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Abstract Clusters of galaxies are the largest gravitationally bounded structures in the Uni-
verse dominated by dark matter. We review the observational appearance and physical mod-
els of plasma structures in clusters of galaxies. Bubbles of relativistic plasma which are
inflated by supermassive black holes of AGNs, cooling and heating of the gas, large scale
plasma shocks, cold fronts, non-thermal halos and relics are observed in clusters. These con-
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stituents are reflecting both the formation history and the dynamical properties of clusters
of galaxies. We discuss X-ray spectroscopy as a tool to study the metal enrichment in clus-
ters and fine spectroscopy of Fe X-ray lines as a powerful diagnostics of both the turbulent
plasma motions and the energetics of the non-thermal electron populations. The knowledge
of the complex dynamical and feedback processes is necessary to understand the energy and
matter balance as well as to constrain the role of the non-thermal components of clusters.

Keywords Clusters of galaxies · Radiation mechanisms: non-thermal · Radio continuum ·
X-rays: galaxies: clusters

1 Introduction

Clusters of galaxies grow by gravitational collapse to the most massive objects of the Uni-
verse. While the total mass is dominated by dark matter (∼ 80 %), there is a significant
baryonic contribution of 20 % and the processes where baryons are involved prominently
determine the evolutionary physics and the observational appearance of clusters.

In this paper we focus on the baryonic component of clusters and in particular on the
hot gas that, with its thermal and non-thermal constituents, comprises the majority of these
baryons. Cluster galaxies are embedded in this hot intracluster medium (ICM), but represent
a small fraction of both the volume and the baryonic mass.

For most clusters, the hot gas reaches temperatures of 107–108 K. At the low temperature
end, below temperatures of about 2 × 107 K, it is more common to speak about groups of
galaxies rather than clusters of galaxies, but the transition is of course smooth.

From an X-ray perspective, clusters are found in two variants: those with a cool core
and those lacking such a core. In the cool core clusters the density of the gas in the center
reaches values of ∼ 10−2 cm−3 (that is, for instance, only 1 % of the typical density of the
interstellar medium of a galaxy). The density decreases rapidly towards the outskirts down
to levels of order 10−4 cm−3 or less.

The density in the cool cores is high enough to cause significant cooling over cosmolog-
ical time scales through thermal bremsstrahlung emission observed in X-rays. Without any
heating mechanism, this gas would cool down further and do form stars. However, it appears
that active nuclei in the core of the dominant cluster galaxies can emit so much power that
the associated heating compensates the cooling of the central gas. This leads to a physically
interesting but complex feedback loop between the central supermassive black hole and the
cluster gas. These processes and the associated plasma structures will be discussed in this
review.

Clusters are by no means static entities, they still grow. Large scale violent processes
occur, like cluster mergers or, more frequently, the capture of groups or individual galaxies
by massive systems. Due to the supersonic velocities involved, shocks are produced at vari-
ous locations within colliding clusters. This leads to local heating, particle acceleration and
modification of the magnetic fields, and we will also discuss these processes.
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Another part of the bulk motions may cascade downwards in scale in the form of turbu-
lence, that represents a contribution to the total thermal pressure of the order of 5–15 % and
is stronger in the outer parts of clusters (see for review Kravtsov and Borgani 2012; Dolag
et al. 2008). In these external regions, infalling galaxies and groups will give rise to density
inhomogeneities which, due to the relatively low density in cluster outskirts, take a long
time to disappear.

Mixing of merging components also leads to interesting processes at the interface be-
tween cold and hot gas. Further, when galaxies are being captured by a cluster, they may
lose their chemically enriched gas to the intracluster medium by ram pressure or interaction
with other galaxies. The ICM itself is a rich archive of the past chemical history of the clus-
ter: it contains information on the distribution of stars and the relative frequencies of specific
subclasses.

Clusters, that are the largest gravitationally bound systems in the Universe, form a rich
and living laboratory to study all kinds of processes that shape their appearance. Our re-
view is devoted to discussion of plasma structures of different scales and origin in clusters
of galaxies. More general discussion and many important ideas about the evolution and
cosmological importance of clusters of galaxies can be found in recent reviews (see e.g.
Böhringer and Werner 2010; Allen et al. 2011; Kravtsov and Borgani 2012; Planelles et al.
2014, and references therein).

2 AGNs in Galaxy Clusters. Feedback Processes

The gas in the cores of galaxy clusters has a radiative cooling time of the order of 109 years
or less, opening the possibility of forming an extremely massive central galaxy. This occurs
in numerical simulations with radiative cooling, but is generally not observed in nature, with
a few observed exceptions, such as, e.g., the Phoenix cluster (McDonald et al. 2012). In-
stead, observations suggest that the mechanical energy released by a central AGN regulates
the thermal state of the gas, preventing it from catastrophic cooling. Bubbles of relativistic
plasma are inflated by a supermassive black hole and rise buoyantly through the gaseous
atmosphere, leading to a number of spectacular phenomena such as expanding shocks, X-
ray dim and radio bright cavities, old and “dead” cavities and filaments in the wakes of the
rising bubbles formed by entrained low entropy gas.

Simple arguments based on the energy content of bubbles and their life-time show that
the amount of mechanical energy supplied by AGNs matches approximately the gas cooling
losses in objects vastly different in size and luminosity. This hints at some form of self-
regulation of the AGN power. How the mechanical energy, provided by the AGN, is dissi-
pated depends on the ICM microphysics (e.g. magnetic fields, viscosity, conduction etc.).
However it is plausible that close to 100 % of the mechanical energy is eventually dissipated
in the cluster core, regardless of the particular physical process involved.

AGN feedback is plausibly a key process for the formation of massive ellipticals at z ∼
2–3, as suggested by the correlation of galaxy bulge properties and the mass of the SMBH
(Ferrarese and Merritt 2000; Gebhardt et al. 2000). Galaxy clusters offer us a zoomed view
on this process at z ∼ 0. Three pre-requisites are needed for this scenario to work (i) a hot
gaseous atmosphere in the galaxy is present, (ii) the black hole is sufficiently massive and
(iii) a large fraction of AGN energy is in mechanical form. The latter depends critically on
the physics of accretion, in particular, on the transition of the SMBH energy output from
the radiation-dominated mode to the mechanically-dominated mode when the accretion rate
drops below a fraction of the Eddington value (e.g., Churazov et al. 2005). Given that the
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coupling constant of these two forms of energy output with the ICM can differ by a factor
of 104–105, this change in the accretion mode may explain the switch of a SMBH (and
its parent galaxy) from the QSO-type behavior and an intense star formation epoch to the
radiatively inefficient AGN and essentially passive evolution of the parent galaxy.

Below we briefly outline only most general features of the AGN Feedback model in
galaxy clusters and do not discuss results from numerical simulations. Extended reviews on
the AGN Feedback in clusters can be found in, e.g., McNamara and Nulsen (2007), Fabian
(2012).

2.1 Cluster Cores Without AGN Feedback

The radiative cooling time of the gas in the central parts of rich galaxy clusters (tcool =
γ

γ−1
nkT

n2Λ(T )
∼ few 108 − 109 yr) is shorter than the Hubble time (e.g., Lea 1976; Cowie and

Binney 1977; Fabian and Nulsen 1977). Here n and T are the density and temperature of
the ICM, respectively, γ is the adiabatic index and Λ(T ) is the radiative cooling function.
Since tcool ∝ 1/n, the cooling time is short in the center, but rapidly increases with radius.
The radius rcool where tcool ∼ tHubble is usually referred to as the cooling radius. Without
an external source of energy, the gas inside rcool must cool and flow towards the center,
forming a so-called “cooling flow” (see Fabian 1994, for a review of the scenario without
AGN feedback). Observations (e.g., Peterson and Fabian 2006; David et al. 2001), however,
suggest that the net rate of gas cooling to low temperatures is a small fraction (∼ 10 % or
below) of the straightforward estimate:

Ṁcool = Lcool
γ

γ−1kT
μmp ∼ 102 − 103 M� yr−1, (1)

where Lcool is the total cooling rate within rcool, μ is the mean particle atomic weight. This
implies that a source of heat is needed to offset ICM cooling losses. In the late 90’s and early
2000’s it became clear that a supermassive black hole sitting at the center of the dominant
cluster galaxy could operate as such source.

The above “cooling flow” problem applies not only to rich clusters and groups, but also
to individual hot gas rich galaxies (e.g., Thomas et al. 1986). The fact that these galaxies
do not show significant star formation argues for feedback from these low mass systems
(some with SMBH masses as large as those in central galaxies in rich clusters) up to the
most massive and X-ray luminous clusters.

2.2 Evidence for AGN Mechanical Feedback and Its Energetics

Massive ellipticals at the cores of rich clusters host black holes with masses larger than
109 M�. In terms of energetics, such black holes, accreting at the Eddington rate, could
release up to 1047 erg s−1—much more than needed to reheat the gas. However, we do not
find extremely bright AGNs in nearby clusters, and the coupling of radiation to the fully
ionized ICM (via Compton scattering) is weak. Based on radio observations, Pedlar et al.
(1990) argued that mechanical power of jets in NGC1275 (dominant galaxy in the Perseus
cluster) is likely much higher than their radiative power and it might be comparable to the
gas cooling losses. For less massive systems Tabor and Binney (1993) and Binney and Tabor
(1995) suggested that the mechanical power of jets may have a strong impact on the thermal
state of the gas in the central region. But it was only the combination of X-ray and radio
data that convincingly demonstrated a crucial role of AGN feedback in cluster cores.
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Fig. 1 X-ray (Forman et al. 2007) and 6 cm radio (Hines et al. 1989) images of the M87 core (3′ × 3′).
The X-ray image (left) was flat-fielded to emphasize various non-axisymmetric features. Images are shown to
scale, centered at the supermassive black hole with a kpc scale jet going to the NW. X-ray cavities, matching
the 6 cm image of the inner radio lobes are clearly seen in the left image

By now, Chandra and XMM-Newton found signs of AGN/ICM interactions in a large
fraction of relaxed clusters (e.g., McNamara et al. 2000; Dunn and Fabian 2006; Rafferty
et al. 2006; Hlavacek-Larrondo et al. 2012; Bîrzan et al. 2012). But clear evidence of this
process in the Perseus cluster and in M87/Virgo had previously been seen in ROSAT images
(Boehringer et al. 1993; Bohringer et al. 1995). Based on these sketchy X-ray and radio
images, the basic features of the mechanical feedback model and its energetics, inspired by
analogy with powerful atmospheric explosions, were outlined (Churazov et al. 2000) just
before Chandra and XMM-Newton launch.

This impact of the SMBH mechanical power on the ICM can be best illustrated for
M87—the X-ray brightest elliptical galaxy in the nearby Virgo cluster. While M87/Virgo
is not a very luminous system (Lcool is of the order 1043 erg s−1, e.g. Peres et al. 1998, Owen
et al. M87), its proximity (distance ∼ 16 Mpc) offers an exquisitely detailed view on the
processes in the very core of the galaxy (e.g. Forman et al. 2005, 2007; Million et al. 2010;
Werner et al. 2010).

