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    Chapter 4   

 Mesenchymal Stem Cells in Cardiology                     

     Ian     A.     White     ,     Cristina     Sanina     ,     Wayne     Balkan     , and     Joshua     M.     Hare       

  Abstract 

   Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are 
on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone 
with roughly one-third resulting in death. There is therefore a major need for developing new and effective 
strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) 
has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent 
mediators of cardiac repair and are therefore an attractive tool in the development of preclinical and clinical 
trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects 
on pathogenic cardiac remolding, fi brosis, immune activation, and cardiac stem cell proliferation within 
the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells, and 
vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine 
effectors on cardiac repair remains the subject of active investigation.  

  Key words     Mesenchymal stem cell  ,   Cardiology  ,   Myocardial infarction  ,   Clinical trial  ,   Cardiovascular 
disease  

1       Introduction 

 While our knowledge of the developmental origin of MSCs is still 
relatively limited, it is widely believed that MSCs are derived from 
mesoderm, one of the three germ layers that form at gastrulation 
during the development of the mammalian embryo [ 1 ]. It is from 
this mesodermal layer that cells destined to form the myocardium 
of the  heart   are also derived [ 2 ]. During  heart   tube formation, 
promyocardial cells migrate from the lateral plate mesoderm to 
populate the primordium of the left ventricle and sinus venosus. 
The outfl ow tract and right ventricle are then simultaneously pop-
ulated with cells migrating from a second cardiogenic area located 
posterior to the dorsal wall of the pericardial cavity [ 3 ]. 

 Within 3 weeks of gestation the human  heart   demonstrates the 
fi rst signs of peristaltic contraction, while mesoderm-derived cells 
continue to migrate into the  heart   as it grows. This hyperplastic 
growth continues until birth at which point the organ has received 
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a full complement of cardiac cells [ 2 ,  3 ]. During the fi rst few days 
following birth,     cardiomyocytes undergo a fi nal round of karyoki-
nesis in the absence of cytokinesis resulting in binucleation and exit 
from the cell cycle [ 4 ,  5 ]. Postpartum organ growth to adulthood 
is then primarily the result of cardiomyocyte hypertrophy rather 
than cellular proliferation. For decades it was believed that this 
program made the  heart   a post-mitotic organ, unable to replenish 
lost cells once depleted [ 6 ]. However, during the 1990s several 
researchers began describing an ability of  mature   cardiomyocytes 
to re-enter into the cell cycle in vitro, although this process resulted 
in rapid apoptosis of the cells [ 7 ]. More recently some key studies 
have expanded on this observation, demonstrating sustained cyto-
kinesis of postpartum mammalian  cardiomyocytes    in vivo  . The fi rst 
of these studies identifi ed a transient ability of the  murine   neonatal 
 heart   to repair in response to partial resection of the left ventricular 
apex [ 8 ]. Within a fi nite developmental window, mature  cardio-
myocytes   can undergo sarcomeric disassembly and re-enter mitosis 
with the resulting progeny contributing directly to recellulariza-
tion of the injury site. The second study demonstrated an ability of 
human cardiac tissue to replace between 0.45 and 1 % of cells per 
year throughout the human lifespan [ 9 ], based on abrupt changes 
in the cellular incorporation of the radioisotope  14 C of humans 
exposed following the Limited Nuclear Test Ban Treaty of 1963. 
Together these observations have led to a revolution in the percep-
tion of  cardiovascular disease  , dispelling concerns that repair of the 
mammalian  heart   was not feasible and giving hope to interven-
tional strategies geared toward promoting endogenous repair 
mechanisms.  

2     Cardiovascular Disease 

  Cardiovascular disease (CVD)  continues   to account for more 
deaths globally than any other single disease. The most recent data 
show that Americans suffer an average of 1.5 million episodes of 
 acute myocardial infarction (AMI)   each year with roughly one-
third resulting in death [ 10 ]. This rate translates to about one 
 heart   attack every 30 seconds and one cardiac-related death every 
1.5 minute within the United States alone. Morbidity associated 
with post-infarction cardiomyopathy is also a signifi cant problem 
and accounts for approximately 6 million hospital visits per year, 
thereby contributing signifi cantly to annual healthcare costs. 

 AMI is the result of blockage to one or more of the main coro-
nary arteries. Upon occlusion, a region of permanent injury con-
taining dead and dying cells, known as an infarct, develops.  Blood   
supply is interrupted within the developing infarct and the area 
rapidly becomes hypoxic [ 11 ].  Cardiomyocytes   are comparatively 
resistant to chronic hypoxia at neutral pH. However, when the 
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extracellular pH drops below 6.5  cardiomyocytes   undergo extensive 
hypoxia-induced death. Hypoxia in  cardiomyocytes   causes a switch 
from oxidative to glycolytic energy generation, resulting in 
increased  glucose consumption  , lactic acid production, and lower 
intracellular pH. Increased plasma lactate levels refl ect this meta-
bolic shift and are diagnostic of infarction in ischemic  heart   disease 
[ 12 ]. Chronic hypoxia in the presence of high glucose leads to 
progressive acidosis of cardiac myocytes. The resulting hypoxia-
acidosis leads to apoptosis of cardiac cells within the infarct zone 
followed by vascular collapse and extensive tissue necrosis [ 12 ,  13 ]. 
A typical human infarct can result in the loss of over 1 billion  car-
diomyocytes   [ 14 ], the tissue being replaced by the formation of a 
permanent, avascular collagenous scar, that averts an otherwise 
inevitable ventricular rupture. This process of cardiac remolding, 
while rapid in onset, can take several weeks to complete. When 
completed, these changes lead to signifi cant reduction in cardiac 
function and ultimately to  heart   failure and death. While examples 
exist in nature that demonstrate an innate regenerative ability of 
cardiovascular tissue following injury [ 15 ,  16 ], this capability has 
been largely lost in mammalians, possibly as a consequence of 
increased body mass and greater systemic  blood   pressure. 

