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Preface

Computational technologies have been applied in drug discovery for decades and are
gaining increasingly in popularity, implementation, and appreciation due to the recent
advances in computational methodologies and the fast growth of low-cost high perfor-
mance computing techniques. Computer-aided drug discovery (CADD) has become a
crucial component of modern drug discovery programs and is widely utilized to identity
and optimize bioactive compounds for the development of new drugs. The intent of this
book is to provide a practical guide for solving drug discovery-related problems using
computational techniques.

CADD is a diverse discipline where various aspects of applied and basic research merge
and stimulate each other. Computational strategies thus need to be frequently adjusted for
different drug discovery purposes. A wide variety of computational approaches have been
used in different stages of drug discovery and development, as well as in clinical studies. It is
not possible to comprehensively cover such a broad field in one volume. Therefore, this
book focuses on the methods that are commonly used in the early stage of drug discovery,
including computer simulation, structure prediction, conformational sampling, binding
site mapping, docking and scoring, in silico screening, and fragment-based drug design. In
addition to the state-of-the-art theoretical concept, this book also includes step-by-step,
readily reproducible computational protocols as well as examples of various CADD strate-
gies. The limitations and potential pitfalls of different computational methods are discussed
by experts, and tips and advice for their applications are suggested.

It has been a great privilege to work with the many experts in the CADD field. I very
much appreciate the patience of the authors who carefully worked on their chapters and
took into consideration my comments to make them a part of a coherent picture.

I would like to dedicate this book to my dearly beloved grandfather, whose wisdom,
dedication, and passion for life has always been an inspiration for me.

Birmingham, AL, USA Wei Zhang
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Molecular Dynamics Simulations and Computer-Aided
Drug Discovery

Ryan C. Godwin*, Ryan Melvin*, and Freddie R. Salsbury Jr.

Abstract

Molecular dynamics simulations of biomolecules, proteins especially, have emerged as an important tool in
the study of the conformational change, flexibility, and dynamics. These simulations, especially when
combined with virtual screening, have been a tool in drug discovery. Herein, we cover the basics of
molecular dynamics simulation, in the hopes that a reader would be able to intelligently conduct a
simulation of their favorite protein(s), analyze the results in order to make hypotheses about the links
between protein dynamics and conformation. We also discuss the integration between molecular dynamics
and virtual screening, so that a reader could use the results of simulations to perform virtual screening for
lead identification. Finally, we review several case studies to show what sort of information can be gained by
simulation of biomedically interesting proteins, and how that may impact drug discovery, as well as a
discussion of some areas in which simulation may prove more useful in the near future.

Key words Molecular dynamics, Simulations, Drug discovery, Markov analysis, Protein dynamics,
Acmed

1 Introduction

Molecular dynamics simulations of biomolecules have been devel-
oped since the late 1970s and early 1980s (1) in order to harness
the emerging power of computers to study the motions of proteins
and other biopolymers, as well as to study the interactions of these
biomolecules with small molecules, such as potential drugs. These
computational techniques often complement experimental techni-
ques such as Nuclear Magnetic Resonance (NMR) spectroscopy
and X-ray crystallography. Observing dynamics or obtaining
ensembles of conformations using these methods can be difficult.
However, these experimental techniques often provide highly
accurate structural information that computational methods
can use as starting points to study biologically important
molecules such as small molecule ligands, DNA, RNA and proteins.
In particular, Molecular Dynamics (MD) simulations provide a

*Author contributed equally with all other contributors.
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method to examine, in atomic detail if necessary, the kinetics and
thermodynamics of important biomedical systems.

Since all-atom molecular dynamics simulations require the
integration of Newton’s equations of motion of each atom, usually
including solvent and solvent ions, over short time-steps, typically
on the femto-second timescale, these simulations can be rather
computationally demanding. However, the growth of computer
power especially in the late 1990s and early 2000s enabled these
methods to be particularly predictive in studying protein dynamics,
such as in investigating the impact of protein motions on catalysis
and ligand binding (2–4). The latter studies have been especially
influential as they have required considerable discussion of the
interplay of conformational change, such as changes in active site
geometries in DHFR (2) or metallo-beta-lactamases (3) and cou-
pled protein fluctuations (4), which show that within a single
protein conformation, long-range coupling networks exist and are
sensitive to interactions with different ligands.

Even more recently, molecular dynamics simulations have
proven useful in studying larger biological systems and in aiding
in the drug discovery process by providing a predictive complement
to experimental methods, contributing predictions for dynamics
and structures not easily observed in vitro or in vivo. Such predic-
tions are useful in pharmacology for understanding the interactions
of drug candidates with biological systems on an atomic scale.

Molecular dynamics simulations also prove useful when con-
sidering proteins as ensembles of conformational states (5–10), as
simulations explore ensembles and output large collections of
structures, which sample the conformations that occur.

In part, the notion of generalized allostery comes out of the
conceptualization of proteins as ensembles of states and the under-
standing of conformational changes occurring due to long-range
coupling networks (9). If under certain conditions all proteins are
indeed allosteric, it is possible to design drugs that will bind to
allosteric sites. Such binding would force the protein into a certain
conformation—or specific ensemble of conformations—thereby
regulating the dynamics and interactions of the protein (9, 11).
However, for any given protein, an appropriate ligand and
corresponding binding site to induce the desired structural change
must be found. This type of search is one for which molecular
dynamics simulations are well suited. Much of the relevant scientific
work in the 2000s was reviewed a few years ago (12). This chapter
serves a few purposes. First, it expands upon and update that previous
review, especially in light of the tremendous improvements in compu-
tational algorithms and hardware, such as GPU-enabled computing.
Second, we describe the minimum theoretical and technical details
necessary for setting up, executing, and analyzingMD simulations so
that any who are interested in participating in computer-aided drug
discovery may have the tools necessary for doing so.

2 Ryan C. Godwin et al.



2 Basics of Molecular Dynamics

2.1 Structures The minimum structural information required to start a
simulation is:

1. A list of all atoms involved in the simulation

2. Initial coordinates of these atoms

For a given system, with fixed protonation states, there is only one
possible list of atoms; however, there are infinitely many possible
initial coordinates. Of course, most of these combinations would
have enormous energy and would be negligible members of the
real, physical ensemble. To achieve realistic results, a physiological
initial state needs to be considered. Folding a biopolymer from an
unfolded state can rarely be achieved straightforwardly—the time
scales are still too long—except for the smallest systems. Therefore,
simulations usually start in a folded state; the set of coordinates
that likely correspond to a minimum free energy state. Online
databases–e.g., the protein databank (RCSB PDB—with 106,293
structures to date), which collect structures from X-ray crystallog-
raphy and NMR spectroscopy (13)—are the normal sources for
such initial structures. It is also possible sometimes to model the
initial atomic coordinates based on the structure of other proteins
with similar sequences via homology modeling (14). The extent to
which this is accurate of course depends on how close the
unknown protein is to the known proteins, which is generally not
known. As such, simulations almost always start from structures
obtained from the RCSB protein databank. A promising develop-
ment that could have impact in the near future is the possibility of
building up structures from a type of quantummechanical method
known as Density Functional Theory (DFT). Variants of this
method have proven useful in materials science and computational
chemistry (15).

2.2 Force Fields Force fields are the potential energy functions used to calculate the
accelerations of the atoms and subsequently update the coordinates
and the velocities at each step of the simulation. This parameteriza-
tion of the energy surface of a protein or other biopolymers is
conceptually straightforward, but complicated in practice. In prin-
ciple, the energy surface of even a small protein has 100,000s of
dimensions even without solvent. However, since the aim is to
simulate the dynamics of connected and folded proteins, this sur-
face can be simplified using conventional terms from chemistry,
such as bonds, angles, dihedrals, and other terms related to chemi-
cal connectivity, and long-range interactions as modeled by van der
Waals interactions and electrostatics. Among the many force fields
that exist, the most popular families of force fields include
CHARMM (16), AMBER (17), and GROMOS (18). The energy

Molecular Dynamics Simulations and Computer-Aided Drug Discovery 3



equation from the CHARMM 27 force field is shown in Eq. (1),
where V is the total potential energy.

V ¼
X
bonds

kB b � b0ð Þ2 þ
X
angles

kθ θ � θ0ð Þ2 þ
X

dihedrals

kϕ 1� cos nϕ� δð Þ½ �

þ
X

impropers

kω ω� ω0ð Þ2 þ
X
UB

ku u � u0ð Þ2

þ
X
i> j

εij
Rminij

rij

� �12

� Rminij

rij

� �6
" #

þ
X
i> j

qiq j

4πε0εrij

ð1Þ
Many of the bonded interactions are effectively modeled as sim-

ple harmonic oscillator potentials, including bonds, angles, the
Urey-Bradley term, and impropers, i.e., the first, second, fourth,
and fifth terms in Eq. (1). In each of these terms there are force
constants that control the stiffness of the bonds, angles, impropers,
and Urey-Bradley terms. In principle, every single such interaction
can have its own minimum and force constant, but in practice there
is a great of similarity. Bonds, the first terms, are 1–2 interactions
that occur between all atoms that are directly connected via chemical
bonds. Angles, the second term, are 1–3 interactions that occur
between all atoms that share a common bonded atom. The impro-
pers, the fourth term, are 1–4 interactions that occur between atoms
that share common angles. They occur between some atoms, those
in which dihedrals are insufficient to constrain the torsional angle.
The Urey-Bradley term, the fifth term, is a 1–3 interaction energy,
i.e., an interaction between atom pairs that share a common bonded
angle, that some atom pairs have and is designed to control angle-
bending for particularly stiff angles. Dihedrals, the third term, are
1–4 interactions between all atoms that share common angles and
aremodeled with a cosine approximation. The last two terms are the
non-bonded interactions, and are modeled via the Lennard–Jones
potential and the Coulomb potential, where every atom pair that
does not occur in a bond, angle, or dihedral, possesses these long-
range interactions. The nature of the 1/r Coulomb potential is a
long-range interaction, and is computationally limiting, since it does
not go rapidly to zero as the Lennard–Jones potential does over
longer ranges. However, methods have been developed to approxi-
mate the Coulomb potential accurately over longer ranges, such as
the particle mesh Ewald method (19).

Although force fields are complicated approximations, these
models are constantly being vetted and compared to experiment
to improve the force field parameterization for proteins, nucleic
acids and lipids. The force fields have been refined over the years
to correct issues where, for example, AMBER over-stabilized alpha-
helices (20, 21) or CHARMM tended toward pi-helices (22).
There is little consensus to suggest that one force field is better
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than the rest for protein simulations, and simulations performed on
the same structure with different force fields generate consistent
results, for example ref. (3) vs refs. (4) and (23). The success of these
force fields has been recently highlighted when Martin Karplus,
Michael Levitt, and Arieh Warshel won the 2013 Nobel Prize in
Chemistry “for the development of multiscale models for complex
chemical systems” (24).

2.3 Simulation

Programs

Various simulation suites exist and the most popular include
NAMD (25), CHARMM (26), AMBER (27), and GROMACS
(28). These suites share common basic features but vary in their
capacities and underlying philosophies.

The most user-friendly of these suites is NAMD, built upon
C++ and TCL programming and scripting languages, but has the
least functionality. However, it contains all the functionality needed
for all-atom simulations. Conversely, the most versatile package is
CHARMM, but it comes with a steep learning curve, and resembles
a Fortran-based language. GROMACS is the only one of the four
suites that is open source, and has been converted from its original
FORTRAN implementation to C. Of these four packages, NAMD
is the most capable of performing large, classical all-atom simula-
tions on CPUs, and has been used to simulate particularly large
proteins and protein complexes (for example (4, 29, 30)). GRO-
MACS has the advantage of a large number of external tools for
trajectory analysis; it is generally the second-fastest. CHARMM is
the most flexible for analysis and for performing different simula-
tions. For the simulations described in this chapter while running
on CPUS, arguably the “best” combination would be to use
NAMD to run simulations and CHARMM for analysis, while
using GROMACS for both simulation and analysis would be a
close second. However, over the last few years, GPU-enabled
codes have emerged, especially ACEMD (31), which is similar to
NAMD in its functionality. Until and unless other suites emerge
that are as GPU-enabled, the ideal simulation technology at present
is ACEMD on GPUs.

2.4 Running a

Simulation

Given a particular biomolecular system of interest and a simulation
package, the next step is to set up the simulation parameters. Many
of these are default configuration parameters that should be
understood.

First, a choice needs to be made as to which thermodynamic
ensemble should be approximated. Since the isothermal–isobaric
(NPT) ensemble has the Gibb’s free energy as its thermodynamic
potential, and usually corresponds to experimental conditions, this
is currently the most common ensemble to simulate. Simulating the
NPT ensemble requires using a thermostat and barostat to approx-
imate constant temperature and constant pressure respectively.

Molecular Dynamics Simulations and Computer-Aided Drug Discovery 5



Simulation packages typically offer the option to run other ensem-
bles, minimally the canonical (NVT), and microcanonical (NVE)
ensembles. Although it seems logical that one would simulate in the
NPT ensemble for best agreement with experiments, it is not clear
how different simulations are in these various ensembles.

To best represent physiological conditions, water molecules
and ions that surround biomolecules in vivo are either explicitly
or implicitly modeled in simulation; this is an important enough
topic to warrant its only section below. In the most common case of
explicit solvent and ions, periodic boundary conditions are imple-
mented and then long-range electrostatic interactions are approxi-
mated using a particle mesh Ewald summation method with Fast
Fourier transforms (32).

Embedded in each simulation code are numerical integration
methods that are used to update the positions and velocities of each
atom in the system from the accelerations determined by the force
field for each simulated atom at each time-step. This time-step, or
interval over which the forces are considered constant, and which
determines how often configurations change, is an important con-
sideration. If the time-steps are too small, computer time and disk
space will be wasted. If the time-steps are too large, the simulation
is no longer energy conserving and accuracy will suffer. However,
simulation packages typically have good default choices of integra-
tors, such as velocity Verlet (33) with time-steps of 1–2 fs.

After the simulation has been set up, usually a brief minimiza-
tion is performed to remove any clashes between atoms. Post-
minimization the system is simulated for a given number of time-
steps—depending on the timescale necessary to address the
biomedical problem as well as the computational power available.
With current GPU-enabled codes, simulations on the 100s of
nanosecond to microseconds are feasible depending on system
size and patience of the user. Also, typically multiple simulations
are performed where each atom starts with a different random
velocity, taken from a Boltzmann distribution, to allow for better
coverage of phase-space.

3 Solvation Techniques

In order to accurately simulate biomolecules, it is imperative to
recreate the local environment as best as possible. As such, biomole-
cules are simulated in an aqueous environment to approximate phys-
iological conditions. Modeling solvation is important, as it has been
shown that solvent fluctuations can be directly related to protein
motions (34, 35). Additionally, the layer of water surrounding the
biopolymer, i.e., the water molecules closest to the sample, has prop-
erties different than that of the bulk solvent (36). It is clear that
solvent interactions are critical to properly functioning biomolecules,

6 Ryan C. Godwin et al.



and when simulating such systems, the choice of solvent approxima-
tion is an important issue. There are twomain approaches to simulat-
ing solvents, with explicit or implicit solvent, andmanymodels within
each implementation.While none of these is perfect, some are advan-
tageous particularly dependent on the simulation in question.

An explicit solvent is exactly that, including a box composed of
an oxygen bound to two hydrogens, each with updated coordinates
and velocities calculated at each time-step. These models are often
characterized by the number of site interaction points considered
and go from 2-site models up to 6-site models. TIP3P and TIP4P
are common 3 and 4-site models, respectively (37, 38), that have
been studied extensively (39, 40).

The simplest explicit water models assume rigid bonds and only
calculate non-bonded interactions including van der Waals and
electrostatic interactions. In many explicit models, water bonds
are maintained via the SHAKE algorithm, in order to speed up
calculations as these bonds are typically not interesting, yet are of
high frequency (41).

Because explicit solvents can handle representative motions at a
global and local scale, they are often preferred. Alternatives include
implicit solvent approximations in which the electrostatic proper-
ties of the water are calculated approximately without including the
explicit presence and motion of water molecules. This reduces the
computational expense by removing explicit water atoms. Various
implicit solvent models have been compared (42–44), and
Generalized Born (GB) models (23) show the most promise of
the implicit models (42, 43). The struggle is to reproduce the
solvent behavior consistent with experiment, and while there has
been some success (23, 45), comparison of the TIP3P water model
to GB implicit models show an over-stabilization of secondary
structure in implicit solvent models over explicit solvent models.
Namely, it has been shown that alpha-helices are over stabilized in
GB models over TIP3P (20), and ion pair interactions are some-
times over stabilized leading to the trapping of molecules in non-
native states (39). Overall, implicit solvents reduce computational
time, yet they pay a penalty in accuracy. However, explicit solvents,
while generally more accurate, require additional computer
resources. In the era of GPUs and parallelization of calculations,
explicit models are preferable when possible, due to their accuracy.

Regardless of the solvation technique, in order to model in vivo
or in vitro conditions, ions need to be added to the simulation.
If the ions exist in the X-ray structure, then they can be added in
explicit in the positions in the structure, as such ions are likely to be
structurally important. Otherwise, there are automated processes
for doing so in software packages such as VMD (46), which place
sufficient ions randomly in the water box to match conditions
desired; such as 0.15 M ionic strength with NaCl as is common
to match experiment conditions, or just sufficient Na+ or Cl� to
neutralize the protein system.
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4 Analysis Methods

Once simulations have been performed, they must be analyzed to
check their validity and also to extract useful information. Since the
results of a simulation are the coordinates of all the atoms in the
system simulated over the timescale of the simulation, a wide
variety of analysis methods can be applied to extract virtual any
type of structural and provide the most dynamical information.
Below, the most common–and typically the most useful—of these
analysis methods are discussed.

Simulation Check: Structural relaxation
Given that simulations can run from hours to months depending on
the system size and timescale desired, performing energy and struc-
tural checks shortly after starting a simulation minimizes time
wasted on unstable or improperly setup simulations. If a simula-
tion’s log file has been configured to report energies, the user can
read out the energies after a relatively small number of time-steps to
see if the energies reported are reasonable. Similar checks can be
performed on the pressure and temperature, which should be
relatively constant for biological systems and fluctuate around the
values set for the thermostat and barostat (usually 300 K and 1 atm,
although 310 K can be used to better match physiological condi-
tions). As an additional validity check, a user can calculate the Root
Mean Square Deviation (RMSD) of a subset of the simulation’s
atoms. This measure quantifies how much the polymer of interest
has changed from a reference structure over time. Such checks
allow a user to judge the physical reasonableness—relative to the
system and thermodynamic ensemble chosen—of a simulation
(12). The reference structure is usually the initial structure that
has been obtained from experimental work, in order to gauge the
stability of the simulation and structure itself. Beyond understand-
ing how realistic a simulation is, measures of energy, pressure,
temperature and RMSD versus time are indicators of a successfully
equilibrated system. An initial period of rapid change followed by
relative stability with small fluctuations around a mean value indi-
cates a successfully equilibrated system. For example, in Fig. 1,
there is a rapid growth of RMSD in the first 100 ns. Afterward,
the system reaches an equilibrated state with small fluctuations
around a mean of about 5 Å.

This RMSD measures the average difference of all selected
atoms from one frame to the next via

RRMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

r
!
i � r

!
i

0� �2

vuut
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where N is the number of atoms in the selection, r is the position
vector (x,y,z) of the atom at time t, and r 0 is the position of the atom
in the reference frame. Before a meaningful measure of RMSD (or
any other quantity that depends on translational or rotational dif-
ferences in position) can be made, the atoms of interest in the
trajectory must first be aligned to some reference structure so as
to remove the overall motion of the protein. Without this align-
ment, conformational changes will be conflated with rigid body
motions of the protein that is the diffusion and overall rotation of
the entire protein that occurs during the simulation. To align the
atoms, analysis software, such as VMD or scripts in CHARMM or
GROMACS, minimizes the RMSD of selected atoms between a
reference structure and every frame in the trajectory using only
rigid-body rotations and translations. This alignment focuses the
analysis of protein conformations and dynamics.

4.1 Clustering:

Searching

Conformation Space

Given that simulations can run from hours to months depending on
the system size and timescale desired, clustering analysis simplifies the
comparison of structures output from an MD simulation by classify-
ing thousands to ten thousands of frames into a smaller taxonomy
with representative conformations. Figure 2 shows how finely these
clusters can distinguish structures from simulations, while still reduc-
ing the complexity from, in the case, the structural information
contained in a microsecond scale simulation to just 50 representative
structures along with how often these structures are sampled. Two of
which are depicted in Fig. 2 for illustrative purposes.
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Fig. 1 All-atom MD simulation of a Zinc-Finger structure has a 100 ns equilibra-
tion phase
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The clusters are defined by their size in a parameter space—
typically pair-wise RMSDs between structures—so that clustering
effectively partitions configuration space. Algorithms for deciding
what conformations fall in a given cluster come in two categories,
hierarchical clustering and nonhierarchical clustering. The method
for determining the distance between clusters distinguishes algo-
rithms within each category. Hierarchical clustering methods parti-
tion the conformation space into a tree by iteratively connecting
neighboring elements in a dataset. Selecting a level at which to
divide the tree forms clusters. Hierarchical clustering, Fig. 3, is
simple and fast since once an element of the dataset has been placed
in a cluster it is ignored for the remainder of the clustering process.
Slower, nonhierarchical methods optimize each cluster based on
some desired parameters set by the user. Nonhierarchical cluster-
ing, Fig. 4, allows for moving data among clusters as part of the
optimization process, making them slower than their hierarchical
counterparts (47, 48). Nonhierarchical, iterative methods are
implemented in two popular analysis software packages, VMD
(46) and CHARMM (49).

