
47

Barry L. Stoddard (ed.), Computational Design of Ligand Binding Proteins, Methods in Molecular Biology, vol. 1414,
DOI 10.1007/978-1-4939-3569-7_4, © Springer Science+Business Media New York 2016

 Chapter 4

 Rosetta and the Design of Ligand Binding Sites

 Rocco Moretti , Brian J. Bender , Brittany Allison , and Jens Meiler

 Abstract

 Proteins that bind small molecules (ligands) can be used as biosensors, signal modulators, and sequestering
agents. When naturally occurring proteins for a particular target ligand are not available, artifi cial proteins
can be computationally designed. We present a protocol based on RosettaLigand to redesign an existing
protein pocket to bind a target ligand. Starting with a protein structure and the structure of the ligand,
Rosetta can optimize both the placement of the ligand in the pocket and the identity and conformation of
the surrounding sidechains, yielding proteins that bind the target compound.

 Key words Computational design , Protein/small molecule interaction , Sequence optimization ,
 Protein design , Ligand docking

1 Introduction

 Proteins which bind to small molecules (i.e. ligands) are involved
in many biological processes such as enzyme catalysis, receptor sig-
naling, and metabolite transport. Designing these interactions can
produce reagents which can serve as biosensors, in vivo diagnos-
tics, signal modulators, molecular delivery devices, and sequester-
ing agents [1 – 5]. Additionally, the computational design of
proteins which bind small molecules serves as a critical test of our
understanding of the principles that drive protein/ligand
interactions.

 While in vitro techniques for the optimization of protein/
ligand interactions have shown success [6], these are limited in the
number of sequence variants which can be screened, and often
require at least a modest starting affi nity which to further optimize
[7]. Computational techniques allow searching larger regions of
sequence space and permit design in protein scaffolds with no
detectable intrinsic affi nity for the target ligand. Computational
and in vitro techniques are often complementary and starting
activity achieved via computational design can often be improved
via in vitro techniques ([8] and Chapter 9 of this volume).

http://dx.doi.org/10.1007/978-1-4939-3569-7_9

48

Although challenges remain, computational design of small mole-
cule interactions have yielded success on a number of occasions
[5 , 9], and further attempts will refi ne our predictive ability to
generate novel ligand binders.

 The Rosetta macromolecular modeling software suite [10 , 11]
has proven to be a robust platform for protein design, having pro-
duced novel protein folds [12 , 13], protein/DNA interactions
[14], protein/peptide interactions [15], protein/protein interac-
tions [16], and novel enzymes [17 – 19]. Technologies for design-
ing protein/ligand interactions have also been developed and
applied [4 , 8 , 20]. Design of ligand binding proteins using Rosetta
approaches the problem in one of two ways. One method derives
from enzyme design, where predefi ned key interactions to the
ligand are emplaced onto a protein scaffold and the surrounding
context is subsequently optimized around them [8]. The other
derives from ligand docking, in which the interactions with a mov-
able ligand are optimized comprehensively [4 , 20]. Both approaches
have proven successful in protein redesign, and features from both
can be combined using the RosettaScripts system [21], tailoring
the design protocol to particular design needs.

 Here we present a protocol derived from RosettaLigand ligand
docking [22 – 25], which designs a protein binding site around a
given small molecule ligand (Fig. 1). After preparing the protein
and ligand structures, the placement of the ligand in the binding
pocket is optimized, followed by optimization of sidechain identity
and conformation. This process is repeated iteratively, and the pro-
posed designs are sorted and fi ltered by a number of relevant struc-
tural metrics, such as predicted affi nity and hydrogen bonding.
This design process should be considered as part of the integrated
program of computational and experimental work, where proteins
designed computationally are tested experimentally and the experi-
mental results are used to inform subsequent rounds of computa-
tional design.

2 Materials

 1. A computer running a Unix-like operating system such as Linux
or MacOS. Use of a multi-processor computational cluster is
recommended for productions runs, although test runs and
small production runs can be performed on conventional laptop
and desktop systems.

 2. Rosetta. The Rosetta modeling package can be obtained from
 the RosettaCommons website (https://www.rosettacommons.
org/software/license-and-download). Rosetta licenses are
available free to academic users. Rosetta is provided as source
code and must be compiled before use. See the Rosetta

Rocco Moretti et al.

https://www.rosettacommons.org/software/license-and-download
https://www.rosettacommons.org/software/license-and-download

49

Documentation (https://www.rosettacommons.org/docs/lat-
est/) for instructions on how to compile Rosetta. The protocol
in this paper has been tested with Rosetta weekly release version
2015.12.57698.

 3. A program to manipulate small molecules. OpenBabel [26] is a
free software package which allows manipulation of many small
molecule fi le formats. See http://openbabel.org/ for down-
load and installation information. The protocol in this paper has
been tested with OpenBabel version 2.3.1. Other small mole-
cule manipulation programs can also be used.

 Fig. 1 Flowchart of RosettaLigand design protocol. From the combined input
coordinates of the protein and ligand, the position of the ligand is optimized.
Next, residues in the protein/ligand interface are optimized for both identity and
position. After several cycles of small molecule perturbation, sidechain rotamer
sampling, Monte Carlo minimization with Metropolis (MCM) criterion, and a fi nal
gradient-based minimization of the protein to resolve any clashes (“high resolu-
tion redocking”), the fi nal model is the output. Further optimization can occur by
using the fi nal models of one round of design as the input models of the next
round. Most variables in this protocol are user-defi ned, and will be varied to best
fi t the protein–ligand complex under study

Design of Ligand Binding Sites With Rosetta

https://www.rosettacommons.org/docs/latest/
https://www.rosettacommons.org/docs/latest/
http://openbabel.org/

50

 4. A ligand conformer generation program. We recommend the
BCL [27] which is freely available from http://meilerlab.org/
index.php/bclcommons for academic use but does require an
additional license to the Cambridge Structural Database [28]
for conformer generation. The protocol in this paper has been
tested with BCL version 3.2. Other conformer generation pro-
grams such as Omega [29], MOE [30], or RDKit [31] can also
be used.