 Studying large and small animal models of AMI have led to the 
development of strategies to improve the reparative response of 
mammalian cardiac tissue. In this regard recent focus has been 
directed at engaging endogenous repair mechanisms through vari-
ous interventions including the use of exogenous stem cell trans-
plantation. The rationale for this approach is that the proliferative 
and multilineage  differentiation   capacity of stem cells conveys 
latent potential for organ  regeneration   through the formation of 
new tissue and also through the initiation of  neovascularization  . 
Pluripotent stem cells, such as embryonic stem cells (ESCs) and 
 induced pluripotent stem cells (iPSCs)  , were early candidates for 
regenerative therapy as they retain the most potential for multilin-
eage  differentiation   and proliferation. However, as a therapeutic 
cell for  cardiac regeneration   they are fraught with biological (and 
in the case of ESCs, ethical) issues, including risk of  teratoma   for-
mation [ 17 ] and have therefore proved to be of little direct use. 

 The limited  differentiation   capacity of adult stem cells sug-
gested a more refi ned approach and in 2003 the fi rst phase I  clinical 
trial   using adult skeletal myoblast stem cells was carried out [ 18 ]. 
After initial optimism triggered by cell engraftment and enhance-
ments in left ventricular function, the effects were found not only to 
be unsustainable, but also to lead to arrhythmias due to a lack of 
electrical coupling with host  cardiomyocytes   [ 19 ]. However, with 
the discovery of cardiac stem cells (CSCs) [ 20 ] came an exciting 
opportunity to improve engraftment and enhance functional 
integration. The recent SCIPIO trial [ 21 ] established CSCs as an 
effective therapeutic cell demonstrating cardiac engraftment, 
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enhancement of coronary vasculature, and a contemporaneous 
reduction in scar volume. These initial results are promising, and 
efforts aimed at increasing cell numbers obtained from tissue biop-
sies are currently moving forward. In the interim a variety of other 
adult cell types have been examined in pre clinical and   clinical trials. 
Some of the most consistently successful results for the induction 
of cardiac repair have been seen with the use of MSCs, which have 
been isolated from bone marrow and adipose tissue, expanded in 
culture and used successfully in preclinical and clinical trials 
( see  Table  1  for list of clinical trials). 

3        Mesenchymal Stem Cells 

 The term “Mesenchymal Stem Cells” (MSCs) was coined by 
Arnold Caplan in the early 1990s [ 22 ,  23 ], although the cells were 
fi rst described in the 1970s by Alexander Friedenstein as a popula-
tion of bone marrow stromal cells capable of mesodermal  differen-
tiation   and trophic support of  hematopoiesis   [ 24 ,  25 ]. Since their 
discovery, there have been over 20,000 publications on the subject 
of MSC biology and their  clinical   applications. However, despite 
this attention a consensus has yet to be reached regarding the exact 
identity of these cells. In an attempt to standardize the fi eld, the 
Mesenchymal and Tissue Stem Cell Committee of the  International 
Society for Cellular Therapy (ISCT)   set minimal criteria in 2001 
for defi ning MSCs. The primary feature set forth by the commit-
tee, as defi nitively representative of MSCs, is an adherence to plas-
tic substrate together with a capacity for multilineage  differentiation   
toward osteo-, adipo-, and chondrocytic lineages. The committee 
also recommended that MSCs should express cluster of differentia-
tion (CD) markers: CD90, CD105, CD44, CD106, CD166, 
CD73, and CD29 while not expressing CD45, CD34, CD14, 
CD11b, CD19, CD31, and HLA-DR [ 26 ]. While broadly 
accepted, labs have not universally adopted these criteria. Indeed, 
the designation Mesenchymal Stem Cell and Multipotent Stromal 
Cell in reference to MSCs is routinely and interchangeably used. 
This lack of consensus has made navigating the MSC literature and 
following the development of MSC biology more of a challenge. 

 MSCs have been isolated from several different species and 
from nearly every tissue type, suggesting that MSCs likely reside 
in all postnatal organs [ 22 ,  27 ,  28 ]. The cells reside within 
organs in a perivascular distribution where they contribute to 
niche maintenance and tissue homeostasis [ 29 – 31 ]. MSCs typi-
cally do not mobilize to the peripheral  blood   and constitute only 
around 1 in 10 8  of the total peripheral mononuclear cell popula-
tion [ 32 ,  33 ]. Therefore, to obtain suffi cient numbers for trans-
plantation it is necessary to isolate MSCs from a tissue or organ 
and expand them in vitro, using specific protocols [ 34 – 39 ]. 
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The fact that tissue isolation and culturing techniques appear to 
contribute to differences in cell characteristics, combined with 
their apparent ubiquitous distribution, highlights the potential 
heterogeneity within various MSC isolates. Consequently, sev-
eral subpopulations of MSCs have been described, some of which 
are described below:

 ●    Recycling Stem (RS) cells represent the smallest population, 
and most rapidly dividing in culture. These bone marrow-
derived cells are considered the most primitive and exhibit a 
greater potential to differentiate into  osteoblasts  , adipocytes, 
and  chondrocytes   under standard conditions [ 40 ,  41 ].  

 ●   Multipotent Adult Progenitor Cells (MAPCs) are the only 
MSCs to display immortality in culture, and demonstrate a 
capacity to differentiate into cells of all three germ layers 
(endoderm, mesoderm, and ectoderm) [ 42 ,  43 ].  

 ●   Human Bone Marrow-derived Multipotent Stem Cells (hBMSCs) 
[ 44 ] also have the capacity to differentiate into cells of all three 
germ layers.  

 ●   Human Marrow-Isolated Adult Multilineage Inducible 
(MIAMI) cells, which in addition to being multi-potent, 
express numerous markers found among embryonic stem cells 
and pancreatic islet cells [ 45 ].  

 ●   Cardiac Stromal Cells (CStCs) are a novel MSC subpopulation 
arising from cardiac tissue [ 46 ]. Compared to BM-derived 
MSCs, these cells demonstrate an enhanced ability to express 
cardiovascular markers and differentiate into  cardiomyocytes   
[ 46 ], while exhibiting a reduced ability to differentiate along 
the osteogenic and adipogenic lineages.  

 ●   Subpopulations of c-kit (CD117) positive MSCs. While not a 
defi ning characteristic, there is some evidence to suggest that 
these cells may constitute a more homogeneous group of 
primitive MSCs exhibiting greater capacity for endodermal  dif-
ferentiation   and enhanced multilineage differentiation effi -
ciency [ 40 ,  47 ,  48 ].    

