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Chapter 15

Design of Specific Peptide–Protein Recognition

Fan Zheng and Gevorg Grigoryan

Abstract

Selective targeting of protein–protein interactions in the cell is of great interest in biological research. 
Computational structure-based design of peptides to bind protein interaction interfaces could provide a 
potential means of generating such reagents. However, to avoid perturbing off-target interactions, meth-
ods that explicitly account for interaction specificity are needed. Further, as peptides often retain consider-
able flexibility upon association, their binding reaction is computationally demanding to model—a stark 
limitation for structure-based design. Here we present a protocol for designing peptides that selectively 
target a given peptide-binding domain, relative to a pre-specified set of possibly related domains. We 
recently used the method to design peptides that discriminate with high selectivity between two closely 
related PDZ domains. The framework accounts for the flexibility of the peptide in the binding site, but is 
efficient enough to quickly analyze trade-offs between affinity and selectivity, enabling the identification of 
optimal peptides.

Key words Interaction specificity, Computational protein design, PDZ–peptide interactions, Cluster 
expansion, Flexible peptide docking

1  �Introduction

The loss of precise control over cellular protein interactions often 
results in disease [1]. Therefore, reagents that target protein inter-
actions to rewire cellular signaling pathways in desired ways are of 
great relevance in both therapeutic development and mechanistic 
investigation [2]. A considerable fraction of the known cellular 
interactome is believed to be mediated by peptide-recognition 
domains (PRDs)—interaction-encoding modules that bind to 
short amino-acid stretches on their partner proteins [3–5]. Many 
PRD families are large, with members closely related in structure 
and sequence, but often having entirely divergent functions. 
Peptides are a natural choice for functional modulation of PRD-
encoded interactions, because they are well suited to occupy the 
PRD binding site and are amenable to computational design. 
Further, recognition sequence preferences of several PRDs have 
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been characterized experimentally [6–9], enabling the develop-
ment of computational models for binding prediction either by 
direct training on high-throughput experimental data [10, 11], 
structure-based energy calculations [12–15], or combinations of 
the two [16, 17]. However, to effectively target a given interaction 
encoded by a PRD, the targeting peptide should in general be 
selective—i.e., it should avoid interactions with other proteins, 
including those within the same PRD family. Given the close simi-
larity among family members, achieving such selectivity by design 
is not trivial. Peptides chosen purely for binding to the target are 
likely to also bind other family members, with unpredictable func-
tional consequences.

Structure-based methods for modeling PRD–peptide binding 
have the potential to generalize across different PRDs [18]. 
However, the use of such techniques in designing selective recog-
nition is complicated by the inherent flexibility of peptides, which 
places high computational demands on modeling. To mitigate this 
problem, we have developed a general computational framework 
that decouples the complexity of the structure-based simulation 
used to model PRD–peptide binding from the computational effi-
ciency requirements imposed by the design of selectivity [19]. The 
framework uses the previously described method of cluster expan-
sion (CE) [20, 21] to produce simple sequence-based expressions 
that rapidly estimate the results of detailed structure modeling 
techniques. The efficiency gained by CE enables the fast identifica-
tion of optimal trade-offs between affinity for the targeted domain 
and selectivity against any number of undesired partners. The 
framework is detailed below.

2  �Materials

The following resources or materials are needed to apply our 
framework:

	 1.	A Unix-/Linux-based computing platform with:
(a)	 A linear algebra engine (e.g., the proprietary MathWorks 

MATLAB or the open-source GNU Octave).
(b)	 Macromolecular modeling suite Rosetta, version 3.4 or 

higher [22].
(c)	 PyRosetta, a Python-based interface to Rosetta [23].
(d)	 Highly desirable: access to a high-performance computing 

cluster with the ability to perform at least hundreds of jobs 
independently in parallel.

	 2.	A basic understanding of and the capability to work with the 
computation resources in 1.
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	 3.	Optional, but highly desirable: experimentally validated exam-
ples of peptides that bind strongly and those that bind weakly 
(or undetectably) to members of the PRD family of interest.

3  �Methods

In this section, we outline our framework for designing PRD-
binding peptides. We will refer to our experience with using it to 
design PDZ-targeting peptides [19], but we believe that the frame-
work should generalize to other systems. The procedure differs 
depending on whether the goal is to design high-affinity peptides 
for a single PRD or design selective peptides that bind one PRD 
(target) but not the others (competitors). In the latter case, bind-
ing to multiple PRDs has to be modeled. If not stated otherwise, 
it should be assumed that each discussed step is carried out for all 
PRDs being considered.