 5. The structure of the target small molecule in a standard format
such as SDF or SMILES (see Note 1).

 6. The structure of the protein to be redesigned, in PDB format
(see Notes 2 and 3).

3 Methods

 Throughout the protocol ${ROSETTA} represents the directory
in which Rosetta has been installed. File contents and commands
to be run in the terminal are in italics . The use of a bash shell is
assumed—users of other shells may need to modify the syntax of
command lines.

 Structure from non-Rosetta sources or structures from other
Rosetta protocols can have minor structural variations resulting in
energetic penalties which adversely affect the design process (see
 Notes 4 and 5).

 ${ROSETTA}/main/source/bin/relax.linuxgccrelease -ignore_
unrecognized_res -ignore_zero_occupancy_false -use_input_sc -fl ip_HNQ
-no_optH false -relax:constrain_relax_to_start_coords -relax:coord_con-
strain_sidechains -relax:ramp_constraints false -s PDB.pdb

 For convenience, rename the output structure.
 mv PDB_0001.pdb PDB_relaxed.pdb

 1. Convert the small molecule to SDF format, including adding

hydrogens as needed (see Note 6).
 obabel LIG.smi --gen3D -O LIG_3D.sdf
 obabel LIG_3D.sdf -p 7.4 -O LIG.sdf

 2. Generate a library of ligand conformers (see Notes 7 and 8).
 bcl.exe molecule: ConformerGenerator -top_models 100 -ensem-
ble_fi lenames LIG.sdf -conformers_single_fi le LIG_conf.sdf

 3. Convert the conformer library into a Rosetta-formatted “params
fi le” (see Notes 9 and 10).
 ${ROSETTA}/main/source/src/python/apps/public/molfile_

to_params.py -n LIG -p LIG --conformers-in-one-fi le LIG_conf.sdf
 This will produce three fi les: “LIG.params”, a Rosetta-readable

description of the ligand; “LIG.pdb”, a selected ligand conformer;
and “LIG_conformers.pdb”, the set of all conformers (see Note 11).

3.1 Pre-relax
the Protein Structure
into the Rosetta
Scoring Function [32]

3.2 Prepare
the Ligand

Rocco Moretti et al.

http://meilerlab.org/index.php/bclcommons
http://meilerlab.org/index.php/bclcommons

51

 1. Identify the location of desired interaction pockets. Visual
inspection using programs like PyMol or Chimera [33] is nor-
mally the easiest method (see Note 14). Use the structure edit-
ing mode of PyMol to move the LIG.pdb fi le from step 3.2.3
into the starting conformation. Save the repositioned molecule
with its new coordinates as a new fi le (LIG_positioned.pdb) (see
 Note 15).

 2. If necessary, use a text editor to make the ligand be residue 1 on
chain X (see Note 16).

 3. Using a structure viewing program, inspect and validate the
placement of the ligand (LIG_positioned.pdb) in the binding
pocket of the protein (PDB_relaxed.pdb) (see Note 17).

 1. Prepare a residue specifi cation fi le. A Rosetta resfi le allows speci-

fi cation of which residues should be designed and which should
not. A good default is a resfi le which permits design at all resi-
dues at the auto-detected interface (see Note 18).
 ALLAA
 AUTO
 start
 1 X NATAA

 2. Prepare a docking and design script (“design.xml”). The sug-
gested protocol is based off of RosettaLigand docking using the
 RosettaScripts framework [22 – 25]. It will optimize the location
of ligand in the binding pocket (low_res_dock), redesign the
surrounding sidechains (design_interface), and refi ne the inter-
actions in the designed context (high_res_dock). To avoid spu-
rious mutations, a slight energetic bonus is given to the input
residue at each position (favor_native).

 <ROSETTASCRIPTS>
 <SCOREFXNS>

 <ligand_soft_rep weights=ligand_soft_rep />
 <hard_rep weights=ligandprime />

 </SCOREFXNS>
 <TASKOPERATIONS>

 <DetectProteinLigandInterface name=design_
interface cut1=6.0 cut2=8.0 cut3=10.0 cut4=12.0
design=1 resfi le="PDB.resfi le"/> # see Note 19

 </TASKOPERATIONS>
 <LIGAND_AREAS>

 <docking_sidechain chain=X cutoff=6.0 add_
nbr_radius=true all_atom_mode=true minimize_
ligand=10/>
 <fi nal_sidechain chain=X cutoff=6.0 add_nbr_
radius=true all_atom_mode=true/>
 <fi nal_backbone chain=X cutoff=7.0 add_
nbr_radius=false all_atom_mode=true Calpha_
restraints=0.3/>

 </LIGAND_AREAS>
 <INTERFACE_BUILDERS>

3.3 Place the Ligand
into the Protein (See
 Notes 12 and 13)

3.4 Run
Rosetta Design

Design of Ligand Binding Sites With Rosetta

52

 <side_chain_for_docking ligand_areas=docking_
sidechain/>
 <side_chain_for_fi nal ligand_areas=fi nal_
sidechain/>
 <backbone ligand_areas=fi nal_backbone extension_
window=3/>

 </INTERFACE_BUILDERS>
 <MOVEMAP_BUILDERS>

 <docking sc_interface=side_chain_for_docking
minimize_water=true/>
 <fi nal sc_interface=side_chain_for_fi nal bb_
interface=backbone minimize_water=true/>

