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    Chapter 16   

 Preparing Samples for Crystallization of Bcl-2 Family 
Complexes                     

     Marc     Kvansakul      and     Peter     E.     Czabotar      

  Abstract 

   High-resolution protein structures determined by X-ray crystallography or NMR have proven invaluable 
for deciphering the molecular mechanisms underlying the function of a vast range of proteins. Here, we 
describe methods to generate complexes of proteins belonging to the Bcl-2 family of proteins with either 
biological ligands or small molecule antagonists.  
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1         Introduction 

 Members of  the   Bcl- 2   family of proteins fall into two opposing 
-factions, the prosurvival group and the proapoptotic group 
(Fig.  1 ). The interplay between members of these rival family fac-
tions ultimately determines cellular fate, and structural insights 
into these interactions have led to a wealth of information into 
Bcl-2 mediated signaling and its role in disease (see, e.g., [ 1 ]). 
Despite substantial unresolved challenges in the preparation of 
complexes of full-length Bcl-2 constructs, mechanisms of action 
governing the biology of these proteins are increasingly well under-
stood. These advances have relied heavily on the structural analysis 
of protein complexes of the various family members bound to 
 relevant partners.

   The fi rst structural analysis of a Bcl-2 family protein complex 
was achieved  using   NMR and revealed in detail the interactions 
between  Bcl-x L    and a short 16-mer peptide spanning the BH3 
domain of the proapoptotic executioner molecule  Bak   [ 2 ] (Table  1 , 
Fig.  2 ). The interaction was mediated through hydrophobic inter-
actions between the amphipathic BH3 helix and a groove on the 
surface of the prosurvival protein, a salt bridge between a  conserved 
Aspartate on the BH3 peptide and a conserved Arginine on the 
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prosurvival protein was also observed. Subsequent structural anal-
yses were informed by the realization that 26-mer peptides of BH3 
domains of proapoptotic BH3-only proteins faithfully recapitulate 
key aspects of these interactions [ 3 ]. This work also provided the 
fi rst insights into the specifi city of interactions occurring between 
different family members (Fig.  1 ). Structures for a large number of 
various complexes have now been solved (Table  1 ).

    A number of complexes have also now been solved for prosur-
vival proteins in complex with peptides corresponding to the BH3 
regions of the  Bax  -like executioner proteins (Table  1 ). However, the 
absence of a structure of a full-length mammalian prosurvival Bcl-2 
protein bound to a Bax-like protein is hampering a complete under-
standing of the intricacies of prosurvival Bcl-2-mediated regulation 

  Fig. 1    Bcl-2 family members and interactions. ( a ) The Bcl-2 protein family consists of two opposing groups, the 
prosurvival proteins and the proapoptotic proteins. The proapoptotic members can be further subdivided into 
the BH3-only proteins, whose role is to initiate death signaling, and the executioner proteins  Bax   and  Bak   (and 
possibly Bok) that are responsible for  mitochondrial outer membrane permeabilization (MOMP)  , a point of no 
return in the death signaling pathway. ( b ) Apoptotic signaling is initiated through the upregulation of BH3-only 
proteins. These inhibit the activity of the prosurvival proteins and can directly interact with and activate the 
executioner proteins. Prosurvival proteins inhibit activated executioners by binding to their BH3 domains, and 
possibly other regions, to prevent  oligomerization  . An excess of BH3-only proteins competes for this interac-
tion, releasing activated  Bax  -like proteins so that they can oligomerize and initiate MOMP. ( c ) Some BH3-only 
proteins, such as  Bim  ,  Puma  , and Bid, interact with the full suite of prosurvival proteins whereas others, such 
as Bad and Noxa, interact with only a subset [ 3 ,  32 ,  33 ]. ( d )  Bak   is primarily inhibited by  Bcl-x L   , Mcl-1, and A1 
[ 34 ] and Bax is most likely inhibited by the full range of prosurvival proteins [ 35 ]       
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        Table 1  
  PDB entries of Bcl-2 family member complexes ( see   Note 6 )   

 Protein complex  Species  PDB code  Method  Reference 

  Bcl-x L   :Bak BH3  Human  1BXL  NMR  [ 2 ] 

