
99

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_7, © Springer Science+Business Media New York 2016

Chapter 7

A Structure-Based Design Protocol for Optimizing
Combinatorial Protein Libraries

Mark W. Lunt and Christopher D. Snow

Abstract

Protein variant libraries created via site-directed mutagenesis are a powerful approach to engineer improved
proteins for numerous applications such as altering enzyme substrate specificity. Conventional libraries
commonly use a brute force approach: saturation mutagenesis via degenerate codons that encode all 20
natural amino acids. In contrast, this chapter describes a protocol for designing “smarter” degenerate
codon libraries via direct combinatorial optimization in “library space.”

Several case studies illustrate how it is possible to design degenerate codon libraries that are highly
enriched for favorable, low-energy sequences as assessed using a standard all-atom scoring function. There
is much to gain for experimental protein engineering laboratories willing to think beyond site saturation
mutagenesis. In the common case that the exact experimental screening budget is not fixed, it is particu-
larly helpful to perform a Pareto analysis to inspect favorable libraries at a range of possible library sizes.

Key words Protein library design, Degenerate codon optimization, Rational mutagenesis, Saturation
mutagenesis, Regression, Cluster expansion

1  Introduction

Algorithms for searching large conformational spaces tend to be
iterative, evaluating one conformation at a time. Molecular dynam-
ics simulations and conventional Monte Carlo protein structure
prediction fall into this category, as do simulations that support the
refinement of models to fit nuclear magnetic resonance spectros-
copy or x-ray diffraction data. Even when each evaluation calcula-
tion is rapid, iterative methods are often unequal to the required
conformational sampling tasks. Several grand-challenge problems
in computational structural biology are intractable in part because
of the inability of current methods to efficiently search through the
space of protein conformations. For example, consider the prob-
lem of predicting the detailed structure of a protein, starting from
the structure of a homologous protein that happens to be 2 Å root

1.1  Expanding
Computational Protein
Design Horizons Using
Regression

100

mean square deviation (rmsd) from the target structure. Even
though the initial structure and the target are “close,” it is difficult
to find the target structure in part due to the vast number of simi-
lar protein conformations.

For some problems, including fixed-backbone protein design,
it is feasible to limit the search to the combinatorial placement of
discrete favored sidechain positions called rotamers [1]. In this
case, finding the optimal combination is still a challenging (i.e.
NP-hard) computational problem [2]. However, numerous pow-
erful combinatorial optimization algorithms have been developed
to optimize sidechain placement and protein design [3–8].
Predicting the energy for any given sequence requires a combina-
torial rotamer optimization calculation.

Regression-based approximate models provide a powerful
approach to circumvent this limitation. The basic strategy is to pre-
pare an approximate model that can be used to rapidly guide more
expensive search calculations to productive combinations. Much of
the recent research that adopts this strategy has been elucidated
and described as cluster expansion [9–14]. However, the use of
regression approaches to model experimental protein library data
belongs in the same category.

For example, Hahn et al. used regression to model experimen-
tal data for SH3 domains [13]. The ProteinGPS methodology of
DNA2.0 also quantifies protein properties in terms of sequence
variables [15]. Finally, the Arnold lab was repeatedly able to ratio-
nalize the thermostability of protein “chimeras” using only crude
regression models that account for 1-body contributions from
each sequence block [16–21]. A chimera is a protein composed of
fragments of parent proteins joined at sequence junctions called
crossover sites. Crossover sites are chosen with a variety of tech-
niques that are designed to minimize the disruption of coherent
and stable fragments within the protein [22–25]. The Arnold
results suggest that protein fragments can make surprisingly modu-
lar contributions to the overall protein structure and stability.
Johnson et al. recently provided an interesting exception to this
trend, by characterizing a library of enzyme chimeras in which sta-
bility affects were decidedly cooperative rather than modular [25].

Whereas traditional computational protein design (CPD) calcula-
tions yield a single sequence (and structure) with minimal energy,
the ultimate design target for this chapter is a library. Protein
library design is a highly practical calculation with diverse protein
engineering applications in industrial biotechnology, materials
development, and the development of therapeutic biomolecules.
To efficiently identify functional and/or optimized protein
sequences, protein engineers commonly work at the level of librar-
ies. Often, if structural information is absent and a suitable assay is
available, these libraries consist of randomly mutated variants.

1.2  Protein
Library Design

Mark W. Lunt and Christopher D. Snow

101

However, when a structure is available, there is a wide range of
design options.

At one end of the continuum, a structure may be used simply
to identify which residues are most likely to play an important role.
Saturation mutagenesis refers to the practice of mutating such tar-
get residues to all possible amino acids. For example, a protein
engineer working in the area of industrial biotechnology may seek
to alter the specificity of a substrate-binding pocket. Alternately, a
protein engineer working to optimize a therapeutic binding pro-
tein might wish to screen a library that diversifies the amino acids
at the protein–protein interface.

At the other end of the continuum, conventional CPD meth-
ods combine explicit modeling of the structure with combinatorial
optimization to predict a new low-energy sequence and structure
thereof. There is interest in methods that combine the practical
benefits of synthesizing a library of protein variants with benefits of
structure-guided design. For example, Voigt et al. described a self-
consistent mean field approach to identify low-energy amino acids
for subtilisin E and T4 lysozyme [26]. There are numerous routes
to merge these approaches. For example, the Arnold lab has often
used structure-guided design to optimize libraries of synthetic
enzymes derived via site-specific recombination [18].

Much of the effort has been to develop algorithms for the spe-
cific practical task of optimizing degenerate codons (see below). A
variety of algorithms that have been developed use as an input a list
of target sequences or a 20 × n matrix that indicates the target fre-
quency of each amino acid for each of the n design positions [27].
Enumeration, dynamic programming, and integer linear program-
ming methods have all been described for the selection of degener-
ate codons to cover the desired sequence space [28–32].

Here, three such algorithms are described briefly. The
LibDesign algorithm [28] begins with a set of aligned amino acid
sequences and then identifies favorable degenerate codons inde-
pendently for each position. A favorable degenerate codon encodes
the specified amino acids with minimal degeneracy, avoiding stop
codons if possible. Permutations of candidate codons are assessed
via the resulting library size and the number of recovered sequences
from the input alignment. Allen developed an algorithm called
“Combinatorial Libraries Emphasizing and Reflecting Scored
Sequences” (CLEARSS) that extends the conventional CPD
approach [29]. CLEARSS begins with a list of fixed-backbone
sequence designs. Possible degenerate libraries are sampled, given
a list of allowed amino acids and a range of allowed library sizes,
and are assessed using the ranked list of specific sequences. The
overall score of a candidate library is the sum of scores for each
design site, and the score for each design site is the sum of the
Boltzmann weights of the sequences in the ranked list that contain
a library-encoded amino acid. Finally, SwiftLib from the Kuhlman
group uses dynamic programming to optimize the placement of

Design of Optimal Combinatorial Protein Libraries

102

multiple degenerate codons, obtaining very efficient libraries [32].
Notably, SwiftLib is presented as a highly accessible web server.

One limitation of such algorithms is the neglect of 2-body inter-
actions. At the cost of significantly more difficult calculations
(NP-hard optimization), this was addressed by Bailey-Kellogg and
coworkers in the Optimization of Combinatorial Mutagenesis
(OCoM) algorithm [30]. Another limitation is the use of a pre-
calculated list of designs rather than a direct optimization in library
space. It is not clear that pre-calculated lists of designs offer a bal-
anced or thorough exploration of favorable sequence space; they may
instead reflect a shallow exploration of sequence space, may feature
diversity only at permissive sites, and could reflect systematic inaccu-
racies in the design potential. Treynor et al. performed combinatorial
optimization in library space, but the 2-body potential between
degenerate codons had significant drawbacks (amino acid:amino acid
scores were obtained without rotamer optimization) [33]. The final
relevant example is the Structure-based Optimization of
Combinatorial Mutagenesis (SOCoM) algorithm reported in 2015
[14]. This last report is highly suggested reading as the SOCoM
algorithm closely matches our independently developed approach.

There are several relevant figures of merit for candidate librar-
ies. First, since these tools are intended to assist with actual experi-
mental library design, the number of theoretical variants present in
the encoded library is a key parameter. Theoretical library size is
the starting point for selecting the number of clones that should be
experimentally screened to obtain a target library coverage [34].
Another key parameter for a candidate library is the mean energy
score (<E>) according to a design scoring function. Throughout
this chapter the energy function is an all-atom Rosetta energy func-
tion [35]. Scores for protein structures are reported in Rosetta
energy units (REU). One possible limitation of <E> is that the
folding and functionality of protein sequences is not a graded
response. Therefore, it may be more relevant to estimate the num-
ber of library members with E < Ecutoff, a threshold meant to flag
library members at an elevated risk of not folding.

A conventional approach to encode focused site diversity is to use
a degenerate codon, in which the synthesized DNA primer consists
of a mixture of nucleotides at particular positions. A single charac-
ter analogous to the pure bases (A, T, C, G) represents each mix-
ture of bases, with W → AT, S → CG, M → AC, K → GT, R → AG,
Y → CT, B → CGT, D → AGT, H → ACT, V → ACG, and
N → ACGT. A codon that includes at least one degenerate nucleo-
tide is a degenerate codon. Common degenerate codons for site
saturation mutagenesis are NNK and NNS, both of which encode
all 20 amino acids (with varying codon and amino acid frequency).
It is also important to note that 1/32nd of the codons that are
physically realized from the NNK and NNS degenerate codons
(assuming equimolar nucleotide mixtures) encode stop codons.

1.3  Degenerate
Codon Libraries

Mark W. Lunt and Christopher D. Snow

103

A key limitation of saturation mutagenesis is poor scaling to
multiple residue targets, due to combinatorial explosion of the size
of the resulting library. Fortunately, there are opportunities to
improve; NNK is only one of many possible degenerate codons, the
vast majority of which are underutilized. Since there are 15 possible
nucleotide mixtures (see above) at each of the three positions making
up a codon, there are 3375 legal degenerate codons. Ignoring codon
usage considerations (organism codon preferences that are the usual
target of codon optimization), there are 1482 degenerate codons
that encode different ratios of amino acid (and stop codon) out-
comes. To further simplify, degenerate codons that specify the same
sets of amino acids (with varying amino acid probability) can be
eliminated. Of these 840 degenerate codons, 115 can also be dis-
carded since they encode sets of outcomes that are redundant with
another degenerate codon except for the inclusion of stop codon
outcomes. Thus, there are 725 degenerate codons that encode
unique sense mixtures of amino acids. The specific computational
challenge addressed by this chapter is to select which of these 725
options to pick for each site within a design problem (see Note 1).

Several groups have developed methods for site-specific libraries
that rely on mixing primers rather than ordering standard degener-
ate oligonucleotides [32, 36–41]. By taking these alternate
approaches, the precise set of desired amino acids can be encoded at
each site. Can the computational design framework described here
be useful in such scenarios? In theory, the method should apply
equally well when selecting between arbitrary amino acid sets. The
critical challenge is that the unconstrained library search space is
much larger. Rather than the 725 mixtures of amino acids above,
any combination of the 20 amino acids might be used. The number
of possible amino acid sets is large enough (220 = 1,048,576) that
the current methods would likely be impractical due to memory
limitations or combinatorial optimization performance limitations.

