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    Chapter 4   

 Rosetta and the Design of Ligand Binding Sites                     

     Rocco     Moretti    ,     Brian     J.     Bender    ,     Brittany     Allison    , and     Jens     Meiler      

  Abstract 

   Proteins that bind small molecules (ligands) can be used as biosensors, signal modulators, and sequestering 
agents. When naturally occurring proteins for a particular target ligand are not available, artifi cial proteins 
can be computationally designed. We present a protocol based on RosettaLigand to redesign an existing 
protein pocket to bind a target ligand. Starting with a protein structure and the structure of the ligand, 
Rosetta can optimize both the placement of the ligand in the pocket and the identity and conformation of 
the surrounding sidechains, yielding proteins that bind the target compound.  

  Key words     Computational design  ,   Protein/small molecule interaction  ,   Sequence optimization  , 
  Protein design  ,   Ligand docking  

1      Introduction 

 Proteins which bind to small molecules (i.e. ligands) are involved 
in many biological processes such as  enzyme   catalysis,    receptor sig-
naling, and metabolite transport. Designing these interactions can 
produce reagents which can serve as biosensors, in vivo diagnos-
tics, signal modulators, molecular delivery devices, and sequester-
ing agents [ 1 – 5 ]. Additionally, the computational design of 
proteins which bind small molecules serves as a critical test of our 
understanding of the principles that drive protein/ligand 
interactions. 

 While in vitro techniques for the optimization of protein/
ligand interactions have shown success [ 6 ], these are limited in the 
number of sequence variants which can be screened, and often 
require at least a modest  starting   affi nity which to further optimize 
[ 7 ]. Computational techniques allow searching larger regions of 
sequence space and permit design in protein scaffolds with no 
detectable intrinsic affi nity for the target ligand. Computational 
and in vitro techniques are often complementary and starting 
activity achieved via computational design can often be improved 
via in vitro techniques ([ 8 ] and Chapter   9     of this volume). 
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Although challenges remain, computational design  of   small mole-
cule interactions have yielded success on a number of occasions 
[ 5 ,  9 ], and  further attempts will refi ne our predictive ability to 
generate novel ligand binders. 

 The Rosetta macromolecular modeling software suite [ 10 ,  11 ] 
has proven to be a robust platform for protein design, having pro-
duced novel protein folds [ 12 ,  13 ], protein/DNA interactions 
[ 14 ],    protein/peptide interactions [ 15 ], protein/protein interac-
tions [ 16 ], and novel enzymes [ 17 – 19 ]. Technologies for design-
ing protein/ligand interactions have also been developed and 
applied [ 4 ,  8 ,  20 ]. Design of ligand binding proteins using Rosetta 
approaches the problem in one of two ways. One method derives 
from enzyme design, where predefi ned key interactions to the 
ligand are emplaced onto a protein scaffold and the surrounding 
context is subsequently optimized around them [ 8 ]. The other 
derives from  ligand   docking, in which the interactions with a mov-
able ligand are optimized comprehensively [ 4 ,  20 ]. Both approaches 
have proven successful in protein redesign, and features from both 
can be combined using  the   RosettaScripts system [ 21 ], tailoring 
the design protocol to particular design needs. 

 Here we present a protocol derived  from    RosettaLigand   ligand 
docking [ 22 – 25 ], which designs a protein binding site around a 
given small molecule ligand (Fig.  1 ). After preparing the protein 
and ligand structures, the placement of the ligand in the binding 
pocket is optimized, followed by optimization of sidechain identity 
and conformation. This process is repeated iteratively, and the pro-
posed designs are sorted and fi ltered by a number of relevant  struc-
tural   metrics, such as  predicted   affi nity and hydrogen bonding. 
This design process should be considered as part of the integrated 
program of computational and experimental work, where proteins 
designed computationally are tested experimentally and the experi-
mental results are used to inform subsequent rounds of computa-
tional design.