VMD uses a Quality Threshold (QT) clustering algorithm
(47). The method begins by assembling a cluster based on every
element in the dataset. For example, if an MD trajectory contains
10,000 frames, the first iteration of the QT algorithm will have
10,000 clusters. In this iteration the Nth cluster begins with the
Nth frame and is compared with all other frames, regardless of
whether those frames have already been placed in another cluster.
The frame that causes the smallest increase in cluster diameter is
accepted into the group. This process is repeated for theNth cluster
until no frame can be added without taking the cluster diameter
past the threshold specified by the user. At the end of this iteration,

Fig. 2 Two representative structures of a 10-residue FdUMP chain show small
conformational differences between some clusters. From the red to the blue
representative, F10’s termini have spread apart
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all frames in the largest cluster are removed from consideration.
This largest cluster is now fixed, and the process iterates until
either no frames remain or the number of fixed clusters equals a
target number of clusters set by the user. In the latter case the
remaining frames are simply left unclustered. In VMD specifically,
if M is the target number of clusters, all unclustered frames are
labeled as cluster M + 1. CHARMM uses the ART-20 clustering
Algorithm, which is based on a self-organizing neural network
(50, 51). Similar to QT, this algorithm optimizes each cluster
based on a constrained cluster radius. However, ART-20 starts
with one cluster rather than the largest possible number of clus-
ters. The first of two phases in the clustering determines the
number of clusters and their respective centers. To begin, ART-
20 selects the first frame of the trajectory as the center of a single
cluster. Then, the Euclidean distance to each (in the space of the
user-selected cluster parameter) frame is calculated. If the distance
from the cluster center to a conformation is within the cutoff
radius, that frame is added to the cluster and the cluster center is
recalculated before comparison with the next frame. If the dis-
tance is outside the cutoff radius, the rejected frame is assigned as
the center of a new cluster. The second phase of clustering is still
done with Euclidean distance but is performed in multiple itera-
tions; furthermore, at each iteration, the number of clusters and
cluster centers are fixed. Once all frames are assigned to a cluster in
a given iteration, the cluster centers are recalculated. Finally, the
clustering assignment process is repeated. This cycle of the second
phase continues until no changes occur between iterations. An
obvious pitfall of this method is that the order of the frames
influences the cluster assignment. Therefore, the user may wish
to check the stability of the clusters by doing a second round of
clustering with a randomized frame order (48).

Regardless of the clustering method used, the user must set
input parameters based on some analysis criteria based on user
preference. For example, when using VMD’s RMSD clustering
method, a cutoff distance and number of clusters must be set.
These parameters should be chosen in such a way that balances
the number of frames placed in clusters and the number of clusters
themselves. Obviously, if the number of clusters is set to the num-
ber of frames, the user is guaranteed that all frames will be clus-
tered. However, no information is gained in this example as the
point of clustering is simplifying the analysis of the trajectory. To
this end, the user may first decide a reasonable number of clusters,
e.g., 50, to analyze and then adjust the cutoff parameter to mini-
mize the number of unclustered frames. The strategy in that case is
to begin with a low cutoff, e.g., 2 Å, and gradually increase it until
the point when either VMD reports fewer clusters than the number
desired or an increase results in no or a very small change in the
number of unclustered frames. Such a procedure balances
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approximations, but not requiring a large number of clusters to
analyze while including as much of the simulation data available for
in clusters for further analysis.

4.2 Markov Analysis In addition to identifying representative structures of clusters, such
as those in Fig. 2, plots of cluster vs frame, Fig. 5, can show the
transitions among states. In this representation it is easy to identify
long-lived states and to find the populations of different conforma-
tional states. However, it is also easy to miss short-lived stable
states, and it is difficult to accurately see the transition states by
eye. Accessing these transitions requires reconstructing the kinetics
of the system, a task for which Markov State Models (MSMs) are
well suited.

MSMs are network models that convey the rates of transition
among states. These models typically assume the system is mem-
oryless, though they can be generalized to systems with memory.
For example, a memoryless process is aMarkovian process of order 1.
In this case, the state of a system at time-stepN depends only on the
system’s state at the previous time-step N � 1. To generalize to
include memory, one uses a Markovian process of order M. In this
case, the state of the system at time-step N depends on the system’s
state at time-steps N � M, N � (M � 1), . . . and N � 1. Using
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Fig. 5 During a 16-μs all-atom MD trajectory, a 10-mer of FdUMP cluster
analysis shows there is a preferred, low energy state with frequent transitions
to higher energy states
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these models requires defining states based on physical parameters,
typically based on RMSD. For example, a state might consist of all
structures within 2 Å of each other. In which case, these states are
taken from clustering analysis. These Markov models also allow for
further simplifications based on kinetic definitions of macrostates,
which are combinations of microstates. A macrostate might be all
microstates that transition among each other in less than 20 ps. Once
these states are, it is possible to apply statistical mechanics to estimate
various thermodynamics quantities, such as the free energy of a
macrostate using kTlog(P) where P is the population of the states
contained in a macrostate.

Recently, software packages for assisting in dynamics-based
clustering and construction of MSM have been developed. Two
such packages are EMMA (52) and MSMBuilder2 (53). The latter
software package has a companion application, MSMExplorer, for
visualizing MSMs (54).

A convenient way to convey the information in a MSM is with a
rate matrix and heat map thereof, Fig. 6. There are three primary
steps in the construction of such a matrix for an MD trajectory.
First, order clusters by their corresponding frame number. This

Fig. 6 Whenever this FdUMP polymer enters cluster 1 (blue in Fig. 2), it is 90 % likely to remain there during
the next time step (in this case 5 ns). This molecule frequently transitions from cluster 5 to cluster 2 and
cluster 9 to cluster 2
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sorted list is called a Markov chain. Next, count how often state i is
followed by state j where both i and j run from 1 to the number of
macrostates. Finally, place those counts in A, which is an M � M
matrix, whereM is the number of states, and normalize each row so
that it sums to unity. Now, the matrix is read “when the system is in
state i, the probability it will transition to state j in the next time-
step is Aij.” Using Markov State Models in this fashion quickly
reduces the task of analyzing the kinetics of thousands to billions of
conformations to reading an M � M matrix, where M is much
smaller than the number of frames in the trajectory. More details
on such modeling are beyond the scope of this review, but a simple
yet comprehensive review of them has been published (55).

4.3 Analysis

of Protein Motions

and Dynamics

Clustering combined with Markov analysis provide information
about the configuration space accessed by a biopolymer during
the timescale, typically nanosecond to microsecond, of the MD
simulation. Markov analysis also provides information about kinet-
ics via quantifying transitions between configurations. However,
there is additional information contained in a simulation, including
information about protein motions through analysis of dynamics
via examination of fluctuations.

Dynamical studies of protein motions are important in under-
standing regulation and function of a cell. Naturally, cellular func-
tion is an extremely active process requiring a myriad of properly
functional components. To use this information for predictive pur-
poses, it behooves us to have some knowledge of the motions that
dictate proper function and understand how physical laws drive
motions. Simulations provide enough insight to hypothesize the
important functional processes, as conformational changes have
helped to identify drug targets, for example (. . .). Mechanisms
such as protein–protein and protein–surface interactions have
recently gained more traction in the drug targeting process (56).

Understanding how protein motions are affected by ligand
binding and the impact that may have on proper function of a
biomolecule suggest the importance of dynamics in the drug dis-
covery process (57). However, there is a great deal of remaining
investigation of the dynamics of protein, DNA, and RNA interac-
tions, and dissecting these dynamics may yet inform the develop-
ment of therapeutics.

Studies suggest that conformational changes at one site of a
protein, for example, affect distant regions of a protein and its
ability to bind properly, despite no noticeable changes in the bind-
ing region (58). This form of general or hidden allostery is a
dynamical component often overlooked in the drug discovery pro-
cess (9) and is proving useful in predicting functional molecular
mechanisms (59).
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4.4 Root Mean

Square Fluctuations

Root mean square fluctuation (RMSF) is a useful analysis tool to
examine the behavior of a protein with atomic precision across the
whole trajectory by measuring the average mobility of each atom in
the simulation. RMSFs are a measurement of time-averaged fluc-
tuations from a reference frame, typically the first frame. The RMSF
is a useful estimation of the rigidity of various parts of the biomole-
cule, with higher RMSF indicating a more flexible region. Values
are typically on the order of a few to tens of Angstroms and are
calculated using the following equation,

RRMSF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Where r is the x, y, z coordinates of the atom, for example, and r 0 is
that of the reference structure. T is the total number of frames, and
i represents the index over atoms and j represents the index over
time. Figure 7 provides an example of RMSFs for a small 28-residue
zinc finger, NEMO (60). In this example, the flexibility of this
protein is studied over different timescales, and surprisingly for
such a small protein, the flexibility was radically increased on
longer-time scales. The RMSFs plots also show changes in flexibility
along the protein backbone, indicating regions of increased flexi-
bility and regions of increased rigidity.
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4.5 Covariance and

Correlation Analysis

Whereas RMSFs provide information about flexibility at the atomic
level, they provide no information about coupled motions. Covar-
iances, or their normalized counterparts, correlations, however, pro-
vide an indication of coupled dynamics by indicatingwhat parts of the
system show correlated motions; these could be motions in the same
direction, in the opposite directions, or most often, uncorrelated
motions (61). Covariance analysis is a useful technique for detecting
the motions of a protein that might, for example, be responsible for a
particular interaction, or to elucidate long-range interactions within a
sample that may be responsible for allosteric regulation or other
functional behavior. If ri and rj are position vectors of two atoms in
the sample, then the covariance is calculated using

eCij ¼
XN
α¼1
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Here N indicates the total number of frames and alpha is the index
over each frame of the trajectory. These covariances are then typi-
cally normalized into correlations by dividing by the square root of
the product of Cii and Cjj, so that the diagonals are one; an atom
always fluctuations with itself. In the molecular dynamics literature,
correlation matrices, e.g., Fig. 8, are often referred to as covariance

Fig. 8 Alpha carbon covariances for the same 28-residue zinc finger protein, NEMO, as in Fig. 7, as simulated
on the microsecond timescale
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matrices, where they should properly be referred to as correlation
matrices. The difference between the two is that a covariance matrix
has not been normalized so that the diagonal elements are one,
whereas a correlation matrix is a normalized version of the covari-
ance matrix. Such correlation matrices aka normalized covariance
matrices are useful in extracting the essential degrees of freedom
often hypothesized responsible for the primary function of a system
(62). Additionally, entropy estimates, and subsequently heat capac-
ity, can be derived from the covariance matrix using harmonic
approximations (63, 64). Figure 8 provides an example of correla-
tions for the alpha carbons a small 28-residue zinc finger, NEMO
(60). In this example, there are some unsurprising covariances,
those within the secondary structural elements, the beta structure
(residues 5–12), and the alpha helix (residues 16–24), but also
shows correlated motions between the beta sheet and portions of
the alpha helix, and anti-correlated motions between the beta-sheet
and the loop connecting the helix and the sheet., c.f. Fig. 9 for the
structure of NEMO. Whether these are due to zinc binding is a
subject of further study, but this illustrates that non-trivial covar-
iances can exist in even small proteins, and provides an example of
the sort of information available from correlations plots, even by
just visual inspection.

5 Small Molecule Docking

The analysis tools discussed so far provide information about the
conformations, fluctuations and dynamics of a protein or other
macromolecular system. Clustering and Markov analysis have

Fig. 9 Cartoon drawing of NEMO. Based on the striker 2JVX from the RCSB. The
alpha helix in magenta, the beta sheet in yellow with the zinc in vdW represen-
tation in green. The binding residues of the zinc are in a bonded representation
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particular uses also in syncing with small molecule docking for lead
generations. Protein flexibility is a challenge for molecular docking.
Rather than allow docking software to simulate small conforma-
tional changes, it is often more efficient to use MD software to
assemble an ensemble of structures as initial structures for docking
studies, since simulations of polymer flexing are squarely in the
realm of MD. Once these conformations are selected from an
MD trajectory, each one can be used as a starting structure for
small molecule docking, for which there are multiple efficient soft-
ware packages (65–72).

One such docking software, arguably the most efficient, that is
popular in a wide variety of uses is AutoDock (73, 74). In 2004, an
open source generation of the software was released—AutoDock
Vina (75). Previous generation software focused on analytic
approaches to docking. For example, AutoDock 4.2 calculated
free energies of association for bound conformations using an
empirical force field, Lamarckian Genetic Algorithm (76), and
explicit modeling of side chains in receptors (77). While AutoDock
Vina maintains some of these strategies, the energy function has
been refined using machine learning and the PDBbind database
(78, 79) of known binding affinities. The key advantage of Auto-
Dock Vina is the calculation of both a scoring function and the
gradient thereof. By calculating the gradient, the software knows
which direction the next iteration of the search should move a given
local set of atoms (75, 80–82). As a result, AutoDock Vina is far
faster than previous software packages, while still retaining consid-
erable precision.

In order to use docking software for identify potential lead
candidates for drug discovery, ligand libraries must be used. While
a small ligand library could be hand constructed using common
molecular drawing and export software, a strategy to take advan-
tage of the strength of molecular dynamics and of virtual screening
would be to use a large general screening library of ligands. These
can be obtained from various online chemical databases such as
BindingDB (83), ChEMBL (84), DrugBank (85), PubChem (86),
TCM Database@Taiwan (87), and ZINC (88, 89). This last data-
base, ZINC, is arguably the best for general purpose docking and
was originally developed with drug discovery in mind and has kept
that focus while growing to sample 34,000,000 unique molecules
from 134 commercial and 36 annotated catalogs. The attempt is to
have a library of all commercially available compounds. This focus
on drug discovery manifests itself in two ways. First, ZINC’s struc-
ture files are generally selected for their biological relevance. Sec-
ond, the subsets into which these structures are grouped have been
curated with screening and discovery in mind so that datasets using
standard definitions of “drug-like,” “lead-like,” and “fragment-
like” are readily available for download. They also maintain subsets
of these datasets containing “currently” available compounds;
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usually updated every 6 months or so. Currently available means a
delivery window of 0–10 weeks, with a target price of $100 or less
per sample. Within each of the latter lead-like datasets, there are
also different versions that have had different levels of similarity
analysis performed on them. For example, one could download
currently available lead-like molecules, from a set of 3,687,621
molecules at the time this was written. Or one could download a
subset filtered at the 90 % similarity level—so that any two com-
pounds that are more than 90 % similar are filtered out and only one
selected—which is less than a tenth the size of the whole library;
322,638 molecules.

The ZINC database has other features that make it particularly
useful for drug discovery using virtual screening. For example, to
ensure the quality of structures and groupings, the creators of
ZINC have what they term a “hit picking party” (89) from time
to time, during which they run docking trials on structures in the
ZINC database and compare the output structures to experimental
data. Beyond providing structures for virtual screening, the physical
compounds can be purchased through ZINC. For time-sensitive
studies ZINC is able to sort purchasable compounds by estimated
delivery time. While the physical compounds are sold commercially,
searching for and downloading structure files are free services (89).

If it is not desirable to use a general library for virtual screening,
for example, if there is a lead available and the goal is to refine
or expand outward in the space of molecules, or if particular che-
mistries are desired, then libraries can be constructed combinatori-
ally. That is particular core structures can be defined along with
functional groups to modify those groups, and they can be com-
bined computationally to generate a personalized library. There
are commercial libraries that can be used for this purpose, but
Simlib is a freely available code that can be used to easily generate
libraries (90).

6 Timescale Considerations

It should not be surprising that longer timescale simulations
require more computational resources, and choosing the appropri-
ate timescale to simulate is an important consideration. The deci-
sion is motivated by the resources available and what is of
biophysical interest. Nanosecond timescale simulations are valuable
to elucidate low energy conformations and nearby fluctuations
from that minimum. These simulations can be especially useful
for identifying dynamical motion sufficient to hypothesize
corresponding biological function (59, 91), and afford sufficient
time to observe conformational changes such as motions of a lever
arm, for example. These types of simulations may indeed be suffi-
cient for lead identification (11, 92).
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And yet, many important molecular processes occur at longer
timescales, so if these are of primary interest, either for biological
interest or to obtain rarer conformations for docking, then longer
simulations are required. Larger conformational arrangements may
require longer simulations as slower processes are responsible for
some allosteric regulation or other conformational selection events
(93). Even for small systems, such as a 28 residue zinc-finger motif,
rare events, that are not available in shorter simulations, occur in
the microsecond regime (60). These less-common events may well
have significance for drug discovery, and the fact that they happen
on the order of microseconds means they still happen 100s–1000s
times per millisecond, and they may provide pockets for drug dock-
ing, as suggested by those who argue that allostery is an intrinsic
property of all proteins (9).

7 Recent Applications of Molecular Dynamics and Docking

7.1 Molecular

Dynamics and

Docking: MSH2/6

and Rescinnamine

An example of pharmacological use of virtual screening via docking
to clusters from MD simulations comes from a search for small
molecules that would selectively bind to an apoptosis-inducing
conformation of the MSH2/MSH6 proteins (92). These two pro-
teins form a complex and recognize DNA defects resulting from
improper replication. The proteins then enter either a repair
conformation when the lesions are reparable or a death-signaling
conformation when the lesions are irreparable (94–99). In both
cases, this protein complex senses the defect or damage and recruits
other proteins to either repair the defect or initiate cell death. It is
also likely that there are multiple cell death pathways. The goal of
this example study was to find cytotoxic agents that would bind to
MSH2/MSH6 while the protein is in the death-signaling confor-
mation, thereby triggering apoptosis (91, 99).

The researchers started with an X-ray structure of a complex of
DNA and Escherichia coliMutS—a homolog of MSH—modified to
include the cisplatin adduct cross linking DNA with hydrogens
added via the CHARMM software package and solvated with
TIP3P water using VMD’s “Add Solvation Box” extension. They
performed a 250 ps equilibration and subsequent 10 ns production
run in NAMD with the CHARMM27 force field, having pressure
set to 1.01325 bar and temperature to 300 K. Frames in the final
trajectory were clustered using a 1 Å cutoff radius K-means cluster-
ing. They input the resulting ensemble of conformations into
AutoDock 3 (see (76) for details of this version) for docking trials
with a small library of commercially available compounds. They
then tested the compounds with highest binding affinities for the
E. coli MutS-DNA complex in vitro on MSH2/MSH6 and found
that they could indeed use a selectively binding ligand to select out
the death-signaling conformation of the proteins (92, 100).
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Beyond their specific goal, this work demonstrated the predictive
power of in silico molecular dynamics and virtual screening to select
compounds for in vitro trials. Subsequent work building on this has
focused on using nanoscale simulations to study further aspect of
binding of damaged DNA to the human MSH2/6 (59, 101, 102).

7.2 Docking Without

Molecular Dynamics

Docking trials on their own are powerful predictive tools for drug
discovery. For example, they were used in the development of a
novel phosphatidylinositol-3-kinase (PI3K) inhibitor that specifi-
cally targets prostate cancer (103). PI3K activity is currently under-
stood to inhibit apoptosis of prostate cancer cells and allow them to
continue multiplying even in local environments that would be
unfavorable to healthy cells, specifically areas of low androgen
concentration (104). In order to inhibit PI3K activity and allow
induced apoptotic signaling, the researchers were searching for the
most energetically favorable binding site on PI3K for a quercetin
analog (LY294002). Using AutoDock 3 (76) with a pool of 30,000
initial dockings, the researchers found that the activated prodrug
(L-O-CH2-LY294002) had a high affinity for PI3K’s ATP binding
site, leading them to conclude that the activated prodrug would
indeed inhibit PI3K activity. They then confirmed experimentally
that this compound was successful in inhibition and induced apo-
ptosis in prostate cancer cells. Discovering this drug’s affinity for
PI3K’s ATP binding site through 30,000 in vitro experiments
would have been prohibitively expensive, in terms of both time
and compound synthesis required, but was made tenable with the
aid of in silico trials.

7.3 Sequence

Similarity Motivates

Drug Discovery with

MD: Tamiflu and

Relenza

A study of multiple drugs and their related proteins via MD simu-
lation have proven useful in understanding how drug binding
mechanisms work (29), and has implications for new drug discov-
ery, as well as understanding mechanisms of drug resistance (105).
In the Le study, the pathogenic avian H5N1 type-I neuraminidase,
which is the target for drugs such as Tamiflu and Relenza, is
compared to other sequence-similar proteins. These all-atom simu-
lations investigated drug–protein interactions, including both con-
served and unique interactions, with particular emphasis on
hydrogen bonding and electrostatics. Their findings suggest how
conserved networks of hydrogen bonds across the three structural
variations elucidate a possible mechanism for how certain muta-
tions might lead to drug resistance.

Such investigations on howmutations affect drug resistances or
create genetic diseases are increasingly common, as conformational
and dynamical changes comparing similar structures or systems
highlight the specific mechanisms likely responsible for proper, or
improper, function. This form of mechanism hypothesis is just one
of the many ways MD simulations help to push the ability to
generate effective drugs, namely, ones that are less susceptible to
mutation based resistance.
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8 Areas in Which Molecular Dynamics Shows Promise to Impact Drug Discovery

In addition to explicitly providing conformations, especially rarer
conformations for ligand screening, there are multiple areas in
which molecular dynamics appears poised to make an impact;
these areas include protein–protein interfaces, an elusive, yet poten-
tially profitable arenas for drug discovery, and in understanding
more complex, longer-range allosteric interactions.

