-
ical representation of the fi rst two or three PCs summarizes as 
much of the variation as possible in a comprehensive, graphical way 
[ 1 ,  6 ]. In the graphics  that   PCA generates, individuals are repre-
sented by points distributed according to their coordinates in two-
way or three-way PC comparisons (two or three dimensional plots, 
respectively).    PCA can also be used to represent the relation of an 
unknown study sample with a set of reference population samples, 
i.e., the study sample will be represented by a point superimposed 
onto the PCA plot of the reference population samples.  

2    Materials 

     1.        SPSmart  browser home:   http://spsmart.cesga.es/       
   2.     SPSmart  SNP for ID 52-plex and 34-plex variability browser: 

  http://spsmart.cesga.es/snpforid.php       
   3.    Entire genome interface for exploring SNPs (ENGINES) 

a 1000 Genomes variability browser:   http://spsmart.cesga.es/
engines.php?dataSet=engines       

   4.    pop.STR:   http://spsmart.cesga.es/popstr.php       
   5.     Snipper  portal:   http://mathgene.usc.es/snipper/       
   6.        STRUCTURE  software:   http://pritchardlab.stanford.edu/

structure.html       
   7.     Structure harvester :   http://taylor0.biology.ucla.edu/

structureHarvester/#       
   8.    CLUster Matching and Permutation Program ( CLUMPP  soft-

ware):   http://www.stanford.edu/group/rosenberglab/clumpp.
html       
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   9.     distruct  software:   http://www.stanford.edu/group/rosenber-
glab/distruct.html       

   10.    For more information about  R  software:   http://www.r-project.
org/     [ 7 ].      

3    Methods 

   The statistical analysis of a profi le requires  reference   training sets, 
i.e., parental populations of interest used to classify casework pro-
fi les. Collection of such data previously required locus-by-locus 
scrutiny of dbSNP or HapMap SNP databases [ 8 ], but fortunately 
SPS (SNPs for Population Studies) makes this task much more 
straightforward for any number  of   AIM-SNPs as well as up to 52 
STRs in routine forensic use. 

 SPS comprises the following genomic variability browsers:

 ●    SPSmart home:   http://spsmart.cesga.es/     [ 9 ].  
 ●   SPSmart SNP for ID 52-plex and 34-plex variability 

browser:   http://spsmart.cesga.es/snpforid.php     [ 10 ].  
 ●   ENGINES (Entire Genome Interface for  Exploring   SNPs) 

a 1000 Genomes variability browser enabling a review of 
all SNP sites found from 1092 complete genome sequences 
(1000 Genomes Phase I):   http://spsmart.cesga.es/
engines.php?dataSet=engines     [ 11 ].  

 ●   pop.STR:   http://spsmart.cesga.es/popstr.php     [ 12 ].    

  SPSmart  [ 9 ] is a simple pre-processing engine that includes 
fi ve different population-based genotype databases: (1) 1000 
Genomes Phase I May 2011; (2) HapMap Release #28; (3) 
Perlegen complete data set; (4) HGDP-CEPH Stanford study; and 
(5) HGDP-CEPH NIH- Michigan study ( see   Note 1 ).  SPSmart  
also generates  common   population genetics indices such as allele 
frequencies, heterozygosity,  F  ST , or  I   n   (summarized in the down-
loads tab of each query).

    1.    Choose the database(s) to search or choose SEARCH in the 
SNP for ID “global map” homepage.   

   2.    Choose the populations to merge into groups by ticking selec-
tions up to a maximum of fi ve. If opting to review multiple 
databases, e.g., HapMap and Perlegen, only one population 
grouping can be made. Populations are already arranged into 
sets of genetic diversity based on Rosenberg’s original analyses 
of HGDP-CEPH populations [ 3 ,  13 ], though note that 
Eurasians are subdivided into European, South Asian, and 
Middle Eastern subgroups.   

   3.    Add the SNP RefSeq (rs-number) identifi ers in the search  by 
  SNP window. Search by chromosome region or gene name is 
also available. Click the “next” button below.   

3.1  Collection 
of Ancestry Reference 
Data with the SPSmart 
Browser
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   4.    Of the fi lter options presented, MAF is minimum allele fre-
quency and  I   n   Rosenberg’s ancestry informativeness metric 
[ 14 ]. When reviewing SNP data from multiple databases, it is 
best not to tick option: “Filter SNPs not genotyped on every 
compared dataset”.   

   5.    When SNPs are not found from a query, a  message tab  with the 
missing rs-numbers appears.   

   6.    In the  downloads  tab, genotype fi les are available ready to 
download, copy and paste into Excel ( see   Note 2 ) or notepad. 
The recommended steps being: download, choose all, copy 
into Excel, transpose the data into rows = samples and col-
umns = SNPs (in edit menu: “copy” > select new cell > “paste 
special” > select: “transpose”). This must be completed for 
each group while taking care to label each set of sample rows 
with the appropriate description, e.g., African, South Asian, 
etc. Another option is to query and download all population 
groups at once—follow the steps previously described in this 
point for the genotypes and then download the sample list fi le. 
This fi le includes sample, subpopulation, and population group 
information. Open, select all, and paste in the genotypes Excel 
fi le—confi rm that the samples are in the same order and 
remove the duplicated column with sample name (Fig.  1 ).

  Fig. 1    Example of a reference ancestry genotype data fi le obtained from  SPSmart . The data obtained from 
 SPSmart  was reorganized (original data was transposed so that samples are now organized in rows and mark-
ers in columns) and population information (downloaded from  SPSmart  in a separate fi le) was added       
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       7.    The genotypes can be formatted for input  to    STRUCTURE , 
    Snipper ,  or   PCA custom data analysis (outlined later).    SNaPshot 
genotypes may need checking against the reference data if they 
come from different typing platforms, e.g.,  a   SNaPshot C/T 
SNP may be an A/G SNP in HapMap requiring base inver-
sions of one dataset. For this reason symmetrical SNPs (C/G 
and A/T) require particular care ( see   Note 3 ).    

        STRUCTURE  uses  genotypic   data of several loci to: (1) infer pop-
ulation structure; (2) identify subpopulations (subsets of samples 
with distinct allele frequencies); (3) assign individuals to subpopu-
lations (based on probabilities); and (4) study admixture between 
populations. It uses a population structure model where studied 
samples represent a mixture of  K  unknown populations—each 
characterized by unknown allele frequencies for the loci used and 
where these are assumed to be in Hardy-Weinberg equilibrium 
(HWE) and independent (not in linkage disequilibrium). The 
objective is to classify individuals into  K  clusters in a way that devi-
ations from HWE and independence are minimized. 

 Assuming HWE and independence in each subpopulation, the 
probability that the genotype of an individual belongs to subpopu-
lation  k  is given by the product of the allele frequencies. Using 
Bayes rule ( see   Note 4 ) it is possible to calculate the probability of 
an individual belonging to subpopulation  k . If allele frequencies in 
a  population   were known in advance, it would be easy to allocate 
individuals. Equally, if individual allocations were known it would 
be easy to estimate the frequencies. In practice, we do not know 
either, but using a Markov Chain Monte Carlo (MCMC) algorithm 
( see   Note 5 ) it is possible to obtain a sensible estimate of both. 