Regression is a powerful tool to uncover the relationship between
a dependent variable and one or more independent variables. In
the current case, the dependent variable is the output value from a
calculation (particularly a computationally expensive calculation)
applied to a protein structure. Meanwhile, the independent vari-
ables correspond to the binary presence (1) or absence (0) of vari-
ous mutually exclusive options. For example, in a protein design
calculation, the task is to select exactly one amino acid at each
design site. For a protein repacking problem, the task is to select
exactly one sidechain rotamer position. Necessarily, the regression
model only approximates the results from the more expensive cal-
culation. The benefit is the dramatic increase in speed, since the
predicted score for any discrete combination covered by the regres-
sion model can be computed nearly instantaneously [10]. Thus, if
the regression model has sufficient accuracy, it can be used to effec-
tively search enormous solution spaces.

1.4  Regression
and Energy Functions

Design of Optimal Combinatorial Protein Libraries

104

Energy functions are used to evaluate structures and test them
for plausibility. The Rosetta energy function is a well-known exam-
ple, as are the energy functions employed by molecular dynamics
simulations. Both of these are scoring functions, although there are
important differences. Rosetta includes “knowledge-based” terms
derived from protein structure statistics that are usually eschewed
by the “force fields” that contain only physics-based, molecular
mechanics terms. In either case, energy functions typically take the
form of a sum of terms that approximate various interactions
between atoms in a protein. The complexity of energy functions
used for protein design is often immense. Many mathematical terms
(e.g. electrostatic interactions, bond angles, solvation energy, etc.)
may be combined in an effort to improve the accuracy of an energy
function. Regression models can be used to approximate results
obtained with these more expensive calculations.

The use of regression to accelerate otherwise intractable protein
calculations has been popularized in recent years by Grigoryan,
Keating, and coworkers as cluster expansion [9, 10]. Cluster expan-
sion is a regression-dependent method that was initially made to
study alloys [42]. Cluster expansion techniques have now been
used to generate useful approximations for a variety of protein-
related problems. At heart, cluster expansion relies on regression
to fit an expensive calculation (e.g. the stability of a protein evalu-
ated via repacking calculations). The terms may be 1-body (e.g.
is-residue-10-an-arginine), 2-body (e.g. are-both-arginine-10-
and-glutamate-18-present), 3-body, or higher-order. Regression is
used to determine the value of the terms. A key benefit is that the
dependent variable, the expensive calculation, can be arbitrarily
sophisticated.

Commonly, the expensive calculation includes combinatorial
optimization. In the case of protein design, cluster expansion
serves to “integrate out” the sidechain placement problem, provid-
ing a model that predicts the post-repack energy for any sequence.
Given a model with only sequence variables, new design possibili-
ties become feasible. For example, Grigoryan et al. used integer
linear programming in conjunction with the cluster expansion
model to directly incorporate negative design into the design of a
family of coiled coils with orthogonal specificity [11]. In the cur-
rent case (protein degenerate codon library design), a sequence-
level model that predicts the energy of any sequence is converted
into a library-level model that predicts the mean energy of any
degenerate codon library (Fig. 1). A recent report from Verma
et al. demonstrates an equivalent approach, direct optimization of
degenerate codons via cluster expansion [14] (see Note 2).

One drawback of cluster expansion in particular, and regres-
sion in general, is the necessity of training the model with a large
set of initial calculations; typical training sets for protein design

1.5  Cluster
Expansion

Mark W. Lunt and Christopher D. Snow

105

Fig. 1 At each design site, the first layer (a) consists of a combined sequence/structure search space with
discrete alternative positions for the sidechains (rotamers). Each rotamer gets a 1-body energy due to interac-
tions with immobile groups and 2-body energy terms due to interactions with neighboring mobile groups.
These might be particularly favorable (green edges) or unfavorable (orange edges). (b) Integrating out the
structure degrees of freedom, we arrive at a regression model that only contains sequence variables. Favorable
and unfavorable 1-body terms are represented with green or red tint, while 2-body terms are again repre-
sented as edges. Finally, by applying Eqs. 5 and 6, we can construct another energy graph (c) in which the
numerous vertices correspond to degenerate codons. Depending on the constituent amino acids, the degener-
ate codons may be favorable (green tint) or unfavorable (orange tint). Edges may likewise carry favorable
(green) or unfavorable (orange) effects

Design of Optimal Combinatorial Protein Libraries

106

problems contain tens of thousands of calculations. The aggregate
computational expense is significant but necessary. To save compu-
tational time, a training set of minimum feasible size is preferable,
but large training sets are needed to avoid over-fitting large free
parameter collections. Eventually, increasing the size of the train-
ing set will not lead to improved accuracy; at this point it has been
saturated, and adding additional terms to the regression model is
more likely to lead to an improvement.

Perhaps surprisingly, Apgar et al. found that a more expensive
calculation (with a flexible backbone) was easier to approximate
than a less expensive calculation (rigid backbone) [12]. It was sug-
gested that allowing the backbone to move minimized steric
clashes between individual residues. Removing steric clashes is
helpful because such interactions are unlikely to be physically real-
istic, and because the large amplitude of such interactions can be
difficult to fit.

Ng and Snow found that lower-order terms were sufficient for
the prediction of multi-body energy function scores [43].
Specifically, the AMOEBA polarizable energy function [44], which
is not pairwise decomposable, was approximated for combinatorial
sidechain optimization. Lower-order (1-body, 2-body, and 3-body)
terms were shown to be sufficient to accurately approximate the
multi-body polarization effects. In addition, sets of lower-order
terms could be used to predict which higher-order terms are rele-
vant. If the 2-body terms for amino acids at three positions had
significant magnitude, it was worth attempting to add a third-
order term for those three amino acids. Snow and Ng's work
revealed that one could filter out (i.e. ignore) almost 80 % of
3-body terms and thereby reduce the complexity of the regression
with this simple check.

The generality of the regression/cluster expansion approach is
a key feature. Many hard problems in CPD benefit from an accu-
rate model that predicts energy directly from the sequence. The
current chapter describes open-source, permissively licensed soft-
ware for expanding the combinatorial optimization approach to
problems that may not be pairwise decomposable. To take advan-
tage of this flexibility, Python scripts are presented for computing
regression-based approximate models with the robust combinato-
rial optimization capacity of the open source SHARPEN software
platform [45].

2  Methods

In broad strokes, the steps to take to apply the regression tools are
the same regardless of the exact goal. First, an initial set of discrete
combinations is “instantiated,” a process that varies depending on
the problem but always includes an assessment or scoring of the

2.1  Overview

Mark W. Lunt and Christopher D. Snow

107

combination in question. For the current case studies, the discrete
combination is the protein sequence, and the instantiation consists
of a combinatorial optimization of sidechain rotamer positions. The
set of instantiated combinations is divided into two subsets: one to
train the regression model and another to test the resulting approxi-
mation. The resulting trained regression model provides a rapid
approximation to the more expensive instantiation operation.

The SHARPEN package [45] provides convenient data struc-
tures to store and apply regression approximations. Specifically,
EnergyGraphs efficiently store 1-body and 2-body terms in a con-
ventional graph structure consisting of nodes and edges (a thin
wrapper around the underlying Boost Graph type). More unusually,
SHARPEN also provides EnergyHyperGraph data structures that
can also accommodate higher-order terms such as 3-body, 4-body,
or N-body effects. Either EnergyGraphs or EnergyHyperGraphs
can be used with a variety of independent combinatorial optimiza-
tion routines for identifying favorable combinations. Therefore, it is
easy to efficiently identify discrete combinations, “targets,” that are
predicted to minimize the instantiated score according to the cur-
rent approximation.

The value of the entire scheme is predicated on the utility of the
approximation to allow the combinatorial search process to more
rapidly explore enormous swaths of a combinatorial search space,
and to do so with enough accuracy to discover favorable combina-
tions. Given the astronomical search size of typical combinatorial
problems, and the rapidity of search methods using the regression
approximation, accelerating the sampling is likely assured. The
more challenging aspect is ensuring that the regression-based
approximation is sufficiently accurate. Fortunately, this chapter
illustrates that 2-body regression models appear to be largely suffi-
cient to approximate the favorable portions of the combinatorial
search space, and that such approximations can be used to facilitate
the optimization of degenerate codons directly in library space.

The routines described below are implemented in a set of
python scripts that use methods provided by a python module,
dgen_design. These tools use the open source SHARPEN soft-
ware, and are therefore provided via the www.sharp-n.org website
wiki. Other useful scripts for practical protein design calculation,
described by Johnson et al. [25], are also hosted on this site.

	 1.	The only requirement for an instantiation method is that it
accepts a combination and produces a score. Any algorithm
that can be applied to a candidate protein and produces a num-
ber could be an instantiation method. Instantiation for this
work involves combinatorial optimization of the sidechains
(“repacking”) for a particular sequence variant to minimize the
model score according to an all-atom Rosetta energy function
[35]. The outcome is the score E in Rosetta energy units

2.2  Instantiation:
Combinatorial
Optimization
of Sidechain Positions

Design of Optimal Combinatorial Protein Libraries

http://www.sharp-n.org/

108

(REU). Structures with lower Rosetta energy scores are more
plausible protein conformations.

From the standards of CPD, the case studies presented herein
are small problems (Table 1). The FasterPacker combinatorial
optimization object mimics the “singles” routine from the Desmet
and Lasters FASTER algorithm [4]. The FasterPacker works some-
what like a traditional Monte Carlo trajectory, except that the
moves that are accepted or rejected are “batch” moves. Candidate
batch moves are generated by temporarily fixing a perturbing rota-
mer change and then sequentially relaxing interacting sidechains to
their low energy rotamer.

	 2.	FasterPacker typically yields optimal or near optimal solutions
for problems of this size. To demonstrate, 600 sequences for
case B.1 (see below) were solved to optimality using the mixed
integer linear programming program CPLEX [46] via a
CplexPacker wrapper provided by SHARPEN. Because these
problems are reasonably small, the CplexPacker is able to iden-
tify the global minimum energy combination (GMEC) rela-
tively quickly (an average time of 3.7 s). In 552 of 600 cases
FasterPacker found a solution within 1E-6 REU of the GMEC,
but did so in an average of only 0.14 s. Notably, CplexPacker
was used to optimize the sidechain rotamer positions of the
initial protein model prior to any other calculations.

Table 1
The reported best low-energy testset rmsd values (rmsdLET) correspond to the lowest value
encountered for varying training set sizes. Where applicable, the best-case exponential weight (τ)
and regularization parameter (k) are also noted

Site
Active
design sites

Other
mobile sites

Seq
space
size

Lib
space
size

Seq/str
search
size Figures

Best
LET
rmsd τ k

A.1 Core 5, 30, 43 52, 54 8000 3.8E8 1.5E11 4,6,7,8 1.8 – 1e–7

A.2 4.9E7 4,6,13 1.7 – 0.01

A.3 5,6 1.5 125 1e–6

B.1 Core 5, 30, 43,
52, 54

3, 7, 16, 45 3.2E6 2.0E14 3.9E20 9 5.0 – 0.1

B.2 4.1 50 1e–7

B.3 2.5E13 10,13 14.4 – 1

B.4 10 8.4 75 1

C.1 Surf 2, 4, 6, 8,
13, 15, 17,
19, 42, 44,
46, 48, 49,
51, 53, 55

None 6.6E20 5.8E45 1.8E35 11,13,
14

9.9 – 10

C.2 6.5E45 12 4.8 – 1

Mark W. Lunt and Christopher D. Snow

109

	 3.	A pool of random combinations is instantiated via FasterPacker
at the outset of the campaign. This pool serves as the source of
training and test combinations. A training batch is used to kick
off the regression, while the test batch (all other members of
the initial pool) is held in reserve to quantify regression model
quality.

For the case study problems here, combinatorial optimization
is quite rapid since there are a limited number of mobile residues
(Table 1). For example, the 5-site library (case B), with the default
(non-minimal) rotamer generation scheme has a structure-
sequence search space size of 3.9 × 1020. Only 20 min are required
to instantiate 50,000 random sequences using a 2.8 GHz Intel
Core i7 CPU.

