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Abstract

High-throughput sequencing technologies have made it possible for biologists to generate genome-wide
profiles of chromatin features at the nucleotide resolution. Enzymes such as nucleases or transposes have
been instrumental as a chromatin-probing agent due to their ability to target accessible chromatin for
cleavage or insertion. On the scale of a few hundred base pairs, preferential action of the nuclear enzymes on
accessible chromatin allows mapping of cell state-specific accessibility in vivo. Such accessible regions
contain functionally important regulatory sites, including promoters and enhancers, which undergo active
remodeling for cells adapting in a dynamic environment. DNase-seq and the more recent ATAC-seq are two
assays that are gaining popularity. Deep sequencing of DNA libraries from these assays, termed genomic
footprinting, has been proposed to enable the comprehensive construction of protein occupancy profiles
over the genome at the nucleotide level. Recent studies have discovered limitations of genomic footprinting
which reduce the scope of detectable proteins. In addition, the identification of putative factors that bind to
the observed footprints remains challenging. Despite these caveats, the methodology still presents signifi-
cant advantages over alternative techniques such as ChIP-seq or FAIRE-seq. Here we describe computa-
tional approaches and tools for analysis of chromatin accessibility and genomic footprinting. Proper
experimental design and assay-specific data analysis ensure the detection sensitivity andmaximize retrievable
information. The enzyme-based chromatin profiling approaches represent a powerful and evolving meth-
odology which facilitates our understanding of how the genome is regulated.

Key words Chromatin remodeling, DNase-seq, ATAC-seq, High-throughput sequencing, Compu-
tational genomics, Genomic footprinting

1 Introduction

Chromatin exerts significant regulation of the genome through
tight packaging of DNA in the nucleus of a eukaryotic cell, pre-
venting access of transcription factors and other proteins to their
cognate sites [1, 2]. Accessibility at promoters, enhancers, or silen-
cers is actively maintained and dynamically altered in a cell- and
condition-specific manner [3–7]. Chromatin accessibility can be
measured by the susceptibility of DNA either to cleavage by
nucleases such as DNase I [8] or to transposition [9]. For example,
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DNase I hypersensitive sites (DHSs) are defined as the regions
particularly prone to cutting by DNase I, and they represent
regions with an “open chromatin” structure. DNase I hypersensi-
tivity coupled with high-throughput sequencing (DNase-seq) has
been used to provide genome-wide identification of functional
regulatory elements [8, 10]. More recently, the assay for
transposase-accessible chromatin using sequencing (ATAC-seq)
was developed as a simpler method that can be performed on a
small number of cells. Each assay generates a continuous high-
resolution profile of chromatin accessibility along the genome in a
given cell state [9]. DNase-seq and ATAC-seq have been shown to
produce very similar signal profiles, in contrast to the poor concor-
dance between DNase-seq and FAIRE (formaldehyde assisted iso-
lation of regulatory elements)-seq [11]. FAIRE may not permit
sensitive detection of regulatory regions due to high background
signals. Here we focus on the enzyme-based chromatin assays
DNase-seq and ATAC-seq and discuss computational analysis
methods that extract epigenetic information from the data
generated.

If a DNase-seq library is sequenced deeply to yield a large
number (>300 million) of reads, the genomic loci which are highly
occupied by transcription factors may be identified as narrow
regions of protection against DNase I cleavage, termed “foot-
prints” [12–14]. Although the cost of sequencing becomes an
issue in practice, sufficient tag coverage allows pinpointing of spe-
cific binding sites at the nucleotide resolution. However, the detec-
tion of protein footprints and inferring the identity of factors are
technically and computationally more challenging in comparison to
the detection of accessible regions.