 The estimation of the optimum  K  value is performed in an 
independent way: for each simulation a posterior probability value 
 Pr ( K ) is calculated. In general, for  K  values under the optimum, 
 Pr ( K ) is low but it tends to stabilize with higher  K  values, so a 
 plateau  is commonly observed. When several  K  values have similar 
 Ln Pr ( K ) estimates, the smallest of them is usually the most appro-
priate estimate—generally corresponding to the infl ection point of 
the probability plot. However, it is not always possible to know the 
real  K  value, so it is best to choose the lowest value that captures 
the maximum structure present in the data [ 15 ].    Evanno et al. 
described a method to estimate  K  based on a second-order change 
of probability value taking into account the variability of the prob-
ability value between different replicates of each  K  value— delta K  
[ 16 ]. This method is implemented in  Structure Harvester  [ 17 ] ( see  
 Note 6 ). However  K  is not an absolute value, defi ned values should 
be carefully considered taking into account any known characteris-
tic of the studied populations. There are several factors that can 
affect the clustering of the samples: (1) number of markers; (2) 
number of samples; (3) number of clusters; and (4) allele frequency 

3.2  STRUCTURE 
Software

3.2.1  Background 
on STRUCTURE Analysis
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correlation. Endogamy or genotyping errors can have the same 
effects as true population structure as they can simulate linkage 
disequilibrium in unlinked markers and deviations from HWE. 

     STRUCTURE  has several models for ancestry (Fig.  2 ,  see   Note 
7 ) and allele frequencies ( see   Note 8 ). For more details refer to the 
 STRUCTURE  manual and articles describing the different models 
[ 2 ,  18 – 20 ]. Considering the type of analysis required in a forensic 
context, the  admixture POPFLAG  ancestry model is appropriate. 
This combines two important features: consideration of admixture 
between populations (individuals can have recent ancestors from 
multiple populations so ancestry membership proportions from 
each ancestral population can be calculated); and some individuals 
can be used as a reference to help infer the ancestry of the samples 
under study. Regarding the allele frequencies model, it is advisable 
to use the correlated allele frequencies model because it will guar-
antee that an undetected correlation will be identifi ed without 
affecting the results should it be absent.

      Data to be analyzed  with    STRUCTURE  needs to be organized in 
a single matrix (as a text fi le) where optional information can be 
considered to complement the genotypic data. Such information 
should be included in a predefi ned order and it is important to 
highlight that only the genotypic data is required for the analysis. 
We will focus the construction of an input fi le on the information 
of greater relevance when analyzing a casework profi le (Tables  1  
and  S1 ). For more information about  constructing    STRUCTURE  
input fi les (especially formatting information on recessive alleles, 
marker distance, phase information, or phenotype), refer to 
 STRUCTURE  software manual or to a recent overview [ 20 ].

 ●     First line: header line. Headers are only included in the 
markers columns.  

 ●   First column: sample name information that can be an 
alpha- numerical code which can introduce errors when 

3.2.2  Preparation of  a 
  STRUCTURE Input File

  Fig. 2    Schematic representation of  STRUCTURE  ancestry models and their rela-
tionship. The central models are  no admixture  and  admixture ; both can be used 
together with  LOCPRIOR  information. The  admixture  model is the basis for the 
 linkage  model. All three models ( no admixture ,  admixture , and  linkage ) can be 
used in conjunction with the  USEPOPINFO  model. All the above models can be 
used considering  POPFLAG  information       
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running  CLUMPP , easily solved in  Structure Harvester  ( see  
 Note 6 ).  

 ●   Second column: a numerical code representing the popula-
tion of origin as defi ned by the researcher. By default this 
information is not used by the clustering algorithm but can 
help organize the output fi le.  

 ●   Third column:  PopFlag  information. This is a Boolean vari-
able where 1 (TRUE) represents the samples that should 
be used as reference and 0 (FALSE) the casework/study 
samples.  

     Table 1  
   STRUCTURE  input fi le format   

 M1  M2  M  n   

 S1  1  1  1  Extra  Extra  1  2  1 

 S1  1  1  1  Extra  Extra  3  4  1 

 S2  1  1  2  Extra  Extra  3  2  2 

 S2  1  1  2  Extra  Extra  3  2  3 

 ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮ 

 S10  1  1  3  Extra  Extra  1  4  1 

 S10  1  1  3  Extra  Extra  1  4  2 

 S11  2  1  4  Extra  Extra  1  2  2 

 S11  2  1  4  Extra  Extra  3  4  2 

 S12  2  1  5  Extra  Extra  3  2  1 

 S12  2  1  5  Extra  Extra  3  2  2 

 ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮ 

 S20  2  1  6  Extra  Extra  1  4  2 

 S20  2  1  6  Extra  Extra  1  4  2 

 S21   n   0  7  Extra  Extra  1  2  1 

 S21   n   0  7  Extra  Extra  2  4  1 

 S22   n   0  8  Extra  Extra  2  2  2 

 S22   n   0  8  Extra  Extra  2  2  2 

 ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮ 

 S  n     n   0  9  Extra  Extra  1  4   -9  

 S  n     n   0  9  Extra  Extra  1  4   -9  

  Samples S1…S  n   from populations 1… n  analyzed with genotypic data from markers M1…M  n  . Samples 1…10 belong 
to population 1 and can be divided into three locations (1–3). Samples 11…20 belong to population 2 and can be 
divided into three locations (4–6). Samples 21…S  n   belong to population  n  and can be divided into three locations 
(7–9). Samples from populations 1 and 2 are reference ( POPFLAG  = 1) and study samples are from population  n  
( POPFLAG  = 0)  
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 ●   Fourth column:  LocPrior  information. A numerical code 
that denotes subpopulation groups, geographical loca-
tions, or other shared characteristic between individuals 
inside the population groups defi ned in the second col-
umn. This information is used when considering the 
 LOCPRIOR  ancestry model.  

 ●   Any number of extra columns can list useful information 
for the researcher. For example, as the population and 
 LocPrior  information is numeric, extra columns with the 
names can be included as an easy way to cross check data 
later.  

 ●   The following columns include genotypic data for any 
number of markers (SNPs, indels, or multiallelic markers 
such as STRs). Genotypes should be coded as numbers. 
For SNPs, we routinely use  A  =  1 ,  C  =  2 ,  G  =  3 , and  T  =  4 . 
STRs are already numerically coded but in the case of 
intermediate alleles the “.” should be removed, i.e., 
 19.3  =  193  ( see   Note 9 ).  

 ●   Missing data is usually coded as - 9  but any other code not 
present in the fi le can be used.  

 ●   Each allele needs to be represented in a separate cell: both 
alleles in the same line but in different columns or both 
alleles in the same column but in different lines (we will 
focus on the latter as shown in Table  1 ).  

 ●   Spaces should not be included.     

   The fi rst stage when  running    STRUCTURE  (  http://pritchardlab.
stanford.edu/structure.html    ) is to create a new project (File > New 
project) following four established steps:

 ●    Step 1—project information: name of the project, direc-
tory where the project will be saved, and input fi le.  

