
Chapter 4

Genomic Annotation Resources in R/Bioconductor

Marc R.J. Carlson, Hervé Pagès, Sonali Arora, Valerie Obenchain,
and Martin Morgan

Abstract

Annotation resources make up a significant proportion of the Bioconductor project (Huber et al., Nat
Methods 12:115–121, 2015). And there are also a diverse set of online resources available which are
accessed using specific packages. Here we describe the most popular of these resources and give some high
level examples on how to use them.

Key words Annotation, Next-generation sequencing, R, Bioconductor, Genomics

1 Introduction

Annotations in Bioconductor have traditionally been used near
the end of an analysis. After the bulk of the data analysis, annota-
tions would be used interpretatively to learn about the most
significant results. But increasingly, they are also used as a starting
point or even as an intermediate step to help guide a study that is
still in progress. In addition to this, what it means for something
to be an annotation is also becoming less clear than it once was. It
used to be clear that annotations were only those things that had
been established after multiple different studies had been per-
formed (such as the primary role of a gene product). But today
many large data sets are treated by communities in much the same
way that classic annotations once were: as a reference for addi-
tional comparisons.

Another change that is underway with annotations in Biocon-
ductor is in the way that they are obtained. In the past annotations
existed almost exclusively as separate annotation packages [2–4].
Today packages are still an enormous source of annotations. The
current repository contains over 800 annotation packages (http://
bioconductor.org/packages/release/BiocViews.html#___Annotat
ionData). Here is a table that summarizes some of the more

Ewy Mathé and Sean Davis (eds.), Statistical Genomics: Methods and Protocols, Methods in Molecular Biology,
vol. 1418, DOI 10.1007/978-1-4939-3578-9_4, © Springer Science+Business Media New York 2016

67

http://bioconductor.org/packages/release/BiocViews.html#___AnnotationData
http://bioconductor.org/packages/release/BiocViews.html#___AnnotationData
http://bioconductor.org/packages/release/BiocViews.html#___AnnotationData

important classes of annotation objects that are often accessed
using packages (Table 1).

But in spite of the popularity of annotation packages, annota-
tions are increasingly also being pulled down fromWeb services like
biomaRt [5–7] or from the AnnotationHub [8]. And both of these
represent enormous resources for annotation data.

In part because of the rapidly evolving landscape, it is currently
impossible in a single chapter to cover every possible annotation or
even every kind of annotation present in Bioconductor. So this
chapter instead goes over the most popular annotation resources
and describe them in a way intended to expose common patterns
used for accessing them. The hope is that a user with this informa-
tion will be able to make educated guesses about how to find and
use additional resources that will inevitably be added later. Topics
that are covered include the following:

l Using the AnnotationHub

l OrgDb Objects

l TxDb Objects

l OrganismDb Objects

l BSgenome Objects

l Using the biomaRt Web service

l Creating annotation objects

2 Materials

In this chapter we make use of several Bioconductor packages. You
can install them with by using biocLite() like so:

source("http://bioconductor.org/biocLite.R")

biocLite("AnnotationHub")

Table 1
Summary of popular Annotation Objects

Object type Example package name Contents

OrgDb org.Hs.eg.db Gene based information
for Homo sapiens

TxDb TxDb.Hsapiens.UCSC.
hg19.knownGene

Transcriptome ranges for
Homo sapiens

OrganismDb Homo.sapiens Composite information
for Homo sapiens

BSgenome BSgenome.Hsapiens.
UCSC.hg19

Genome sequence for
Homo sapiens

68 Marc R.J. Carlson et al.

http://bioconductor.org/biocLite.R

biocLite("Rattus.norvegicus")

biocLite("TxDb.Dmelanogaster.UCSC.dm3.ensGene")

biocLite("BSgenome.Dmelanogaster.UCSC.dm3")

biocLite("biomaRt")

The usage of the installed packages is described in detail within
Subheading 3.

3 Methods

3.1 Using the

AnnotationHub

The top of the list for learning about annotation resources is the
relatively new AnnotationHub package [8]. The AnnotationHub
was created to provide a convenient access point for end users to
find a large range of different annotation objects for use with
Bioconductor. Resources found in the AnnotationHub are easy to
discover and are presented to the user as familiar Bioconductor data
objects. Because it is a recent addition, the AnnotationHub allows
access to a broad range of annotation like objects, some of which
may not have been considered annotations even a few years ago. To
get started with the AnnotationHub users only need to load the
package and then create a local AnnotationHub object like this:

library("AnnotationHub")

ah <- AnnotationHub()

The very first time that you call the AnnotationHub, it will
create a cache directory on your system and download the latest
metadata for the hubs current contents. From that time forward,
whenever you download one of the hubs data objects, it will also
cache those files in the local directory so that if you request the
information again, you will be able to access it quickly.

The show method of an AnnotationHub object will tell you
how many resources are currently accessible using that object as
well as give a high level overview of the most common kinds of data
present.

ah

AnnotationHub with 19268 records

snapshotDate(): 2015-03-26

$dataprovider: UCSC, Ensembl, BroadInstitute, NCBI, Haemcode, dbSNP, . . .

$species: Homo sapiens, Mus musculus, Bos taurus, Pan troglodytes, Da. . .

$rdataclass: GRanges, FaFile, OrgDb, ChainFile, CollapsedVCF, Inparan. . .

additional mcols(): taxonomyid, genome, description, tags,

sourceurl, sourcetype

retrieve records with, e.g., ’object[["AH169"]]’

##

title

AH169 | Meleagris_gallopavo.UMD2.69.cdna.all.fa

AH170 | Meleagris_gallopavo.UMD2.69.dna.toplevel.fa

Annotation Resources in Bioconductor 69

AH171 | Meleagris_gallopavo.UMD2.69.dna_rm.toplevel.fa

AH172 | Meleagris_gallopavo.UMD2.69.dna_sm.toplevel.fa

AH173 | Meleagris_gallopavo.UMD2.69.ncrna.fa

.