 Bcl-x L :Bad BH3  Human  1G5J  NMR  [ 39 ] 

 Bcl-x L :Bim  Mouse  1PQ1   X-ray    [ 36 ] 

 CED9:EGL-1 BH3   C. elegans   1TY4  X-ray  [ 40 ] 

 CED4:CED9   C. elegans   2A5Y  X-ray  [  4 ] 

 Bcl-w:Bid BH3  Human  1ZY3  NMR  [ 41 ] 

 Bcl-x L :Beclin-1 BH3  Human  2P1L  X-ray  [ 24 ] 

 M11L:Bak BH3  Myxoma virus/human  2JBY  X-ray  [ 42 ] 

 Mcl-1:Bim BH3  Human/rat  2NL9  X-ray  [ 12 ] 

 Mcl-1:mNoxaB BH3  Human/rat  2NLA  X-ray  [ 12 ] 

 Mcl-1:mNoxaB BH3  Mouse  2JM6  NMR  [ 12 ] 

 Bax:BimSAHB  Human  2K7W  NMR  [ 43 ] 

 Bcl-x L :Beclin-1 BH3  Human  2PON  NMR  [ 44 ] 

 A1/Bfl -1:Bim BH3  Human  2VM6  X-ray  [ 45 ] 

 Bcl-x L :Bad BH3  Mouse  2BZW  X-ray  [ 46 ] 

 M11:Beclin-1 BH3  mγHV68/mouse  3BL2  X-ray  [ 46 ] 

 A1/Bfl -1:Puma BH3  Mouse  2VOF  X-ray  [ 47 ] 

 A1/Bfl -1:Bmf BH3  Mouse  2VOG  X-ray  [ 47 ] 

 A1/Bfl -1:Bak BH3  Mouse  2VOH  X-ray  [ 47 ] 

 A1/Bfl -1:Bid BH3  Mouse  2VOI  X-ray  [ 47 ] 

 Mcl-1:Puma BH3  Mouse  2ROC  NMR  [ 48 ] 

 Mcl-1:mNoxaA BH3  Mouse  2ROD  NMR  [ 48 ] 

 Mcl-1:mutBim BH3  Human/mouse  3D7V  X-ray  [ 49 ] 

 BHRF1:Bim BH3  EBV/human  2V6Q  X-ray  [ 37 ] 

 BHRF1:Bak BH3  EBV/human  2XPX  X-ray  [ 37 ] 

 M11:Beclin-1 BH3  mγHV68/mouse  3DVU  X-ray  [ 50 ] 

 Bcl-x L :Foldamer  Human  3FDM  X-ray  [ 51 ] 

 Bcl-x L :BimBH3  Human  3FDL  X-ray  [ 51 ] 

 Bcl-x L :BimBH3L12F  Human  3IO8  X-ray  [ 26 ] 

 Mcl-1:BimL12Y  Human/rat  3IO9  X-ray  [ 26 ] 

 Mcl-1:Bim BH3  Human  2PQK  X-ray  [ 52 ] 

 Mcl-1:Bim BH3  Human  2PQK  X-ray  [ 52 ] 

(continued)
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Table 1
(continued)

 Protein complex  Species  PDB code  Method  Reference 

 Mcl-1:BimI2dY BH3  Human  3KJ0  X-ray  [ 52 ] 

 Mcl-1:BimI2dA BH3  Human  3KJ1  X-ray  [ 52 ] 

 Mcl-1:BimF4aE BH3  Human  3KJ2  X-ray  [ 52 ] 

 Mcl-1:Bid BH3  Human  2KBW  NMR  [ 53 ] 

 Mcl-1:Mcl-1 BH3  Human  3MK8  X-ray  [ 54 ] 

 Mcl-1:MB7  Human  3KZ0  X-ray  [ 55 ] 

 Bcl-2:Bak BH3  Human  2XA0  X-ray  [ 56 ] 

 Mcl-1:Bax BH3  Human  3PK1  X-ray  [ 57 ] 

