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Introducing Machine Learning Concepts with WEKA

Tony C. Smith and Eibe Frank

Abstract

This chapter presents an introduction to data mining with machine learning. It gives an overview of various
types of machine learning, along with some examples. It explains how to download, install, and run the
WEKA data mining toolkit on a simple data set, then proceeds to explain how one might approach a
bioinformatics problem. Finally, it includes a brief summary of machine learning algorithms for other types
of data mining problems, and provides suggestions about where to find additional information.
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1 Data Mining and Machine Learning

A principal activity of all scientists is trying to make sense of data, and
computers are often the primary means by which that is attempted.
Spreadsheets and statistical packages are widely used tools for
obtaining distributions, variances, and scatter plots, which can
offer some insights; but there are other, much more difficult and
important objectives of data analytics for which these metrics are of
little utility. Biologists, for example, spend a good deal of time and
effort looking for patterns in data that can be converted into an
explanation of some phenomenon observed in nature. That is, the
ultimate goal is to discover new, interesting, and potentially useful
knowledge that furthers understanding of the natural world.

The process is one of first detecting regularities in data, then
formulating some hypothesis as a characterization of those regula-
rities, and finally testing the hypothesis against new data to see how
robust it is. One might call such a process data mining—the search
for valuable nuggets of insight in a slurry of observations. Done
manually, this can be a tiring and frustratingly difficult thing to
achieve; particularly when the amount of data involved is large.
Fortunately, much of the process lends itself to automation, and
computer scientists have devised a great many algorithms that can
rapidly find and characterize patterns in data. Collectively, this type
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of computation is called machine learning, and it is increasingly a
key tool for scientific discovery.

This chapter aims to provide the reader with a quick and
practical introduction to data mining using machine learning soft-
ware. It explains the different types of machine learning, provides
an overview of some of the algorithms available to address these
types of learning, shows how to download, install, and run one of
the more widely used open-source data mining software tools—
namely, WEKA [1]—and takes the reader through some examples
demonstrating how to prepare data and load it into WEKA, how to
run machine learning experiments on that data, and how to inter-
pret the results. In short, by the end of this chapter the reader will
be able to carry out machine learning.

Having said that, it is important to bear in mind that the depth
of discussion here is still necessarily limited because the subject is
very large. Like so many things, learning how to do data mining is
not particularly difficult, but learning how to do it well is quite
another thing. This chapter is thus a kind of crash course and a small
sampler. Along the way, it attempts to alert the reader to some of
the more common pitfalls that arise when carrying out machine
learning experiments, and makes suggestions as to where more
information can be obtained.

1.1 Structured vs.

Unstructured Data

Before explaining howmachine learning works, it is useful to get an
idea of what its objectives are and what it is working with. There are
many kinds of machine learning, and many different algorithms to
choose from depending upon the data available and the goals of the
study. We might start by first differentiating between structured
data and unstructured data.

It is perhaps easiest to think of structured data as the kind of
information one might record in a plain old spreadsheet. Each row
of the spreadsheet is a single datum (i.e., an instance) and each
column is a feature (i.e., or attribute) of the instances, such that
each cell of the spreadsheet holds a value recorded for that feature
for that instance—an attribute-value pair. The nature of the spread-
sheet means that every instance is represented in the same
structured way, even if some cells are empty or irrelevant or wrongly
recorded. In contrast, unstructured data are things like documents
(i.e., texts) or pictures (i.e., images) that have different dimensions,
different formats, or other widely disparate characteristics.

Machine learning algorithms work well on structured data, and
it is frequently the case that unstructured data simply has a structure
imposed upon it prior to the actual learning. For example, a collec-
tion of images might be transformed into some regular set of
attributes such that each image is generalized according to its
colors, textures, shapes, intensities, dimensions, and so forth; and
a collection of documents might see each text converted to
something like a vector of counts for how often each word in the
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complete lexicon of the entire collection occurs in each text.
Unstructured learning is generally less common than structured
learning, and has overhead associated with it that requires a fair
bit of explanation, so its peculiarities are not covered in this chapter.
We focus on learning from data as it may be found in a spreadsheet
or a database table; but we include some examples where unstruc-
tured data (e.g., primary sequence data) is converted into
tabular form.

1.2 Supervised vs.

Unsupervised Learning

Another way to characterize data mining paradigms is to differentiate
between supervised and unsupervised learning. In supervised learning,
the data used for learning are treated as exemplars that have in some
way been annotated with the thing to be learned. In such situations,
the goal is to find a characterization of these examples so that judg-
ments can later be made for new instances. In the simplest case, the
value of one attribute of each example is the thing we want to predict
(i.e., the judgment) and the assumption is that values of the other
attributes allow for that if only the right relationship can be found.
The learning algorithm seeks out a model of the data that supports
such prediction. By learning on a subset of the existing data, we can
test predictive accuracy on the remaining data; hence the learning is
directed by examples provided by an expert and performance is
supervised through evaluation against existing judgments. Whether
or not performance on that test sample is indicative of future perfor-
mance on novel data is an important question, and one we will
address later.

1.3 Prediction:

Classification and

Regression

Supervised learning itself comes in two principal forms: classifica-
tion and regression. If we are trying to predict something that has a
discrete value, it is called classification. For example, we may want
to predict whether the molecular composition of a blood sample
(e.g., mass spectrum data) is or is not indicative of cancer; thus we
have a binary classification problem. Or, we may have a sample of
mitochondrial DNA and we want to predict the genus or species of
the organism from which it most likely came; giving us a potentially
very large number of classes to choose from in a so-called multi-
class problem. And, if it is possible for an instance to belong to
more than one class then we have what is known as a multilabel
classification problem. For all classification problems, the objective
is to accurately associate an instance with one or more labels from a
finite set of alternatives. In comparison, if we are trying to predict a
numeric value then the learning objective is to find some formula
for generating a good estimate of the true value. In this situation,
accuracy is measured by how close the estimate is to the actual value
provided by the expert, rather than whether the predicted value is
precisely right or not. This is regression, and typically requires
different algorithms than those used for classification.
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1.4 Clustering

and Associations

In comparison, unsupervised learning is where we do not know the
right answer ahead of time for any of the data—there is no prior
basis to judge how good our result is. The goal is not to be able to
make judgments that are right or wrong, per se, but simply to find
interesting and useful generalities within the data.