2       Materials 

     1.    A computer running a Unix-like operating system such as Linux 
or MacOS. Use of a multi-processor computational cluster is 
recommended for productions runs, although test runs and 
small production runs can be performed on conventional laptop 
and desktop systems.   

   2.    Rosetta. The Rosetta modeling package can be obtained from 
 the   RosettaCommons website (  https://www.rosettacommons.
org/software/license-and-download    ). Rosetta licenses are 
available free to academic users. Rosetta is provided as source 
code and must be compiled before use. See the Rosetta 
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Documentation (  https://www.rosettacommons.org/docs/lat-
est/    ) for instructions on how to compile Rosetta. The protocol 
in this paper has been tested with Rosetta weekly release version 
2015.12.57698.   

   3.    A program to manipulate small molecules. OpenBabel [ 26 ] is a 
free software package which allows manipulation of many small 
molecule fi le formats. See   http://openbabel.org/     for down-
load and installation information. The protocol in this paper has 
been tested with OpenBabel version 2.3.1. Other small mole-
cule manipulation programs can also be used.   

  Fig. 1    Flowchart of RosettaLigand design protocol. From the combined input 
coordinates of the protein and ligand, the position of the ligand is optimized. 
Next, residues in the protein/ligand interface are optimized for both identity and 
position. After several cycles of small molecule perturbation, sidechain rotamer 
sampling, Monte Carlo minimization with Metropolis (MCM) criterion, and a fi nal 
gradient-based minimization of the protein to resolve any clashes (“high resolu-
tion redocking”), the fi nal model is the output. Further optimization can occur by 
using the fi nal models of one round of design as the input models of the next 
round. Most variables in this protocol are user-defi ned, and will be varied to best 
fi t the protein–ligand complex under study       
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   4.    A ligand conformer generation program. We recommend the 
BCL [ 27 ] which is freely available from    http://meilerlab.org/
index.php/bclcommons     for academic use but does require an 
additional license to the Cambridge Structural Database [ 28 ] 
for conformer generation. The protocol in this paper has been 
tested with BCL version 3.2. Other conformer generation pro-
grams such as Omega [ 29 ], MOE [ 30 ], or RDKit [ 31 ] can also 
be used.   

   5.    The structure of the target small molecule in a standard format 
such as SDF or SMILES ( see   Note 1 ).   

   6.    The structure of the protein to be redesigned, in PDB format 
( see   Notes 2  and  3 ).      

3    Methods 

 Throughout the protocol ${ROSETTA} represents the directory 
in which Rosetta has been installed. File contents and commands 
to be run in the terminal are in  italics . The use of a bash shell is 
assumed—users of other shells may need to modify the syntax of 
command lines. 

  
 Structure from non-Rosetta sources  or   structures from other 
Rosetta protocols can have minor structural variations resulting in 
energetic penalties which adversely affect the design process ( see  
 Notes 4  and  5 ). 

  ${ROSETTA}/main/source/bin/relax.linuxgccrelease -ignore_
unrecognized_res -ignore_zero_occupancy_false -use_input_sc -fl ip_HNQ 
-no_optH false -relax:constrain_relax_to_start_coords -relax:coord_con-
strain_sidechains -relax:ramp_constraints false -s PDB.pdb  

 For convenience, rename the output structure. 
  mv PDB_0001.pdb PDB_relaxed.pdb   

  
     1.    Convert the small molecule to SDF format, including adding 

hydrogens as needed ( see   Note 6 ).     
  obabel LIG.smi --gen3D -O LIG_3D.sdf  
  obabel LIG_3D.sdf -p 7.4 -O LIG.sdf 

    2.    Generate a library of ligand conformers ( see   Notes 7  and  8 ).    
    bcl.exe molecule: ConformerGenerator -top_models 100 -ensem-
ble_fi lenames LIG.sdf -conformers_single_fi le LIG_conf.sdf 

    3.    Convert the conformer library into a Rosetta-formatted “params 
fi le” ( see   Notes 9 and 10 ).    
   ${ROSETTA}/main/source/src/python/apps/public/molfile_

to_params.py -n LIG -p LIG --conformers-in-one-fi le LIG_conf.sdf  
 This will produce three fi les: “LIG.params”, a Rosetta-readable 

description of the ligand; “LIG.pdb”, a selected ligand conformer; 
and “LIG_conformers.pdb”, the set of all conformers ( see   Note 11 ).  

