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    Chapter 1   

 Need for Methods to Investigate Endocannabinoid 
Signaling                     

     Mauro     Maccarrone      

  Abstract 

   Endocannabinoids (eCBs) are endogenous lipids able to activate cannabinoid receptors, the primary 
molecular targets of the cannabis ( Cannabis sativa ) active principle Δ 9 -tetrahydrocannabinol. During the 
last 20 years, several  N -acylethanolamines and acylesters have been shown to act as eCBs, and a complex 
array of receptors, metabolic enzymes, and transporters (that altogether form the so-called eCB system) 
has been shown to fi nely tune their manifold biological activities. It appears now urgent to develop 
methods and protocols that allow to assay in a specifi c and quantitative manner the distinct components of 
the eCB system, and that can properly localize them within the cell. A brief overview of eCBs and of the 
proteins that bind, transport, and metabolize these lipids is presented here, in order to put in a better 
perspective the relevance of methodologies that help to disclose molecular details of eCB signaling in 
health and disease. Proper methodological approaches form also the basis for a more rationale and effective 
drug design and therapeutic strategy to combat human disorders.  
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1       A Modern View of the Endocannabinoid System 

 Two  G   protein-coupled receptors, termed type-1 (CB 1 ) and 
type-2 (CB 2 ) cannabinoid receptors, are activated by Δ 9 - 
tetrahydrocannabinol (THC), the major psychoactive component 
of cannabis ( Cannabis sativa ) extracts like hashish and mari-
juana [ 1 ]. Endogenous counterparts of THC [collectively termed 
“endocannabinoids (eCBs)”], their target receptors, and the 
enzymes responsible for their synthesis and degradation form an 
entirely new endogenous signaling system, also known as the 
“endocannabinoid system (ECS)” [ 2 – 4 ]. 

 The most important eCBs are  two   arachidonic acid derivatives: 
 N -arachidonoylethanolamine (anandamide, AEA) and 2-arachi-
donoylglycerol (2-AG), shown in Table  1 .
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   They belong to the large families of  N -acylethanolamines and 
2-monoacylglycerols, respectively. Besides these  ω  − 6 ( n  − 6)    fatty acid 
compounds, two metabolically important  ω  − 3 ( n  − 3) fatty acid eth-
anolamines have been discovered:   N - eicosapentaenoylethanolamine 
(EPEA) [ 5 ] and  N -docosahexaenoylethanolamine (DHEA) [ 6 ], 
also shown in Table  1 . The latter two substances have been pro-
posed as additional CB 1/ CB 2  agonists [ 7 ], but their pharmacology 
and biological relevance remain to be clarifi ed. 

 The actions of eCBs and congeners are controlled through not 
yet fully characterized cellular mechanisms that include key agents 
responsible for their biosynthesis, degradation, and oxidation. 

     Table 1  
  Endocannabinoids (eCBs), their molecular targets, and their biosynthetic and catabolic enzymes   

 Bioactive lipids 
 Molecular 
targets 

 Biosynthetic 
enzymes 

 Catabolic/oxidative 
enzymes 

  ω − 6 eCBs  

  

N
H

OH

O

    

 CB 1   NAT  FAAH 
 CB 2   iNAT  NAAA 
 TRPV1  NAPE-PLD  LOXs 
 PPARα  ABHD4  COX-2 
 PPARγ   Lyso -PLD  Cyt P 450  
 GPR55  GDE1 

  N -arachidonoylethanolamine 
(anandamide, AEA) 

 PTPN22 

  
OH

OH
O

O

    

 CB 1   PLCβ  MAGL 
 CB 2   DAGLα  FAAH 

 2-Arachidonoylglycerol (2-AG)  TRPV1  DAGLβ  ABHD6 

  ω − 3 eCBs  

  

N
H

OH
O     

 CB 1   Possibly as for 
other NAEs 

 Possibly as for other 
NAEs  CB 2  

  N -docosahexaenoylethanolamine (DHEA)  PPARγ 

  
N
H

OH

O

    