	 1.	Download experimental structures of target and competitor 
PRDs from the Protein Data Bank (PDB), if they are available. 
The following preferences apply if multiple structures are avail-
able for a given PRD (in the order of priority): (a) an X-ray 
structure is preferred over an NMR structure, (b) a peptide-
bound structure is preferred over an apo structure, and (c) a 
higher-resolution X-ray structure is preferred over a lower res-
olution one. If a given PRD has no experimental structures, 
use homology modeling (e.g., via the SWISS-MODEL server 
[24] or MODELLER [25]) to create a predicted structure. 
The template used in homology modeling should be a peptide-
bound structure and otherwise as close in sequence to the rel-
evant PRD as possible (see Note 1). If either an NMR structure 
or a homology model is used for a PRD, particular attention 
should be paid to the results in step 5.

	 2.	Subject any homology models to continuous minimization in 
the presence of a known binding peptide. Because the back-
bone will be held fixed when sampling the bound state (see 
below), this step is recommended to make the PRD model 
resemble a peptide-bound state as much as possible. To this 
end, first align the homology model to the template by opti-
mally superimposing the backbone of binding-site residues, 
and then copy the peptide backbone from the template to the 
PRD model. In PyRosetta [23], assign peptide side-chain 
identities according to a known ligand peptide (a ligand of a 
closely homologous PRD may be used if no ligand for the tar-
get is known) and repack all side chains in the model. Follow 
by applying full-atom minimization via the “dfpmin” algo-
rithm in PyRosetta, with a tolerance of 0.01, allowing both 
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backbone torsion angles and side chain χ-angles to move. Note 
this assumes that the template used in homology modeling is 
close enough to the PRD of interest to have similar binding 
geometry and sequence preferences.

	 3.	Collect a set of experimental PRD–peptide complex structures 
for use in seeding multiple simulation trajectories when 
modeling new PRD–peptide pairs. For example, for PDZ 
domains, we collected 51 unique complexes with peptides of at 
least six residues (Table 1). For each available complex, align 
its binding site onto that of the PRD of interest, and copy the 
peptide backbone from the complex onto the PRD (as in step 
2). To automate the procedure of identifying binding sites in 
all experimental complexes, we recommend manually defining 
binding-site residues only in the PRD of interest and then 
using our substructure search engine MASTER [26] to auto-
matically find corresponding residues in all complexes. We 
found the generation of diverse starting conformations to seed 
multiple sampling trajectories to be critical in modeling PDZ–
peptide binding, presumably due to the considerable flexibility 
of the peptide in the binding site [19].

	 4.	Given a peptide/PRD combination to be evaluated, run the 
Rosetta FlexPepDock ab initio protocol [27] for each of the 
starting conformations generated in step 3. We recommend 
asking each simulation to generate at least 500 structural models 
(from 500 independent Monte Carlo simulations). Therefore, 
in the PDZ example, for each peptide/PRD pair, 
500 × 51 = 25,500 structural models would be generated. 
Rosetta FlexPepDock documentation is available at https://
www.rosettacommons.org/docs/latest/application_documen-
tation/docking/flex-pep-dock. Evaluate each model using the 
talaris2013 Rosetta scoring function; in our experience, omit-
ting backbone statistical energy terms “rama” and “omega” 
increases performance (see Note 2). The lowest score among all 
generated models should be used as the final predicted binding 
score for the given peptide/domain combination.

	 5.	Use an experimental dataset as a benchmark to assess the accu-
racy of the structure-based simulation and the appropriateness 
of structural models used. Ideally, experimental data for the 
relevant PRDs should be used, but if such data are unavailable, 
results for highly homologous domains in the PRD family 
(those believed to share close binding preferences) may be 
used. Use the experimental data to build the benchmark data-
set: sets of high-confidence binding peptides and weak/non-
binding peptides for each PRD (see Note 3). Run the procedure 
in step 4 to score each peptide/domain combination in the 
benchmark dataset. Use the Receiver Operating Characteristic 
(ROC) analysis to measure the ability of the simulation to sep-
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Table 1 
A set of experimental PDZ–peptide complex structures used to generate starting conformations for 
multiple simulation trajectories