This chapter provides a description of the procedures that we
have been employing to analyze DNase-seq and ATAC-seq data.
Surveys of existing methods mostly cover analysis tools for ChIP-
seq or RNA-seq [15], with fewer studies comparing different anal-
ysis methods for DNase-seq [3, 16–18]. The chapter is divided into
two parts based on the resolution of analysis: First on analyses
pertaining to chromatin accessibility on the scale of 100 bp to
1 kb, and the other on analyses of transcription factor footprints
on the bp scale. Within each part, the algorithms are roughly
categorized into different types of analyses: (1) generation of
browser tracks for visual exploration; (2) detection of significant
regions (hotspots or footprints) based on a background probability
model and calculation of statistical measures; (3) artifact adjust-
ment and filtering; (4) annotation of the identified regions with
respect to other genomic features or related data; (5) downstream
analyses and useful plotting strategies for delineating meaningful
patterns from the combined set of regions across multiple condi-
tions or time points.
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2 Analysis of Chromatin Accessibility

2.1 Assay Protocols,

Biases, and Data

Reproducibility

It is worthwhile to note that distinct protocols exist under the same
term “DNase-seq” (Table 1). Depending on the DNase-seq proto-
col, there are different data features and biases that one needs to
take into consideration for the analysis and interpretation of the
data. To distinguish between the protocols in this chapter, we
denote the size selection-based methods as “DNase-seq I” and
“DNase-seq II,” according to the sequencing type. We designate
the biotin end-labeling method as “DNase-seq III.” With DNase-
seq I and II, the reads (aka tags) come from the ends of the DNA
fragments within accessible chromatin which are cleaved and
released. The size selection for 100–500 bp range enriches for
fragments that are doubly cut by DNase I. With DNase-seq III,
individual DNA ends are labeled with biotin and captured for
single-end sequencing. Interestingly, the sample processing proto-
cols DNase-seq I/II and DNase-seq III produce different DNA
sequence bias patterns [19]. Adjusting for the sequence-dependent
cleavage bias becomes important for analysis of cut counts and TF
footprint detection (Subheading 3.3).

ATAC-seq utilizes a completely different approach by inserting
sequencing adaptors directly to accessible chromatin using a trans-
posase. In contrast to DNase I whose DNA cleavage activity is used
to mark open chromatin, this assay relies on transposition as the
primary molecular reaction for targeting and sampling open chro-
matin. Therefore, reaction kinetics and targeting preferences are
likely to be distinct from DNase-based methods. Despite the dif-
ference, the correlation, at least at the level of chromatin accessibil-
ity, between ATAC-seq and DNase-seq I was reported to be as high

Table 1
Enzyme-based chromatin assays

Assay Protocol feature Sequencing Notes References

DNase-seq I
(UW)

Size selected fragments
released by two
genomic hits

Single-end Specific for doubly cut chromatin [8]

DNase-seq II
(DNase-
FLASH)

Size selected fragments
released by two
genomic hits

Paired-end Length analysis reveals nucleosome
occupancy/positioning
information

[33]

DNase-seq III
(Duke)

End capture with
biotin

Single-end Background signal from
single-strand nicks

[10]

ATAC-seq Fragments with
transposed
sequencing adaptors
at both ends

Paired-end Length analysis reveals nucleosome
occupancy/positioning
information; Mitochondrial
DNA contamination

[9]
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as that between DNase-seq I and III [9]. The correlation between
ATAC-seq and DNase-seq III was slightly lower.

Current high throughput sequencing of a single or multiplexed
sample routinely produces hundreds of millions of sequence reads
of 35–100 bp in length from a lane. Quality-filtered sequence reads
are then aligned to the reference genome. The regions densely
populated with reads are putative DHSs or accessible chromatin
regions. Even though accessibility data generated from proper
experimental design are reproducible and visually convincing,
there are systematic biases that should be corrected. For example,
a proportion of the reads may not align to the reference genome
simply because the genome of the cells used for the experiment is
structurally different from the reference genome, containing aber-
rations such as polyploidy, translocations, or other mutations.
Amplified regions would contribute more to the DNA sample and
deleted regions would not produce any sequence reads.

Another source of sequencing data bias arises from the fact
that the genomic locations of the sequenced fragments are inferred
from finding the “best match” in the genome sequence. However,
the accuracy of aligning a read back to the genome varies greatly
depending on the sequence and read length. Hence it is necessary
to consider the read “mappability” (Fig. 1). A given n-mer
sequence read may occur at a unique location or at multiple geno-
mic positions under a preset mismatch tolerance. Although reads
with multiple genomic matches can, in principle, be probabilisti-
cally mapped, a common alignment approach allows only one
genomic coordinate for each read and discards reads that cannot
be uniquely mapped. The procedure creates “dark spots” across the
genome and directly affects the background probability of observ-
ing reads at any given position in the genome (Fig. 1).