 In summary, MSCs comprise a heterogeneous population of 
multipotent adult mesodermal progenitors. They possess several 
biological properties, such as a broad  differentiation potential  , low 
immunogenicity, an ability to modulate host immune responses, 
and to produce and secrete an array of factors that promote tissue 
remodeling. These features make them attractive candidates for 
cell-based therapies, and will be explored in detail below as they 
pertain to  myocardial   infarction as the primary cause of cardiovas-
cular disease in humans.  
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4     Cardiac Immunobiology 

 Perhaps one of the most striking features of MSCs is their capac-
ity for immune obscurity [ 49 – 51 ]. This property is (in part) due 
to the absence of Major Histocompatibility Complex (MHC) 
class II, CD40 ligand, and CD80/86 (B7 costimulatory mole-
cules) expression [ 52 – 54 ], all of which are involved in  allogeneic   
tissue rejection. MSCs also lack, or express at very low levels, 
MHC class I, which is typically used by  natural killer cells (NK) 
and cytotoxic T cells (CTLs) to differentiate healthy “self” from 
unhealthy cells or “non-self.” This lack of MHC-I shields MSCs 
from detection by  allogeneic   CTLs, but makes them conspicuous 
to activated NK cells, which exhibit cytolytic activity against both 
 autologous   and  allogeneic   MSCs [ 55 ,  56 ]. Despite the potency 
of immune modulation exerted by MSCs (or perhaps because of 
it) a mechanism seems to have evolved that systematically removes 
 autologous   MSCs over time whether infection or malignant 
transformation has occurred or not. Elimination is comparatively 
enhanced for  allogeneic   MSCs, the rate of which seems to be 
dictated by a balance between their relative expression of immu-
nogenic and immunosuppressive factors [ 57 ,  58 ]. While some 
concerns regarding the relative immunogenicity of  allogeneic   
MSCs might be obviated by using  autologous   MSCs, there are 
compelling reasons for developing an “off the shelf” modality for 
 allogeneic   MSCs. The low numbers of  autologous   MSCs that can 
be isolated from an individual necessitates ex- vivo   expansion of 
cells leading to unavoidable delays between isolation and re-infu-
sion. Moreover, the quantity and quality of MSCs dramatically 
diminish with age [ 59 ], and several genetic diseases preclude the 
use of  autologous   MSCs [ 60 ]. Furthermore, the effect  ex vivo   
culture has upon the immunogenicity of  autologous   MSCs has 
yet to be determined experimentally. 

 One of the challenges facing the use of MSCs for cell therapies 
is that their immune evasion is hampered upon  differentiation  , 
when the cells upregulate MHC expression, thus compromising 
their covert status and making them visible to the immune system 
[ 61 ]. Clearly this detectability has implications for their use in the 
treatment of AMI, where MSC  differentiation   to  cardiomyocytes   
may play a therapeutic role. In a swine model of chronic ischemic 
cardiomyopathy, our group and others have reported the capacity 
of  allogeneic   MSCs to engraft and undergo multilineage differen-
tiation [ 62 ,  63 ]. However, long-term success of MSC engraftment 
into post-infarct myocardium has yet to be satisfactorily demon-
strated, possibly due to the fact that the cells are being attacked by 
the immune system upon  differentiation  . The future success of 
MSC-based cellular therapies for the treatment of CVD will there-
fore benefi t from studies aimed at exploiting and enhancing the 
immune evasive properties of MSCs. 
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 The immunomodulatory properties of MSCs have been 
extensively described throughout the literature and repre-
sent arguably one of the principal mechanisms of action against 
adverse cardiac remodeling following AMI. Immune modu-
lation is not, however, a default function of MSCs and specifi c 
activation is required by infl ammatory mediators to stimulate the 
immunomodulatory activity of MSCs [ 64 ]. Following AMI, pro-
infl ammatory chemokines are rapidly released by tissue- resident 
 macrophages   activated by damage-associated molecular patterns 
(DAMPs) [ 65 ]. These chemokines bind to glycosaminoglycans on 
 endothelial cell   surfaces and in the  extracellular matrix  , causing a 
respiratory burst in neutrophils and their subsequent degranula-
tion [ 66 ]. The release of reactive oxygen species, proteases, ara-
chidonic metabolites, and other proinfl ammatory mediators leads 
to robust immune activation and severe damage of the vascular 
endothelium and myocardium [ 67 ]. MSCs used in models of lung 
injury [ 68 ], diabetes [ 69 ], and sepsis [ 70 ] appear to be motivated 
by this stimulus to adopt a modulatory role, diminishing the 
apoptosis and degranulation of neutrophils, therefore tempering 
the magnitude of the innate response. 