8.1 Protein–Protein

Interfaces and

Interactions via

Molecular Dynamics:

Peroxiredoxins

Another study involving molecular dynamics, enhanced by addi-
tional calculations, in this case electrostatic-based pKa calculations,
have been ones on the peroxiredoxins (Prxs) shows how detailed
pKa values, combined with MD simulation, can be combined to
gain additional insight into the modeling chemical contributions to
the oligomerization (106, 107). This family of proteins is responsi-
ble for catalyzing the reduction of hydrogen peroxide, alkyl hydro-
peroxides and peroxynitrite. They control levels of cytokine-
induced peroxide and act as a regulator of signal transduction in
mammals (108–110).

These interactions have proven elusive in the drug discovery
process because of the complexity in finding information about
specific sites for ligand binding (111), although progress is being
made (56, 112). The transient nature of the PPI makes identifica-
tion of regions for small molecule binding difficult to find, and
understanding dynamics will be critical for effective predictions.
Recent efforts combining NMR with MD have proven useful in
this regard (112).

8.2 Molecular

Dynamics and Long-

Range Allostery:

MetRS/tRNA

Complexes

In a different research study, the authors used MD to probe action
at a distance allostery involved in enzymatic reactions (113). They
simulated E. coli methionyl-tRNA synthase (MetRS) with 9 ns long
trajectories, using the CHARMM27 force field and a TIP3P
explicit water model. Using RMSFs, they compared simulation
results directly against experimental values from X-ray crystallogra-
phy and compared global mobility for the different mutations.
Additionally, covariance analysis helped reveal how certain amino
acid substitutions alter the conformations and dynamics. Through
this careful analysis of the results, the authors showed that sub-
stitution of a certain tryptophan residue (trp-461) results in
specific changes in protein correlation and dynamics. Effects of
this substitution to the local region are not surprising, but there
is clear evidence that the mobility-correlated motions of a region
40–50 Å away are reduced in the absence of the conserving trypto-
phan. It appears that the conserved residue has function in addition
to codon recognition that is mediating the conformational
structures available to the protein. These simulations along with
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previous ones discussed (59, 91, 101, 102) show the utility of
nanosecond scale simulations to study protein dynamics around
the ground state of the folded structure.

Here we see another example of how MD is used to inform the
drug discovery process. While this particular system might not have
direct application for drug discovery, it is useful in showing how
MD can help us realize the mechanism of action in these extremely
complex, highly dimensional systems. It is difficult to conceive a
better method of understanding elusive biomolecular processes,
such as this type of hidden allostery, than MD simulations.

9 Further Reading

Although we have surveyed the basics of molecular dynamics as it
pertains to drug discovery and discussed several illustrative studies,
there are other articles which review different aspects of molecular
dynamics simulations and their use in understanding drug–protein
interactions, binding mechanisms, and protein–protein interac-
tions. Additional case studies can be found in (12), and a discussion
of homology modeling and a possible method for accelerating
molecular dynamics can be found in (114).

The use of homology modeling in molecular simulation and
drug discovery is somewhat controversial. However, homology has
gained traction in recent years, as a means to alleviate the time
consuming and expensive tasks of X-ray crystallography and
NMR, especially in protein families for which there are many struc-
tures available (114). In addition becoming the basis for iterative
processes for model refinement as more information becomes avail-
able, homology is commonly used for comparison of families of
proteins for bioinformatics. As discussed in (114) homology has
been used to help fill the gap between sequence and structure, for
G-protein coupled receptors (GCPRs). They are among the most
prominent targets for small molecule drugs, and, due to this abun-
dance, they are a prime target for homology modeling as a means to
structure based drug design. While there are roughly 100 GPCR
structures in the PDB there are still many more in the family, and
due to their popularity as a drug target for a variety of disease, this
problem is particularly well suited to homology modeling, despite
the difficulties (115, 116). There is even some evidence that
homology modeling is more successful with GPCRs than de novo
techniques (117). The success of homology modeling provides
hope that computationally techniques will be able to draw upon
the increasing number of experimental structures available to apply
molecular dynamics and virtual screening techniques to the even
larger protein universe, which is increasing even faster.

Additionally, Kalyaanamoorthy discusses implementations of
enhanced sampling techniques to access longer timescales.
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One such technique is promising, namely, that of random
acceleration molecular dynamics (RAMD). Used for investigating
ligand dissociation, RAMD applies a small, additional random force
to the center of mass of the ligand allowing it to search the protein
for potential egresses. This technique is appealing because it can
provide ligand dissociation information on nanosecond timescales,
it unbiasedly searches possible molecular channels, due to the sto-
chastic nature of the extra force, and may be able to help identify
key amino-acid residues in the ligand (un)binding process.
Although a disadvantage of course is that this requires a structure
with a ligand, but could be used, for example, to study conforma-
tional changes that occur due to ligand escape which could then be
used to inform, or even to provide structures, for virtual screening.
A complementary technique is steered MD (SMD) and it is analo-
gous to an atomic force microscopy or optical tweezers, in silico.
Much like RAMD, it could be used to look at small molecule
dissociation. Both of these techniques show promise in further
enabling drug discovery by using experimental structures with
ligands, and providing information about the binding process.

One of the remaining challenges for the field is the perception
of the scientific community. It seems that confidence in MD simu-
lations has not gained the traction that it has in other scientific
disciplines such as meteorology, fluid dynamics and astrophysics
(118). Despite the success in other disciplines, MD simulations
are often disregarded as insufficient, even though there is a wealth
of data showing consistent results between simulation and experi-
ment including many of the examples reviewed herein.
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Abstract

The ubiquitous presence of proteins in chemical pathways in the cell and their key role in many human
disorders motivates a growing body of protein modeling studies to unravel the relationship between protein
structure and function. The foundation of such studies is the realization that knowledge of the structures a
protein accesses under physiological conditions is key to a detailed understanding of its biological function
and the design of therapeutic compounds for the purpose of altering misfunction in aberrant variants of a
protein.
Dry laboratory investigations promise a holistic treatment of the relationship between protein sequence,

structure, and function. Significant efforts are made in the dry laboratory to map protein conformation
spaces and underlying energy landscapes of proteins. The majority of such efforts employ well-studied
computational templates, such as Molecular Dynamics and Monte Carlo. The focus of this review is on a
third emerging template, stochastic optimization under the umbrella of evolutionary computation. Algo-
rithms based on such a template, also known as evolutionary algorithms, are showing promise in addressing
fundamental computational challenges in protein structure modeling and are opening up new avenues in
protein modeling research. This review summarizes evolutionary algorithms for novice readers, while
highlighting recent developments that showcase current, state-of-the-art capabilities for experts.

Keywords: Protein structure modeling, Conformation space, Energy landscape, Conformational
search, Stochastic optimization, Evolutionary computation, Evolutionary algorithms

1 Introduction

Proteins are ubiquitous macromolecules in the cell as central
components of cellular organization and function. Many diseases
are due to misbehaving proteins, including critical human dis-
eases, such as cancer, amyotrophic lateral sclerosis, Alzheimer’s,
and other neurodegenerative disorders. The list of known gene
mutations resulting in aberrant proteins misfunctioning in the cell
is now growing [1, 2]. An important class of human diseases is due
to proteins failing to adopt their native, biologically active, three-
dimensional (3D) structures with which they bind to small mole-
cules or dock other macromolecules, giving rise to molecular
interactions that make up all chemical reactions in the cell.
While many such failures are deleterious, others lead to protein
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misfunction [3–9]. Elucidating the long-lived structure or set of
structures that an aberrant protein assumes and employs to inter-
act with other molecules in the cell is key not only to a detailed
understanding of how mutations impact function but also to
pharmaceutical efforts to design effective compounds for block-
ing interactions of aberrant structures.

Investigations in the wet laboratory have elucidated by now
over a hundred thousand active or functional structures of diverse
proteins. As of May 2015, there are 108,957 protein structures in
the Protein Data Bank (PDB) [10]. Increasingly, the focus is on
rapidly resolving functional structures of possible protein con-
structs of decoded genomes and structures of misbehaving proteins
due to sequence mutations. Investigations in the dry laboratory are
demonstrating their capability to complement wet-laboratory
research and greatly enhance our understanding of the relationship
between protein sequence, structure, and function. The role of dry-
laboratory investigations is also expected to increase with the
recently discontinued Protein Structure Initiative [11].

The foundation of dry-laboratory investigations is on the early
experiments by Anfinsen, who demonstrated that a denatured
protein spontaneously self-assembles into its native structure [12].
The mechanistic treatment, which advocates that the native 3D
structure of a protein determines its function, and that in turn the
amino-acid sequence determines to a great extent the native 3D
structure, is by now the basis of a growing body of protein research
aiming to model structures and structural deformations relevant for
biological function [13–15].

The most publicized work in protein modeling research is that
on the protein structure prediction (PSP) problem, where the goal
is to predict a structural representative of the active, functional state
of a protein. The more challenging version of this problem, is
known as de novo PSP (also referred to as ab initio PSP or tem-
plate-freemodeling, where de novo or free indicates the absence of a
known structural template after which to model the unknown
structure of the target protein sequence). While early investigations
in silico pursued protein structure modeling with classic templates,
such as Molecular Dynamics (MD), by now the most successful
methods for de novo PSP build on the Metropolis Monte Carlo
(MC) template [16]. These methods aim to reveal the breadth of
long-lived (and possibly functional) structures of a given protein
sequence, as doing so constitutes a holistic treatment of the
relationship between protein sequence, structure, and function.
The holistic treatment also promises a detailed and comprehensive
view of all possible long-lived structures a mutated protein
sequence may assume to misbehave in the cell. However, at present,
the computational demands of a holistic treatment are impractical
for most existing methods due to the high-dimensionality of the
protein conformation space [17].
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The focus of this review is on an emerging group of methods
known as evolutionary algorithms (EAs). EAs approach the prob-
lem of protein structure modeling under the umbrella of stochastic
optimization and employ techniques from Evolutionary Computa-
tion (EC) to effectively find solutions of variable spaces with
numerous and possibly interdependent variables. Though adapta-
tions of EAs for the de novo PSP problem have been regularly
pursued for decades, recent developments in computational struc-
tural biology regarding protein geometry and energetics have led to
novel EAs with increased performance not only in terms of compu-
tational time but also in prediction quality. EAs are also gaining
ground as effective tools to circumvent outstanding challenges in
protein structure modeling and advance our ability to reveal
detailed structure spaces of the healthy versions, wild-type
sequences of a protein, and the unhealthy, aberrant variants.

This review appeals to both experts and novices. A short prime
is provided first on protein geometry and energetics. Connections
are then made between protein structure modeling and stochastic
optimization. A summary of EAs for de novo PSP is provided next,
highlighting recent developments for experts. A growing group of
EAs is also presented to showcase their ability to map structure
spaces of the healthy and aberrant versions of a protein. The review
concludes with a summary of outstanding challenges and opportu-
nities for the EC community in protein structure modeling.

2 Protein Geometry and Energetics

2.1 Protein Geometry A protein molecule consists of one or more polypeptide chains. A
polypeptide chain is comprised of many peptides, or reduced amino
acids, bound in a serial fashion through covalent bonds. Many
polypeptide chains can be held together through non-covalent
interactions in quaternary structures of protein assemblies or com-
plexes. In this review, we focus on protein molecules comprised of
only one chain. Single-chain proteins are predominantly the subject
of PSP and structure modeling in general (structure modeling of
protein complexes is known as protein–protein docking and is
beyond the subject of this review).

Amino acids are the fundamental building blocks of proteins
and come in 20 different naturally occurring types. They are
assigned 20 different names, which have abbreviated three-letter
and one-letter codes. An amino acid consists of a central group of
heavy atoms that is shared among all amino acids, a sidechain group
of atoms that gives an amino acid its unique chemical properties
(and its type), and hydrogens. The commonly shared group of
atoms consists of N, CA, C, and O. These are known as the
backbone atoms. If one follows the thread of these atoms through
the peptide bonds that links the terminal backbone C of one amino
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acid to the terminal backbone N atom of another, a skeleton or
backbone can be traced that gives a protein chain its connectivity.
The side chains dangle off the backbone and both guide and
constrain its motions. Figure 1a draws the native structure of a
protein in 3D, highlighting the backbone. A short fragment of a
few amino acids is drawn in greater detail in Fig. 1b.

2.1.1 Representation

of a Protein Chain:

Conformation Space

While the covalent bonds provide local rigidity, the protein chain
(both backbone and side chains) is highly flexible. This intrinsic
flexibility necessitates introducing the concept of a conformation,
which refers to the spatial arrangement of the atoms in a protein
chain. An all-atom conformation refers to the fact that detailed
information is available at all times regarding all atoms. Not all
atoms need to be explicitly modeled. Many algorithms for PSP
primarily model the backbone, and once a set of (functional) con-
formations likely to comprise the native state of a protein are
available, sidechain atoms are packed in optimal configurations
with sidechain packing techniques. When not all the atoms of an
amino acid are modeled explicitly by neglecting some atoms or
grouping atoms together in pseudo-atoms, the conformation is
said to employ a reduced, or coarse-grained representation of a
protein chain. Research into effective reduced representations for
protein conformations is active [18].

A conformation does not need to be represented internally in a
computer code as a list of atomic coordinates. Generally, a confor-
mation is a list of instantiated variables or parameters. These vari-
ables can be discrete, such as positions on a lattice or bits encoding
positions or angles, or continuous, such as Cartesian coordinates or
angles. The former are known as discrete representations, and the
latter as continuous representations. There are advantages and dis-
advantages with either, as summarized briefly below.

Discrete Representations:

Atoms on a Lattice

The earliest representations of protein chains were on a 2D or 3D
lattice. Typically, only the CA atom of each amino acid is explicitly
modeled and restricted to lie on the lattice [19]. The lattice
restricts bonded atoms to neighboring cells and allows both fast
integer-math evaluations of conformational energies, as well as
enumeration of all self-avoiding walks on the lattice [20–22]. On-
lattice deterministic search algorithms were useful to elucidate
various organizing principles of amino acids during folding; the
number of amino acid types was often restricted to 2, hydrophobic
(H) vs. hydrophilic/polar (P), resulting in the popular HP model,
to allow calculations on chains of more than a dozen amino acids.
On-lattice representations allowed also obtaining a theoretical
understanding of the PSP problem and facilitated various com-
plexity results [23–25]. While the majority of conformation sam-
pling algorithms nowadays has moved away from on-lattice
models, significant research on EAs for PSP still employs them.
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Fig. 1 Illustration of protein geometry and energetics. Top panel: The 3D structure shown on the left (a) is a
wet-laboratory snapshot of the biologically active state of the ubiquitin protein. The Visual Molecular Dynamics
(VMD) [136] is used for rendering. The backbone is drawn in opaque, with the local secondary structures
drawn in different colors and side chains in transparent to easily visualize the backbone. A small fragment
from amino acid at position 47 to position 52 in the 76aa chain of ubiquitin is highlighted in greater detail on
the right (b). The chain is drawn in the ball-stick representation with VMD. Backbone atoms in each amino acid
are annotated. The side chain atoms are drawn in silver. The φ, ψ dihedral angles are shown, as well. Bottom
panel (c): A model energy surface with a single deepest basin is illustrated here, adapted from ref.[34]. The
surface is nonlinear and multimodal. The deepest basin is populated by conformations of the biologically
active state, illustrated here by superimposing over one another conformations of the ubiquitin NMR ensemble
deposited in the PDB under ID 1d3z



Several types of lattice models are pushed forward in the EC
community, such as triangular, cubic, and face-centered-cubic.
In general, the top-performing algorithms for PSP employ off-
lattice representations. The reason is that on-lattice representa-
tions sacrifice a lot of structural detail and have been shown to
reproduce the backbone of a known native structure with accuracy
no greater than half the lattice spacing [26]; some lattice repre-
sentations have also been shown to bias towards specific secondary
structures [27]. It is worth noting that on-lattice representations
are nowadays the only computationally reasonable representations
for very large proteins of hundreds of amino acids [28].

Continuous, Off-Lattice

Representations

The majority of MC-based conformation sampling algorithms for
PSP employ continuous representations, where atoms are not
forced to occupy a limited number of positions on a 2D or 3D
lattice. Two popular representations are the Cartesian-based and
the angular-based ones. There are advantages and disadvantages
with either.

Cartesian-Based

Representations

Cartesian-based representations are straightforward for conducting
energetic calculations, as summarized below, because most protein
energy functions contain terms that are distance-based. Cartesian-
based representations are also typically computationally demanding.
In naive cartesian-based representations, the number of variables
(Cartesian coordinates) for a protein chain ofN atoms is 3N. A small
protein chain contains hundreds of atoms. Cartesian-based repre-
sentations do not allow trivial satisfying explicit constraints on loca-
tions of atoms, such as those imposed by covalent bonds. While
covalently bound atoms do oscillate, large oscillations carry heavy
energetic penalties. So, it is often computationally desirable to
preserve the lengths of covalent bonds in computed conformations.
However, a computer algorithm that modifies cartesian-based
variables to compute new conformations will move atoms indepen-
dently of one another and break bonds. Less naive cartesian-based
representations that preserve local constraints exist, and they often
build on statistical analysis techniques to define variables that
encode collective motions of atoms.

Angular-Based

Representations

In addition to covalent bonds, there are other local constraints in
native protein structures whose violation results in high energetic
penalties. Optimal valence angles (between two consecutive cova-
lent bonds) observed to remain constant and depend only on the
types of atoms involved in protein functional conformations would
also be changed if one were to employ Cartesian-based representa-
tions. Instead, angular-based representations that model only
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dihedral angles (see Fig. 1b for an illustration of such angles) save on
both the number of variables (on average, there are 3N/7 dihedral
angles in a protein chain of N atoms [29]) and the number of
constraints that are violated. The only constraints that angular-
based representations cannot readily satisfy are long-range ones
resulting from energetically constrained motions of non-bonded
atoms. Typically, the violation of such constraints is evaluated
through energy functions. Increasingly, while Cartesian-based
representations are employed byMD-based methods for simulating
the dynamics of a protein molecule, angular-based representations
are the preferred ones in MC-based methods and those particularly
designed for de novo PSP. Angular-based representations necessi-
tate that a transformation occur from angles to cartesian coordi-
nates [30] in order to evaluate a computed conformation with
specified energy function.

Distance Functions for

Conformations

Measuring the distance between two conformations is key to the
ability to report the performance of a PSP algorithm to reproduce a
known native structure. Depending on the representation
employed, several distance functions can be useful. For instance,
Hamming and Manhattan distance can be useful for discrete repre-
sentations, such as on-lattice ones. Continuous representations
allow the employment of Euclidean-based distance functions. The
majority of PSP algorithms that employ off-lattice representations
make use of the popular RMSD function to measure the distance
between two conformations.

Root-Mean-Squared-

Deviation (RMSD)

RMSD is a Euclidean-based dissimilarity metric to measure the
distance between two conformations. Given two conformations C
and C* of N atoms, where pi(C) indicates the position of atom i in

conformationC, RMSD C ,C*ð Þ ¼ 1=N
XN

i¼1
pi Cð Þ � pi C*

� ��� ��2.
Prior to measuring the RMSD between a computed conformation
and the native structure, an algebraic procedure is carried out that
determines the optimal superimposition removing differences due
to rigid-body motions in 3D (translations and rotations of the
whole conformation) [31]. The term “least” is sometimes explicitly
added, as in least RMSD (lRMSD), to indicate that the conforma-
tions have undergone rigid-body motions so as to report their
lowest RMSD from the known native structure. It is generally
understood that even when RMSD is reported, it is lRMSD. It is
also worth noting that even conformation sampling algorithms that
use continuous, angular-based representations make use of RMSD
to report results. The homogeneous transformations encoded by
the angles in a conformation represented as a list of angles can be
accumulated to obtain the Cartesian coordinates of the atoms over
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which angles are defined. While angular-based distance functions
are available, they are not widely adopted in structure modeling
literature.

2.2 Protein

Energetics

Current protein energy functions are based on molecular mechan-
ics, summing over favorable and unfavorable atomic interactions
(and possibly with surrounding solvent) to associate a potential
energy value with a conformation. Interactions between atoms are
classified as bound (local, due to covalent bonds) or non-bound
(nonlocal due to non-covalent interactions). Local interactions
concern bonds, bond angles, and the periodicity of dihedral angles.
Nonlocal interactions are divided based on their physical nature,
electrostatic (measured through the Coulomb) or van der Waals
(measured through the Lennard–Jones—LJ function). The latter
interactions are estimated via distance-based power terms responsi-
ble for the computational cost and nonlinearity of protein energy
functions. Equation 1 shows the functional form of the CHARMM
potential energy function [32].