Identification of the genomic regions where reads are signifi-
cantly enriched over the background must take into account these
and other sources of bias and artifacts in the sequencing data. The
objective of an algorithm for detecting accessible regions is to find
all of the truly read-enriched sites while minimizing the false posi-
tive rate (Subheading 2.3).

2.2 Building a Profile

for Data Visualization

in a Genome Browser

Visualization of the data is important for assessing data quality and
for confirming results from a global analysis. It is useful to note that
there are a few different approaches even for this apparently simple
practice. First, there are multiple ways of generating the data tracks
depending on how the read distribution is summarized. A density
profile or a coverage map can be generated by calculating (i) the
number of reads overlapping each genomic bin of fixed size (rang-
ing from 1 bp to 20 bp, for example), (ii) the number of reads
whose starting nucleotides are in each bin, (iii) the number of reads
whose fragments (extended from the starting nucleotide into the
genomic sequence by a fixed length) overlap each genomic bin, or
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Fig. 1 Mappability of sequence reads is far from uniform, across the scales from
Mb to bps. The top plot shows the fluctuation of mappability along mm9 as the
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(iv) the number of paired-end reads whose spanned fragments
overlap each genomic bin, etc. The differences resulting from
methods (i)–(iv) are negligible when the tracks are browsed in a
zoomed-out mode, but they become noticeable at a high resolu-
tion. We have used the approach (iii) for DNase-seq I data and (iv)
for DNase-seq II data, both with a nucleotide resolution (no bin-
ning). For DNase-seq I, because the size-selected DNA fragments
(100–1000 bp) are longer than the sequence reads (35–100 bp)
from the 50 ends, length adjustment is made to estimate the distri-
bution of fragments in the DNase-treated sample. If the average
fragment length is known from the sample QC, each sequence tag
can be extended in the 30 direction up to that length.

Another consideration for generating data track files stems
from the occasional disconcordance between results from a statisti-
cal analysis and visual impressions from the browser tracks. For the
purpose of assessing data quality, minimally processed data tracks
are often used to display the “raw data” as well as the anomalies that
are to be excluded from any systematic analysis, such as artifacts
from repeat elements and PCR-duplicated reads. Such unadjusted
data tracks are also used to convey the final analysis results in
published data figures. However, the unadjusted data may not
explain, for example, why some weakly accessible sites are detected
as significant while other sites with similar read densities are not.
These incidents arise often, because a detection algorithm adjusts
for the systematic biases when assessing statistical significance (Sub-
heading 2.3). Therefore, using adjusted data tracks might produce
visualization more consistent with the results from statistical ana-
lyses, although this approach is not widely used.

There are several publicly accessible browser tools that accept
users’ genomic data files and display them in the context of annota-
tion tracks such as known genes, ncRNAs, repeat elements, and
ENCODE data (Table 2). The University of California Santa Cruz
Genome Browser has been popular and their website also provides
the Table Browser from which one can download public data tracks
for incorporation into further correlative analyses (http://genome.
ucsc.edu/cgi-bin/hgTables). Integrated Genome Browser (IGB)
is a genomic data browser which has undergone significant
enhancements recently, supporting many file formats. The Integra-
tive Genomics Viewer (IGV) and the Washington University

�

Fig. 1 (continued) percentage of 35-mers in a 200 kb moving window which are
uniquely mappable. The middle plot displays the mappability as the percentage
of 35-mers in a 250 bp moving window which are uniquely mappable. The
bottom plot shows the nucleotide-resolution mappability itself, i.e., the number
of genome-wide occurrences of each 35-mer. The positions with the mappability
count higher than 1 cannot have any reads mapped from commonly used
parameter settings of an alignment tool
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Epigenome Browser have assay-specific capabilities for certain data
types that other browsers do not provide. Hence, investigators who
generate such data may benefit from the customized data explora-
tion tools from these browsers.