 Once “primed” by pro-immunogenic stimuli, MSCs exhibit 
modulatory activity on several aspects of the immune system, most 
notably a major effect on resident  macrophages  .  Macrophages   can 
be broadly separated into two distinct categories. Classically acti-
vated (M1) macrophages represent the proinfl ammatory arm, 
whereas alternatively activated (M2) macrophages represent an 
 anti-infl ammatory  , reparative branch [ 71 ,  72 ]. Through the secre-
tion of PGE2, MSCs promote the M2 phonotype even in the pres-
ence of heavy proinfl ammatory stimuli that would normally lead to 
M1 phenotypes [ 70 ,  73 ,  74 ]. A shift from an M1 to an M2  pheno-
type   results in decreased production of IFN-γ and TNF-α, potent 
proinfl ammatory  cytokines  , and promotes the production of the 
 anti-infl ammatory   cytokine IL-10. The effect is a further temper-
ing of neutrophil recruitment and activation. Cardiac  fi broblasts  , 
responsible for the production and deposition of collagen leading 
to the establishment of a permanent scar, respond to an array of 
proinfl ammatory  cytokines   (e.g., tumor necrosis factor-α, interleu-
kin (IL)-1, IL-6, and transforming growth factor-beta (TGF-β) all 
of which are produced by M1  macrophages   in the myocardium 
post-MI) [ 73 ,  75 ]. The healing process requires a precise balance 
between removal of debris and regulation of scar formation. 
Depletion of  macrophages   in infarcted  heart  s impairs collagen 
deposition, however it also inhibits necrotic cell clearance,  angio-
genesis   and predisposes the  heart   to rupture [ 76 ]. The molecular 
pathways that control the balance between the proinfl ammatory 
(M1) and reparative (M2) functions of  macrophages   therefore 
represent one potential target for MSC-mediated modulation of 
pathogenic cardiac remodeling and enhancement of repair [ 77 ]. 
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 Dendritic cells (DC) are phagocytic antigen-presenting cells, 
which link the innate immune system to the adaptive immune system. 
MSCs modulate the function and maturation of DCs in co-culture 
experiments [ 78 ,  79 ], and hamper migration to lymph nodes 
in vivo and mitigate their T-cell allostimulatory capacity [ 80 ]. 
Activated MSCs also act directly upon the adaptive immune 
response by suppressing T-cell proliferation, as demonstrated in 
mixed  lymphocyte   reactions, through the release of  soluble factors   
including indoleamine 2,3-dioxygenase (IDO) [ 81 ], PGE2 [ 82 ], 
nitric oxide (NO) [ 83 ], heme oxygenase-1 (HO-1) [ 84 ], hepato-
cyte growth factor (HGF), and transforming growth factor-β 
(TGF-β) [ 54 ,  85 ]. In addition to inhibiting T-cell proliferation, 
MSCs can also infl uence T-cell lineage commitment. In a rat 
allograft model, combined intrathymic (i.t.) and intravenous (i.v.) 
injection of MSCs prolonged survival of the transplanted  heart  . 
The allograft  survival was associated with a shift in the Th1/Th2 
balance, and an upregulation of CD4 + , CD25 + , and Foxp3 +  T reg-
ulatory (Treg) cell  differentiation  . A concordant decrease in the 
level of proinfl ammatory  cytokines   interleukin 2 (IL-2) and inter-
feron-gamma (IFN-γ) and an increase in the levels of  anti-infl am-
matory   IL-4 and IL-10 were also reported. The B cell, which 
produces antibodies, is highly dependent on T cells and MSC inhi-
bition of T-cell activity and proliferation likely contribute a major 
role in MSC-dependent B-cell modulation [ 86 ]. However, human 
MSCs have been observed to directly inhibit the proliferation,  dif-
ferentiation  , and chemotactic behavior of mature B cells when pre-
activated with exogenous IFN-γ [ 87 ]. In an  allogeneic   co- culture 
experiment, B cells arrested in the G 0 /G 1  phase of the cell cycle, 
IgM, IgG, and IgA production were signifi cantly impaired and 
expression of chemotactic receptors CXCR4, CXCR5, and CCR7 
was signifi cantly downregulated [ 88 ]. 

 Thus, this evidence makes it clear that MSCs have a broad and 
signifi cant impact on the immune system (Fig.  1 ). Their capacity 
for immune modulation and homing to the sites of injury makes 
them a compelling delivery system for secreted  soluble factors   that 
potentially protect the  heart   from acute injury. However, MSCs 
are also capable of producing  anti-fi brotic   factors and matrix metal-
loproteinases (MMPs) that are able to remodel  extracellular matrix  . 
It is thought, therefore, that MSCs have a potential role in chronic 
cardiac disease through reverse remolding of the scar resulting in 
suffi cient reperfusion and rigidity to  promote   cardiomyocyte 
 regeneration   [ 89 ,  90 ].

5        Cardiomyogenesis and Neoangiogenesis 

 As previously discussed, MSCs possess several key characteristics 
that set them apart from other cell types, making them an attrac-
tive therapy for cardiomyoplasty. In addition to their immunoregu-
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latory and homing properties, their genetic stability and ability to 
be expanded in culture means that vast numbers of cells capable of 
multilineage  differentiation   can be generated. 

 Human MSCs retain suffi cient  plasticity   to adopt cardiac spe-
cifi c characteristics in culture and can be induced to express several 
 cardiomyocyte  - specifi c makers (α-actinin, myosin heavy chain, and 
troponin-T) and transcription factors (GATA-4 and Nkx2-5) [ 91 –
 93 ] when driven by exogenous stimuli. Mechanical strain [ 94 ], 
electrostimulation [ 95 ,  96 ], DNA demethylation using 5-azacyti-
dine [ 97 ], culture with pro-cardiogenic factors such as BMP-2 
[ 98 ], HGF [ 99 ], TGF-β [ 100 ] and Jagged1 [ 101 ], or co-culture 
with mature xenogeneic  cardiomyocytes   [ 92 ,  102 ] or cardiomyo-
cyte lysate [ 103 ] have each proven effi cacious in driving myocyte 
 differentiation   in vitro. However, whether the physiological condi-
tions within the  heart   are suffi cient to promote such effi cient  dif-
ferentiation   of transplanted MSCs toward a myocyte lineage is a 
topic of discussion. Our group and others have demonstrated car-
diac  differentiation    in vivo  , but this has not been observed by oth-
ers [ 14 ,  62 ,  104 – 109 ] possibly due to species differences or 
distinct handing of the cells, which could affect viability or  differ-
entiation   frequency toward cardiomyogenesis. Nevertheless, a 
direct role for transplanted MSCs in neomyogenesis may be of 
little signifi cant importance from a physiological standpoint. 
Evidence from our laboratory and others suggests that MSCs may 
stimulate the proliferation and maturation of resident cardiac stem 
cells  through   paracrine signaling, thereby indirectly supporting 

  Fig. 1    Paracrine immunomodulation in the infarcted myocardium. MSCs are immune-evasive and modulate 
the response of both the adaptive and innate immune system during acute  infl ammation   of the ischemic myo-
cardium. Illustration of cells used with permission from Wikimedia commons       
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innate neomyogenesis [ 110 ]. Indeed, such a supporting role would 
be in concordance with the theory that MSCs, as perivascular cells, 
function as supportive cells in the maintenance of stem cells within 
the vascular niche of the organ. 