AH28851 | Tursiops_truncatus.turTru1.77.gtf

AH28852 | Vicugna_pacos.vicPac1.77.gtf

AH28853 | Xenopus_tropicalis.JGI_4.2.77.gtf

AH28854 | Xiphophorus_maculatus.Xipmac4.4.2.77.gtf

AH28855 | RNA-Sequencing and clinical data for 7706 tumor samples fro. . .

As you can see from the object above, there are a LOT of
different resources available. So normally when you get an Anno-
tationHub object the first thing you want to do is to filter it to
remove unwanted resources.

Fortunately, the AnnotationHub has several different kinds of
metadata that you can use for searching and subsetting. To see the
different categories all you need to do is to type the name of your
AnnotationHub object and then tab complete from the “$” opera-
tor. And to see all possible contents of one of these categories you
can pass that value in to unique like this:

unique(ah$dataprovider)

[1] "Ensembl" "EncodeDCC"

[3] "UCSC" "dbSNP"

[5] "Inparanoid8" "NCBI"

[7] "BroadInstitute" "NHLBI"

[9] "ChEA" "Pazar"

[11] "NIH Pathway Interaction Database" "RefNet"

[13] "Haemcode" "GEO"

One of the most valuable ways in which the data is labeled is
according to the kind of R object that will be returned to you.

unique(ah$rdataclass)

[1] "FaFile" "GRanges" "CollapsedVCF"

[4] "Inparanoid8Db" "OrgDb" "TwoBitFile"

[7] "ChainFile" "SQLiteConnection" "data.frame"

[10] "biopax" "VcfFile" "ExpressionSet"

Once you have identified which sorts of metadata you would
like to use to find your data of interest, you can then use the subset
or query methods to reduce the size of the hub object to something
more manageable. For example you could select only those records
where the string “GRanges” was in the metadata. As you can see
GRanges are one of the more popular formats for data that comes
from the AnnotationHub.

grs <- query(ah, "GRanges")

grs

AnnotationHub with 12390 records

snapshotDate(): 2015-03-26

70 Marc R.J. Carlson et al.

$dataprovider: UCSC, BroadInstitute, Haemcode, Ensembl, Pazar, EncodeDCC

$species: Homo sapiens, Mus musculus, Bos taurus, Pan troglodytes, Ca. . .

$rdataclass: GRanges

additional mcols(): taxonomyid, genome, description, tags,

sourceurl, sourcetype

retrieve records with, e.g., ’object[["AH3166"]]’

##

title

AH3166 | wgEncodeRikenCageSknshraCellPapTssHmm

AH3912 | wgEncodeUwDgfTregwb78495824Hotspots

AH3913 | wgEncodeUwDgfTregwb78495824Pk

AH4368 | wgEncodeUwDnaseWi38PkRep1

AH4369 | wgEncodeUwDnaseWi38PkRep2

.

AH28850 | Tupaia_belangeri.TREESHREW.77.gtf

AH28851 | Tursiops_truncatus.turTru1.77.gtf

AH28852 | Vicugna_pacos.vicPac1.77.gtf

AH28853 | Xenopus_tropicalis.JGI_4.2.77.gtf

AH28854 | Xiphophorus_maculatus.Xipmac4.4.2.77.gtf

Or you can use subsetting to only select for matches on a
specific field

grs <- ah[ah$rdataclass ¼¼ "GRanges",]

The subset function is also provided.

orgs <- subset(ah, ah$rdataclass ¼¼ "OrgDb")

orgs

AnnotationHub with 1145 records

snapshotDate(): 2015-03-26

$dataprovider: NCBI

$species: ’Nostoc azollae’_0708, Acaryochloris marina_MBIC11017, Acet. . .

$rdataclass: OrgDb

additional mcols(): taxonomyid, genome, description, tags,

sourceurl, sourcetype

retrieve records with, e.g., ’object[["AH12818"]]’

##

title

AH12818 | org.Pseudomonas_mendocina_NK-01.eg.sqlite

AH12819 | org.Streptomyces_coelicolor_A3(2).eg.sqlite

AH12820 | org.Cricetulus_griseus.eg.sqlite

AH12821 | org.Streptomyces_cattleya_NRRL_8057_¼_DSM_46488.eg.sqlite

AH12822 | org.Cavia_porcellus.eg.sqlite

.

AH13958 | org.Ochotona_princeps.eg.sqlite

AH13959 | org.Aeromonas_veronii_B565.eg.sqlite

AH13960 | org.Oryctolagus_cuniculus.eg.sqlite

AH13961 | org.Tetraodon_nigroviridis.eg.sqlite

AH13962 | org.Burkholderia_gladioli_BSR3.eg.sqlite

Annotation Resources in Bioconductor 71

And if you really need access to all the metadata you can extract
it as a DataFrame using mcols() like so:

meta <- mcols(ah)

Also if you are a fan of GUI’s you can use the display method to
look at your data in a browser and return selected rows back as a
smaller AnnotationHub object like this:

sah <- display(ah)

Calling this method will produce a Web based interface like the
one pictured here (Fig. 1).