3.1  Pre-relax 
the Protein Structure 
into the Rosetta 
Scoring Function [ 32 ]

3.2  Prepare 
the Ligand
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       1.    Identify the location of desired interaction pockets. Visual 
inspection using programs like PyMol or Chimera [ 33 ] is nor-
mally the easiest method ( see   Note 14 ). Use the structure edit-
ing mode of PyMol to move the LIG.pdb fi le from step 3.2.3 
into the starting conformation. Save the repositioned molecule 
with its new coordinates as a new fi le (LIG_positioned.pdb) ( see  
 Note 15 ).   

   2.    If necessary, use a text editor to make the ligand be residue 1 on 
chain X ( see   Note 16 ).   

   3.    Using a structure viewing program, inspect and validate the 
placement of the ligand (LIG_positioned.pdb) in the binding 
pocket of the protein (PDB_relaxed.pdb) ( see   Note 17 ).      

  
     1.    Prepare a residue specifi cation fi le. A Rosetta resfi le allows speci-

fi cation of which residues should be designed and which should 
not. A good default is a resfi le which permits design at all resi-
dues at the auto-detected interface ( see   Note 18 ).     
  ALLAA  
  AUTO  
  start 
       1 X NATAA    

   2.    Prepare a docking and design script (“design.xml”). The sug-
gested protocol is based off  of   RosettaLigand docking using  the 
  RosettaScripts framework [ 22 – 25 ]. It will optimize the location 
of ligand in the binding pocket (low_res_dock), redesign the 
surrounding sidechains (design_interface), and refi ne the inter-
actions in the designed context (high_res_dock). To avoid spu-
rious mutations, a slight energetic bonus is given to the input 
residue at each position (favor_native).    

   <ROSETTASCRIPTS>  
      <SCOREFXNS>  

  <ligand_soft_rep weights=ligand_soft_rep />  
  <hard_rep weights=ligandprime />  

      </SCOREFXNS>  
      <TASKOPERATIONS>  

   <DetectProteinLigandInterface name=design_
interface cut1=6.0 cut2=8.0 cut3=10.0 cut4=12.0 
design=1 resfi le="PDB.resfi le"/> # see   Note 19  

      </TASKOPERATIONS>  
      <LIGAND_AREAS>  

   <docking_sidechain chain=X cutoff=6.0 add_
nbr_radius=true all_atom_mode=true minimize_
ligand=10/>  
   <fi nal_sidechain chain=X cutoff=6.0 add_nbr_
radius=true all_atom_mode=true/>  
   <fi nal_backbone chain=X cutoff=7.0 add_
nbr_radius=false all_atom_mode=true Calpha_
restraints=0.3/>  

      </LIGAND_AREAS>  
      <INTERFACE_BUILDERS>  

3.3  Place the Ligand 
into the Protein ( See  
 Notes 12  and  13 )

3.4  Run 
Rosetta Design
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   <side_chain_for_docking ligand_areas=docking_
sidechain/>  
   <side_chain_for_fi nal ligand_areas=fi nal_
sidechain/>  
   <backbone ligand_areas=fi nal_backbone extension_
window=3/>  

      </INTERFACE_BUILDERS>  
      <MOVEMAP_BUILDERS>  

   <docking sc_interface=side_chain_for_docking 
minimize_water=true/>  
   <fi nal sc_interface=side_chain_for_fi nal bb_
interface=backbone minimize_water=true/>  

      </MOVEMAP_BUILDERS>  
       <SCORINGGRIDS ligand_chain=X width=15> # see   Note 20  