	 1.	The ability of regression to produce accurate approximations is
predicated on the ability of terms to stand in for more compli-
cated processes. It is desirable to be selective when adding
terms, since adding an excessive number of terms will result in
overfitting. To recapitulate most physical problems, it is neces-
sary to include at least 1-body and 2-body terms. A free con-
stant (i.e. a 0-order term) can also be helpful, allowing the
remaining parameters to adopt smaller values without degrad-
ing the overall fit. Alternately, to shrink the absolute value of
the free constant, a reference energy (Eref) can be subtracted
from each element within the instantiated score vector (Y).

	 2.	In the particular case of approximating the energy of protein
sequences, our general recommendation is to consider the
wild-type (WT) or initial protein sequence as the reference
state (with E = Eref). Then, each individual mutation at an
active design site gets a 1-body parameter. WT amino acids at
the design positions do not get parameters, as their contribu-
tion is subsumed within the reference state. Similarly, only
interactions between two mutations serve as 2-body parame-
ters, since a WT:mutant pair is already accounted for in the
1-body parameter for that mutant. Ideally, regression will drive
the free constant parameter toward the score of the reference
state. All of the problems described below include a free con-
stant, all 1-body terms, and all possible 2-body terms (Fig. 1).
For larger problems, it could become useful to skip 2-body
terms that are not likely to correspond to physical effects. For
example, one could require physical proximity or more direct
evidence of energetic coupling between the particular sites
before adding terms.

	 3.	Similarly, it could also be useful to identify higher-order terms
(i.e. 3-body terms) to improve the accuracy of the model in
recapitulating low-energy combinations. A tricky aspect to this
is that sizable 3-body effects for protein design can be “frustra-
tion” effects in which three pairs of amino acids can each coexist

2.3  Term Selection

Design of Optimal Combinatorial Protein Libraries

110

nicely, but the combination of all three induces an unavoidable
steric clash. Modeling this effect requires a large 3-body term,
which breaks the typical approximation paradigm that higher-
order effects will have lower magnitude than lower-order effects.

	 4.	A more sophisticated (and lengthy) approach to term selection
was described by Hahn et al. who developed an iterative fea-
ture selection scheme with rapid cross-validation [13].
Candidate terms are individually considered and included if
they make a statistically significant improvement. For the
degenerate codon design problem described here, one can
avoid using 3-body terms and lengthy term selection proce-
dures due to the sufficient accuracy of the 2-body models and
the technical feasibility of modeling all possible 2-body terms.

	 1.	After the training batch is instantiated, and fitting terms are
selected, regression can proceed. The regression model will
ascribe values to the fitting terms so that summing the appro-
priate terms can approximate any combination. For the case
study problems here, there are thousands of one-body and
two-body terms, and thousands of training set members.

	 2.	Each of the training set members will have a relatively small
number of applicable terms, depending on which amino acids
(potential 1-body terms) and pairs of amino acids (potential
2-body terms) are present at the variable sites. To tackle the
resulting large sparse regression problems, our approach relies
on two solvers that work with sparse matrices and are conve-
nient for use from Python. Specifically, the CVXopt software
package [47] provides a sparse matrix structure, an interface to
the Cholesky factorization routines of the CHOLMOD pack-
age [48], and functions for solving sparse sets of linear equa-
tions. Alternately, one can use the LSMR package [49], which
is integrated into scipy [50]. For the following code snippets, Y
is the vector of instantiation scores, k is a regularization param-
eter (see below, Eq. 1), and spX is a sparse matrix that encodes
which terms apply to which training set combinations.
import scipy.sparse.linalg
results = scipy.sparse.linalg.lsmr(spX, Y, damp=k)
or
import cvxopt
from cvxopt import spmatrix, spdiag, cholmod
B = spX.T * cvxopt.matrix(Y)
XT_X = spX.T * spX
ridge = k * cvxopt.spdiag([1] * len(B))
cvxopt.cholmod.linsolve(XT_X + ridge, B)

	 3.	Given the large number of fitting parameters that arise when
2-body or 3-body terms are included, overfitting is a serious
concern. To combat the tendency for overfitting, use regular-
ized regression. In both code snippets above the core calcula-

2.4  Solving Large
Regularized
Regression Problems

Mark W. Lunt and Christopher D. Snow

111

tion consists of regularized regression, also known as ridge
regression (Eq. 1) or Tikhonov regression [51]. This tech-
nique penalizes terms that deviate from zero. The regulariza-
tion parameter, k, serves to restrain the magnitude of the fitting
parameters, β. The matrix X specifies which fitting terms con-
tribute to each combination, with the vector Y holding instan-
tiated scores and I as the diagonal identity matrix.

	 X X kI X YT T†+() = 	 (1)

Ridge regression can be useful to suppress overfitting. It is impor-
tant, however, to setup the problem so that the value of the terms
should indeed be small numbers.

	 1.	Weighting is a useful optional strategy to increase the accuracy
of the regression model for some of the combinations.
Typically, the performance of the approximation is much more
important for favorable combinations than unfavorable combi-
nations. It is recommended to sacrifice the overall fit in favor of
higher accuracy for the favorable combinations. A matrix W
has weights along the diagonal, wi, that are selected using the
following scheme intended to resemble Boltzmann weighting.
The adjustable parameter τ sets the energy scale that defines
the favorable sequences of interest.

	 X WX X WYT T† = 	 (2)

	
wi

y yi

=
é

ë
ê
ê

ù

û
ú
ú

-
- ()()

min , .
min

e t 0 02

	
(3)

	 2.	If the exponential weighting parameter τ = 100, then training
set combinations that are 10, 25, 50, 100, and 200 REU less
favorable than the minimum REU combination in the training
set will have weights of 0.90, 0.78, 0.61, 0.37, and 0.14.
Equation 3 assumes that the more important combinations
have the lower scores. If necessary, the sign of the scores can be
flipped. The use of a minimum weight (0.02 above) ensures
that the regression model cannot entirely neglect high-energy
combinations.

	 1.	To quantify the performance of a regression model, one can
compute the root mean square deviation (rmsd) between the
predicted E scores for the testset with the actual repacked E
scores. However, also consider the possibility that the regres-
sion model predictions may have a systematic bias (e.g. a slope
of 1.5 or a non-zero intercept). If such a bias is consistent, it
could be corrected by fitting a line. Therefore, before comput-
ing rmsd one should correct systematic deviations using the
scipy.stats.linregress function to compute the slope and
intercept.

2.5  Weighted
Regression

2.6  Quantifying
Regression Model
Performance

Design of Optimal Combinatorial Protein Libraries

112

	 2.	It is not recommended to equally favor all combinations. The
explicit goal is to maximize accuracy for the more favorable,
low-energy combinations. Rough prediction of high-energy
combinations is sufficient; clashes need not be precisely quanti-
fied if they can be avoided. Accordingly, one might quantify
accuracy for the favorable members of the test set, with
Ei < min(E) + 100 REU. Hereafter, this figure of merit will be
termed rmsdLET, the rmsd for the low-energy testset. One may
also use rmsd to quantify the extent to which library <E> pre-
dictions match directly sampled <E> values.

	 1.	Once a regression model has been trained, it can be used to
efficiently identify combinations that are predicted to be favor-
able upon instantiation. Such combinations are termed “tar-
gets.” If only 1-body terms are present in the model, optimal
targets are trivially easy to identify; one need only select the best
score for each mutually exclusive choice. More generally, a low-
scoring target combination is found using combinatorial opti-
mization routines, typically the FasterPacker described above,
or the SimulatedAnnealingPacker. A SimulatedAnnealingPacker
implements a Monte Carlo trajectory over combinations with a
gradually reducing temperature value.

	 2.	These combinatorial optimization methods are generally
intended to find individual favorable combinations, possibly
the GMEC. When target diversity is critical, the output combi-
nation from the SimulatedAnnealingPacker or FasterPacker
can serve as the initial combination for subsequent
MonteCarloPacker sampling. To ensure a diverse pool of tar-
get combinations, one can generate multiple Monte Carlo tra-
jectories at escalating temperature. Temperature is increased in
repeated Monte Carlo runs until a minimum number of dis-
tinct combinations are found. This method of target selection
is still effective if higher-order terms are present in the regres-
sion model. Also, the use of an escalating temperature should
render this protocol somewhat robust when applied to differ-
ent problems with varying intrinsic energy scales.

	 3.	A related strategy can come into play at the outset of a learning
process. In the case of building a training set to use regression
to approximate the AMOEBA energy function (Ng, 2011),
the model was trained using rotamer combinations that were
highly diverse, but not the purely random combinations that
usually result in van der Waal clashes. To do so, an initial
approximate energy model that included only strong van der
Waal clashes was built. Then, to generate a maximally diverse
pool of combinations, excluding unrealistic high-energy com-
binations, Ng ran a series of Monte Carlo trajectories with the
temperature set to zero. These trajectories began from random

2.7  Using
the Approximation
to Select Targets

Mark W. Lunt and Christopher D. Snow

113

combinations and executed a downhill walk, thereby preserv-
ing maximal diversity while attempting to avoid unphysical
clashes. This allowed the regression process to “learn” about
more interesting effects than the steric clashes.

	 1.	For small degenerate codon libraries (e.g. case A with three
design sites), it is feasible to enumerate the predicted E values
for each of the encoded sequences. Then, the expectation value
of the Rosetta energy for any library can be readily calculated
by computing the mean energy, <E>, of the constituent
sequences. However, for library design problems with more
sites, precise calculation of <E> can be overly time-consuming.
Therefore, our code instead estimates <E> by sampling the
value of n random combinations drawn from the library. One
can compute the standard error of the mean (σ〈E〉) given the
standard deviation of the E values in the sample (σ), using the
finite sample correction for libraries with N members:

	
s

s
E =

-
-n

N n

N 1 	
(4)

	 2.	Relatively modest samples (n = 400) are sufficient to assess the
correlation between the predicted library <E> from the regres-
sion model and the sampled <E>. To estimate the number of
library combinations with E below a threshold, compute the
fraction below the threshold for the sample and multiply by
the library size. The library size, Nlib, refers to the theoretical
number of distinct sequences and is calculated as the geometric
product of the number of amino acids Naasite encoded at each
design site: N Naalib

design sites

site= Õ .

	 1.	The technical details above cover the preparation, tuning, and
validation of regression models that map specific protein
sequences to predicted post-instantiation Rosetta energy scores.
However, a larger goal for this chapter is to demonstrate how
such models can be used to efficiently select degenerate codon
libraries. Specifically, the goal is to execute a search for favorable
degenerate codon libraries directly in “library space.” To enable
library design via the various combinatorial optimization algo-
rithms provided by SHARPEN (e.g. the Packers mentioned
above), one need only prepare an EnergyGraph or
EnergyHyperGraph in which the nodes no longer correspond
to mutually exclusive amino acid choices, but instead corre-
spond to mutually exclusive degenerate codon choices (Fig. 1).

	 2.	The regression models described above make this possible. In
the notation below, Ei

1-body is the 1-body regression term for
amino acid outcome i, and Eij

2-body is the 2-body regression term
for the simultaneous selection of amino acids i and j. First, com-

2.8  Calculating
the Properties
of Degenerate Codon
Libraries

2.9  Combinatorial
Design in Degenerate
Codon Library Space

Design of Optimal Combinatorial Protein Libraries

114

pute 1-body terms for each degenerate codon by computing the
expectation 1-body term for the constituent sense amino acids
according to the regression model (see Note 3). The relative
frequency of the constituent amino acids, pi, can serve as weights
to compute the expectation value. Alternately, pi values can be
set to model equally probable amino acid outcomes. The latter
approach is adopted here under the assumption that all variants
within the library might be isolated and characterized (ignoring
the different frequencies of encountering these variants).