 Bcl-x L :Bax BH3  Human  3PL7  X-ray  [ 57 ] 

 sJA:Bak BH3  Schistosome/human  3QBR  X-ray  [ 58 ] 

 Bcl-x L :Soul BH3  Human  3R85  X-ray  [ 59 ] 

 Bcl-x L :Puma Foldamer  Human  2YJ1  X-ray  [ 60 ] 

 Bax:vMIA  Human/CMV  2LR1  NMR  [ 61 ] 

 Bcl-x L :αβ foldamer 4C  Human  4A1W  X-ray  [ 62 ] 

 Bcl-x L :αβ foldamer 2C  Human  4A1U  X-ray  [ 62 ] 

 Bcl-b:Bim BH3  Human  4B4S  X-ray  [ 31 ] 

 A1/Bfl -1:Bid BH3  Human  4ZEQ  X-ray  Not 
published 

 A1/Bfl -1:Bak BH3  Human  3I1H  X-ray  Not 
published 

 A1/Bfl -1:Noxa BH3  Human  3MQP  X-ray  Not 
published 

 Mcl-1:αβPuma2  Human  4BPI  X-ray  [ 63 ] 

 Mcl-1:αβPuma3  Human  4BPJ  X-ray  [ 63 ] 

 Mcl-1:αβPuma5  Human  4BPK  X-ray  [ 63 ] 

 Bcl-x L :BimLOCK BH3  Human  2YQ7  X-ray  [ 64 ] 

 Bcl-x L :BimSAHB BH3  Human  2YQ6  X-ray  [ 64 ] 

 Bcl-x L :Puma BH3  Human  4HNJ  X-ray  [ 65 ] 

 Bcl-x L :Puma BH3  Human  2M04  NMR  [ 65 ] 

 Bax:Bid BH3  Human  4BD2  X-ray  [ 15 ] 

 Bax:Bax BH3  Human  4BD6  X-ray  [ 15 ] 

 Bax BH3-in-Groove dimer  Human  4BDU  X-ray  [ 15 ] 

 Bak:Bid SAHB BH3  Human  2M5B  NMR  [ 66 ] 

(continued)
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Table 1
(continued)

 Protein complex  Species  PDB code  Method  Reference 

 Mcl-1:Mcl-1BH3  Human  4HW4  X-ray  [ 67 ] 

 Bcl-w:Bcl-w BH3  Human  4CIM  X-ray  [ 68 ] 

 Bcl-x L :Bcl-xL BH3  Human  4CIN  X-ray  [ 68 ] 

 BHRF1:BINDI  EBV  4OYD  X-ray  [ 69 ] 

 Bak BH3-in-Groove dimer  Human  4U2V  X-ray  [ 14 ] 

 F1L:Bim BH3   Vaccinia virus  /human  4D2M  X-ray  [ 11 ] 

 F1L:Bak BH3  Vaccinia virus/human  4D2L  X-ray  [ 11 ] 

  Bcl-x L   :p53  Human  2MEJ  NMR  [ 70 ] 

 DPV022:Bim BH3  Deerpoxvirus/human  4UF3  X-ray  [ 10 ] 

 DPV022:Bak BH3  Deerpoxvirus/human  4UF1  X-ray  [ 10 ] 

 DPV022:Bax BH3  Deerpoxvirus/human  4UF2  X-ray  [ 10 ] 

 F1L:Bid BH3  Variola virus/human  5AJJ  X-ray  [ 71 ] 

 F1L:Bak BH3  Variola virus/human  5AJK  X-ray  [ 71 ] 

 Bcl-x L :Bid BH3  Human  4QVE  X-ray  [ 72 ] 

 Bcl-x L :Bim BH3  Human  4QVF  X-ray  [ 72 ] 

 Bax:Bim BH3mini  Human  4ZIF  X-ray  [ 30 ] 

 Bax:Bim BH3mini  Human  4ZIH  X-ray  [ 30 ] 

  Bax  :Bim BH3  Human  4ZIE  X-ray  [ 30 ] 

 Bax:Bid BH3mini  Human  4ZIG  X-ray  [ 30 ] 

 BaxI66A:Bid BH3  Human  4ZII  X-ray  [ 30 ] 