  <vdw grid_type=ClassicGrid weight=1.0/>  
      </SCORINGGRIDS>  
      <MOVERS>  

   <FavorNativeResidue name=favor_native bonus=
1.00 /> # see   Notes 21   and   22  
   <Transform name=transform chain=X box_size=
5.0 move_distance=0.1 angle=5 cycles=500 
repeats=1 temperature=5 rmsd=4.0 /> # see  
 Note 23  
   <HighResDocker name=high_res_docker cycles=6 
repack_every_Nth=3 scorefxn=ligand_soft_rep 
movemap_builder=docking/>  
   <PackRotamersMover name=designinterface score-
fxn=hard_rep task_operations=design_inter-
face/>  
   <FinalMinimizer name=fi nal scorefxn=hard_rep 
movemap_builder=fi nal/>  
   <InterfaceScoreCalculator name=add_scores 
chains=X scorefxn=hard_rep />  
  <ParsedProtocol name=low_res_dock>  
      <Add mover_name=transform/>  
  </ParsedProtocol>  
  <ParsedProtocol name=high_res_dock>  
      <Add mover_name=high_res_docker/>  
      <Add mover_name=fi nal/>  
  </ParsedProtocol>  
  </MOVERS>  
  <PROTOCOLS>  
      <Add mover_name=favor_native/>  
      <Add mover_name=low_res_dock/>  
      < Add mover_name=design_interface/> # see  

 Note 24  
      <Add mover_name=high_res_dock/>  
      <Add mover_name=add_scores/>  

      </PROTOCOLS>  
  </ROSETTASCRIPTS> 

    3.    Prepare an options fi le (“design.options”). Rosetta options can 
be specifi ed either on the command line or in a fi le. It is conve-
nient to put options which do not change run-to-run (such as 
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those controlling packing and scoring) into an options fi le rather 
than the command line.    
   -ex1  
  -ex2  
  -linmem_ig 10  
  -restore_pre_talaris_2013_behavior # see   Note 25 

    4.    Run the design application ( see   Notes 26  and  27 ). This will 
produce a number of output PDB fi les (named according to the 
input fi le names,  see   Note 28 ) and a summary score fi le 
(“design_results.sc”).    

   ${ROSETTA}/main/source/bin/rosetta_scripts.linuxgccre-
lease @design.options -parser:protocol design.xml -extra_
res_fa LIG.params -s "PDB_relaxed.pdb LIG_positioned.pdb" 
-nstruct <number of output models> -out:fi le:scorefi le 
design_results.sc   

  
     1.    Most Rosetta protocols are stochastic in nature. The output 

structures produced will contain a mixture of good and bad struc-
tures. The large number of structures produced need to be fi l-
tered to a smaller number of structures taken on to the next step.     

 A rule of thumb is that fi ltering should remove unlikely 
solutions, rather than selecting the single “best” result. 
Successful designs are typically good across a range of  relevant 
  metrics, rather than being the best structure on a single metric 
( see   Note 29 ). 

 The metrics to use can vary based on the desired proper-
ties of the fi nal design. Good standard metrics include the pre-
dicted interaction energy of the ligand, the stability score of 
the complex as a whole, the presence of any clashes [ 34 ], shape 
complementarity of the protein/ligand interface [ 35 ], the 
interface area, the energy density of the interface (binding 
energy per unit of interface area), and the number of unsatis-
fi ed hydrogen bonds formed on binding.

    2.    Prepare a fi le (“metric_thresholds.txt”) specifying thresholds to 
use in fi ltering the outputs of the design runs. IMPORTANT: 
The exact values of the thresholds need to be tuned for your 
particular system ( see   Note 30 ).    

   req total_score value < -1010 # measure of protein 
stability  

  req if_X_fa_rep value < 1.0# measure of ligand 
clashes  

  req ligand_is_touching_X value > 0.5# 1.0 if ligand 
is in pocket  

  output sortmin interface_delta_X# binding energy 

    3.    Filter on initial metrics from the docking run. This will produce 
a fi le (“fi ltered_pdbs.txt”) containing a list of output PDBs 
which pass the metric cutoffs.    