2.3 Region Detection

Algorithm

There are only a few algorithms specifically developed to identify
accessible chromatin regions from DNase-seq (protocols I, II, and
III) data, while numerous software packages exist now for calling
peaks or enriched sites from ChIP-seq data. We have developed and
described a one-pass algorithm for detecting “hotspots” in detail
elsewhere, and refer the reader to [16] and the accompanying
source code “DNase2Hotspots” and documentation at http://
sourceforge.net/projects/dnase2hotspots.

Here we briefly outline the core components of the algorithm.
DNase2Hotspots finds hotspots, or local enrichment of reads in a
250 bp target window relative to a local background (surrounding
200 kb window), based on the binomial distribution. The usage of
a local background, rather than a genome-wide uniform back-
ground, adjusts for the local fluctuations in read distributions

Table 2
Genome browsers for data visualization

Browser Data types
File format for
upload Features URL

UC Santa Cruz
Genome
Browser

ChIP-seq, RNA-
seq, DNase-
seq, 4C

bigwig, wig,
bed, bigbed,
bedgraph,
gff, gtf, bam

Preloaded annotation
tracks including
ENCODE data,
comparative genomics,
etc.; allows mirror
installation

http://genome.ucsc.
edu

Integrated
Genome
Browser
(IGB)

ChIP-seq, RNA-
seq, whole-
genome
seq, 4C,
microarray

bam, sam, sgr,
bigwig, wig,
bed,
bedgraph,
bgr, chp,
fasta, gff

Originally developed by
Affymetrix for tiling
array data; released as
open-source with
similar capabilities as
UCSC browser

http://bioviz.org/
igb/

Integrative
Genomics
Viewer
(IGV)

ChIP-seq, RNA-
seq, whole-
genome seq,
SNP, variants

bam, sam, bed,
bedgraph,
bigwig, fasta,
gff, gtf

Similar capabilities as
UCSC browser; 1000
human genomes
available

http://www.
broadinstitute.org/
igv/

WashU
Epigenome
Browser

ChIP-seq, DNA
methylation
(bisulfite seq),
5C, Hi-C,
ChIA-PET

bam, bigbed,
bigwig, tabix

Preloaded ENCODE data;
juxtaposition of distant
genomic regions,
diagonal heatmaps and
circlet plots for long-
range interaction data;
open-source

http://
epigenomegateway.
wustl.edu/
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reflecting large-scale differences in chromatin accessibility or copy
number variations. Significance of read enrichment within the tar-
get window over the local background is assessed using a binomial z
score from counting expected read occurrences only at uniquely
mappable genomic coordinates (Figs. 1 and 2). Hence the mapp-
ability is incorporated directly into the z score. An unthresholded
hotspot is defined as a contiguous cluster of 250 bp windows whose
z scores are nominally significant, i.e., greater than 2. The final z
score threshold is imposed based on an empirically calculated false
discovery rate (FDR). When the analysis calls for stringent region
calling, hotspots are selected with 0 % FDR, i.e., the z score thresh-
old is set by the minimum absolute value that does not allow any
hotspots called from the randomized data. If it is desirable to
include a larger number of accessible sites with a higher sensitivity
of detection, then hotspots can be called with a higher FDR, such as
1 % or 5 %.

The ENCODE group at the University of Washington had
developed the original hotspot detection algorithm which uses a
two-pass procedure to capture weakly accessible sites that can be
masked by nearby big DHSs. The ENCODE program is currently
available at http://www.uwencode.org/proj/hotspot/.