 </MOVEMAP_BUILDERS>
 <SCORINGGRIDS ligand_chain=X width=15> # see Note 20

 <vdw grid_type=ClassicGrid weight=1.0/>
 </SCORINGGRIDS>
 <MOVERS>

 <FavorNativeResidue name=favor_native bonus=
1.00 /> # see Notes 21 and 22
 <Transform name=transform chain=X box_size=
5.0 move_distance=0.1 angle=5 cycles=500
repeats=1 temperature=5 rmsd=4.0 /> # see
 Note 23
 <HighResDocker name=high_res_docker cycles=6
repack_every_Nth=3 scorefxn=ligand_soft_rep
movemap_builder=docking/>
 <PackRotamersMover name=designinterface score-
fxn=hard_rep task_operations=design_inter-
face/>
 <FinalMinimizer name=fi nal scorefxn=hard_rep
movemap_builder=fi nal/>
 <InterfaceScoreCalculator name=add_scores
chains=X scorefxn=hard_rep />
 <ParsedProtocol name=low_res_dock>
 <Add mover_name=transform/>
 </ParsedProtocol>
 <ParsedProtocol name=high_res_dock>
 <Add mover_name=high_res_docker/>
 <Add mover_name=fi nal/>
 </ParsedProtocol>
 </MOVERS>
 <PROTOCOLS>
 <Add mover_name=favor_native/>
 <Add mover_name=low_res_dock/>
 < Add mover_name=design_interface/> # see

 Note 24
 <Add mover_name=high_res_dock/>
 <Add mover_name=add_scores/>

 </PROTOCOLS>
 </ROSETTASCRIPTS>

 3. Prepare an options fi le (“design.options”). Rosetta options can
be specifi ed either on the command line or in a fi le. It is conve-
nient to put options which do not change run-to-run (such as

Rocco Moretti et al.

53

those controlling packing and scoring) into an options fi le rather
than the command line.
 -ex1
 -ex2
 -linmem_ig 10
 -restore_pre_talaris_2013_behavior # see Note 25

 4. Run the design application (see Notes 26 and 27). This will
produce a number of output PDB fi les (named according to the
input fi le names, see Note 28) and a summary score fi le
(“design_results.sc”).

 ${ROSETTA}/main/source/bin/rosetta_scripts.linuxgccre-
lease @design.options -parser:protocol design.xml -extra_
res_fa LIG.params -s "PDB_relaxed.pdb LIG_positioned.pdb"
-nstruct <number of output models> -out:fi le:scorefi le
design_results.sc

 1. Most Rosetta protocols are stochastic in nature. The output

structures produced will contain a mixture of good and bad struc-
tures. The large number of structures produced need to be fi l-
tered to a smaller number of structures taken on to the next step.

 A rule of thumb is that fi ltering should remove unlikely
solutions, rather than selecting the single “best” result.
Successful designs are typically good across a range of relevant
 metrics, rather than being the best structure on a single metric
(see Note 29).

 The metrics to use can vary based on the desired proper-
ties of the fi nal design. Good standard metrics include the pre-
dicted interaction energy of the ligand, the stability score of
the complex as a whole, the presence of any clashes [34], shape
complementarity of the protein/ligand interface [35], the
interface area, the energy density of the interface (binding
energy per unit of interface area), and the number of unsatis-
fi ed hydrogen bonds formed on binding.

 2. Prepare a fi le (“metric_thresholds.txt”) specifying thresholds to
use in fi ltering the outputs of the design runs. IMPORTANT:
The exact values of the thresholds need to be tuned for your
particular system (see Note 30).

 req total_score value < -1010 # measure of protein
stability

 req if_X_fa_rep value < 1.0# measure of ligand
clashes

 req ligand_is_touching_X value > 0.5# 1.0 if ligand
is in pocket

 output sortmin interface_delta_X# binding energy

 3. Filter on initial metrics from the docking run. This will produce
a fi le (“fi ltered_pdbs.txt”) containing a list of output PDBs
which pass the metric cutoffs.

3.5 Filter Designs

Design of Ligand Binding Sites With Rosetta

54

 perl ${ROSETTA}/main/source/src/apps/public/enzdes/
DesignSelect.pl -d <(grep SCORE design_results.sc) -c met-
ric_thresholds.txt -tag_column last > fi ltered_designs.sc

 awk '{print $NF ".pdb"}' fi ltered_designs.sc> fi l-
tered_pdbs.txt

 4. Calculate additional metrics (see Note 31). Rosetta’s
InterfaceAnalyzer [36] calculates a number of additional met-
rics. These can take time to evaluate, though, so are best run on
only a pre- fi ltered set of structures. After the metrics are gener-
ated, the structures can be fi ltered as in steps 3.5.1 and 3.5.2.
This will produce a score fi le (“design_interfaces.sc”) contain-
ing the calculated metric values for the selected PDBs.

 ${ROSETTA}/main/source/bin/InterfaceAnalyzer.
linuxgccrelease -interface A_X -compute_packstat -pack_
separated -score:weights ligandprime -no_nstruct_label
-out:fi le:score_only design_interfaces.sc -l fi ltered_
pdbs.txt -extra_res_fa LIG.params

 5. Filter on additional metrics. The commands are similar to those
used in step 3.5.2, but against the design_interfaces.sc score
fi le, and with a new threshold fi le.

 perl ${ROSETTA}/main/source/src/apps/public/enzdes/
DesignSelect.pl -d <(grep SCORE design_results.sc) -c
metric_thresholds.txt -tag_column last > fi ltered_
designs.sc

 awk '{print $NF ".pdb"}' fi ltered_designs.sc> fi l-
tered_pdbs.txt

 Example contents of metric_thresholds2.txt:

 req packstat value > 0.55 # packing metric; 0-1
higher better

 req sc_value value > 0.45# shape complementarity;
0-1 higher better

 req delta_unsatHbonds value < 1.5# unsatisfi ed hydro-
gen bonds on binding

 req dG_separated/dSASAx100 value < -0.5 # binding
energy per contact area

 output sortmin dG_separated# binding energy

 While automated procedures are continually improving and can
substitute to a limited extent [37], there is still no substitute for
expert human knowledge in evaluating designs. Visual inspection
of interfaces by a domain expert can capture system-specifi c
 requirements that are diffi cult to encode into an automated fi lter
(see Note 32).