Shown in Fig. 1 are the X-ray and 6 cm radio images of M87 (central 3′×3′). Synchrotron
emission for a jet coming from the SMBH is clearly visible. Except for the jet, the X-ray
image is dominated by the thermal emission of the optically thin plasma at a temperature
1–2 keV (unambiguously proven by the observed spectra). The radio image on the right
shows synchrotron emission from the jet and radio lobes filled with relativistic plasma. The
radio-bright lobes at 6 cm nicely correspond to the X-ray dim regions that are defined by
X-ray bright shells, suggesting that thermal plasma is displaced by the relativistic plasma
within the central 1′ from the core. A minimum energy, required to (slowly) inflate a bubble
of a given volume at a constant pressure is the enthalpy:

Ebub = γ

γ − 1
PV, (2)

where γ is the adiabatic index of the fluid inside the bubble (γ = 4/3 and 5/3 for mono-
atomic relativistic and non-relativistic fluids respectively), P is the ICM pressure and V is
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the volume. This gives a lower limit on the amount of mechanical energy produced by the
SMBH. Since we do not see evidence for a very strong shock surrounding the lobes (see,
however, below), the true amount of energy should not be far from this lower limit.

To evaluate the mechanical power of the AGN, we need to estimate the life-time of the
bubbles tbub. The simplest recipe (Churazov et al. 2000) comes from the analysis of the
buoyancy driven evolution of the bubble. The importance of buoyancy for the radio lobes,
filled with relativistic plasma, was pointed out by Gull and Northover (1973). Comparing
the expansion velocity (which depends on the AGN power and the size of the bubble) and
the buoyant rise time (which depends on the gravity and the size of the bubble) one gets an
upper limit on the life time of the bubble. For a steady AGN power LAGN deposited into a
small volume, the initial expansion of the bubble is supersonic, but it slows as the bubble
grows. Soon after the expansion velocity becomes subsonic, the bubble is deformed by the
Rayleigh-Taylor instability and rises under the action of buoyancy. The terminal velocity of
the rising bubble vrise is set by the balance of the ram pressure (assuming low viscosity of
the ICM)and the buoyancy force:

g
4

3
πr3ρgas ≈ Cπr2ρgasv

2, (3)

where g is the gravitational acceleration, r is the bubble radius, ρgas is the ICM density
and C is a dimensionless constant of order unity. Thus vrise ∼ √

gr . At the same, time
AGN activity drives the expansion of the bubble with the velocity vexp set by the AGN
power LAGN, e.g., from Eq. (2) vexp ∼ γ−1

γ

LAGN
4πPr2 , provided that the expansion velocity is

subsonic. The condition vexp � vrise sets the lower limit on the AGN power needed to ignore
the role of buoyancy. For M87 the size of the inner lobes suggests the jet mechanical power
LAGN ∼ γ

γ−1
4πPr2√

gr
∼ few 1043 erg s−1. Of course such estimates (and various modifications

e.g., McNamara and Nulsen 2007) are only accurate to within a factor of a few. Neverthe-
less, it is clear that mechanical input of the SMBH is sufficient to offset gas cooling losses,
i.e. LAGN ∼ 1043 erg s−1 ∼ Lcool.

One can expect that the initial phase of the bubble expansion is supersonic and it will
drive a shock into the ICM. As the expansion slows, the shock weakens and moves ahead
of the expanding boundary. These shocks offer yet another way to measure the AGN power.
In M87 we see at least two generations of shocks (Forman et al. 2005, 2007) at 0.6′ and
2.7′ from the center (Fig. 2). The hard emission (3.5–7.5 keV) shows a ring of emission
with an outer radius ranging from 2.5′ to 2.85′ (11.6–13.3 kpc). This ring of hard emis-
sion provides an unambiguous signature of a weak shock. The gas temperature in the ring
rises from ∼ 2.0 keV to ∼ 2.4 keV implying a Mach number of M ∼ 1.2 (shock velocity
v = 880 km s−1 for a 2 keV thermal gas). At the shock, the density jump is 1.33 which
yields a Mach number of 1.22, consistent with that derived from the temperature jump. The
total energy needed to drive this shock can be readily estimated from 1D hydro simulations
E ∼ 5 × 1057 erg. The age of the outburst that gave rise to the shock is ∼ 12 Myr. If we
divide the energy of the outburst by the age of the shock we get a mean energy release
∼ 1043 erg s−1—broadly in agreement with the ICM cooling losses.

2.3 Dissipation of Mechanical Energy

Once the bubble is detached from the central source, its evolution is governed by buoy-
ancy. During the rise the bubble may transform into a toroidal structure as the “ear-like”
structure in M87 (see Figs. 3 and 4) which resembles a mushroom formed by a powerful at-
mospheric explosion. As in case of the atmospheric explosion, the bubble is able to entrain
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Fig. 2 Left: Chandra image of M87 (∼ 7′ × 7′) in the 3.5–7.5 keV energy band divided by a spherically
symmetric model. This energy band shows pressure variations in the gas (Forman et al. 2007). A nearly
perfect ring at ∼ 2.75′ (12.8 kpc) is clearly seen. This is a characteristic signature of a shock, driven by an
outburst from the central SMBH. Right: the surface brightness profiles (Forman et al. 2007) in the 1.2–2.5 keV
(upper curve) and 3.5–7.5 keV (lower curve) bands show a prominent feature at 2–3′ , along with a fainter
feature at 0.6′

Fig. 3 X-ray (Forman et al. 2007) and 90 cm radio (Owen et al. M87) images (right) of the core of M87
(8′ × 8′). Filaments of cool gas are entrained by the buoyantly rising bubbles

large amounts of ambient gas from the core of cluster and transport it to large distance from
the cluster center (e.g., Churazov et al. 2001; Fabian et al. 2003; Werner et al. 2010).

Note that adiabatic expansion of rising bubbles leads to a rapid decrease of the radio
emission, since both the magnetic field strength, and the density and energy of relativistic
particles are decreasing at the same time. This decrease is especially strong if the aging
break in the distribution of electrons is brought by adiabatic expansion into the observable
frequency range. Thus, unless there is continuous reacceleration of electrons, the radio bright
bubbles should evolve into a radio dim objects. Since the pressure support inside the bubble
could still come from magnetic fields and low energy electrons and protons (Lorentz factor
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Fig. 4 Schematic picture of major signs of AGN/ICM interaction (adapted and modified from Churazov
et al. 2001), inspired by analogy with mushroom clouds produced by powerful atmospheric explosions. The
black region in the center denotes the inner radio lobes, driven by the SMBH mechanical power. The circular
structure is a weak shock wave produced by these inner lobes. Gray “mushrooms” correspond to the buoyant
bubbles already transformed into tori, and the gray lens-shaped structures are the pancakes formed by the
older bubbles (cf. Fig. 3)

of 1000 or lower), the bubble is still seen as an X-ray cavity, but is very dim in radio. Such
ghost bubbles are believed to be widespread in the cluster cores and one can expect many
of them to be detected with a new generation of a low frequency instruments (Enßlin and
Heinz 2002).

The bubble rise velocity vrise is smaller than the ICM sound speed, and it is much smaller
than the sound speed of the relativistic fluid inside the bubble. Adiabatic expansion of the
rising bubble implies that its enthalpy is decreasing according to the ambient gas pressure

H = γ

γ−1PV ∝ P
γ−1
γ . This means that after crossing a few pressure scale heights, much

of the energy originally stored as the enthalpy of the relativistic bubble is transferred to the
gas. Subsonic motion with respect to the ambient gas guarantees that only a fraction of this
energy is “lost” as sound waves, which may leave the cluster core. Thus we can conclude
that a fraction of energy of order unity is transferred to the ICM. This leads to the conjecture
that essentially all of the mechanical energy is dissipated in the cluster core, which acts as a
calorimeter of AGN activity (Churazov et al. 2002).

Details of the dissipation process depend sensitively on the properties of the ICM. For
instance, this energy could drive turbulent motions in the wake of the rising bubble and
excite gravity waves (e.g., Churazov et al. 2001; Omma et al. 2004). These motions will
eventually dissipate into heat. Alternatively (if the ICM viscosity is high), the energy can be
dissipated directly in the flow around the bubble. However in either case, the energy does
not escape from the cluster core.

An interesting recent development came from the analysis of X-ray surface brightness
fluctuations in the Perseus and M87/Virgo clusters (Zhuravleva et al. 2014). If the observed
fluctuations are interpreted as weak perturbations of a nearly hydrostatic cluster atmosphere,
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Fig. 5 Turbulent heating versus
gas cooling rates in the Perseus
and Virgo cores. Shaded regions
show the heating and cooling
rates estimated at different
distances from the cluster center.
The size of each region reflects
estimated statistical and
stochastic uncertainties. (Adapted
from Zhuravleva et al. 2014)

then one can link their amplitude to the characteristic gas velocities at different spatial scales.
Since in the canonical Kolmogorov turbulence the energy flow is constant across the inertial
range, it is sufficient to know the velocity V at one scale l (within the inertial range) to esti-
mate the dissipation rate as Qturb ∼ ρ V 3

l
. Applying this approach to Perseus and M87/Virgo

leads to a tantalizing conclusion that the turbulent dissipation approximately matches the
gas cooling rate in these clusters (Fig. 5). While a number of assumptions enter these calcu-
lations, the result is encouraging. Future ASTRO-H measurements of the gas velocities in
these clusters should be able to verify these findings.

A substantial fraction of energy released by the SMBH can go into quasi-spherical sound
waves propagating through the ICM. Unlike strong shocks the dissipation of the energy car-
ried by sound waves depends on the ICM microphysics, but it is plausible that their energy
will be dissipated before the wave leaves the core of the cluster (Fabian et al. 2006). The
attractiveness of this model is that the energy can be evenly distributed over large regions.
Whether sound waves provide the dominant source of heat to the ICM depends critically on
what fraction of AGN energy goes to sound waves. In M87 the fraction of energy, which
went into the weak shock is � 25 % (Forman et al. 2007).

2.4 Self-regulation

Similar signs of SMBH-ICM interaction are observed for objects having vastly different
sizes and luminosities. Two examples are shown in Fig. 6—these are 3′ × 3′ X-ray images
of the elliptical galaxy NGC5813 (Randall et al. 2011) and the Perseus cluster (Fabian et al.
2000). In each case, X-ray cavities of approximately the same angular size are clearly seen.
The distances to NGC5813 and the Perseus cluster are 32 and 70 Mpc, respectively. There-
fore the volumes of the cavities differ by a factor of 10. A more extreme example is the
MS0735.6+7421 cluster (McNamara et al. 2005) at redshift z = 0.22, which has cavities
with volume ∼ 104 times larger than in NGC5813.

A systematic comparison of the AGN mechanical power and the gas cooling losses has
been done for several dozens of objects (e.g., Rafferty et al. 2006; Hlavacek-Larrondo et al.
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Fig. 6 Central 3′ × 3′ region of the Chandra 0.6–2 keV images of NGC5813 (left) and the Perseus cluster
(right). Cavities inflated by AGNs are clearly visible in both images. For NGC5813 two (or even three)
generations of cavities are easily identifiable. The volume of the cavities in Perseus is a factor of ∼ 10 larger
than in NGC5813

Fig. 7 Comparison of the
estimated AGN mechanical
power and the ICM cooling
losses for a sample of clusters.
Adopted from
Hlavacek-Larrondo et al. (2012).
The correlation is evident, albeit
with substantial scatter,
suggesting that mechanical
output is regulated to match the
cooling losses

2012). These studies suggest an approximate balance between AGN energy input and cool-
ing losses (see Fig. 7), implying that some mechanism is regulating the AGN power to
maintain this balance. A natural way to establish such regulation is to link the accretion rate
onto SMBHs with the thermodynamic parameters of the gas. Two scenarios are outlined
below.

In the first scenario, known as “hot accretion”, the classic Bondi formula (Bondi 1952)
regulates the accretion rate of the hot gas onto the black hole and provides a link between the
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gas parameters and the mechanical power of an AGN (e.g., Churazov et al. 2002; Böhringer
et al. 2002; Di Matteo et al. 2003).