Fig. 1 The display() method will open a user friendly GUI in a local Web browser (if available)

72 Marc R.J. Carlson et al.

Once you have the AnnotationHub object pared down to a
reasonable size, and are sure about which records you want to
retrieve, then you only need to use the ‘[[’ operator to extract
them. Using the ‘[[’ operator, you can extract by numeric index
(1,2,3) or by AnnotationHub ID. If you choose to use the former,
you simply extract the element that you are interested in. So for our
chain example, you might just want to first one like this:

res <- grs[[1]]

require("GenomicRanges")

head(res, n¼3)

GRanges object with 3 ranges and 5 metadata columns:

seqnames ranges strand |

<Rle> <IRanges> <Rle> |

[1] chr11 [65266509, 65266572] + |

[2] chr1 [156675257, 156675415] - |

[3] chr10 [33247091, 33247233] - |

name score level

<character> <integer> <numeric>

[1] chr11:65266509:65266572:+:0.04:1.000000 0 20993.670

[2] chr1:156675257:156675415:-:0.35:1.000000 0 11580.471

[3] chr10:33247091:33247233:-:0.32:1.000000 0 8098.093

signif score2

<numeric> <integer>

[1] 3.36e-10 0

[2] 3.54e-10 0

[3] 3.82e-10 0

—————

seqinfo: 24 sequences from hg19 genome

Or you might have decided that you want to see the data for
the green spotted pufferfish by that you spotted in the orgs subset
under the name “AH13961”. That data could also be extracted like
this:

tetra <- orgs[["AH13961"]]

Loading required package: AnnotationDbi

Loading required package: Biobase

Welcome to Bioconductor

##

Vignettes contain introductory material; view with

’browseVignettes()’. To cite Bioconductor, see

’citation("Biobase")’, and for packages ’citation("pkgname")’.

##

##

Attaching package: ’Biobase’

##

The following object is masked from ’package:AnnotationHub’:

Annotation Resources in Bioconductor 73

##

cache

tetra

OrgDb object:

| DBSCHEMAVERSION: 2.1

| DBSCHEMA: NOSCHEMA_DB

| ORGANISM: Tetraodon nigroviridis

| SPECIES: Tetraodon nigroviridis

| CENTRALID: GID

| TAXID: 99883

| Db type: OrgDb

| Supporting package: AnnotationDbi

##

Please see: help(’select’) for usage information

3.2 OrgDb Objects At this point you may be wondering: What is this OrgDb object
about? OrgDb objects are one member of a family of annotation
objects that all represent hidden data through a shared set of
methods. So if you look closely at the tetra object in the example
above you can see that it contains data for Tetraodon nigroviridis
(taxonomy ID ¼ 99883). You can learn a little more about it by
learning about the columns method.

columns(tetra)

[1] "ACCNUM" "ALIAS" "CHR" "ENTREZID" "GENENAME"

[6] "SYMBOL" "GID" "GO" "EVIDENCE" "ONTOLOGY"

[11] "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "PMID" "REFSEQ"

The columns method gives you a vector of data types that can
be retrieved from the object that you call it on. So the above call
indicates that there are several different data types that can be
retrieved from the tetra object.

A very similar method is the keytypes method, which will list all
the data types that can also be used as keys.

keytypes(tetra)

[1] "ACCNUM" "ALIAS" "ENTREZID" "GENENAME" "SYMBOL"

[6] "GID" "GO" "EVIDENCE" "ONTOLOGY" "GOALL"

[11] "EVIDENCEALL" "ONTOLOGYALL" "PMID" "REFSEQ"

In many cases most of the things that are listed as columns will
also come back from a keytypes call, but since these two things are
not guaranteed to be identical, we must maintain two separate
methods.

Now that you can see what kinds of things can be used as keys,
you can call the keys method to extract out all the keys of a given
key type.

keys(tetra, keytype¼"ENTREZID")

74 Marc R.J. Carlson et al.

[1] "3453248" "3453249" "3453250" "3453251" "3453252" "3453253" "3453254"

[8] "3453255" "3453256" "3453257" "3453258" "3453259" "3474988"

This is useful if you need to get all the IDs of a particular kind
but the keys method has a few extra arguments that can make it
even more flexible. For example, using the keys method you could
also extract the gene SYMBOLS that start with “COX” like this:

keys(tetra, keytype¼"SYMBOL", pattern¼"COX")

[1] "COX1" "COX2" "COX3"

Or if you really needed an other keytype, you can use the
column argument to extract the ENTREZ GENE IDs for those
gene SYMBOLS that start with “COX”:

keys(tetra, keytype¼"ENTREZID", pattern¼"COX", column¼"SYMBOL")

[1] "3453250" "3453251" "3453252"

But often, you will really want to extract other data that
matches a particular key or set of keys. For that there are two
methods which you can use. The more powerful of these is proba-
bly select. Here is how you would look up the gene SYMBOL, and
REFSEQ id for the entrez gene ID “3453250”.

select(tetra, keys¼"3453250", columns¼c("SYMBOL","REFSEQ"),

keytype¼"ENTREZID")

ENTREZID SYMBOL REFSEQ

1 3453250 COX1 YP_254663.1

When you call it, select will return a data.frame that attempts to
fill in matching values for all the columns you requested. However,
if you ask select for things that have a many to one relationship to
your keys it can result in an expansion of the data object that is
returned. For example, watch what happens when we ask for the
GO terms for the same entrez gene ID:

select(tetra, keys¼"3453250", columns¼"GO", keytype¼
"ENTREZID")

ENTREZID GO

1 3453250 GO:0046686

2 3453250 GO:0051597

3 3453250 GO:0004129

4 3453250 GO:0009055

5 3453250 GO:0020037

6 3453250 GO:0009060

7 3453250 GO:0016021

Because there are seven GO terms associated with the gene
“3453250”, you end up with seven rows in the data.frame. . . This
can become problematic if you then ask for several columns that
have a many to one relationship to the original key. If you were to

Annotation Resources in Bioconductor 75

do that, not only would the result multiply in size, it would also
become really hard to use. So the recommended strategy is to be
selective when using select.