 ●   Step 2—information of input data set ( see   Note 10 ): num-
ber of individuals, ploidy of data, number of markers, and 
missing data value.  

 ●   Steps 3 and 4—format of input data set ( see   Note 11 ): 
information contained in rows and columns (e.g., row of 
marker names or individual ID for each individual).    

 Before creating the project,     STRUCTURE  presents a sum-
mary where it is possible to confi rm the selected options. If there 
are no errors, the project opens and the data is visible. 

 The next stage is to create a new parameter set (Parameter 
set > New):

 ●    Run length—a  burnin  period of 100,000 is more than suf-
fi cient to allow a progressive convergence towards reliable 
allele frequency estimates in each population and probabil-
ities for membership of individuals to a population. 
Measurement of the assumed number of populations uses 
the MCMC estimation and is performed separately from 

3.2.3  How to Run 
STRUCTURE Software
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the  burnin . About 100,000 MCMC repeats have been 
shown to provide good ancestry membership proportions 
 estimates. But  burnin  and MCMC repeat number should 
be adjusted depending on the study objectives and infor-
mation contained in the data set ( see   Note 12 ).  

 ●   Select ancestry model—depending on the study objectives 
and the data to be analyzed, different ancestry models can 
be considered. For the  admixture POPFLAG  model select 
“Use admixture model” under the “Ancestry model” tab 
and “Update allele frequencies using only individuals with 
 POPFLAG  = 1 data” under the “Advanced” tab.  

 ●   Select allele frequencies model—for the  correlated allele 
frequencies  model select the “Allele frequencies correlated” 
option under the “Allele frequencies model” tab.  

 ●   Leave the “Compute probability of the data (for estimat-
ing  K )” option under the “Advanced” tab selected so that 
posterior  Ln Pr ( K ) values are calculated—those will be 
used to estimate the optimum  K  value.  

 ●   Save the new parameter set with the desired name and con-
fi rm the selected options in the summary window that 
opens after saving. A tree on the left side of the screen will 
include all the parameter sets created, indicating the one 
active at the moment.    
 There are two ways of starting a simulation:

 ●    Run a single  K  value—in the “Parameter set” menu select 
“Run” and set the assumed number of populations ( K ). 
This option only allows a single  K  value and replicate at a 
time.  

 ●   Schedule multiple runs—in the “Project” menu select 
“Start a job”. A new window opens—select the parameter 
set(s) to be analyzed, the  K  values, and the number of iter-
ations for each  K  ( see   Note 13 ). For example, two differ-
ent parameter sets can be programmed to run from  K  =  2  
to  K  =  6 , three replicates for each  K —this sums up to 30 
scheduled runs. This option is advantageous for large proj-
ects—a new run starts automatically after the previous one 
has fi nished so there is no need for constant attention on 
the progress of the job ( see   Note 14 ).     

   Software associated  with    STRUCTURE , for example,  CLUMPP  
[ 21 ], contains three algorithms for the alignment of multiple repli-
cate analyses of the same data set which allows the transformation of 
any number of replicate simulations for each  K  in a single set of data 
( see   Note 15 ). Such data is suitable for analysis with another sup-
porting program  distruct  [ 22 ] which allows the visualization of the 
estimated membership coeffi cients: populations are represented as 
colors and individuals as bars portioned into colored segments that 
correspond to membership coeffi cients in the groups ( see   Note 16 ).  

3.2.4  STRUCTURE 
Associated Software
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       STRUCTURE  output fi les include information on the estimated 
clusters, i.e., the population groups generated not the input popu-
lations. However when the populations are defi ned in a way that 
they closely match the calculated clusters, the inferences of the 
population ancestry membership proportions in each of the pre-
defi ned clusters can be considered to be the proportions of the 
input populations. When attempting to classify a population or 
individual, the use of reference populations closely matching the 
inferred clusters is important, especially when analyzing admixed 
samples where it is important to defi ne the contributing parental 
populations. The ancestry membership proportions for each indi-
vidual in each cluster are also calculated by  STRUCTURE . 

 Allele frequency divergence among populations, average dis-
tances (expected heterozygosity) between individuals in the same 
cluster, mean  F  ST  values, and estimated allele frequencies in each 
cluster (including estimated ancestral frequencies) are calculated. 
As a way of quantifying the information given by a  particular 
   STRUCTURE  run and estimating the optimum  K  value it calcu-
lates the estimated probability of the data, the mean likelihood 
value, and associated variance. And it calculates the mean value of 
 alpha  ( α ) as a measure of the relative admixture levels between pop-
ulations—when  α  >> 1 the individuals are highly admixed; for val-
ues of  α  << 1 each individual has its origin mainly in one population 
(from our experience with the HGDP-CEPH panel of samples, 
 α  < 0.05—this value varies depending on the population groups 
considered and the differentiation power of the marker sets used). 

 The population and individual ancestry membership pro-
portions can be represented in two distinct types of plot:

 ●    A bar plot where each individual of the data set is repre-
sented by a vertical line divided into  K  colored segments 
proportional to the estimated membership into each of the 
 K  inferred clusters. To visualize the bar plot  in 
   STRUCTURE  choose the appropriate result fi le in the tree 
on the left side of the window—on the simulation result 
window menu select Bar plot > Show.  

 ●   Each individual is represented as a colored point in a trian-
gle (on the simulation result window menu select Triangle 
plot > Show). Colors correspond to the population tag in 
the input fi le. The estimated ancestry vector for an indi-
vidual is formed by  K  components that sum up to 1. This 
type of plot is particularly useful to represent  K  =  3  data 
because the vectors can be represented in one triangular 
plot. For each point, the distance to the triangle vertices 
gives each of the three components. Individuals located in 
one of the vertices are completely assigned to the popula-
tion represented in it.    

3.2.5  What Information 
Can Be Obtained 
from STRUCTURE?
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 Despite the advantages of the triangular plot when visualizing 
 K  =  3  data, bar plots are usually easier to interpret, especially 
for  K  >  3 . 

 In the case of forensic casework analysis,     STRUCTURE  gives 
information on the training set (allowing the assessment of the 
used reference data set—the optimum  K  value matches the num-
ber of reference populations, which are completely differentiated 
among them) and it also gives us the individual ancestry member-
ship proportions (such information has considerable potential in 
guiding investigators to more clearly defi ned suspect pools, this 
being particularly true when no eyewitness is available  or   STR pro-
fi les fail to match DNA database records). This is illustrated in 
Subheading  3.5 .   

      The    Snipper  portal includes a straightforward Bayesian system for 
predicting ancestral origin and estimating the misclassifi cation 
rate. It uses a set of samples of each population as training sets 
and assigns individuals to the population that maximizes the pos-
terior probability (maximum likelihood calculation) [ 3 ]. The 
likelihood parameters are estimated from training set allele fre-
quencies assuming HWE and independence for the used loci ( see  
 Note 17 ). 