PDB-ID Chain-ID (domain) Domain residue number range Chain-ID (peptide)

1B8Q A 11–90 B

1D5G A 8–90 B

1KWA A 3–82 B

1L6O A 3–88 D

1N7F A 5–84 C

1N7T A 12–98 B

1OBY B 2–74 Q

1Q3P A 8–95 C

1RGR A 4–88 B

1RZX A 5–95 B

1TP3 A 13–91 B

1TP5 A 13–91 B

1U3B A 4–88 A

1VJ6 A 8–90 B

1X8S A 5–95 B

1YBO A 88–160 C

1ZUB A 23–107 B

2AIN A 7–89 B

2EJY A 3–81 B

2FNE B 11–93 A

2HE2 A 7–85 B

2I04 B 3–83 D

2I0I A 4–81 D

2I0L A 2–83 C

2I1N A 6–90 B

2IWP A 3–83 B

2JIL A 7–89 B

2JOA A 5–88 B

2 K20 A 9–99 B

2KA9 A 5–89 B

(continued)
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arate true binders from weak/non-binders, using Area Under 
the Curve (AUC) for quantification [28]. AUC values above 
~0.7 would indicate a reasonable structural model and simula-
tion approach.

	6.	 Define amino acids allowed at each position of the peptide—
i.e., the design alphabet. We strongly recommend constraining 
the alphabet based on any known information about the PRD 
family in general and the specific targeted domain(s). This 
keeps the sequence space from being unnecessarily large, limit-
ing computational complexity. Further, patterning of allowed 
amino acids based on strong experimentally observed prefer-
ences limits the effect of error present in any modeling 

Table 1
(continued)

PDB-ID Chain-ID (domain) Domain residue number range Chain-ID (peptide)

2KBS A 4–83 B

2KPL A 17–97 B

2KQF A 8–91 B

2KYL A 8–91 B

2L4T A 17–110 B

2OPG B 5–87 A

2OQS A 2–86 B

2OS6 A 11–83 B

2PZD A 1–85 B

2QBW A 2–97 B

2UZC B 3–81 A

2 V90 E 6–85 C

2VRF B 7–87 A

3B76 B 11–94 A

3CBX B 7–88 A

3CBY B 4–86 A

3CC0 C 4–88 A

3CH8 A 2–95 P

3DIW B 7–100 D

3GGE A 9–88 B

3LNY A 8–90 B

This table was created by filtering search results from extended PDZ domain database (http://bcz102.ust.hk/
pdzex/) [31]
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approach. In our PDZ-targeting study, we were able to design 
highly selective binders by computationally considering a 
sequence space of only 8400 peptides [19].

	 7.	Given the computationally complex modeling procedure 
described in step 4, it will likely be prohibitively expensive to 
enumerate even moderately large peptide sequence spaces 
(e.g., the procedure takes over 400 CPU hours per peptide in 
our PDZ example). On the other hand, given a specific PRD, 
the final score of the simulation depends only on the peptide 
sequence. Thus, the next step is to derive an analytical map-
ping from peptide sequence to predicted binding score, for 
each PRD of interest. We previously described a method for 
finding such a mapping, called cluster expansion (CE) [20]. In 
short, CE expresses the result of a structure-based computa-
tional procedure as a series expansion in contributions from 
amino-acid clusters of increasing size—we call these cluster 
functions or CFs. For example, if E

s( )  represents the binding 
score from the procedure in step 4, for a peptide sequence 

s  
and a given domain, the CE expression states
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where L is peptide length, 


r  is a reference sequence, and σi 
and ρi are the amino acids in the i-th position of 

s  and 


r , 
respectively. The significance of the reference sequence is that 
the summations in the expression extend only over combina-
tions of positions (clusters) occupied by amino acids differing 
from the corresponding ones in 



r . Thus, C represents the 
binding score for 



r  (i.e., the reference CF), whereas the 
remaining terms capture the additional contributions of amino 
acids in 