Sometimes you might want to look up matching results in a way
that is simpler than the data.frame object that select returns. This is
especially true when you only want to look up one kind of value per
key. For these cases, we recommend that you look at the mapIds
method. Let us look at what happens if request the same basic infor-
mation as the last select call, but instead using the mapIds method:

mapIds(tetra, keys¼"3453250", column¼"GO", keytype¼
"ENTREZID")

3453250

"GO:0046686"

As you can see, the mapIds method allows you to simplify the
result that is returned. And by default, mapIds only returns the first
matching element for each key. But what if you really need all those
GO terms returned when you call mapIds? Well then you can make
use of the mapIds multiVals argument. There are several options for
this argument, we have already seen how by default you can return
only the “first” element. But you can also return a “list” or “Char-
acterList” object, or you can “filter” out or return “asNA” any keys
that have multiple matches. You can even define your own rule (as a
function) and pass that in as an argument to multiVals. Let us look
at what happens when you return a list:

mapIds(tetra, keys¼"3453250", column¼"GO", keytype¼
"ENTREZID",

multiVals¼"list")

$’3453250’

[1] "GO:0046686" "GO:0051597" "GO:0004129"

"GO:0009055" "GO:0020037"

[6] "GO:0009060" "GO:0016021"

Now you know how to extract information from an OrgDb
object, youmight find it helpful to know that there is a whole family
of other AnnotationDb derived objects that you can also use with
these same five methods (keytypes(), columns(), keys(), select(),
and mapIds()). For example there are ChipDb objects, Inpara-
noidDb objects and TxDb objects which contain data about micro-
array probes, inparanoid homology partners or transcript range
information respectively. And there are also more specialized
objects like GODb or ReactomeDb objects which offer access to
data from GO and reactome. In the next section, we look at one of
the more popular classes of these objects: the TxDb object.

3.3 TxDb Objects As mentioned before, TxDb objects can be accessed using the
standard set of methods: keytypes(), columns(), keys(), select(),
and mapIds(). But because these objects contain information

76 Marc R.J. Carlson et al.

about a transcriptome, they are often used to compare range based
information to these important features of the genome [3, 4]. As a
result they also have specialized accessors for extracting out ranges
that correspond to important transcriptome characteristics.

Let us start by loading a TxDb object from an annotation
package based on the UCSC ensembl genes track for Drosophila.
A common practice when loading these is to shorten the long name
to “txdb” (just as a convenience).

library("TxDb.Dmelanogaster.UCSC.dm3.ensGene")

Loading required package: GenomicFeatures

txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

txdb

TxDb object:

Db type: TxDb

Supporting package: GenomicFeatures

Data source: UCSC

Genome: dm3

Organism: Drosophila melanogaster

UCSC Table: ensGene

Resource URL: http://genome.ucsc.edu/

Type of Gene ID: Ensembl gene ID

Full dataset: yes

miRBase build ID: NA

transcript_nrow: 29173

exon_nrow: 76920

cds_nrow: 62135

Db created by: GenomicFeatures package from

Bioconductor

Creation time: 2015-03-19 14:00:50 -0700 (Thu, 19 Mar

2015)

GenomicFeatures version at creation time: 1.19.32

RSQLite version at creation time: 1.0.0

DBSCHEMAVERSION: 1.1

Just by looking at the TxDb object, we can learn a lot about
what data it contains including where the data came from, which
build of the fly genome it was based on and the last time that the
object was updated. One of the most common uses for a TxDb
object is to extract various kinds of transcript data out of it. So for
example you can extract all the transcripts out of the TxDb as a
GRanges object like this:

txs <- transcripts(txdb)

txs

GRanges object with 29173 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> |<integer><character>

Annotation Resources in Bioconductor 77

http://genome.ucsc.edu/

[1] chr2L [7529, 9484] + | 1 FBtr0300689

[2] chr2L [7529, 9484] + | 2 FBtr0300690

[3] chr2L [7529, 9484] + | 3 FBtr0330654

[4] chr2L [21952, 24237] + | 4 FBtr0309810

[5] chr2L [66584, 71390] + | 5 FBtr0306539

.

[29169] chrYHet [205196, 205372] - | 29166

FBtr0302914

[29170] chrYHet [307129, 307365] - | 29167

FBtr0114289

[29171] chrYHet [312456, 313714] - | 29168

FBtr0114243

[29172] chrYHet [319739, 320997] - | 29169

FBtr0114244

[29173] chrYHet [327052, 328489] - | 29170

FBtr0114245

—————

seqinfo: 15 sequences (1 circular) from dm3 genome

Similarly, there are also extractors for exons(), cds(), genes()
and promoters(). Which kind of feature you choose to extract just
depends on what information you are after. These basic extractors
are fine if you only want a flat representation of these data, but many
of these features are inherently nested. So instead of extracting a flat
GRanges object, you might choose instead to extract a GRanges-
List object that groups the transcripts by the genes that they are
associated with like this:

txby <- transcriptsBy(txdb, by¼"gene")

txby

GRangesList object of length 15682:

$FBgn0000003

GRanges object with 1 range and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer><character>

[1] chr3R [2648220, 2648518] + | 17345 FBtr0081624

##

$FBgn0000008

GRanges object with 3 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

[1] chr2R [18024494, 18060339] + | 7681 FBtr0100521

[2] chr2R [18024496, 18060346] + | 7682 FBtr0071763

[3] chr2R [18024938, 18060346] + | 7683 FBtr0071764

##

$FBgn0000014

GRanges object with 4 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

[1] chr3R [12632936, 12655767] - | 21863 FBtr0306337

78 Marc R.J. Carlson et al.

[2] chr3R [12633349, 12653845] - | 21864 FBtr0083388

[3] chr3R [12633349, 12655300] - | 21865 FBtr0083387

[4] chr3R [12633349, 12655474] - | 21866 FBtr0300485

##

. . .

<15679 more elements>

—————

seqinfo: 15 sequences (1 circular) from dm3 genome

Just as with the flat extractors, there is a whole family of
extractors available depending on what you want to extract and
how you want it grouped. They include transcriptsBy(), exonsBy(),
cdsBy(), intronsByTranscript(), fiveUTRsByTranscript(), and
threeUTRsByTranscript().

When dealing with genomic data it is almost inevitable that you
will run into problems with the way that different groups have
adopted alternate ways of naming chromosomes. This is because
almost every major repository has cooked up their own slightly
different way of labeling these important features.