 CB 1   Possibly as for 
other NAEs 

 Possibly as for other 
NAEs  CB 2  

  N -eicosapentaenoylethanolamine (EPEA)  PPARγ 

   Abbreviations :  ABHD4/6/12  α/β-hydrolase domain 4/6/12,  CB   1   type-1 cannabinoid receptors,  CB   2   type-2 can-
nabinoid receptors,  COX-2  cyclooxygenase-2,  Cyt P   450   cytochrome P 450 ,  DAGLα/β  diacylglycerol lipase α/β,  FAAH  
fatty acid amide hydrolase,  GPR55  orphan G protein‐coupled receptor 55,  LOXs  lipoxygenases,  MAGL  monoacylg-
lycerol lipase,  NAAA N -acylethanolamine-hydrolyzing acid amidase,  NAPE-PLD N -acyl- phosphatidylethanolamine-
hydrolyzing phospholipase D,  NAT N -acyltransferase,  iNAT  Ca 2+ -independent  N -acyltransferase,  PLCβ  phospholipase 
Cβ,  lyso - PLD lyso -phospholipase D,  PPARα/γ  peroxisome proliferator‐activated receptor α/γ,  PTPN22  protein tyrosine 
phosphatase, non-receptor type 22,  TRPV1  transient receptor potential vanilloid type 1 channel  
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Remarkably, during the last few years multiple pathways have been 
described for  the   metabolism of AEA (Fig.  1 ), and of 2-AG (Fig.  2 ), 
as detailed in a recent review [ 8 ].

    Briefl y, the main route  for   AEA biosynthesis consists of two 
enzymatic reactions. The fi rst is a fatty acyl chain transfer from 
membrane phospholipids to a phosphatidylethanolamine, resulting 
in the formation of  N -acylphosphatidylethanolamine (NAPE), by 
a yet-unidentifi ed Ca 2+ - dependent    N -acyltransferase (NAT) [ 9 ], or 
by a Ca 2+ -independent counterpart (iNAT) [ 10 ]. The second step 
is catalyzed by a NAPE-specifi c type D  phospholipase   (NAPE- 
PLD) that is the most relevant enzyme among multiple players in 
AEA formation from NArPE [ 9 ,  10 ], as shown in Fig.  1 . 
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  Fig. 1    Alternative biosynthetic, degradative, and oxidative pathways of AEA and congeners.  AA  arachidonic 
acid,  ABHD4  α/β-hydrolase domain 4,  pAEA  phospho-AEA,  COX-2  cyclooxygenase-2,  Cyt P   450   cytochrome P 450 , 
 EET-EA  epoxyeicosatrienoyl ethanolamides,  EtNH   2   ethanolamine,  FAAH  fatty acid amide hydrolase,  GP-AEA  
glycerophospho-AEA,  GDE1  glycerophosphodiester phosphodiesterase 1,  12-HAEA  12-hydroxyanandamide, 
 12-LOX  12-lipoxygenase,  NAAA N -acylethanolamine-hydrolyzing acid amidase,  NAPE-PLD N -acyl-phosphatidyl 
ethanolamine-hydrolyzing phospholipase D,  NAT N -acyltransferase,  iNAT  Ca 2+ -independent  N -acyltransferase, 
 lyso - NArPE lyso - N -arachidonoylphosphatidylethanolamine,  NArPE N -arachidonoylphosphatidylethanolamine, 
 pNArPE N -arachidonoylethanolamine plasmalogen,  PLA   2   phospholipase A 2 ,  PLC  phospholipase C,  lyso - PLD 
lyso - phospholipase D,  PMF2α  prostamides F2α,  PTPN22  protein tyrosine phosphatase, non-receptor type 22       
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 As for the biosynthesis of 2-AG and congeners, the best known 
biosynthetic pathway requires the combined action of phospholi-
pase C (PLC) and diacylglycerol  lipase   (DAGL that is present in 
two forms, α and β) [ 11 ], but alternative pathways of 2-AG biosyn-
thesis are also known, as shown in Fig.  2 . 

 Degradation of eCBs and congeners can start with their  trans-
membrane   uptake, a process that remains highly debated because 
true “eCBs membrane transporters (EMT)” have not yet been 
cloned; however, EMT activity and pharmacological inhibition 
have been repeatedly described [ 12 ]. Once inside the cell, eCBs 
are hydrolyzed to  terminate   signal transduction. The main cata-
bolic enzyme  of   AEA is fatty  acid   amide hydrolase (FAAH) [ 13 ], 
a widely distributed intracellular membrane-bound serine hydro-
lase [ 14 ]. An additional lysosomal cysteine hydrolase termed 
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  Fig. 2    Alternative biosynthetic, degradative, and oxidative pathways of 2-AG and congeners.  AA  arachidonic 
acid,  2-AG-3P  2-arachidonoylglycerol-3-phosphate,  COX-2  cyclooxygenase-2,  DAG  diacylglycerol,  DAGL  diac-
ylglycerol lipase,  12-HETE-G  12-hydroxy-arachidonoyl-glycerol,  ABHD6/12  α/β-hydrolase domain 6/12,  12- 
LOX  12-lipoxygenase,  MAGL  monoacylglycerol lipase,  PLC  phospholipase C,  PLCβ  phospholipase Cβ,  PGE   2   -G  
prostaglandin glycerol E 2 -G       
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 N -acylethanolamine-hydrolyzing acid  amidase   (NAAA) is also 
known [ 15 ], and cleaves AEA and congeners under acidic condi-
tions (Fig.  1 ). As for 2-AG and congeners,    monoacylglycerol lipase 
(MAGL) is the main responsible for their degradation, along with 
two additional serine hydrolases, known  as   α/β-hydrolase domain 
6 and 12 (ABHD6 and ABHD12) [ 16 ]. 