s  that differ from 


r  (i.e., higher-order CFs). The first 
summation considers point CFs, with fi(σi) representing the 
effective contribution of amino acid σi at position i. Similarly, 
the second summation considers pair CFs, with fij(σi, σj) rep-
resenting the additional pairwise contribution due to having σi 
at position i and σj at position j simultaneously. To be exact, 
the expansion must consider all higher-order contributions, up 
to L-tuples, but in most cases this is impractical. Instead, one 
can choose to preserve only lower-order CFs (e.g., including 
only up to pairwise contributions), and use a training set of 
sequences with pre-computed scores to deduce CF values that 
optimize the accuracy of the truncated expansion [20].
Based on our PDZ study, a CE with up to pair CFs should 
represent peptide–PRD interactions reasonably well [19], 
though higher-order terms can still be added if needed [20]. 
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Point CFs at all positions should be included. To reduce com-
putational complexity, pair CFs can be restricted to position 
pairs likely to host side chains that interact either directly or 
through a common site on the PRD. For example, when build-
ing CEs for PDZ–peptide interactions, we omitted pair CFs 
between adjacent peptide positions, as these alternate in point-
ing either into or away from the binding interface, making 
coupling between them less likely [19]. Once a cluster is 
included in a CE (e.g., a pair cluster), every combination of 
non-reference amino acids at the corresponding positions pro-
duces a unique CF. Thus, the number of CFs to be considered 
is related to the size of design alphabet. For example, in our 
PDZ study, allowing 2–8 amino acids at six peptide positions 
resulted in 77 CFs (the reference CF, 24 point CFs, and 52 
pair CFs) [19].

	 8.	Generate sequences for CE training by randomly drawing from 
the design alphabet. The number of sequences should be at 
least twice the number of CFs to be considered (determined in 
steps 6 and 7). These sequences will be subjected to structure-
based simulations, so choosing a design alphabet to be only as 
large as necessary (step 6) helps keep training time manage-
able. Figure 1 uses the PDZ example to show how the com-
plexity of CE training increases with increasing number of 
amino acids allowed at each position. The random sequence 
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Fig. 1 The computational complexity of generating the CE training set increases 
with the number of amino acids allowed at each position. The clusters allowed in 
our PDZ study [19] are used in this estimation. The number of training sequences 
(left-axis) is estimated as twice the number of candidate cluster functions (CFs); 
time is estimated by assuming that a 1000-core compute cluster is available and 
that the simulations for one peptide take 400 wall-clock hours when run in serial 
(see step 4)
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generation can be biased toward any known binding sequence 
preferences in order to concentrate the sampling (and ulti-
mately CE accuracy) toward more relevant sequence spaces. 
No matter how the random set is generated, we recommend 
checking it for reasonable coverage of all CFs to be considered 
(e.g., at least three examples of each CF should be present). 
For any underrepresented CFs, sequences that contain them 
(but are otherwise random) should be added to balance the 
training set.

	 9.	Run the simulation protocol in step 4 for all sequences in the 
training set with all PRDs of interest, extracting the final bind-
ing score for each.

	10.	Train a CE model for each PRD by deriving optimal CF 
weights. In a linear algebra engine (e.g., MATLAB or Octave), 
create an m × n model matrix M, where m is the number of 
training sequences and n is the number of cluster functions 
considered (m > n). M(i, j) should contain the number of times 
the j-th CF occurs in the i-th sequence. Typically, this will be 
either 1 or 0 (when the i-th sequence either does or does not 
involve the j-th CF, respectively), but can also be a larger inte-
ger in cases with structural symmetry, where a CF may occur 
multiple times within a sequence (e.g., with coiled coils; see 
Ref. [20]). Create also an m × 1 vector E, whose i-th element is 
the structure-based binding score of the i-th sequence calcu-
lated in step 9. Optimal CF weights can then be obtained by 
finding the m × 1 vector b that minimizes the mean squared 
difference between E Mb



=  (CE-predicted scores) and E, with 
the j-th element  of b representing the weight of the j-th 
CF.  The least-square solution can be easily found using the 
method of pseudo-inverse as M M M ET T( )-1 . In MATLAB or 
Octave, this corresponds to the expression:

	
b M’ M M’ E= *( ) -( ) * *



1
	

Note that matrix M has to be rank n, meaning that CFs have to 
represent orthogonal information and may not be linear com-
binations of each other (if M is not rank n, it often means an 
error was made either in encoding the model matrix or in 
defining CFs). Rather than including all candidate CFs into M 
at once and obtaining the best-fitting b, we recommend using 
our previously described strategy to prevent overtraining. The 
quality of a CE model (with a specific subset of CFs included) 
can be conveniently estimated as the average error with which 
the score of each sequence is predicted when that sequence is 
left out of the training set—the cross-validation root-mean-
square error (CV-RMS). This value can be computed in closed 
form as
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where Mi · represents the i-th row of matrix M. In MATLAB or 
Octave, this can be computed via the expression:
sqrt(sum(((E-M*b)./(1-sum(M.*(M*((M'*M)^(-1))’), 
2))).^2)/length(E))