 An ideal cell type for use in ischemic AMI would be one that 
not only promotes cardiomyogenesis, but also supports neoangio-
genesis. There appears to be clear evidence that MSCs retain suf-
fi cient ability to differentiate into endothelial and vascular smooth 
muscle cells, both in vitro and in vivo [ 62 ,  109 ,  111 – 114 ]. 
Moreover, MSCs have potent proangiogenic activity, both in vitro 
and in vivo, through the secretion of VEGF, FGFs, angiopoietins, 
and  extracellular matrix   components [ 89 ,  115 – 120 ]. The signifi -
cance of the angiogenic action of MSCs in post-ischemic myocar-
dial protection was highlighted specifi cally by Markel and colleagues 
using small-interfering RNA (si)RNA directed against VEGF. In 
these studies knock down of VEGF in transplanted MSCs resulted 
in a marked negative effect on recovery of myocardial function in a 
rat model of AMI [ 121 ]. This effect was further  demonstrated in 
suicide gene-based studies carried out by Yoon et al. [ 122 ]. In this 
system targeted elimination of cells acquiring a vascular lineage 
dramatically reduced functional benefi ts, whereas depletion of car-
diomyogenic cells showed no signifi cant effect [ 122 ]. Our group 
recently demonstrated that this effect of VEGF on MSC  differen-
tiation   toward a vascular  phenotype   was dependent on the activa-
tion of PDGFR via nitric oxide synthase [ 123 ]. Thus, accumulating 
evidence suggests a crucial role for MSCs in neoangiogenesis and 
vascular homeostasis that might parallel their endogenous role as 
perivascular cells [ 124 ]. 

 While MSCs produce a battery of factors that have a demon-
strable biochemical effect on cardiac disease [ 125 ], the measur-
able effects on tissue  regeneration   have been less than expected. 
Low engrafting effi ciency, low viability, and hostile environmen-
tal conditions within the injury site have been implicated as 
potential explanations [ 126 ,  127 ]. If the medicinal benefi t of 
MSCs is conveyed through recapitulation of their pericytic func-
tion, inasmuch as their stimulation of resident cardiac stem cells 
and induction of  angiogenesis  , then engraftment of MSCs with 
host vasculature would be a necessity. However, the ischemic scar 
tissue is, by its nature, avascular and therefore may not provide 
the ideal substrate or niche environment for robust engraftment 
and MSC activation. Recent efforts have therefore been geared 
toward improving the therapeutic effi ciency, engraftment, sur-
vival and immune evasion of MSCs, the results of which are sev-
eral  preconditioning   approaches and genetic modifi cations aimed 
at amplifying existing characteristics and imparting novel capa-
bilities onto the cells.  
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6     Mesenchymal Stem Cell Modifi cation 

 In order to utilize MSCs for cardiac repair, it is necessary to expand 
the cells in vitro and then prepare them as a suspension for injec-
tion. However, MSCs are normally grown attached to a substrate, 
and this  adhesion   to structural glycoproteins of the  extracellular 
matrix (ECM)   is necessary for their survival [ 128 ,  129 ]. Removal 
of this matrix support, as occurs when the cells are prepared for 
injection, will therefore lead to increased anoikis, i.e., apoptosis 
induced by loss of matrix attachments. This lack of matrix, coupled 
with the fact that infusion of MSCs into the circulation or directly 
into the infarcted region of the  heart   exposes them to harsh envi-
ronmental conditions, means that the number of culture-expanded 
MSCs engrafting at sites of injury rapidly declines following initial 
infusion [ 130 ]. A number of studies have therefore focused on 
improving the engraftment effi ciency of MSCs following their 
injection into the damaged  heart  . As MSCs are capable of long-
term transgene expression [ 131 ], it has been possible to develop 
strategies based on genetic engineering to enhance homing effi -
ciency and improve cell survival. 

 Mangi et al. were the fi rst to demonstrate that genetic modi-
fi cation of MSCs to overexpress the  anti-apoptotic   transcription 
factor Akt resulted in a greater resistance to apoptosis both 
in vitro and in vivo and led to an increase in cardiac function in a 
rodent model of MI [ 132 ,  133 ]. Transgenic overexpression of 
another prosurvival gene, Bcl-2 by rat MSCs decreased apoptosis 
by 32 %, enhanced secretion of VEGF by 60 % under hypoxic 
conditions and improved capillary density in the infarct border 
zone [ 134 ]. Similarly, transfection of MSCs with basic- fi broblast 
growth factor (bFGF) enhanced cytoprotection under hypoxic 
conditions and caused greater  neovascularization   compared to 
untransfected MSCs [ 135 ]. MSCs overexpressing VEGF demon-
strated an improvement in myocardial perfusion and in restora-
tion of  heart   function compared to control groups [ 136 ] and 
MSCs transduced with hemoxygenase, an enzyme preventing 
oxidative damage, showed both better engraftment and enhanced 
cell survival following intra- myocardial delivery relative to non-
transduced MSCs [ 137 ]. 

 Culture-expanded MSCs demonstrate reduced expression of 
receptors for chemokines and  adhesion   molecules such as CXCR4 
and CCR1, which signifi cantly compromises homing capacity. 
Studies in which MSCs were modifi ed to overexpress CXCR4 and 
CCR1 demonstrated enhanced engraftment and cardiac perfor-
mance [ 138 ,  139 ]. Overexpression of tissue transglutaminase 
(tTG), which crosslinks proteins, leads to enhanced  adhesion   of 
MSCs and survival of implanted cells via an integrin-dependent 
mechanism [ 140 ]. Indeed, integrin signaling is a critical component 
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of MSC engraftment and the integrin- linked kinase (ILK) is crucial 
for hypoxic MSCs to establish cell  adhesion   with ischemic myocar-
dium [ 127 ]. ILK enhances phosphorylation of PKB/Akt, which 
plays a major role in the regulation of  adhesion  - mediated cell sur-
vival signals. Hypoxic conditions suppress expression of ILK, how-
ever forced expression through transfection of the ILK gene results 
in enhanced MSC survival, decreases in infarct size, and a greater 
improvement of left ventricular function [ 127 ]. 

 Although the engraftment effi ciency of MSCs might be 
enhanced by such genetic modifi cation, these approaches are cur-
rently restricted to basic and translational research due to limited 
clinical experience with gene therapy and genetically modifi ed cell 
products. However, these ongoing studies will further elucidate 
the biology of MSCs and will contribute to our understanding of 
the mechanisms of their reparative action.  