A common form of unsupervised learning is that of clustering—
given a collection of data, separate instances into two or more
groups (clusters) based upon their similarities. Several issues arise
in clustering that greatly affect the output and, consequently, dash
any hope of an objective assessment about success. For one thing, it
is generally not clear how many groups there should be. Should
there be two? Twenty? One for each instance? Is it possible for one
group be a subset of another (i.e., hierarchical), or overlap with
other groups? Can an instance belong to more than one group at
the same time and, if so, can membership be fractional or
probabilistic?

In addition to this, a clustering algorithm must have criteria to
decide whether two things are similar or dissimilar. Should they be
in the same cluster or not? Similarity is not always as obvious as one
would hope. Consider the situation where a child has been given a
bunch of building blocks of all different shapes, sizes, and colors.
One might find, after a time, that the child starts sorting them into
groups; perhaps putting all the cubes together into one group, all
the pyramids in another, all the cones in another, and so forth.
Or maybe the child puts all the big blocks in one group, all the small
ones in another, and all the rest in another. Or one might instead
see the child sort all the blue ones together and all the red ones in
another group, and so on, without regard to shape or size. Or the
blocks may end up being sorted based upon which ones are the
child’s favorites, or which blocks are the newest, or which ones
were played with most recently, or any other criterion that is diffi-
cult to assess objectively by a third party. Similarity is often pretty
subjective, and the measure utilized greatly affects the outcome.

Another kind of unsupervised learning is one where the objec-
tive is simply to discover any interesting correlations within data.
This is called association mining, and a classic example is that of so-
called basket analysis, where supermarkets analyze the contents of
shoppers’ baskets at the checkout to see if the purchase of one item
appears to correlate with the purchase of another; a discovery with
the potential to help target future buyers through careful product
placement. As an example from genomics, one might use associa-
tion mining to look for correlations between genotypes and phe-
notypes, identify codependent genes, or find potentially interesting
variant calls that co-occur.

Similar to clustering, the value of the output for this kind of
unsupervised learning is difficult to assess and often specious or
uninteresting. For example, one might be excited to discover that
the presence of six variants correlates highly with both a specific
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disease and the geographical area where someone lives, suggesting
an inheritable genetic cause for that disease; but, one might be a
little less excited to discover that the same data suggests a very high
correlation between the town where someone lives and their
nationality. Association mining algorithms can find correlations,
but cannot judge their utility.

Clustering and association mining (i.e., unsupervised learning)
are very different from classification and regression (i.e., supervised
learning), and very different from each other, and specific algo-
rithms have been devised to carry out these kinds of data mining
tasks. Moreover, because classification and regression aim to predict
something accurately, we can only use some of our data for learning
and must withhold some for testing the result of that learning; and
there are several important aspects to how one goes about parti-
tioning the data for these two stages (i.e., training and testing).
Unsupervised learning, on the other hand, has no objective mea-
sure of success, and therefore, all the data can be used as input to
the algorithm.

Whatever kind of machine learning you are doing, it is impor-
tant to remember that the algorithms are effectively heuristic. They
rely on principled techniques (usually based upon statistical meth-
ods) to find patterns and express correlations, and they do this very
well; but they cannot assess the true value of what they find. It is the
scientist carrying out the machine learning study that must assess
the quality and utility of the result. Put another way, machines do
learning, but people do data mining.

1.5 Nominal

and Numeric Data

One more important distinction to make relates to types of data.
As mentioned earlier, some attributes have values that are discrete
and chosen from a finite set. We can think of these as labels, or
categories; but more generally we call them nominal. The color of a
car, or the symbolic value of a nucleotide or amino acid in a primary
sequence is an example. Nominal attributes typically only submit to
tests of equality (e.g., “first amino acid in this peptide is Methio-
nine, yes or no?”, “base immediately upstream from this position is
C or G, true or false?”) and other comparisons like “greater than”
or “has a value between X and Y” do not generally make sense.
Values that are numbers can be tested for equality as well, but also
submit to range tests and comparisons involving closeness (e.g.,
“how big is the difference between this value and some other
one?”), while nominal values do not.

The type of a feature can place restrictions on which learning
algorithms can be used, and what operations can be performed on
that feature when formulating a generalization of it. For example,
many algorithms construct a model of the data by considering how
much knowing the value of a particular feature improves the proba-
bility of predicting the class of an instance. This is like the game of 20
questions, where the best question to ask next is the one that you
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think improves your chance of guessing the right answer quickly.
So it is that an algorithm will compute, for each attribute, the
improvement in the probability of guessing the correct result (i.e.,
formally, the information gain) when this feature’s value is known;
then choose the best feature and use it as a test to partition the data
into subsets; repeating the process for each subset until a sequence
of attribute tests ends with a prediction.

For nominal attributes, only tests for equality to one or more of
the observed values are possible. For numeric values, a learning
algorithm must compute some constant against which an observed
value can be compared (e.g., greater-than, less-than) to maximize
information gain and partition the data into subsets. These are
different processes, therefore WEKA needs to know whether it is
dealing with a number or not. There are two other attribute types
available in WEKA (dates and strings, which have their own pecu-
liarities), but the vast majority of data types are typically nominal or
numeric.

2 WEKA: Getting Started

Many machine learning systems exist, but the one we use in this
chapter is theWEKAMachine LearningWorkbench. It is one of the
more popular open-source machine learning toolkits, and contains
a wide range of learning algorithms. It is easily obtained simply by
typing “download WEKA” into a search engine, which will likely
bring up a link to the corresponding SourceForge project site, or to
the University of Waikato (where WEKA was developed), which
itself will take you to the SourceForge site. At the time of writing,
the latest stable version is WEKA 3.6.12, but any version close to
this will be sufficiently similar. You will want to select the version of
WEKA that corresponds to your operating system (Windows x86
or 64 bit platforms, Mac or Linux).

WEKA is written entirely in Java, which means it can run on any
computer that has a Java virtual machine (JVM) installed. If you are
not sure whether your machine has a JVM, you can simply down-
load the version of WEKA that includes Java VM 1.7 and when you
go to install it your machine will tell you if you already have it and
ask if you want to replace or update your JVM. A virtual machine is
a piece of software that pretends to be a specific computer architec-
ture that runs code specifically written for it (in this case, Java) so
that such code can run on any machine with the corresponding
virtual machine without having to recompile the code or fiddle with
compatibility issues. It is what makes this kind of code very portable
and easy to install and run.