	
E p E

aa i
i idgen A

body

A

body1 1- -= ×å
	

(5)

	 3.	Similarly, compute the expectation value for the 2-body inter-
action between two degenerate codons (A and B):

	
E p p E

aa i aa j
i j ijdgens A and B

body

A B

body2 2- -= × ×å å
	

(6)

	 4.	For a closer look at the calculation of an EnergyGraph that
embodies the library design landscape, see the M_score_dgen_
codon_sets.py script.

	 1.	Library size is a key consideration when it is time to select a
library for experimental testing. However, the feasible experi-
mental library size is rarely in practice a strict cutoff. Instead, it
is valuable to illustrate what candidate libraries look like as a
function of library size before making final decisions.

All other factors being equal, use libraries with a lower <E>,
since those libraries are the most likely to be highly folded, stable,
and functional. However, the global minimum energy library
(GMEL) will have exactly one sequence and that sequence will
correspond to the GMEC. This is true since each individual amino
acid is an option within the 725 amino acid sets that can be
encoded. If libraries are sampled thoroughly, the libraries with
minimal <E> are going to contain relatively few sequences. The
more useful task is to identify libraries with minimal <E> for every
library size. This will allow the protein engineers involved to select
the library size that offers the best <E> yet fits within the assay
screening budget. Therefore, when performing combinatorial
optimization directly in library space, an explicit bias favoring
larger libraries may help to sample diverse library options.

	 2.	To sample larger libraries, implement a bias favoring degener-
ate codons that encode more amino acids. First, compute
log(Naasite) for each degenerate codon. Then, when assessing
candidate degenerate codon combinations, the total library

size is e design sites

siteå ()
é

ë
ê
ê

ù

û
ú
ú

log Naa

. Each candidate degenerate codon choice
contributes additively to the predicted library E via its 1-body

2.10  Sampling
Diverse Libraries
via Combinatorial
Optimization

Mark W. Lunt and Christopher D. Snow

115

and higher-order regression terms, and contributes additively
to the library size (Nlib) via the log(Naasite). Iteratively perform
combinatorial optimization according to the energy model,
but in each round ri increment a cumulative 1-body bias favor-
ing degenerate codons that encode more amino acids:
r Naai

site× × ()e log , where ϵ is a small weight factor. For a closer
look at this iterative library sampling scheme, see the P_iter-
lib_sample.py script.

	 3.	Manually adjust ϵ so that libraries of the largest interesting size
are sampled by the end of 100 rounds of combinatorial optimi-
zation. The largest interesting library size is problem-depen-
dent. For three design sites, full NNK saturation may be worth
considering. Given more numerous design sites, the maximum
interesting library size will likely be limited by the screening
capacity. Even in vitro methods such as mRNA display or ribo-
some display have limits (e.g. 1014 variants) [52].

	 1.	Seek to identify libraries that are Pareto optimal [53] for minimal
<E> and large library size. In other words, if candidate library 1
has a higher <E> and a smaller size than candidate library 2, then
candidate library 1 can be discarded from consideration. To
accelerate this process, our code uses a divide and conquer
approach. See the Q_calc_pareto_stats.py script for more details.

Due to threshold protein stability effects, a library with 90 %
favorable sequences and 10 % very unfavorable sequences may be
preferable to a library consisting entirely of mediocre sequences.
Unfortunately, the <E> could be lower for the latter library. Therefore,
a preferable Pareto analysis scheme identifies libraries that have the
greatest (predicted) number of sequences with scores below a thresh-
old, while otherwise having the smallest total library size. Generally,
this threshold should be set to a value such that combinations exceed-
ing the threshold would be at risk of not being functional.

	 2.	After either Pareto analysis is complete, the remaining set of
libraries (the Pareto front) includes only the libraries that are
most worthy of consideration. Inspection of the resulting plots
should help when weighing the tradeoffs between selecting
small libraries with favorable energy statistics and larger librar-
ies with less favorable statistics.

3  Example Tests and Results

This section describes results for several illustrative degenerate
codon design problems (Fig. 2) using protein G (pdb entry 1pgb).
Table 1 defines which amino acids are design positions and which
other amino acids that are allowed to move.

2.11  Selecting
Advantageous
Degenerate Codon
Libraries via Pareto
Analysis

3.1  Model Design
Problems

Design of Optimal Combinatorial Protein Libraries

116

	 1.	Case A is intended to provide the smallest possible interesting
problem (Fig. 2a). In this case, by limiting the number of
design positions to 3, it is possible to optimize and score each
of the 8000 possible sequences via sidechain optimization.
Note, however, that even very rapid calculations become time-
consuming when applied to 381 million candidate degenerate
codon libraries (7253).

	 2.	Case B is intended to provide an example of a realistic use sce-
nario for these tools (Fig. 2b). For many experimental assays, it
would be impractical to experimentally screen a site saturation
library at 5 design positions. However, by using tailored degen-
erate codons it may be possible to obtain a library that is small
enough to screen, and will consist of a higher fraction of favor-
able sequences. Thus, by degenerate codon design, one could
make the most of the available screening capacity (e.g. ten
96-well plates). For example, consider a size constrained hydro-
phobic site. Rather than using all 20 amino acids, the degener-
ate codon “VTM” would provide just Ile, Leu, and Val, and
would help reduce combinatorial explosion of the library size.

	 3.	Case C is intended to demonstrate performance when apply-
ing the approach to a larger design problem (see Note 4). Case
C constitutes the redesign of an entire surface face of a beta
sheet (Fig. 2c). Saturation mutagenesis of such a 16-site library
is out of reach for experimental screening, but tailored codons
might be used to identify favorable libraries small enough to be
screened for binding properties via a high-throughput approach
(e.g. fluorescence-activated cell sorting).

Fig. 2 Case study design problems. Design position (gray) and mobile sidechains (white) are shown in sticks.
(a) Case A has three design sites in the hydrophobic core. (b) Case B has five design sites in the hydrophobic
core. (c) Case C has 16 design sites on the exposed surface of the beta sheet

Mark W. Lunt and Christopher D. Snow

117

	 4.	All three of these cases are suitable for conventional CPD. The
case A GMEC (wild-type Leu5, Phe30, and Trp43) was found
using SimulatedAnnealingPacker, FasterPacker, or CplexPacker
in 0.6, 13, or 87 s respectively. For case B.1, design results in a
double mutation W43T, V54I. The GMEC was found using
SimulatedAnnealingPacker, FasterPacker, or CplexPacker in
1.8, 104, or 795 s respectively. Finally, FasterPacker and
CplexPacker found the GMEC for case C.1, which had 15 sur-
face mutations (T2R, K4E, I6E, N8R, K13E, E15R, T17Y,
E19W, E42L, T44R, A48N, T49R, T51R, T53I, and T55I).
In this last case, the FasterPacker and CplexPacker required 5
and 803 s, respectively.

	 5.	To illustrate the performance determinants for the presented
methods, variant calculations were performed (Table 1) to
assess the effects of rotamer density and the use of weighting.
Specifically, for cases A.2, A.3, B.3, B.4, and C.1 rotamers were
reduced to base Dunbrack rotamer options [54]. For these
cases, the sequence/structure search space size was reduced
(Table 1) and combinatorial sidechain optimization was more
rapid. Cases A.3, B.2, and B.4 use weighted regression. Table
1 indicates which subsequent figures apply to each case and
highlights the best-case prediction accuracy (rmsdLET).

As described above, the first step for each of these model design
problems is to perform thousands of combinatorial sidechain opti-
mization calculations (instantiation) for random sequences. For
case A, all 8000 variant sequences were instantiated. For cases B
and C, 50,000 and 80,000 combinations were instantiated, respec-
tively. For all three cases, a large fraction of the sequence space
achieves a low score when optimized via FasterPacker. As expected,
the cases with more generous rotamer provisioning (Fig. 3abc)
reach lower energy values.

The score for the wild-type sequence with fully optimized side-
chain rotamers is −112.5 REU. For case A.1 the mean (median) E
is −70.9 (−99.6) REU. For case B.1 the mean (median) E is −75.8
(−104.6) REU. For case C.2 the mean (median) E is -58.7 (−93.0)
REU. The median values are lower than the mean values due to
the outsized influence of high-energy sequences on the mean.
Given these values, sequences with a predicted E above −105 REU
were flagged as having an elevated risk of being unfolded.

	 1.	Despite the close physical interaction of the design site residues
for case A, it was possible to very accurately fit the post-repack-
ing energy of the 8000 possible sequences via regression (Fig.
4a–c). There are 1141 fitting parameters in this case, consisting
of 1 free constant, 57 one-body terms (the 19 possible muta-
tions for each of the three sites), and 1083 two-body terms
(double mutations). If all 8000 sequences are fit, the rmsd is
only 1.9 REU. A better test, however, is to train the regression

3.2  Case A: High
Accuracy
Approximation
of a 3-Site Library

Design of Optimal Combinatorial Protein Libraries

118

model using portions of the 8000-sequence pool and to assess
the quality of the resulting approximate energy model using the
remaining sequences as a test set. To illustrate the effect of
training set size and regularization parameter, Fig. 4a shows
how approximation accuracy depends on these parameters.

	 2.	For case A.1, regularization was not critical. Scanning the
training set size and the regularization parameter (Fig. 4a), the
best rmsdLET was an impressively low 1.8 REU. The best per-
formance came when using a 7500-member training set with
the smallest test regularization parameter (k = 1E−7). Running
regression without regularization produced the same results.

Surprisingly, reducing the number of rotamers (case A.2) does
not reduce the performance of the regression model. Instead, rms-
dLET actually decreased from 1.8 to 1.7 REU. One difference
between case A.1 and case A.2 comes for small training sets
(approximately 1000 combinations) and low regularization pen-
alty (k < 1E−3). The slight shoulder in the case A.1 parameter scan

Fig. 3 Instantiated scores for random combinations. Black (orange) bars are combinations with E lower (higher)
than the median. (a) All 8000 sequences for case A.1. (b) All 8000 sequences for case A.2 (minimal rotamers).
(c) 50,000 random sequences for case B.1. (d) 50,000 random sequences for case B.3 (minimal rotamers). (e)
80,000 random sequences for case C.2. (f) 80,000 random sequences for case C.1 (minimal rotamers)

Mark W. Lunt and Christopher D. Snow

119

Fig. 4 Case A.1 and A.2 approximation performance. Training set combinations are partial transparent orange
points while test set combinations are black points. (a) rmsdLET versus training set size and the regularization
parameter for case A.1. The best performance from this scan is shown in (b), where a random training set
(7500 combinations) was used to fit 1141 parameters with regularization (k = 1e − 07) resulting in training set
recapitulation (rmsd = 1.8). Performance for low-energy combinations was excellent (rmsdLET = 1.8 REU) for
the 468 test set combinations within 100 REU of the minimum test set combination (−113.1 REU). The entire
test set (500 combinations) was predicted with rmsd = 3.0 REU (inset). (c) rmsdLET versus training set size and
the regularization parameter for case A.2 (minimal rotamers). (d) A random training set (7500 combinations)
was used to fit 1141 parameters with regularization (k = 0.01) resulting in training set recapitulation (rmsd = 4.2
REU). Performance for low-energy combinations was excellent (rmsdLET = 1.7 REU) for the 390 test set combi-
nations within 100 REU of the minimum test set combination (−103.9 REU). The entire test set (500 combina-
tions) was predicted with rmsd = 2.9 REU (inset)

Design of Optimal Combinatorial Protein Libraries

120

surface (Fig. 4a) becomes a distinct peak for case A.2 (Fig. 4c).
This peak represents a counterintuitive result; decreased prediction
performance for a larger training set. This result will be discussed
below in the Overfitting Trends section.