     Snipper  was originally designed to provide a real-time ancestry 
assignment system for 34-plex profi les with reference to default 
pre- typed AFR-EUR-E ASN training sets and this still represents 
the simplest approach for assessment of a single casework profi le to 
obtain an immediate overview of ancestry. The portal has been 
updated to include 34-plex [ 3 ,  4 ] and AIM-indel [ 5 ] fi xed refer-
ence data for fi ve populations groups: AFR-EUR-E ASN-AME-
OCE. But the ancestry analyses can be extended beyond the default 
settings. For example, custom Excel fi les (including any binary 
markers that are of interest for the researcher) or frequency based 
Excel fi les (helpful when working with STRs or haplotypes) can be 
used as reference training sets. 

 A new version  of    Snipper  is being prepared ( Snipper App suite 
version 2.0 ) to include new functionalities including turn on/off 
the HWE assumption; prediction of admixture components; batch 
analysis (multiple profi les); fi ne-tuning of a training set; classifi ca-
tion of single profi les; and analysis of training sets through multi-
nomial logistic regression (beta version). At the time of writing a 
publication describing  Snipper 2.0  is in preparation.  

   Careful preparation of the Excel fi le containing the custom train-
ing set profi les and precise matching of unknown profi les to train-
ing set data for bases and locus order is important. Therefore it is 
recommended to sort component SNPs/indels into ascending rs-
number order as an aid to data checking. 

3.3  The Snipper 
Web Portal

3.3.1  Background 
on Snipper Analysis

3.3.2  Preparation of  a 
  Snipper Input File
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  For    Snipper  analysis using binary markers, an  .xlsx  Excel fi le 
( .xls  can still be used for certain previous options) with sample, 
population, and genotype information listed (Tables  2  and  S2 )—
how that information is organized is also important so the follow-
ing considerations should be taken into account:

 ●     Cell 1A indicates the number of samples; cell 1B the num-
ber of markers; and cell 1C the number of populations.  

 ●   Line 1 (from column D onwards) specifi es the marker 
name (represented by an alpha-numerical code).  

 ●   Lines 2–5 can be left empty or can be used to include use-
ful notes (e.g., one of the lines can be used to store the 
study/casework sample profi le and other line can be used 

     Table 2  
   Snipper  input fi le format   

 A  B  C  D  E  …  XFC  XFD 

 1  # Samples  # Markers  # Populations  M1  M2  …  M  n   

 2 

 3  Profi le  AG  TT  …  AC 

 4  Concatenate  =D3&E3&…&XFC3 

 5 

 6  1  P1  S1  AG  CT  …  AA  1 

 7  2  P1  S2  GG  CC  …  CG  1 

 8  3  ⋮  ⋮  ⋮  ⋮  …  ⋮  ⋮ 

 9  4  P1  S10  AA  TT  …  AG  1 

 10  5  P2  S11  AG  CT  …  GG  1 

 11  6  P2  S12  GG  CC  …  AC  1 

 12  7  ⋮  ⋮  ⋮  ⋮  …  ⋮  ⋮ 

 13  8  P2  S20  AA  TT  …  CC  1 

 14  9  P  n    S21  AG  CT  …  AA  0 

 15  10  P  n    S22  GG  CC  …  GG  0 

 ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  …  ⋮  ⋮ 

 1048576   n   P  n    S  n    AA  TT  …   NN   0 

  Samples S1…S  n   from populations 1…P  n   analyzed with genotypic data from markers M1…M  n  . Samples 1…10 belong 
to population 1; samples 11…20 belong to population 2, and samples 21…S  n   belong to population P  n  . An extra col-
umn after the last marker (in this case column XFD) should be included when trying to classify several study samples 
simultaneously—samples from populations 1 and 2 are reference (labeled as 1) and samples from population P  n   are the 
unknown study (labeled with 0). Lines 2–5 can be used to include useful information—e.g., when a single profi le is 
being classifi ed it can be included (here in line 3) and concatenated (cell D4)—the concatenated profi le can then be 
copy-pasted directly into  Snipper   
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to concatenate that profi le—ready for copying and past-
ing, i.e., if the profi le is in line 3 type =  D3&E3&F3 … in 
the desired cell).  

 ●   Column A (from line 6 onwards) has a numeric value that 
usually represents a sample.  

 ●   Column B (from line 6 onwards) has the population names.  
 ●   Column C (from line 6 onwards) has the sample names 

(which can be represented by an alpha-numerical code).  
 ●   Column D onwards (from line 6 onwards) includes the 

genotypes (coded as nucleotide bases—ACGT). Missing 
data should be coded as NN. Other symbols in the fi le 
(e.g. ?, spaces) are not recognized. Triallelic markers can 
be included in the analysis.  

 ●   A new batch analysis option was implemented in  Snipper 
v2.0  which allows for simultaneous classifi cation of more 
than one profi le. In this case, the input fi le should be con-
structed as described in the previous points. An extra col-
umn after the last marker (with no headers—start in line 
6) needs to be included: training samples are to be marked 
as 1 and study samples to be classifi ed as 0.     

       Snipper  includes several options to classify individuals and analyze 
populations. For forensic analysis the two most applicable options 
are: “ Classifi cation as Europe-East Asia-Africa-America-Oceania 
(34 SNPs, 46 Indels, or both sets) ” and “ Classifi cation with a custom 
Excel fi le of populations ”. There is an additional option that works 
in the same way but allows batch analysis: “ Classifi cation of multi-
ple profi les with a custom Excel fi le of populations ”.

    1.    The “ Classifi cation as Europe-East Asia-Africa-America-
Oceania (34 SNPs,    46     Indels, or both sets) ” option uses fi xed 
training sets and provides a simple system to classify single 
profi les.

 ●    Step 1—go to   http://mathgene.usc.es/snipper/pop-
choosing5groups.html      

 ●   Step 2—choose the marker set  from   three options: 34-plex 
SNPs (the original marker set [ 3 ] or the revised set [ 4 ] can 
be selected), 46-plex AIM-indels [ 5 ], or a combination of 
80 binary markers (Indels combined with the revised 
34-plex set). SNPs are listed in rs- number order and AIM-
indels in electrophoretic order—on the left side links give 
images listing the marker order in each option.  

 ●   Step 3—choose populations. Three to fi ve main popula-
tion groups are available (Africa, Europe, East Asia plus 
America plus Oceania).  

 ●   Step 4—choose the classifi er. Four options are now avail-
able: naïve Bayesian analysis (considering whether the 
Hardy-Weinberg principle applies or not), multinomial 
logistic regression, and genetic distance algorithm.  

3.3.3  How to Run 
Snipper
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 ●   Step 5—data input. Depending on the option selected in 
Step 1, a profi le including 34, 46, or 80 markers (68, 92, 
or 160 bases respectively) should be typed ( see   Note 18 ). 
As described before, a profi le can be built by concatenat-
ing data in Excel (using the “&” operand) allowing indi-
vidual scrutiny of composite genotypes before direct 
copy-pasting into the query window left of the “ Classify ” 
button ( see   Note 19 ).      