To cope with this, the Seqinfo object was invented and is
attached to TxDb objects as well as the GenomicRanges extracted
from these objects. You can extract it using the seqinfo() method
like this:

si <- seqinfo(txdb)

si

Seqinfo object with 15 sequences (1 circular) from dm3

genome:

seqnames seqlengths isCircular genome

chr2L 23011544 FALSE dm3

chr2R 21146708 FALSE dm3

chr3L 24543557 FALSE dm3

chr3R 27905053 FALSE dm3

chr4 1351857 FALSE dm3

.

chr3LHet 2555491 FALSE dm3

chr3RHet 2517507 FALSE dm3

chrXHet 204112 FALSE dm3

chrYHet 347038 FALSE dm3

chrUextra 29004656 FALSE dm3

And since the seqinfo information is also attached to the
GRanges objects produced by the TxDb extractors, you can also
call seqinfo on the results of those methods like this:

txby <- transcriptsBy(txdb, by¼"gene")

si <- seqinfo(txby)

The Seqinfo object contains a lot of valuable data about which
chromosome features are present, whether they are circular or
linear, and how long each one is. It is also something that will be

Annotation Resources in Bioconductor 79

checked against if you try to do an operation like “findOverlaps” to
compute overlapping ranges etc. So it is a valuable way to make sure
that the chromosomes and genome are the same for your annota-
tions as the range that you are comparing them to. But sometimes
you may have a situation where your annotation object contains
data that is comparable to your data object, but where it is simply
named with a different naming style. For those cases, there are
helpers that you can use to discover what the current name style is
for an object. And there is also a setter method to allow you to
change the value to somethingmore appropriate. So in the following
example, we are going to change the seqlevelStyle from “UCSC” to
“ensembl” based naming convention (and then back again).

seqlevels(txdb)

[1] "chr2L" "chr2R" "chr3L" "chr3R" "chr4"

[6] "chrX" "chrU" "chrM" "chr2LHet" "chr2RHet"

[11] "chr3LHet" "chr3RHet" "chrXHet" "chrYHet"

"chrUextra"

seqlevelsStyle(txdb)

[1] "UCSC"

seqlevelsStyle(txdb) <- "ensembl"

seqlevels(txdb)

[1] "2L" "2R"

[3] "3L" "3R"

[5] "4" "X"

[7] "U" "dmel_mitochondrion_genome"

[9] "2LHet" "2RHet"

[11] "3LHet" "3RHet"

[13] "XHet" "YHet"

[15] "Uextra"

then change it back

seqlevelsStyle(txdb) <- "UCSC"

seqlevels(txdb)

[1] "chr2L" "chr2R" "chr3L" "chr3R" "chr4"

[6] "chrX" "chrU" "chrM" "chr2LHet" "chr2RHet"

[11] "chr3LHet" "chr3RHet" "chrXHet" "chrYHet"

"chrUextra"

In addition to being able to change the naming style used for an
object with seqinfo data, you can also toggle which of the chromo-
somes are “active” so that the software will ignore certain chromo-
somes. By default, all of the chromosomes are set to be “active”.

isActiveSeq(txdb)

chr2L chr2R chr3L chr3R chr4 chrX chrU

TRUE TRUE TRUE TRUE TRUE TRUE TRUE

80 Marc R.J. Carlson et al.

chrM chr2LHet chr2RHet chr3LHet chr3RHet chrXHet

chrYHet

TRUE TRUE TRUE TRUE TRUE TRUE TRUE

chrUextra

TRUE

But sometimes you might wish to ignore some of them. For
example, let us suppose that you wanted to ignore the Uextra
chromosome from our fly txdb. You could do that like so:

isActiveSeq(txdb)["chrUextra"] <- FALSE

isActiveSeq(txdb)

chr2L chr2R chr3L chr3R chr4 chrX chrU

TRUE TRUE TRUE TRUE TRUE TRUE TRUE

chrM chr2LHet chr2RHet chr3LHet chr3RHet chrXHet

chrYHet

TRUE TRUE TRUE TRUE TRUE TRUE TRUE

chrUextra

FALSE

3.4 OrganismDb

Objects

So what happens if you have data from multiple different Annota-
tion objects. For example, what if you had gene SYMBOLS (found
in an OrgDb object) and you wanted to easily match those up with
known gene transcript names from a UCSC based TxDb object?
There is an ideal tool that can help with this kind of problem and it
is called an OrganismDb object [9]. On the one hand OrganismDb
objects can seem more complex than OrgDb, GODb or TxDb
objects because they can allow you to access all three object sources
at once. But in reality they are not that complicated. What they do is
just query each of these resources for you and then merge the
results back together in way that lets you pretend that you only
have one source for all your annotations.

To try one out let us load one that was made as an annotation
package:

library("Rattus.norvegicus")

Loading required package: OrganismDbi

Loading required package: GO.db

Loading required package: DBI

##

Loading required package: org.Rn.eg.db

##

Loading required package: TxDb.Rnorvegicus.UCSC.rn5.

refGene

Rattus.norvegicus

class: OrganismDb

Annotation resources:

[1] "GO.db" "org.Rn.eg.db"

Annotation Resources in Bioconductor 81

[3] "TxDb.Rnorvegicus.UCSC.rn5.refGene"

Annotation relationships:

xDbs yDbs xKeys

[1,] "GO.db" "org.Rn.eg.db" "GOID"

[2,] "org.Rn.eg.db" "TxDb.Rnorvegicus.UCSC.rn5.

refGene" "ENTREZID"

yKeys

[1,] "GO"

[2,] "GENEID"

For more details, please see the show methods for the

component objects listed above.

And that is it. You can now use these objects in the same way
that you use OrgDb or TxDb objects. It works the same as the base
objects that it contains:

select(Rattus.norvegicus, keys¼"24152", columns¼c("SYM-

BOL","TXNAME"),keytype¼ "ENTREZID")

ENTREZID SYMBOL TXNAME

1 24152 Asip NM_052979

In fact the five methods that worked for all of the other Db
objects that we have discussed (keytypes(), columns(), keys(), select
(), and mapIds()) should all work for OrganismDb objects. And if
the OrganismDb object was composed to include a TxDb, then the
range based accessors should also work:

txs <- transcripts(Rattus.norvegicus, columns¼c

("TXNAME","SYMBOL"))

txs

GRanges object with 18762 ranges and 2 metadata columns:

seqnames ranges strand |

<Rle> <IRanges> <Rle> |

[1] chr1 [388173, 401149] + |

[2] chr1 [391729, 401149] + |

[3] chr1 [688298, 696950] + |

[4] chr1 [3400376, 3428890] + |

[5] chr1 [3468471, 3478304] + |

.