Once downloaded, click on the downloaded file to start the
install wizard that will guide you through the installation process.
You will need about 65 MBytes of disk space, and the installation
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should be very quick. Once completed, if you have installed every-
thing correctly and launched WEKA, you should get a startup
window that looks like the one in Fig. 1. Do not worry if the size
or layout is a little different, or if the typeface is not quite the same,
as sometimes individual preferences on a machine will affect how
the JVM displays things. The important thing is that you are look-
ing at the same set of options.

For this tutorial, we will use the Explorer, which is the most
straightforward way to use WEKA interactively. The Experimenter is
a way to set up a series of machine learning experiments so that they
can be saved and repeated in the future;KnowledgeFlow offers a drag-
and-drop interface to set up a machine learning experiment by piec-
ing together data sources, learning algorithms, training and test
procedures and so forth with corresponding icons linked with arrows
(which some people prefer); and the Simple CLI is a way to invoke
parts of WEKA with type-written commands as one might do if
setting up machine learning as part of a process pipe (e.g., where
the input comes froma runningprocess, or the output is requiredby a
subsequent program). That is to say, WEKA is not just a stand-alone
application, but has a complete API that allows it to be incorporated
into other software systems using just those bits that are needed—
either as a serial or concurrent thread, or by importing the classes of
WEKA into another Java program. Unless you are a programmer
yourself, this might notmake a lot of sense, and is anyway beyond the
scope of this chapter. To learn more about it, simply type “WEKA
SimpleCLI” into your favorite search engine andmany useful links to
explanations and tutorials are easily obtained.

2.1 Loading Data If all has gone well, clicking on the Explorer option (so named
because it is a way to go exploring with WEKA) will produce a new
window similar to the one pictured in Fig. 2. Note the six tabs

Fig. 1 Start screen for WEKA
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along the top, and you will see that you are in the Preprocess area.
This is where interactive data mining begins. It is where you load
data, examine it, perhaps modify it (more on that later) or other-
wise get your data ready for input into a learning scheme.
As suggested by the buttons along the top of the Preprocess win-
dow, data can be obtained from a file on your machine, or from a
website via a URL, or it can be pulled out of a database if you are
familiar with SQL, and you can even generate artificial data if you
just want to experiment with the learning procedures more gener-
ally. We are only concerned here with loading data from a file, and
the WEKA download actually includes a couple of dozen sample
data files to experiment with.

Depending upon how search paths are set on your own
machine, clicking on the Open file . . . option should take you
directly to the WEKA folder (i.e., directory) where the sample
data, documentation and log folders are located; or you may have
to traverse your directory structure to get there (for example, on a
Windows machine, you would likely go to C:\Program Files (x86)
\Weka-3-6 to find the data folder).

Use the “Open file . . .” option to load the sample data file called
“weather.numeric”, and your WEKA window should end up

Fig. 2 Start screen for the WEKA Explorer
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looking like the one in Fig. 3. This data is contrived for demonstra-
tion purposes, supposedly recording weather conditions for 14
different days upon which some fictitious outdoor sport was either
played or not played. The learning objective is to find a generaliza-
tion of these past examples that helps decide if this game should be
played on some future occasion given the prevailing conditions.

On the left side of the screen is information about the number
of instances (i.e., examples) loaded from the file, how many attri-
butes each instance has, and a checkbox list of those attributes. On
the right hand side is some information about the specific attribute
selected (i.e., highlighted) on the left, in this case the “outlook”
attribute, and it includes information about its type (either nominal
or numeric), how many distinct values for this attribute have been
found in the data, what percentage of the instances are missing the
value for this feature, and what percentage of the values only occur
once (i.e., are unique). Below that is a table that lists the values
observed for this feature and their frequencies (or, when a numeric
attribute is selected, you will see the maximum andminimum values
found for this attribute, and the mean and standard deviation),
and below that is a colored bar chart showing the distribution
for those values. Rolling the mouse over each bar brings up the

Fig. 3 After loading the weather.numeric sample data
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corresponding value (or, for numeric attributes, a range is shown).
What are the colors in the bar chart? WEKA assumes that the user
will likely be performing classification (although this is easily
changed) and therefore one of the attributes on the left must be
the target judgment; which WEKA further assumes is the last
attributes (although this can be changed with the pulldown menu
“Class:” just above the bar graph), which in this case is the nominal
attribute called “play”. If you select the “play” attribute on the left
side of the panel (by clicking on the label) then you will see it only
has two values: yes and no. These are given the colors blue and red,
respectively (and these colors can be changed if you do not like the
default scheme). Going back to the bar chart for outlook you can see
that two of the bars are both red and blue while the third is all blue.
This gives a quick perspective of how the target classes are
distributed with respect to each of the attribute-value pairs. Right
away we can see that if the outlook is overcast then the game has
always been played in the past, but we may need to consider some
other attribute when the outlook is sunny or rainy.

2.2 Preprocessing

Data

Looking back to the left panel, under the “Attributes” label, you
can see four buttons labeled “All”, “None”, “Invert”, and
“Pattern”. These allow you to easily select subsets of attributes.
There are many reasons why we might not want to keep all attri-
butes for learning. Some may contain duplicate information of
others (e.g., the windy attribute here is either true or false, so if
we happened to also have a “not windy” attribute with the comple-
ment value then one of these two attributes could and should be
tossed out as redundant), or some attributes may have too many
missing values, or be too tightly related to the concept being
learned to be of general use (e.g., if each instance had a unique
identification code as an attribute, then knowing that code would
let us perfectly predict the class simply by looking it up, but if a
future instance has its own unique code then no generalization of
this attribute would be useful for prediction). On the left side, you
can use the checkboxes to select attributes, and the Remove button
at the bottom allows you to delete them from consideration in
subsequent learning. The buttons above the list of attributes are
shortcuts to quickly select “All” attributes, “None” of the attri-
butes, “Invert” your selection, or use a regular expression pattern
to select a subset. These come in handy when a large number of
attributes are being manipulated. For example, if you wanted to see
what could be learned from just a few attributes in a data set that
included hundreds of features, it is much easier to select the few you
want to keep, invert your selection and then hitRemove than it is to
select one-by-one the hundreds of attributes you do not want. Note
that anything we do to the data on this panel does not affect the
original data file, and we can repeal any operation with the Undo
button (near the top). If we like the changes we’ve made and want
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to keep them, we can always save them in a new file using the Save
button, and we can also Edit individual values in the data, say, if we
want to correct an error or fill in a missing value.