3.5  Filter Designs
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   perl ${ROSETTA}/main/source/src/apps/public/enzdes/
DesignSelect.pl -d <(grep SCORE design_results.sc) -c met-
ric_thresholds.txt -tag_column last > fi ltered_designs.sc  

  awk '{print $NF ".pdb"}' fi ltered_designs.sc> fi l-
tered_pdbs.txt  

     4.    Calculate  additional   metrics ( see   Note 31 ).    Rosetta’s 
InterfaceAnalyzer [ 36 ] calculates a number of additional met-
rics. These can take time to evaluate, though, so are best run on 
only a pre- fi ltered set of structures. After the metrics are gener-
ated, the structures can be fi ltered as in  steps 3.5.1  and 3.5.2. 
This will produce a score fi le (“design_interfaces.sc”) contain-
ing the calculated metric values for the selected PDBs.     

  ${ROSETTA}/main/source/bin/InterfaceAnalyzer.
linuxgccrelease -interface A_X -compute_packstat -pack_
separated -score:weights ligandprime -no_nstruct_label 
-out:fi le:score_only design_interfaces.sc -l fi ltered_
pdbs.txt -extra_res_fa LIG.params  

     5.    Filter on  additional   metrics. The commands are similar to those 
used in step 3.5.2, but against the design_interfaces.sc score 
fi le, and with a new threshold fi le.     

  perl ${ROSETTA}/main/source/src/apps/public/enzdes/
DesignSelect.pl -d <(grep SCORE design_results.sc) -c 
metric_thresholds.txt -tag_column last > fi ltered_
designs.sc  

  awk '{print $NF ".pdb"}' fi ltered_designs.sc> fi l-
tered_pdbs.txt  

 Example contents of metric_thresholds2.txt: 

  req packstat value > 0.55 # packing metric; 0-1 
higher better  

  req sc_value value > 0.45# shape complementarity; 
0-1 higher better  

  req delta_unsatHbonds value < 1.5# unsatisfi ed hydro-
gen bonds on binding  

  req dG_separated/dSASAx100 value < -0.5 # binding 
energy per contact area  

  output sortmin dG_separated# binding energy   

  
 While automated procedures are continually improving and can 
substitute to a limited extent [ 37 ], there is still no substitute for 
expert human knowledge in evaluating designs. Visual inspection 
of interfaces by a domain expert can capture system-specifi c 
 requirements that are diffi cult to encode into an automated fi lter 
( see   Note 32 ).  

  
 Improved results can be obtained by repeating the design protocol 
on the output structures from previous rounds of design. The 
number of design rounds depends on your system and how quickly 

3.6  Manually Inspect 
Selected Sequences

3.7  Reapply 
the Design Protocol, 
Starting at Step 3.4
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it converges, but 3–5 rounds of design, each starting from the fi l-
tered structures of the previous one, is typical ( see   Note 33 ).  

  
  ${ROSETTA}/main/source/src/python/apps/public/ 
pdb2fasta.py $(cat fi nal_fi ltered_pdbs.txt) > selected_
sequences.fasta   

  

 Only rarely will the initial design from a computational protocol 
give exactly the desired results. Often it is necessary to perform 
iterative cycles of design and experiment, using information learned 
from experiment to alter the design process (Fig.  2 ).

4        Notes 

     1.    While Rosetta can ignore chain breaks and missing loops far 
from the binding site, the structure of the protein should be 
complete in the region of ligand binding. If the binding pocket 
is missing residues, remodel these with a comparative model-
ing protocol, using the starting structure as a template.   

   2.    Acceptable formats depend on the capabilities of your small 
molecule handling program. OpenBabel can be used to con-
vert most small molecule representations, including SMILES 
and InChI, into the sdf format needed by Rosetta.   