The rate of spherically symmetric adiabatic gas accretion without angular momentum
onto a point mass can be written as:

Ṁ = 4πλ(GM)2c−3
s ρ ∝ s−3/2, (4)

where λ is a numerical coefficient, which depends on the gas adiabatic index γ (for γ = 5/3
the maximal valid value of λ allowing steady spherically symmetric solution is λc = 0.25),

G is the gravitational constant, M is the mass of the black hole, cs =
√

γ kT
μmp

is the gas

sound speed, ρ is the mass density of the gas and s = T

n2/3 is the entropy index of the gas.
Thus the Bondi accretion rate is proportional to s−3/2 which increases when the gas

entropy decreases. Assuming that the heating is directly proportional to the SMBH accretion
rate (Heating = εc2Ṁ), there must be a value of gas entropy such, that heating balances
cooling:

s ≈ 3.5

(
M

109 M�

)4/3(
ε

0.1

)2/3(
LX

1043 erg s−1

)−2/3

keV cm2 (5)

A lower/higher entropy than this value implies too much/little heating and therefore an over-
all increase/decrease of the accretion rate. Since in stable hydrostatic equilibrium the low
entropy gas falls to the bottom of the potential well (the location of the SMBH), the energy
input is controlled by the minimum value of the gas entropy in the whole central region. This
provides a natural mechanism for self-regulation of the cooling and heating. Interestingly,
in many nearby systems this simple prescription leads to an order of magnitude balance be-
tween cooling and heating (e.g., Churazov et al. 2002; Böhringer et al. 2002; Allen et al.
2006).

Another possibility is that some (sufficiently small) amount of gas is first able to cool
from the hot phase down to low temperatures (e.g. down to 104 K or below). Cold gas blobs
then move in the potential well of the central galaxy, collide, lose angular momentum and
feed the black hole (e.g., Pizzolato and Soker 2005; Gaspari et al. 2012). This model is
known as a “cold accretion” scenario, as opposed to Bondi-type accretion straight from the
“hot” phase. While these scenarios differ strongly in the physical process involved, they
both advocate a negative feedback loop, when the SMBH affects the thermal state of the
gas, which in turn affects the accretion onto the black hole.

2.5 Link to Evolution of Galaxies

A correlation of galaxy bulge properties and the mass of the SMBH (e.g., Ferrarese and
Merritt 2000; Gebhardt et al. 2000) implies that the black hole and its parent galaxy affect
each other. The clear evidence of mechanical feedback in nearby galaxy clusters suggests
that the same mechanism may be relevant for the formation of massive ellipticals and for
the growth of their SMBHs at z ∼ 2–3. Three pre-requisites are needed for this scenario to
work (i) a hot gaseous atmosphere in the galaxy is present, (ii) the black hole is sufficiently
massive and (iii) large fraction of AGN energy is in mechanical form and the coupling of
mechanical energy to the ICM is strong.

One can parametrize the magnitude of the feedback/gas heating H with a simple expres-
sion:

H(MBH, Ṁ) = [
αMεM(ṁ) + αRεR(ṁ)

]
0.1Ṁc2, (6)
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where εM(ṁ) and εR(ṁ) characterize the efficiency of the transformation of accreted rest
mass per unit time Ṁc2 into mechanical energy and radiation respectively, while αM and αR

are AGN-ICM coupling constants—the fraction of the released energy which is eventually
transferred to the gas. The first pair of coefficients (εM(ṁ), εR(ṁ)) should come from ac-
cretion physics, while the second pair (αM,αR) depends on the properties of the ICM and
on the details of the AGN-ICM interaction. The value of αR is typically very low αR � 10−4

(Sazonov et al. 2004, 2005), while αM can be close to unity (see above). This difference
between αR and αM is the most important element of the mechanical feedback scenario.

Let us assume that the system (SMBH + gaseous atmosphere) evolves to the state where
the heating by the black hole is equal to the gas cooling losses (if such a state does exist).
Thus the mass accretion rate is the solution of the equation:

H(MBH, Ṁ) = Lcool, (7)

provided ṁ = Ṁ

ṀEdd
≤ 1. In the opposite case, we set Ṁ = ṀEdd. In other words, if the black

hole cannot offset ISM cooling losses even at the Eddington rate then it will keep accreting
gas at this rate. If there is a solution of Eq. (7) at ṁ ≤ 1 then at this rate an equilibrium
between heating and cooling is possible. We will see below that several distinct solutions of
Eq. (7) are possible (some of them are unstable).

Let us now assume that the mechanical output εM(ṁ) is large at low accretion rate,
but decreases at high accretion rates (so-called “radio mode”). The radiative output εR(ṁ)

is on the contrary large at high accretion rates and decreases at low accretion rates. The
mechanical and radiative outputs corresponding to this scenario are shown in Fig. 8 with the
thin blue and red curves respectively. The above assumptions are motivated by X-ray and
radio observations of several X-ray binaries (e.g., Gallo et al. 2003) and AGNs (e.g., Owen
et al. M87) and can also be supported by theoretical arguments for radiatively inefficient
accretion flows (e.g., Ichimaru 1977; Rees et al. 1982; Narayan and Yi 1994). For instance,
the nucleus of M87 can be regarded as the prototypical example of an AGN in the low
accretion rate mode, when kinetic power of radio emitting outflows exceeds its radiative
power. At the same time, there are black holes in binary systems in the high accretion regime,
which are very bright in X-rays, but show no evidence for a powerful outflow.

We now set αM ∼ 0.7 and αR ∼ 10−4. The ICM heating by mechanical and radiative
power (obtained by multiplying the curves by 0.7 and 10−4) is shown by the thick blue and
red curves respectively. Finally the total ICM heating rate (the sum of two curves) is plotted
as a thick black curve. Once the black hole is sufficiently massive, there are two possible so-
lutions with the heating balancing ICM cooling losses (points marked as A and B in Fig. 8).
The point B is certainly unstable since an increase of the mass accretion rate causes a de-
crease of the heating rate. The system will evolve from state B into one with lower or higher
accretion rate. If the system goes into a high accretion rate mode then the feedback power
drops and enhanced cooling boosts the accretion rate towards the Eddington value. Finally,
the black hole mass reaches the level where AGN heating exceeds ICM cooling at any (suf-
ficiently high) accretion rate. The gas entropy increases, the mass accretion rate drops and
the system then switches to the stable state at low accretion rate, low radiative efficiency and
high mechanical efficiency. This is the so called “radio-mode” which presumably describes
M87 now. In the simple scenario outlined above the black hole at the center of the cooling
core first looks like a QSO and then jumps to a state of a low luminosity AGN as shown
with green line in Fig. 8.

The time evolution of the black hole mass, accretion rate and radiative luminosity is
sketched in the right panel of Fig. 8. The black hole initially accretes at the Eddington rate
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Fig. 8 Top: illustration of gas
heating and cooling in elliptical
galaxies (Churazov et al. 2005).
The thick solid line shows, as a
function of the SMBH accretion
rate, the heating rate due to
outflow, which is
complemented/dominated by
radiative heating near the
Eddington limit. Horizontal
dashed lines show the gas
cooling rate. The upper cooling
line represents a young galaxy in
which a large amount of gas is
present and/or the black hole is
small. Feedback from the black
hole is not able to compensate for
gas cooling losses and the black
hole is in the QSO stage with a
near-critical accretion rate, high
radiative efficiency and weak
feedback. As the black hole
grows it moves down in this plot.
The black solid dot marks the
termination of this stage, when
the black hole is first able to
offset gas cooling, despite the
low gas heating efficiency. The
lower cooling line illustrates
present day ellipticals: a stable
solution exists at low accretion
rates when mechanical feedback
from the black hole compensates
gas cooling losses. The radiative
efficiency of accretion is very
low and the black hole growth
rate is very slow. Bottom:
possible time evolution,
corresponding to the figure
above: the black hole accretes at
the Eddington rate until its mass
is large enough so that even weak
feedback does not allow a stable
solution. At later times the AGN
switches into the low accretion
rate mode, and the radiative
efficiency drops dramatically

and grows exponentially with limited impact on the ICM. This fast growth and QSO-type
behavior of the black hole continues until its mass is large enough so that even with pure
radiative feedback, heating can offset cooling losses. After the system moves to the low
accretion state the luminosity and the black hole growth rate drops by a large factor of order
the ratio of the coupling constants αM/αR ∼ 104 (or more if an ADAF-type scenario is
adopted).

The above consideration is of course an overly simplified picture. Various prescriptions
of the “radio-mode” feedback have been tested (e.g., Croton et al. 2006; Bower et al. 2006)
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in the semianalytic models coupled with the numerical simulations of structure formation
of the Universe. In general, the key element of mechanical AGN feedback—the ability to
provide good coupling of the AGN and the ICM—seems to be able to resolve the difficult
issue of over-cooling and excess star formation in the most massive halos.

2.6 Conclusions About AGN Feedback

AGN Feedback in galaxy clusters is a rapidly developing area in astrophysics. It depends on
a combination of various physical processes, ranging from physics of accretion to cosmolog-
ical evolution of the most massive systems in our Universe. Much of the physics involved is
still poorly understood. At the present epoch, AGN feedback prevents gas cooling in massive
elliptical galaxies and clusters, but its role at higher redshifts is only beginning to emerge
today (e.g. Hlavacek-Larrondo et al. 2012; McDonald et al. 2013). All this leaves much
opportunity for future observational and theoretical studies.

3 Galactic Feedback and Metal Enrichment in Clusters

During the formation history of clusters of galaxies, metals have been continuously pro-
duced by the stars in the member galaxies. In the earliest epoch of star formation, about
500 Myr after the ‘Big bang’, Population III stars formed from the primordial gas. The na-
ture of this stellar population is still uncertain, but probably it consisted of intermediate and
high-mass stars (Vangioni et al. 2011). The first metals produced by this population were
mostly ejected into the surrounding medium, leading to an initial metal abundance of about
10−4 times Solar (Matteucci and Calura 2005). This relatively low metal abundance was
enough to allow the gas to cool more efficiently through spectral line emission, resulting in
an epoch of increased star formation, which peaked around a redshift of z ∼ 2–3.

This peak of the Universal star formation rate roughly coincides with the build-up of
a hot Intra-Cluster Medium in the massive galaxy clusters. Dilute metal-poor gas accreted
from the cluster surroundings is mixed with the gas expelled by galactic winds driven by
supernova explosions. A combination of compression, accretion shocks, supernova heating
and AGN feedback boosted the ICM temperature to more than 1 million Kelvin. In such a
hot environment, star formation in the cluster was effectively quenched (Gabor et al. 2010).
While the build-up of the ICM continued, the star formation rate dropped to very low levels,
which explains the old stellar populations observed in local galaxy clusters today.

Due to their deep gravitational potential wells, clusters have retained the metals ejected
into their ICM. Metal abundances observed in the ICM of local clusters thus provide an
integrated record of their enrichment history. The low star-formation rates in cluster galax-
ies since z ∼ 2–3 form an interesting contrast to the enrichment history of our own galaxy,
where the star-formation rate showed a smaller decline. Clusters of galaxies therefore pro-
vide a unique insight in the chemical enrichment due to stellar populations before z ∼ 2.