 Bcl-x L :BimBH3 with AKT site  Human  4YJ4  X-ray  [ 73 ] 

  Fig. 2    Structures of Bcl-2 relatives complexed with BH3 domains or  BH3 mimetics  . ( a ) Structure of  Bcl-x L    with 
Bim [ 36 ]. ( b ) Structure of BHRF1 with  Bak   BH3 [ 37 ]. ( c ) Crystal structure of ABT-737 bound to Bcl-x L  [ 38 ]. ( d ) 
Structure of Bid BH3 bound to  Bax   domain swapped dimer [ 15 ]       
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of Bax and  Bak  . Nonetheless, the structure determination of a 
 full-length complex of  CED9   bound to  CED4  , two key regulators 
of intrinsic apoptosis in the worm  C. elegans  [ 4 ], suggests that these 
challenges are not insurmountable. More recently structures have 
also been solved for complexes of Bax bound to activating BH3-only 
proteins, providing insight into the initiation of Bax conformational 
change, and of Bax and Bak dimers, providing insight into the 
 ensuing  oligomerization   of these proteins (Table  1 ). 

 Here, we will focus on methods and strategies related to the 
analysis of Bcl-2 family protein complexes with crystallography. 
However, it should be noted that other structural and biophysical 
techniques have contributed greatly to our understanding of Bcl-2 
family protein structure, function, and drug discovery  including 
  NMR (e.g., [ 2 ,  5 ]), Fluorescence Resonance Energy Transfer 
( FRET  ; e.g., [ 6 ]), Double Electron-Electron Resonance spectros-
copy ( DEER  ; e.g., [ 7 ]), and chemical cross-linking (e.g., [ 8 ]). 

 As with all attempts at protein crystallization there are a variety 
of different strategies to obtain diffracting crystals of target pro-
teins [ 9 ]. Routinely, initial crystallization trials are performed with 
a desired construct in a large number of crystallization conditions, 
and sometimes at a range of protein concentrations, in order to 
fi nd conditions in which the protein is enticed toward formation of 
a crystal rather than precipitation. However, often crystallization 
conditions for target constructs are not forthcoming despite exten-
sive screening and in these situations alternative construct strategies 
are often tried. In the case of the Bcl-2 family of proteins, a range 
of different construct design strategies have been successful as 
 follows ( see   Notes 1 – 3 ).  

2     Materials 

     1.    Recombinant prosurvival protein (e.g.,  vaccinia virus    F1L pro-
tein  , and  Bcl-x L   ) purifi ed to homogeneity in fi nal sample buffer 
(e.g., 25 mM Hepes pH 7.5, 150 mM NaCl).   

   2.    Synthetic BH3 domain peptide (e.g.,  Bim   BH3, Uniprot acces-
sion code O43521-3, residues 51–77, Genscript) dissolved 
in H 2 O.   

   3.    Centrifugal concentrator (MWCO 10 kDa, Merck Millipore).      

3     Methods 

 Preparation of complexes of prosurvival proteins bound to  peptides 
of their proapoptotic counterparts has led to important insights 
into Bcl-2 mediated signaling and its role in disease. In this exam-
ple, we demonstrate how to prepare a complex of  vaccinia virus   
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F1L with the human  Bim   BH3 domain peptide ( see   Note 4 ). This 
method has been successfully used to prepare complexes for 
 crystallization trials of prosurvival Bcl-2 proteins bound to BH3 
domain peptides with affi nities ranging from 1 nM to 7 μM [ 10 , 
 11 ]. Similar approaches can be used to prepare complexes between 
Bcl-2 family proteins and small molecules ( see   Note 5 ). Final 
 concentrations for crystallization experiments may vary depending 
on the sample.

    1.    Wash a 5 mL centrifugal concentrator with 5 mL of fi nal sam-
ple buffer by centrifugation.   

   2.    Add 1 mg of prosurvival protein in fi nal sample buffer and top 
up with additional buffer to a fi nal volume of 4 mL.   