3.8  Extract Protein 
Sequences 
from the Final 
Selected Designs 
into FASTA Format

3.9  Iteration 
of Design

  Fig. 2    Protein/ligand interface design with RosettaLigand. ( a ) Comparison in improvements in Interface Score 
and Total Score for top models from an initial placement, docking without sequence design, and docking with 
design. ( b ) Sequence logo of mutation sites among the top models from a round of interface design [ 43 ]. For 
most positions, the consensus sequence resembles the native sequence. Amino acids with sidechains that 
directly interact with the ligand show a high prevalence to mutation as seen in the positions with decreased 
consensus. ( c ) Example of a typical mutation introduced by RosettaLigand. The protein structure is represented 
in cartoon ( cyan ). The native alanine ( pink ) is mutated to an arginine residue ( green ) to match ionic interactions 
with the negatively charged ligand ( green ). Image generated in PyMol [ 44 ]       
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   3.    High resolution experimental structures determined in com-
plex with a closely related ligand are most desirable, but not 
required. Experimental structures of the unliganded protein 
and even homology models can be used [ 38 ,  39 ].   

   4.    The option “-relax:coord_constrain_sidechains” should be 
omitted if the starting conformation of the sidechains are from 
modeling rather than experimental results.   

   5.    Rosetta applications encode the compilation conditions in 
their fi lename. Applications may have names which end with 
*.linuxgccrelease, *.macosclangrelease, *.linuxiccrelease, etc. 
Use whichever ending is produced for your system. Applications 
ending in “debug” have additional error checking which slows 
down production runs.   

   6.    It is important to add hydrogens for the physiological condi-
tions under which you wish to design. At neutral pH, for 
example, amines should be protonated and carboxylates depro-
tonated. The “-p” option of OpenBabel uses heuristic rules to 
reprotonate molecules for a given pH value. Apolar hydrogens 
should also be present.   

   7.    Visually examine the produced conformers and manually 
remove any which are folded back on themselves or are other-
wise unsuitable for being the target design conformation.   

   8.    It is unnecessary to sample hydrogen positions during  rotamer   
generation, although any ring fl ip or relevant heavy atom iso-
meric changes should be sampled.   

   9.    molfi le_to_params.py can take a number of options—run with 
the “-h” option for details. The most important ones are: “-n”, 
which allows you to specify a three letter code to use with the 
PDB fi le reading and writing, permitting you to mix multiple 
ligands; “-p”, which specifi es output fi le naming; “--recharge”, 
which is used to specify the net charge on the ligand if not cor-
rectly autodetected; and “--nbr_atom”, which allows you to 
specify a neighbor atom ( see   Note 10 )   

   10.    Specifying the neighbor atom is important for ligands with off-
set “cores”. The neighbor atom is the atom which is superim-
posed when conformers are exchanged. By default the neighbor 
atom is the “most central” atom. If you have a ligand with a 
core that should be stable when changing conformers, you 
should specify an atom in that core as the neighbor atom.   

   11.    LIG.params expects LIG_conformers.pdb to be in the same 
directory, so keep them together when moving fi les to a new 
directory. If you change the name of the fi les, you will need to 
adjust the value of the PDB_ROTAMERS line in the LIG.
params fi le.   

   12.    Rosetta expects the atom names to match those generated in 
the molfi le_to_params.py step. Even if you have a starting 
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structure with the ligand correctly placed, you should align the 
molfi le_to_params.py generated structure into the pocket so 
that atom naming is correct.   

   13.    Other methods of placing the ligand in the pocket are also pos-
sible. Notably, Tinberg et al. [ 8 ] used RosettaMatch [ 40 ] both 
to place the ligand in an appropriate scaffold and to place key 
interactions in the scaffold.   

   14.    Other pocket detection algorithms can also be used (see 
Chapter   1     of this volume and [ 41 ] for a review).   

   15.    If you have a particularly large pocket, or multiple potential 
pockets, save separate ligand structures at different positions 
and perform multiple design runs. For a large number of loca-
tions, the StartFrom mover in RosettaScripts can be used to 
randomly place the ligand at multiple specifi ed locations in a 
single run.   