	 3.	Case A.3 attempts to improve the case A.2 performance with
weighting. Keeping the training set and regularization param-
eter fixed (7500 training set members and k = 1E−6), the expo-
nential weighting parameter τ was varied to determine which
value gave the lowest rmsdLET (Fig. 5a). τ = 125 was most effec-
tive (Fig. 5a). Compared to the non-weighted case A.2 (Fig.
4d), Fig. 5b demonstrates slightly improved rmsdLET (1.7 → 1.5
REU), with a significant concomitant sacrifice of global fit
rmsd (2.9 → 8.7 REU).

	 1.	The regression models described above predict the instantiated
Rosetta energy for any sequence within the 8000-sequence
search space. For each of the cases above, 1000 random degen-
erate codon libraries were selected. For each degenerate codon
library, the <E> was computed using the pre-calculated ener-
gies for constituent sequences.

	 2.	The library <E> predictions are quite accurate (Fig. 6), with
<E> prediction rmsd values lower than the rmsd for the predic-
tion of E for individual sequences. The rotamer-rich case A.1
accuracy was good globally (rmsd = 0.38 REU) and for the 559
libraries with predicted <E> within 30 REU of the −105.5
REU minimum (rmsd = 0.37 REU). The case A.2 accuracy was
comparable (0.5 REU globally, 0.35 REU for the 256 libraries
with predicted <E> within 30 REU of the −98.7 REU mini-

3.3  Predicting <E>
for Case A Libraries

Fig. 5 Case A.3. (a) Scanning the expweight parameter (τ in Eq. 3). Error bars
reflect the standard deviation from 20 trials with random 7500-member training
sets. (b) With τ = 125, a random training set (7500 combinations) was used to fit
1141 parameters with regularization (k = 1e − 06) resulting in training set reca-
pitulation (rmsd = 11.0). Performance for favorable test set combinations was
good (rmsdLET = 1.5 REU) for the 410 combinations within 100 REU of the mini-
mum test set combination (−103.7 REU). The entire test set (500 combinations)
was predicted with rmsd = 8.7 REU (inset)

Mark W. Lunt and Christopher D. Snow

121

mum). Finally, weighting (case A.3) degraded the <E> predic-
tion, with 2.6 REU rmsd for the global library <E> prediction,
and 0.73 REU for the 240 libraries within 30 REU of the
−99.0 REU minimum. Despite the counterproductive effect of
weighting, these levels of precision for library <E> prediction
performance are encouraging. It was particularly gratifying
that the minimal rotamer case A.2 performed so well, since all
8000 sequences can be instantiated in less than 4 s in this case.

	 1.	Random sampling is neither a systematic nor a satisfying solu-
tion for efficiently identifying libraries that are maximally
appealing for experimental testing. A systematic approach is
preferable. Since 1-body and 2-body scoring terms for the
degenerate codons are stored in a SHARPEN EnergyGraph, a
variety of combinatorial optimization algorithms are readily
available to assist with sampling.

For case A, the total library search space of 381 million is small
enough for enumeration, albeit via a relatively expensive calculation
(approximately 26 min and 8 Gb memory). Therefore, for a 3-site
library the BruteForcePacker object from SHARPEN is feasible.
The BruteForcePacker can be configured to retain a ranked queue
of the best combinations encountered. For case A, a large priority
queue was needed to retain the 4.6E5 libraries with a predicted <E>
< −105 REU (Fig. 7). For a closer look at this enumeration-based
sampling scheme, see the sample_libs_via_enum.py script.

	 2.	For larger libraries, enumeration is not going to be a practical
option. Instead, it would be better to identify the potentially
numerous low-<E> libraries with an inexpensive calculation.
Another example script launches and pools parallel Monte
Carlo trajectories to rapidly collect a set of unique libraries.
Almost 4E5 libraries predicted to be low energy were collected
in less than 5 min (Fig. 7b). For a closer look at this Monte
Carlo sampling scheme, see the sample_libs_via_MC.py script.

3.4  Sampling Case
A Libraries

Fig. 6 Predicted library <E> versus instantiated sample <E>. Vertical error bars reflect σ〈E〉 (Eq. 4). An identity
line is orange. Global (or best 30 REU) rmsd values for (a) Case A.1, (b) Case A.2, and (c) Case A.3 were 0.38
(0.37), 0.5 (0.35), and 2.6 (0.73) REU respectively

Design of Optimal Combinatorial Protein Libraries

122

	 3.	With so many candidate libraries there is a clear need for effec-
tive methods for identifying the most favorable options at a
range of library sizes. Iterative library design with an increasing
bias favoring larger libraries was used to compile a thorough
list of favorable case A.1 libraries. For each library, tabulated
energy values for all 8000 possible case A sequences were used
to compute the library <E> and the number of library mem-
bers with E < −105 REU.

	 1.	Pareto analysis helps identify interesting library candidates that
are worth consideration given two or more competing quality
metrics. For a given library size, libraries with lower <E> are pref-
erable. For a given <E>, libraries with larger size are preferable.
Several illustrative example libraries are described in Table 2.

	 2.	In the absence of a high-throughput assay, a library that is
highly enriched for stable sequences may be a superior option.
In this scenario, a strong case A candidate library consists of
the degenerate codons CTG:DVC:NNK (Table 2). These
encode a Leu for residue 5, Ala/Cys/Asp/Gly/Asn/Ser/
Thr/Tyr for residue 30, and all 20 amino acids (and a stop
codon) for residue 43. This library is a nice example of how the
design approach can end up providing suggestions that are
quite different from traditional saturation mutagenesis; only
residue 43 gets full amino acid diversity while residue 30 gets a
tailored amino acid palette and residue 5 is left as the wild-
type. This library has 1 × 8 × 20 = 160 sense outcomes and a
total library size of 168. The library <E> is −106 REU, and
136 of the sequences have E < -105 REU. The 24 less favorable
(E > −105) variants include Cys 30 paired with (Lys, Arg, Ile,
Gly, His, Cys, Asn, Asp, or Leu 43), Gly 30 paired with (His,

3.5  Selection of Case
A Libraries via Pareto
Analysis

Fig. 7 High density of low <E>-prediction libraries for Case A.1. (a) Distribution of predicted <E> for the 3-site
libraries with predicted <E> < −105 REU. (b) Discovery of libraries with predicted <E> -105 REU using parallel
MonteCarloPacker trajectories

Mark W. Lunt and Christopher D. Snow

123

Asn, Cys, Gly, Asp, or Leu 43), Thr 30 with Leu 43, and all 8
variants with Pro 43.

	 3.	Rather than asking what fraction of a library is predicted to be
low-energy, it may be helpful to turn the question around and
ask what fraction of the low-energy sequence space the library
captures. For case A, low-energy sequences could be identified
exactly via enumeration. The CTG:DVC:NNK library captures
only 18 % of the 761 case A sequences with instantiated
E < −105 REU.

	 4.	To capture a larger share of the low-energy sequence space, be
willing to test libraries with a larger risky sequence fraction. In
this latter scenario, the Pareto analysis can still provide guidance.
For example, the library encoded by VND:DND:NNK (Fig. 8a)
is likely a better choice than the next library on the Pareto front
(NNK:DHN:NNK), which only excludes Arg, Cys, Gln, Gly,
His, Pro, and Trp30 from full saturation mutagenesis.

	 5.	A second illustrative example of a tailored library is
TTA:THW:NDK (Fig. 8c). This library has a low <E> of −108,
and all 68 of its sense outcomes are low-energy variants (Table 2).
As with the other low-energy library described above, this one
uses most of the “diversity budget” for residue 43, fixes residue 5
as Leu, and uses a more tailored degenerate codon for residue 30.

The second Pareto analysis (Fig. 8b) identifies libraries with
the largest predicted number of sub-threshold sequences (E < −105
REU for case A.1) for a given library size. Full saturation muta-
genesis is required to capture all 761 of the low-energy sequences
(Fig. 8b). A close inspection of the smaller libraries (Fig. 8d) shows
that the fraction of the library that consists of low-energy sequences
drops dramatically as the library size exceeds 256. The
VND:TTC:VND library is an appealing option since 56 % of its
members consist of low-energy sequences and there are no stop
codons (Table 2).

Table 2
Library size refers to all distinct outcomes including genes that include stop codons. Stop codons are
encoded by DND, NNK, THW, and NDK

Degenerate
codons <E>, REU

#E < −105
REU # Sense

Library
size Amino acid outcomes

CTG:DVC:NNK −106 136 160 168 Just L: ACDGNSTY : All 20

VND:DND:NNK −90.2 665 5440 6048 All but CFWY: All but QHP: All 20

NNK:NNK:NNK −70.9 761 8000 9261 All 20: All 20: All 20

TTA:THW:NDK −108 68 68 90 Just L: FLSY: All but APT

VND:TTC:VND −94.7 143 256 256 All but CFWY: F : All but CFWY

Design of Optimal Combinatorial Protein Libraries

124

	 6.	Note that the calculated <E> values for these libraries weight
all constituent sequences equally, rather than reflecting the sta-
tistical likelihood of observing each sequence (see Note 5).

	 1.	The five-site library is intended to serve as a realistic model for
the kind of library where degenerate codon optimization is
valuable. Thorough sampling of five-site full saturation muta-
genesis libraries is beyond the reach of most experimental
assays. Thus, codon tailoring is advisable prior to undertaking
experimental construction and characterization of a library.

Several trends are consistent with the 3-site library (Table 1).
The best rmsdLET (4.1 REU) was for case B.2 with plentiful rotam-
ers and optimized exponential weighting (τ = 50, Eq. 3). The
choice of regularization penalty (k) was somewhat important when
using smaller training data sets (Fig. 9c). The best case B.2 rmsdLET
was obtained (Fig. 9d) when using a large training set (32,000

3.6  Case B:
The 5-site Core
Redesign Library

Fig. 8 Case A.1 library selection Pareto analysis. All 450838 libraries sampled by the iterative bias scan are
shown as orange dots. Pareto optimal libraries are black dots. (a) The Pareto front for those libraries that have
a low <E> and a high library size. (b) The Pareto front for libraries with a high estimated no. of sequences with
E < −105 REU and a low total library size (including nonsense members). (c) Small library close inspection of
panel a. (d) Small library close inspection of panel b

Mark W. Lunt and Christopher D. Snow

125

Fig. 9 Case B.1 and B.2 approximation performance. Training set combinations are partial transparent orange
points while test set combinations are black points. (a) Case B.1 rmsdLET versus training set size and the regu-
larization parameter k. The best prediction was (b), when a random training set (32,000 combinations) was
used to fit 3706 parameters with regularization (k = 0.1) resulting in training set recapitulation (rmsd = 5.95
REU). Performance for favorable test set combinations was reasonable (rmsdLET = 5.0 REU) for the 15,984
combinations within 100 REU of the minimum test set combination (−122.5 REU). The entire test set (18,000
combinations) was predicted with rmsd = 7.5 REU (inset). (c) rmsdLET versus training set size and the regular-
ization parameter k for Case B.2 (weighted regression with a tuned τ = 50 REU). The best prediction was (d),
when a random training set (32,000 combinations) was used to fit 3706 parameters with regularization
(k = 1e − 07) resulting in training set recapitulation (rmsd = 7.36 REU). Performance for favorable test set com-
binations was reasonable (rmsdLET = 4.1 REU) for the 15,984 combinations within 100 REU of the minimum
test set combination (−122.5 REU). The entire test set (18,000 combinations) was predicted with rmsd = 8.3
REU (inset)

Design of Optimal Combinatorial Protein Libraries

126

random combinations) with minimal regularization parameter
(k = 1E−7).