ECHARMM ¼
X
bonds

kb b � b0ð Þ2 þ
X
UB

kUB S � S0ð Þ2 þ
X
angles

kθ θ � θ0ð Þ2

þ
X

dihedrals

kχ
�
1þ cos nχ � δð Þ þ

X
impropers

kimp φ� φ0ð Þ2

þ
X

impropers

kimp φ� φ0ð Þ2 þ
X

non‐bond

εij
Rmin

r

� �12 � Rmin

r

� �6h i

þ
X

non‐bond

qiq j

εr

ð1Þ
In Eq. 1, the k* terms are constants, and the *0 terms are ideal
values of variables. The Urey Bradley (UB) term is calculated over
pairs of atoms separated by two covalent bonds (known as the 1,3
interaction), and S is the distance between the atoms. The n and δ
variables in the fourth term are the multiplicity and the phase
angle, respectively. In CHARMM, improper dihedral angles
are penalized according to the formula shown in the fifth term.
The sixth term measures the LJ interactions: rij measures the
Euclidean distance between two non-bonded atoms (that are
not covered by the UB term), εij is the LJ well depth, and Rminij

¼ (Rmini + Rminj)/2 is the minimum interaction radius between
the atoms, measured as half the sum of the known van der Waals
radii. The LJ term in CHARMM has a 12–6 functional form,
whereas other physics-based functions may have a 12–10 func-
tional form. The final term measures electrostatic interactions via
the Coulomb functional form: qi measures the known partial
charge of atom i, and ε is the dielectric constant encoding the
type of environment (vacuum, solvent).
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Different energy functions may have different functional forms
and even employ a different list of terms; for instance, some treat
hydrogen interactions differently. This is particularly the case for
knowledge-based functions, which may also contain additional
terms based on statistically observed interactions calculated over
databases of protein structures. Whether physics-based,
knowledge-based, or hybrid functions that combine both physics-
based and knowledge-based terms, current protein energy func-
tions are semiempirical. In addition to decisions on how many
terms and what the terms should capture, important decisions are
made to weight the contribution of each term so as to reproduce
experimental measurements on specific subsets of protein struc-
tures. Moreover, most energy functions limit interactions to pair-
wise ones. Energy functions that calculate multibody interactions
often outperform pairwise-based functions in reproducing experi-
mental kinetic data, but their computational cost remains high to
be practical for most protein structure modeling algorithms [18].

2.2.1 Protein Energy

Surfaces

If one were to organize all conformations of a protein chain on
horizontal axes and the potential energy corresponding to each
conformation in a vertical axis, the view that would emerge would
be a funnel-like (multidimensional) energy surface [33, 34]. If one
were to find few collective (also referred to as reaction) coordinates
that discriminate among the important structural states, projecting
the surface onto these coordinates would give rise to the energy
landscape, where thermodynamically available states would be eas-
ily discerned as basins [35]. A classic landscape is shown in Fig. 1c.

Horizontal cuts would reveal energetic states (and thus
conformations of comparable potential energies). The width of
these cuts goes down as energy decreases in a true protein energy
surface. This width is captured in the concept of entropy, which
measures the degree to which a protein chain can assume different
conformations while maintaining the same potential energy (within
a dE). An entropy value can be associated with each energetic state;
thermodynamically stable states are those with low free energy F,
measured as F ¼ <E> � TS, where <E> is the average potential
energy over the conformational ensemble corresponding to the
state, T is temperature, and S is entropy. Evolutionary bias has
been found to be the reason for why the native state in naturally
occurring proteins has lowest free energy [12].

Long-lived states in proteins correspond to deep and wide
basins. The exact details of the contribution of potential energy
versus entropy are what determine whether a basin corresponds to
the most thermodynamically stable (longest-lived) and thus the
native state of a protein or a semi-stable state. In many proteins,
complex energy surfaces are emerging, where more than one struc-
tural state is employed in conformational switch mechanisms that
modulate function and gives rise to rich functionality. In many
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aberrant versions of a protein, energy barriers between stable and
semi-stable states drastically change and modify the underlying
detailed structural mechanism regulating function, resulting in
misfunction.

In view of complex protein energy surfaces, conformational
search algorithms need to elucidate not just one putative global
minimum but map the breadth of low-energy conformations
corresponding to local minima in the underlying energy surface.
Visualization of this surface via a low-dimensional energy landscape
may reveal a multitude of basins that are worth considering,
whether the goal is to select from them the one corresponding to
the predicted native state or understand the mechanisms through
which a protein and its aberrant versions may make use of more
than one basin for function modulation and misfunction.

3 PSP as an Optimization Problem

Whether cartesian-based or angular-based representations are
employed, it is generally expected that the representation of a
protein chain of hundreds of amino acids will result in hundreds
of variables. Thus, the conformation space is expected to be high-
dimensional. The space can be discretized, but the number of
variables makes enumeration impractical as a way of computing
conformations of a protein chain. It is worth noting that in the
early days, when short polypeptide chains were being investigated
to extract physical principles of protein folding, bonded atoms were
forced to occupy neighboring cells in a 2D or 3D lattice [19].
Combinatorial techniques could be employed to enumerate con-
formations of short protein chains [20–22], but finding the lowest-
energy conformation on a lattice has been proved to be NP-hard
[23–25]. While lattice representations allow tackling very large
proteins of several hundred amino acids, PSP methods designed
for small-to-medium size proteins not exceeding 200 amino acids
can afford to produce higher-quality conformations with more
accurate backbones by employing off-lattice representations.

When off-lattice representations are considered, the conforma-
tion space is expected to be vast, high-dimensional, and continuous.
As described later, discretization can still be employed (as in the
popular molecular fragment replacement technique), but the expo-
nential explosion in the number of resulting conformations makes
enumeration impractical. As a result, only stochastic or probabilistic
algorithms can be employed to essentially sample the conformation
space one conformation at a time. Such algorithms essentially build
sample-based representations of conformation spaces. Since the
goal is to map low-energy regions of the underlying energy surface
where deep and wide basins may be found that correspond to the
native, longest-lived structural state, such algorithms implement
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stochastic optimization of complex, nonlinear, and multimodal
energy functions.

Stochastic optimization algorithms forsake completeness, as no
guarantees can be made even on their ability to find, for instance,
the global minimum energy conformation or GMEC (a term
coined by Scheraga and colleagues [36]). It is worth noting that
the GMEC may not correspond to the native structure, after all.
One reason is due to inaccuracies in energy functions. The global
minimum of even state-of-the-art all-atom energy functions can be
more than 4 Å off the true native structure [37]. Another reason is
due to the thermodynamic argument that the native state is not
necessarily the one with the lowest energy but the one that com-
promises between potential energy and entropy. A deep but narrow
basin may not only be an artifact in an energy function but also
possibly a kinetic trap. The native basin may be deep enough and
wide enough to prevent fast escapes and allow structural flexibility
at equilibrium.

There are currently three groups of stochastic optimization
methods. The first group builds on theMD template and essentially
follows the negative gradient of a given energy function to find local
minima. The second group builds on the MC template and makes
use of repeated moves or perturbations to hop between conforma-
tions while generally lowering potential energy. The third group of
methods and the subject of this review, EAs, builds on the EC
template and shares many characteristics in its core functional
units with MC-based methods. Indeed, MC-based methods can
be classified as special EAs. We summarize the popular MD andMC
templates before proceeding with EAs in the next section in order
to better appreciate the algorithmic differences among these three
groups of methods.

MD-based methods simulate the dynamics of a physics-based
system. An MD trajectory is initiated from a protein conformation
and systematically searches the conformation space one conforma-
tion at a time by numerically solving Newton’s equations of
motion. These are integrated to obtain a conformation Ct+δt at
time t + δt from a current conformation Ct at time t in the trajec-
tory. All atoms in Ct are modified in the direction of the calculated
forces, allowing the MD trajectory to essentially follow the slope of
the potential energy function. Newton’s equations of motions are
used to update the position and velocity of each atom in time.
While velocity is initialized at some random value, accelerations
are computed from the (negative) gradient of the potential energy
function. Repeated application of the equations of motions dictates
that a small timestep δt in the order of 12 fs be used so that the
calculated gradient at each conformation in the trajectory closely
follow the curvature of the potential energy function. The small
timestep limits the breadth of conformation space that an MD
trajectory can explore. Significant advances in dedicated,
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specialized hardware for MD simulations, parallelizations, and
other enhanced sampling techniques have pushed the capability of
MDs and their ability to capture molecular processes in the order of
micro-to-milliseconds [38–40].

It remains hard for MD trajectories to reach the length and
time scales needed to follow transitions between unfolded
and folded states, or vice versa, or between other stable states.
Moreover, gradient calculations are more easily conducted in
cartesian space, which results in a vast search space. Modifications
to conduct MD search over the space of dihedral angles have been
proposed [41–43]. In essence, an MD trajectory realizes local
search, and it is bound to converge to a local minimum in the
energy surface. For these reasons, most methods with high sam-
pling capability employ a thermodynamic rather than a kinetic
treatment in the interest of computational efficiency. MC-based
methods fall in this category.

In contrast to MD, conformations in an MC trajectory are not
obtained by following the slope of the energy function but are the
direct result of designed moves. The moves change values of the
underlying variables and do not have to be physically realistic as
long as they are coupled with the Metropolis criterion e�dE/T; dE is
difference in energy between the conformation resulting from the
move, and T (effective temperature) is a scaling parameter that
determines whether an energetic increase can be accepted or not.
The result is a series of conformations that still converges to a local
minimum but has the ability to cross over energetic barriers by
controlling T. The MC template has higher sampling capability
than the MD one, as moves can be designed to allow larger jumps
in conformation space. However, because designed moves do not
have to encode realistic (physics-based) motions, any information
on whether and when the protein chain can diffuse from a com-
puted conformation to another (thus, actual timescale information)
is lost.

4 EAs for PSP and Mapping Energy Landscapes

We first summarize the unifying template of EAs and show how
MC can be regarded as a specialized EA. We then provide a sum-
mary of EAs for PSP, organizing it around principal algorithmic
components. Recent EAs with high performance on PSP are high-
lighted in greater detail. The section concludes with an exposition
of a recent group of EAs that go beyond the narrow focus of single-
structure prediction in PSP and instead mapping the breadth of
functionally relevant structures and corresponding basins in the
energy landscape.
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4.1 Unifying

Template of EAs

for PSP

The realization that protein energy functions are nonlinear and
multimodal, and that PSP can be cast as a global optimization
problem has motivated many researchers in the EC community to
approach PSP with specialized EAs. One of the first works demon-
strating the promise of EAs for PSP proposes a genetic algorithm
(GA) [44]. Several lattice-based and off-lattice EAs have been
proposed since then. Before summarizing the developments in a
little over a decade, the unifying template that EAs follow is sum-
marized first.

The basic EA template mimics the process of evolution and
natural selection to find local minima of a complex objective/fitness
function. The template evolves a population of conformations
(generally referred to as individuals) over a number of generations.
A mechanism needs to be specified to generate the initial popula-
tion, which can consist of conformations sampled at random over
the employed variables (especially in the context of PSP, where only
the amino-acid sequence is provided) or conformations provided
by domain experts, such as wet-laboratory investigators,
corresponding to known structures (in other applications that go
beyond PSP and aim to map energy landscapes).

The population is allowed to evolve over generations such that
individual (conformations in EAs for protein structure modeling)
with low potential energy values (high fitness) are repeatedly
selected and improved upon. In each generation, a selection mech-
anism is specified to select parent conformations for producing new
conformations (offspring). The mechanism can be based on ener-
gies or other measures, incorporating various heuristics on what
is more likely to lead to low-energy (high fitness) and possibly
(structurally) diverse offspring. Popular selection mechanisms are
truncation-based, fitness-proportional, tournament-based, and
others [45]. The injection of structural diversity in the selection
mechanism is particularly important to diversify a population
and often credited with avoiding premature convergence to select
local minima.

Once parents are selected, asexual perturbation or reproductive
operators that modify/mutate one parent at a time or sexual opera-
tors that combine parents through crossover are invoked to com-
pute new individuals, offspring. A survival mechanism determines
which individuals survive to the next generation. In nonoverlap-
ping or generational survival mechanisms, the offspring replace
the parents. In overlapping ones, a subset of individuals from the
combined parent and offspring pool are selected. Survival mechan-
isms may be based on fitness or consider other criteria (such as
structural similarity of conformations) in order to steer the algo-
rithm over the generations to optima of the fitness landscape.

EAs that employ crossover in addition to the mutation operator
are often referred to as genetic algorithms, or GAs. EAs that addi-
tionally incorporate a meme, which is a local search/improvement
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operator to optimize a child and effectively map it to a nearby local
minimum, are referred to as hybrid or memetic EAs (MAs).
The employment of multiple objective functions as opposed to a
single fitness function results in multi-objective EAs (MOMAs).
Specific variants that build over GA are respectively referred to as
MGAs and MOGAs.

Customized EAs for PSP contain many other evolutionary
strategies and metaheuristics, such as the employment of a hall of
fame to preserve “good” solutions, tabu search to improve the
performance of a meme, coevolving memes, niching, crowding,
twin removal for population diversification, structuring of the solu-
tion space to facilitate distributed implementations capable of
exploiting parallel computing architectures, and more. The combi-
nation of all these strategies and more (Ref. [45] provides a com-
prehensive review on EAs for stochastic optimization) give rise to
different, powerful EAs.

EAs have been demonstrated effective for sampling low-energy
protein conformations. Though MC-based methods for PSP are
generally more accepted and popular in computational structural
biology, EAs have less of a chance of getting stuck at local minima
compared to MC search [44]. Recent adaptations of EAs that
employ state-of-the-art domain-specific knowledge on proteins,
such as off-lattice, coarse-grained, angular representations of pro-
tein chains, state-of-the-art protein energy functions, and the pop-
ular molecular fragment replacement technique in perturbation
and improvement operators, have been demonstrated to be com-
petitive with state-of-the-art MC-based methods [37, 46–49].

4.2 Performance

Measurements of EAs

for PSP

There are typically two measurements used to assess the perfor-
mance of an EA. When the goal is to compare the addition of
novel algorithmic components and heuristics in a customized EA
for PSP against a baseline EA, performance is assessed based on
the lowest energy reached by each algorithm over the course of
the execution. The termination criterion is set in terms of number
of generations or total energy evaluations allowed. The latter
allows for fair comparison of EAs with MAs. The second perfor-
mance metric assesses the ability of the algorithm to compute the
known global optimum, that is, the known native structure of a
protein. The metric of choice is the least RMSD metric summar-
ized in Section 2. The lowest RMSD from the native structure
over conformations obtained by a conformation sampling algo-
rithm is recorded and reported as the closest that the algorithm
comes to the known native structure. In EAs, this calculation is
often carried out over all conformations ever computed (over all
generations) as opposed to only those in the final population or
those in the hall of fame (if a hall of fame is employed). The reason
for doing so is that it is not uncommon for a good solution to be
lost in later generations.
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4.3 MC as 1 + 1 EA:

Basin Hopping as a

Specialized MA

We now provide further understanding on why EAs are promising
avenues to approach PSP by first demonstrating that they encapsu-
late MC-based methods.

MC can be cast as a 1 + 1 EA. Since an MC trajectory is a series
of conformations, where Ci+1 is the result of applying a move on Ci

in the trajectory, an MC trajectory of n conformations can be
viewed as an EA of n generations. In each generation i, the only
individualsCi is subjected to a perturbation operator that employs a
designed move, and the result of that operator is conformation
Ci + 1. A nonoverlapping, generational model replaces Ci with
Ci+1; that is, Ci+1 is the only conformation retained in the popula-
tion of the next generation. This is a standard MC algorithm. In a
specialized version, known as the Metropolis MC, a probabilistic
criterion is employed to determine whether Ci+1 is retained in
the trajectory or another attempt/move needs to be made on Ci.
Even Metropolis MC can be viewed as a 1 + 1 EA. Instead of the
generational model, the parent and offspring are combined, and a
probabilistic criterion is employed to determine which one survives
in the next generation.

An interesting adaptation ofMetropolis MC has been proposed
to address PSP in the computational structural biology community.
The adaptation concerns additionally subjecting each generated
conformation Ci+1 to an energetic minimization technique that
maps Ci+1 to a local minimum in the energy surface. The confor-
mation representing the local minimum, Ci+1∗ is the one consid-
ered for addition into the trajectory through the Metropolis
criterion. Essentially, the MC trajectory is a series of local minima,
or basins, and the algorithm has also been referred to as basin
hopping (BH). BH is a specialized EA. The energetic minimization
can be considered a local improvement iterator, thus making BH a
1 + 1 MA.

The history of BH in computational structural biology is rich
and can be traced to work by Wales and Doye on obtaining the LJ
minima of small atomic clusters [50]. When considering that BH is
an MC with minimization, its roots go even deeper to the “MC
with minimization” methods proposed by Scheraga and colleagues
[36, 51]. Simultaneous work on BH for addressing challenging
real-life problems has appeared in the AI community. In particular,
in the EC community, BH is also known as Iterated Local Search
and is popular for solving discrete optimization problems [52].

Recently, BH algorithms has seen a comeback in computational
structural biology. BH algorithms essentially differ in how they
implement the perturbation and improvement operators. For
instance, the perturbation predominantly modifies atomic coordi-
nates, and minimization is either a gradient descent or a Metropolis
MC at low temperature [37, 53–55]. Application for PSP in ref.
[49] shows that Cartesian-based representations are the culprit of
decreased efficiency and efficacy on capturing the native structure
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on protein sequences longer than 75 amino acids. Adaptations of
BH algorithms to employ angular-based representations and
the fragment replacement technique in the perturbation operator
have resulted in competitive performance with top MC-based con-
formational sampling algorithms in PSP. We highlight one such
algorithm below. The reader is referred to ref. [56] for a review on
BH algorithms for protein structure modeling.

4.3.1 Highlight: Basin

Hopping for PSP

Work in ref. [46] extends the applicability of BH for PSP in
proteins more than 120 amino acids long. This is mainly a result
of employing the molecular fragment replacement technique in
the perturbation operator. The technique is popular with the top
conformational sampling algorithms for PSP and other structure-
related problems and central to their performance [46, 47,
57–66]. Its popularity is due to the fact that it allows rapidly
computing conformations with credible secondary structures.
Below we briefly summarize it.

Molecular Fragment

Replacement

The basic idea is to bundle together consecutive dihedral angles of k
amino acids (k is typically 3 and 9). The segment [i, i + k � 1] in
the protein chain is referred to as a fragment, and the dihedral
angles corresponding to the fragment are referred to as the frag-
ment configuration. A move consists of replacing values of all these
angles simultaneously with values obtained from a precompiled
library (often referred to as a library of fragment configurations).
The library is precompiled from known, nonredundant protein
structures. The chain of each structure is excised in overlapping
fragments, and configurations are stored organized by their amino-
acid sequence. Making a move on a conformation C to generate
a new conformation consists of the following three steps: a position
i in the protein chain/sequence is sampled at random. A fragment
[i, i + k � 1] is then defined. The library is queried with the amino-
acid sequence of the fragment. Configurations of fragments with
the identical (or similar) sequence are then collected, and one is
selected at random to replace that of the fragment in conformation
C. Details on constructing fragment configuration libraries are
presented in ref. [67]. A representative PSP package that employs
MC-based conformational sampling algorithms with the molecular
fragment replacement technique is the Rosetta package [68].

PSPBH with Molecular

Fragment Replacement

The BH-based algorithm in ref. [46] samples local minima within
5–6 Å at most of the native structure on diverse proteins and is thus
competitive with MC-based state-of-the-art sampling algorithms
for PSP. Work in ref. [46] shows a strong correlation between
RMSD to the native structure and RMSDs between consecutive
local minima. Based on this finding, later work in ref. [47] intro-
duces techniques to control the distance between consecutive local
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minima and thus further improve proximity to the native structure.
Work in ref. [47] also shows that simple greedy search in the local
improvement operator is just as effective but more efficient that
MC-based improvement.

4.4 Population-

Based Off-Lattice and

On-Lattice EAs for PSP

We now summarize state-of-the-art population-based EAs and
algorithmic components responsible for recent advances.

The popularity of lattice-based representations in the early
1980s in protein structure modeling motivated development and
adaptations of EAs for a simplified instantiation of the PSP prob-
lem. Significant work in the EC community on PSP still employs a
lattice-based HP model of a protein chain, where an amino acid is
modeled as a bead in 2D or 3D, two types of beads are considered
(hydrophobic/H versus hydrophilic/P), and amino acid beads are
positioned on a 2D or 3D lattice. In essence, the PSP problem is
simplified, and the objective becomes finding an on-lattice self-
avoiding walk that minimizes the interaction energy among
amino-acid beads. Lattice-based representations facilitate the
design of simple perturbation operators and are amenable to sim-
plistic energy functions for summing up interactions and scoring
conformations. The employment of lattice-based representations
reduces the typical computational demands of PSP and allows
focusing on algorithmic design and analysis, particularly regarding
an optimal the interplay of exploration versus exploitation. A com-
prehensive review of on-lattice EAs can be found in ref. [69]. In the
following, we review salient search strategies demonstrated effec-
tive on on-lattice and off-lattice EAs and then highlight recent
developments that position EAs as competitors with top MC-
based PSP conformation sampling algorithms.

4.4.1 Hybridization to

Balance Global and Local

Search

In the EC community it is well understood that, for complex opti-
mization problems, simple EAs are not sufficient for achieving the
necessary balance between exploration and exploitation. As a conse-
quence, there continues to be an interest in developing more com-
plex EAs capable of achieving this balance on complex fitness
landscapes rich in local minima. One direction concerns the design
and implementation of hybrid EAs that combine population-based
global search techniques with domain-specific local searchmethods.

There are a variety of ways in which local search methods have
been embedded in EAs. MA is the most well-known hybridization
approach, based on the idea that a top level EA manages a popula-
tion of local searches (memes) with the goal of maintaining a
diverse set of memes (exploration) while exploiting efficient local
search methods with memes. Other less well-known approaches
include Baldwinian EAs, Lamarkian EAs, cultural algorithms, and
genetic local search [70–73]. MAs have been first adapted for
conformation sampling in PSP for toy or short peptides, employing
the lattice-based HP model [74–79].
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Work on on-lattice EAs has demonstrated that the addition of
local searches or memes is particularly effective when crossover is
employed to combine features from multiple previously sampled
conformations [80]. In a rugged landscape, offspring obtained
through crossover are highly likely to have low fitness. This is
particularly the case for protein conformations, where variable
coupling makes it difficult to obtain offspring that readily satisfy
implicit energetic constraints imposed by long-range interactions.
Studies show that the use of short memes improves the ability of an
MA to sample low-energy conformations [81]. This in turn allows
reaching significantly lower-energy conformations in a shorter
amount of time and has been demonstrated both in on-lattice and
off-lattice MAs [74–79, 82, 83].