[18758] chrX [153807459, 153839833] - |

[18759] chrX [154351133, 154467649] - |

[18760] chrX [154511679, 154518145] - |

[18761] chrX_AABR06110762_random [119, 711] + |

[18762] chrX_AABR06110835_random [5214, 10526] + |

TXNAME SYMBOL

<CharacterList> <CharacterList>

[1] NM_001099460 Vom2r3

[2] NM_001099457 Vom2r2

[3] NM_001099462 Vom2r5

82 Marc R.J. Carlson et al.

[4] NM_001106217 Lrp11

[5] NM_001128191 Nup43

.

[18758] NM_001271327 Map7d3

[18759] NM_001005565 Arhgef6

[18760] NM_001025663 Rbmx

[18761] NM_001037554 Bex4

[18762] NM_001025288 Dmrtc1a

—————

seqinfo: 2739 sequences (1 circular) from rn5 genome

3.5 BSgenome

Objects

Another important annotation resource type is a BSgenome pack-
age [10]. There are many BSgenome packages in the repository for
you to choose from. And you can learn which organisms are already
supported by using the available.genomes() function.

library("BSgenome")

Loading required package: Biostrings

Loading required package: XVector

Loading required package: rtracklayer

head(available.genomes())

[1] "BSgenome.Alyrata.JGI.v1"

[2] "BSgenome.Amellifera.BeeBase.assembly4"

[3] "BSgenome.Amellifera.UCSC.apiMel2"

[4] "BSgenome.Amellifera.UCSC.apiMel2.masked"

[5] "BSgenome.Athaliana.TAIR.04232008"

[6] "BSgenome.Athaliana.TAIR.TAIR9"

Unlike the other resources that we have discussed here, these
packages are meant to contain sequence data for a specific genome
build of an organism. You load one of these packages in the usual
way, and each of them normally has an alias for the primary object
that is shorter than the full package name (as a convenience):

library("BSgenome.Dmelanogaster.UCSC.dm3")

ls(2)

[1] "BSgenome.Dmelanogaster.UCSC.dm3" "Dmelanogaster"

Dmelanogaster

Fly genome:

organism: Drosophila melanogaster (Fly)

provider: UCSC

provider version: dm3

release date: Apr. 2006

release name: BDGP Release 5

15 sequences:

chr2L chr2R chr3L chr3R chr4 chrX chrU

chrM chr2LHet chr2RHet chr3LHet chr3RHet chrXHet

chrYHet

Annotation Resources in Bioconductor 83

chrUextra

(use ’seqnames()’ to see all the sequence names, use the

’$’ or ’[[’

operator to access a given sequence)

The getSeq method is a useful way of extracting data from these
packages. This method takes several arguments but the important
ones are the first two. The first argument specifies the BSgenome
object to use and the second argument (names) specifies what data
you want back out. So for example, if you call it and give a character
vector that names the seqnames for the object then you will get the
sequences from those chromosomes as a DNAStringSet object.

seqNms <- seqnames(Dmelanogaster)

head(seqNms)

[1] "chr2L" "chr2R" "chr3L" "chr3R" "chr4" "chrX"

getSeq(Dmelanogaster, seqNms[1:2])

A DNAStringSet instance of length 2

width seq

[1] 23011544

CGACAATGCACGACAGAGGAAGCAGAACAG. . .TGCAAATTTTGAT-

GAACCCCCCT TTCAAA

[2] 21146708

GACCCGCTAGGAGATGTTGAGATTGTGAGT. . .CAACGTGACTGTT TGCATTCTA

GGAATTC

Whereas if you give the a GRanges object for the second
argument, you can instead get a DNAStringSet that corresponds
to those ranges. This can be a powerful way to learn what sequence
was present from a particular range. For example, here we can
extract the range of a specific gene of interest from Drosophila.

txby <- transcriptsBy(txdb, by¼"gene")

geneOfInterest <- txby[["FBgn0000008"]]

res <- getSeq(Dmelanogaster, geneOfInterest)

res

A DNAStringSet instance of length 3

width seq

[1] 35846

CGCGGCGGTCGCATCGGAGTCGAGAACTCGA. . .CATACAACCTTAATATATTTA

CCTGAAAAGC

[2] 35851

CGGCGGTCGCATCGGAGTCGAGAACTCGAAG. . .CCTTAATATATTTACCTGAAA

AGCAATATAC

[3] 35409

CGAATACACAAATCAAAGCAAGTGTCTGTGT. . .CCTTAATATATTTACCT GAAA

AGCAATATAC

84 Marc R.J. Carlson et al.

Additionally, the Biostrings [11] package has many useful func-
tions for finding a pattern in a string set etc. You may not have
noticed when it happened, but the Biostrings package was loaded
when you loaded the BSgenome object, so these functions will
already be available for you to explore.