	 2.	Without the exponential weighting (case B.1), performance is
still good but the regularization parameter (k) is more impor-
tant still (Fig. 9a). The lowest rmsdLET (5.0 REU, Fig. 9b) was
obtained when using a large training set (32,000 random com-
binations) with a significant regularization parameter (k = 0.1).

	 3.	Pruning rotamers (cases B.3 and B.4) results in significant
performance degradation. Given minimal rotamers, the effect
of exponential weighting was more dramatic. Without expo-
nential weighting (case B.3), rmsdLET was fairly high (14.4
REU, Fig. 10a). However, with minimal rotamers and expo-
nential weighting (case B.4), rmsdLET was greatly improved
(8.4 REU, Fig. 10b). This result highlights the potential utility
of weighting.

	 1.	Case C has 16 design positions. Unlike cases A and B, these
amino acids are on the protein surface which may significantly
change the roughness of the design energy landscape (see Fig.
3f versus d). Two specific scenarios are illustrated. In case C.1,
the 16 surface sites are provided only with base Dunbrack rota-
mers for all 20 possible amino acids resulting in a combinato-
rial search problem of 1.8E35 sequence/structures. In case
C.2, provision of standard rotamers increases the search size to
6.5E45.

	 2.	Broadly speaking, the regression performance trends are simi-
lar to the trends from the smaller libraries. Case C.1 prediction
performance suffers for overly large regularization parameter
(Fig. 11a, k ≫ 10), but a modest penalty of ten yields the best
prediction performance (rmsdLET = 9.9 REU). An eyecatching
feature of the regression model training performance plot
(Fig. 11a) is the large peak (poor prediction performance)

3.7  Case C.1:
A 16-Site Surface
Library

Fig. 10 Benefits of weighted regression. (a) Case B.3 versus, (b) Case B.4. Using
weighted regression (with an optimized parameter τ = 75) cut rmsdLET almost in
half, from 14.4 REU (case B.3) to 8.4 REU (case B.4)

Mark W. Lunt and Christopher D. Snow

127

when using a low regularization parameter (k < 0.01) and fairly
large training sets (30,000–50,000 combinations). This appar-
ent overfitting pathology is present to varying degree in the
previous cases (Figs. 4ac and 9ac). This phenomenon is inves-
tigated below in the Overfitting Trends section.

Fig. 11 Case C sequence and library approximation performance. (a) Test set rmsd versus training set size and
the regularization parameter k. (b) A random training set (60,000 combinations) was used to fit 43,625 param-
eters with regularization (k = 10) resulting in training set recapitulation (rmsd = 10.46 REU). Performance for
favorable test set combinations was reasonable (rmsdLET = 9.9 REU) for the 15,265 combinations within 100
REU of the minimum test set combination (−107.9 REU). The entire test set (20,000 combinations) was pre-
dicted with rmsd = 16.1 REU (inset). (c) 1000 random degenerate codon libraries were selected. From each,
either the full library or a sample of 400 sequences were optimized via sidechain repacking and scored. The
estimated <E> values of the sample sequences were fairly well predicted. Error bars reflect σ〈E〉 (Eq. 4). The
full range (inset) was predicted with rmsd = 5.5 REU, while the 257 libraries with predicted <E> within 30 REU
of the minimum (−98.1) had rmsd = 3.6 REU. (d) Pareto analysis of libraries sampled via the iterative combi-
natorial optimization with an escalating large-library bias. See below for library descriptions

Design of Optimal Combinatorial Protein Libraries

128

	 3.	Pareto analysis (Fig. 10d) suggests that it is easy to find large
case C libraries that are largely composed of low-energy mem-
bers (E < −105 REU). For example, the libraries that are
marked LIB1, LIB2, and LIB3 all are predicted to have an 83
% or greater low-energy fraction (Table 3). Notably, the pre-
dicted <E> for LIB1 is on par with the original wild-type
sequence (-112 REU). LIB2 is slightly smaller (8.6E9 total
variants) and has a higher low-energy fraction (88 %). To get a
library that is predicted to fall entirely below the threshold,
much smaller libraries are necessary (i.e. LIB3 with 8.96E6
sequences). The predicted <E> is well below the original wild-
type sequence (-127 REU) thanks to accrued mutations that
Rosetta assesses as stabilizing. Six sites are fixed while other
sites have up to eight amino acids. The encoded amino acid
sets for LIB3 are:

L:NT:G:R:GILRSV:DGHNRS:FSY:IKLMQR:FV:EGKMRV:F:CDGHNRSY
:H:DEGHKNQRS:S:EGIKLQRV

As the library size decreases further, it becomes easy to find
libraries that are predicted to fall entirely below the −105 REU
threshold. Almost all of the 288 sampled libraries with size below
two million sequences fall into this category. In principle, to dif-
ferentiate between these candidates it could be helpful to intro-
duce another evaluation criterion such as <E>, or to assess the
fraction of constituent sequences that meets a more stringent sta-
bility threshold (e.g. E < −120 REU).

	 1.	The largest combinatorial problem for this chapter is case C.2
(Table 1). As above, the additional rotamers make a significant
improvement in performance (Fig. 12). It may be surprising to
note that the rmsdLET is lower (4.8 REU) than the comparable
calculation for case B (rmsdLET = 5.0). This can be rationalized
by noting that the design positions for case C are all surface-
exposed sites, where it is easier for amino acid combinations to
avoid clashes (given sufficient rotamer flexibility). Thus, there
are fewer legitimate higher-order frustration effects encoun-
tered in this scoring landscape (Fig. 3), and it is possible to
obtain a high accuracy fit.

Presumably, this fit could be further improved using weighting
or perhaps the introduction of 3-body terms. However, the cur-
rent level of accuracy seems quite sufficient to assist with the design
of degenerate codon libraries (Fig. 12c). The rmsd between regres-
sion model <E> predictions and directly sampled <E> estimates
was only 4.1 (or 1.7) REU for all (or <E> < −76 REU) libraries.
When chasing high precision, it is important to recall that the
underlying scoring function is itself a fairly crude approximation of
the biophysical effects in play.

3.8  Case C.2:
With Additional
Rotamers

Mark W. Lunt and Christopher D. Snow

129

Ta
bl

e
3

Ex
am

pl
e

lib
ra

rie
s

of
 in

te
re

st
 fo

r C
as

e
C.

 L
ib

ra
ry

 s
iz

e
re

fe
rs

 to
 a

ll
di

st
in

ct
 o

ut
co

m
es

 in
cl

ud
in

g
ge

ne
s

th
at

 in
cl

ud
e

st
op

 c
od

on
s

Ca
se

Na
m

e
Co

do
ns

Li
br

ar
y

si
ze

<
E>

 [R
EU

]
%

 w
ith

E 

<
 −

10
5

RE
U

C
.1

L
IB

1
C
N
T
:
K
Y
C
:
G
G
T
:
C
D
D
:
K
Y
A
:
A
S
C
:
T
B
S
:
A
B
G
:
R
Y
G
:
V
D
A
:
M
D
K
:
V
D
S
:
Y
D
Y
:
S
A
A
:
V
B
B
:
M
W
A

1.
4E

10
−1

12
84

C
.1

L
IB

2
W
T
G
:
D
S
G
:
G
G
T
:
V
D
G
:
W
Y
W
:
H
D
T
:
S
D
R
:
W
S
G
:
R
Y
G
:
K
N
T
:
T
T
C
:
V
D
W
:
G
V
A
:
G
V
A
:
V
D
G
:
C
R
S

4.
7E

9
−1

13
88

C
.1

L
IB

3
T
T
A
:
A
M
C
:
G
G
T
:
A
G
G
:
V
K
Y
:
V
R
T
:
T
H
Y
:
M
D
R
:
K
T
C
:
R
D
G
:
T
T
C
:
N
R
C
:
C
A
T
:
V
R
S
:
A
G
C
:
V
D
A

9.
0E

6
−1

27
10

0

C
.2

L
IB

4
B
B
G
:
T
A
C
:
W
Y
S
:
N
K
B
:
A
B
G
:
H
K
Y
:
S
A
A
:
M
W
A
:
V
K
Y
:
R
N
R
:
V
R
S
:
C
W
R
:
V
D
S
:
C
D
G
:
R
H
R
:
A
D
B

1.
1E

11
−1

10
88

C
.2

L
IB

5
B
B
G
:
T
A
C
:
W
Y
S
:
N
K
B
:
A
B
G
:
S
R
A
:
S
A
A
:
M
W
A
:
V
K
Y
:
R
N
R
:
V
R
S
:
C
W
R
:
V
D
S
:
C
D
G
:
R
H
R
:
A
D
B

7.
3E

10
−1

11
89

C
.2

L
IB

6
B
T
T
:
A
G
G
:
G
T
A
:
A
G
G
:
V
A
K
:
D
Y
R
:
R
H
S
:
A
R
S
:
A
H
H
:
A
A
D
:
R
H
S
:
A
M
C
:
A
G
G
:
R
B
H
:
R
D
G
:
V
K
Y

1.
6E

8
−1

19
10

0

C
.2

SA
T

N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K
:
N
N
K

6.
6E

20
−5

9
15

Design of Optimal Combinatorial Protein Libraries

130

	2.	As above, use iterative bias sampling to collect optimized librar-
ies of varying size and proceed with Pareto analysis. Illustrative
Pareto analysis of 755,912 candidate case C.2 libraries (Fig.
12d) suggests that it is even easier to find large case C.2 libraries
that are highly enriched for low-energy members (Table 3).

Fig. 12 Case C.2 sequence and library approximation performance. (a) Test set rmsd versus training set size
and the regularization parameter k. (b) A random training set (60,000 combinations) was used to fit 43,625
parameters with regularization (k = 1) resulting in training set recapitulation (rmsd = 1.7 REU). The test set
(20,000 combinations) was predicted with rmsd = 6.6 REU. Performance for favorable combinations was rea-
sonable (rmsdLET = 4.8 REU) for the 16,996 test set combinations within 100 REU of the minimum test set
combination (−117 REU). (c) 1000 random degenerate codon libraries were selected. From each, either the
full library or a sample of 400 sequences were optimized via sidechain repacking and scored. The estimated
<E> values of the sample sequences were fairly well predicted (rmsd = 4.1 REU over the full range, inset).
Error bars reflect σ〈E〉 (Eq. 4). Performance for the 457 libraries with predicted <E> within 30 REU of the mini-
mum (−106.5 REU) was better still (rmsd = 1.7 REU). (d) Pareto analysis of libraries sampled via the iterative
combinatorial optimization with an escalating large-library bias. See below for LIB descriptions

Mark W. Lunt and Christopher D. Snow

131

This is not surprising since the additional rotamers result in
more highly optimized structures with lower Rosetta scores.
LIB6 is the largest library that is predicted to have 100 % low-
energy constituents. The encoded amino acid sets for LIB6 are:

FLV:R:V:R:DEHKNQ:AILMSTV:ADEIKMNTV:KNRS:IKNT:KN:ADEIKM
NTV:NT:R:AGIRSTV:EGKMRV:GILRSV

These libraries compare favorably to a brute force saturation
mutagenesis approach. For one, library size can be matched to the
available transformation and screening capacity whereas the size of
the NNK library exceeds feasible screening size. Also, the NNK
library has a high <E> (−59 REU) and a large fraction of the con-
stituent sequences are unfavorable (85 % have E > −105 REU).