 Improved results can be obtained by repeating the design protocol
on the output structures from previous rounds of design. The
number of design rounds depends on your system and how quickly

3.6 Manually Inspect
Selected Sequences

3.7 Reapply
the Design Protocol,
Starting at Step 3.4

Rocco Moretti et al.

55

it converges, but 3–5 rounds of design, each starting from the fi l-
tered structures of the previous one, is typical (see Note 33).

 ${ROSETTA}/main/source/src/python/apps/public/
pdb2fasta.py $(cat fi nal_fi ltered_pdbs.txt) > selected_
sequences.fasta

 Only rarely will the initial design from a computational protocol
give exactly the desired results. Often it is necessary to perform
iterative cycles of design and experiment, using information learned
from experiment to alter the design process (Fig. 2).

4 Notes

 1. While Rosetta can ignore chain breaks and missing loops far
from the binding site, the structure of the protein should be
complete in the region of ligand binding. If the binding pocket
is missing residues, remodel these with a comparative model-
ing protocol, using the starting structure as a template.

 2. Acceptable formats depend on the capabilities of your small
molecule handling program. OpenBabel can be used to con-
vert most small molecule representations, including SMILES
and InChI, into the sdf format needed by Rosetta.

3.8 Extract Protein
Sequences
from the Final
Selected Designs
into FASTA Format

3.9 Iteration
of Design

 Fig. 2 Protein/ligand interface design with RosettaLigand. (a) Comparison in improvements in Interface Score
and Total Score for top models from an initial placement, docking without sequence design, and docking with
design. (b) Sequence logo of mutation sites among the top models from a round of interface design [43]. For
most positions, the consensus sequence resembles the native sequence. Amino acids with sidechains that
directly interact with the ligand show a high prevalence to mutation as seen in the positions with decreased
consensus. (c) Example of a typical mutation introduced by RosettaLigand. The protein structure is represented
in cartoon (cyan). The native alanine (pink) is mutated to an arginine residue (green) to match ionic interactions
with the negatively charged ligand (green). Image generated in PyMol [44]

Design of Ligand Binding Sites With Rosetta

56

 3. High resolution experimental structures determined in com-
plex with a closely related ligand are most desirable, but not
required. Experimental structures of the unliganded protein
and even homology models can be used [38 , 39].

 4. The option “-relax:coord_constrain_sidechains” should be
omitted if the starting conformation of the sidechains are from
modeling rather than experimental results.

 5. Rosetta applications encode the compilation conditions in
their fi lename. Applications may have names which end with
*.linuxgccrelease, *.macosclangrelease, *.linuxiccrelease, etc.
Use whichever ending is produced for your system. Applications
ending in “debug” have additional error checking which slows
down production runs.

 6. It is important to add hydrogens for the physiological condi-
tions under which you wish to design. At neutral pH, for
example, amines should be protonated and carboxylates depro-
tonated. The “-p” option of OpenBabel uses heuristic rules to
reprotonate molecules for a given pH value. Apolar hydrogens
should also be present.

 7. Visually examine the produced conformers and manually
remove any which are folded back on themselves or are other-
wise unsuitable for being the target design conformation.

 8. It is unnecessary to sample hydrogen positions during rotamer
generation, although any ring fl ip or relevant heavy atom iso-
meric changes should be sampled.

 9. molfi le_to_params.py can take a number of options—run with
the “-h” option for details. The most important ones are: “-n”,
which allows you to specify a three letter code to use with the
PDB fi le reading and writing, permitting you to mix multiple
ligands; “-p”, which specifi es output fi le naming; “--recharge”,
which is used to specify the net charge on the ligand if not cor-
rectly autodetected; and “--nbr_atom”, which allows you to
specify a neighbor atom (see Note 10)

 10. Specifying the neighbor atom is important for ligands with off-
set “cores”. The neighbor atom is the atom which is superim-
posed when conformers are exchanged. By default the neighbor
atom is the “most central” atom. If you have a ligand with a
core that should be stable when changing conformers, you
should specify an atom in that core as the neighbor atom.

 11. LIG.params expects LIG_conformers.pdb to be in the same
directory, so keep them together when moving fi les to a new
directory. If you change the name of the fi les, you will need to
adjust the value of the PDB_ROTAMERS line in the LIG.
params fi le.

 12. Rosetta expects the atom names to match those generated in
the molfi le_to_params.py step. Even if you have a starting

Rocco Moretti et al.

57

structure with the ligand correctly placed, you should align the
molfi le_to_params.py generated structure into the pocket so
that atom naming is correct.

 13. Other methods of placing the ligand in the pocket are also pos-
sible. Notably, Tinberg et al. [8] used RosettaMatch [40] both
to place the ligand in an appropriate scaffold and to place key
interactions in the scaffold.

 14. Other pocket detection algorithms can also be used (see
Chapter 1 of this volume and [41] for a review).

 15. If you have a particularly large pocket, or multiple potential
pockets, save separate ligand structures at different positions
and perform multiple design runs. For a large number of loca-
tions, the StartFrom mover in RosettaScripts can be used to
randomly place the ligand at multiple specifi ed locations in a
single run.

 16. Being chain X residue 1 should be the default for molfi le_to_
params.py produced structures. Chain identity is important as
the protocol can be used to design for ligand binding in the
presence of cofactors or multiple ligands. For fi xed-location
cofactors, simply change the PDB chain of the cofactor to
something other than X, add the cofactor to the input protein
structure, and add the cofactors’ params fi le to the -extra_res_
fa command line option. For designing to multiple movable
ligands, including explicit waters, see Lemmon et al. [42].