Thus, first train a CE model including all CFs (constant, point, 
and pair)—the all-inclusive model. Next, train another CE 
model with only constant and point CFs—the current model. 
Then, consider pair CFs, in decreasing order of their weights 
in the all-inclusive model, for addition to the current model. 
Each time a pair CF is considered for addition, train a new CE 
model that includes all CFs in the current model and the can-
didate pair CF, and evaluate the resulting CV-RMS.  If it is 
lower than that of the current model, update the current model 
to include the CF; otherwise, discard the pair CF. Repeat until 
all pair CFs are considered. We have found this simple proce-
dure to work well in practice, as in our PDZ-targeting study, 
but we have also proposed a more principled and general-pur-
pose statistical method for choosing CFs to maximize CE 
accuracy [29].

	11.	Randomly generate a test set containing sequences not included 
in the training set, following the same procedure as in step 8. 
The number of sequences in the test set need only be large 
enough to provide a reliable estimate of CE error. Run the 
protocol in step 4 for these sequences, and compute the root-
mean-square of the difference between the resulting binding 
scores and scores calculated by the CE model from above (test-
set RMS). This metric is a better indicator of expected CE 
error and is generally marginally higher than CV-RMS. Evaluate 
the quality of the CE model in the context of the ROC analysis 
in step 5. CE error should be lower than the score differences 
that tend to differentiate known binders from non-binders. If 
this is not the case, then the CE model is not of sufficient accu-
racy for specificity design, with several possible root causes: (1) 
important clusters were missed in step 7; (2) training set for 
CE was too small, such that important CF contributions could 
not be discerned; or (3) the structure-based score being con-
sidered is not easily expandable in terms of low-order CFs and 
may require more context for higher accuracy (e.g., triplet CFs 
may be necessary; see Ref. [20]).

	12.	Identify optimal peptide sequences for experimental character-
ization. In an earlier study, we described CLASSY, a framework 
that feeds CE models into an integer linear programming (ILP) 
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framework to select sequences that make optimal trade-offs 
between affinity and selectivity [21]. Alternatively, in circum-
stances where the peptide sequence space is sufficiently small 
(i.e., £1010  sequences), given that the CE model typically takes 
less than 1 μs per peptide to evaluate, the entire sequence space 
can be simply enumerated. Either way, the goal is to find all 
peptide sequences that cannot be simultaneously improved in 
both predicted binding score and selectivity (i.e., the difference 
in binding scores between the target complex and the best-
scoring off-target complex) [21]. These sequences lie at the 
edge of affinity/selectivity space (the so-called pareto-optimal 
front [30]) and are the only candidates worth considering, due 
to the simple fact that all other sequences can be simultane-
ously improved in both parameters. The pareto-optimal front 
is easy to visualize on a plot of affinity versus selectivity, where 
each point represents a sequence (Figure 2 shows a plot cor-
responding to one of the designs from our PDZ study [19]).

	13.	The number of sequences on the pareto-optimal front is often 
small enough to allow for the manual inspection of each [19, 
21]. We recommend re-scoring each of these sequences by the 
structure-based framework in step 4 to check for the possibil-
ity of anomalous CE error (discard any candidates scoring sig-
nificantly less favorably in either affinity or selectivity by the 
structure-based framework than the CE model), manually ana-
lyzing the corresponding structural models for biophysical 
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Fig. 2 An example predicted affinity/selectivity landscape, zoomed in around 
optimal sequences. Scores are shown in Rosetta energy units (eu). Each dot 
represents a peptide sequence; X and Y coordinates indicate affinity and selec-
tivity scores, respectively (see Ref. [19]), with more negative numbers corre-
sponding to higher affinity and selectivity. Sequences on the pareto-optimal front 
(i.e., those for which affinity and selectivity cannot be improved simultaneously; 
gray points) are connected with dashed lines. Adapted from Fig. 4a in Ref. [19]
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plausibility (discard candidates with potential structural prob-
lems not properly recognized by the structural modeling 
framework), and finally choosing among remaining candidates 
based on the predicted scores. Depending on the availability of 
time and computational resources, one may also perform 
explicit-solvent molecular dynamics simulations of chosen can-
didates to build further support of at least local stability of the 
peptide in the binding site. Although relevant timescales will 
differ between systems, at least 10–100 ns of sampling is likely 
required in most situations to make any relevant observations. 
Additional issues in selecting candidate sequences are discussed 
in Note 4.