	 1.	The purpose of this section is to investigate the counterintui-
tive overfitting behavior noted above. Inferior prediction per-
formance for models derived from larger training sets occurred
repeatably for varying input training sets and using either the
lsmr or cvxopt regression tools. This effect was most promi-
nent for three regression model variants (cases A.2, B.3, and
C.1) with negligible regularization (k = 1E−7) (Fig. 13a). The
effect was largest for case C.1. Therefore, to illustrate the fit-
ting pathology two regression models can be compared: the fit
for case C.1 with training sets of 24,000 (Fig. 13b) versus
45,000 (Fig. 13c).

3.9  Overfitting
Trends

Fig. 13 Overtraining. (a) Apparent overfitting with “free” regression (regularization k = 1E−7) was prominent for
training case A.2 with ~1000 combinations (black), case B.2 with ~4000 combinations (orange), and case C.1
with ~45,000 combinations (green). Error bars reflect the standard deviation among 5 random training set
replicates. We use case C.1 to further illustrate the degradation of prediction performance: (b) Prediction per-
formance (black) is reasonable (rmsdLET = 13.9 REU) when trained with 24,000 random combinations. The
training set (orange) is recapitulated exactly (rmsd = 0.0). (c) Prediction performance (black) is degraded (rms-
dLET = 21.2 REU) when trained with 45,000 random combinations. The training set (orange) is still recapitulated
nearly exactly (rmsd = 1.4 REU)

Design of Optimal Combinatorial Protein Libraries

132

	 2.	First, a random training set (24,000 combinations) is used to fit
43,625 parameters with regularization (k = 1e−07). Given the
over-abundance of fitting parameters, it was not surprising that
the training set was recapitulated exactly (rmsd = 0.00, orange
dots). In contrast, the entire test set was predicted with
rmsd = 20.7 REU (Fig. 13b). The 42,745 test set combinations
within 100 REU of the minimum test set combination (−107.9
REU) could be predicted with rmsdLET = 13.9 REU (Fig. 13b).

	 3.	For comparison, a larger random training set (45,000 combi-
nations) was used to fit 43,625 parameters with regularization
(k = 1e−07) resulting in near exact training set recapitulation
(rmsd = 1.4 REU, orange dots). In contrast, the entire test set
was predicted with rmsd = 42.4 REU (Fig. 13c). The 26,756
test set combinations within 100 REU of the minimum test set
combination (-107.8 REU) were only predicted with rmsd-
LET = 21.2 REU.

	 1.	Scenarios with fewer rotamers (e.g. cases A.2, B.3, and C.1)
have a greater tendency to experience overfitting.

	 2.	Overfitting can be suppressed by regularization (e.g. Fig. 11a)
	 3.	The best regularization parameter seems to grow with the

problem size (k = 0.01, 1, and 10 for cases A.2, B.3, and C.1).
	 4.	Prediction performance is most degraded when the fit has a

certain number of training examples: ~1000 for A.2, ~4000
for B.3, and ~45,000 for C.1 (Fig. 13a). These numbers are
similar to the number of fitting parameters: respectively 1141,
3706, and 43,625.

	 5.	Despite training the case C.1 model with 45,000 combina-
tions, the training set combinations (orange points) are still
clearly being overfit (compare to Fig. 11)

	 6.	Given these observations, it may be that having a small number
of training instances (relative to the number of fit parameters)
serves to restrain the magnitude of the fit parameters, much as
the regularization process penalizes large fit parameter magni-
tude. When the number of training instances is comparable to
the number of parameters, fit parameters are more likely to
adopt large magnitude values to fit the training set data.
Meanwhile, minimal rotamer cases make the energy landscape
rougher (compare Fig. 3bdf to Fig. 3acd). The rougher train-
ing set energy landscape will also result in more extreme fit
parameters that degrade the testset prediction performance.
The effectiveness of regularization, which attempts to keep
parameters near 0, supports the idea that the fitting pathology
is tied to the magnitude of the fitting terms.

To investigate, examine the fit parameters for the two case C1
regression models (Fig. 13bc). The superior model trained with

3.10  Recap
the Pertinent
Observations

Mark W. Lunt and Christopher D. Snow

133

24,000 sequences has a sum of absolute parameter values of
60,831, while the inferior model trained with 45,000 combina-
tions has a sum of absolute parameter values of 301,104.

	 7.	The dramatic fivefold shift in the magnitude of the fit parameters
also appears in histograms of the fitting parameter values (Fig.
14). There is some qualitative consistency between the two mod-
els. For example, the most unfavorable term for both models is
the 1-body effect of T51P (unsurprising since T51 is within a
beta strand), and the most favorable term is the 2-body effect of
I6G:T53Y which can be rationalized as a bump/hole interaction
between these adjacent residues on the beta sheet surface.
However, it is important to note that the actual values of the
coefficients are not stable; attempts to glean additional insight
from inspection of the fit coefficients may be problematic.

One take home lesson is that regression model performance can
be difficult to anticipate (and may be strongly dependent on regu-
larization) unless the training set size significantly exceeds the num-
ber of fitting parameters. Any scientist preparing a regression model
of this type should carefully scan the training set size and regulariza-
tion parameter to ensure optimal model quality (see Note 6).

The three design problems discussed here can be framed as con-
ventional CPD calculations. Searching the sequence-structure
space directly, optimal solutions can be found using either CPLEX
or FasterPacker (see above). However, the 725 possible mixtures of
amino acids possible at each site dwarfs the 20 possible amino
acids. Sampling in library space, therefore, is significantly more
challenging. With the exception of case A, it is impractical to tabu-
late the instantiated energy of all the sequences encoded by each
library. A brute force search instantiating all sequence combina-
tions (assuming generous rotamers) requires only 38 seconds for
case A.1 to a projected 8E11 years for case C.2.

3.11  Computational
Time

Fig. 14 Comparison of Case C.1 fit coefficients. (a) The superior model was
trained with 24,000 sequences (see also Fig. 13b) and had parameters of lesser
magnitude, while (b) the inferior model was trained with 45,000 combinations
(see also Fig. 13c) and had fit parameters of greater magnitude

Design of Optimal Combinatorial Protein Libraries

134

Table 4
This Table summarizes the Python scripts used for the calculations. Time represents the elapsed wall
clock time in seconds necessary to complete the calculations on a single CPU

Time (s) Script name Script purpose

3 A_prep.py Process the input PDB model and save as a
CHOMP System

219 B_fill_energy_graph.py Setup the design problem, fill, and save the
EnergyGraph

10 C_pick_initial_set.py Select a set of combinations to serve as an initial
pool

3077 D_score_initial_set_multi.py Instantiate: run repacking calculations on the
initial pool

5 E_split_to_training_samples.py Randomly divide the initial pool into training and
test sets

nd F_try_regression.py Do a quick regression test to ensure things are
working so far

2190 G_scan_training_params.py Repeatedly run regression varying the training set
size and regularization parameter

nd H_gen_figure_trainsize_vs_
ridgeparam_vs_testrmsd.py

Illustrate test set performance versus training
parameters

nd I_gen_fig_example_train_test.py Illustrate the training set and test set fit for the best
case parameters

1978 M_score_dgen_codon_sets.py Convert the amino acid level regression model to
a degenerate codon level model

13,563 N_sample_random_libraries.py Randomly select a set of random degenerate
codon libraries and perform the requisite
instantiation (repacking)

nd O_lib_predictE_vs_actualE.py Illustrate the correlation between predicted and
actual (sampled) <E> for each library

1490 P_iterlib_sample.py Collect libraries by 100 rounds of combinatorial
optimization for low <E> with an escalating bias
favoring larger libraries.

22,918 Q_calc_pareto_stats.py First lookup or predict the energy for a sequence
sample from each candidate library. Then
calculate <E> and the expected number of
variants with E < a threshold. Finally, use a
divide and conquer approach to compute the
two Pareto fronts of interest.

nd R_plot_pareto_ok.py Plot the Pareto front (black) and other libraries
(orange)

Mark W. Lunt and Christopher D. Snow

135

In comparison, the aggregate calculation time for the steps
described above is attractive. All reported calculations could be
performed on a single 2.8 GHz Intel Core i7 machine over several
days (see Table 4 for case C.2 calculation time table). Most of the
time-consuming calculations were parallelized across 8 threads
using the Python multiprocessing module. Distributing bottleneck
calculations beyond the cores of a single CPU could easily further
reduce wall time.

One easy way to limit the CPU time while retaining the power
of the library-space optimization approach would be to prune the
set of degenerate codons considered at each design site. One prag-
matic approach might be to design a limited number of amino acid
sets, guided by biophysical intuition (e.g. hydrophobic, large
hydrophobic, small, large, charged, aromatic, etc.). Selecting sev-
eral hundreds of these useful amino acid sets would make the
library design code more efficient than the current search over 725
possibilities. Similarly, with repeated use of the current 725-mem-
ber design palette, it may be possible to identify which degenerate
codons are rarely useful and eliminate them from consideration.

4  Notes

	 1.	The presented methods are flexible, and amenable for modifi-
cation. One such modification that might be particularly desir-
able would be to enable optimization of amino acid bias. At
the outset, the degenerate codon search space was defined to
be the 725 degenerate codons that produce unique sense mix-
tures of amino acids. It is worthwhile to note, however, that
the formalism presented here would also work if the design
palette consists of the 1439 degenerate codons that produce
unique sense ratios of amino acids. If outcome amino acid
probabilities are included when creating the degenerate codon
energy model (Eqs. 5 and 6), the resulting optimization target
<E> will reflect the expectation REU score for clones pulled at
random from the experimental library. This additional level of
design could prove useful. Optimizing amino acid frequencies
could further increase library fitness by decreasing <E>. For
example, given a particular site that favors leucine over phenyl-
alanine, combinatorial library optimization might select a
degenerate codon like YTD that encodes a 5:1 ratio of Leu to
Phe rather than TTB that encodes a 1:2 ratio of Leu to Phe.

	 2.	The illustrative examples presented in this chapter provide
another example of regression-based approximations success-
fully capturing more expensive calculations with sufficient
accuracy to guide an otherwise infeasible search problem. By
“integrating out” the structure variables, and providing an
essentially instantaneous lookup of the predicted energy for

Design of Optimal Combinatorial Protein Libraries

136

any given sequence, it becomes feasible to execute a combina-
torial search directly in “library space.” This approach was
recently reported in the context of cluster expansion [14].
Readers of this chapter who are preparing to design a codon
library are therefore encouraged to review Verma et al.

	 3.	In principle, a penalty could also be levied for stop codons by
giving stop codon outcomes a large 1-body energy term. The
goal would be to ensure that non-sense outcomes have large
unfavorable scores commensurate with other likely unfolded
sequences.

	 4.	It is worth noting that there are certain technical challenges to
performing library-space optimization for case C. With 725
possible degenerate codons and 16 design sites, the library
search space has 72516 combinations, or 5.8E45. Building a
graph of the codon:codon scores (Fig. 1) required 30 minutes.
Storing the graph in binary form on disk requires nearly a
gigabyte.

	 5.	In practice, some sequences will be more frequent than others.
For example, the MKD degenerate codon yields an arginine 5
times more frequently than a serine. If desired, it would be easy
to instead calculate the expectation value <E> for sequences
drawn from the library with the actual amino acid frequency
weights (Eqs. 5 and 6) rather than assuming equal representa-
tion. The former approach may be preferable if the planned
approach is to build a large experimental library and character-
ize only a random subset thereof.