 17. To refi ne the initial starting position of the ligand in the pro-
tein, you can do a few “design” runs as in step 3.4, but with
design turned off. Change the value of the design option in the
DetectProteinLigandInterface tag to zero. A good starting
structure will likely have good total scores and good interface
energy from these runs, but will unlikely result in ideal interac-
tions. Pay more attention to the position and orientation of
the ligand than to the energetics of this initial placement dock-
ing run.

 18. The exact resfi le to use will depend on system-specifi c knowl-
edge of the protein structure and desired interactions. Relevant
commands are ALLAA (allow design to all amino acids),
PIKAA (allow design to only specifi ed amino acids) NATAA
(disallow design but permit sidechain movement), and NATRO
(disallow sidechain movement). The AUTO specifi cation
allows the DetectProteinLigandInterface task operation to
remove design and sidechain movement from residues which
are “too far” from the ligand.

 19. Change the name of the resfi le in the XML script to match the
full path and fi lename of the resfi le you are using. The cut val-
ues decide how to treat residues with the AUTO specifi cation.
All AUTO residues with a C-beta atom within cut1 Angstroms

Design of Ligand Binding Sites With Rosetta

http://dx.doi.org/10.1007/978-1-4939-3569-7_2

58

of the ligand will be designed, as will all residues within cut2
which are pointing toward the ligand. The logic in selecting
sidechains is similar for cut3 and cut4, respectively, but with
 sidechain fl exibility rather than design. Anything outside of the
cut shells will be ignored during the design phase, but may be
moved during other phases.

 20. The grid width must be large enough to accommodate the
ligand. For longer ligands, increase the value to at least the
maximum extended length of the ligand plus twice the value of
box_size in the Transform mover.

 21. Allison et al. [20] found that a value of 1.0 for the
FavorNativeSequence bonus worked best over their bench-
mark set. Depending on your particular requirements, though,
you may wish to adjust this value. Do a few test runs with dif-
ferent values of the bonus and examine the number of muta-
tions which result. If there are more mutations than desired,
increase the bonus. If fewer than expected, decrease the bonus.

 22. More complicated native favoring schemes can be devised by
using FavorSequenceProfi le instead of FavorNativeSequence.
For example, you can add weights according to BLOSUM62
relatedness scores, or even use a BLAST-formatted position-
specifi c scoring matrix (PSSM) to weight the bonus based on
the distribution of sequences seen in homologous proteins.

 23. The value of box_size sets the maximum rigid body displace-
ment of the ligand from the starting position. The value of
rmsd sets the maximum allowed root mean squared deviation
from the starting position. Set these to smaller values if you
wish to keep the designed ligand closer to the starting confor-
mation, and to larger values if you want to permit more move-
ment. These are limits for the active sampling stage of the
protocol only. Additional movement may occur during other
stages of the protocol.

 24. The provided protocol only does one round of design and
minimization. Additional rounds may be desired for further
refi nement. Simply replicate the low_res_dock, design_inter-
face, and high_res_dock lines in the PROTOCOLS section to
add additional rounds of design and optimization. Alternatively,
the EnzRepackMinimize mover may be used for fi ner control
of cycles of design and minimization (although it does not
incorporate any rigid body sampling).

 25. Refi nement of the Rosetta scorefunction for design of pro-
tein/ligand interfaces is an area of current active research.
The provided protocol uses the standard ligand docking
scorefunction which was optimized prior to the scorefunction
changes in 2013, and thus requires an option to revert certain
changes. Decent design performance has also been seen with
the “enzdes” scorefunction (which also requires the -restore_

Rocco Moretti et al.

59

pre_talaris_2013 option) and the standard “talaris2013”
scorefunction.

 26. Use of a computational cluster is recommended for large pro-
duction runs. Talk to your local cluster administrator for
instructions on how to launch jobs on your particular cluster
system. The design runs are “trivially parallel” and can either
be manually split or run with an MPI-compiled version. If
splitting manually, change the value of the -nstruct option to
reduce the number of structures produced by each job, and
use the options -out:fi le:prefi x or -out:fi le:suffi x to uniquely
label each run. The MPI version of rosetta_scripts can auto-
matically handle distributing structures to multiple CPUs, but
requires Rosetta to be compiled and launched in cluster-spe-
cifi c ways. See the Rosetta documentation for details.

 27. The Rosetta option “-s” takes a list of PDBs to use as input for
the run. The residues from multiple PDBs can be combined
into a single structure by enclosing the fi lenames in quotes on
the command line. Multiple fi lenames not enclosed in quotes
will be treated as independent starting structures.

 28. The number of output models needed (the value passed to
-nstruct) will depend on the size of the protein pocket and the
extent of remodeling needed. Normally, 1000–5000 models is
a good sized run for a single starting structure and a single
protocol variant. At a certain point, you will reach “conver-
gence” and the additional models will not show appreciable
metric improvement or sequence differences. If you have addi-
tional computational resources, it is often better to run multi-
ple smaller runs (100–1000 models) with slightly varying
protocols (different starting location, number of rounds,
extent of optimization, native bonus, etc.), rather than have a
larger number of structures from the identical protocol.

 29. Relevant metrics can be determined by using “positive con-
trols”. That is, run the design protocol on known protein–
ligand interactions which resemble your desired interactions.
By examining how the known ligand–protein complexes
behave under the Rosetta protocol, you can identify features
which are useful for distinguishing native-like interactions
from non-native interactions. Likewise, “negative controls”,
where the design protocol is run without design (see Note 17)
can be useful for establishing baseline metric values and
cutoffs.

 30. The thresholds to use are system-specifi c. A good rule of
thumb is to discard at least a tenth to a quarter by each relevant
metric. More important metrics can receive stricter thresholds.
You may wish to plot the distribution of scores to see if there
is a natural threshold to set the cut at. You will likely need to
do several test runs to adjust the thresholds to levels which give

Design of Ligand Binding Sites With Rosetta

60

the reasonable numbers of output sequences. “Negative con-
trols” (the protocol run with design disabled, see Note 17) can
also be used to determine thresholds.