7     Mesenchymal Stem Cell Preconditioning 

  Modifi cations to MSCs with  translational   pragmatism include vari-
ous methods of priming or preconditioning [ 141 ]. In this regard, 
improvements in engraftment of transplanted MSCs have been 
demonstrated in the absence of direct genetic manipulation, by the 
use of combinatorial pretreatment with several exogenous  growth 
factors  . In a rat model of AMI, pretreatment with insulin-like 
growth factor-1 (IGF-1), fi broblast growth factor-2 (bFGF) and 
bone morphogenetic protein-2 (BMP-2) enhanced connexing-43 
(Cx43) gap junction formation and  imparted   cytoprotective effects 
on  cardiomyocytes   [ 98 ]. Behfar et al. pretreated human MSCs 
with a recombinant cocktail of transforming growth factor- beta 
[ 1 ], BMP-4, activin-A, retinoic acid, IGF-1, bFGF, alpha- 
thrombin, and interleukin-6, which directed  differentiation   of 
MSCs into cardiopoiesis. These cells were subsequently injected 
into the myocardium of infarcted  murine    heart  s, which led to func-
tional and structural benefi ts [ 142 ]. 

 Pharmacological pretreatment of MSCs with steroids such as 
estrogen [ 143 ], which infl uences myocardial remodeling through 
stimulation of growth hormone production, or statins such as 
atorvastatin [ 144 ,  145 ], which enhance cell survival and  differen-
tiation   into  cardiomyocytes  , have also received attention, as has 
tadalafi l, a phosphodiesterase inhibitor used on adipose-derived 
MSCs in rat models of cardiomyopathy [ 146 ]. Non-biochemical 
and non-pharmacological treatments such as hypoxic and anoxic 
preconditioning have also demonstrated signifi cant improvements 
on MSC survival. Hypoxic preconditioning activates the Akt sig-
naling pathway leading to the expression of several prosurvival and 
proangiogenic factors such as Bcl-2, Bcl-xL, Hif-1, VEGF, Ang-1, 
and erythropoietin [ 147 ]. Hypoxia preconditioning enhanced 
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MSCs survival together with improved  angiogenesis   of the infarct 
border zone and as a consequence improved  cardioprotection   fol-
lowing AMI [ 148 ]. Similarly anoxic-preconditioned MSCs dem-
onstrated reduced apoptosis, which is thought to be mediated 
through upregulation of the Bcl-2/Bax ratio and by inhibition of 
caspase-3 activation in the myocardium [ 108 ].   

8     Clinical Trials with Mesenchymal Stem Cells for Heart Disease 

   Thirty-two clinical trials using MSCs to  treat      different heart condi-
tions including AMI, severe coronary ischemia, ischemic cardio-
myopathy, dilated cardiomyopathy, and heart failure are registered 
on https://clinicaltrials.gov (a web-based service by the US 
National Institute of Health;  see  Table  1 ). Most have used or are 
using adult bone marrow- derived MSCs; while several trials chose 
cell-based treatment with MSCs derived from adipose tissue or 
umbilical cord. Many of these studies used  allogeneic   sources of 
MSCs from healthy  donors  , which, as discussed above, is possible 
due to the immune evasive and immunomodulatory properties 
exhibited by MSCs.  Allogeneic   MSCs are an attractive and conve-
nient cell type, the major advantage being their immediate avail-
ability. In contrast,  autologous   cells require expansion for 4–6 
weeks prior to treatment, a delay that may reduce the effi cacy of 
stem cell therapy. In addition, their therapeutic ability may be com-
promised by the health of the  donor  /patient. 

 The initial MSC studies for acute and chronic MI in 2004–
2008 used intracoronary administration of autologous cells [ 149 , 
 150 ]. However, in 2009, the fi rst double-blinded trial on 53 
patients with AMI “Osiris”[ 151 ] showed that  allogeneic   intrave-
nous cell infusion was well tolerated and had a signifi cantly greater 
effect on left ventricular ejection fraction and a lower incidence of 
arrhythmia and chest pain (Fig.  2 ). This study began the era of 
 allogeneic   MSC use for cardiac pathology, suggesting that  alloge-
neic   cell-based therapy is safe and effective. Although  autologous   
MSC treatment was prevalent in ischemic cardiomyopathy (11/15 
clinical trials), non-ischemic cardiomyopathy and AMI trials 
adopted  allogeneic   MSC treatment early on (Fig.  3 ). By 2014, an 
equal number of clinical trials used  allogeneic   and  autologous   
MSCs (Fig.  4 ).

     Consistent with the registered data from https://clinicaltrials.
gov, there are ongoing phase I, II and III clinical trials evaluating 
MSC safety and effi cacy for  cardiac regeneration   using a variety of 
delivery systems. The method of stem cell delivery can infl uence 
cell-therapy outcome, which is why intracoronary, intravenous, 
intraoperative/intramyocardial injections, and catheter-based tran-
sendocardial injections are currently in use in order to establish the 
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most effi cient stem cell transplantation technique in compliance 
with heart pathology (Fig.  5 ).

   The fi rst clinical trials for acute and chronic MI [ 150 ] used 
catheter- based intracoronary  autologous   MSC delivery during 
percutaneous coronary intervention (PCI). These studies showed 
no serious adverse events, signifi cantly better regional and global 
left-ventricular function, up to 10 % increased left ventricular ejection 
fraction (LVEF), increased exercise capacity, and improvement in 
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  Fig. 2    Impact of hMSC treatment on LV remodeling. Changes in left ventricular 
(LV) ejection fraction (EF) are plotted against the changes in LV end-systolic 
volume (ESV) ( a ) and end-diastolic volume (EDV) ( b ) during follow-up. Human 
mesenchymal stem cell (hMSC) patients ( n  = 18 at 12 months) exhibit evidence 
of reverse remodeling with no increase in LV EDV and a decline in LV ESV, whereas 
placebo patients ( n  = 11 at 12 months) demonstrate evidence of LV chamber 
enlargement. * P  = 0.005 versus baseline [ 151 ]       
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  Fig. 3     Autologous   and  allogeneic   mesenchymal stem cell-based treatment 
according to heart pathology       