4  �Notes

	 1.	Our analysis showed that when a homologous template for a 
PDZ domain has around 35–45 % sequence identity to the 
target sequence, the Cα RMSD between the binding pockets 
of the true structure and the homology model has a median of 
1.4 Å [19]. Also, when comparing apo and peptide-bound 
structures of PDZ domains, we noticed that PDZ binding sites 
tend to widen upon peptide binding [19]. Backbone rear-
rangements are not modeled in the Rosetta FlexPepDock, but 
it was shown that although these rearrangements are small, 
they are enough to affect the outcomes of the structural simu-
lation significantly [27]. Therefore, peptide-bound structures 
are strongly preferred as homology-modeling templates. For 
example, in our previous work, we found that a PDZ domain 
homology model based on a peptide-bound structure with 40 
% sequence identity performed much better in binding predic-
tion than one based on an apo structure with 50 % sequence 
identity (unpublished data).

	 2.	In our PDZ study, we conducted benchmark tests for two PDZ 
domains, NHERF-2 PDZ2 (N2P2) and MAGI-3 PDZ6 
(M3P6), with Rosetta 3.4 [22] using the scoring function 
score12. We observed that dropping the backbone statistical 
terms “rama” and “omega” significantly improved performance 
[19]. The AUCs before and after omitting these terms were 
0.57 and 0.77 for M3P6 (25 binders and 16 non-binders in the 
benchmark set; Fig. 3). In preparation of this manuscript, we 
also tested the performance of the new scoring function 
talaris2013 used in a newer version of Rosetta 
(Rosetta_2014.35.57232_bundle), and the AUCs before and 
after dropping “rama” and “omega” were 0.71 and 0.76 for 
M3P6. This omission also marginally improves the performance 
on N2P2 (AUCs 0.86 and 0.91 before and after dropping), 
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although this domain has fewer data points in our benchmark 
set (7 binders and 8 non-binders). Importantly, as no experi-
mental structures of M3P6 were available, we used a homology 
model for simulating M3P6–peptide interactions in our study. 
Given that the improvement due to omitting “rama” and 
“omega” is larger for M3P6, it may be that the terms present 
more of an issue for homology models than crystal structures. 
Still, omitting the terms appears to improve the performance in 
general (including additional PDZ domains we have tested 
since our study; data not shown), and this may be due to the 
fact that Rosetta scoring functions are generally optimized to 
recognize/reproduce ground state-like conformations.

	 3.	The benchmark dataset in our PDZ domain study came from 
the work of MacBeath and coworkers, which characterized 
binding affinities for a large number of PDZ–peptide pairs [7]. 
The authors reported dissociation constants if they were below 
100 μM, or simply labeled interactions as “weak” in the oppo-
site case. Thus, we naturally chose 100 μM as the cutoff for 
separating “binders” from “non-binders” for ROC analysis 
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binders from non-binders for M3P6. Default Rosetta scoring function score12 
(gray line, labeled as M3P6) and a modified version that omits “rama” and 
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[19]. If quantitative affinity measurements are not available, 
SPOT-array or phage-display data can also be used to classify 
sequences into two categories. However, one should use cau-
tion with such data, as they are in general more error prone, 
especially with respect to false negatives (i.e., true binders that 
are not detected in the assay).

	 4.	It may be unnecessary to experimentally test all candidate 
sequences selected in steps 12 and 13. It is generally advanta-
geous to characterize sequences spanning different levels of 
selectivity, to determine whether predicted affinity/selectivity 
trade-offs are correct. When possible and applicable, choose 
sequence subsets with diverse structural strategies for reaching 
either affinity or selectivity.
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