 31. Other system-specifi c metric values are available through the
RosettaScripts interface as “Filters”. Adding “confi dence = 0”
in the fi lter defi nition tag will turn off the fi ltering behavior
and will instead just report the calculated metric for the fi nal
structure in the fi nal score fi le. Many custom metrics, such as
specifi c atom–atom distances, can be constructed in this fash-
ion. See the Rosetta documentation for details.

 32. Certain automated protocol can ease this post-analysis. For
example, Rosetta can sometimes produce mutations which
have only a minor infl uence on binding energy. While the
native bonus (see Notes 21 and 22) mitigates this somewhat,
explicitly considering mutation-by-mutation reversions can
further reduce the number of such “spurious” mutations seen.
Nivon et al. [37] presents such a protocol.

 33. In subsequent rounds, you will likely want to decrease the
aggressiveness of the low resolution sampling stage (the box_
size and rmsd values of the Transform mover in step 3.4.2) as
the ligand settles into a preferred binding orientation. As the
output structure contains both the protein and ligand, the
quotes on the values passed to the “-s” option (see step 3.4.4
and Note 27) are no longer needed. Instead, you may wish to
use the “-l” option, which takes the name of a text fi le contain-
ing one input PDB per line. Each input PDB will each produce
“-nstruct” models. Reduce this value such that the total num-
ber of unfi ltered output structures in each round is approxi-
mately the same.

 Acknowledgements

 This work was supported through NIH (R01 GM099842, R01
DK097376, R01 GM073151) and NSF (CHE 1305874). RM is
further partially supported by grant from the RosettaCommons.

 References

 1. Leader B, Baca QJ, Golan DE (2008) Protein
therapeutics: a summary and pharmacological
classifi cation. Nat Rev Drug Discov 7(1):21–
39. doi: 10.1038/nrd2399

 2. Knudsen KE, Scher HI (2009) Starving the
addiction: new opportunities for durable sup-
pression of AR signaling in prostate cancer.
Clin Cancer Res 15(15):4792–4798.
doi: 10.1158/1078-0432.CCR-08-2660

 3. Baeumner AJ (2003) Biosensors for environ-
mental pollutants and food contaminants. Anal
Bioanal Chem 377(3):434–445. doi: 10.1007/
s00216-003-2158-9

 4. Morin A, Kaufmann KW, Fortenberry C, Harp
JM, Mizoue LS, Meiler J (2011) Computational
design of an endo-1,4-beta-xylanase ligand
binding site. Protein Eng Des Sel 24(6):503–
516. doi: 10.1093/protein/gzr006

Rocco Moretti et al.

http://dx.doi.org/10.1038/nrd2399
http://dx.doi.org/10.1158/1078-0432.CCR-08-2660
http://dx.doi.org/10.1007/s00216-003-2158-9
http://dx.doi.org/10.1007/s00216-003-2158-9
http://dx.doi.org/10.1093/protein/gzr006

61

 5. Morin A, Meiler J, Mizoue LS (2011)
Computational design of protein-ligand inter-
faces: potential in therapeutic development.
Trends Biotechnol 29(4):159–166.
doi: 10.1016/j.tibtech.2011.01.002

 6. Jackel C, Kast P, Hilvert D (2008) Protein
design by directed evolution. Annu Rev
Biophys 37:153–173. doi: 10.1146/annurev.
biophys.37.032807.125832

 7. Nannemann DP, Birmingham WR, Scism RA,
Bachmann BO (2011) Assessing directed evo-
lution methods for the generation of biosyn-
thetic enzymes with potential in drug
biosynthesis. Future Med Chem 3(7):809–
819. doi: 10.4155/fmc.11.48

 8. Tinberg CE, Khare SD, Dou J, Doyle L, Nelson
JW, Schena A, Jankowski W, Kalodimos CG,
Johnsson K, Stoddard BL, Baker D (2013)
Computational design of ligand-binding proteins
with high affi nity and selectivity. Nature
501(7466):212–216. doi: 10.1038/nature12443

 9. Feldmeier K, Hocker B (2013) Computational
protein design of ligand binding and catalysis.
Curr Opin Chem Biol 17(6):929–
933 doi: 10.1016/j.cbpa.2013.10.002

 10. Schueler-Furman O, Wang C, Bradley P,
Misura K, Baker D (2005) Progress in model-
ing of protein structures and interactions.
Science 310(5748):638–642. doi: 10.1126/
science.1112160

 11. Leaver-Fay A, Tyka M, Lewis SM, Lange OF,
Thompson J, Jacak R, Kaufman K, Renfrew
PD, Smith CA, Sheffl er W, Davis IW, Cooper S,
Treuille A, Mandell DJ, Richter F, Ban YE,
Fleishman SJ, Corn JE, Kim DE, Lyskov S,
Berrondo M, Mentzer S, Popovic Z, Havranek
JJ, Karanicolas J, Das R, Meiler J, Kortemme T,
Gray JJ, Kuhlman B, Baker D, Bradley P (2011)
ROSETTA3: an object- oriented software suite
for the simulation and design of macromole-
cules. Methods Enzymol 487:545–574.
doi: 10.1016/B978-0-12-381270-4.00019-6

 12. Kuhlman B, Dantas G, Ireton GC, Varani G,
Stoddard BL, Baker D (2003) Design of a
novel globular protein fold with atomic level
accuracy. Science 302(5649):1364–1368 doi:
 10.1126/science.1089427

 13. Koga N, Tatsumi-Koga R, Liu G, Xiao R,
Acton TB, Montelione GT, Baker D (2012)
Principles for designing ideal protein struc-
tures. Nature 491(7423):222–227.
doi: 10.1038/nature11600

 14. Ashworth J, Taylor GK, Havranek JJ, Quadri
SA, Stoddard BL, Baker D (2010)
Computational reprogramming of homing
endonuclease specifi city at multiple adjacent
base pairs. Nucleic Acids Res 38(16):5601–
5608 doi: 10.1093/nar/gkq283