  Fig. 4    Progressive growth of  allogeneic   and  autologous   mesenchymal stem cell-
 based   clinical trials       
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New York Heart Association (NYHA) heart failure class. Using the 
same method of cell delivery, Katritsis et al. [ 149 ] combined  autol-
ogous   MSCs with endothelial progenitor cells for AMI treatment 
and showed better left ventricular function and myocardial perfu-
sion with evidence of  regeneration   of the previously nonviable 
infarct scar. A pilot study conducted by Mohyeddin-Bonab et al. in 
2007 tested whether intracoronary delivery during PCI or intraop-
erative/intramyocardial treatment with  autologous   MSCs is safe 
and effi cient for  old   myocardial infarction [ 152 ]. Their results 
demonstrated increased LVEF, a change in NYHA class, and sig-
nifi cant improvement in viable myocardium in the MSC-treated 
group. However, there were no data presented (probably because 
of small sample size) regarding which delivery route was more ben-
efi cial. The PROMETHEUS study showed that intraoperative/
intramyocardial  autologous   MSC injections together  with 
  Coronary Artery Bypass Grafting (GABG) procedure into akinetic, 
yet non-revascularized segments, was safe and produced compre-
hensive regional functional restitution, which in turn drives 
improvement in global left ventricular function (Fig.  6 ) [ 153 ]. The 
TAC-HFT trial compared transendocardial injections of  autolo-
gous   MSCs, bone marrow mononuclear cells (BMCs), and pla-
cebo in chronic ischemic heart failure [ 154 ,  155 ]. This study again 
showed safety of the delivery method, and MSCs and BMCs sig-
nifi cantly improved regional contractility [ 156 ] and increased 
6-min walk distance, but only the MSCs reduced scar size (Fig.  7 ). 
There were no changes in LVEF or heart chamber volumes [ 154 ].

    Anastasiadis et al. [ 157 ] combined left ventricular mechanical 
support device (LVAD) implantation  with   allogeneic MSC injec-
tions in a case-report study and showed improved LVEF when the 
device was turned off. This study from 2012 formed the basis for a 
recent study with LVAD+  allogeneic   MSC treatment for patients 
with end-stage heart failure. In 2013 our group compared  alloge-
neic   vs.  autologous   bone marrow-derived MSCs delivered by tran-
sendocardial injection in patients with ischemic cardiomyopathy: 
the POSEIDON randomized dose-escalation trial (20, 100, 200 
million cells). This study showed that  allogeneic   and  autologous   
MSCs are safe and reduced mean early enhancement defect (scar 
size) by 33.21 %.  Allogeneic   MSCs reduced left ventricular end-
diastolic volumes and interestingly, the lowest concentration of 
MSCs (20 million cells) produced the greatest reductions in left 
ventricular volume and increased ejection fraction. Notably,  alloge-
neic   MSCs did not stimulate signifi cant  donor  -specifi c alloimmune 
reactions [ 51 ]. The segmental ejection fraction analysis from the 
POSEIDON study showed that injected and non-injected seg-
ments improved regional contractile performance with the greater 
scar reduction in injected sites (Fig.  8 ) [ 158 ]. In 2014, Lee et al. 
[ 159 ] published results of a multicenter trial examining the safety 
and effi cacy of intracoronary administration of  autologous   bone 
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  Fig. 6    Concordance index score is an indicator of simultaneous and comprehensive improvement. (PROMETHEUS 
Trial.) ( a ) Bull’s-eye map depicting the concordance of change for each variable used for the concordance 
index score based on the average grade for each group at 18 months post- treatment. A grade closer to 1 signi-
fi es a concordant improvement in the variable and a grade closer to −1 represents deterioration. The concor-
dance index score is then derived by adding the grades for changes in scar tissue size, perfusion, and the 
average of the grades for changes in wall thickness, wall thickening, and systolic strain. The highest value (3) 
signifi es simultaneous improvement in all fi ve CMR indices and the lowest (−3) a simultaneous deterioration, 
respectively. ( b ) In the MSCs plus CABG group, the injected non-revascularized segments improved compre-
hensively and thus had a higher concordance index score compared with all other groups. The effect of the 
MSCs dissipated by a function of distance from the actual injection site ( P  = 0.03 adjacent vs. remote revascu-
larized and non-treated segments). ( Open square ) MSC injected; ( fi lled triangle ) adjacent revascularized; ( fi lled 
inverted triangle ) remote revascularized; and ( open diamond ) untreated. * P  < 0.05 1-way ANOVA repeated 
measures;  †  P  < 0.05 vs. baseline, Bonferroni post-tests;  ‡  P  < 0.05 2-way ANOVA [ 153 ]       
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marrow-derived MSCs in patients with AMI and showed improved 
global LVEF in MSC-treated patients.

   Twenty ongoing clinical trials are testing the regenerative 
potential of MSCs for cardiac disease, in particular ischemic cardio-
myopathy and AMI. However, there is still a need for larger clinical 
trials comparing  autologous   and  allogeneic   MSCs in order to 
answer questions about the most effective dose and frequency for 
each cardiac pathology, the best cell delivery system, and the use of 
single vs. multiple cell types.    

9     Conclusions 

 Collectively, the studies using MSCs to treat CVD are numerous 
and consensus favors MSCs as potent mediators of cardiac repair. 
MSCs clearly retain signifi cant  plasticity   and are capable of formi-
dable immunomodulation and neo-angiogenesis. However, a feature 
common in MSC transplantation is a conspicuous lack of prolifera-
tion,  differentiation  , or engraftment. Several explanations have 
been presented to explain this and many modifi cations and pre-
treatments are being attempted to address it. However, there are 
other considerations, perhaps more diffi cult to address and that 
have not been described as thoroughly. Stem cell division is driven 