   3.    Aspirate a 1.25 molar excess of BH3 domain peptide.   
   4.    Slowly add peptide to centrifugal concentrator while stirring 

with pipette to avoid local precipitation of sample.   
   5.    Concentrate sample to a fi nal concentration of 5 mg/mL of 

prosurvival protein.   
   6.    Top up sample with additional buffer to a fi nal volume of 4 mL.   
   7.    Concentrate sample to a fi nal concentration of 5 mg/mL of 

prosurvival protein. Final concentrations for crystallization 
experiments may vary with each sample.    

4       Notes 

     1.    A common strategy for obtaining diffracting crystals of diffi -
cult targets is to attempt to crystallize the protein of interest 
from different species. Structures of Bcl-2 family proteins from 
a variety of different species have been crystallized (Tables  1  
and  2 ) and in some cases chimeric constructs consisting of 
sequence from two different species have proved useful [ 12 ]. 
Naturally for drug discovery programs, it is usually desirable to 
use human constructs and so for these projects alternative 
strategies for enabling crystallization may be pursued.

       2.    One method by which crystallization can be enhanced is 
through the use of protein fusion partners. These can act to 
both aid with protein solubility and may also provide extra 
opportunities for the formation of crystal contacts upon which 
a crystals lattice can build. One recent notable success has been 
achieved with a maltose binding  protein   fusion with Mcl-1 
[ 13 ]. This construct provided the fi rst crystal structure for apo 
 Mcl-1   and enabled ligand bound Mcl-1 structures to be 
obtained through both soaking of compounds into the apo 
crystals and through cocrystallization of compound and 
 protein. Fusion partners have also enabled the crystallization 
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    Table 2  
  PDB entries of Bcl-2 family members in complex with compounds   

 Protein:drug complex  Species  PDB code  Method  Reference 

  Bcl-x L   :N3B  Human  1YSI  NMR  [ 5 ] 

 Bcl-x L :4FC/TN1  Human  1YSG  NMR  [ 5 ] 

 Bcl-x L :43B  Human  1YSN  NMR  [ 5 ] 

 Bcl-2:43B  Human  1YSW  NMR  [ 5 ] 

 Bcl-x L :43B  Human  2O1Y  NMR  [ 74 ] 

 Bcl-2:43B  Human  2O21  NMR  [ 74 ] 

 Bcl-2:LIU  Human  2O22  NMR  [ 74 ] 

 Bcl-2:LI0  Human  2O2F  NMR  [ 74 ] 

 Bcl-x L :LI0  Human  2O2M  NMR  [ 74 ] 

 Bcl-x L :LIW  Human  2O2N  NMR  [ 74 ] 

 Bcl-x L :ABT-737  Human  2YXJ   X-ray    [ 38 ] 

 Bcl-2:DRO  Human  2W3L  X-ray  [ 75 ] 

 Bcl-x L :W1191542  Human  3INQ  X-ray  [ 26 ] 

 Bcl-x L :HI0  Human  3QKD  X-ray  [ 76 ] 

 Bcl-2:398  Human  4AQ3  X-ray  [ 77 ] 

 Bcl-x L :0Q5  Human  4EHR  X-ray  [ 78 ] 

 Bcl-x L :B50  Human  3SPF  X-ray  [ 79 ] 

 Bcl-x L :03B  Human  3SP7  X-ray  [ 79 ] 

 Bcl-x L :33B  Human  2LP8  NMR  [ 80 ] 

 Mcl-1:PRD_000921  Human  4G35  X-ray  [ 81 ] 

 Bcl-x L :WEHI-539  Human  3ZLR  X-ray  [ 27 ] 

 Bcl-x L :1HI  Human  3ZK6  X-ray  [ 27 ] 

 Bcl-x L :H0Y  Human  3ZLN  X-ray  [ 27 ] 

 Bcl-x L :X8U  Human  3ZLO  X-ray  [ 27 ] 

 Bcl-2:1E9  Human  4IEH  X-ray  [ 82 ] 

 Mcl-1:19H  Human  4HW2  X-ray  [ 67 ] 

 Mcl-1:19G  Human  4HW3  X-ray  [ 67 ] 

 Bcl-2:ABT-263  Human  4LVT  X-ray  [ 83 ] 