Near the top of the window, just below the top row of buttons,
you can see a “Filter” section with a “Choose” button on one side
and an “Apply” button on the other. This is where you can select
from a very large number of filters that can transform data in a
myriad of ways prior to learning. For example, you might want to
take a nominal attribute whose value can be one of three possible
labels and turn it into three new binary attributes that test each
value individually instead. That is, if one attribute can have the value
“A” or “B” or “C”, we could turn it into three binary attributes
called “Is A”, “Is B”, and “Is C” where one of these has the value
“true” and the others “false” to reflect the original multi-valued
attribute. This can occasionally be useful because it helps some
learning algorithms search for characterizations more effectively.

Another common filter is to transform a numeric continuous
valued attribute into a discrete valued one by binning values into a
small number of categories defined by ranges. Many learning algo-
rithms do this themselves, but do so heuristically and it may be the
case that you know something about the data that would allow for
better discretization, and this filter can be set up to do a better job
of binning values prior to learning. In another situation, you might
want to add a numeric feature that is the product or sum of two
other numeric features (something that most learning algorithms
do not do on their own because the possible combinations that
could be tested are large), and this can be done with a filter. Indeed,
just about anything you can think you might want to do, there is
likely a filter for it in WEKA. Filtering can be extremely useful, but
too complex to discuss in more detail in this chapter. Let us move
on and get WEKA to learn something from the data we have
loaded.

2.3 Choosing a

Classifier

Predicting whether or not to play this game is a binary classification
problem. Once we have prepared our data for learning, we select
the Classify tab to move to the training and testing area. After
selecting this tab you should see something similar to (but not
exactly the same as) the screenshot shown in Fig. 4. There are
two principal decisions to be made here that will most greatly affect
the outcome of our machine learning experiment: what classifier to
use, and what kind of testing to do for evaluation. The default
classifier is ZeroR; also known as a majority classifier because it
simply predicts the most frequent class found in the training
data—which is often a good thing to check because if 90 % of
your data belongs to one class and your machine learning experi-
ment only gets 10 % wrong during testing, then you have not
necessarily learned anything interesting because you are not doing
any better than you would predicting the majority class.
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For our first experiment, we want to use one of the most
commonly used decision tree learners: J48 (an open-source version
of Ross Quinlan’s C4.5 algorithm [2]). Decision trees are easy to
build and easy to use. They represent a simple top-down decision
procedure, where one simply tests some condition first and, based
on the result of that test, chooses another condition to test after
that, and so on until you hit the end of a sequence of questions
where a decision (i.e., judgment, or prediction) is finally made. It is
a kind of expert system.

To choose the J48 classifier you click on the Choose button
which brings up an expandable directory of classifiers. There are
well over a hundred algorithms to choose from in WEKA, and they
are organized according to the type of output they produce, the
type of input they expect, and the type of decision process used to
build the model. Some algorithms will be grayed out because they
are not available for the kind of input you have prepared. For
example, some algorithms cannot handle numeric input, and
some produce a numeric prediction instead of a class label. J48
produces a tree, so it can be found under the tree subdirectory.
Once selected it should appear in the classifier text box as shown in
Fig. 4, along with a couple of default parameter settings (i.e., �C

Fig. 4 Ready to learn with J48 and a 2:1 training-test split
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0.25 �M 2, which set the confidence and minimum support
required by the algorithm when building the tree). Almost every
algorithm has parameters that can be altered to fine-tune or guide
its behavior, and these can be accessed simply by clicking on the
textbox where the current parameters are displayed. We have to
stick with default parameters in this chapter, which are often satis-
factory anyway.

2.4 Training

and Testing

The next decision we have to make is how we are going to test the
final model. You can see a list of Test options just underneath where
you select the classifier, and the options are Use training set, Sup-
plied test set, Cross-validation, and Percentage split.

Obviously, the learner needs examples to learn from. This is the
training set. To assess performance of the final model, there needs
to be some data that we can make predictions for and then compare
those predictions against what is known for these data. This is the
test set. If we use all of our data to train up a model, and then use
the same data for testing, then we run the risk of over-estimating
the value of the model because it has seen the test data during
training. For example, if the model managed to memorize every
training instance then it may likely get 100 % accuracy when testing
on that same data. If the model has any generalization to it, then it
may get a few wrong, but either way there are likely to be fewer
surprises than if the test data had not been seen during learning.
The result obtained by using the training data as test data gives rise
to a thing called resubstitution error, and is often unjustifiably
optimistic for predicting performance of the model on future
novel data.

Another option is to have a completely separate test set stored
in a separate file that is supplied only during testing. This is useful
when the test data might be completely different than the training
data in some fundamental way. For example, if one were trying to
predict something about gram-negative bacteria based solely upon
what is observed in gram-positive bacteria, the gram-positive train-
ing data could be loaded into WEKA at the outset to build the
classifier, then the gram-negative data could be loaded from a
separate file for testing; eliminating any risk the learner had a
sneak peek.

Most often, we have one set of data and we must partition it
into training and test sets. One way is to simply use a percentage
split, using (say) 67 % of the data for training and test on the
remaining 33 %. What percentage split to use is hard to generalize.
The more data seen for training the better the chance of the learner
finding a valid characterization for making predictions. On the
other hand, the more data we have for testing, the more likely
our success rate reflects the true virtue of the inferred model.
Ideally we want an abundance of both training and test data, but
in practice we just have whatever data we have.
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A good way to make the most of our data is use all our data for
training and all our data for testing, but not at the same time (as
resubstitution error would ensue). To do this, we divide our data
into a number of equal-sized subsets, called folds. For each fold, we
remove it from the training set, build a model on the other folds
and then test on the withheld portion. If we have k folds, then this is
called k-fold cross-validation. That is, if k is 5 then we have fivefold
cross-validation. We would withhold the first fold, train on the
remaining four, then test on the first (which has not been seen by
the learner). Next, we put the first fold back into the training set
but take out the second fold and repeat training and testing. This is
done once for each of the five folds, such that the test results are
always for data not seen by the learner, and all the data is used for
testing.