 15. Sammond DW, Bosch DE, Butterfoss GL,
Purbeck C, Machius M, Siderovski DP,

Kuhlman B (2011) Computational design of
the sequence and structure of a protein-bind-
ing peptide. J Am Chem Soc 133(12):4190–
4192. doi: 10.1021/ja110296z

 16. Fleishman SJ, Whitehead TA, Ekiert DC,
Dreyfus C, Corn JE, Strauch EM, Wilson IA,
Baker D (2011) Computational design of pro-
teins targeting the conserved stem region of
infl uenza hemagglutinin. Science
332(6031):816–821. doi: 10.1126/science.
1202617

 17. Jiang L, Althoff EA, Clemente FR, Doyle L,
Rothlisberger D, Zanghellini A, Gallaher JL,
Betker JL, Tanaka F, Barbas CF 3rd, Hilvert D,
Houk KN, Stoddard BL, Baker D (2008) De
novo computational design of retro-aldol
enzymes. Science 319(5868):1387–1391.
doi: 10.1126/science.1152692

 18. Rothlisberger D, Khersonsky O, Wollacott
AM, Jiang L, DeChancie J, Betker J, Gallaher
JL, Althoff EA, Zanghellini A, Dym O, Albeck
S, Houk KN, Tawfi k DS, Baker D (2008)
Kemp elimination catalysts by computational
enzyme design. Nature 453(7192):190–195.
doi: 10.1038/nature06879

 19. Siegel JB, Zanghellini A, Lovick HM, Kiss G,
Lambert AR, St Clair JL, Gallaher JL, Hilvert
D, Gelb MH, Stoddard BL, Houk KN, Michael
FE, Baker D (2010) Computational design of
an enzyme catalyst for a stereoselective bimo-
lecular Diels-Alder reaction. Science
329(5989):309–313. doi: 10.1126/science.
1190239

 20. Allison B, Combs S, DeLuca S, Lemmon G,
Mizoue L, Meiler J (2014) Computational
design of protein- small molecule interfaces.
J Struct Biol 185(2):193–202. doi: 10.1016/j.
jsb.2013.08.003

 21. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch
EM, Khare SD, Koga N, Ashworth J, Murphy
P, Richter F, Lemmon G, Meiler J, Baker D
(2011) RosettaScripts: a scripting language
interface to the rosetta macromolecular model-
ing suite. PLoS One 6(6):20161. doi: 10.1371/
journal.pone.0020161

 22. Meiler J, Baker D (2006) ROSETTALIGAND:
protein- small molecule docking with full side-
chain fl exibility. Proteins 65(3):538–548.
doi: 10.1002/prot.21086

 23. Davis IW, Baker D (2009) RosettaLigand
docking with full ligand and receptor fl exibility.
J Mol Biol 385(2):381–392. doi: 10.1016/j.
jmb.2008.11.010

 24. Lemmon G, Meiler J (2012) Rosetta Ligand
docking with fl exible XML protocols. Methods
Mol Biol 819:143–155. doi: 10.1007/
978-1-61779-465-0_10

 25. DeLuca S, Khar K, Meiler J (2015) Fully
Flexible Docking of Medium Sized Ligand
Libraries with RosettaLigand. PLoS One

Design of Ligand Binding Sites With Rosetta

http://dx.doi.org/10.1016/j.tibtech.2011.01.002
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125832
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125832
http://dx.doi.org/10.4155/fmc.11.48
http://dx.doi.org/10.1038/nature12443
http://dx.doi.org/10.1016/j.cbpa.2013.10.002
http://dx.doi.org/10.1126/science.1112160
http://dx.doi.org/10.1126/science.1112160
http://dx.doi.org/10.1016/B978-0-12-381270-4.00019-6
http://dx.doi.org/10.1126/science.1089427
http://dx.doi.org/10.1038/nature11600
http://dx.doi.org/10.1093/nar/gkq283
http://dx.doi.org/10.1021/ja110296z
http://dx.doi.org/10.1126/science.1202617
http://dx.doi.org/10.1126/science.1202617
http://dx.doi.org/10.1126/science.1152692
http://dx.doi.org/10.1038/nature06879
http://dx.doi.org/10.1126/science.1190239
http://dx.doi.org/10.1126/science.1190239
http://dx.doi.org/10.1016/j.jsb.2013.08.003
http://dx.doi.org/10.1016/j.jsb.2013.08.003
http://dx.doi.org/10.1371/journal.pone.0020161
http://dx.doi.org/10.1371/journal.pone.0020161
http://dx.doi.org/10.1002/prot.21086
http://dx.doi.org/10.1016/j.jmb.2008.11.010
http://dx.doi.org/10.1016/j.jmb.2008.11.010
http://dx.doi.org/10.1007/978-1-61779-465-0_10
http://dx.doi.org/10.1007/978-1-61779-465-0_10

62

10(7):e0132508. doi: 10.1371/journal.
pone.0132508

 26. O'Boyle NM, Banck M, James CA, Morley C,
Vandermeersch T, Hutchison GR (2011)
Open Babel: an open chemical toolbox.
J Cheminform 3:33. doi: 10.1186/
1758-2946-3-33

 27. Kothiwale S, Mendenhall JL, Meiler J (2015)
BCL::Conf: small molecule conformational
sampling using a knowledge based rotamer
library. J Cheminform 7:47. doi: 10.1186/
s13321-015-0095-1

 28. Allen FH (2002) The Cambridge Structural
Database: a quarter of a million crystal structures
and rising. Acta Crystallogr B 58(Pt 3 Pt 1):380–
388 doi: 10.1107/S0108768102003890