   16.    Being chain X residue 1 should be the default for molfi le_to_
params.py produced structures. Chain identity is important as 
the protocol can be used to design for ligand binding in the 
presence of cofactors or multiple ligands. For fi xed-location 
cofactors, simply change  the   PDB chain of the cofactor to 
something other than X, add the cofactor to the  input   protein 
structure, and add the cofactors’ params fi le to the -extra_res_
fa command line option. For designing to multiple movable 
ligands, including explicit waters, see Lemmon et al. [ 42 ].   

   17.    To refi ne the initial starting position of the ligand in the pro-
tein, you can do a few “design” runs as in step 3.4, but with 
design turned off. Change the value of the design option in the 
DetectProteinLigandInterface tag to zero. A good starting 
structure will likely have good total scores and good interface 
energy from these runs, but will unlikely result in ideal interac-
tions. Pay more attention to the position and orientation of 
the ligand than to the energetics of this initial placement dock-
ing run.   

   18.    The exact resfi le to use will depend on system-specifi c knowl-
edge of the protein structure and desired interactions. Relevant 
commands are ALLAA (allow design to all amino acids), 
PIKAA (allow design to only specifi ed amino acids) NATAA 
(disallow design but permit sidechain movement), and NATRO 
(disallow sidechain movement). The AUTO specifi cation 
allows the DetectProteinLigandInterface task operation to 
remove design and sidechain movement from residues which 
are “too far” from the ligand.   

   19.    Change the name of the resfi le in the XML script to match the 
full path and fi lename of the resfi le you are using. The cut val-
ues decide how to treat residues with the AUTO specifi cation. 
All AUTO residues with a C-beta atom within cut1 Angstroms 
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of the ligand will be designed, as will all residues within cut2 
which are pointing toward the ligand. The logic in selecting 
sidechains is similar for cut3 and cut4, respectively, but with 
 sidechain   fl exibility rather than design. Anything outside of the 
cut shells will be ignored during the design phase, but may be 
moved during other phases.   

   20.    The grid width must be large enough to accommodate the 
ligand. For longer ligands, increase the value to at least the 
maximum extended length of the ligand plus twice the value of 
box_size in the Transform mover.   

   21.    Allison et al. [ 20 ] found that a value of 1.0 for the 
FavorNativeSequence bonus worked best over their bench-
mark set. Depending on your particular requirements, though, 
you may wish to adjust this value. Do a few test runs with dif-
ferent values of the bonus and examine the number of muta-
tions which result. If there are more mutations than desired, 
increase the bonus. If fewer than expected, decrease the bonus.   

   22.    More complicated native favoring schemes can be devised by 
using FavorSequenceProfi le instead of FavorNativeSequence. 
For example, you can add weights according to BLOSUM62 
relatedness scores, or even use a BLAST-formatted position- 
specifi c scoring matrix (PSSM) to weight the bonus based on 
the distribution of sequences seen in homologous proteins.   

   23.    The value of box_size sets the maximum rigid body displace-
ment of the ligand from the starting position. The value of 
rmsd sets the maximum allowed root mean squared deviation 
from the starting position. Set these to smaller values if you 
wish to keep the designed ligand closer to the starting confor-
mation, and to larger values if you want to permit more move-
ment. These are limits for the active sampling stage of the 
protocol only. Additional movement may occur during other 
stages of the protocol.   

   24.    The provided protocol only does one round of design and 
minimization. Additional rounds may be desired for further 
refi nement. Simply replicate the low_res_dock, design_inter-
face, and high_res_dock lines in the PROTOCOLS section to 
add additional rounds of design and optimization. Alternatively, 
the EnzRepackMinimize mover may be used for fi ner control 
of cycles of design and minimization (although it does not 
incorporate any rigid body sampling).   

   25.    Refi nement of the Rosetta scorefunction for design of pro-
tein/ligand interfaces is an area of current active research. 
The provided protocol uses the standard ligand docking 
scorefunction which was optimized prior to the scorefunction 
changes in 2013, and thus requires an option to revert certain 
changes. Decent design performance has also been seen with 
the “enzdes” scorefunction (which also requires the -restore_
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pre_talaris_2013 option) and the standard “talaris2013” 
scorefunction.   