Cross-validation is widely regarded as the most reliable way to
judge the results frommachine learning when data are all in one set.
How many folds should be used? Again, this is difficult to general-
ize. If too few folds are used then we may deprive the learner of
enough data to build a good model. The maximum number of
folds we can have would put one datum in each fold—so-called
leave-one-out cross-validation (LOOCV)—and performance from
this type of testing is on average closest to the true level of perfor-
mance we can expect from the model on novel data. However, since
each fold requires building a new model and evaluating with a new
test set, too many folds with a large data set could take far too long
to complete in a practical amount of time. A good compromise is to
find a tractable value for k, then repeat k-fold cross-validation some
number of times using different folds on each iteration, then aver-
age the results.

One final note about cross-validation: care should be taken to
make sure that the distribution of classes in the test set is the same as
in the training set. Imagine, for example, if 80 % of our data was in
one class and 20 % in the other in a two-class problem. If we do
fivefold cross-validation and all 20 % that comprise the minority
class happen to end up in one fold then the learner would not have a
chance to infer what differentiates the two classes. Keeping class
distributions the same in training and test data is called stratifica-
tion, and WEKA seeks to do this automatically. In a multi-class
problem, however, if one class has very few exemplars then it may
not be possible to maintain stratification if too many folds are used.

2.5 Running the

Experiment

The weather data we loaded for this sample experiment has only 14
instances, so we set the test option to threefold cross-validation.
Having chosen J48 (with default parameters) as our classifier, we
can start the training and test phases in WEKA simply by pressing
the START button in the middle of the left panel. For such a small
data set, WEKA will complete these phases in the twinkling of an
eye. For much larger and/or more complex data sets it could take a
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lot longer. You can see if WEKA is still working because the icon of
the bird in the bottom right corner (a picture of an actual Weka)
will be in motion. If we notice progress going too slowly to com-
plete in the time we have, we can simply interrupt it by hitting the
STOP button, then rejig our parameters (or data) to try and make
things tractable.

In this example experiment, WEKA completes in an instant and
your display should look pretty much like the one shown in Fig. 5.
The text window on the right side is now filled with details about
the set-up of the experiment and the results from testing. At the top
is a record of the classifier used and the parameter settings, some
information about the data set, and the training and test procedure.
Under that is a textual representation of the J48 tree. This is a bit
obscure for people who are not computer scientists, but the basic
method of interpretation is that each level of indentation (indicated
by a vertical bar character) represents dropping a level in the tree.
The decision criterion for the top level of the decision tree is flush
to the left, and in this case it tests the “outlook” attribute. If the
outlook is sunny, then evaluation proceeds down one level (indi-
cated by one vertical bar) to test if humidity is greater or less than
75. If greater, then instead of dropping another level and testing

Fig. 5 Output after training and testing on weather data
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another attribute, the colon after the test shows the decision that is
made at this point—in this case, “no” . . . do not play. The number
(s) that appear in parentheses after the prediction reflect the num-
ber of instances that reached this point in the decision tree (and a
second number here would state how many errors were made by
this prediction). If the outlook is overcast then the decision of “yes”
is made without any further tests (just as the distribution graph
under the Preprocess tab showed), and if outlook is rainy then the
windy attribute is also tested before a prediction is made.

This way of presenting a decision tree is pretty cryptic, but
WEKA allows you to see a nice graphic version of the tree as well.
On the bottom left of this window is the Result list. For each
experiment you run, a new item will be added to this list. You can
revisit the result of any experiment run during a session simply by
clicking on the one you want to see. If you right-click on an
experiment in this list, some other options appear for visualizing
the results. To see an actual decision tree for this experiment, right-
click on the experiment and select Visualize tree and a separate
window will pop up with a picture similar to the one shown in
Fig. 6.

For many (if not most) data sets for real world problems, the
sheer size and complexity of the decision tree is too much to display
in a window. WEKA will try anyway, and the result might be a very
confused display as it tries to fit everything in. Right-clicking on the
visualization window provides some re-display options that some-
times help.

Fig. 6 The decision tree for the experiment from Fig. 5
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2.6 Understanding

the Results

Apart from a textual representation of the decision tree, the Classi-
fier output area contains a number of performance statistics for the
learning algorithm, all computed from the test sets used in the
evaluation process. Note that the model that is shown—in this
case, a decision tree—is built from the entire dataset loaded into
the Preprocess panel. Thus, this model itself is not involved in the
evaluation process at all (unless evaluation is performed on the
training set or a separate test set). Rather, models built from subsets
of the full data are used to establish values for the performance
metrics. In a k-fold cross-validation, these metrics are aggregated
across k test sets, which are used to evaluate kmodels built from the
corresponding training (sub)sets.

Considering the values of the performance metrics, we can see
that five instances in the data are misclassified in the cross-validation
process. At the bottom of the output, in the Summary section, we
can see how these errors are distributed across classes, in the so-
called “confusion matrix”. One instance has been incorrectly clas-
sified as class no, and four instances have been incorrectly classified
as class yes. It is often useful to consider how the classifier compares
to a random predictor that assigns instances randomly to classes
(maintaining the same column totals in the confusion matrix). The
kappa statistic, also shown in the Summary section, measures
exactly this. A value of zero means that the classifier does not
improve on the random straw man, which means that it has not
learned anything useful from the data. One is the best possible
value; it is achieved when all test instances are classified correctly.

WEKA also outputs error statistics, such as the squared error
and the absolute error. These are the primary metrics for evaluating
regression methods. In classification problems such as the example
considered here, they measure the accuracy of the class probability
estimates produced by the classifier. (Most algorithms inWEKA can
produce a probability estimate for each class value when making a
classification, and it can be useful to consider how accurate these
probability estimates are.) WEKA also shows the relative absolute
error and the root relative squared error. To compute the former,
the mean absolute error of the classifier is divided by the mean
absolute error obtained when simply predicting class probabilities
based on the class frequencies in the training data, without consid-
ering any of the non-class attributes. The computation for the root
relative squared error is performed analogously. These relative
errors are expressed as percentages. Values close to 100 % mean
that the classifier has not learned anything useful from the data.