3.1 Sources of Metals

Most of the elements heavier than beryllium are produced in supernovae. Some elements,
like nitrogen and sodium, are ejected into the medium by Asymptotic Giant Branch (AGB)
stars. There are two distinct types of supernova explosions, type Ia and core-collapse, that
each have a separate role in metal enrichment. Core-collapse supernovae yield the bulk of
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Fig. 9 Expected abundances
measured in a 120 ks
XMM-Newton observation of
Sérsic 159-03 (bottom panel),
which is a typical bright local
cluster. The statistical error bars
were obtained from de Plaa et al.
(2006). The estimates for the
SNIa, SNcc, and AGB
contributions are based on a
sample of 22 clusters de Plaa
et al. (2007) and two elliptical
galaxies (Grange et al. 2011).
The top panels show the typical
range in SNIa and IMF models
with respect to the statistical
error bars in the observation

the elements in the mass range from oxygen to silicon, while type Ia supernovae produce
mostly elements from silicon to nickel (see Fig. 9).

Supernova type Ia models, however, do not agree well on the exact yields for each ele-
ment. Uncertainties on the yields of, for example, calcium and nickel are about 40–60 %.
The underlying cause is the very interesting progenitor problem of type Ia supernovae. Re-
cent optical observations of type Ia supernovae show variations in their spectral properties.
So far, it has been challenging to link an observed type Ia supernova to a progenitor type
(see e.g. Howell 2011). Two main progenitor scenarios are being considered. The first is
the ‘classical’ type Ia, where a white dwarf accretes matter from a companion star in the
Red Giant phase. If the accretion rate is right, the mass and temperature of the white dwarf
can grow to a point where carbon fusion ignites. This is close to the Chandrasekhar limit
of 1.4 solar masses. The carbon ignites explosively and unbinds the entire white dwarf.
The second progenitor channel is a scenario where two white dwarfs merge. They spiral
toward each other through the emission of gravitational radiation and the less massive star
is accreted onto the more massive one, until carbon is ignited and the star explodes. It is
clear that these progenitor channels allow a range of possible explosion scenarios and metal
yields, which makes accurate predictions challenging.

The yields of core-collapse supernovae are currently better established. The main uncer-
tainty in the core-collapse yield of an entire stellar population is the Initial-Mass Function
(IMF). To obtain the total yield for a population, the yields calculated for individual masses
need to be integrated over the IMF (Tsujimoto et al. 1995). Therefore, the observed abun-
dances of metals in the oxygen to silicon mass range can constrain the IMF of the cluster’s
stellar population above ∼ 8 solar masses.

Below 8 M�, intermediate-mass stars in their AGB phase are a source of nitrogen and
sodium. Yields for these sources for several mass bins are available (Karakas 2010) and also
need to be integrated over the IMF, like core-collapse yields, to obtain the yield for the whole
stellar population. Measuring the abundances of AGB products therefore puts constraints the
low-mass end of the IMF.

3.2 Abundance Measurements in X-Rays

The soft X-ray band between 0.1 and 10 keV is very suitable for abundance studies because
it in principle contains spectral lines from all elements between carbon and zinc. In clusters
of galaxies, the hot plasma is in (or is very close to) collisional ionization equilibrium,
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Fig. 10 Abundance ratios fitted
with supernova yields from the
WDD2 SNIa model (Iwamoto
et al. 1999) and a SNcc model
with an initial metallicity
Z = 0.02 and a Salpeter IMF.
The calcium abundance appears
to be underestimated. It can not
explain the Ar/Ca ratio measured
in this XMM-Newton sample of
22 clusters. (Adapted from
de Plaa et al. 2007)

which makes it relatively easy to predict the emitted X-ray spectrum. The advance of X-ray
spectroscopy has enabled the study of abundances in clusters and yielded interesting results
(see e.g. Werner et al. 2008; de Plaa 2013, for more extended reviews on this topic).

The first attempt to link cluster abundances to supernova yields was done with the ASCA
satellite (Mushotzky et al. 1996). With this instrument it was already possible to measure
the abundances of O, Ne, Mg, Si, S, Ar, Ca, Fe and Ni. From these, and other ASCA studies
the picture emerged of an ICM that was enriched early in its formation history with core-
collapse supernova products and later by type Ia supernovae.

With the launch of XMM-Newton, a telescope with a substantial effective area and spec-
tral resolution (through the Reflection Grating Spectrometer, RGS) became available, which
enabled deep abundance studies in larger cluster samples. In de de Plaa et al. (2007), for ex-
ample, 22 clusters were analyzed and abundances were measured in their core regions. If the
average abundances of the sample are compared to supernova type Ia models, the calcium
abundance appeared to be systematically higher than expected by the models (see Fig. 10).
Possible explanations for this high calcium abundance include an unexpected difference in
the type Ia explosion mechanism or an increased importance of progenitor systems where
helium is accreted on the white dwarf, because explosive He fusion is expected to yield
more calcium. Although a systematic error in the determination of the Ca abundance cannot
yet be fully excluded (detailed analysis did not show any problem), this measurement can
constrain supernova type Ia models. Note that the fit shown in Fig. 10 includes Ca. If Ca is
excluded a better fit for S and Ar is obtained.

If a combination of a type Ia model and core-collapse model fits, their ratio is an indica-
tion of the relative contribution of type Ia supernovae to the enrichment. Bulbul et al. (2012)
developed an extention to the APEC model that is able to fit the type Ia to core-collapse
ratio directly to the spectra. This ratio depends strongly on the used models (de Grandi and
Molendi 2009). But despite of this uncertainty, multiple groups (e.g. Bulbul et al. 2012; Sato
et al. 2007) report a type Ia contribution of ∼ 30–40 %, which is consistent with optical data.

In cool clusters and groups, the RGS spectrometer aboard XMM-Newton is able to mea-
sure carbon and nitrogen abundances. These elements are not produced in large quatities in
supernovae, but appear to originate from metal-poor massive stars or AGB stars. The ex-
act origin is still subject of debate (Romano et al. 2010). RGS observations by Werner et al.
(2006a, 2006b) and Grange et al. (2011) have shown nitrogen to be very abundant around el-
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Fig. 11 Measured cluster
abundances versus redshift. The
top panel shows the abundances
up to 0.6r500 and the lower panel
shows the abundances when the
inner region up to 0.15r500 is
ignored. Adapted from Baldi
et al. (2012)

liptical galaxies. The high abundance of nitrogen cannot be explained by supernovae alone.
A population of intermediate-mass AGB stars is therefore likely responsible for the high
nitrogen content of the ICM.

With the Japanese Suzaku satellite, launched into low-earth orbit in 2005, abundance
studies are performed in the outskirts of clusters (see Reiprich et al. 2013, for a recent and
complete review of Suzaku interesting results). In these low surface-brightness areas, the
low Suzaku background level is favorable above XMM-Newton. Recently, in an elaborate
study of the outskirts of the Perseus cluster with Suzaku, Werner et al. (2013) found that
the iron abundance distribution is surprisingly smooth in the outskirts. This points toward a
scenario of an early enrichment of the hot X-ray gas with iron, well before z ∼ 2. This result
confirms earlier indications that chemical enrichment occured very early in the development
of the universe and probably also before the formation of clusters.

One of these earlier indications was found in a study of a sample of high redshift clusters
between z = 0.3–1.3 by Baldi et al. (2012). Although the scatter in the measured metal
abundance as a function of redshift is large, a significant trend in the metal abundance up to
z = 1.3 was not found (Fig. 11), indicating that the chemical enrichment mechanisms have
not added a lot to the enrichment since z = 1.3. Deeper observations of high redshift clusters
would be necessary to build a large enough sample to confirm the lack of a metallicity trend
with redshift.

4 Magnetic Feedback Processes

Galaxies play a key role in the enrichment of the ICM or IGM, not only as far as heavy
elements are concerned, but also regarding the magnetization. According to the standard
bottom-up scenario of lowest galactic masses, primeval galaxies must have injected much
of their ISM into the IGM during the initial bursts of star formation, thereby “polluting”
large volumes of intergalactic space because of their high number density.
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Kronberg et al. (1999) were the first to raise the question whether low-mass galaxies
could have made a significant contribution to the magnetization of the IGM (apart from
more massive starburst galaxies and AGN). Owing to their large number (observed and
predicted in a CDM cosmology) and their injection of relativistic particles, they could have
played a cardinal role in the context of this cosmologically important scenario. If true, it is
to be expected that dwarf galaxies are “wrapped” in large envelopes of previously highly
relativistic particles and magnetic fields, which are pushed out of them during epochs of
vigorous star formation. Bertone et al. (2006) have discussed this more quantitatively and
made predictions for the strengths of magnetic seed fields to be then amplified by large-scale
dynamos over cosmic time. In particular, they also predict the existence of magnetic voids.

Donnert et al. (2009) and Dubois and Teyssier (2010) performed numerical models of
supernova-driven winds in dwarf galaxies. Their simulations can provide an understanding
of the origin of intergalactic magnetic fields at the level of 10−4 µG. Beck et al. (2013)
presented a first numerical model of supernova-driven seeding of magnetic fields by proto-
galaxies.

The existence of winds in low-mass galaxies is inferred from the observed kinematics of
the gas (measured with slit spectroscopy), but can arguably be also inferred from measure-
ments of the temperature of the hot (X-ray-emitting) gas. For instance, Martin (1998) found
the outflow velocities in NGC1569 to exceed the escape speed, and della Ceca et al. (1996)
derived the temperature of its hot, X-ray-emitting gas to exceed the virial temperature. The
transport of a relativistic plasma out of this galaxy is strongly suggested by radio continuum
observations of dwarf galaxies. Kepley et al. (2010) studied the radio halo in NGC1569,
which extends out to about 2 kpc at 1.4 GHz. The dwarf irregular NGC4449 also possesses
a low-frequency radio halo (Klein et al. 1996).

Of course, in magnetizing the ICM/IGM, low-mass galaxies have been competing with
AGN (Rees 1987). Judging from the radio luminosities of the “culprits”, it is clear that
nevertheless low-mass galaxies may have contributed significantly. While a typical star-
burst dwarf galaxy emits a monochromatic radio luminosity of P1.4 GHz ≈ 1020.5 W Hz−1,
radio galaxies in the FRI/II transition regime have luminosities of P1.4 GHz ≈ 1024.7 W Hz−1.
Hence, the radio power produced by AGN is about104 times larger than that of dwarf galax-
ies. On the other hand, ΛCDM cosmology with bottom-up structure formation implies that
dwarf galaxies must have been formed in huge numbers.

The role of massive black holes in the build-up of strong magnetic fields in galaxies
was addressed by Chakrabarti et al. (1994). They pointed out that galactic winds or colli-
mated jets were able to disperse such magnetic fields over large volumes of the host galaxies
and beyond. Xu et al. (2010) presented magneto-hydrodynamical simulations in which they
studied the evolution of magnetic fields ejected by an AGN shortly after the formation of a
galaxy cluster. They showed that, if the magnetic fields are ejected before any major merg-
ers occurring in the forming cluster, they can be spread throughout the cluster, with further
subsequent amplification by turbulence in the ICM. It should be noted at this point that cen-
tral so-called “mini-halos”, which are bright extended radio sources located in the centers of
cooling-flow clusters (e.g. Perseus A, Hydra A, Virgo A), cannot possibly magnetize large
cluster volumes, as they are pressure-confined (e.g. de Gasperin et al. 2012).

5 Cold Fronts in Galaxy Clusters

Among the first results from high-resolution cluster images obtained with Chandra was the
discovery of sharp edges in the X-ray surface brightness in merging clusters A2142 and
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Fig. 12 Prominent cold fronts in the Chandra X-ray images of A3667 (MV07) and the Bullet cluster (Marke-
vitch 2006). In the Bullet cluster, the surface of the cool “bullet” is a cold front; its supersonic motion gener-
ates a prominent bow shock

A3667 (Markevitch et al. 2000) (M00); (Vikhlinin et al. 2001a) (V01). Figure 12 shows
deep Chandra images of A3667 and the Bullet cluster, both of which exhibit such brightness
edges. The characteristic shape of the brightness profiles across these edges corresponds to a
projected abrupt jump of the gas density at the boundary of a roughly spherical body (M00).
The Bullet cluster shows two prominent edges, one at the nose of the dense cool “bullet” and
another ahead of it. Their physical nature is revealed by radial profiles of the gas density,
pressure and specific entropy, shown in Fig. 13. As one can guess already from the image,
the outer edge is a bow shock—the dense side of the edge is hotter, with the pressure jump
satisfying the Rankine-Hugoniot jump conditions (Markevitch 2006).