   2.    “ Classifi cation with a custom Excel fi le of populations ”—this 
option allows extension of ancestry analyses beyond the default 
 fi ve- population group comparisons and 34, 46, or 80 binary 
markers using  Snipper .

 ●    Step 1—go to   http://mathgene.usc.es/snipper/analy-
sispopfi le_new.html      

 ●   Step 2—data input (population). An Excel fi le prepared as 
described above (Table  2  without the fi nal column) is 
uploaded.  

 ●   Step 3—choose classifi er. Options as described above.  
 ●   Step 4—data input (individual). A profi le string contain-

ing the same number of markers in the same order as they 
appear in the data fi le uploaded in Step 1 ( see   Note 18 ) is 
entered in the query window.      

   3.    “ Classifi cation of multiple profi les with a custom Excel fi le of pop-
ulations ”—go to   http://mathgene.usc.es/snipper/analysis-
multipleprofi les.html    . This option works as above but without 
the need for individual profi le submission. Profi les to be classi-
fi ed are indicated as previously described (Table  2 ). The multi-
nomial logistic regression classifi er function is not currently 
available for this option.    

      Snipper  also includes an option to analyze training sets to gauge 
characteristics of the component binary markers—“ Thorough anal-
ysis of population data of a custom Excel fi le ” (  http://mathgene.usc.
es/snipper/analysispopfi le2_new.html    ). This is useful to assess the 
informativeness of new candidate AIM binary markers for ancestry 
inference. After uploading the Excel fi le of custom data and defi n-
ing Hardy- Weinberg, choose “ Perform a verbose cross-validation 
analysis of my population data with the best _ SNPs ” adding the rel-
evant number of markers to assess. Cross-validation removes each 
component sample in turn, recalculates the allele frequencies in the 
training set, and then assigns ancestry for the removed profi le. The 
other options “ Try to classify all individuals in the sample ”, “ Perform 
a non verbose cross- validation analysis of my population data ”, and 
“ Compute bootstrap error of my population data ” provide choice of 
alternative assignment error estimators. Multinomial logistic regres-
sion can also be applied to the population data—in this case infor-
mation given in Step 2 about HWE will be ignored. Once a training 
set has been assessed for informativeness, users can choose options 
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2 and 3 described above to compare single or multiple profi les from 
unknown samples to the custom reference data and assign ancestry 
in identical fashion to using the fi xed training sets.  

   Results from the analysis of a  profi le   comprise the submitted pro-
fi le; the assumed classifi er; the -log likelihoods (use of -log likeli-
hoods permits easier comparison of the very small likelihood ratio 
fi gures normally generated) and percentiles for the training set 
population groups; the likelihood ratios in verbose format and pre-
dicted admixture components and ancestry; a set of plots summa-
rizing the classifi cation; the apparent success of the classifi cation; 
and a list of the markers in descending order of divergence ( see  
 Note 20 ). Missing genotypes are fl agged in red in the divergence 
list to allow some assessment of the potential contribution of gaps 
in the profi le, in other words, assignments made with several red 
markers at the top of the list will be much less reliable than those 
with gaps at the bottom, although this will be clear from the prob-
abilities obtained. Apparent success measures the rate of correct 
assignment of training set samples using the markers of the profi le. 
These values are 100 % for a complete set of markers, but drop 
when signifi cant numbers of gaps occur in the submitted profi le (in 
the case of the three group 34-plex fi xed training set this is particu-
larly true for EUR:E ASN comparisons).   

     Principal component analysis  or   PCA is a multivariate data analysis 
technique allowing the reduction of dimensionality, i.e., it uses 
fewer variables, while preserving much of information in the data. 
Usually two or three principal components are made, constructed 
as linear combinations of the original variables. Working with only 
two or three variables allows graphical representation of the data in 
a 2D plane or 3D graphic, providing fast visual recognition of pat-
terns or clusters. Numerous software packages are available to per-
form PCA analysis when numerical variables are used.  When   SNP 
data is considered, an initial transformation (or recodifi cation) is 
needed to access this existing software. The next section details 
SNP data preparation using the statistical package  R .  

   SNP analysis  with   PCA requires two text fi les with sample, popula-
tion, and genotype information. One of the fi les should include 
training set data and the other the study samples to be compared. 
Both fi les have the same format (Tables  3 ,  S3  and  S4 )—the system 
for organizing this data is important so the following consider-
ations should be carefully taken into account:

 ●     The fi rst column includes sample name information in the 
form of an alpha-numerical code. The column header is 
“Sample”.  

 ●   The second column has the populations/groups names. 
The header is “Population”.  

3.3.4  Evaluating Snipper 
Output

3.4  Principal 
Component Analysis 
(PCA)

3.4.1  Background 
on PCA

3.4.2  Preparation of PCA 
Input Files
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 ●   The following columns have genotype data, one marker 
per column. Each column header will have the correspond-
ing marker name, which can be an alpha-numerical code. 
Genotypes are coded with nucleotide bases (ACGT) and 
missing data as NN. Note that markers must be in the same 
order in both input fi les.  

 ●   Spaces can be included in the fi le except as part of the gen-
otype data (they will be considered as a new genotype, i.e., 
TT ≠ T T).  

 ●   Triallelic markers can be included in the input fi le but they 
will not be considered for the principal components 
calculation.     

    In this subheading we include  R   scripts   that can be used to gener-
ate 2D principal components graphics (only if the number of vari-
ables (SNPs) is smaller than the number of samples). The script 
commands can be copied and pasted into the  R  console. With the 
main focus on graphics,  R  offers a range of options to manipulate 
data and generate plots that adjust to user needs. In the case of this 
script, command lines were added to allow changes in color, shape, 
and size of the symbols representing individuals ( see   Note 21 ). 

 All text after the # symbol represents notes for the user and will 
not be computed. A  R  version of the script is included as supple-
mentary in the digital version of this chapter. 

3.4.3  Creating a PCA Plot

   Table 3  
  Principal component analysis SNP input fi le format   

 Sample  Population  M 1   M 2   M  n   

 S1  P1  AG  CT  AA 

 S2  P1  GG  CC  CG 

 ⋮  ⋮  ⋮  ⋮  ⋮ 

 S10  P1  AA  TT  AG 

 S11  P2  AG  CT  GG 

 S12  P2  GG  CC  AC 

 ⋮  ⋮  ⋮  ⋮  ⋮ 

 S20  P2  AA  TT  CC 

 S21  P  n    AG  CT  AA 

 S22  P  n    GG  CC  GG 

 ⋮  ⋮  ⋮  ⋮  ⋮ 

 S  n    P  n    AA  TT   NN  

  Samples S1…S  n   from populations P1…P  n   analyzed with genotypic data from markers M1…M  n    

Inference of Ancestry in Forensic Analysis II: Analysis of Genetic Data



272

  

Carla Santos et al.



273

   

Inference of Ancestry in Forensic Analysis II: Analysis of Genetic Data



274

      PCA allows the exploration of data sets and shows proximity 
between individuals. In fact, it is possible to include a casework 
sample in the PCA plot generated for the reference populations 
helping to infer, through visual inspection, the most probable clas-
sifi cation of that individual (Fig.  3 ).