The output area also shows a table of per-class performance
statistics, with one row per class value. The corresponding target
class for each row is called the “positive” class; all other classes are
considered “negative”. There is the TP Rate (true positive rate),
which is the number of instances correctly assigned to the positive
class, divided by the number of positive instances in the data; the FP
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Rate (false positive rate), which is the number of negative instances
incorrectly assigned to the positive class, divided by the number of
negative instances; Precision, which is the number of instances
correctly assigned to the positive class, divided by the total number
of instances assigned to the positive class; and Recall, which is the
same as TP Rate. The F-Measure is the harmonic mean of Precision
and Recall. The last column contains the area under the ROC
curve, an estimate of the probability that the classifier ranks a
randomly chosen positive instances above a randomly chosen nega-
tive one, assuming its class probability estimates for the positive
class are used for ranking. If the ROC Area is one, all positive
instances are ranked above all negative ones—the ideal outcome—
if it is zero, the classifier does not improve on randomly shuffling
the data.

We have discussed the classification case here.When a regression
method is evaluated, the same error statistics are output in the
Classifier output area. Additionally, WEKA outputs Pearson’s corre-
lation coefficient, measuring the correlation between the predicted
values and the actual values.

3 Approaching a Bioinformatics Problem

There are about as many bioinformatics problems as there are
biologists, but a sizeable number start with primary sequence
data. One class of problems has to do with characterizing some
site in a set of sequences, such as glycosylation points [3] or inhibi-
tor binding sites [4, 5]. For this example, we address the problem of
identifying the cleavage point of the signal peptide.

Often, sequence data is obtained from a database in a FASTA
format (or similar text-based form), such as the sample of three
signal peptide cleavage records shown in Fig. 7. Each record has
three lines where the first includes a description of the example
sequence, the second is the primary sequence itself showing the
complete signal peptide at the beginning of the nascent protein
along with the first 30 residues of the mature protein, and the third
line is a character-mask mapping one-to-one with the preceding
primary sequence using the letter S to indicate the corresponding
residue above is part of the signal peptide, M indicates a residue in
the mature protein and C marks the cleavage site as the first residue
of the mature protein. The problem is stated in this way: given a
new sequence, identify the cleavage site. But, before we can begin
mining this data, we must transform it into a format amenable as
input to a learning algorithm, such as the spreadsheet form dis-
cussed earlier, where each row is an instance and each column is an
attribute, one of which is the attribute to be predicted. We assume
only the sequence itself will be available when predicting the cleav-
age point in a future novel instance.
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If we assume there are some physicochemical properties of the
nascent protein that determine the cleavage point, then our goal is
to use machine learning to find a characterization of those proper-
ties from known examples. Well, really our goal might be simply to
predict the cleavage site of a new protein accurately; but, we might
instead be more interested in the characterization itself (i.e., the
model) as it may lead to understanding and new knowledge about
the cleavage process. These are two different aspirations and typi-
cally suggest we might use different learning algorithms based on
what we want at the end. For output with explanatory power, we
might want a decision tree like the one in Fig. 6 as they are easy to
understand. If we are more interested in predictive accuracy, a
support vector machine or random forest is typically a better choice
because they do not need to make a decision based on a linear
sequence of tests; however, the models they produce are often
difficult to interpret and thus not useful as “knowledge”.

The next choice we have to make before we prepare the data for
learning is how to frame the learning objective as an attribute of
each instance. In the case of this cleavage problem, we could try to
predict the length of the peptide, and therefore each instance is one
complete sequence. This requires a learning algorithm that is capa-
ble of predicting a number from properties embodied in an entire
sequence. One reason we might not take this approach is that, as
mentioned earlier, numeric prediction algorithms tend to seek an
estimate with a small error margin and do not often produce exactly
the right value. Their performance is evaluated in terms of that
margin of error. We need to be right or wrong, not close enough,
here.

Another way to view the problem—one that is probably more
useful—is to predict whether or not a given residue is the first of the
mature protein, which is a binary classification problem. In this
case, each instance is one residue at a given point in the sequence.

50 11S3_HELAN     20 11S GLOBULIN SEED STORAGE PROTEIN G3 PRECURSOR
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEALEPIEVIQAEA
SSSSSSSSSSSSSSSSSSSSCMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

51 11SB_CUCMA     21 11S GLOBULIN BETA SUBUNIT PRECURSOR.
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVWQQHRYQSPRACRLE
SSSSSSSSSSSSSSSSSSSSSCMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

54 1B39_HUMAN     24 HLA CLASS I HISTOCOMPATIBILITY ANTIGEN, BW-42 B*4201 ALP
MLVMAPRTVLLLLSAALALTETWAGSHSMRYFYTSVSRPGRGEPRFISVGYVDD
SSSSSSSSSSSSSSSSSSSSSSSSCMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
...

Fig. 7 Signal peptide cleavage data

Introduction to Machine Learning 371



Having framed the objective, we now must generate a set of
features to describe each instance. If we pursue the binary classifi-
cation approach then we want to characterize each residue with
attributes that we think are relevant to whether or not it marks the
cleavage point. If we have no idea what properties might be relevant
then we may start naively using whatever we can think of. For
example, if we suspect that the residues on either side of the
cleavage point play a critical role, then we might simply create
(say) six features that record the residue at each of the three posi-
tions upstream and downstream from the cleavage site. As it hap-
pens, distributional analysis of residue frequency in known peptide
data shows alanine and serine are commonly found in the �1 and
�3 positions (i.e., one and three residues upstream of the cleavage
site), and a couple of other residues are also unusually frequent at
these positions, so some traction might be gained from these
features. However, given 20 possible residues at each of these six
positions, there are 206 combinations of values that could be seen,
times two for the class attribute (i.e., YES or NO, this is a cleavage
site), or 128 million possible instances in a comprehensive data set.
In practice, one would be lucky to have a couple of thousand
instances to learn from, presenting potential for a data sparseness
problem, where so many combinations are not seen by the learner
that it is almost trivial to find some characterization that is pretty
accurate simply because there are no instances to disprove it. This is
not to say that such a characterization is necessarily wrong. If the
data we possess happens to contain the necessary information for
inferring a correct generalization of the underlying principle, it is
said to be a “characteristic set”. The problem is that when data
sparseness exists it is virtually impossible to tell whether an accurate
model is correct or just lucky.