At the same time, the boundary of the bullet has a different physical nature—it separates
two gas phases with very different specific entropies that are in approximate pressure equi-
librium at the boundary. The denser side of this edge has a lower temperature, opposite to
what’s expected for a shock front, which is how the two phenomena can be distinguished ob-
servationally. The edge in A3667 and those in A2142 have the same sign of the temperature
jump as that at the bullet boundary. These features in clusters they have been named “cold
fronts” (V01). The term “contact discontinuity” is sometimes used, but it implies continuous
pressure and velocity between the gas phases, whereas these structures in clusters may have
discontinuous tangential velocity, as we will see below. Cold fronts turned out to be much
more ubiquitous than shocks and have been observed with Chandra and XMM-Newton in
many clusters and even galaxies (e.g., Machacek et al. 2005; see Markevitch and Vikhlinin
2007 (MV07), for a detailed review). If the dense gas cloud is moving with respect to the
ambient gas, there will be a ram pressure component contributing to the pressure balance
near the front (M00), which makes it possible to estimate the velocity of the cloud (V01).

Cluster cold fronts have two main physical causes, both related to mergers. The obvious
one, originally proposed by M00 for the two fronts in A2142, involves an infalling subclus-
ter ram-pressure stripped of its outer gas layers, which leaves a sharp boundary between
the dense remnant of the subcluster’s core and the less dense, hotter gas of the main cluster
flowing around it. The bullet in the merging Bullet cluster and the NGC1404 galaxy falling
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Fig. 13 Schematic radial
profiles of the gas density,
pressure and specific entropy in a
sector crossing the bullet and the
bow shock in the Bullet cluster
and centered on the bullet’s
center of curvature (see Fig. 12).
The shock front and the bullet
boundary have sharp density
jumps of similar amplitudes;
however, the shock at r ≈ 50′′
exhibits a large pressure jump
and a slight entropy increase,
while the bullet boundary at
r ≈ 12′′ is in near pressure
equilibrium but separates gases
with very different entropies—it
is a cold front (reproduced from
MV07)

into the Fornax cluster (Machacek et al. 2005) appear to be such “stripping” fronts.1 How-
ever, cold fronts have also been observed in the cores of the majority of relaxed clusters
that show no signs of recent merging (Mazzotta et al. 2001; Markevitch et al. 2001, M01;
Markevitch et al. 2003; Ghizzardi et al. 2010). These fronts are typically more subtle in
terms of the density jump than those in mergers, and occur close to the center (r � 100 kpc),
with their arcs usually curved around the central gas density peak. An example is seen in
the Ophiuchus cluster (Fig. 14a). A detailed study of such a front in A1795 by M01 has
shown that the gas on two sides of the front has different centripetal acceleration. This led
those authors to propose that the dense gas of the cool core is “sloshing” around the center
of the cluster gravitational potential, perhaps as a result of a disturbance of the potential by
past mergers. While M01 envisioned radial “sloshing”, Keshet et al. (2010) offered a more
plausible scenario with a tangential flow of the cool gas beneath the fronts being responsible
for centripetal acceleration.

Ascasibar and Markevitch (2006) (A06) have reproduced this phenomenon in high-
resolution hydrodynamic simulations of idealized binary mergers. To explain the absence
of the gas disturbance on large scales, the small infalling subcluster should have no gas
(only the collisionless dark matter—perhaps having lost its gas during previous stages of
infall), thus disturbing only the gravitational potential of the main cluster without generat-
ing shocks in the gas. Such a disturbance results in a displacement between the gas peak
and the collisionless dark matter peak, which sets off sloshing, which continues for several

1It appears that the original M00 scenario for A2142, which involved two surviving gas cores, is not correct
(Tittley and Henriksen 2005; MV07). Instead, the two original fronts, the front discovered at a large radius
(Rossetti et al. 2013), and yet another front seen close to the center in a deep Chandra observation—all
concentric—are “sloshing” fronts discussed below. The “stripping” scenario does work in some other clusters.
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Fig. 14 Left: a series of “sloshing” cold fronts at different radii in the cool core of the Ophiuchus cluster,
shown by arrows in this archival Chandra image. (The subtle outermost front is seen better in a more coarsely
binned image.) Black cross marks the center of the cD galaxy. Right: a cold front discovered in A2142 at
a distance of 1 Mpc from the center (marked “new front”) by Rossetti et al. (2013) in this XMM-Newton
dataset. The original cold fronts in the central region (M00) are shown by black arrows

billion years, generating concentric cold fronts in a spiral pattern (if the merger had any
angular momentum), as is often observed in cool cores. All that is required is a radial gra-
dient of the specific entropy (which is always present in relaxed clusters) and an initial gas
displacement. The idea that this class of cold fronts is the result of oscillations of the dark
matter peak caused by a merger has been first proposed by Tittley and Henriksen (2005);
the initial displacement may also be caused by the passage of a mild shock (Churazov et al.
2003; Fujita et al. 2004). Sloshing fronts are easily detected in cool cores, often delineating
their boundary, but they are not confined to cool cores—in A06, a sufficiently strong initial
disturbance caused detectable fronts to propagate to large radii. Indeed, cold fronts of this
nature (that is, not associated with any infalling subclusters) have recently been found at
r ∼ 0.7–1 Mpc in Perseus (Simionescu et al. 2012) and in A2142 (Rossetti et al. 2013), see
Fig. 14b. Note that this does not mean that the cluster gas oscillates from the center all the
way out to those large distances. While sloshing does begin as a physical displacement of
the gas density peak from the potential peak, the fronts propagate outwards as waves—see
Fig. 8 in A06 and Nulsen and Roediger (2013), who describe sloshing and the resulting cold
fronts as superposition of g-mode oscillations in the stratified cluster atmosphere.

Core sloshing has a number of important effects on clusters. One is seen in the X-ray
image of the Ophiuchus cluster (Fig. 14a; a matching snapshot from the numeric simulations
can be seen in Fig. 7c of A06). The gas density peak (which contains the lowest-entropy gas
of the cool core) is completely displaced from the center of the cD galaxy (shown by a cross).
This would temporarily starve the central AGN of its fuel and may stop its activity. ZuHone
et al. (2010) showed that sloshing can also facilitate heat transport from the hot reservoir
outside the core into the cool core via mixing, which can compensate for most of radiative
cooling in the core, provided that gas mixing is not suppressed. Keshet et al. (2010) and
ZuHone et al. (2011) showed that tangential velocity shear in a sloshing core should amplify
and reorder the initially tangled magnetic field. This effect has observable consequences for
the shapes of cold fronts, which offers an independent tool to study those magnetic fields, as
discussed below. There is also a physical connection between gas sloshing and cold fronts
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Fig. 15 X-Ray surface
brightness profile across the cold
front in A3667 (V01, MV07).
Red line shows a best-fit model
of a density jump that is
smoothed with σ = 11 kpc,
which is the m.f.p. for Coulomb
diffusion from the dense side to
the less dense side of the front. If
diffusion were present, the front
would have been smeared by
several times this width; such
diffusion is clearly excluded by
the data

on one side and the radio-emitting ultrarelativistic electrons in the cluster cores on the other
(Giacintucci et al. 2014; ZuHone et al. 2013a).

5.1 Physics of Cold Fronts

Cold fronts can be used to study the microphysics of the intracluster plasma. One property
of the cold fronts observed with Chandra that is immediately striking is their sharpness. Fig-
ure 15 shows an X-ray brightness profile across the prominent front in A3667 (Fig. 12a).
Vikhlinin et al. (2001a) pointed out that the front is sharper than the mean free path for
Coulomb collisions. Indeed, red line in Fig. 15 shows a best-fit model that includes broad-
ening of the front with a width equal to the Coulomb m.f.p. for diffusion from the cool inner
side to the hot outer side of the front. Such broadening is clearly inconsistent with the data,
which means the diffusion across the front is suppressed. Ettori and Fabian (2000) pointed
out that the existence of the observed temperature jumps at cold fronts implies that ther-
mal conduction is also strongly suppressed. Vikhlinin et al. (2001b) proposed (within the
“subcluster stripping” scheme of M00) that the motion of the infalling subcluster through a
tangled magnetic field frozen into the ambient gas of the main cluster would naturally form
an insulating layer of the field oriented strictly along the front surface, as a result of the
field “draping” around an obstacle, as originally proposed by Alfvén to explain the comet
tails. This effect is shown in a simulation by Asai et al. (2005) in Fig. 16. As pointed out by
Lyutikov (2006), such draping can amplify the field in the narrow layer immediately outside
the front to values approaching equipartition with thermal pressure (compared to magnetic
pressures of order 1 % of thermal pressure in the rest of the cluster). Such a layer would com-
pletely suppress diffusion and thermal conduction across the front, while the magnetic ten-
sion of such a layer may stabilize the front against Kelvin-Helmholtz instability (Vikhlinin
et al. 2001b; MV07), which we will see below in a simulation.

If a cluster with a cool core initially has a tangled magnetic field, when the core is dis-
turbed and starts sloshing, the field is rapidly stretched by the tangential gas velocity shear
(ZuHone et al. 2011), forming layers of amplified field oriented along the surface of the cold
front form. These layers are located under the front surfaces, unlike for the draping effect
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Fig. 16 Magnetic field draping around an infalling subcluster (panel a). This results in a layer of amplified
and ordered field immediately outside the cold front (panel b). The field is initially uniform, but the effect for
a tangled field is similar. (Reproduced from Asai et al. 2005)

Fig. 17 The magnetic field around a “sloshing” cold front. Left panel shows X-ray surface brightness, middle
panel shows gas temperature, and right panel shows the magnetic field strength. Unlike for the “stripping”
front (Fig. 16), the field is strongly amplified inside the front. (Reproduced from ZuHone et al. 2011)

in a “stripping” front. A snapshot from the simulations of this process is shown in Fig. 17.
Such layers can suppress KH instability of the front surface (Fig. 18) similarly to a draping
layer. However, there is an important difference for the effective thermal conduction across
the front.

If a subcluster falls into a cluster from a large distance, it will be thermally insulated
from the ambient gas by a magnetic draping layer for as long as the subcluster survives as
a coherent structure, because the initially disjoint magnetic field structures of the cluster
and subcluster cannot connect at any stage of the infall (as long as there is no magnetic
reconnection)—even when the gases are geometrically separated only by a thin cold front.
Since heat is conducted only along the field lines, it is not surprising to see a cool infalling
subcluster survive the immersion into the hot gas of the bigger cluster (e.g., the group falling
into A2142 discovered by Eckert et al. 2014). However, for a sloshing cold front, thermal
conductivity across the front may not be completely suppressed by the magnetic layer, as
shown by simulations of ZuHone et al. (2013b). The reason is that prior to the onset of
sloshing, the regions inside and outside the cluster core are connected by the field lines,
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Fig. 18 The stabilizing effect of the magnetic field on cold fronts. Panel size is 500 kpc; color shows gas
temperature (the scale is in keV). Left panel shows a simulation with a weak field (initial plasma β = 6400),
right panel shows a stronger, more realistic field (β = 100). The realistic field suppresses K-H instabilities,
leaving relatively undisturbed cold fronts, similar to those observed. (Reproduced from ZuHone et al. 2011)

and while sloshing stretches most of them tangentially, it does not sever the connection
completely. Those authors suggested that the existence of the temperature jumps across the
sloshing cold fronts may therefore be used to constrain heat conduction along the field lines.