        In the 11-M Madrid bomb attack investigation, standard DNA 
analysis with STRs was supplemented with Y-fi ler and standard 
mtDNA analysis in most exhibits. But seven complete STR pro-
fi les, originating from fi ve personal items together with a handprint 
on the handle of the bag containing an undetonated device, failed 
to match any of the suspects so these DNAs became the focus of 
specialist genotyping to analyze ancestry, specifi cally confi ned to 
the comparison of European with North African variability. This 
differentiation can be diffi cult to achieve for Y-chromosome and 
mtDNA due to differences in the scope and depth in the databases 
between European and North African data, so the 34- plex   AIM-
SNP set was chosen [ 24 ]. 

3.4.4  What Information 
Can Be Obtained 
from PCA?

3.5  Casework 
Example of a Custom 
Ancestry Inference: 
The 11-M Madrid 
Bomb Attack

-5 0 5 10

-5
0

5

Example PCA - Reference + Study samples

PC1  29.56%

P
C

2 
 2

2.
64

%

AFRICA
EAST ASIA
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  Fig. 3    PCA plot generated using the R script described in Subheading  3.4.3 . 
Three population groups from the HGDP-CEPH panel of samples are used as 
reference data: Africa ( orange ), Europe ( blue ), and East Asia ( pink ). One study 
sample was plotted in the reference PCA ( black ). It is possible to infer that the 
study sample is likely to be African. Both reference and study samples genotypes 
are supplemented as text fi les in the online version of this chapter       
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 The approach followed in this case is a good example of the 
integration in one analysis of the different techniques described in 
this chapter. Two training sets were made using 48 Moroccans 
and 48 Spanish from Madrid.  Using    Snipper  a cross-validation 
assessed the accuracy (assignment success/error) and performance 
(range of likelihoods) of the training sets and to generate pairwise 
likelihood plots to assess patterns of possible admixture (Fig.  4 ). 
Such plots compare two ancestries and enable a simple compari-
son of the range of likelihoods observed in the unknowns along-
side their closest parental population vs. another alternative 
population. The charts are made in Excel by  converting    Snipper  
likelihoods to whole numbers (using the = EXP formula in Excel), 
making each pairwise ratio (in this case, lk Moroccan/lk Spanish) 
and ranking values in descending order. Charting these with a 
logarithmic scale provides a simple visual check of the range of 
divergence between the populations compared as points with 
varying distances from the midline of 1 (equating to balanced 
odds of ancestry assignment to either population). The most dis-
tant points from the midline represent the strongest assignments. 
In populations without admixture, points are fully separated; 
when admixture occurs, a signifi cant proportion of values are close 
to or cross the midline.  Using    STRUCTURE , admixture patterns 
were assessed in the training set. Some individuals, corresponding 
to likelihood ratios between 0.01 and 100, presented admixed 
ancestry. Considering this information, an area of uncertainty was 
defi ned, with individuals falling in that area not assigned to a par-
ticular population group.

   When comparing PCA ( see  Fig.  2  in [ 24 ]),     STRUCTURE , and 
 Snipper  results (Fig.  4 ), they were concordant for all case samples: 
three were classifi ed as North African, one as European, and three 
were left unassigned. Those three unassigned profi les probably 
represent individuals with highly admixed parentage and genomic 
backgrounds: a reasonable scenario given the proximity of Southern 
Europe and North Africa. 

 One 34-plex assignment contradicted the uniparental analy-
sis—although mtDNA and Y-chromosome markers routinely dem-
onstrate informative geographic differentiation, this is not always 
true when recent gene fl ow has occurred or populations show 
strong sex bias (i.e., males are mainly from one population and 
females from another). The individual inferred to be European 
from uniparental data gave strong indications to be North African 
from the  34   SNP genotypes and was later identifi ed by the investi-
gation to be Algerian.   
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4    Notes 

     1.    Of all databases included in  SPSmart , 1000 Genomes and 
HapMap are of most utility as they have more markers and 
larger sample sizes (including admixed ancestry populations). 
This is particularly true for 1000 Genomes—the ENGINES 
browser allows scrutiny of SNP variation across the whole 
genome (down to a minor allele frequency of ~1 %) from 
Africans, Europeans, and East Asians  previously used by 
HapMap. In contrast, the HGDP-CEPH (Human Genome 
Diversity Panel) samples 1050 individuals with wide currency 

  Fig. 4    11-M Madrid bomb attack  STRUCTURE  and  Snipper  analysis results.  STRUCTURE  analysis was per-
formed to compare  Snipper  pairwise plots with an established alternative system of ancestry assessment. 
 STRUCTURE  runs were performed using the  admixture  ancestry model with 200,000 MCMC steps after a 
 burnin  of length 200,000. In the  Snipper  pairwise plot, samples are organized from most probable Moroccan 
to most probable Spanish, defi ning a separation from likelihood ratios represented on a logarithmic scale with 
values higher than 1 = higher probability North African and ratios smaller than 1 = higher probability European. 
Individuals in the  STRUCTURE  plot are in the same order as the  Snipper  pairwise plot, allowing direct compari-
son of both analyses. Some admixture patterns are present and this helped to establish an uncertainty area 
(ratios between 0.01 and 100) where individuals would have more probability of being misclassifi ed, so the 
decision was to leave these unassigned       
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 in   population genetics studies [ 25 ,  26 ]. The geographic cov-
erage is patchy in certain regions but all continents and all 
 major   genetic ancestry groups defi ned by studies of variabil-
ity are represented.  Smallest   sampling is 28 Oceanians from 
two populations and just six San from Namibia. SPSmart 
provides freely downloadable genotype data from 650,000 
SNPs (obtained with Illumina 650K arrays [ 27 ]) for each 
HGDP-CEPH sample in the Stanford University study of 
this panel.   

   2.    Please note that, despite Excel software is referred as the one 
to be used, any spreadsheet software such as Numbers in 
MacOS or the free and open-source OpenOffi ce Calc or 
LibreOffi ce Calc can replace it.   

   3.    Symmetrical base SNPs, comprising an A/C on one strand and 
a T/G on the other, are a particular problem and source of 
error when comparing genotypes generated on different plat-
forms or listed in different databases. The  SPSmart  SNP for ID 
browser makes allowance for most base inversions by showing 
the HapMap (or other) allele frequency summary charts with 
different allele segments if these differ from the strand inter-
rogated by the 34-plex and 52-plex extension primers. For 
example, rs2304925 is listed as a SNP for ID GT SNP but a 
HapMap AC SNP and this applies equally to GC or AT SNPs, 
e.g., rs10141763. The  SPSmart  help fi le provides a clear and 
carefully worded guide in the “Symmetrical bases” section. 
There are four symmetrical bases in the 34-plex: rs773658, 
rs10141763, rs1335873, and rs16891982. The last of these is 
the most informative SNP for differentiating component pop-
ulations within Eurasia so it is particularly important to be 
clear about differences  between   SNaPshot and database allele 
calls for this marker.   