In ref. [80], where the meme is a hill-climbing local search, the
MA is shown both more efficient and more effective at finding near-
native conformations over a standard EA. A recent study in ref. [84],
which extends the EA-based Harmony algorithm to use a hybrid
local search shows similar improvements over the original algo-
rithm. However, improvements are often reported in terms of ener-
getic values reached, with lower values taken as indication of higher
exploration capability [85, 86]. While such a metric is important for
comparing novel algorithmic ingredients to baseline EAs, in itself it
is not indicative of the utility of sampled conformations for PSP. In
the computational structural biology community, the focus is often
on the ability of a conformation sampling algorithm to reach the
known native structure; that is, the metric underpinning perfor-
mance is RMSD or other distance-based metrics between sampled
conformations and the knownnative structure.When judged by this
metric, many on-lattice EAs fall short when compared to the state-
of-the-art MC-based conformation sampling algorithms that have
moved beyond latticemodels. In addition, due to the popularity of a
legacy benchmark dataset, the majority of on-lattice MAs are tested
on proteins no longer than 61 amino acids. On longer chains,
prediction quality suffers; for instance work in ref. [84] reports the
inability to find conformations below 6 Å RMSD to known native
structures on chains longer than 60 amino acids [84].

Highlight: Population-

Based, Off-Lattice MAs

for PSP

MAs capable of reaching similar or better prediction quality than
state-of-the-art MC-based conformation sampling algorithms incor-
porate key domain-specific insight on proteins. These include off-
lattice, backbone-based angular representations, state-of-the-art
energy functions, such as the suite of Rosetta energy functions, and
the popular molecular fragment replacement technique in perturba-
tion operators and memes [46, 48, 87, 88]. Work in ref. [82] intro-
duces a fixed-sizeMA thatmakesuse of suchdomain-specific insights.
The greedy local search that constitutes the meme makes use of the
fragment replacement technique; conformations are evaluated with
the Rosetta score3 function, and elitism is employed to pitch the
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top offspring against the top parents. The survival mechanism is
truncation-based. A representative result of the performance of
this MA is provided in Fig. 2, which shows that this MA beats the
(multi-start) MC-based conformation sampling algorithm employed
in the popular Rosetta structure prediction protocol in terms of
exploration capability while achieving similar or lower RMSDs to
the known native structure. Work in ref. [82] additionally considers
injecting crossover into this MA and studies the interplay between
various crossover operators and the local search. A novel crossover
operator is proposed that preserves local structural features and
results in offspring with f ewer constraint violations.

Fig. 2 Illustration of performance of state-of-the-art MAs for PSP. Top panel: Given the same computational
budget, the lowest energy value (measured with the score4 energy function in Rosetta) reached by the on-
lattice MA in ref. [128] and the multi-start MC-based conformation sampling algorithm in Rosetta are
measured. The y axis shows the difference. Bars below the 0 line indicate where MA reaches lower energy
regions in the variable space. MA does so for 75 % of the 20 different protein sequences used for the
comparison. The PDB IDs of the native structures of these sequences are shown on the x axis. Results
combine many independent runs of each algorithm under comparison. Bottom panel: The y axis shows the
difference in the lowest RMSD reached by many runs of each algorithm to the known native structure.
The difference shows that MA is competitive with the conformation sampling algorithm in Rosetta even on the
unforgiving RMSD metric
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Highlight: Memes

and Move Sets

in EAs for PSP

With the realization that the local search/improvement operator
is key to obtaining optimal conformations, significant efforts are
spent in designing customized operators for both on-lattice and
off-lattice EAs for PSP. Due to the demonstrated superiority of
the molecular fragment replacement technique in MC-based con-
formation sampling algorithms, related efforts in off-lattice EAs
have pursued memes that are hill climbers, MC local search,
Metropolis MC local search over fragment replacement moves
[46–48, 82, 87–89].

Work in on-lattice EAs has also revealed a variety of effective
memes for EAs on 2D square and triangular, and 3D cubic, trian-
gular, and FCC lattices. The majority of memes for lattices employ
the concept of move sets, such as diagonal moves and tilt moves
[90], moves that preserve local, secondary structures [91], pull
moves [92, 93], end moves, corner moves, three-bead and end
flip for single-point moves and crankshaft for double point moves
[94], rotation moves [23]. In particular, recent work in ref. [95]
investigates in detail the geometric properties of the 3D FCC lattice
and proposes several local search operators that build on lattice
rotation and generalized move sets to achieve optimal conforma-
tions much faster than baseline EAs.

Highlight: Coevolving

Memes in GAs for PSP

Another interesting direction in MAs is the coevolving of memes.
Early work in MAs for PSP pursued dynamically modifying memes.
The idea is that a single static local search may not be effective for all
protein sizes and topologies or stages of an EA. Work in ref. [96]
proposes an on-lattice GA with a Metropolis MC-based local search
(an HP lattice model is employed). Temperature in the Metropolis
criterion is varied in a reactive scheme so that the method balances
between exploration and exploitation. When the population of
conformations is deemed diverse, the temperature is lowered to
focus on exploitation of local minima. As the population converges,
the temperature is increased to shift the focus on exploration. The
method is reported to find high-fitness conformations faster than a
baseline EA. Extensions in ref. [97] coevolve memes alongside
conformations (variables such as length of the local search and
type of mutation are added to the variables employed to represent
a conformation) [97]. Coevolving memes is shown to improve
both time performance and fitness of computed conformations
over baseline EAs [97–99].

4.4.2 Evolutionary

Strategies to Avoid

Premature Convergence

The issue of premature convergence or stalling due to loss
of population diversity, long known in the EC community to
accompany GAs, has also been observed in adaptations for PSP.
The GA crossover and mutation operators can become ineffective
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over time, leading to growing similarity among individuals in a
population [100, 101]. Stalling is an expected phenomenon, as
earlier generations are expected to cover a broader search space
while later generations are expected to converge to specific regions
in the fitness landscape. With growing similarity in a population,
the crossover operator becomes implicitly controlled and fails to
produce offspring that are significantly different from their par-
ents. In effect, the crossover operator produces more twins.

Stalling is responsible for GAs getting frequently trapped in
local minima [102]. This is exacerbated for longer protein
sequences and is credited as one of the major reasons why GAs,
though effective, are not competitive with state-of-the-art MC-
based conformation sampling algorithms for PSP [103].

Some of the earliest work addresses this phenomenon by using
genotypic diversity for selection and replacement of individuals in a
population [104]. The original on-lattice GA proposed in ref. [96]
is extended in ref. [104] so that parents selected for crossover
have maximal genotypic difference, measured via the Manhattan
distance metric. Experiments show that significantly lower energy
values are obtained over the original GA [104].

In other studies, a twin removal approach is employed instead.
Twins are energetically and structurally similar conformations and
they are determined based on phenotypic distance measured via
Hamming distance or distance over contact maps [105]. There are
several twin removal strategies. One strategy is to periodically
remove and replace twins with new conformations sampled at
random [77, 105, 106]. Other strategies relax the definition of
twins to include not only identical but also highly correlated indi-
viduals [107]. Work in ref. [107] shows that such an approach
significantly improves performance of a number of on-lattice,
GA-based methods. Crowding, a strategy originally introduced in
ref. [108], can also be seen as a specific implementation of twin
removal, though restricted to an offspring replacing an individual
most similar to itself [109]. Another strategy known as niched-
penalty [110] does not explicitly remove similar individuals but
imposes a penalty to discourage their participation as parents for
producing offspring for the next generation. Though promising,
the strategy has yet to be evaluated in EAs for PSP.

Another popular approach for increasing diversity in EAs for PSP
is to avoid redundant conformations all together. This approach,
known as tabu search, keeps track of conformations recently visited
by the local search to avoid their revisitation by other local searches
[28]. Work in ref. [111] employs a subset of already-sampled con-
formations to avoid revisitation at the global level in an MA. Com-
parison of these two distinct employments of tabu search to avoid
revisitation shows that tabu search at the global level is more effective
than at the local level onHP-latticemodels [111]. Customizations of
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tabu search for on-lattice EAs are regularly pursued [112, 113].
Integrations of tabu search in off-lattice MAs are also beginning to
be pursued, though currently limited to HP toy models [114, 115].

4.4.3 Multi-objective

Optimization in EAs for PSP

Casting PSP as a multi-objective rather than a single-objective PSP
problem is proving powerful and effective at avoiding premature
convergence and overall improving the performance of EAs regard-
ing their ability to reproduce known native structures.

Multi-objective optimization (MOO) lies in the ability to
decouple and group terms in an energy function in a few categories
considered as separate objectives. MOO originates from the Pareto
analysis in economic theory on simultaneous optimization of
conflicting objectives. Casting PSP as an MOO problem is particu-
larly suitable, because terms in protein energy functions compete
with one another. For instance, slight fluctuations in the backbone
of a protein conformation may simultaneously lower the value of
the energy terms measuring local interactions but increase the value
of the terms measuring nonlocal interactions.

A simple way to cast PSP as an MOO is to do so in the survival
mechanism through the concept of dominance. Suppose that the
terms in a protein energy function are grouped into two categories,
NB (non-bonded) and B (bonded). A conformation Ci is said to
dominate C; when the value of every category in Ci is strictly less
than the value of the corresponding category in C. This is known as
strong dominance (weak dominance allows equivalent values).
If strong dominance is employed, the number of conformations
that dominate a conformation Ci is known as the Pareto count of
Ci. Non-dominated conformations (those with Pareto count 0)
constitute the Pareto front of a set of conformations. A Pareto
rank can also be associated with a conformation Ci by counting
the number of conformations that Ci dominates (conformations in
the Pareto front have Pareto rank 0 by definition).

Before highlighting several EAs that treat PSP as an MOO
problem, it is worth noting that the concept of Pareto dominance
has been shown useful also for decoy selection techniques that select a
subset of computed conformations for further refinement and then
decide among those which ones represent the unknown native state
in true blind prediction setting. The majority of current decoy
selection techniques in PSP make use of RMSD-based clustering
of conformations; typically, the cluster with the largest number of
members is predicted as the native state.

MOO analysis provides an alternative route. Recent work has
shown that the Pareto front or various thresholds of Pareto counts
are effective at reducing the ensemble of sampled conformations
while retaining near-native ones [47]. The selection of the Pareto
knees is also shown effective [116, 117]. In ref. [117], a knee-based
selection technique retains conformations within 0.3 Å of the actual
best conformation in the ensemble (best in terms of RMSD to
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the native structure). Work in ref. [118] provides contradictory
results and shows that including knees makes little difference.
Testing is conducted on short peptides up to 20 amino acids
long, which probably do not benefit from MOO analysis.

Decoupling energy terms into separate objectives and employ-
ing MOO reduces the complexity of the energy landscape in short
polypeptides by reducing the number of local minima [119]. MOO
has already been integrated in on-lattice EAs for conformation
sampling [120, 121]. MOO in off-lattice EAs decomposes terms
of all-atom energy functions, such as CHARMM and AMBER
[122, 123]. Typically, terms of the energy function are grouped
in two categories, with one category consisting of the LJ term that
measures non-bonded interactions, and the other category sum-
ming up all other terms. Doing so in the fast messy Genetic Algo-
rithm (fmGA), which represents dihedral angles as 10bit strings, is
shown to result in lower-energy conformations over the baseline
fmGA for short protein chains of 514 amino acids [122, 123].
Other studies employ three rather than two categories and show
that doing so results in more conformations closer to the native
structure. Testing is limited, however, to a short peptide and a
medium-length protein [124–126].

Highlight: State-of-the-Art

1 + 1 MOMA for PSP

Work in ref. [127] integrates MOO in a 1 + 1 EA, using the same
CHARMM bonded vs. non-bonded categories as work in refs.
[122, 123]. Conformations in the Pareto front are recorded in an
archive or hall of fame, and secondary structure prediction from a
given amino-acid sequence and sidechain rotamer libraries are used
to bias sampling toward physically relevant conformations. At each
generation, the offspring and parent compete for survival. If neither
dominates the other, the one which dominates more of the archive
survives. Later work extends the IPAES and shows it effective on
several longer protein chains up to 70 amino acids [117]. Confor-
mations below 5 Å lRMSD to the known native structure are found
for sequences up to 70 amino acids in length, and results are shown
to outperform several otherMOOEAs and standard EAs on shorter
chains, as well. Some representative results are shown in Fig. 3.

Highlight: State-of-the-Art

Population-Based MOMAs

and MOMGAs for PSP

Work in ref. [128] integrates MOO in the population-based MAs
and MGAs proposed and shown competitive in ref. [82] to the
Rosetta MC-based conformation sampling algorithm. Three cate-
gories are defined that group together terms of the Rosetta score4
function; the first category measures short range hydrogen bond-
ing, the second measures long-range hydrogen bonding; and the
third term summing the rest of the terms. It is worth noting that
the employment of backbone dihedral angles as variables preserves
bond lengths and valence angles; thus, energetic differences
between conformations are due to non-bonded interactions. A
novel truncation selection mechanism is employed, which sorts
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parent and offspring at the end of each generation first by their
Pareto rank and then by total energy (for conformations with the
same Pareto rank). The injection of this MOO technique is com-
pared against the baseline MA and MGA algorithms originally
introduced in ref. [82], resulting in the MOMA and MOMGA
algorithms presented in ref. [128]. The addition of Pareto count

Fig. 3 Illustration of best models obtained by a state-of-the-art MOMA. Four proteins of varying sizes from
34 to 70 amino acids are chosen to illustrate the high quality of the lowest-RMSD conformations obtained
by the MOGA algorithm presented in ref. [117]. The left panel shows the native structure and its PDB ID,
whereas the right panel shows the computed lowest-RMSD conformation for each protein and its CA RMSD
(calculated over CA atoms) from the native structure. Rendering is done with Pymol, showing secondary
structures of the backbone and drawing side chains with thin lines. Figures are kindly provided by Giuseppe
Nicosia and Giuseppe Narzisi
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in the truncation-based mechanism is also tested (conformations
are first sorted by Pareto rank, then Pareto count, then total
energy). The resulting extensions are referred to as MOMAPC
and MOMGAPC [129]. Figure 4 shows that these four algorithms
outperform the multi-start MC-based conformation sampling
algorithm in Rosetta and represent the state of the art in off-lattice
EAs for PSP. Figure 5 showcases the capability of these algorithms
by rendering the lowest-RMSD (best) conformations obtained by
these algorithms on a variety of proteins and comparing these to the
best conformations found by multi-start MC-based conformation
sampling algorithm in Rosetta.

4.5 EAs for Mapping

Protein Energy

Landscapes

EAs obtain a discrete representation of the potential energy surface of
a protein chain. It is thus easy to see the promise of EAs for more
than PSP. A central challenge in molecular biology is to understand
functional changes upon single-point mutations in proteins.

Fig. 4 Illustration of performance of state-of-the-art MOM(G)As for PSP. The performance of MOMA and
MOMGA presented in ref. [128] and MOMAPC and MOMGAPC presented in ref. [129] is shown here, compared
to the MC-based conformation sampling in Rosetta, on 20 proteins. The PDB IDs of the native structures of
these sequences are shown on the x axis. The top panel shows the lowest energy reached by each algorithm.
The bottom panel shows the lowest RMSD to the native structure reached by each algorithm. Results combine
many independent runs of each algorithm under comparison
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EAs hold significant promise for providing a detailed characterization
of structure spaces and underlying energy landscapes, which currently
challenge methods based onMC and those based onMD.However,
a truly de novo setting currently proves too challenging, given that
the objective is to retain diversity and map multiple basins of a
protein’s energy landscape. In recent work, EA-based methods are
proposed to map multi-basin energy landscapes of complex proteins

Fig. 5 Illustration of best models obtained by a state-of-the-art MOGA. Three proteins of varying sizes from 70
to 106 amino acids are chosen to illustrate the high quality of the lowest-RMSD conformations obtained by
the MOGA algorithm presented in ref. [128]. The left panel superimposes the best conformation produced
by the MC-based conformation sampling algorithm in Rosetta (drawn in lemon green) over the known native
structure (drawn in gray). The right panel superimposes the best conformation produced by MOGA (drawn
in orange) over the native structure. The PDB IDs of each native structure are shown. The RMSD of each
lowest-RMSD conformation to the known native structure is shown for each algorithm on each of the three
selected proteins. The reported RMSD is computed over backbone atoms. Rendering is performed with VMD
[136], using the NewCartoon graphical representation that shows the local secondary structures
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over 100 amino acids long. These methods make use of known,
experimentally available long-lived structures of healthy (wild type)
and aberrant versions of a protein. These structures are leveraged to
transform a discrete problem into a continuous one, subjecting them
to Principal Component Analysis to reveal a few collective variables
constituting the search space for the EA. In refs. [109, 130], muta-
tion operators are defined over the variables and a family based
crowding mechanism is used to retain diverse conformations longer.
The evaluation operator lifts individuals from the reduced represen-
tation to an all-atom representation prior to subjecting them to a
meme for improvement; the latter uses a simulated annealing MC
local search currently implemented as the relax protocol in Rosetta.

An implementation of the above method is available in http://
www.cs.gmu.edu/~ashehu/?q¼OurTools. Applications on several
proteins up to 165 amino acids long show that this MA is able to
reveal multiple basins of proteins known switch between different
structural states for function. In particular, work in ref. [131] builds
on thisMAand introduces amethod that is capable ofmapping energy
landscapes of wild-type and oncogenic sequences of the H-Ras
catalytic domain and explaining via comparison of the landscapes the
reasons for functional changes. While these methods explicitly seed
the initial population with experimentally available structures,
an adaptation of the popular CMAES technique is introduced in ref.
[132] employs these structures only to extract the reduced search
space via PCA and initialize the multivariable distribution.

5 Future Prospects

As stochastic optimization now represents the only computation-
ally feasible approach to PSP, work on improving the capability of
EAs for PSP is expected to continue. Work on on-lattice EAs is
expected to advance PSP for very large protein chains of several
hundred amino acids. On protein chains of up to 200 amino acids,
the goal is to increase prediction accuracy, and in this domain, more
returns are expected from off-lattice EAs that make use of state-of-
the-art protein energy functions.

While this review highlighted several evolutionary techniques
adapted from the EC community to address the exploration vs.
exploitation issue in the multimodal protein energy landscapes,
there are other opportunities to design more complex EAs. As the
review has highlighted, there are several known mechanisms for
population diversification that have yet to be adapted and tested for
PSP. There are opportunities to further investigate dynamic, coevol-
ving memes, particularly for more complex local searches. There is a
growing interest in the EC community to dynamicallymake decisions
on allocation of computational resources to computation-heavy
memes [133].
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Other evolutionary strategies for structurization of EAs
also present interesting new avenues to enhance exploration capa-
bility. Interestingly, structured EAs have been debuted in macro-
molecular modeling but have been limited to sequence-function
prediction problems [134]. Further investigation of multi-
objective optimization and Pareto-based measures is expected
to improve accuracy, particularly in the context of inherently
approximate protein energy functions. Finally, given the impor-
tance of injecting domain-specific insight in EAs for PSP, efforts
on designing novel, representation-specific perturbation opera-
tors are expected to improve performance.

As this review has highlighted, the potential of EAs beyond PSP
for the more general and challenging problem of mapping protein
energy landscapes is only beginning to be realized [109, 130–132,
135]. Evolutionary strategies that hold off premature convergence
are key to the ability of EAs to reproduce a multitude of possible
basins in a complex landscape.

EC researchers tempted by the richness and complexity of
scientific questions posed by protein structure modeling now
have strong foundations to venture into this domain. Work in
protein structure modeling is challenging, as it often requires
researchers to attain working knowledge in a new discipline. For
those willing to do so, however, the payoff is significant. It is worth
considering that, while at the moment EAs are not the top meth-
ods for PSP and modeling of single protein chains, there is one
domain where they have dominated and replaced MC-based algo-
rithms. In protein–ligand binding and protein–protein docking,
the top algorithms are complex EAs. The hope is that in a few
years, one will be able to say the same for PSP and protein structure
modeling in general.
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Incorporating Receptor Flexibility into Structure-Based
Drug Discovery

Chung F. Wong

Abstract

Biological receptors are not completely rigid molecules. They can adopt many different structures at
physiologically relevant temperatures. Different drugs can bind to different ensembles of conformations
of these receptors. Reliably predicting to which conformations of a receptor a compound might bind well
calls for the proper account of receptor flexibility. Researchers have developed various computational
methods to deal with this aspect of drug discovery. Some of these methods are still too expensive to be
used extensively in practice. Ensemble docking has emerged as one of the most popular practical
approaches. This chapter summarizes basic principles and common techniques underlying ensemble dock-
ing, illustrates its use with several examples, and concludes with suggestions for future improvements.

Keywords: Computer-aided drug design, Ensemble docking, Molecular dynamics, Normal mode,
Conformational transition paths, Homology modeling, Virtual screening, Enrichment factor, Boltz-
mann-enhanced discrimination of receiver operating characteristics (BEDROC)

1 Introduction

As biological molecules can adopt a wide range of conformations at
physiologically relevant temperatures, reliable computational mod-
els need to take such flexibility into account to predict to which
conformations drug candidates might bind well. Different methods
have been developed to incorporate receptor flexibility into compu-
tational models to address this aspect of drug discovery. Many of
these methods are still computationally too expensive to be applied
to evaluate a large number of compounds. Therefore, this chapter
focuses on ensemble docking as a special class of flexible-receptor
docking that has become popular and practical in virtual screening.