 Bcl-2:1XV  Human  4LXD  X-ray  [ 83 ] 

 Bcl-2:1Y1  Human  4MAN  X-ray  [ 83 ] 

 Mcl-1:LC3  Human  3WIX  X-ray  [ 84 ] 

 Mcl-1:LC6  Human  3WIY  X-ray  [ 84 ] 

(continued)
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of truncated constructs of  Bax   and  Bak   that reveal details for 
the initial steps of dimerization. For example, it was recently 
discovered that one of the conformational changes occurring 
to these proteins upon activation includes separation into 
“core” (α2–α5 and possibly including 1) and “latch” (α6–α7) 
domains [ 14 ,  15 ]. Fusion of GFP to the “core” domains of 
these proteins [ 16 ] enabled their expression and crystallization 
and revealed the atomic details of the dimer units upon which 
the larger  Bax   and  Bak   oligomers build [ 8 ,  17 ].   

   3.    Often it proves useful to make truncations or modifi cations to 
constructs in order to enable proteins to be expressed, puri-
fi ed, and/or crystallized. The vast majority of Bcl-2 constructs 
used for structural studies have lacked the C-terminal trans- 
membrane domain (α9 helix), primarily because it is diffi cult to 

Table 2
(continued)

 Protein:drug complex  Species  PDB code  Method  Reference 

 Bcl-x L :LC6  Human  3WIZ  X-ray  [ 84 ] 

 Bcl-x L :X0R  Human  4C5D  X-ray  [ 28 ] 

 Bcl-x L :X0D  Human  4C52  X-ray  [ 28 ] 

 Mcl-1:2UU  Human  4OQ5  X-ray  [ 85 ] 

 Mcl-1:2UV  Human  4OQ6  X-ray  [ 85 ] 

 Bcl-w:013_D12  Bos Taurus  4K5A  X-ray  [ 86 ] 

 Bcl-w:UNP  Bos Taurus  4K5B  X-ray  [ 86 ] 

 Bcl-x L :38H  Human  4TUH  X-ray  [ 87 ] 

 Mcl-1:3M6  Human  4WGI  X-ray  [ 88 ] 

 Bcl-x L :3CQ  Human  4QVX  X-ray  [ 29 ] 

 Mcl-1:4M7  Human  4ZBF  X-ray  [ 89 ] 

 Mcl-1:4M6  Human  4ZBI  X-ray  [ 89 ] 

 Mcl-1:BRDI1  Human  4WMR  X-ray  [ 13 ] 

 Mcl-1:865  Human  4WMT  X-ray  [ 13 ] 

 Mcl-1:19H  Human  4WMU  X-ray  [ 13 ] 

 Mcl-1:BRDI3  Human  4WMV  X-ray  [ 13 ] 

 Mcl-1:BRDI4  Human  4WMW  X-ray  [ 13 ] 

 Mcl-1:BRDI5  Human  4WMX  X-ray  [ 13 ] 

 Mcl-1:BRDI6  Human  4WMY  X-ray  [ 13 ] 