   4.    Bayesian population analysis methods calculate a simple rela-
tionship between allele frequencies in a population and allele 
frequencies observed in the tested individuals.     STRUCTURE  
analyzes differences in the distribution of genetic variants 
between populations through an iterative Bayesian algorithm 
that tries to group samples into clusters whose members share 
similar patterns of variation. Bayesian methods have the advan-
tage of allowing the use of prior information about the samples 
to progress analysis. But the ability to differentiate populations 
in a sample set can be limited when a small number of samples 
and/or markers are used.   

   5.        STRUCTURE  uses an MCMC algorithm that starts by ran-
domly assigning individuals to a predetermined number of  K  
populations. Allele frequencies of each population are  estimated 
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considering the individuals assigned to each population. 
Individuals are then re-assigned to populations taking into 
account the estimated frequencies for each population in a 
process repeated up to 10,000–100,000 times.   

   6.     Structure Harvester  implements the  delta K  method of Evanno 
et al. [ 23 ] to estimate the optimum  K  value [ 16 ,  17 ]. After 
running STRUCTURE, pass the zipped folder containing the 
results fi les (named  x_run_y_f , where  x  represents the param-
eter set name and  y  the run number) to the  Structure Harvester  
browser and click Harvest! to start the analysis. Conditions 
are: a minimum of three sequential  K  values should be included, 
with more than one replicate for each  K  value (same number 
of replicates for all  K  values). Posterior probability and  delta K  
plots are available to download (Fig.  5 )—the optimum  K  is 
usually the point with the highest  delta K  value or the one 
which immediately precedes the  Ln Pr ( K ) plateau. This soft-
ware is also useful as it automatically generates input fi les to 
run  CLUMPP .

       7.    There are two basic ancestry models:  no admixture  and  admix-
ture  [ 2 ]. The fi rst is used if there is no prior knowledge about 
the origin of the populations under study or if there is a reason 
to consider each population as completely discrete. But 
because admixture between populations is a common charac-
teristic, knowing the approximate median value of the ances-
tral population proportions for each individual and their 
populations of origin is very important for the characteriza-

  Fig. 5    Example of posterior probability and  delta K  plots obtained with  Structure Harvester  for the same analy-
sis. In this case, the optimum  K  value is 4—the point where the  plateau  in the posterior probability starts with 
maximum  delta K  value       
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tion of a study population or, in a forensic context, a casework 
sample. In this case the  admixture  model is more appropriate. 
The  LOCPRIOR  option [ 19 ] can be used when there is addi-
tional sample characteristic data available, e.g., linguistic, geo-
graphical, cultural, or phenotypic information. The 
 LOCPRIOR  parameter is particularly informative when there 
are weak population structure signals—a situation that can 
result from using reduced number of markers, small sample 
sizes, or due to close relationships between populations. It has 
two main advantages: (1) generally it will not fi nd population 
structure when this is not present; and (2) it can ignore loca-
tion information when individual ancestry is not related with 
it. When admixture LD is present, the  linkage  model [ 18 ] 
(which is based on the  admixture  model) can be applied to 
obtain more accurate estimates of statistical uncertainty from 
use of linked markers. Population labels can be used to calcu-
late the probability that each individual originates from the 
assumed population—individuals with low probabilities can 
be considered as migrants or having high co-ancestry. This 
option is included in the  USEPOPINFO  model [ 2 ] and should 
only be used when population labels are well defi ned before-
hand and correspond almost exactly to the groups ultimately 
defi ned by  the    STRUCTURE  results. The last model consid-
ers the specifi ed information about the population of origin of 
a portion of individuals to help infer the ancestry of other 
samples with unknown origin: the  POPFLAG  model [ 2 ]. This 
option needs caution as selected samples are treated as the 
“reference” set (pre-assigned  POPFLAG = 1 ) meaning allele 
frequencies estimates are based on a reduced subset of samples 
and will directly affect the grouping of unknowns (pre-
assigned  POPFLAG = 0 ). This model can be useful when 
grouping individuals/populations by comparison with very 
well-defi ned reference data—this option is particularly useful 
in the forensic context.   

   8.    There are two allele frequencies models:  independent allele 
frequencies  and  correlated allele frequencies . The fi rst is used 
when frequencies are reasonably different in distinct popula-
tions—this implies that knowledge about the correlation level 
across the population is needed. The second assumes a non-
independence level and offers more power to detect distinct 
populations that are closely related (e.g., Chinese and 
Japanese)—in the absence of high correlation levels, this 
model gives the same results as the  independent allele frequen-
cies  model.   
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   9.        STRUCTURE  does not assume a particular mutation process 
so the scale of the number of repeat units in STRs is not con-
sidered (only allele frequencies are important). For this reason 
there is no need to multiply all other alleles by 10 to compen-
sate the transformation of intermediate alleles (19.3 = 193).   

   10.    To confi rm the number of markers and individuals select “Show 
data fi le format” showing total lines and columns. As an exam-
ple, the data fi le format information for Table 1 would state: one 
line with  m  columns ( m  corresponds to the number of markers) 
and  n  lines with  m + 6  columns (four columns with prior infor-
mation and two with extra information) with  n /2 individuals 
(two lines per genotype).   

   11.    When preparing the input fi le following the example presented 
in Table  1 , there is no need to select the “special format” 
option because by  default    STRUCTURE  assumes genotypes 
are arranged as two consecutive rows (diploid species) per indi-
vidual. If both alleles are in the same line but in consecutive 
columns select “Data fi le stores data for individuals in a single 
line”.   

   12.    A  burnin  period of 10,000–100,000 is suffi cient to observe 
convergence to an equilibrium point of parameters such as 
 α —the relative admixture levels between populations. To 
check the variation of the parameter values go to the “Data 
plot” option in the simulation results window. When excessive 
variation is observed at the end of the  burnin  period, it is nec-
essary to increase its length. To select an appropriate number 
of MCMC steps after the  burnin , it is advisable to perform 
several simulations for each  K  value considering different 
lengths to see if the results are consistent—usually 10,000–
100,000 MCMC steps are enough but to obtain precise pos-
terior probability estimates longer simulations might be 
needed.   

   13.        STRUCTURE  performs individual analyses for each assumed 
population number from one up to a reasonable number for 
the sampling regime—at least three  K  values more than the 
number of expected population. If a  plateau  on the posterior 
probabilities is not reached, larger  K  values might be needed. 
Furthermore, clustering algorithms such as the one imple-
mented in  STRUCTURE  can show stochastic variation from 
the simulations. To diminish their effect, several replicates for 
each  K  value should be made (at least three to fi ve replicates 
advised).   

   14.    Computational times can vary depending on the number of 
markers and samples to be analyzed, but also on the analysis 
parameters selected. As a point of reference, running a project 
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using the example input fi le supplemented with the online ver-
sion of this chapter took approximately 3 h 45 min in a com-
puter with a 2.7GHz Intel Core i7 processor. The project 
included two parameter sets:  admixture  and  admixture 
POPFLAG —both were performed through 100,000 burnin 
steps, 100,000 MCMC repeats, three replicates from  K  = 2 to 
 K  = 6, and correlated allele frequencies.   