Another interesting (and completely unknown) plasma property that may be constrained
by the observations of cold fronts is viscosity (MV07). Figure 19 (from ZuHone et al. 2015)
shows a simulated sloshing core with the plasma viscosity modeled in different ways. The
viscosity, either isotropic or anisotropic (it is likely to be the latter in the presence of mag-
netic fields), acts to suppress the KH instabilities, and the effect should be observable. Of
course, the effect of viscosity is superimposed on the stabilizing effect of the magnetic layers
discussed above, so the observations will most likely be able to constrain some combination
of the two. Based on simulations without the magnetic field, Roediger et al. (2013) con-
cluded that the effective isotropic viscosity should be significantly suppressed to explain the
disturbed appearance of a cold front in Virgo.

This area of research is currently under rapid development, with high-quality observa-
tions of cold fronts being obtained and tailored numeric simulations being constructed, so
interesting constraints on the microphysical properties of the cluster plasma can be expected
soon.

6 Shock Fronts and Non-thermal Components

6.1 Shock Fronts

Shock waves in clusters of galaxies are the main agents to convert the kinetic energy of su-
personic and superalfvénic plasma flows produced by gas accretion, merging substructures
and AGN outflows into both the thermal and the non-thermal components. The shocks are
essential to heat the gas and to produce the observed thermal and non-thermal radiation.
The shock structures in plasma and their ability to create the non-thermal components—
energetic charged particles and electromagnetic fields—depends on whether the shock is
collisional or collisionless. The mean free path of a proton due to the Coulomb collisions is
λp ≈ 7 × 1021v4

8n
−1
−3 (here v8 is proton velocity in thousands km s−1 and n−3 is the ambient

gas number density in 10−3 cm−3). Note that an ion of charge Z and atomic weight A have a
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Fig. 19 Simulation of a sloshing core with different physical models for plasma viscosity: inviscid (with a
weak magnetic field present), isotropic Spitzer viscosity, anisotropic Braginskii viscosity along the field lines,
and isotropic viscosity suppressed by factor f = 0.1. A highly suppressed viscosity is required to produce
visible K-H eddies at cold fronts. (Reproduced from ZuHone et al. 2015)

gyroradius rgi = 3.3 × 109(ATkeV)1/2(ZBµG)−1 cm in a magnetic field BµG measured in µG.
The Coulomb mean free path is much larger than the proton gyroradius (as well as the ion
inertial length which we shall introduce later) at all particle energies of interest in the cluster
and thus the plasma shocks in clusters are expected to be collisionless as it is the case in the
hot interstellar and interplanetary plasmas.

A specific feature of the collisionless shocks is the mechanism of the flow momentum
and the energy dissipation by means of the excitation and damping of collective electromag-
netic fluctuations providing numerous degrees of freedom with a very broad range of the
relaxation times and spatial scales. Moreover, the collisionless shock may accelerate parti-
cles to ultra-relativistic energies resulting in a broad particle energy spectra formation. The
multi-scale nature of the shock with a strong coupling between the scales makes the problem
of laboratory studies and theoretical modeling of the structure of the collisionless shock to
be very complicated. However, some basic features of the collisionless shock physics were
established from direct interplanetary plasma observations, imaging and spectroscopy of
shocks in supernova remnants and computer simulations (see e.g. the review by Treumann
2009).

The shock flow dissipation mechanisms depend on the flow velocity, magnetization and
shock obliquity. Shocks of low enough Mach numbers Ms < Mcrit are able to dissipate the
kinetic energy of the flow by anomalous Joule dissipation. In the lack of Coulomb collisions
the dissipation is usually associated with the anomalous resistivity provided by wave-particle
interactions. Such shocks are called subcritical and Mcrit is dubbed the first critical Mach
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Fig. 20 Schematic structure of a perpendicular supercritical shock. The profiles of the magnetic field and
plasma density at the shock transition region dominated by the ion reflection dissipation mechanism are
shown. Charge separation over an ion gyro-radius in the shock ramp magnetic field produce the electric field
along the shock normal which may reflect the incoming ions back upstream. The electric field along the shock
front produced by conductive plasma motion in the magnetic field may accelerate particles by the electric
drift acceleration mechanism. The magnetic field of the current carried by the accelerated back-streaming
ions causes the magnetic foot in front of the shock ramp. Reproduced from Treumann (2009)

number (see e.g. Kennel et al. 1985). The structure of the shock transition in this case may
be smooth and laminar, but this mainly occurs for low β shocks. The magnetization pa-
rameter β = 8πnT/B2 = M2

a/M2
s ≈ 40n−3TkeVB−2

µG , characterizes the ratio of the thermal
and magnetic pressures. The first critical Mach number is maximal for a quasi-transverse
shock in the plasma with low magnetization β > 1 and it is below 2.76. At large β typical
for the hot intracluster plasmas some transverse shocks as well as very weak shocks can
be subcritical, while most of the shocks are supercritical. The width of the viscous tran-
sition in the collisionless subcritical shock wave can be estimated as le/

√
Ms − 1, where

le = c/ωpe ≈ 1.7 × 107n−0.5
−3 cm. Here ωpe is the electron plasma frequency.

If the shock Mach number exceeds Mcrit the anomalous resistivity is unable to provide
the required dissipation rate to satisfy the Rankine-Hugoniot conservation laws at the shock.
Then the shock became supercritical and its structure is turbulent. The dissipation mecha-
nism of a supercritical shock is usually dominated by ion reflection. Some fraction of the
incoming ions are reflected by a force which is a combination of electrostatic and magnetic
fields and the reflected ion behavior depends on angle between the local upstream magnetic
field and the local shock normal. In Fig. 20, taken from Treumann (2009), we illustrate the
basic processes in the collisionless perpendicular shocks.

The width of the supercritical shock transition in case of a quasi-parallel shock may reach
a few hundreds ion inertial lengths which is defined as li = c/ωpi ≈ 7.2 × 108n−0.5

−3 cm. Here
ωpi is the ion plasma frequency and n is the ionized ambient gas number density measured
in cm−3. The shock transition structure is unsteady in the case of magnetized shocks being a
subject of shock front reformations which however are expected to be suppressed in the hot
intercluster plasmas. The widths of viscous transition in the collisionless shocks is orders of
magnitude less the Coulomb mean free path and it is below the spatial resolution of optical
and X-ray observations even for a few kpc distance galactic supernova shocks.

Non-thermal energetic electrons are responsible for most of the observed radio emission
from clusters, but the exact nature of particle acceleration process and the origin of the ob-

Reprinted from the journal 166



Structures and Components in Clusters

served ∼ µG strength magnetic fields in clusters are still under debate. From the energetic
ground shock waves are the most natural accelerating agent in hot weakly magnetized plas-
mas. As we have learned from multi-wavelength observations of strong shocks in young
supernova remnants in order for diffusive shock acceleration (DSA) to be fast enough to
reach 100 TeV regime particle energies observed in the sources, significant non-adiabatic
magnetic field amplification is required (see e.g. Bell 2004; Amato and Blasi 2009; Bykov
et al. 2012; Schure et al. 2012). The cosmic ray driven instabilities may provide a source of
free energy for strong magnetic field amplification transferring a few percent of ram pressure
of a strong shock (with Ms 	 1) into fluctuating magnetic fields (see Fig. 11 in Bykov et al.
2014). This is indeed enough to provide µG-magnetic fields behind the strong large scale
accretion shock. The observed µG magnetic field strength is well above the field ampli-
tude produced by the adiabatic compression of the intergalactic field at an accretion shock.
Therefore it is possibly produced by CR driven instabilities at the strong accretion shock.
The field amplification mechanism driven by instabilities of the anisotropic CR distribution
produced by DSA is efficient if CRs get a substantial fraction of the shock ram pressure,
which is expected in strong shocks with hard CR spectra. In the case of strong amplification
of the fluctuating magnetic field in the shock precursor, the direction of the local magnetic
field just before the viscous plasma shock transition will vary with time providing periods
of both quasi-perpendicular and quasi-parallel configurations. This may differ from the case
of weak shocks with steep spectra of accelerated particles which may not contain enough
free energy in the high energy end of particle spectra to provide strong long-wavelength
turbulence in the shock upstream.

Because of much higher pre-shock densities, the internal shocks with modest Mach num-
bers Ms < 4 in clusters, which are propagating in a very hot intracluster plasma, dissipate
more energy than the strong accretion shocks. Internal shocks with 2 < Ms < 4 were shown
in simulations by Ryu et al. (2003) to produce about a half of the total kinetic energy dissi-
pation, while the internal shocks as a whole are responsible in this model for about 95 % of
gas thermalization. Microscopic simulations of electron acceleration in quasi-perpendicular
shocks of Ms < 5 were performed by Guo et al. (2014a). This particle-in-cell plasma mod-
eling demonstrated that the repeated cycles of shock drift acceleration (SDA) may form
power-law electron energy spectra. In a particular run with a quasi-perpendicular pre-shock
magnetic field and Ms = 3 they found that about 15 % of the electrons were accelerated
and a power-law electron energy spectrum with a slope of q ≈ 2.4 was formed. The energy
density carried by the accelerated energetic electrons in this simulation was about 10 % of
the bulk kinetic energy density of the incoming ions. This electron acceleration efficiency is
much higher than that estimated from supernova remnant observations. The transverse box
size in this simulation was about one ion gyro-radius. It is important to confirm the inter-
esting result with larger simulation boxes since the shock structure is determined by ions
and the model have to fulfill the requirements of the theory of charged particle motion in an
electromagnetic field with one ignorable spatial coordinate by Jones et al. (1998).

The very long (Mpc scale) highly polarized radio structure observed in the merging
galaxy cluster CIZA J2242.8+5301 by van Weeren et al. (2010) can be understood in this
way, as the associated weak shock may not disturb the initial inter-cluster magnetic field
in the shock upstream. The observed polarization favors a transverse shock configuration
which may provide efficient shock drift acceleration of relativistic electrons (Guo et al.
2014a,b). This would require a very uniform magnetic field in the shock upstream. The
radio structures and the X-ray emission of CIZA J2242.8+5301 cluster illustrating the loca-
tion and the extension of the large scale shocks of moderate strengths are shown in Fig. 21
from Akamatsu et al. (2014).
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Fig. 21 Smoothed 0.5–2.0 keV
band X-ray image (red) and
WSRT 1.4 GHz image of CIZA
J2242.8+5301 (cyan). The thin
yellow lines depict the
approximate locations of the
shock fronts confirmed by
Suzaku. The figure is courtesy
Akamatsu et al. (2014)

6.2 Intracluster Cosmic Rays

Both electrons and ions are likely accelerated at the shock fronts produced by mergers or
supersonic outflows, but their subsequent evolution differ markedly. Since the ultra relativis-
tic electrons have a radiative lifetime much shorter than the age of the cluster, they rapidly
radiate most of their energy away and then may comprise a long lived population at Lorentz
factors of around 100 where both Coulomb and radiation losses are longer than 109 years
(Petrosian et al. 2008). On the other hand, ions (protons mostly) lose only a small fraction
of their energy during the lifetime of the cluster, and their diffusion time out of the cluster
is even larger, so that they are stored in clusters for a cosmological time scale (Völk et al.
1996; Berezinsky et al. 1997).