F-seq was developed by the authors of DNase-seq III [20, 21]
and an updated version is available at https://github.com/aboyle/
F-seq. It is not unusual for the same data to produce significantly

2 kb hg19

30,392,000 30,393,000 30,394,000 30,395,000 30,396,000 30,397,000 30,398,000

200 bases

30,394,400 30,394,500 30,394,600 30,394,700 30,394,800 30,394,900 30,395,000

Reads

Read density

250 bp target window

200 kb local background window

Fig. 2 DNase2Hotspots assesses the enrichment of extended reads within a target window by computing the
binomial z score with respect to the local background window. The top track shows a part of the larger 200 kb
background window. The bottom track shows the distribution of individual reads (dark blue) and the estimated
fragments (light blue) which are extended from the single end reads of DNase-seq I or III. For DNase-seq II and
ATAC-seq, the ends of the fragments are defined by the paired end reads. The maximum read density or the
average read density can be associated with each hotspot as a quantitative measure of chromatin accessibility
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different sets of hotspots or peaks depending on the detection
algorithm. To reconcile the different sets without relying on a
single detection method, sometimes an ad hoc combination of
the different sets is used to obtain the final set of accessible regions
from the data [3].

2.4 Region

Annotation and

Integrative Analyses

Much of the biologically meaningful data analyses are performed
during this stage of the analysis. When there are several accessibility
profiles from different experimental conditions or cell states, it is
very useful to have a “master set” of hotspots derived from recon-
ciling the boundaries of overlapping hotspots. Essentially the same
site may show up from multiple biological samples as hotspots with
slightly different start and end coordinates. There can be different
ways of defining the boundaries of hotspots to construct the master
set for subsequent analyses. For example, each hotspot in the
master set which represents overlapping hotspots detected in indi-
vidual samples can be defined as their union, intersection, or union
of the top three accessible sites, etc. The determination of the
master hotspots is necessary for a comparative analysis which reveals
chromatin accessibility changes across the samples or during a time
course, based on a single convenient measure per hotspot. We have
been using the maximum read density or the average read density as
such a measure which reflects the extent of accessibility at each
hotspot. Cluster analyses or supervised classification methods can
then be applied to discern distinct patterns of chromatin behavior.

Once the hotspots are obtained, it is often desirable to annotate
the sites with genomic information such as the closest genes, the
distance to TSSs, or whether they overlap with regions found from
other related data [16]. For instance, one can examine the propor-
tions of accessible sites located at promoters, introns, or intergenic
regions, or the extent of overlap with regions exhibiting other
enhancer marks or repressive chromatin marks.

2.5 Motif Analysis

on Hotspots

Motif analysis allows a higher resolution examination of the under-
lying genomic regions than any methods purely based on hotspots
which can range up to a few kilobases. The presence of a TF binding
motif element indicates a potential protein binding event within the
accessible sites (see Subheading 3 for further discussions). There are
two common types of sequence motif analyses that can be per-
formed on the set of DNA sequences from a specific subset of the
identified hotspots. One method is scanning the sequences for the
presence of motifs for known TFs [22] (FIMO is available at
http://meme.nbcr.net/meme/doc/fimo.html). It requires prior
knowledge of TF binding motifs but the computation is
straightforward.

Another analysis aims at discovery of novel motifs enriched in
the target DNA sequences, which is computationally very intensive
due to the large number of accessible sites that are often used as

Genome-Scale Analysis of Cell-Specific Regulatory Codes Using Nuclear Enzymes 233

http://meme.nbcr.net/meme/doc/fimo.html


search input. A strategy to handle the computational demand is to
reduce the total DNA content of the input set by narrowing down
to the strongest signal regions, i.e., peaks or local summits. Decid-
ing which regions to focus on critically affects the output motifs
that are found to be enriched from the regions. One common
caveat is selecting the top DHSs ranked by read density. Often the
sites that produce the highest DNase-seq signal are constitutively
open AT-rich regions whose accessibility may be governed more by
their sequence characteristics than by dynamic chromatin regula-
tion. By choosing the top 200 DHSs, for example, the investigator
may only find simple repeat sequences that tend to avoid nucleo-
somes. Cell type-dependent and TF-specifically regulated sites are
likely to reside in hotspots of modest read density. For this reason,
we remove the top DHSs and include as many hotspots as possible
for each genomic set of interest by limiting the searchable DNA
sequences onto the narrow peaks within the hotspots [16]. For
preparing input, the UCSC Table Browser can be used to extract
the DNA sequences of specified genomic regions in the FASTA
format.