   15.    Independently of the origin of differences between clustering 
results, a method to deal with replicate results is needed. 
 CLUMPP  uses replicates of the estimated membership pro-
portion matrices for any  K  number—the result is a set of per-
mutated matrices so that all the replicates have the best 
correspondence possible. It also generates a matrix that cor-
responds to the median of the permutated matrices. This is 
done for the population and individual proportions matrices. 
Currently the easiest way to prepare input fi les for  CLUMPP  is 
with  Structure Harvester  ( see   Note 6 ). Two fi les are needed: 
 .indfi le  includes individual ancestry membership proportions 
tables from all replicates per  K  value and  .popfi le  includes pop-
ulation ancestry membership proportions tables for all repli-
cates per  K . In both a blank line separates each table. If the 
input fi les are prepared manually take care with the sample 
name, which must be numeric; if alpha-numerical an error 
message appears. Both  .indfi le  and  .popfi le  fi les, together with 
 paramfi le  and others, must be saved in the software folder 
together with the executable fi le. The  paramfi le  includes 
important parameters that must be adjusted:  DATATYPE  
defi nes which data is going to be considered for analysis 
(0 = individual; 1 = population);  K  is the number of clusters;  C  
is the number of individuals or populations (depending on the 
selected  DATATYPE );  R  is the number of replicates;  M  is the 
algorithm used. We recommend  M  =  1  so all possible permuta-
tions are performed, but with large  K  or  R  values  M  =  2  (10,000 
random input repeats) is suffi cient and for  K  values above 15 
 M  =  3  is advisable. Metric  S  is the pairwise matrix similarity sta-
tistic and we recommend the standardized  G′  (select  S  =  2 ). It 
is important to note that to obtain a population and individual 
mean matrices, two runs are required, adjusting the  .output  fi le 
name (no name change overwrites the fi rst run),  DATATYPE  
and  C  in between runs. In the Windows version, just execute 
the  CLUMPP.exe  fi le—a  cmd  window opens showing the 
progress of the simulation. In the MacOS version execute the 
software through the terminal command line: change the 
directory to the  CLUMPP  folder location (type  cd  > drag the 
folder into the terminal > ENTER) and then type  ./
CLUMPP  > ENTER to run the software.   
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   16.    A convenient way of  visualizing    STRUCTURE  results (espe-
cially for  K  > 3) is to show each individual as a straight segment 
divided into  K  colors that represents the estimated ancestry 
membership proportions.     STRUCTURE  gives such bar plots 
but their format cannot be changed and they only present rep-
licate results for one  K  value.  Distruct  offers a great variety of 
options to generate more informative cluster plots. As with 
 CLUMPP ,  distruct  uses a set of fi les stored in the same folder 
of the executable fi le. The input fi les include the population 
Q-matrix ( .popq  fi le) and the individual Q-matrix ( .indivq  fi le) 
obtained directly  from    STRUCTURE  (in the case of a single  K  
replicate) or from  CLUMPP . Files:  .names  and . languages  
defi ne the labels above and below the plot. Both fi les have the 
same format: in each line write the population numeric code, 
space, and preferred name. To defi ne the color of each cluster 
open the  .perm  fi le—with a minimum  K  lines each defi ning a 
color. Colors are assigned to each cluster and not to each pre-
defi ned population, i.e., if population 1 appears in orange and 
this population is defi ned in cluster 3 in  .perm , defi ne “3 
orange” and not “1 orange”. The  drawparams  fi le has several 
modifi able parameters, notably:  K ,  NUMPOPS  (number of 
populations) and  NUMINDS  (number of individuals). 
Remaining parameters adjust graphical aspects of the plot: let-
ter size, distance between text and plot, height of the plot, 
thickness of the columns representing individuals, thickness of 
the contour lines, horizontal/vertical orientation, and others 
(Fig.  6 ). The “ // ” symbol indicates that the following text is a 
comment describing the parameter function and that it will 
not be used by the software. When computations are complete 
a  PostScript  ( .ps ) fi le containing the plot is created To visualize 
the plot with Windows, specifi c software such as  GhostView  
(freely available online), Acrobat Distiller or Illustrator is 
needed. With MacOS plots can be opened with preview and 
exported as a pdf.

       17.    A new option has been added  to   Snipper: the ability to apply 
or not apply the HWE principle. The assumption of HWE 
when not valid may result in inaccurate genotype frequency 
estimates and, in turn, an inaccurate classifi cation.   

   18.    Each missing genotype is entered as two Ns per SNP, so only 
ACGTN characters are permitted. Blank spaces are ignored. 
 Format errors from incorrect bases (either due to incorrect 
SNP order or inverted bases) are fl agged by Snipper with a 
warning for the relevant SNP position(s).   

   19.    In the supplementary Excel input fi le included in the online 
version of this chapter, an example concatenated profi le is 
given. This individual will be classifi ed as African—use Option 
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1 or Option 2 in  Snipper  as described above (for Option 2 use 
the supplementary Excel fi le as population data input—remove 
the last two samples (unknown ancestry) and the last column; 
adjust the number of individuals in cell 1A to 479 and the 
number of populations in cell 1C to 3). Note that 
-log(LIKELIHOOD) values are returned, so lower values are 
better.   

   20.    Divergence is calculated based on the number of populations 
included in the comparison. For example, on the fi xed training 

  Fig. 6    Example of  distruct  parameters. Considering an output fi le resembling an A4 sheet lying horizontally 
(longer side down), and depending on the number of samples and the desired effect, it is worth taking advan-
tage of available space. Reverse horizontal orientation uses the longest side of the virtual sheet. Changing the 
 XORIGIN  and  YORIGIN  values also helps—for example,  XORIGIN  = 200 moves the plot away from the margin of 
the sheet and  YORIGIN  = 788 leaves just enough space to separate the plot from the margin without leaving 
much unused space. The individual bar width ( INDIWIDTH ) can then be adjusted to an appropriate value that 
allows all the individuals to be included in the virtual sheet       
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set option, divergence will be calculated based on 3, 4, or 5 
groups depending on the option selected in Step 2.   

   21.    When  generating   PCA plots, it is possible to change graphical 
parameters to user needs. In the  R  script, command lines are 
included so the “Population” information can be used to 
defi ne color of the symbols in plots. In this case, population 
names are transformed into color names, in population alpha-
betical order and not input order (a complete list of color avail-
able in  R  can be obtained with the command  colours()  
(alternatively  colors() ) or with the help of the  Chart of R colours  
available at    http://research.stowers-institute.org/efg/R/
Color/Chart/    ). The symbol shape can also be changed—for 
information on available symbols use the  pch  help page by typ-
ing  ?pch  in R console (Fig.  7 ). The  cex  command changes the 
size of the points.

       22.    If you are using  SNPassoc  package for the fi rst time, you need 
to install it in  R . Two options are available: (1) install it from 
the Package installer option in the  R  console; or (2) download 
the package zip fi le from   http://cran.r-project.org/web/
packages/SNPassoc/index.html     and perform a local zip fi le 
installation.          

  Fig. 7    Symbols available in  R  to defi ne the points shown in plots ( pch  
command)       
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