 Moreover, the oxidative metabolism of eCBs has (patho)physi-
ological relevance, because it leads to the production of new bio-
logically active metabolites [ 17 ]. In particular, AEA and 2-AG are 
metabolized by lipoxygenases (LOXs) [ 18 ] and by cyclooxygen-
ase-2 (COX-2) [ 17 – 19 ], and additionally AEA can be oxygenated 
also by cytochrome P450 [ 20 ], as shown in Figs.  1  and  2 . 

 Incidentally, it should be stressed that an emergent issue is how 
eCBs can reach their distinct sites of action within the cell (e.g., 
membrane or nuclear receptors, or metabolic enzymes) at the right 
time and at the right concentration, in order to trigger the appro-
priate response to a stimulus [ 21 ]. In this context, the existence of 
intracellular storage organelles (adiposomes or lipid droplets) [ 22 ], 
as well as of constitutive intracellular transporters (AEA intracel-
lular transporters, AITs), has been reported for AEA [ 2 ]. A func-
tional role for these AITs in eCB signaling has been recently 
documented [ 23 ], providing a proof of concept that indeed they 
can drive eCBs towards distinct transduction pathways. This is par-
ticularly striking in the central nervous system, where at each syn-
apse distinct ECS elements in different neuronal and non- neuronal 
cells contribute to proper neurotransmission [ 24 ,  25 ]. The same 
complexity in other organs of our body (e.g., cardiovascular, diges-
tive, musculoskeletal, immune, and reproductive systems) has been 
the subject of a comprehensive review [ 26 ]. 

 Finally, strong pharmacological and biochemical evidence 
has demonstrated that eCBs are able to interact also with non-
CB 1 /non-CB 2  receptors, further increasing the complexity of 
the ECS and of the signaling pathways trigged thereof (Fig.  3 ). 
In particular, the best known of these targets is  the   transient 
receptor potential vanilloid type 1 (TRPV1) channel, which is 
activated by both AEA [ 27 ] and 2-AG [ 28 ]. Other potential 
receptors activated by eCBs  are   peroxisome proliferator‐ activated 
receptor (PPAR) α and γ [ 29 ], and the  orphan   G protein‐cou-
pled  receptor   GPR55 [ 30 ].

   In Table  1  old and new members of the ECS are listed 
together. Unsurprisingly, ECS has been shown to regulate differ-
ent physiological processes in the central nervous system [ 2 – 4 ] 
and at the periphery [ 26 ], thereby suggesting that its signaling 
may foster the development of pathway-selective drugs for thera-
peutic benefi t [ 2 – 4 ].  

Investigating Endocannabinoid Signaling



6

2     Conclusions 

 Taken together, it appears all the more important to develop methods 
and protocols that allow to properly assay activity  and   location of 
the different ECS elements, possibly with specifi cations that make 
the same method fully effective in different cells, tissues, and 
organisms. For most ECS elements reliable methods are indeed 
available, and will be presented in this theme issue on 
“Endocannabinoid signaling: Methods and protocols” by those 
who developed and/or improved them over the last few years. 
Such a book is a manual that puts together all current methodolo-
gies to investigate eCB signaling in a timely manner. Thus, I believe 
that it will help chemists, drug designers, biochemists, molecular 
biologists, cell biologists, pharmacologists, and (electro)physiolo-
gists to successfully navigate with appropriate tools the  mare mag-
num  of eCB research.     
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  Fig. 3    Signal transduction pathways triggered by endocannabinoids through their main target receptors.  AC  
adenylyl cyclase,  CB   1   type-1 cannabinoid receptor,  CB   2   type-2 cannabinoid receptor,  cPLA   2   cytosolic phos-
pholipase A 2 ,  eCBs  endocannabinoids,  FAK  focal adhesion kinase,  GPR55  orphan G protein‐coupled receptor 
55,  MAPK  mitogen-activated protein kinase,  iNOS  inducible nitric oxide synthase,  PPARs  peroxisome prolifera-
tor‐activated receptors,  TRPV1  transient receptor potential vanilloid type 1 channel       
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