The widely used de novo motif discovery tool MEME [23] uses
an expectation maximization algorithm (http://meme.nbcr.net/
meme/tools/meme). DREME is another discovery tool developed
by the authors of MEME [24]. HOMER is a different tool that has
gained popularity for ease of use [25]. These discovery tools seem
to have different sensitivity for finding certain types of motifs.
Therefore, it is recommended that users should try more than
one method to discover a wider class of motifs. The enriched motifs
found from the discovery step can be batch-queried against the
known TF binding motifs available in motif databases such as
JASPAR or UniPROBE, using the motif comparison tool TomTom
(available at the same site for the MEME suite) [26].

3 Analysis of TF Footprints

TF footprinting aims to detect sites bound by all protein factors
from the same biological sample with a nucleotide precision
[12–14]. To find TF footprints, one looks for narrow regions
(8–30 bp) on which cleavage (or transposition in the case of
ATAC-seq) is significantly reduced in comparison to the immedi-
ately surrounding regions (Fig. 3). The analysis requires ultra-deep
sequencing to achieve reasonable coverage of cleavage events for all
the hotspots in the genome.

3.1 Data

Requirement

The same experimental protocols for DNase-seq or ATAC-seq are
used to generate data for the purpose of genomic TF footprinting.
However, additional data standards are imposed to determine the
suitability of the data for higher resolution analyses. First, the depth
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of sequencing should be sufficient to provide at least 300 million
uniquely mapped reads for a mammalian genome. Depending on
the complexity of the sequencing library and the level of contam-
inating mitochondrial or other irrelevant DNA, the actual number
of sequence reads needed may be much higher than the final target
value. It is worth noting that, despite the decreasing cost and
improved throughput of sequencing, currently feasible sequencing
depths do not generally allow robust and reproducible detection of
individual footprints for mammalian genomes.

Second, the data quality, as measured by the enrichment of
nuclease activity within accessible chromatin, is useful to estimate
the “signal-to-noise” ratio. We have used a quality score, similar
to SPOT of the ENCODE team at the University of Washington,
which is defined as proportion (ranging from 0 to 1) of reads
overlapping FDR-unthresholded nominally defined hotspots.
Datasets with low quality scores due to high background may
be excluded or at least flagged for cautious data interpretation.
Datasets with the quality score higher than 0.5 are generally
considered to meet the suitability for TF footprinting analysis
(Fig. 4).

3.2 Cut Count

Profiles

Although the cut count profile is generally thought to convey the
raw data, there are data features which result in a few variant
definitions that can potentially affect the visual representation of
putative footprints. First, since the exact location of a DNase

i. Footprint search
in DNase cut
count data

M
er

g
in

g
p

ro
ce

d
u

re

Footprint

Seeds
Double-stranded

fragments

Cut counts

Footprint

DNase I hypersensitive site

TCGAGGAACTGTTGTACCTAATTCGCCAGATGGCATTTCCGGTGCTGG
ii. Sequence scan

for
TF binding
elements

iii. Overlap
& match

Fig. 3 Illustration of TF footprints which can be detected as protected regions from DNase cleavage and the
corresponding narrow “valleys” in the cut count profile. DNase2TF begins with data-derived seeds and
merges neighboring candidate regions until the significance of depletion no longer improves. Putative
footprints are overlaid with known TF binding elements in the genome and assigned to best candidate TFs
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I cleavage event is between nucleotides, not at a nucleotide, cut
counts are truly assigned to mid-points between bp coordinates.
However, if the cut count data is to be uploaded to a browser, the
obligatory assignment to integer coordinates necessitates a conven-
tion for the 1 bp-offset to be introduced to either the forward or
the reverse direction reads [18]. While the choice is arbitrary, a
consistent convention should be used throughout subsequent
analyses.

ATAC-seq has an additional correction step to account for the
distance between the sites of the sequencing adaptor insertion and
the transposase binding [9]. The plus strand reads are shifted by
+4 bps and the minus strand reads by �5 bps.