	 6.	Additional caution and careful regularization parameter tuning
is recommended if pursuing high-accuracy regression models
including 3-body terms, since the high number of possible
3-body terms may make it difficult to prepare models with a
large excess of training data.

References

	 1.	 Ponder JW, Richards FM (1987) Tertiary tem-
plates for proteins. Use of packing criteria in
the enumeration of allowed sequences for dif-
ferent structural classes. J Mol Biol 193:
775–791

	 2.	 Pierce NA, Winfree E (2002) Protein design is
NP-hard. Protein Eng 15:779–782

	 3.	 Desmet J, De Maeyer M, Hazes B, Lasters I
(1992) The dead-end elimination theorem
and its use in protein side-chain positioning.
Nature 356:539–542

	 4.	 Desmet J, Spriet J, Lasters I (2002) Fast and
accurate side-chain topology and energy refine-
ment (FASTER) as a new method for protein
structure optimization. Proteins 48:31–43

	 5.	 Canutescu AA, Shelenkov AA, Dunbrack RL
(2003) A graph-theory algorithm for rapid
protein side-chain prediction. Protein Sci
12:2001–2014

	 6.	 Kingsford CL, Chazelle B, Singh M (2005)
Solving and analyzing side-chain positioning
problems using linear and integer program-
ming. Bioinformatics 21:1028–1039

	 7.	 Allen BD, Mayo SL (2006) Dramatic perfor-
mance enhancements for the FASTER optimi-
zation algorithm. J Comput Chem 27:
1071–1075

	 8.	 Hallen MA, Keedy DA, Donald BR (2012)
Dead-end elimination with perturbations
(DEEPer): A provable protein design algorithm

Mark W. Lunt and Christopher D. Snow

137

with continuous sidechain and backbone flexi-
bility., Proteins

	 9.	 Zhou F, Grigoryan G, Lustig SR et al (2005)
Coarse-graining protein energetics in sequence
variables. Phys Rev Lett 95:148103

	10.	 Grigoryan G, Zhou F, Lustig SR et al (2006)
Ultra-fast evaluation of protein energies directly
from sequence. PLoS Comput Biol 2, e63

	11.	 Grigoryan G, Reinke AW, Keating AE (2009)
Design of protein-interaction specificity gives
selective bZIP-binding peptides. Nature 458:
859–864

	12.	 Apgar JR, Hahn S, Grigoryan G, Keating AE
(2009) Cluster expansion models for flexible-
backbone protein energetics. J Comput Chem
30:2402–2413

	13.	 Hahn S, Ashenberg O, Grigoryan G, Keating
AE (2010) Identifying and reducing error in
cluster-expansion approximations of protein
energies. J Comput Chem 31(6):2900–2914

	14.	 Verma D, Grigoryan G, Bailey-Kellogg C
(2015) Structure-based design of combinato-
rial mutagenesis libraries. Protein Sci 24:
895–908

	15.	 Liao J, Warmuth MK, Govindarajan S et al
(2007) Engineering proteinase K using
machine learning and synthetic genes. BMC
Biotechnol 7:16

	16.	 Otey CR, Landwehr M, Endelman JB et al
(2006) Structure-guided recombination cre-
ates an artificial family of cytochromes P450.
PLoS Biol 4, e112

	17.	 Li Y, Drummond DA, Sawayama AM et al
(2007) A diverse family of thermostable cyto-
chrome P450s created by recombination of
stabilizing fragments. Nat Biotechnol 25:
1051–1056

	18.	 Heinzelman P, Snow CD, Wu I et al (2009) A
family of thermostable fungal cellulases created
by structure-guided recombination. Proc Natl
Acad Sci U S A 106:5610–5615

	19.	 Heinzelman P, Snow CD, Smith MA et al
(2009) SCHEMA recombination of a fungal
cellulase uncovers a single mutation that con-
tributes markedly to stability. J Biol Chem
284:26229–26233

	20.	 Heinzelman P, Komor R, Kanaan A et al
(2010) Efficient screening of fungal cello-
biohydrolase class I enzymes for thermostabi-
lizing sequence blocks by SCHEMA
structure-guided recombination. Protein Eng
Des Sel 23:871–880

	21.	 Smith MA, Rentmeister A, Snow CD et al
(2012) A diverse set of family 48 bacterial glyco-
side hydrolase cellulases created by structure-
guided recombination. FEBS J 279:4453–4465

	22.	 Silberg JJ, Endelman JB, Arnold FH (2004)
SCHEMA-guided protein recombination.
Methods Enzymol 388:35–42

	23.	 Endelman JB, Silberg JJ, Wang ZG, Arnold
FH (2004) Site-directed protein recombina-
tion as a shortest-path problem. Protein Eng
Des Sel 17:589–594

	24.	 Pantazes RJ, Saraf MC, Maranas CD (2007)
Optimal protein library design using recombi-
nation or point mutations based on sequence-
based scoring functions. Protein Eng Des Sel
20:361–373

	25.	 Johnson LB, Huber TR, Snow CD (2014)
Methods for library-scale computational pro-
tein design. Methods Mol Biol 1216:
129–159

	26.	 Voigt CA, Mayo SL, Arnold FH, Wang ZG
(2001) Computational method to reduce the
search space for directed protein evolution.
Proc Natl Acad Sci 98:3778

	27.	 Wang W, Saven JG (2002) Designing gene
libraries from protein profiles for combinato-
rial protein experiments. Nucleic Acids Res
30:e120

	28.	 Mena MA, Daugherty PS (2005) Automated
design of degenerate codon libraries. Protein
Eng Des Sel 18:559–561

	29.	 Allen BD, Nisthal A, Mayo SL (2010)
Experimental library screening demonstrates
the successful application of computational
protein design to large structural ensembles.
Proc Natl Acad Sci 107:19838–19843

	30.	 Parker AS, Griswold KE, Bailey-Kellogg C
(2011) Optimization of combinatorial muta-
genesis. J Comput Biol 18:1743–1756

	31.	 Chen TS, Palacios H, Keating AE (2013)
Structure based re-design of the binding speci-
ficity of anti-apoptotic Bcl-xL. J Mol Biol
425:171–185

	32.	 Jacobs TM, Yumerefendi H, Kuhlman B,
Leaver-Fay A (2015) SwiftLib: rapid
degenerate-codon-library optimization
through dynamic programming. Nucleic Acids
Res 43:e34

	33.	 Treynor TP, Vizcarra CL, Nedelcu D, Mayo
SL (2007) Computationally designed libraries
of fluorescent proteins evaluated by preserva-
tion and diversity of function. Proc Natl Acad
Sci U S A 104:48–53

	34.	 Patrick WM, Firth AE, Blackburn JM (2003)
User-friendly algorithms for estimating com-
pleteness and diversity in randomized protein-
encoding libraries. Protein Eng 16:451–457

	35.	 Rohl CA, Strauss CEM, Misura KMS, Baker D
(2004) Protein structure prediction using
Rosetta. Methods Enzymol 383:66–93

Design of Optimal Combinatorial Protein Libraries

138

	36.	 Hughes MD, Nagel DA, Santos AF et al (2003)
Removing the redundancy from randomised
gene libraries. J Mol Biol 331:973–979

	37.	 Tang L, Gao H, Zhu X et al (2012)
Construction of “small-intelligent” focused
mutagenesis libraries using well-designed com-
binatorial degenerate primers. Biotechniques
52:149–158

	38.	 Kille S, Acevedo-Rocha CG, Parra LP et al
(2013) Reducing codon redundancy and
screening effort of combinatorial protein
libraries created by saturation mutagenesis.
ACS Synth Biol 2:83–92

	39.	 Ashraf M, Frigotto L, Smith ME et al (2013)
ProxiMAX randomization: a new technology
for non-degenerate saturation mutagenesis of
contiguous codons. Biochem Soc Trans
41:1189–1194

	40.	 Tang L, Wang X, Ru B et al (2014) MDC-
Analyzer: a novel degenerate primer design tool
for the construction of intelligent mutagenesis
libraries with contiguous sites. Biotechniques
56:301–302, 304, 306–308, passim

	41.	 Nov Y, Segev D (2013) Optimal codon ran-
domization via mathematical programming.
J Theor Biol 335:147–152

	42.	 Sanchez JM, Ducastelle F, Gratias D (1984)
Generalized cluster description of multicom-
ponent systems. Physica A 128:334–350

	43.	 Ng AH, Snow CD (2011) Polarizable protein
packing. J Comput Chem 32:1334–1344

	44.	 Ponder JW, Wu C, Ren P et al (2010) Current
status of the AMOEBA polarizable force field.
J Phys Chem B 114:2549–2564

	45.	 Loksha IV, Maiolo JR 3rd, Hong CW et al
(2009) SHARPEN-systematic hierarchical
algorithms for rotamers and proteins on an
extended network. J Comput Chem 30:
999–1005

	46.	 IBM ILOG CPLEX Optimization Studio
12.6.2. IBM

	47.	 Andersen MS, Dahl J, Vandenberghe L (2013)
CVXOPT: a python package for convex opti-
mization, version 1.1.6

	48.	 Davis TA (2009) User guide for CHOLMOD:
a sparse Cholesky factorization and modifica-
tion package

	49.	 Fong D, Saunders M (2011) LSMR: an itera-
tive algorithm for sparse least-squares prob-
lems. SIAM J Sci Comput 33:2950–2971

	50.	 Jones E, Oliphant T, Peterson P, others
(2001) SciPy: open source scientific tools for
Python

	51.	 Levine HA (1979) Review: A. N. Tikhonov
and V. Y. Arsenin, solutions of ill posed prob-
lems. Bull Am Math Soc 1:521–524

	52.	 Amstutz P, Forrer P, Zahnd C, Plückthun A
(2001) In vitro display technologies: novel
developments and applications. Curr Opin
Biotechnol 12:400–405

	53.	 He L, Friedman AM, Bailey-Kellogg C (2012)
A divide-and-conquer approach to determine
the Pareto frontier for optimization of protein
engineering experiments. Proteins 80:
790–806

	54.	 Dunbrack RL Jr, Karplus M (1993) Backbone-
dependent rotamer library for proteins. J Mol
Biol 230:543–574

Mark W. Lunt and Christopher D. Snow

	Chapter 7: A Structure-Based Design Protocol for Optimizing Combinatorial Protein Libraries
	1 Introduction
	1.1 Expanding Computational Protein Design Horizons Using Regression
	1.2 Protein Library Design
	1.3 Degenerate Codon Libraries
	1.4 Regression and Energy Functions
	1.5 Cluster Expansion

	2 Methods
	2.1 Overview
	2.2 Instantiation: Combinatorial Optimization of Sidechain Positions
	2.3 Term Selection
	2.4 Solving Large Regularized Regression Problems
	2.5 Weighted Regression
	2.6 Quantifying Regression Model Performance
	2.7 Using the Approximation to Select Targets
	2.8 Calculating the Properties of Degenerate Codon Libraries
	2.9 Combinatorial Design in Degenerate Codon Library Space
	2.10 Sampling Diverse Libraries via Combinatorial Optimization
	2.11 Selecting Advantageous Degenerate Codon Libraries via Pareto Analysis

	3 Example Tests and Results
	3.1 Model Design Problems
	3.2 Case A: High Accuracy Approximation of a 3-Site Library
	3.3 Predicting <E> for Case A Libraries
	3.4 Sampling Case A Libraries
	3.5 Selection of Case A Libraries via Pareto Analysis
	3.6 Case B: The 5-site Core Redesign Library
	3.7 Case C.1: A 16-Site Surface Library
	3.8 Case C.2: With Additional Rotamers
	3.9 Overfitting Trends
	3.10 Recap the Pertinent Observations
	3.11 Computational Time

	4 Notes
	References