3.6 biomaRt Another great annotation resource is the biomaRt package [5–7].
The biomaRt package exposes a huge family of different online
annotation resources called marts. Each mart is another of a set of
online Web resources that are following a convention that allows
them to work with this package. So the first step in using biomaRt is
always to load the package and then decide which “mart” you want
to use. Once you have made your decision, you will then use the
useMart() method to create a mart object in your R session. Here
we are looking at the marts available and then choosing to use one
of the most popular marts: the “ensembl” mart.

library("biomaRt")

head(listMarts())

biomart version

1 ensembl ENSEMBL GENES 79 (SANGER UK)

2 snp ENSEMBL VARIATION 79 (SANGER UK)

3 regulation ENSEMBL REGULATION 79 (SANGER UK)

4 vega VEGA 59 (SANGER UK)

5 fungi_mart_26 ENSEMBL FUNGI 26 (EBI UK)

6 fungi_variations_26 ENSEMBL FUNGI VARIATION 26 (EBI UK)

ensembl <- useMart("ensembl")

ensembl

Object of class ’Mart’:

Using the ensembl BioMart database

Using the dataset

Each “mart” can contain datasets for multiple different things.
So the next step is that you need to decide on a dataset. Once you
have chosen one, you will need to specify that dataset using the
dataset argument when you call the useMart() constructor method.
Here we will point to the dataset for chicken.

head(listDatasets(ensembl))

dataset

1 oanatinus_gene_ensembl

2 cporcellus_gene_ensembl

3 gaculeatus_gene_ensembl

4 lafricana_gene_ensembl

5 itridecemlineatus_gene_ensembl

6 choffmanni_gene_ensembl

description version

1 Ornithorhynchus anatinus genes (OANA5) OANA5

Annotation Resources in Bioconductor 85

2 Cavia porcellus genes (cavPor3) cavPor3

3 Gasterosteus aculeatus genes (BROADS1) BROADS1

4 Loxodonta africana genes (loxAfr3) loxAfr3

5 Ictidomys tridecemlineatus genes (spetri2) spetri2

6 Choloepus hoffmanni genes (choHof1) choHof1

ensembl <- useMart("ensembl",dataset¼"ggallus_gene_

ensembl")

ensembl

Object of class ’Mart’:

Using the ensembl BioMart database

Using the ggallus_gene_ensembl dataset

Next we need to think about attributes, values, and filters. Let
us start with attributes. You can get a listing of the different kinds of
attributes from biomaRt buy using the listAttributes method:

head(listAttributes(ensembl))

name description

1 ensembl_gene_id Ensembl Gene ID

2 ensembl_transcript_id Ensembl Transcript ID

3 ensembl_peptide_id Ensembl Protein ID

4 ensembl_exon_id Ensembl Exon ID

5 description Description

6 chromosome_name Chromosome Name

And you can see what the values for a particular attribute are by
using the getBM method:

head(getBM(attributes¼"chromosome_name", mart¼ensembl))

chromosome_name

1 1

2 10

3 11

4 12

5 13

6 14

Attributes are the things that you can have returned from
biomaRt. They are analogous to what you get when you use the
columns method with other objects.

In the biomaRt package, filters are things that can be used with
values to restrict or choose what comes back. The “values” here are
treated as keys that you are passing in and which you would like to
know more information about. In contrast, the filter represents the
kind of key that you are searching for. So for example, you might
choose a filter name of “chromosome_name” to go with specific
value of “1”. Together these two argument values would request
whatever attributes matched things on the first chromosome. And
just as there here is an accessor for attributes, there is also an
accessor for filters:

86 Marc R.J. Carlson et al.

head(listFilters(ensembl))

name description

1 chromosome_name Chromosome name

2 start Gene Start (bp)

3 end Gene End (bp)

4 marker_start Marker Start

5 marker_end Marker End

6 name_2 Name 2033

So now you know about attributes, values, and filters, you can
call the getBM method to put it all together and request specific
data from the mart. So for example, the following requests gene
symbols and entrez gene IDs that are found on chromosome 1 of
flies:

res <- getBM(attributes¼c("hgnc_symbol", "entrezgene"),

filters ¼ "chromosome_name",

values ¼ "1", mart ¼ ensembl)

head(res)

hgnc_symbol entrezgene

1 425783

2 430443

3 GOLGB1 NA

4 426867

5 NME6 426866

6 426865

Of course you may have noticed that a lot of the arguments for
getBM are very similar to what you do when you call select. So if it
is your preference you can now also use the standard select methods
with mart objects.

head(columns(ensembl))

[1] "ensembl_gene_id" "ensembl_transcript_id" "ensembl_peptide_id"

[4] "ensembl_exon_id" "description" "chromosome_name"

3.7 Creating

Annotation Objects

By now you are aware that Bioconductor has a lot of annotation
resources. But it is still completely impossible to have every anno-
tation resource prepackaged for every conceivable use. Because of
this, almost all annotation objects have special functions that can be
called to create those objects (or the packages that load them) from
generalized data resources or specific file types. Below is a table with
a few of the more popular options (Table 2).

In most cases the output for resource creation functions will be
an annotation package that you can install.

And there is unfortunately not enough space to demonstrate how
to call each of these functions here. But to do so is actually pretty
straightforward and most such functions will be well documented
with their associated manual pages and vignettes [3, 4, 10, 12].
As usual, you can see the help page for any function right inside of R.

Annotation Resources in Bioconductor 87

help("makeTxDbPackageFromUCSC")

If you plan to make use of these kinds of functions then you
should expect to consult the associated documentation first. These
kinds of functions tend to have a lot of arguments andmost of them
also require that their input data meet some fairly specific criteria.
Finally, you should know that even after you have succeeded at
creating an annotation package, you will also have to make use of
the install.packages() function (with the repos argument¼NULL)
to install whatever package source directory has just been created.

4 Notes

The bioconductor project represents a very large and active code-
base from an active and engaged community. Because of this, you
should expect that the software described in this chapter will
change over time and often in dramatic ways. As an example, the
getSeq function that is described in this chapter is expected to a big
overhaul in the coming months. When this happens the older
function will be deprecated for a full release cycle (6 months) and
then labeled as defunct for another release cycle before it is
removed. This cycle is in place so that active users can be warned
about what is happening and where they should look for the
appropriate replacement functionality. But obviously, this system
cannot warn end users if they have not been vigilant about updating

Table 2
How to create popular Annotation Objects

If you
want this And you have this Then you could call this to help

TxDb Tracks from UCSC GenomicFeatures::
makeTxDbPackageFromUCSC

TxDb Data from biomaRt GenomicFeatures::
makeTxDbPackageFromBiomaRt

TxDb gff or gtf file GenomicFeatures::
makeTxDbFromGFF

OrgDb Custom data.frames AnnotationForge::makeOrgPackage

OrgDb Valid Taxonomy ID AnnotationForge::
makeOrgPackageFromNCBI

ChipDb org package and data.
frame

AnnotationForge::
makeChipPackage

BSgenome fasta or twobit
sequence files

BSgenome::
forgeBSgenomeDataPkg

88 Marc R.J. Carlson et al.

their software to the latest version. So please take the time to always
update your software to the latest version.