The long lived non-thermal particle populations may be the subject of a consequent re-
acceleration by multiple shocks of different strengths as it is likely the case in galactic
superbubbles and starburst regions (cf. Bykov 2001, 2014). Relativistic electrons can be
re-accelerated in-situ by a long-wavelength MHD turbulence (Bykov and Toptygin 1993)
which may be generated in the ICM during cluster mergers (Brunetti and Lazarian 2011;
Brunetti and Jones 2014). The energy contained in both populations depends on the energy
spectra of particles. Electrons of energies at about 50 MeV are difficult to constrain from
the observational point of view. Gamma-ray observations are used to constrain the energy
density in relativistic particles (see e.g. Ackermann et al. 2014). Recently, Prokhorov and
Churazov (2014) analyzed Fermi-LAT photons above 10 GeV collected from the stacked
55 clusters selected from a sample of the X-ray brightest clusters. They obtained an upper
limit of the pressure of relativistic protons to be 1.5 % relative to the gas thermal energy den-
sity, provided that the spectral index q of relativistic proton power-law distribution is 2.1,
while for q = 2.4 the limit is already about 6 %. These estimations assume that relativis-
tic and thermal components are mixed. Similar results were reported by Ackermann et al.
(2014) who analyzed another set of clusters at the photon energies starting from 500 MeV.
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The observations reported above have placed stringent limits on the pressure contained in
the high-energy particle populations with hard spectra, while the constraints on the non-
thermal components with steep enough spectra to be dominated by the sub-GeV particles
remain to be established.

The most direct evidence of a non-thermal component within the intracluster medium
comes from radio observations, that have revealed the presence of two main classes of Mpc-
scale diffuse synchrotron sources, generally called “radio halos” and “radio relics” (see e.g.
Ferrari et al. 2008, 2012). The origin of cosmic rays in radio halos is still elusive, even
though their existence has been known for decades. The morphological, spectral and polar-
ization properties of the radio halos were attributed by Brunetti et al. (2001) to radiation
of relativistic electrons accelerated by ICM turbulence. Alternatively, the radiating leptons
could be of the secondary origin i.e. a product of hadronic collisions of (long-lived) non-
thermal energetic protons with thermal nuclei (Dennison 1980; Blasi and Colafrancesco
1999). In this case, one should also expect γ -ray emission, which has not been seen so far.
MHD simulations carried out by Donnert et al. (2010) indicated some problems in explain-
ing the observed steepening of the synchrotron spectra of halos. However, hadronic models
with energy-dependent CR proton transport coefficients may be able to reproduce the steep
spectra (Enßlin et al. 2011).

Radio relics are considered to be related to DSA, even if some of current observational
results suggest the need to review or refine electron acceleration models within this class of
sources (van Weeren et al. 2012; Ogrean et al. 2014). Radio observations of most kinds of
relic sources in clusters of galaxies show rather steep synchrotron spectra (Sν ∝ ν−α), with
α � 1 (see e.g. Miley 1980; Ferrari et al. 2008, 2012). As expected in DSA models, the
spectral index α can change within the source, with a steepening from the front towards the
back of the shock (see e.g. the spectacular radio relic in the cluster CIZA J2242.8, whose
spectral index is ranging from 0.7 to about 1.7; Stroe et al. 2013). The corresponding indices
of the relativistic lepton power-law spectra are q � 2.5. The soft particle spectra are expected
to be produced by relatively weak shocks in both the diffusive shock acceleration model
(see e.g. Brüggen et al. 2012) and in the shock drift electron acceleration model by Guo
et al. (2014a). The simulated statistical distribution of the merging shock strengths (see e.g.
Ryu et al. 2003) peaks at rather weak shocks, and therefore the constrains on the pressure
in relativistic leptons of Lorentz factors of about 100 and the non-thermal sub- and semi-
relativistic protons of soft energy spectra still need further substantiation.

Apart from radio and gamma-ray observations discussed above fine X-ray spectroscopy
has a potential to study non-thermal components. To illustrate the effects of such a supra-
thermal electron distribution on data, Kaastra et al. (2009) simulated two X-ray micro-
calorimeter spectra extracted from a circular region with a radius of 1′ centered on the core
of a bright cluster with a 0.3–10 keV luminosity of 6.3 × 1037 W within the extraction re-
gion, at an assumed redshift of z = 0.055. In the simulation of the spectrum of a deep 100 ks
X-ray micro-calorimeter observation, they assumed a post-shock downstream electron dis-
tribution for a Mach number of M = 2.2 and pre-shock temperature of kT = 8.62 keV (i.e.
108 K) calculated with a kinetic model of electron heating/acceleration by a collisionless
shock developed by Bykov and Uvarov (1999). In Fig. 22 taken from Kaastra et al. (2009)
we present the 6.9–7.0 keV part of the spectrum (rest-frame energies) which shows the Fe
XXVI Lyα lines and the Fe XXV j-satellite line simulated for a 100 ks observation with
the X-ray micro-calorimeter aboard the ASTRO-H mission and also for that proposed for
the future Athena mission. Enhanced equivalent widths of satellite lines are shown to be
a good indicators of non-thermal electrons. The satellite line in the simulated spectrum is
clearly stronger than that predicted by the thermal model with a Maxwellian electron dis-
tribution. The energy density in the supra-thermal electrons modeled by Guo et al. (2014a)
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Fig. 22 X-ray micro-calorimeter
spectra from a 1′ region at the
center of a bright cluster with a
mixture of the thermal and
supra-thermal electrons as
simulated by Kaastra et al.
(2009). Simulations made for
100 ks observations with Athena
(top panel) and ASTRO-H
(bottom panel). The energy
distribution of electrons
accelerated at M = 2.2 Mach
number shock was calculated
with the kinetic electron
acceleration model by Bykov and
Uvarov (1999). Crosses are
simulated data points. Solid line:
best-fit model to a pure
Maxwellian plasma, with
temperature 16.99 keV. Note the
excess emission of satellite lines
in the data, in particular the
Fe XXVI-line

is larger than that was used in the simulations by Kaastra et al. (2009) and therefore it can
be observationally tested in this way. This illustrates a good potential of high-resolution
spectra obtained by future satellites with a large effective area to observationally reveal non-
Maxwellian tails in the electron distributions.

6.3 Intracluster Magnetic Fields

The study of the linearly polarized emission from radio images is of cardinal importance in
order to constrain the properties of intra-cluster magnetic fields.

Vacca et al. (2010) studied the power spectrum of the magnetic field associated with
the giant radio halo in the galaxy cluster A665. They performed sensitive observations of
this cluster with the Very Large Array at 1.4 GHz and compared these with simulations of
random three-dimensional turbulent magnetic fields, trying at the same time to reproduce
the observed radio continuum emission from the halo. They constrained the strength and
structure of the intracluster magnetic field by assuming that it follows a Kolmogorov power-
law spectrum and that it is in local equipartition with relativistic particles. A central magnetic
field strength of about 1.3 µG was inferred for A665. The azimuthally averaged brightness
profile of its radio emission suggests the energy density of the magnetic field to follow the
thermal gas density, leading to an averaged magnetic field strength over the central 1 Mpc3

of about 0.75 µG. An outer scale of the magnetic field power spectrum of ∼ 450 kpc was
estimated from the observed brightness fluctuations of the radio halo.
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Bonafede et al. (2011) used the Northern VLA Sky Survey to analyze the fractional po-
larization of radio sources out to 10 core radii from the centers of 39 massive galaxy clusters
with the aim to find out how different magnetic field strengths affect the observed polarized
emission along different sight lines through the clusters. They found the fractional polar-
ization to increase towards the cluster peripheries, and their findings are in accord with a
magnetic-field strength of a few µG in the centers. A statistical test gives no hint at any
differences in depolarization for clusters with and without radio halos, but indicates signifi-
cant differences of the depolarization of sources seen through clusters with and without cool
cores.

Govoni et al. (2013) investigated the potential of new-generation radio telescopes (e.g.
the Square Kilometer Array, SKA and its pathfinders) in detecting the polarized emission of
radio halos in galaxy clusters. To this end, they used magneto-hydrodynamical simulations
conducted by Xu et al. (2011, 2012), Beck et al. (2013) to predict the expected polarized
emission of radio halos at 1.4 GHz. The synthetic maps of radio polarization were compared
with the detection limits on polarized emission from radio halos set by current and upcoming
radio interferometers. They show that both the angular resolution and sensitivity expected
in future sky surveys at 1.4 GHz using the SKA precursors and pathfinders (like APERTIF,
ASKAP, Meerkat) are rather promising for the detection of the polarized emission of the
most powerful (L1.4 GHz > 1025 W Hz) radio halos. Furthermore, the upgraded JVLA has
the potential to detect polarized emission from strong radio halos already now, though with
relatively low angular resolution. However, the detection of polarization signal in faint radio
halos (L1.4 GHz < 1025 W Hz) has to await the fully deployed SKA.

7 Turbulence in Clusters

Turbulence and density fluctuations affect the basic assumptions behind hydrostatic equilib-
rium and hence the estimates of important cosmological parameters such as cluster masses.
For this reason, but even more because of the interesting astrophysical processes involved,
we discuss in more detail the various observational signatures of turbulence and density
inhomogeneities.

We consider here constraints from measurements in the radio band and pressure maps,
surface brightness distributions, resonant scattering and line broadening in the X-ray range.

7.1 X-Ray View: Pressure and Surface Brightness Mapping

Large scale plasma motions and turbulence in clusters primarily concerns fluctuations in
the velocity field. However, they also lead to density and pressure fluctuations that can be
measured with X-ray telescopes with sufficient spatial resolution and only modest spectral
resolution (to measure temperatures).

Schuecker et al. (2004) described this method in a seminal paper on the Coma cluster.
From a mosaic of XMM-Newton observations of Coma, spatial scales between 20 kpc and
2.8 Mpc could be sampled. Their maps show—superimposed on the normal radial den-
sity and pressure gradients—fluctuations up to 2 % in temperature and 5 % in intensity.
These fluctuations are correlated and agree with the expected adiabatic fluctuations of the
pressure. The spatial power spectrum of these pressure fluctuations is in agreement with
a Kolmogorov-like spectrum. They found that between 10–25 % of the total intracluster
pressure is in the form of turbulence.
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More recently, Churazov et al. (2012) extended this work by also including higher spa-
tial resolution observations of Coma with Chandra. Contrary to Schuecker et al. (2004), they
consider density fluctuations. They find that the relative density fluctuations in Coma have
amplitudes of 5 and 10 % at scales of about 30 and 300 kpc, respectively. They also con-
sider several other explanations for the observed density fluctuations. For instance, at large
scales, gravitational perturbations due to the large cD galaxies and entropy variations due to
infalling cold gas may produce apparent density fluctuations.

7.1.1 Surface Brightness Profiles

In the cluster outskirts, models predict that the X-ray emission should become more clumpy
due to the shallow gravitational potential and the ongoing strong cluster evolution associ-
ated, for instance, with infall of galaxies or groups towards the growing mass concentrations.
One may define a cluster clumping factor C as

C2 = 〈n2〉/〈n〉2, (8)

with n the gas density and the brackets denoting averaging over volume.
Simionescu et al. (2011) used Suzaku observations of the outskirts of the Perseus cluster

to determine the cluster properties around the virial radius and beyond. They find an apparent
baryon fraction higher than the cosmic value at these large radii, which they reconcile by
assuming a very clumpy medium at these distances.

Interestingly, Eckert et al. (2013), by combining pressure measurements from Planck
with density profiles obtained from ROSAT, found a much lower clumping factor C of
about 1.2 at R200, compared to 3–4 by Simionescu et al. (2011). These differences may
be associated to the precise way of averaging used in determining C.