Before ensemble docking was introduced, molecular docking
was largely done by docking rigid or flexible compounds to rigid
receptors [1–3]. This can produce many false negatives as some
compounds might bind to the conformations of the receptors that
are thermally accessible but different from the structures of the
receptors used in the docking. Although it is now feasible to
perform brute-force unbiased molecular dynamics simulations to
dock a flexible compound to a flexible receptor [4, 5], such
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simulations are still prohibitively expensive for virtual screening in
which a large number of compounds need to be evaluated. Ensem-
ble docking has gained popularity in recent years because it is
computationally less expensive and easier to use. Although this
method is less rigorous, scientists have already found it useful to
help select compounds from a chemical library that are more likely
to show activity in experimental assays [6].

Ensemble docking [7–15] does not attempt to simulate directly
the physical docking process, which involves the complex coupling
between the structural changes of the two molecules during dock-
ing. Instead, it first generates an ensemble of the receptor structures
without considering the ligands. It then docks ligands to this
ensemble of receptor structures. The docking to each receptor
structure simply calls for a rigid-receptor docking for which many
useful programs have already been developed (e.g., [16–19]). This
chapter introduces popular methods for generating structural
ensembles and points out extra considerations in scoring and rank-
ing compounds.

2 Generation of Receptor Structures for Ensemble Docking

2.1 From

Experimental

Structures

When many experimental structures of a receptor are available, one
can construct a structural ensemble quickly [13, 20–22]. These
structures might have different ligands bound, have different muta-
tions made, be determined at different crystallization conditions,
contain additional domains, or differ in some other ways. Together,
they reflect the structural plasticity of the receptor.

Before these structures can be used for ensemble docking, they
need to be processed to produce a consistent set of structures.
These structures could have different residues missing, have differ-
ent mutations made, or contain different number of residues. One
can polish up these structures to include the same amino acid
sequence and the same number of residues by using a structural
modeling program such as MODELLER [23] to build the missing
residues or make the necessary mutations.

2.2 From Homology

Modeling

Sometimes no or only one or a few experimental structure(s) is
(are) available for a receptor, but many experimental structures of
one or more homologous proteins are available. In such cases,
homology modeling provides a useful tool to build a structural
ensemble for docking. In extreme cases when many structures of
a family of proteins are available, large structural ensembles can be
built for different members of the family. For example, because
protein kinases have become popular targets for drug discovery,
many experimental structures of protein kinases have been deter-
mined. Wong and Bairy [24, 25] leveraged this rich resource to
build large structural ensembles for different protein kinases. They
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wrote a python wrapper around the MODELLER package to make
it easier to build a large structural ensemble for a protein kinase and
to refine the structural ensemble when new experimental structures
become available.

2.3 From

Conformational

Transition Paths

When only a few experimental structures are available for a recep-
tor, one could use a suitable method to generate conformational
transition paths (e.g., [26–42]) and build a larger structural ensem-
ble for docking by including structures along the paths. When the
experimental structures are very different, such as between the closed
and open forms of an enzyme, intermediate structures along
minimum-energy paths connecting these structures could bind dras-
tically different ligands from those accommodated by the experimen-
tal structures, thus increasing the diversity of the compounds
identified as hits by a virtual screening through ensemble docking.

Wong [43] tested this idea by using proteins for which many
experimental structures have been determined. He hypothesized
that if the structures along conformational transition paths could
accommodate known inhibitors, some of these structures might
have already been determined for structurally well-studied proteins.
This turned out to be the case for several protein kinases that have
been studied extensively, including Bcr-Abl, the insulin receptor
tyrosine kinase, the epidermal growth factor receptor, protein
kinase A, and the Src kinase [43].

Methods for identifying conformational paths in proteins were
introduced in the 1980s by Pratt [44] and Elber and Karplus [45].
Various similar approaches were added since then. A relatively
simple one accessible by many users through the open-sourced
software package MOIL [46] is introduced here. In particular, we
focus on the chmin module in MOIL. It generates a conforma-
tional transition path between two structures by inserting a
sequence of intermediate structures in between [45, 47–50]. It
then refines this path by optimizing the function
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where

Δlh i ¼ 1

N � 1

XN�1

i¼1

Δl i, iþ1 ð3Þ

Default values for the parameters η, ρ, and λ controlling the
strength of different factors in Eq. 2 can often be used.

Figure 1 illustrates schematically how this method works. One
first guesses an initial path between structures A and B by interpo-
lation between the two structures. This initial path may be rough in
which many intermediate structures occupy high-energy regions of
the potential energy surface. After optimization of the target func-
tion in Eq. 1, a minimum-energy path is generated. The two
structures can interconvert more easily along this optimized path
than the initial guess path. Inhibitors can bind to the intermediate
structures just as transition-state analogues could bind to enzymes.
Transition-state analogs have provided one strategy to develop
drugs to inhibit enzymes [51].

Other methods have been developed to further refine this
approach. For example, the nudged elastic band method [52]
could produce smoother minimum-energy paths by including
only the system force perpendicular to the paths and the constrain
forces parallel to the paths. Variations to improve the location of the
saddle points have also been introduced [32]. The string method
was introduced later as another tool for obtaining smooth
minimum-energy paths efficiently [53].

Fig. 1 Schematic picture showing the refinement of an initial guess path,
obtained by interpolation between structures A and B, to a minimum-energy
path connecting the two structures (This figure was produced by modifying a
Mathematica script made available in Professor Kristen Fichthorn’s website.)
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2.4 From Normal

Mode Analysis

Normal mode analysis provides another fast technique to generate
structural ensembles from one or a few experimental structures
[11, 54, 55]. By assuming a harmonic potential near an experimen-
tal structure, the motion of the receptor can be described by a set of
normal modes with a range of frequencies. The lowest frequency
modes describe the largest amplitude motions of the receptor, and
one can generate rather distinct structures of the receptor accessible
at room or physiological temperatures by following these modes. In
principle, one needs to diagonalize a Hessian matrix to obtain the
normal modes. This is a 3N � 3N matrix (N ¼ number of atoms
in the receptor) containing the second derivatives of the potential
energy with respect to often the Cartesian coordinates. As the
computational time for diagonalizing this matrix grows as the
cube of 3N, it is common to use only the matrix elements
corresponding to a subset of atoms, such as the alpha carbons of a
protein, to perform normal mode analysis.

A normal mode analysis assumes that the potential energy
behaves as a quadratic function around an energy minimum. Anhar-
monic effects can be accounted for approximately by using the
quasi-harmonic model [56] in which one performs a molecular
dynamics simulation to obtain the positional covariance matrix
with each element calculated by

xi � xih ið Þ x j � x j

� �� �� � ð4Þ

in which xi is a coordinate of atom i, and hyi represents an ensemble
average of the quantity y. Wong et al. [57] showed in the linear
response limit that

∂ xih i
∂ fj

¼ 1

kBT
xi � xih ið Þ x j � x j

� �� �� � ð5Þ

where fj is a small force applied to atom j, kB is the Boltzmann
constant, and T is the absolute temperature. One can see that the
inverse of ∂ xih i

∂ f j
resembles an element of a Hessian matrix. This

equation allows one to construct an effective Hessian matrix from
the positional covariance matrix obtained from a molecular dynam-
ics simulation to perform a quasi-harmonic analysis that can
account for some anharmonic effects.

Although a normal mode analysis is usually carried out in
vacuum or with an implicit-solvent model, the positional covari-
ance matrix can be obtained from a molecular dynamics simulation
using an explicit-solvent model so that solvation effects can be
mimicked by a more realistic model.

2.5 From Molecular

Dynamics Simulation

Molecular dynamics simulation is most expensive among the meth-
ods described in this chapter, but it has been used for ensemble
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docking for a long time. For example, Pang and Kozikowski pub-
lished a paper in 1994 using this approach in a docking model to
predict how huperzine A bound to acetylcholinesterase [58]. The
introduction of the relaxed complex scheme about 10 years later
has made this approach popular [14, 59]. In this approach, one first
performs a molecular dynamics simulation on the receptor, with or
without ligand(s). One then docks different compounds to snap-
shots produced by the molecular dynamics simulation and uses the
average docking energies to predict the binding strength of the
compounds. Instead of using the docking energies from a docking
program, one can also use the binding energies obtained from the
more sophisticated molecular mechanics/Poisson-Boltzmann sur-
face area (MM/PBSA) model [60–65] using the docked structures
(e.g., [10]). In the MM/PBSA model, the electrostatics contribu-
tions were obtained by numerically solving the Poisson-Boltzmann
equation taking into account the complex shape of the molecules,
and the hydrophobic contributions were described by a term
dependent on the surface area of the molecules.

2.6 From Enhanced

Sampling

Molecular dynamics simulations at room or physiologically relevant
temperatures suffer from slow sampling of conformational space.
Various enhanced sampling techniques have been developed to
alleviate this problem. Some of these techniques maintain rigorous
thermodynamic ensembles so that various ensemble averages can
be obtained from these structural ensembles. Relevant to this topic
is the averaging of docking energies over the dynamics snapshots to
provide a better estimation of the binding affinity between a com-
pound and a receptor.

The replica-exchange method provides one popular example
[42, 66–69]. Schematically shown in Fig. 2, this method not only
run a molecular dynamics simulation on a system at a certain
desired temperature, but also run many other simulations of the
system at different higher temperatures. Structures of the simula-
tions are allowed to exchange between adjacent temperature win-
dows periodically according to the Metropolis criteria [70]. These
higher temperature runs allow the system to explore a larger con-
formational space more easily. By exchanging structures between
temperature windows, the sampling at the desired lower tempera-
ture is improved as well. Since the nonphysical structural exchanges
between temperature windows disrupt the trajectories, one can no
longer obtain dynamical information from these simulation trajec-
tories. Nevertheless, structural exchanges according to theMetrop-
olis criteria maintain rigorous thermodynamic ensembles at all the
temperature windows so that proper thermodynamic averages can
be obtained from the simulations. Similar averaging done in the
relaxed complex scheme or in the MM/PBSA method described
above can also be performed here after docking a ligand to the
structures obtained from a replica-exchange simulation.
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Some methods enhance sampling by altering the potential
energy surface rather than running simulations at many tempera-
tures. Accelerated molecular dynamics [71–74] provides one
example. It raises the energy near local energy minima so that a
system does not spend as much time inside these energy wells. As a
result, such a simulation samples a larger space than a regular
molecular dynamics simulation does for the same amount of sim-
ulation time.

Some methods speed up sampling further by not requiring the
simulation to maintain a rigorous thermodynamics ensemble. The
simulated annealing cycling method represents one such approach,
schematically shown in Fig. 3 [75–78]. It adopts the key idea of the
replica-exchange method by running simulations at higher tem-
peratures to improve sampling, but it does so by replacing simula-
tions at multiple temperature windows with only one simulation
spanning a range of temperatures. It implements this by introdu-
cing many successive simulated annealing cycles during a simula-
tion. Each cycle begins with heating to a high temperature to
encourage a system to move away from an energy well that it has
already sampled. The system is then cooled down rapidly to 0 K in

)(11where

0for )exp(
0for 1)(

ji
ij

ji

EE
kTkT

XXw

−−=Δ

>ΔΔ−=

≤Δ=→

270 K

308 K

351 K

400 K

Fig. 2 Schematic representation of a replica-exchange simulation. Simulations
are performed at multiple temperatures and structures are allowed to exchange
between adjacent windows according to the Metropolis criteria [70] shown in the
bottom of the figure. w X i↔X jð Þ represents the probability of exchanging a
structure Xi at temperature Ti with a structure Xj at temperature Tj. Ei represents
the energy of structure Xi, and k is the Boltzmann constant

Receptor Flexibility in Structure-Based Drug Discovery 71



the order of 10 ps to trap the system into a new energy well. This
rapid cooling also prevents the biomolecular receptor from being
unfolded or disintegrated. A trajectory repeats this cycle many
times to speed up sampling. This approach was successfully applied
to directly simulate a ligand-receptor docking process in which a
flexible ligand was allowed to move inside a flexible receptor to find
good docking poses [75–80]. One should be able to use this
approach for the easier problem of generating the ensemble of a
receptor structure for docking by only simulates the receptor
without including its ligand. However, this approach does not
maintain a system at a rigorous thermodynamic ensemble and
thus one can no longer calculate an ensemble average simply by
averaging a property over the structures obtained from the
simulation.
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Fig. 3 Schematic representation of the simulated annealing cycling approach.
The upper panel shows that many simulated annealing cycles are introduced into
a molecular dynamics simulation. A system is periodically heated up to a high
temperature to encourage it to move away from a potential energy well that it
has already sampled. The bottom panel shows that the system is moved into
another energy well each time it is quenched to near 0 K after heating

72 Chung F. Wong



3 Clustering Structures to Reduce the Size of an Ensemble

Methods such as molecular dynamics simulations generate a large
number of structures. Although the ensemble of structures gener-
ated conforms a thermodynamic ensemble and provides a means to
calculate thermodynamic ensemble averages, docking a large num-
ber of compounds to a large number of structures is expensive. No
large-scale screening efforts have yet used this method.

To reduce the costs of screening a large number of compounds
in ensemble docking, an approximation of using only a small subset
of structures and adopting a suitable ranking scheme is more prac-
tical with current computational capability. Clustering provides a
popular method for reducing the large number of structures to a
smaller subset for virtual screening (Fig. 4). Many clustering meth-
ods have been introduced. For an evaluation on different clustering
methods applied to molecular dynamics trajectories, see [81]. As an
example, clustering analysis by the GROMOS software package
[82–84] uses the root-mean-square deviation (RMSD) between
two structures as a measure of the distance between the two struc-
tures: The program first calculates the distance between any pairs of
structures to be considered for clustering. It considers two struc-
tures as neighbors if their distance falls below a user-chosen cutoff.
The structure that contains the largest neighbors is identified and
the first cluster is then generated by including this structure and all
its neighbors. Structures belonging to the first cluster are then
removed and the same process is repeated for the remaining struc-
tures to obtain the next cluster. This process is repeated until no
more structure is left. By choosing different cutoffs, a user can
control the size and number of clusters being formed. The
CHARMM software package [85], on the other hand, provides a
self-organizing neural net approach for clustering [86–88]. This
algorithm optimizes cluster assignment by minimizing the distance
between members and the centroid structure within each cluster
and by requiring this distance to be within a user-predefined cluster
radius.

Fig. 4 Schematic figure showing the clustering of similar structures into group
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4 Extra Considerations in Ranking Compounds in Ensemble Docking

When docking compounds to a single receptor structure, one can
simply use the docking scores, which reflects their binding strength,
to rank the compounds for their potential to be actives. This is less
straightforward in docking to multiple structures, especially when
the structures are not generated according to a rigorous thermody-
namic ensemble.

When using structures obtained from conventional molecular
simulations (e.g., molecular dynamics and replica-exchange) that
maintain rigorous thermodynamic ensembles, averaging the bind-
ing strength over all structures provides a reasonable approximation
to the overall binding affinity between a ligand and a receptor. One
can rationalize this by using the perturbation theory in free energy
calculations [89–96]:
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where ΔH ¼ H P : Lð Þ �H Pð Þ �H Lð Þ
ð6Þ

in whichH(P : L),H(P), andH(L) are the classical Hamiltonian of
the complex, the receptor, and the ligand, respectively, R is the gas
constant, T is the absolute temperature, and β ¼ RT .

This formula is exact although not practical for calculating ΔG
(binding) because the sampling favors that of the complex may not
cover the important conformational space of the isolated protein
and ligand well. However, it provides a formal theory to help
understand the approximations introduced in different computa-
tional models. For example, simply averaging the binding affinity
over all structure corresponds to making the approximation:

ΔG bindingð Þ ¼ RT ln eβΔH
� �

P:L
� ΔHh iP:L after expanding

the exponential and logarithmic functions in Eq. 6 and keeping
the lowest order term, and using energies from a docking program
to estimate ΔH. One can also see that the MM/PBSA model
described above follows a similar approximation, but using a more
sophisticated Poisson-Boltzmann surface area model to better
account for solvation effects and reintroducing the entropic con-
tributions using a harmonic approximation.
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On the other hand, the ensemble average ΔH in Eq. 6 cannot
be performed with structures that are not generated from a rigor-
ous thermodynamic ensemble, such as those selected from a num-
ber of experimental structures or those from simulated annealing
cycling molecular dynamics simulations as described above.
Researchers have used less rigorous rules to select the best drug
candidates when using these structures. Specific examples are given
below.

5 Removing Non-productive Structures

Several studies reported that including more structures in an
ensemble could decrease rather than increase the performance of
a virtual screening [22, 97, 98]. If a structure could not bind any or
many ligands properly, including such a structure could contami-
nate the overall ranking of the compounds, especially when one
uses ranks rather than docking scores for compound prioritization.
For example, including the top-ranked compounds from a “bad”
structure could improperly overrate these compounds as good drug
candidates.

One way to remove bad structures is to compare the docking
scores of compounds throughout all structures. If most of the
compounds do not give favorable docking scores for a structure,
this structure is not or less useful to be included in ensemble
docking. Huang and Wong [99] further quantitatively evaluated
this strategy using available known active compounds. They first
docked these actives to all the receptor structures in an ensemble
and determined their binding scores. The averaged binding score
was also calculated. They then ranked the structures for their
usefulness in docking by the number of actives that docked with
scores better than the averaged. They found this approach to
identify good structures as well as more expensive methods that
utilize not only actives but also a large number of decoys.

Besides allowing more actives to be identified from top-ranked
compounds, removing “bad” structures could also reduce compu-
tational costs because one does not need to dock compounds to as
many structures.

6 Metrics for Evaluating the Performance of a Virtual Screening Model

Various metrics have been introduced to measure the performance
of a virtual screening. Two common and useful ones are discussed
here.

Enrichment factor is used to measure how effective a screening
model picks out actives from a chemical library. A screening model
usually prioritizes the compounds in a library according to a
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ranking scheme. An effective model would have many actives
among its top-ranked compounds. The enrichment factor quanti-
fies this by using a random selection model as a reference. For
example, assume that there are 100 active compounds in a library
containing 10,000 compounds. A randomly picked 100 com-
pounds from this library would find one active on average. How-
ever, a screening model might have prioritized the compounds in
such a way that 30 actives are found within the first 100 compounds
in its rank-ordered list. The enrichment factor for this model is then
30 because it finds 30 times more actives than a random model
does. In a mathematic form, for a test library containing N com-
pounds, among which n are actives, the enrichment factor EF for
including x % of compounds from the database is defined as

EF ¼ ns=N sð Þ
n=Nð Þ ð7Þ

where Ns is the number of compounds in the top x % of the rank-
ordered list and ns is the number of active compounds in this list.

However, the enrichment factor calculated this way cannot
distinguish a case in which all the actives are piled up at the begin-
ning of the top x % of the rank-ordered list from the one in which
the actives are positioned near the end of the list. The first case is
more useful in practical drug discovery because if one were to start
testing compounds from top-ranked compounds, one would iden-
tify all the actives earlier. Therefore, Truchon and Bayly introduced
the Boltzmann-enhancement discrimination of receiver operating
characteristics (BEDROC) to help distinguish these two situations
[100]. Their paper provided a detailed description of the theory
and concepts behind this method. Briefly, BEDROC scales the
ranks of known actives according to a Boltzmann rather than a
linear distribution so that a model that ranks actives earlier in an
ordered list gives a significantly better performance score than one
that ranks the actives later. In addition, a BEDROC score ranging
between 0 and 1 is calculated for any screening model so that the
performance of different models can be compared easily with 1
being the best score achievable by a model.

A practical consideration concerns the amount of time required
to calculate the enrichment factor or BEDROC, both call for the
docking of many actives along with an even larger number of
decoys. This makes it computationally expensive to evaluate a
screening model or to select the best receptor structures for dock-
ing, especially when many receptor structures need to be consid-
ered. Huang andWong [99] introduced a cheaper solution to select
the best receptor structures for ensemble docking by using only
known actives without any decoy. They hypothesized that receptor
structures capable of binding more known actives well were more
likely to give favorable BEDROC scores. Indeed, they found that
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the structures that gave more actives with better docking scores
than the average scores obtained over all structures also produced
favorable BEDROC scores. This provides a computationally less
expensive approach to help choose a smaller number of structures
for ensemble docking: One could first dock the known actives to an
initial ensemble of the receptor structures and calculates the average
docking scores across all receptor structures. Then, for each recep-
tor structure, find out the number of actives P that have better
docking scores than the average. Finally, select those structures that
give the largest P values.

7 Different Probabilities of Occurrence of Different Structures in an Ensemble

Methods that do not rely on rigorous calculations of thermody-
namic ensemble averages but compare docking scores or ranks
among different structures often ignore a factor that could deteri-
orate the performance of a screening campaign in picking out
actives from a chemical library. This factor is the conformational
energy of the receptor. A structure giving a favorable binding
affinity for a compound could be one having a high energy and
therefore lower probability of occurrence. This may overrate the
importance of compounds showing good docking scores to this
structure. A couple of studies have already suggested that including
the conformational energy of the receptor could improve the per-
formance of a screening campaign [98, 101]. However, these works
only used crude models to estimate the conformational energies of
the receptors. Further studies are needed to investigate more thor-
oughly how to reliably and practically include such effects to
improve the compound ranking in ensemble docking.