  Three letter codes from the PDB entries are used to describe ligands unless a specifi c 
name for the compound has been published  
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produce suffi cient quantities of soluble protein containing this 
highly hydrophobic region.  Bax  , however, is a notable excep-
tion as it can be expressed as a full-length protein in relatively 
high quantities [ 18 ]. Expression and purifi cation of full-length 
constructs for Bak [ 19 ],  Bcl-x L    [ 20 ], and Bcl-w [ 21 ] have also 
been reported; however, these have not been used in structural 
studies. Another region of the Bcl-2 family fold that is often 
modifi ed is the loop between the α1 and α2 helices. This seg-
ment is large and unstructured in most family members and is 
thus often either shortened (e.g.,  Bcl-x L    Δ45–84 [ 22 ]), or 
replaced with the shorter loop from another family member 
(e.g., the Bcl-2 loop being replaced with sequence from Bcl-x L  
[ 23 ]). A particularly useful construct for crystallization has 
been Bcl-x L  in which the α1–α2 loop is dramatically shortened 
(lacking residues 27–82) such that the α1 cannot fold correctly 
with the remainder of the protein. Instead this constructs 
forms a domain swap dimer, with the α1 of one monomer fold-
ing into its neighbor to complete the Bcl-2 fold [ 24 ,  25 ]. 
These dimers readily produce crystals in a number of different 
crystal forms and thus have proven extremely fruitful for drug 
discovery (e.g., [ 26 – 29 ]). Similarly, a domain swapped dimer 
version of  Bax  , in which the α6–α8 “latch” region swaps with 
a neighbor, has been useful for solving structures of Bax bound 
to activator BH3 domains (Fig.  2 ) [ 15 ,  30 ]. One possible rea-
son for enhanced crystallization of these dimer constructs is 
that the dimerization interface provides a point of symmetry 
on which the crystal can build. In a similar manner, in the fi rst 
structure solved of  Bcl-x L    bound to a compound within the 
benzothiazole series (Bcl-x L :1HI from PDB code 3ZK6 [ 27 ]), 
the compound itself dimerizes between two proteins across a 
twofold axis within the crystal, this may have similarly enhanced 
the crystallization of this low affi nity inhibitor complex. 
Notably, however, the compound did not dimerize  Bcl-x L    in 
gel fi ltration experiments and so may only act within the crystal 
or at the high concentrations of protein found within the 
crystallization drop.   

   4.    An alternative method of producing complexes of prosurvival 
protein bound to BH3 domain peptides is to express both as a 
single chain construct with a  protease   cleavable linker [ 31 ]. It 
has been found in some cases that this aids the expression of 
the prosurvival protein and ensures complete saturation of all 
available binding sites. The constructs consisted of a 
C-terminally truncated form of the prosurvival protein linked 
to human Bim s  BH3 peptide via a (GS) linker. This enables the 
Bcl-2 hydrophobic groove to be fully occupied with the native 
ligand. The fi nal expression construct thus consists of: 6His-x-
Bcl-2ΔC-x-(GS) 9 -x-Bim-BH3 (where -x- represents a TEV 
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cleavage site ENLYFQGS). Following initial affi nity purifi ca-
tion TEV- cleaveable linkers are cleaved via incubation with 
TEV protease, followed by reapplication of cleaved sample to 
affi nity resin to remove uncleaved protein and purifi cation tag. 
The fi nal sample can then be concentrated for crystallization.   

   5.    Preparation of complexes of prosurvival proteins with small 
molecules for crystallization can often be achieved using simi-
lar methods to those described above for prosurvival:BH3 
domain peptide complexes (Table  2 ). However, an added 
 diffi culty with small molecules is that the ligands are usually 
dissolved in DMSO which can sometimes hinder crystalliza-
tion. Furthermore, small molecules often have signifi cantly 
reduced affi nity for their target proteins as compared to wild-
type BH3-only proteins. In the preparation of such samples, 
DMSO is most effi ciently removed from sample mixtures of 
protein and ligand through buffer exchange, but for low affi nity 
targets this might also result in loss of compound. One approach 
to minimize such loss is to add a molar excess of compound to 
protein at high concentrations in small volumes and then to 
dilute these samples to a fi nal DMSO concentration of 1 % (or 
lower), followed by concentration using low molecular weight 
centrifugal fi lters back to the desired fi nal molarity. Using this 
strategy, the solubility of the compound in solution is reduced 
during the dilution step thereby minimizing the rate of ligand 
dissociation during the purifi cation step.   

   6.    Table  1  demonstrates that an enormous collection of struc-
tures of Bcl-2 family protein complexes has now been accumu-
lated. These structures have informed our understanding of 
the molecular mechanisms controlling apoptosis and guided 
the development of inhibitors targeting these proteins. 
However, the family portrait is by no means complete. We are 
yet to determine a structure of a prosurvival protein in  complex 
with a full- length  Bax  -like executioner protein and there are a 
large number of viral derived family members for which struc-
tures have not yet been solved. Such structures are likely to 
offer further insights into the molecular interactions governing 
these pathways and may provide new strategies for targeting 
them for novel therapeutic outcomes  .         
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