Biologists typically know something about the data that has a
reasonable chance of factoring into a good generalization, and this
is a good basis for formulating a set of features. For example, it is
known that signal peptides are pretty short, having an average
length of about 23 residues. Thus it might be useful to have a
feature that records how far the residue in question is from the
start of the nascent protein; but, this too might yield too many
numeric values to generalize easily. Given that the vast majority of
signal peptide lengths are within six or seven of the mean, it may be
more fruitful to have a binary feature that simply records if the
residue in question lies within this range; or, one might record how
many standard deviations from the mean it is, thus reducing the
range of possible values and mitigating possible sparseness.

Rather than using specific amino acid labels as feature values,
one could reduce the combinatoric explosion by recording more
general physicochemical properties for them. This is also helpful
because the hypothesis we seek from the data mining process is one
that generalizes according to such properties anyway. Moreover,
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existing research about signal peptides has identified a number of
regularities based on such properties. For example, the region of
about six residues upstream of the cleavage site is generally not very
hydrophobic, while the region of about eight residues upstream of
that is typically quite hydrophobic. Thus we might have two binary
features, one for each of these regions, whose value is “true” if the
region is hydrophobic or “false” if it is not. Or each could be a
numeric attribute quantifying just how hydrophobic a region is.

Once a set of features has been devised to describe each
instance in our dataset, there is the challenge of actually producing
them. Functions and macros in spreadsheets can often do the job,
or any programming language will suffice; but obviously some
modicum of computer programming skill is required. Sometimes
the best solution for a biologist is just to make friends with a good
computer scientist.

One more issue needs to be addressed, however, before we can
proceed to computing the final data set. Successful learning needs
not only positive instances of the concept to be learned, but nega-
tive ones as well, in order to eliminate overly general models like
“predict every residue marks the cleavage site”, which will be 100 %
accurate on our data. If negative instances are available, then great.
But many biological studies end up with just samples of the thing
demonstrating the characteristic of interest.

In the signal peptide problem, negative instances are simply
every other residue in our sequences that does not mark the start of
a mature protein. Given the lengths of the sample sequences, this
gives us about 75 times as many negative instances as positive ones.
If we give them all to the learning algorithm there is a good chance
that it will have a difficult time inferring a model that does better
than simply predicting the majority class (i.e., predict that every
residue is NOT at the cleavage site and the prediction is wrong only
1 in 75 times). In a binary classification problem, it is generally
good to have the same number of positive and negative instances.

In this specific case, we might want to create negative instances
by choosing residues near the cleavage point so that the properties
are similar to positive instances, forcing the learner to find a dis-
criminating model. It is probably also a good idea to generate
several samples of negative data and run the machine learning
experiment with each to avoid putting too much stock in an out-
come that only works well serendipitously for the particular sample
of negative instances we selected.

Once all features have been generated for all the data, it can be
saved in a comma-separated-values (CSV) file and this can be
loaded directly into WEKA. When WEKA imports a CSV file, it
assumes the first line of input is a list of feature names/labels (which
is typically the case for a CSV file saved from a spreadsheet) that it
uses to name each attribute in the “Preprocess” window and in the
resulting output after learning. The rest of the lines are taken to be
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instances. Recall, however, that it is important to differentiate
between nominal and numeric features. When reading a CSV file,
WEKA attempts to parse every value as numeric, and if this suc-
ceeds for every value associated with a feature then that feature is
assumed to be numeric, otherwise it is assumed to be nominal.
There are many situations where this assumption can fail, such as
when one feature-value that is supposed to be numeric has a stray
character that prevents it from being parsed as a number, then the
whole set of numbers associated with that feature are treated as
nominal labels. Another situation is when a numeric value is not
really being used as a number and is better treated as being nomi-
nal, as with an identification code. To solve the first problem, you’re
best to go back to the procedure that generated the data and fix the
error. For the second type of problem,WEKA needs to be informed
that what looks like a numeric attribute is actually a nominal one.
WEKA’s native file format for data is the AARF format, which is
very similar to a CSV file but has some header information specify-
ing types and ranges of data (and some other things). If loading a
CSV file leads WEKA to misinterpret data types then a quick way to
fix this is to save the data (using the “Save” button on the “Prepro-
cess” tab) which generates an ARFF version that you can then edit
directly to change type information.

4 Other Kinds of Learning

WEKA provides a uniform user interface to a large number of
machine learning algorithms. This is useful because it is often
difficult to determine a priori which algorithm is most suitable for
a particular dataset and will produce the highest accuracy or most
pertinent patterns. Decision tree learning is attractive because trees
can be grown very quickly, even for large datasets, and may provide
valuable insights. A closely related approach is to learn classification
rules [6]: sets of simple if-then rules that describe the conditions
(i.e., attribute-value combinations) under which a certain classifica-
tion is to be made. Rule sets can be learned almost as quickly as
decision trees but may provide a more compact representation of
the salient relationships in the data. In WEKA, algorithms of this
type can be found in the “rules” package, just as tree learners can be
found in the “trees” package.

Trees and rules are not the only models that are intelligible and,
thus, potentially able to provide useful insights. Another option is
to learn a graphical model of the probability distribution underly-
ing the data. A Bayesian network (or belief network) is a type of
graphical model in the form of a directed graph [7]. Each node in
this graph corresponds to an attribute in the data and directed
edges connecting these nodes encode statistical dependencies
between the attributes. Cycles are not allowed in this graph.
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If there is a directed edge from node A to node B, node A is called a
“parent” of node B. Each node has a conditional probability distri-
bution attached to it that gives the probability of each of the node’s
attribute values given those of its parent nodes. Learning a Bayesian
network amounts to determining suitable parent nodes for each
node and estimating a conditional probability distribution based on
the chosen parents. With nominal data, estimating the latter is as
simple as counting how often a particular attribute value occurs for
each combination of values of the parent nodes. The trickier part is
to determine appropriate connections between nodes; various
search methods are employed for this. The goal is to find an
accurate model with as few edges as possible because experience
has shown that simpler networks are more likely to reflect causal
relationships between attributes in the data.