 29. Hawkins PC, Skillman AG, Warren GL,
Ellingson BA, Stahl MT (2010) Conformer
generation with OMEGA: algorithm and vali-
dation using high quality structures from the
Protein Databank and Cambridge Structural
Database. J Chem Inf Model 50(4):572–584.
doi: 10.1021/ci100031x

 30. Labute P (2010) LowModeMD--implicit low-
mode velocity fi ltering applied to conforma-
tional search of macrocycles and protein loops.
J Chem Inf Model 50(5):792–800.
doi: 10.1021/ci900508k

 31. Ebejer JP, Morris GM, Deane CM (2012)
Freely available conformer generation meth-
ods: how good are they? J Chem Inf Model
52(5):1146–1158. doi: 10.1021/ci2004658

 32. Nivon LG, Moretti R, Baker D (2013) A
Pareto- optimal refi nement method for protein
design scaffolds. PLoS One 8(4), e59004.
doi: 10.1371/journal.pone.0059004

 33. Pettersen EF, Goddard TD, Huang CC,
Couch GS, Greenblatt DM, Meng EC, Ferrin
TE (2004) UCSF Chimera--a visualization sys-
tem for exploratory research and analysis.
J Comput Chem 25(13):1605–1612.
doi: 10.1002/jcc.20084

 34. Sheffl er W, Baker D (2009) RosettaHoles:
rapid assessment of protein core packing for
structure prediction, refi nement, design, and
validation. Protein Sci 18(1):229–239.
doi: 10.1002/pro.8

 35. Lawrence MC, Colman PM (1993) Shape
complementarity at protein/protein interfaces.
J Mol Biol 234(4):946–950. doi: 10.1006/
jmbi.1993.1648

 36. Stranges PB, Kuhlman B (2013) A comparison
of successful and failed protein interface designs
highlights the challenges of designing buried
hydrogen bonds. Protein Sci 22(1):74–82.
doi: 10.1002/pro.2187

 37. Nivon LG, Bjelic S, King C, Baker D (2014)
Automating human intuition for protein
design. Proteins 82(5):858–866. doi: 10.1002/
prot.24463

 38. Combs SA, Deluca SL, Deluca SH, Lemmon
GH, Nannemann DP, Nguyen ED, Willis JR,
Sheehan JH, Meiler J (2013) Small-molecule
ligand docking into comparative models with
Rosetta. Nat Protoc 8(7):1277–1298.
doi: 10.1038/nprot.2013.074

 39. Song Y, DiMaio F, Wang RY, Kim D, Miles C,
Brunette T, Thompson J, Baker D (2013)
High- resolution comparative modeling with
RosettaCM. Structure 21(10):1735–1742.
doi: 10.1016/j.str.2013.08.005

 40. Zanghellini A, Jiang L, Wollacott AM, Cheng
G, Meiler J, Althoff EA, Rothlisberger D,
Baker D (2006) New algorithms and an in
silico benchmark for computational enzyme
design. Protein Sci 15(12):2785–2794.
doi: 10.1110/ps.062353106

 41. Henrich S, Salo-Ahen OM, Huang B,
Rippmann FF, Cruciani G, Wade RC (2010)
Computational approaches to identifying and
characterizing protein binding sites for ligand
design. J Mol Recognit 23(2):209–219.
doi: 10.1002/jmr.984

 42. Lemmon G, Meiler J (2013) Towards ligand
docking including explicit interface water mol-
ecules. PLoS One 8(6), e67536. doi: 10.1371/
journal.pone.0067536

 43. Crooks GE, Hon G, Chandonia JM, Brenner
SE (2004) WebLogo: a sequence logo genera-
tor. Genome Res 14(6):1188–1190.
doi: 10.1101/gr.849004

 44. DeLano WL (2007) The PyMOL Molecular
Graphics System 1.0 edn. DeLano Scientifi c
LLC, Palo Alto, CA, USA

Rocco Moretti et al.

http://dx.doi.org/10.1371/journal.pone.0132508
http://dx.doi.org/10.1371/journal.pone.0132508
http://dx.doi.org/10.1186/1758-2946-3-33
http://dx.doi.org/10.1186/1758-2946-3-33
http://dx.doi.org/10.1186/s13321-015-0095-1
http://dx.doi.org/10.1186/s13321-015-0095-1
http://dx.doi.org/10.1107/S0108768102003890
http://dx.doi.org/10.1021/ci100031x
http://dx.doi.org/10.1021/ci900508k
http://dx.doi.org/10.1021/ci2004658
http://dx.doi.org/10.1371/journal.pone.0059004
http://dx.doi.org/10.1002/jcc.20084
http://dx.doi.org/10.1002/pro.8
http://dx.doi.org/10.1006/jmbi.1993.1648
http://dx.doi.org/10.1006/jmbi.1993.1648
http://dx.doi.org/10.1002/pro.2187
http://dx.doi.org/10.1002/prot.24463
http://dx.doi.org/10.1002/prot.24463
http://dx.doi.org/10.1038/nprot.2013.074
http://dx.doi.org/10.1016/j.str.2013.08.005
http://dx.doi.org/10.1110/ps.062353106
http://dx.doi.org/10.1002/jmr.984
http://dx.doi.org/10.1371/journal.pone.0067536
http://dx.doi.org/10.1371/journal.pone.0067536
http://dx.doi.org/10.1101/gr.849004

	Chapter 4: Rosetta and the Design of Ligand Binding Sites
	1 Introduction
	2 Materials
	3 Methods
	3.1 Pre-relax the Protein Structure into the Rosetta Scoring Function [32]
	3.2 Prepare the Ligand
	3.3 Place the Ligand into the Protein (See Notes 12 and 13)
	3.4 Run Rosetta Design
	3.5 Filter Designs
	3.6 Manually Inspect Selected Sequences
	3.7 Reapply the Design Protocol, Starting at Step 3.4
	3.8 Extract Protein Sequences from the Final Selected Designs into FASTA Format
	3.9 Iteration of Design

	4 Notes
	References