8 Rescoring Could Improve the Performance of Virtual Screening

To speed up docking to facilitate the screening of a large number of
compounds, simple energy models are often used. Using more
sophisticated energy models to refine the docking poses and rescore
them could improve the performance. For example, Degliesposti
et al. [6] refined docking poses by performing energy minimization
with programs designed for molecular mechanics and molecular
dynamics simulations and rescored the new poses with the more
sophisticated molecular mechanics/Poisson-Boltzmann surface
area model or with its generalized Born counterparts. Using such
a model, they were able to discover new inhibitors for plasmepsin II
in plasmodium falciparum. Among the top 30 compounds they
selected for experimental testing, 26 were found to be active with
IC50 values ranging from 4.3 nm to 1.8 μM.
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9 Case Examples

9.1 Docking to

Experimental

Structures

It was reported over a decade ago that docking to several crystal
structures could increase success rates of identifying bioactive
compounds [20, 21]. Recently, Bottegoni et al. [97] performed
a more detailed and systematic study. They used 36 systems and
several modern metrics to compare the performance of the
multiple-conformational model with those obtained from single-
conformational models.

For each system, they docked both the actives and the decoys
from the Directory of Useful Decoys (DUD) [102] to an ensemble
of structures or an individual structure of the ensemble. Enrich-
ment factor and BEDROC were two of the metrics that they used
to evaluate the performance of the different docking models. They
applied two different approaches to rank those compounds for their
potential to be drug candidates based on their docking results to all
the receptor structures. In one approach, they ranked the com-
pounds based on the best docking score of each compound among
all the structures (this involves only the comparison of the docking
scores of each compound over all the receptor structures without
considering the scores of the other compounds). In the other
approach, they first used the best rank of each compound among
all the receptors (in order to obtain the rank of a compound for
each receptor structure, one needs to compare its docking score
with those of the other compounds for this structure), but ended
up with too many ties. To break the ties, the authors further used
docking scores to rank the compounds.

In general, they found that docking to multiple conformations
could identify more actives with more diverse chemical scaffolds.
Their results also demonstrated the benefit of filtering out bad
receptor structures. They found that removing the structures that
gave unfavorable docking scores for most of the compounds gave
better screening performance, according to metrics such as BED-
ROC. However, they were unable to conclude from this work
which ranking approach, the one based on docking scores or the
one based on ranking first, gave better screening performance.

9.2 Docking to

Dynamics Snapshots

An extensive study performed recently by Ellingson et al. [103]
provides a useful example here. They docked a much larger set of
ligands than previous studies (e.g., [10, 14]). These ligands include
known actives along with a large number of decoys. Their studies
included four different receptors: β-lactamase, fibroblast growth
factor receptor kinase, glucocorticoid receptor, and the tyrosine
kinase Src. After running a 100 ns of molecular dynamics simula-
tion for each receptor, they clustered the simulation generated
structures to obtain a smaller number of receptor structures for
docking using Autodock Vina [18]. Single crystal structures or
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dynamics snapshots were used to construct the single-
conformational models. Using the enrichment factor as an indica-
tor for performance, they found that the multiple-conformational
model discovered more actives and identified more diverse com-
pounds than the single-conformational models.

In selecting the top compounds from the docking results of a
structural ensemble, Ellingson et al. first tried taking the top x/N %
of compounds from each structure, where N was the number of
structures included in the structural ensemble to form the top
overall x % of compounds. However, they found this method per-
formed less well than the one that selected the top x % based on the
best docking scores of the compounds among all the structures.

9.3 Docking to

Structures Obtained

from Normal Mode

Analysis

Leis and Zacharias [54, 55] introduced an efficient approach to use
a soft mode from a normal mode calculation to produce several
structures surrounding an experimental structure for docking. In
the more recent version, they modified the popular docking pro-
gram Autodock [17] to perform this work. Autodock uses potential
grid maps to speed up the calculations of the interactions between a
ligand and its biological receptor. To incorporate protein flexibility
in this representation, Leis and Zacharias created potential grid
maps for each protein conformation generated by the normal
mode calculation, and also allowed interpolation to obtain the
grid maps of intermediate structures inserted between these struc-
tures. During docking using the Lamarckian genetic algorithm,
they allowed an extra random variable to select a conformation or
an interpolated conformation that the ligand could pair with. In a
test case of docking three different ligands to protein kinase A, they
found that incorporating protein flexibility this way had improved
the placement of the ligands in the protein from over 2 Å from the
experimental structures to a little over 1 Å. Particularly noteworthy
in this approach is the interpolation representation that allows
fewer structures to be explicitly included in the docking model.
This idea could be applied to other methods of ensemble docking
as well, not only those derived from normal mode analysis [104].

10 Summary

This chapter focuses on discussing ensemble docking as a method
for incorporating receptor flexibility into virtual screening, a useful
tool for structure-based drug discovery. This method is relatively
inexpensive to use and could be used by many researchers in the
near future. The simplicity lies in its ready use of programs that have
already been developed for rigid-receptor docking. This chapter
outlines different methods that have been used to produce struc-
tures for ensemble docking. It also discusses several different possi-
ble ways to rank the docking results to select compounds for
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experimental testing. In the case that the structures used for dock-
ing came from simulations that produce rigorous thermodynamic
ensembles, averaging the binding affinities from all structures car-
ries theoretical supports, even though some approximations still
need to be made. One can use the averaged binding affinities of the
compounds to rank their potential to become drug candidates.
However, such averaging lacks theoretical rigor for structural
ensembles not obtained from rigorous thermodynamic samplings.
Some researchers take certain number of top-ranked compounds
from each structure. Others use both the rank and the docking
score/energy, which should be more informative. Another compli-
cation results from the different probabilities of finding different
structures in an ensemble not generated by rigorous thermody-
namic sampling. This factor was ignored in most ensemble dock-
ing. How to address this issue in an effective and a practical manner
will need further research. With more scientists applying ensemble
docking to more practical problems, it is conceivable that the
performance of this approach will be evaluated more thoroughly
and its shortcomings will be identified for further improvement.
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Abstract

The importance of water molecules in biological interactions is not debatable, but the various diverse and
specific roles that water can play are not as well understood on a molecular scale. In this methods report, the
theoretical basis for a computational framework that focuses on water is described. The framework is HINT
(for Hydropathic INTeractions) and is a related series of algorithms and methods for probing and modeling
the hydrophobic effect, solvation and desolvation, ionization of acids and bases, and tautomerism. HINT is
derived from the experimental measurement of the partition coefficient for solute transfer between water
and 1-octanol, stylized as log Po/w, which is a free energy term. Discussion of computational approaches to
quantitating the hydrophobic effect, scoring biological associations with a free energy force field, evaluating
the conservation of water molecules in complexes, modeling ionization state ensembles in complex
environments, enumerating putative small-molecule tautomers in complexes, and predicting the location
of important bridging waters are provided. These factors are summarized in terms of their potential effects
on drug discovery projects.

Keywords: Hydrophobic effect, Hydropathic interactions, HINT, Log Po/w, Free energy of associa-
tion, Computational titration, Structure-based drug discovery, Bridging water molecules

1 Introduction

Water is ubiquitous in the biological milieu, not just for the obvious
macroscale, but also for the micro- and nanoscales. The simple and
often repeated statement “Water is Life” could not be more true.
The roles that water molecules play in biological structure and
function are broad and amazingly varied. To truly understand
biological action on an atomic scale almost always involves assessing
the actions of the molecules of water—or the lack thereof, which is
itself interesting—surrounding the action. Intimately related to
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water are the acidic and basic properties of molecules. While Lewis
acids and bases are occasionally required to understand biological
reactions, far more often the Brønsted-Lowry model applies and
water molecules have critical roles as both donors and acceptors of
protons. Finally, the tautomerism of organicmolecules is also depen-
dent on the presence of water acting as an acid and/or a base.

The energetics of water molecules in biological systems is also
interesting and has received much scrutiny over the years. Clearly,
each water molecule, as it possesses two hydrogen bond acceptor
and two hydrogen bond donor loci, is a potent interacting species
with other molecules. This is tempered somewhat by the fact that
water also likes to interact with other waters. Intra-water interac-
tions are perhaps the most interesting water property because the
enthalpic driving force that “structures,” i.e., locks together, col-
lections of water molecules also tends to exclude or encage nonpo-
lar moieties, yielding what is called “the hydrophobic effect.”
Because water molecules have such a strong compulsion to self-
associate or interact with other hydrogen bond donor or acceptor
functional groups, unwelcome nonpolar compounds or molecular
fragments appear to associate amongst themselves, giving rise to
the misnomer hydrophobic “bonding.” This is also a multi-scale
phenomenon: the macro observation that “oil and water don’t
mix” is rooted in these molecular scale principles. Interestingly,
although the root cause of the hydrophobic effect is clearly the
enthalpic interactions between water molecules, the manifestation
of it is entropic! When a structured water molecule is displaced to
“bulk,” e.g., squeezed out by the interaction of two biological
molecules, that produces an increase of degrees of freedom and
thus entropy. Therefore, the importance of evaluating the many
contributions of water molecules to biological systems should not
be underestimated, especially in the context of drug discovery.

1.1 Modeling

of Water

Experimental measurements of these effects are difficult to impos-
sible, particularly for biologically relevant systems, so computa-
tional simulations are applied in attempts to unravel the various
energetic contributions to free energy of association between mole-
cules. Molecular dynamics simulations of model small-molecule
systems have appeared to support the conventional understanding
of the hydrophobic effect [1], but large-scale, all-atom, constraint-
free simulations wherein the modeled system (including the water
molecules) self-assembles in the expected manner have been
extremely rare [2, 3]. Thus, while protein folding can be simulated
for small “toy” proteins with current computational assets, most
impressively with the D.E. Shaw specialty supercomputer called
Anton [4], the obvious problem is time scale—the cumulative set
of translations, reorientations, and interactions, resulting in a
folded protein, bound ligand, subunit association, etc., and driven
by the actual first-principle forces involving discrete water
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molecules, are clearly very long time-scale phenomena. Desolvation
and related phenomena are clearly vital barriers during molecular
associations, as was demonstrated in long-term simulations [2, 3].
This level of computation is all but inaccessible for the larger
proteins of interest in drug discovery. It is important to reiterate
that, beyond the van der Waals attractions felt by all pairs of atoms,
there is not a hydrophobic attraction between nonpolar atoms or
molecules: it is an emergent property of the entire ensemble, espe-
cially the water. Thus, simpler models have been applied to under-
standing the hydrophobic effect. A relatively simple observation
that is easy to model is the hydrophobic surface contact area
between molecules (or within a folded biomolecule). Modeling
this area is a way of recognizing that the larger the area, the more
water molecules that must have been displaced. Empirical terms
representing this effect can be found in a variety of free energy
scoring functions, but such an approach is obviously a quite crude
oversimplification of a complex phenomenon. Other approaches
have involved various constructs where properties are assigned to
pseudo-atoms representing water, e.g., in cellular automata models
[5], or in statistical mechanics models [6].

We have taken a more holistic approach to treating and model-
ing the hydrophobic effect. Our models were developed based on
the hydrophobic effect, i.e., the experimental measurements of the
partitioning of a solute between two solvents—water and
1-octanol. There has been a rich collection of such data, going
back many decades, because it has been known since the late
1800s that the activity of drugs is strongly related to their ability
to pass through biological membranes, e.g., pass through the

Fig. 1 Water solubility and lipid solubility as a function of log Po/w. Compounds
either too hydrophobic or too polar will be excreted without being therapeutically
beneficial. Compounds with intermediate hydrophobicities will cross biological
membranes and will be potentially active
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stomach wall or the blood-brain barrier (see Fig. 1). Only molecules
balancing two competing effects, water solubility and lipid solubil-
ity, can be orally active. Equally important is that many computa-
tional algorithms have been developed to predict this partitioning,
which is usually reported as log Po/w. The C-LOGP method by
Hansch, Leo, and Weininger [7] is typical. It is also very important
to recognize that the measurement of log Po/w is probing a free
energy process, and in fact log Po/w is a ΔG for solute transfer
between the two solvents. We have named our model HINT (for
Hydropathic INTeractions) and have applied it over the past 2+
decades to a wide variety of biological chemistry problems.

As we have explored these biological systems, involving pro-
teins, small molecules, and polynucleotides, alone and in just about
every combination, we have found the pervasive influence of
water—usually playing multiple roles—the key to understanding
structure and function. Concomitantly, we developed several new
and novel computational tools to help us in these studies. Thus, the
focus of this chapter is on our set of computational tools for
evaluating and predicting the roles of water in biological systems.
As our tools were developed over an extended period of time, we
have not previously described them together in a single focused
contribution. Also, we discuss a few strategies for drug discovery
that exploit water as a “natural resource.”

2 Understanding the Hydrophobic Effect

As we alluded to above, modeling the hydrophobic effect in a de
novo sense has been quite impractical to date as part of drug
discovery studies because of the complexity of such systems and
the time scales required. The oversimplification of the phenomenon
by calculation of buried surface area is a useful approximation, but
is also clearly flawed. We have instead built a model wherein the
properties of atoms were derived from their propensity to associate
with water (polar, hydrophilic) or “associate” with lipids, e.g.,
1-octanol (hydrophobic, lipophilic). These propensities are atomis-
tic deconstructions of log Po/w [8] guided by principles and
data used in the C-LOGP empirical algorithm for prediction of
log Po/w [9, 10], which itself has roots in a fragmental approach
proposed by Rekker [11]. Thus, instead of carrying atomic charges,
the atoms in our model carry atomic hydrophobicities (ai), where
ai > 0 is found on a hydrophobic atom, ai < 0 is found on a polar
atom, and

X
ai ¼ logPo=w:

Our atoms also carry a second descriptor, Si, which represents their
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relative solvent-accessible surface area, or degree of exposure to
solvent, which is, of course, water.

The HINT model was a unique idea that Don Abraham had a
long-standing interest in developing. It was his notion that the
same forces that “partitioned” a small molecule between two sol-
vents are found in all biomolecular interactions in water. That is,
hydrogen bonding, Coulombic interactions, acid-base interactions,
hydrophobic interactions, and solvation/desolvation are found
both in the “shake flask” and in protein-protein and protein-ligand
interactions. Furthermore, many of the effects of entropy are
encoded simply because log Po/w is itself a free energy.

2.1 The HINT

Algorithm

The HINT algorithm simply calculates a “score” between each
interacting pair of atoms, e.g.:

bij ¼ aiSiajS jT ij exp �rð Þ þ Lij ;

where r is the distance between the atoms i and j in Å, Tij is a logic
function described previously [12] that assigns acid-base character
to polar atoms, and Lij is an implementation of the Lennard-Jones
function based on the models of Levitt and Perutz [13, 14]. The
sum over all i–j pairs within a single molecule or between two
molecules, i.e.,

HTOTAL ¼
XX

bij ;

represents the total interaction.
Figure 2 illustrates the behavior of the logic function for the

interaction between atoms i and j that have the characters shown.
Recall that hydrophobic atoms have a > 0 and polar atoms (regard-
less if acid or base) have a < 0. Thus, all favorable atom-atom inter-
actions will have bij > 0 and unfavorable interactions will have

Fig. 2 Values of Tij for combinations of atomic hydropathic properties. Color
coding of matrix cells: blue, favorable polar-polar and hydrogen bond; red,
unfavorable polar-polar; green, favorable hydrophobic-hydrophobic; purple,
hydrophobic-polar (desolvation). Since hydrophobic atoms have a > 0 and
polar atoms have a < 0, the Tij values in the cells yield the convention that
favorable atom-atom interactions have bij > 0
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bij < 0. HTOTAL should, in principle, be similarly positive for a
molecule-molecule or related interaction with a favorableΔG. How-
ever, being a state function like Gibb’s free energy, the difference in
HTOTAL holdsmore information than just its absolute value.HTOTAL

can be correlated with the free energy of association: fairly extensive
examination of protein-protein associations in wild-type andmutant
hemoglobins [15–17] and a variety of protein-ligand systems
[18–20] defined ΔΔG as ~500 HINT units/kcal mol�1.

Polar-Polar Interactions. Because the most polar (hydrophilic)
functional groups (or atoms) tend to possess higher (more positive
or more negative) partial charges, or even formal charges, it is not
surprising that there is a fairly good correlation between |ai| and
partial charge [12]. Thus, electrostatic effects are inherently
included in the HINT interaction formalism, although clearly not
as accurately as with explicit use of Coulomb’s law and the Poisson-
Boltzmann equation [21], and with using higher level theory to
estimate partial atomic charges.

Hydrogen bonding is, in the HINT formalism, a special case of
polar-polar interactions, i.e., when the interacting atoms are within
defined distances of each other and are of appropriate character (an
H-bond donor and an acceptor). HINT scores, i.e., bijs, for well-
formed hydrogen bonds range up to around 700, which corre-
sponds to about �1.4 kcal mol�1 [16, 18, 19].

Hydrophobic-Hydrophobic Interactions. Hydrophobic interactions are
a ubiquitous force in biological systems, but their contribution is
hard to assess or model. First, as described above, the hydrophobic
effect is an emergent property. Second, simple molecular mechanics
force fields have an inherent bias against favorable hydrophobic
interactions because the partial charges of hydrophobic groups like
methyls, which are usually treated as united atom CH3 constructs,
are usually >0. Thus, application of the Coulombic term suggests
that the interaction, for example, between two methyls would be
repulsive. Fortunately, the van der Waals (London) forces as mod-
eled by the Lennard-Jones equation do partially compensate. In
HINT, each hydrophobic interaction contributes relatively little
energetically to a system, typically with bij values ranging between
25 and 75 (0.05–0.15 kcal mol�1), but there can be many such
interactions in a system. Consider a stacked pair of aromatic rings,
where there are 36C–H toC–H interactions, someobviously weaker
than others. In our early studies of the subunit interfaces within
hemoglobin, we found that interfaces with little discernable move-
ment like α1β1 have more hydrophobic interactions than the more
fluid α1β2 interface, which changes dramatically between the tense
and relaxed states [22]. The number of polar interactions in these
two pairs of interfaces is similar. Overall, we have found that about
1/3 of a total interaction is attributable to hydrophobic terms as
calculated by HINT on many systems.
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Hydrophobic-Polar Interactions. This HINT interaction type is the
most intriguing. Similar to most hydrophobic-hydrophobic inter-
actions, some hydrophobic-polar interactions could be mischarac-
terized based on simple electrostatics: e.g., oxygens of a carboxylate
or carbonyl will have negative partial charges, which would indicate
an attractive interaction with (positively charged) hydrophobic
atoms—the opposite of what we expect hydropathically. Based on
our macro view of the hydrophobic effect and many high-
resolution crystal structures of biological systems, we would like
to observe a different response when modeling such structures with
Newtonian force field methods.

While hydrophobic-hydrophobic and polar-polar interactions
are relatively simple, obvious, and intuitive, the hydrophobic-polar
interaction is not. To appreciate it, we must first separate and isolate
the interacting molecular species. Here, all polar atoms will be
surrounded by water molecules that complete their “hydropathic
valence” [23], i.e., acting as complementary donors to the mole-
cule’s acceptors and vice versa. Exposed hydrophobic atoms or
groups will have no such partners, but may be in some cases
encaged by sets of structured water molecules that are being careful
not to get too close. With this in mind, we bring the two species
together again: (1) where two polar atoms interact favorably, there
is no solvation-related energetic difference from their point of view
between the before and after cases—the polar atoms still have
partners and the previously associated waters engage with other
waters; (2) where two polar atoms interact unfavorably, except in
rare cases, a water molecule will be retained to mitigate the repul-
sion; otherwise, from their point of view, there is no energetic
difference between before and after; (3) where two hydrophobic
atoms interact, they were not solvated before the association and
are still not solvated; but lastly, (4) in a hydrophobic-polar interac-
tion, the polar atom has lost its solvation without reprisal from
another atom—and this is the energy cost of desolvation. In all
cases, HINT inherently accounts for costs and gains of desolvation
because entropy and solvation/desolvation effects are implicitly
encoded in the log Po/w measurements.

2.2 Interpretation

of HINT Score

As mentioned above, we showed that the total HINT score for an
interaction correlated with its free energy of association in many
studies. In particular, we looked at ΔG ¼ f(HTOTAL). We con-
structed a simple equation that could predict ΔG from HTOTAL

with a standard error of about 2.5 kcal mol�1 for an arbitrary
protein-ligand system [18, 19]. Interestingly, when specific molec-
ular systems were studied, i.e., a single protein with multiple puta-
tive ligands, the slopes of those ΔG vs. HTOTAL lines were
surprisingly consistent with each other and with the “all systems”
correlations. The differences were largely in the “y-intercept” por-
tion of the correlation equation, which can be attributed to internal
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energetic effects such as conformation entropy that are not
accounted for in the pairwise sums of bij. This led us to advocate
[24] that the best scoring function for a molecular system is one
that is constructed from known data for that system—rather than
one purported to be universal for all systems. It is also significant
that nearly all “universal” scoring functions are optimized based on
recreating poses seen in the corresponding X-ray crystal structures.
We chose to optimize our scoring functions with respect to free
energy of binding [24]. See Fig. 3, where docking results for 19
proteins using three algorithms and scoring functions (AutoDock,
GOLD, and FlexX) were compared to the results from HINT
scoring functions customized for each protein/ligand set. While
the experimental pose should correspond to the most energetically

Fig. 3 Representation of the results of 19 protein-ligand docking experiments using AutoDock, GOLD, and
FlexX with color-temperature scale. (a) Color temperature coding: first column, root mean square deviation
(RMSD) between docking and crystal poses (Å); second column, ΔΔGdock—difference between free energy
calculated by internal scoring function (and/or published calibration) of the docking program and experimental
free energy of binding (kcal mol�1); third column, ΔΔGHINT—difference between free energy calculated by
HINT (ΔGbinding ¼ �0.001079HTOTAL � 8.08, calibrated for this particular dataset) and experimental free
energy of binding (kcal mol�1). (b) Results for best-scoring conformers as chosen by internal scoring functions
of AutoDock, GOLD, and FlexX docking programs. (c) Results for best-scoring conformers chosen by HINT from
poses generated by AutoDock, GOLD, and FlexX. Figure adapted from reference 24
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favorable conformation, our work showed that this is not always
the case.