7.1.2 Direct Measurements of Line Broadening

The most direct way to measure turbulence in clusters is to measure the spectral line broad-
ening caused by the turbulence. Motion of the line-emitting ions will produce Doppler shifts.
However, also thermal motion of the ions produces Doppler shifts. The width σT for thermal
motion of the ions (for a Gaussian velocity profile ∼ exp(−v2/2σ 2

T )) is given by

σT /c = 0.00103Tion/
√

M ion, (9)

where the ion temperature Tion is expressed in keV and the ion mass Mion in atomic units.
Thus, for hydrogen and an ion temperature of 1 keV the thermal broadening is larger than
the turbulent broadening if the turbulent velocity dispersion in the line of sight σv is less
than 300 km s−1. For the more relevant case of iron (atomic mass 56.25) the thermal veloc-
ity dispersion is always less than 200 km s−1 (Fig. 23), and hence turbulence is relatively
easily detected provided that the detector has sufficient energy resolution to measure the line
broadening.

At this moment the only instrument capable of measuring line broadening in clusters is
the RGS reflection grating spectrometer on board of XMM-Newton. However, because this
is a slit-less dispersive instrument, the spatial extent of a cluster gives an additional line
broadening effect, and this must be modeled properly. Only some cool core clusters have
sufficiently small size to allow for such a study. In addition, there is some uncertainty in
the calibration of the instrumental line spread function. With these caveats in mind, Sanders
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Fig. 23 Thermal velocity
dispersion in the line of sight
corresponding to the thermal
motion of emitting ions, for
oxygen silicon and iron ions, as a
function of gas temperature

et al. (2011) studied a sample of 62 clusters, groups and individual ellipticals. They found
upper limits for the turbulent velocity of 200 km s−1 for five of their studied cases, and one
case (Klemola 44) with a measured broadening of 1500 km s−1. Optical observations show
this latter cluster to be a very disturbed system. For the sample as a whole, 15 sources appear
to have less than 20 % of their thermal energy in the form of turbulence.

Clearly, better measurements are needed. ASTRO-H (expected launch 2015) will contain
a calorimeter with about 6 eV spectral resolution (300 km s−1 at the iron lines), that does not
suffer from the spatial blurring inherent to the RGS. Turbulent broadening of spectral lines
is expected to be measurable down to 50–100 km s−1, ultimately limited by the calibration
of the instrument. Measuring cluster turbulence is one of the key scientific questions that
this satellite will address.

While ASTRO-H has sufficient spectral resolution to measure the turbulence, its spatial
resolution of the order of an arcmin will limit the amount of mapping that is possible. In
the longer future, the proposed ESA mission Athena (launch 2028) will have a significantly
higher spatial resolution, in addition to a spectral resolution of a few eV and a much higher
effective area. This will allow to study turbulence also for a significant number of clusters
at much higher redshifts. In addition, the spectral resolution will be sufficient to study line
profiles in detail (e.g. Inogamov and Sunyaev 2003).

7.1.3 Resonance Scattering

Resonance scattering offers a unique tool to study turbulence in clusters. The hot plasma in
clusters of galaxies is in general optically thin, which means that all radiation that it produces
can freely escape. However, a few of the strongest resonance lines have an optical depth
of the order of unity. Photons emitted in such lines can be scattered several times before
they finally escape. For clusters of galaxies, the method was pioneered by Gilfanov et al.
(1987), see Churazov et al. (2010) for a review. Essentially, line photons from resonance
lines emitted from the center of the cluster towards the observer will be scattered out of
the line of sight, but are not lost. This leads to an apparent dimming of the line towards
the cluster center, but a brightening towards the outer parts. Because of the higher surface
brightness near the cluster center, this dimming of resonance lines towards the center is the
easiest to observe.
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Fig. 24 Simulated Astro-H
spectra from the core
(0.5–1.5 arcmin annulus) of the
Perseus Cluster for 100 ks
observation. Points show the
simulated spectra with and
without resonant scattering for
different levels of turbulence,
parametrized through the
effective Mach number M. Note
that 100 ks observation is
sufficient to detect the resonant
scattering signal even if gas
motions are present. (Adapted
from Zhuravleva et al. 2013)

To make fully use of this effect, two lines of the same ion are needed, with different os-
cillator strength. Then from the radial profile of their line ratio (combined with information
about the temperature and density profile of the cluster obtained from spectral modeling),
the optical depth of the scattering line can be determined. This optical depth depends on the
ratio of the turbulent to thermal energy density in the gas. Therefore this method directly
probes the turbulence. Since the core of the cluster is typically much brighter than the out-
skirts, the optical depth is particularly sensitive to the radial component of the velocity field
and small-scale eddies, while large-scale coherent motions tend to shift the line energy, but
do not affect the optical depth (Zhuravleva et al. 2011).

One of the most promising ions to apply this method is Fe XXV. The 1s–2p and 1s–3p
transitions of this ions have high and low oscillator strength, respectively. While BeppoSAX
and ASCA observations of the Perseus cluster indicated the possible presence of a strong
scattering effect and hence low levels of turbulence (Molendi et al. 1998; Akimoto et al.
1999), subsequent observations with XMM-Newton showed that the Fe XXV 1s–3p line is
contaminated with nickel line emission; correcting for that results in insignificant resonance
scattering hence the presence of substantial turbulence, with characteristic speeds of 0.36
times the sound speed and hence a turbulent pressure of about 10 % of the thermal pres-
sure (Gastaldello and Molendi 2004; Churazov et al. 2004). Future ASTRO-H mission will
have sufficient sensitivity and energy resolution to unambiguously identify signatures of the
resonant scattering in the Fe XXV triplet (Fig. 24) in a 100 ks observations.

Another interesting diagnostic ion is Fe XVII. This has a strong resonance line at 15 Å,
and by comparing this line with other Fe XVII lines, Xu et al. (2002) discovered resonance
scattering in the elliptical NGC4636 using RGS data. This work was extended by Werner
et al. (2009) using five giant elliptical halos, and using in addition to the RGS spectra also
high-resolution images from Chandra. In four of these systems, the 15 Å line is suppressed
relative to the other Fe XVII lines. For NGC4636 this leads to a turbulent velocity of less
than 100 km s−1 or less than 5 % for the turbulent to total pressure ratio.

de Plaa et al. (2012) obtained much deeper RGS spectra for two of the ellipticals studied
by Werner et al. (2009). Interestingly, in these two systems the amount of turbulence appears
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to be rather high: in NGC5044 turbulent pressure constitutes at least 40 % of the total (with
turbulent velocities between 320–720 km s−1) and in NGC5813 turbulence contributes only
15–45 % to the total pressure, with velocities between 140–540 km s−1. However, de Plaa
et al. (2012) also point out that the atomic physics of Fe XVII is by no means undisputed,
and some of these results depend on the adopted atomic parameters. Fe XVII still remains
one of the most difficult and controversial ions, despite its relatively frequent occurrence in
X-ray spectra.

The profiles of spectral lines that are affected by resonance scattering will be different
from those of non-resonant lines. Because the optical depth in the line core is higher than
that in the line wings, the core will be suppressed relative to the wings (e.g. Gilfanov et al.
1987; Shang and Oh 2013). The characteristic depression at the center of the line could
therefore be used as a proxy for resonant scattering when observing bright cluster cores.

Apart from the distortions of the line intensity and shape, the resonant scattering causes
polarization of the scattered line flux (Sazonov et al. 2002) at the level of 10–15 %. The
polarization plane is expected to be perpendicular to the direction towards the cluster center.
Gas motions will affect both the degree and the direction of polarization (Zhuravleva et al.
2010). The changes in the polarization signal are in particular sensitive to the gas motions
perpendicular to the line of sight. This opens a principal possibility of measuring trans-
verse component of the velocity field, once sensitive X-ray polarimeters with good spectral
resolution become available.

8 Summary and Conclusions

Between the end of the 90’s and the beginning of the 2000’s, the X-ray satellites Chan-
dra and XMM-Newton have definitely proven that galaxy clusters are extremely exciting
physics laboratory for the characterization of complex plasma processes. In the same years,
the development of deep radio observations of clusters have confirmed the presence of a
non-thermal intracluster component (cosmic rays and magnetic fields) in the ICM, whose
physical properties seem to be strongly connected to the dynamical state and evolutionary
history of clusters. As presented in the previous sections, in the next years a new generation
of X-ray and radio telescopes will allow us to do a further step forward in the characteriza-
tion of the MHD physical processes that we expect to be shaping the ICM properties, but
for which we are not yet able to make precise measurements.

Great advancements are expected in the direct measurements of turbulence thanks to
the increased kinematic resolution of the X-ray satellites ASTRO-H first and Athena then.
This will have a relevant impact on both astrophysical and cosmological cluster studies. As
described in this paper, turbulent plasma motions are expected to play an important role
in the AGN energy dissipation at the center of galaxy clusters and, together with merger
induced shocks, in the acceleration of intracluster cosmic rays and in the amplification of
magnetic fields. The greatest impact in the characterization of the non-thermal cluster com-
ponents is expected to come from new and future radio interferometers (SKA in particular
and, before, its precursors and pathfinders, such as JVLA, LOFAR, MWA, LWA, ASKAP,
MeerKAT, . . . ; see Norris et al. 2013, and references therein). All together, these instruments
will cover a broad spectral range, from a few tens of MHz to, possibly, ∼ 15 GHz. Broad-
band low-frequency observations at arcsec resolution will be key to systematic searches of
steep-spectrum sources, from radio ghosts at the center of clusters, to diffuse radio sources,
expected to be hosted in a big fraction of low-mass and minor merging clusters (Cassano
et al. 2012). Both total intensity and radio polarization observations from SKA and its
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pathfinders will allow us to access the magnetic field intensity and structure, as well as the
acceleration mechanisms responsible for electron acceleration, within the intra- and, possi-
bly, inter-cluster volume up to z ∼ 1 (e.g. Bonafede et al. 2015; Ferrari et al. 2015; Govoni
et al. 2015; Vazza et al. 2015).

Since random turbulent motions are expected to provide a pressure support to the ICM
(thus affecting the measure of cluster masses based on the assumption of hydrostatic equi-
librium), a precise quantification of the turbulence pressure is not only interesting from the
astrophysical point of view, but also crucial for improving the constraints on cosmologi-
cal parameters through cluster number counts. To this respect, the eROSITA satellite, to be
launched in 2016, will survey the sky with unprecedented sensitivity and is expected to de-
tect about 105 galaxy clusters down to 5 × 1013 M�/h and with a median redshift z ∼ 0.35
(Pillepich et al. 2012).2 Later on, the wide field imager onboard of Athena is expected to con-
duct blind field surveys, allowing to detect and characterize the mass and dynamical state of
clusters and groups up to and beyond z = 1. To be noted that important developments are
ongoing also in the (sub-)mm domain, allowing deep improvements in the observations of
the Sunyaev-Zel’dovich effect (SZE).3

The gamma-ray observations reviewed above have placed stringent limits on the pressure
contained in protons of energies above 100 MeV with hard energy spectra. The constraints
on the energy density in non-thermal particles with steep enough spectra dominated by par-
ticles of energies well below 100 MeV remain to be established with the new low energy
gamma-ray experiments which are under development (see e.g. von Ballmoos et al. 2012;
Lebrun et al. 2014).

We can conclude that the excellent synergy between future X-ray satellites, together with
the huge developments in the new generation of radio and mm telescopes, will allow us a
breakthroughs in our understanding of the evolutionary physics of the intracluster plasma
and in the exploitation of galaxy clusters as tools for cosmology.
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