  Fig. 7    Impact of transendocardial stem cell injection of mesenchymal stem cells, bone marrow cells, or placebo 
on the scar size. (TAC-HFT randomized trial.) Signifi cant reduction in scar size as the percentage of left ven-
tricular mass for patients treated with mesenchymal stem cells (MSCs) and those in the placebo group who 
underwent serial magnetic resonance imaging. Repeated measures of analysis of variance model  P  values: 
treatment group,  P  = 0.99; time,  P  = 0.007; treatment group × time,  P  = 0.22. Data markers represent means; 
error bars, 95 % CIs. Analysis of variance (ANOVA) was conducted with repeated measures.  a Within group, 
 P  < 0.05 vs. baseline.  b Within group,  P  < 0.01 vs. baseline [ 154 ]       
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  Fig. 8    Volume-rendered three-dimensional (3D) reformats of left ventricle with color encoding of scar tissue. 
(POSEIDON Trial.) ( a ,  b ) Scar mass ( green ) of inferior segments treated by transendocardial stem cell injection 
(TESI) at baseline and 13 months after TESI, respectively (numbers represent sites of injection). ( c ,  d ) Scar 
mass ( orange ) of lateral segments not treated by TESI at baseline and at 13-month follow-up, respectively. 
Actual scar mass (grams) is depicted in the  lower right corner  of each panel. Three-dimensional reconstruc-
tions in this fi gure correspond to segmental early enhancement defect (SEED) measurements. ( e, f ) Absolute 
values and percentage changes of scar mass obtained by segmental imaging analysis approach. 
When considering the  autologous   and  allogeneic   groups combined, there is greater scar size reduction in the 
scar-injected segments (−43.7 ± 4.4 %, from 9.8 ± 1.2 to 5.4 ± 0.7 g;  n  = 30; * P  < 0.01) when compared with 
the scar-non-injected segments (−25.1 ± 7.8 %, from 11.7 ± 1.4 to 8.6 ± 1.0 g;  n  = 30; ** P  < 0.001; between-
group comparison scar-injected vs. scar-non-injected  P  < 0.05) [ 158 ]       
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by contextual signals from the 3D structure of the niche. MSCs 
being pericytic or adventitial cells require  adhesion   to a substrate 
to maintain viability, which  in vivo   constitutes perivascular  adhe-
sion   to sinusoids or large vessels, respectively [ 29 ,  160 ]. In the 
absence of the niche microenvironment, stem cells can irreversibly 
lose their inherent stemness [ 161 ]. Although they initially survive 
and retain many stem cell markers, their effi cacy can begin to wane 
very rapidly following transplantation [ 161 ]. When MSCs are 
injected into the myocardium or circulation no such orientation or 
structure exists and the transplanted cells therefore may not receive 
the mitogenic signals necessary to initiate cell cycle or drive  dif-
ferentiation  . Moreover, a lack of substantive  adhesion   may cause a 
loss of cellular identity, anoikis and depletion by NK cells, leading 
to an irreversible decline in viable cell numbers. It is clear that 
while we have made signifi cant progress, much work remains as we 
learn to fully exploit the power of MSCs in cardiac repair. 

 Moving forward, an exciting prospect aimed at improving 
stem cell potency, viability, and engraftment involves cell combina-
tion therapy. An example includes the use of ex- vivo   stromal cell 
aggregates known as cardiospheres [ 162 ]. These fl oating clusters 
are comprised of a central core of primitive c-kit +  cardiac stem cells 
surrounded by layers of early-stage committed differentiating cells, 
and an outside cell layer of MSCs [ 163 ]. Culture of these cells as a 
3D structure is thought to potentially recapitulate cardiac niche 
biology in the in vitro environment [ 164 ]. Preclinical models using 
 autologous   as well as  allogeneic   cardiosphere- derived cells (CDCs) 
have demonstrated a reduction in scar size and improvements in 
cardiac function after MI, although the mechanism of action is not 
clear [ 165 – 168 ]. Results from a phase I clinical trial using intra-
coronary infusion of cardiosphere-derived cells (CADUCEUS) 
further supports the notion that CDCs are capable of regenerating 
heart tissue after AMI in humans [ 169 ]. 

 Our group recently reported preclinical fi ndings from studies 
combining MSCs with c-kit +  cardiac stem cells (CSC) [ 170 ]. 
Co-culture with MSCs enhanced CSC proliferation and lineage 
commitment toward a cardiac  phenotype  , suggesting that impor-
tant biological interactions exist between these cells (Fig.  9 ) [ 110 ]. 
These interactions are dependent on gap junction formation 
mediated through expression of Cx43 [ 110 ,  171 ]. In a  porcine   
model of AMI, co-injection of human MSCs and human c-kit +  
CSCs resulted in a sevenfold greater engraftment of stem cells than 
with either cell type alone, a signifi cant reduction in scar size and 
signifi cant restoration of diastolic and systolic function [ 170 ]. 
These observations, together with the success of safety trials of 
MSCs (POSEIDON) [ 51 ] and c-kit +  stem cells (SCIPIO) [ 21 ] 
have created an opportunity for exploring therapeutic enhance-
ment of this combination therapy in humans. As a result, a new 
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phase I clinical trial has recently received regulatory approval from 
the FDA and is currently in the process of recruiting patients.

   The debate enveloping stem cell  clinical trials   for use against 
cardiac disease has intensifi ed recently with the publication of two 
high profi le reports [ 172 ,  173 ]. These critical reports clearly have 
implications for future clinical trials involving bone marrow cells 
and CSCs and the tide of criticism would seem to also threaten 
clinical trials utilizing MSCs. However, this criticism will likely not 
affect MSCs, which stand alone in their unprecedented ability to 
perform a number of benefi cial functions, as discussed above. The 
data coming from preclinical and clinical trials clearly support a 
continued effort to exploit the medicinal potential of MSCs. The 
biochemical activity of MSCs has been demonstrated beyond a 
doubt with observable results. Our understanding of MSC biology 
has evolved signifi cantly over the past two decades and signifi cant 

  Fig. 9    MSCs stimulate endogenous CSCs. ( a ) The contribution  of   cardiomyocyte precursors following exogenous 
administration of MSCs ( green line  ) and endogenous CSCs ( orange line  ) during cardiac repair after MI. MSC 
differentiation occurs rapidly after delivery. At 2 weeks, MSCs activate endogenous expansion of c-kit +  CSCs 
( orange line  ). ( b ) Two weeks following TEI, the number of C-kit +  cells coexpressing GATA-4 is greater in MSCs 
versus non-MSCs treated hearts. The cardiac precursors are preferentially located in the IZ and BZ of the MI, 
indicating an active process of endogenous  regeneration   ( ‡  P  = 0.019 and  †  P  < 0.0001). ( c ,  d ) The 2-week-old 
chimeric myocardium contains mature  cardiomyocytes   ( open arrow ), immature MSCs ( inset ), and cardiac 
precursors of MSCs origin ( arrow  ), coupled to host myocardium by connexin-43 gap junctions. Interestingly, 
endogenous c-kit +  CSCs are found in close proximity to MSCs ( d ). ( e ) Cluster of c-kit +  CSCs in an MSC-treated 
heart; numerous CSCs are committed to cardiac lineage documented by GATA-4 and MDR-1 coexpression 
( arrows  ). ( f ) Few isolated c-kit +  cells were found in non-MSC-treated animals [ 110 ]       
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