Analogous to the issue of raw versus adjusted data which was
discussed in Subheading 2.2, the cut count profile may be gener-
ated to display the enzyme bias-corrected profile (see also Subhead-
ing 3.3). The choice depends on whether the resulting plot is
intended to show technical features from the particular nuclease
used to generate the data.

3.3 Artifacts from

the Enzyme Bias on

Sequence Patterns

at Cut Sites

We and others have independently demonstrated that the sequence
bias of DNase cleavage is quite pronounced [18, 27, 28], despite
the previous assumption that DNase I cuts DNA in a sequence
nonspecific manner. The cleavage bias generates distinct cut signa-
tures when the cut count is averaged over TF binding motif ele-
ments. The cut signatures arise purely from the DNA sequence bias

Scale
chr21:

100 kb hg19
32,950,000 33,000,000 33,050,000 33,100,000

Q = 0.7297

25 -

1 _

Q = 0.5027

25 -

1 _

Q = 0.2776

25 -

1 _

Fig. 4 Quality score is a genome-wide measure of read enrichment within the relevant regions versus
the nonspecific background. Defined as the proportion of reads falling within nominally called hotspots, the
Q score ranges from 0 to 1 and can be useful for deciding whether to advance to ultra-deep sequencing and
footprinting analysis. Shown are read density tracks of example DNase-seq I samples with a range of quality
scores
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of DNase I, encoded in the tetramers or the hexamers surrounding
the cleavage site, and are observed in deproteinized DNA [18, 27].
Analogously, distinct sequence biases have been observed for the
transposase used in the ATAC-seq assay [9]. These findings raise
doubts about the original interpretation of the cut signatures as
reflecting the exact nucleotides bound and protected by sequence-
specific proteins [14, 29, 30].

3.4 Cut Count

Analysis When

Matching ChIP-seq

Data Are Available

for TFs of Interest

To assess the true cut profiles at binding sites for a given TF, a
reference dataset needs to be compiled: DNase-seq, ChIP-seq of
the TF from a matching biological sample, and well-characterized
PWM(s) for the TF. Then the TF binding motif elements called by
FIMO can be separated based on whether they overlap ChIP peaks.
The average cut count profiles can be computed over the two sets of
motif elements (bound versus unbound) to delineate the effect of
TF binding. The use of the bias-adjusted cut count profiles (Sub-
headings 3.2 and 3.3) may suppress the enzyme-specific artifacts
and facilitate such comparisons.

3.5 Detection of

Putative Footprints

and Limitations in

Inference of TF

Occupancy In Vivo

The first footprint detection program, developed by Stamatoyan-
nopoulos and coworkers, was used to identify footprints in DNase-
seq data from S. cerevisiae [13]. The software does not scale well
with large mammalian genomes. More recent detection programs
have been developed based on completely different algorithms. The
Wellington algorithm was designed to increase specificity of foot-
print calls by analyzing the plus and minus strands separately [31].
CENTIPEDE takes a different approach by making use of the a
priori TF binding motifs, sequence conservation, and epigenetic
marks [32]. However, the additional information available for
making predictions about binding does not seem to result in higher
accuracy [18]. We have developed an efficient computational algo-
rithm that adjusts for the enzyme bias and read mappability [18].
The software package implementing the footprint detection algo-
rithm is available as “DNase2TF” (http://sourceforge.net/pro
jects/dnase2tfr) (Fig. 5).

Despite the progress, it remains difficult to detect individual TF
footprints with an acceptable accuracy and reproducibility. The
high quality of the data necessary for TF footprinting and ultra-
deep sequencing remain as nontrivial technical bottlenecks. One
should also acknowledge the inherent limitation of TF footprinting
arising from lack of footprint depths for TFs with short DNA
binding residence times [18].

3.6 Sequence Motif

Analysis

Even though a comprehensive TF discovery analysis is generally not
possible with current tools, some novel TFs may still be found from
significantly enriched footprints. For example, detected footprints
which do not overlap any matches from known TF binding motifs
can be analyzed separately for enrichment of de novo motifs.
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Since the genomic regions called as putative footprints are much
narrower than accessible regions called as hotspots, the search for
de novo motifs becomes more focused and specific.
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