In order to stay abreast of new developments users are also
encouraged to explore the bioconductor website which contains
many current walkthroughs and vignettes (http://bioconductor.
org/), and also to ask questions on the forums (https://support.
bioconductor.org/).

Acknowledgments

Research reported in this chapter was supported by the National
Human Genome Research Institute of the National Institutes of
Health under Award Number U41HG004059 and by the National
Cancer Institute of the National Institutes of Health under Award
Number U24CA180996. We also want to thank the numerous
institutions who produced and maintained the data that are used
for generating and updating the annotation resources described
here.

References

1. Huber W, Carey VJ, Gentleman R, Anders S,
Carlson M, Carvalho BS, Bravo HC, Davis S,
Gatto L, Girke T, Gottardo R, Hahne F, Han-
sen KD, Irizarry RA, Lawrence M, Love MI,
MacDonald J, Obenchain V, Oleś AK, Pagès
H, Reyes A, Shannon P, Smyth GK, Tenen-
baum D, Waldron L, Morgan M (2015)
Orchestrating high-throughput genomic anal-
ysis with Bioconductor. Nat Methods
12:115–121

2. Pages H, Carlson M, Falcon S, Li N. Annota-
tionDbi: annotation database interface. R
package version 1.30.0. http://bioconductor.
org/packages/AnnotationDbi/. Accessed
May 2015

3. Carlson M, Pages H, Aboyoun P, Falcon S,
Morgan M, Sarkar D, Lawrence M. Genomic-
Features: tools for making and manipulating
transcript centric annotations R package ver-
sion 1.19.38. http://bioconductor.org/
packages/GenomicFeatures/. Accessed May
2015

4. Lawrence M, Huber W, Pagès H, Aboyoun P,
Carlson M, Gentleman R, Morgan M, Carey V
(2013) Software for computing and annotating
genomic ranges. PLoS Comput Biol 9, http://
dx.doi.org/10.1371/journal.
pcbi.1003118http://www.ploscompbiol.
org/article/info%3Adoi%2F10.1371%2Fjour-
nal.pcbi.1003118

5. Durinck S, Huber W. biomaRt: interface to
BioMart databases (e.g. Ensembl, COSMIC,
Wormbase and Gramene) R package version
2.23.5. http://bioconductor.org/packages/
biomaRt/. Accessed May 2015

6. Durinck S, Spellman P, Birney E, Huber W
(2009) Mapping identifiers for the integration
of genomic datasets with the R/Bioconductor
package biomaRt. Nat Protoc 4:1184–1191

7. Durinck S, Moreau Y, Kasprzyk A, Davis S, De
Moor B, Brazma A, Huber W (2005) BioMart
and Bioconductor: a powerful link between
biological databases and microarray data analy-
sis. Bioinformatics 21:3439–3440

8. Morgan M, Carlson M, Tenenbaum D, Arora
S. AnnotationHub: client to access Annota-
tionHub resources. R package version 2.0.1.
http://bioconductor.org/packages/
AnnotationHub/. Accessed May 2015

9. CarlsonM, Pages H,MorganM, Obenchain V.
OrganismDbi: software to enable the smooth
interfacing of different database packages. R
package version 1.10.0. http://bioconductor.
org/packages/OrganismDbi/. Accessed May
2015

10. Pages H. BSgenome: infrastructure for
Biostrings-based genome data packages. R
package version 1.36.0. http://bioconductor.
org/packages/BSgenome/. Accessed May
2015

Annotation Resources in Bioconductor 89

http://bioconductor.org/
http://bioconductor.org/
https://support.bioconductor.org/
https://support.bioconductor.org/
http://bioconductor.org/packages/AnnotationDbi/
http://bioconductor.org/packages/AnnotationDbi/
http://bioconductor.org/packages/GenomicFeatures/
http://bioconductor.org/packages/GenomicFeatures/
http://bioconductor.org/packages/biomaRt/
http://bioconductor.org/packages/biomaRt/
http://bioconductor.org/packages/AnnotationHub/
http://bioconductor.org/packages/AnnotationHub/
http://bioconductor.org/packages/OrganismDbi/
http://bioconductor.org/packages/OrganismDbi/
http://bioconductor.org/packages/BSgenome/
http://bioconductor.org/packages/BSgenome/

11. Pages H, Aboyoun P, Gentleman R, DebRoy S.
Biostrings: string objects representing
biological sequences, and matching algo-
rithms. R package version 2.36.0. http://bio
conductor.org/packages/Biostrings/.
Accessed May 2015

12. Carlson M, Pages H. AnnotationForge: code
for building annotation database packages. R
package version 1.10.0. http://bioconductor.
org/packages/AnnotationForge/. Accessed
May 2015

90 Marc R.J. Carlson et al.

http://bioconductor.org/packages/Biostrings/
http://bioconductor.org/packages/Biostrings/
http://bioconductor.org/packages/AnnotationForge/
http://bioconductor.org/packages/AnnotationForge/

	Chapter 4: Genomic Annotation Resources in R/Bioconductor
	1 Introduction
	2 Materials
	3 Methods
	3.1 Using the AnnotationHub
	3.2 OrgDb Objects
	3.3 TxDb Objects
	3.4 OrganismDb Objects
	3.5 BSgenome Objects
	3.6 biomaRt
	3.7 Creating Annotation Objects

	4 Notes
	References