Bayesian networks can be used for supervised learning as well as
for unsupervised learning. WEKA employs them for the former
task, where they are used to estimate probabilities for the class
attribute. A particularly simple form of Bayesian network is the
naive Bayes model [8], which has a predetermined structure and
only requires estimation of conditional probabilities. In this model,
each attribute, excluding the class attribute, has exactly one parent,
namely the class attribute. This corresponds to the assumption that
the values of the other attributes are statistically independent given
a particular value for the class attribute (i.e., considering the data
for a particular class, knowing the value for one attribute does not
give us any information regarding the values of other attributes).
Learning a naive Bayes model is thus extremely fast. Moreover, in
spite of its simplicity, it often yields accurate classifications, making
it a very popular choice amongst practitioners. General Bayesian
networks, as well as naive Bayes, are available in the “bayes” package
for WEKA.

The above techniques can provide valuable insight, but in some
applications the goal is to simply maximize predictive accuracy on
new data. In this case, learning algorithms from WEKA’s “func-
tions” package are worth investigating. This package provides algo-
rithms for learning basic linear models, such as linear regression and
logistic regression, but also contains several more sophisticated
methods. Two very prominent models implemented in this pack-
age, which often yield high accuracy, are support vector machines
[9] and multilayer perceptrons [10]. Both are models that can be
expressed as standard mathematical functions. Given an input
instance, they produce an output by applying a sequence of mathe-
matical operations. In the regression case, this output can be
directly used as the prediction; in the classification case, it needs
to be compared to a threshold to determine what the classification
should be. A multilayer perceptron is a type of artificial neural
network, where the component functions—the nodes of the
network—mimic the behavior of neurons in the brain. The number
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of nodes in the network, their arrangement into layers, and the
connections between them, are predefined by the user. Learning
the network amounts to determining appropriate parameter values
for the component functions. This is done by applying a gradient-
based optimization technique to minimize the error on the training
data, starting with randomly chosen parameter values.

A conceptual drawback of multilayer perceptrons is that the
final model found using gradient-based optimization depends on
the initial parameter values because the error function contains
local minima. Support vector machines are theoretically appealing
because their optimization process converges to a unique solution.
Just like multilayer perceptrons, they can be used to represent
nonlinear relationships in the data. This is possible because the
model can be expressed in terms of dot products between instances.
The training instances that form part of the solution expressed in
this way are called the “support vectors”. Support vector machines
are able to model nonlinear relationships by replacing the simple
dot product with a so-called “kernel function.” A kernel function
implicitly maps the instances into a higher-dimensional space and
then takes the dot product in this space, yielding nonlinear behavior
in the original instance space. It is best to think of kernel functions
as similarity functions with this particular property. Different kernel
functions exist and can be plugged in when configuring the
learning algorithm in WEKA. A popular kernel function that
often works well is the Gaussian radial basis function kernel.

The idea of using similarity functions, or distance functions, for
machine learning has been around much longer than support vec-
tor machines. One of the oldest machine learning methods is the
nearest neighbor classifier [11]. The basic version simply stores the
training data; to make a prediction for a test instance, it simply finds
the most similar training instance and predicts its class value. This
can be mademore robust by combining class values from the kmost
similar instances, yielding the k nearest neighbor classifier. Because
the basic version of this method simply stores the training data and
only does serious computation when predictions are to be made, it
is called a “lazy” learning method. Implementations of this
method, and closely related methods, are to be found in WEKA’s
“lazy” package. WEKA supports various distance functions to mea-
sure similarity and also provides advanced data structures such as
KD trees [12] to speed up the search for the nearest neighbor.
A drawback of all lazy learning methods is that they do not generate
a model that provides insight into the data.

The biggest variety of supervised learning algorithms is located
in WEKA’s “meta” package. It contains algorithms that wrap
around user-specified base learners, which are themselves super-
vised learning algorithms. For example, it contains algorithms for
bagging [13], boosting [14], and randomization [15] that all
generate a so-called “ensemble” classifier by repeatedly invoking a
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base learner, e.g., a decision tree learner. The resulting ensemble
classifier is often significantly more accurate than the base learner by
itself. However, any kind of interpretability will be lost.

Apart from ensemble classifiers, the meta package also provides
several useful wrappers for tasks such as performing cost-sensitive
learning, combining multiple different learning algorithms by a
simple voting process or a more powerful “stacking” approach
[16]—where the process of combining their predictions is phrased
as another learning problem—and performing attribute selection
prior to learning. Cost-sensitive learning is useful in practice when
different types of classification errors incur different costs. This can
be accommodated by adapting the model itself [17], or its predic-
tions [18]. Attribute selection [19] is useful when the data contains
a large number of attributes and only a small subset is likely to be of
predictive value.

The vast majority of algorithms in WEKA perform supervised
learning (i.e., classification or regression), but the workbench also
contains algorithms for clustering and association rule mining
(performed interactively in WEKA by selecting the appropriate
tab at the top of the window). Classical algorithms for clustering
are k-means [20], which yields a flat set of clusters represented by
cluster centroids, and hierarchical clustering [21], which yields a
dendrogram of clusters that can be displayed graphically. A proba-
bilistic alternative to k-means is to fit a Gaussian mixture model to
the data [22], where each Gaussian represents a cluster. The seminal
Apriori algorithm for association rule mining [23] is also available
in WEKA, with several other, more recent, algorithms for mining
such rules efficiently by applying sophisticated data structures to
speed up the search for frequent patterns in the data.

5 Concluding Remarks

Biological research yields tremendous amounts of data; machine
learning provides tools that can help to make sense of this data and
turn it into actionable models. The content of this chapter provides
a brief, high-level introduction to basic concepts and algorithms in
machine learning, using the WEKA workbench to illustrate how
these can be applied. WEKA makes it relatively easy to enter the
world of machine learning because it provides graphical user inter-
faces that do not require any scripting or serious programming.
Readers who do not mind getting their hands dirty by writing
scripts may also want to take a look at machine learning libraries
for the statistical computing environment R [24] or the scikit-learn
library for the programming language Python [25]. Just like
WEKA, they come with extensive documentation.
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