   26.    Use of a computational cluster is recommended for large pro-
duction runs. Talk to your local cluster administrator for 
instructions on how to launch jobs on your particular cluster 
system. The design runs are “trivially parallel” and can either 
be manually split or run with an MPI-compiled version. If 
splitting manually, change the value of the -nstruct option to 
reduce the number of structures produced by each job, and 
use the options -out:fi le:prefi x or -out:fi le:suffi x to uniquely 
label each run. The MPI version of rosetta_scripts can auto-
matically handle distributing structures to multiple CPUs, but 
requires Rosetta to be compiled and launched in cluster-spe-
cifi c ways. See the Rosetta documentation for details.   

   27.    The Rosetta option “-s” takes a list of PDBs to use as input for 
the run. The residues from multiple PDBs can be combined 
into a single structure by enclosing the fi lenames in quotes on 
the command line. Multiple fi lenames not enclosed in quotes 
will be treated as independent starting structures.   

   28.    The number of output models needed (the value passed to 
-nstruct) will depend on the size of the protein pocket and the 
extent of remodeling needed. Normally, 1000–5000 models is 
a good sized run for a single starting structure and a single 
protocol variant. At a certain point, you will reach “conver-
gence” and the additional models will not show appreciable 
metric improvement or sequence differences. If you have addi-
tional computational resources, it is often better to run multi-
ple smaller runs (100–1000 models) with slightly varying 
protocols (different starting location, number of rounds, 
extent of optimization, native bonus, etc.), rather than have a 
larger number of structures from the identical protocol.   

   29.     Relevant   metrics can be determined by using “positive con-
trols”. That is, run the design protocol on known protein–
ligand interactions which resemble your desired interactions. 
By examining how the known ligand–protein complexes 
behave under the Rosetta protocol, you can identify features 
which are useful for distinguishing native-like interactions 
from non-native interactions. Likewise, “negative controls”, 
where the design protocol is run without design ( see   Note 17 ) 
can be useful for establishing baseline metric values and 
cutoffs.   

   30.    The thresholds to use are system-specifi c. A good rule of 
thumb is to discard at least a tenth to a quarter by each relevant 
metric. More  important   metrics can receive stricter thresholds. 
You may wish to plot the distribution of scores to see if there 
is a natural threshold to set the cut at. You will likely need to 
do several test runs to adjust the thresholds to levels which give 
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the reasonable numbers of output sequences. “Negative con-
trols” (the protocol run with design disabled,  see   Note 17 ) can 
also be used to determine thresholds.   

   31.    Other system-specifi c metric values are available through the 
RosettaScripts interface as “Filters”. Adding “confi dence = 0” 
in the fi lter defi nition tag will turn off the fi ltering behavior 
and will instead just report the calculated metric for the fi nal 
structure in the fi nal score fi le. Many custom metrics, such as 
specifi c atom–atom distances, can be constructed in this fash-
ion. See the Rosetta documentation for details.   

   32.    Certain automated protocol can ease this post-analysis. For 
example, Rosetta can sometimes produce mutations which 
have only a minor infl uence on binding energy. While the 
native bonus ( see   Notes 21  and  22 ) mitigates this somewhat, 
explicitly considering mutation-by-mutation reversions can 
further reduce the number of such “spurious” mutations seen. 
Nivon et al. [ 37 ] presents such a protocol.   

   33.    In subsequent rounds, you will likely want to decrease the 
aggressiveness of the low resolution sampling stage (the box_
size and rmsd values of the Transform mover in step 3.4.2) as 
the ligand settles into a preferred binding orientation. As the 
output structure contains both the protein and ligand, the 
quotes on the values passed to the “-s” option ( see  step 3.4.4 
and  Note 27 ) are no longer needed. Instead, you may wish to 
use the “-l” option, which takes the name of a text fi le contain-
ing one  input   PDB per line. Each input PDB will each produce 
“-nstruct” models. Reduce this value such that the total num-
ber of unfi ltered output structures in each round is approxi-
mately the same.         
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