The overall HINT score for a biomolecular association is a
useful metric of the quality of the interaction, but since HINT is
based on pairwise summations, careful examination of the individ-
ual interaction types and scores reveals much more detailed infor-
mation. In fact, this information was so revealing of drug discovery
and design/optimization information that we developed a novel
visualization tool—HINT interaction maps that color code and
quantify the types and strengths of interactions between two inter-
acting molecules. Figure 4 shows an example of this type of map. By
creating these maps we unleashed a tool that guides molecular
design by clearly highlighting regions (atom-atom interactions)
that are suboptimal.

3 Water Makes It Wetter

Truth be told, there are many thousands of water molecules in a
biological system comprised of a protein, cofactors, and a potential
ligand. Clearly most of them are solely engaged with other water
molecules, a smaller fraction of them serve to anchor the collection
to the protein in uninteresting places, and just a relative few of them
engage the molecules of interest in ways that overtly effect the

Fig. 4 HINT interaction maps illustrating the binding between a novel nonpeptide orally active inhibitor of
human renin for treatment of hypertension (PDB ID: 2V11). Green contours correspond to regions where
hydrophobic-hydrophobic binding is dominant; blue contours correspond to regions dominated by favorable
polar interactions, such as hydrogen bonding; red contours correspond to regions dominated by unfavorable
polar-polar interactions; and purple contours correspond to regions where the dominant interactions are
hydrophobic-polar. Close examination of these maps can provide a rational basis for compound design, e.g.,
by reducing the unfavorable polar-polar interactions and hydrophobic-polar interactions
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system’s energetics. In fact, only a small handful of water molecules
are seen to interact with both the protein and ligand in a binding
pocket [25, 26] and less than one-fourth of water molecules found
at protein-protein interfaces make favorable interactions with both
proteins [27, 28].

One interesting question that makes modeling the biological
environment difficult is which water molecules does one consider as
“bulk” and which ones should be considered explicitly. A practi-
tioner of molecular dynamics would, of course, argue that all waters
could be included in simulations by application of periodic bound-
ary conditions and other mathematical constructs. Many such
studies have been performed at a cost of millions of CPU hours.
The counterargument is that explicitly simulating all water mole-
cules makes it difficult to see the trees because such a view of the
entire forest all but obscures what we are interested in about a few
key water molecules. Poisson-Boltzmann approaches [29] simulate
the presence of water with different dielectric constants for outside
and inside the macromolecule, which is adequate for treating elec-
trostatics, but still ignores the issue of which water molecules in a
solvated macromolecular ensemble should be treated explicitly.

We had considered this problem extensively, and felt that the
HINT model, because of its genesis in solvation phenomena, could
provide a rational framework for exploring water. First, in the
model described above, the HINT scores surely encode some of
the apparently invisible transfers and rearrangements of water struc-
ture represented and recorded in free energies of association and
underlying biomolecular associations. However, water molecules
found in binding sites, etc. are more persistent and must be treated
explicitly.

3.1 Water Rank Partly because 15 years ago we did not have the resources (or
patience) to perform molecular dynamics on entire solvated pro-
teins just to optimize a water network; we were interested in alter-
native approaches. We recognized that steepest descent molecular
mechanics energyminimization tools have limitations—especially in
terms of reaching (false) local minima, even in terms of optimizing
something as simple as water molecules. It is easy to envision situa-
tions where a watermolecule is not optimally oriented because other
species blocks its ability to explore full rotation. With this in mind,
we developed a very simple computational tool that exhaustively
rotates a water completely through all axes and optimizes its
HINT score with respect to the species in its immediate environ-
ment [30]. Similarly, the torsion angles of –OH, –SH, –NH2, etc.
groups in protein side chains or within ligands could be optimized
to maximize hydrogen bonding with maximal HINT score.

A conundrum was thus created: Which water in a collection
should be optimized first? The optimization of one water’s orien-
tation would profoundly impact the orientations of its neighbors,
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and so forth. Our solution was to assume that the water capable of
making the best set of hydrogen bonds should be the “seed” and
that all other water molecules would be optimized in “rank” order.
Thus was created the Rank descriptor:

Rank ¼
X

2:80Å=rnð Þ þ
X

cos θTd � θnmð Þ
h i

=6
n o

;

where rn is the distance between the water oxygen atom and the
target heavy atom n (n is the number of valid targets or a maximum
of 4). This is scaled relative to 2.8 Å, which is presumed to be the
ideal hydrogen bond length. θTd is the ideal tetrahedral angle
(109.5�) and θnm is the angle between targets n and m (m ¼ n to
number of valid targets). This allows for a maximum of 4 targets
(�2 donors and �2 acceptors). Lastly, to properly weight the
geometrical quality of hydrogen bonds, any θnm angle less than
60� is rejected along with its associated target [30]. Practically,
each water molecule, which is in reality only known as the coordi-
nates of the central O unless the structure is of exceptionally high
resolution, is analyzed with an environmental survey of the closest
H-bond donors or acceptors, and these positions are used to calcu-
late its Rank.

Using our exhaustive algorithm, the highest Rank water mole-
cule can then be optimized with respect to its “receptor,” which is
all other non-water atoms in the system. The optimized water is
then added as a member of the receptor, and the second highest
Rank water is optimized. This continues until all water molecules in
the system are optimized. With this approach, we are able to create
very plausible water networks in a short amount of time compared
to stochastic techniques such as molecular dynamics. Our use of the
term “plausible” is not an accident: it is impossible, even with high-
resolution X-ray crystallographic models, to definitively determine
the hydrogen bonding patterns within even a modest size water
network. In fact, even neutron diffraction may not locate all hydro-
gens in a protein structure, while the number of water molecules
actually observed in either X-ray or neutron diffraction patterns or
reported in the resulting models is highly variable, but correlatable
with resolution—i.e., higher resolution structures usually report
more water positions.

Nonetheless, the Rank algorithm has been applied successfully
in a number of computational chemistry problems. In one study
from our group [25], we manually evaluated the role played by
water molecules in a set of protein-ligand structures, which we
classified as second shell, first shell, active site, cavity, or buried
H2Os. Rank was able to differentiate among these various roles
somewhat more convincingly than the water’s HINT score. We also
showed, in that work, the disposition of water molecules between
un-liganded proteins and their resulting liganded analogues; water
molecules were shown to be displaced for either functional or steric
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reasons, while others were simply missing. In other work, Kuhn
et al. [31] used an adaptation of the Rank algorithm to discriminate
waters that have a role in binding fromwaters that can be ignored in
their derivation of their empirical ScorpionScore. Much like our
goal for the HINT model, they demonstrated the value of intuitive
visualization of key intermolecular interactions, interaction net-
works, and binding hot-spots in rationalizing ligand binding.

3.2 Water Relevance A common view in medicinal chemistry is that, based on thermo-
dynamics, the more tightly bound a water molecule is, the more
energy that might be gained by replicating its interactions in a
designed ligand. This design approach was demonstrated with the
second-generation HIV-1 protease inhibitors (cyclic ureidic and
cyclic sulfamide derivatives) that displaced the water (“301”)
found between Ile 150α and Ile 150β in the un-liganded structure
and retained in all previous HIV-1 protease-ligand structures [32,
33]. We showed, later, that HINT quantitatively mapped the con-
tribution of individual structural waters to binding energy and that
the contributions of structural water molecules should be included
for reliable free energy predictions, with the caveat that only water
molecules that add information value should be included [26].

At a first pass, water molecules that interact with atoms in both
the receptor and ligand should meet the criterion of adding infor-
mation value, but we felt that a more precise definition or metric
would be valuable. Since both the HINT score for a water—with
respect to its environment or “pseudo-receptor”—and Rank were
revealing of the water’s role in structure, and yet were not highly
correlated [25], we hypothesized that the combination of these
metrics might yield a more powerful predictive tool [26]. The
goal was, based on its properties in a un-liganded protein structure,
to determine the conservation of a water molecule with respect to
ligand binding. In other words, can the water molecules most likely
to be displaced be predicted a priori? Clearly, such data may provide
important drug design clues. Another parameter previously pro-
posed to be indicative of water conservation is the water’s crystal-
lographic B-factor [34–36], which indicates the magnitude of
oscillation of an atom due to temperature, disorder, or other fac-
tors; thus, we also included this as a potentially useful descriptor in
our study. Other studies have focused on the dynamical nature of
the biological environment [37] or as part of a docking-like inves-
tigation [38] to estimate water binding.

To construct a training set, we used 125 discrete waters in 13
proteins for which high-resolution structures were available in both
un-liganded and liganded forms. In training, water molecules con-
served between the two forms were assigned target values of “1,”
while non-conserved water molecules were assigned target values of
“0.” With this data set, we built a heuristic model combining Rank
and HINT score such that
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PA ¼ PR W Rj j þ 1ð Þ2 þ PH WHj j þ 1ð Þ2
W Rj j þ 1ð Þ2 þ WHj j þ 1ð Þ2

where PA is the overall probability of the entire system and PR and
PH are the percent probabilities for conservation based on Rank and
HINT score, respectively, while WR and WH are the weights of
those terms [26]. The original paper provides further explanation
of PR, PH,WR, andWH. We termed PA water Relevance; that is, the
more conserved a water is, the more relevant it is structurally.
Applying this model to a test set of an additional 68 water mole-
cules, again in proteins for which high-resolution structures were
available in both un-liganded and liganded forms, yielded a success
rate of 87 % correct rate of conserved vs. displaced. Significantly,
when the training and test sets were restricted to higher resolution
structures, the success rate improved. Using the B-factor alone, or
in combination with one or both of our parameters, yielded inferior
models, i.e., 66 % success for B-factor alone.

There are a few water displacement caveats, however: com-
pounds interacting through tightly bound bridging waters can be
as potent as those interacting directly with the binding site. Direct-
binding ligands are generally bulkier, more hydrophobic and com-
plex, and often more difficult to develop. In contrast, water-
mediated ligands are often smaller, less hydrophobic, and more
flexible, and have better ligand efficiencies [39]. In effect, water
can act as a glue or a third partner, contributing to the specificity of
interaction and the ligand’s pharmacodynamic properties and
retaining the correct water molecule in a binding site can be a
very successful design strategy [40]. Also, notable recent work by
the AstraZeneca group [41] using SZMAP (OpenEye Scientific
Software, Santa Fe, NM) shows that the changes in rotational
entropy of a water molecule due to charge interactions are good
indications of conservation in holo protein-ligand complexes. The
more rotational entropy the water loses due to charge-charge inter-
actions, the harder it is to displace with ligand groups. We observed
a similar phenomenon when examining the water molecules of
HIV-1 protease in 2004 [42]—while displacing water 301 did
gain binding energy for the cyclic ligands [32, 33]—that gain
appeared to be largely attributable to the binding energy of the
water; that is, these ligands made the same interactions that the
water did.

3.3 Prediction of

Water Positions

Peter Goodford’s 1985 GRID program [43] uses finely tuned
potential energy functions to evaluate potential sites for the binding
of various functional groups, and especially water. For example,
Wallnoefer et al. recently showed that water networks generated
using GRID could be used to stabilize molecular dynamics simula-
tions [45]. However, while GRID is still being used, it is being
succeeded by WaterFLAP, based on FLAP [44]. Also in current use

Understanding Water and Its Many Roles in Biological Structure: Ways to Exploit. . . 97



areWaterMap [46], which uses cluster analysis of molecular dynam-
ics trajectories to determine water network geometry and thermo-
dynamics; AQUARIUS [47], which is a knowledge-based approach
that identifies water sites from experimental electron density maps;
CS-Map [48], which predicts favorable binding position for water
molecules using an interaction potential accounting for van der
Waals, electrostatic, and solvation contributions; and Fold-X [49],
which predicts bound water positions from interaction sites that
would involve two or more polar atoms.

Nevertheless, Relevance provided us with a novel, interesting,
and highly “relevant” target variable for a water prediction algo-
rithm. Our algorithm functions in a manner somewhat similar to
GRID, except that the result is a set of positionally and rotationally
optimized water molecules rather than a 3D map of energetically
favorable positions [50]. See Fig. 5 for an operational view of the
algorithm. The user simply sets the “Relevance level” for insertion
of new water molecules and the algorithm can fill a pocket, solvate
an interface, or water-mediate a protein-ligand interaction with
water molecules with Relevance at or above that level.

It is interesting, however, that a water molecule does not have
to be in the same exact position to perform the same role. For
example, a water molecule acting as a H-bond donor to two other
atoms that would nominally be repelled by each other could sit in a
multitude of positions. In other words, it is entirely possible that
energetically plausible water placement might not correspond to
experimental structural data.

4 Protons? What Protons?

With the exception of a few neutron diffraction structures for
proteins and a small number of X-ray diffraction studies at extraor-
dinarily high resolution, experimentally determined structure mod-
els do not have explicit protons. For hydrogen atoms that are
covalently bonded to carbon atoms, whether aliphatic or aromatic,
their positions can be assumed without error from known and
virtually invariant bond lengths and geometries. However, for
only a few of the hydrogens that are covalently bonded to polar
atoms, the same is true. In the remainder of cases, there can be free
rotation, i.e., as around the R–OH or R–NH2 dihedrals (vide
supra), the possibility of ionization, i.e., as between R–C(¼O)OH
and R–CO2

– or R–NH2 and R–NH3
+, or tautomerization, i.e.,

enol to keto or lactam to lactim. Since protons cannot normally
be resolved in most biomolecular structural data, a variety of infer-
ences or assumptions are made to build molecular models from
these data. For example (1) since bond lengths generally reflect
bond order, it might be possible to distinguish between tautomeric
forms; (2) since distances between heavy-atomH-bond donors and
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Fig. 5 The algorithm employed in Relevance-based water prediction. (a) Grid points within a specified distance
(related to the radius of water) from atoms in both the ligand and protein are marked in green; (b) the
remaining grid points after those too close to existing atoms are marked in purple; (c) HINT scores for putative
waters, optimized for orientation, at each of these grid points are indicated by the color spectrum from blue—
most favorable to red—least favorable; (d) the highest scoring water (red circle 1) is placed and all grid points
within a “knockout” distance are disabled, followed by the placement of additional waters (red circles 2 and 3)
in a similar manner; (e) when all grid points are assigned as water molecules or disabled, the next cycle
includes these new water molecules as part of the defined molecule; and (f) grid points too close to existing
atoms (including those from new waters) are eliminated. Figure adapted from reference 50



their partner acceptors should be shorter than uninvolved atom
pairs, it might be possible to “find” hydrogens that way; or (3) since
we know that in solution at pH 7 (or whatever) carboxylic acids are
in their carboxylate forms and amines are protonated, the same
must be always true even in proteins. Unfortunately, however,
there are at least three undermining and confounding factors: (1)
the resolution in these structures is really not good enough to
resolve differences in bond order distances, which are typically on
the order of 0.1–0.2 Å; (2) many of these are situations that are in
equilibrium with potentially small energetic differences between
species; and (3) the local pH within a protein can be very different
from that of the overall solution.

We proposed a term to describe such cases—isocrystallographic
[51]. A structure model is to be considered isocrystallographic with
another if both structure models would fit within the same experi-
mental electron density envelopes. This is, of course, resolution
dependent. Higher resolution structures will have better defined
envelopes and thus lower structural uncertainty [52]. Simply in
terms of protons, whether related to rotation, ionization, or tauto-
merization, there are often many structure models that can be
constructed for evaluation.

4.1 Computational

Titration

We first considered the ionization state problem to be one of
sampling, much like that in systematic conformational search. If
we calculated the energy for all models, then we should be able to
identify the lowest energy and therefore “correct” structure model.
Figure 6 illustrates a typical case: a carboxylic acid, an amine, and a
single water molecule. There are a total of six models that can be
constructed by placing zero (Fig. 6a), one (Fig. 6b–d), or two
(Fig. 6e, f) protons at the carboxylate/carboxylic acid and/or
amine/ammonium cation. Each of the six models, including their
waters, is optimized and scored as described above. The model with
the highest HINT score would presumably be the lowest energy
structure. As this approach is somewhat analogous to a titration
where a basic solution is neutralized by stepwise addition of an
acidic titrant, we have called our algorithm Computational Titra-
tion because we are simulating the stepwise addition of protons—
one at a time.

For relatively small systems, e.g., a protein with one or two
ionizable residues (mostly Asp, Glu, and His, possibly Lys and Arg,
and less likely Cys and Tyr) and one or two ionizable functional
groups on the ligand, there will be a manageable number of ensem-
ble states and their energies will likely be spread out over a fairly
wide range. However, with increasing numbers of ionizable groups
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in the system, the number of potentially accessible states (N)
increases dramatically, as

N ¼ 3ð Þn1 � 2ð Þn2;
where n1 is the total number of carboxylates (where the three
possible states are as shown in Fig. 7a–c) and guanidines (where
the three possible states are as shown in Fig. 7d–f), and n2 is the
number of amines (where the two states are R–NX2 and
R–NX2H

+), phenols (where the two possible states are Ar–OH
and Ar-O�), and thiols (where the two possible states are R–SH
and R–S�). In a system with four carboxylates (from Asp, Glu, or
the ligand), two amines (from Lys or the ligand), and a single
phenol (from Tyr or the ligand), N ¼ 512. We found that with
such systems, the differences in HINT scores could be very small,
especially amongst the protonation models contending for lowest
energy. This near-degeneracy may be partly due to summing the
more subtle HINT score terms that tend to mediate and compen-
sate for the more dramatic electrostatic-like terms.

Fig. 6 Ionization state ensemble from Computational Titration models of amine,
carboxylic acid, and water. (a) Zero added protons—amine is in unionized state,
acid in ionized carboxylate form, water acts as two proton donor; (b) one added
proton—amine is protonated, acid in ionized carboxylate form, water donates
one proton and accepts one proton; (c) one added proton—amine is in unionized
state, acid in protonated neutral form, water acts as two proton donor; (d) one
added proton—amine is in unionized state, acid in protonated neutral form
(alternate oxygen), water donates one proton and accepts one proton; (e) two
added protons—amine is protonated, acid in protonated neutral form, water
donates one proton and accepts one proton; and (f) two added protons—amine
is protonated, acid in protonated neutral form (alternate oxygen), water acts as
two proton acceptor
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This led us to question the prevailing wisdom that there was
only one “true” model for a biomolecular system. Obviously,
simultaneously dealing with a few hundred molecular models to
describe a protein-ligand interaction is not practical, but applying
statistical thermodynamics principles to the collection of ensemble
states and their HINT scores, i.e., as

E ¼ �RT log
X

e�
EH
RT

h i
=n

n o

whereEH is the totalHINTscore (HTOTAL) for amodel translated to
free energy by a previous correlation fit and n is the number of states
in the collection, appears to reveal an energetically reasonable esti-
mate of interaction energy. While this is a useful equation and can be
used in other situations, e.g., calculating binding energy frommulti-
ple docking solutions, the salient point is that, within the framework
of isocrystallographic models, one cannot know which model is true
because many models are contributing similarly to the overall ener-
getics. This is an especially significant point because crystallography
is generally performed at low temperatures—approaching liquid N2,
while chemistry and biology occur at or above room temperature
where exchange of protons and flexibility are much more prevalent.

A few points are worth mentioning here about Computational
Titration. First, the goal in CT is practical and rational model build-
ing, not in estimating pH or pKa, which are very well performed by
other methods such as finite difference Poisson-Boltzmann [53–56]
and molecular dynamics [57–59] or with empirical models such as
PROPKA [60]. Second, the water/polar network is responsive to
changes in ionization state: any neighboringwatermolecules need to
be optimized for each of the models conceived during a CT run.
Third, while the protocol we described here and elsewhere [42,
61–63] is based on the HINT force field, the concepts and strategy
could be simply translated to another paradigm.

Fig. 7 Ionization state options for carboxylic acid and guanidine. (a–c) Three isocrystallographic forms for
carboxylic acid/carboxylate; (d–f) three isocrystallographic forms for guanidine/guanidinium
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4.2 Tautomers There are a handful of well-documented cases where a tautomeric
rearrangement of a small-molecule ligand—in contrast to its
expected form—was necessary to model that ligand’s binding.
Such cases are also isocrystallographic as there is little or no data
in the crystallographic data to place the telling protons or defini-
tively assign bond orders. Yvonne Martin emphasized the impor-
tance of tautomerization by stating that about 25 % of drug-like
molecules existing as more than one form [64]. These few cases are
not the problem; it is the fact that virtual screening tools often
ignore the possibility that alternate tautomers can exist and/or fail
to consider the energetic consequences of such. Clearly, energeti-
cally accessible molecules that could fit very well in a database
screen should be considered.

Tautomer analysis remains a work in progress in our laboratory,
but the similarity of this problem to Computational Titration is
striking. In effect, it is “simply” a matter of adding another combina-
torial layer to the number ofmodels to be examined in the analysis. In
the example above, assuming that the tautomer set is independent of
the acids and bases of the ligand, which it should normally be, a
tautomeric functional group with four states would increase the num-
ber of models to be evaluated fourfold, to 2048. The more difficult-
to-implement issues are the organization of a database encoding such
groups, designing algorithms that build in situ the tautomeric iso-
mers, and collecting/validating reasonable penalty/reward values for
scoring. Again, a change in tautomermay require a re-optimization of
members in the water network surrounding the ligand.

5 Hydropathic Valence “Bond” Theory

Much like an atom may have unpaired electrons in orbitals that
need to be fulfilled by bonding with other atoms in the same
predicament, each amino acid residue and, for that matter all
molecules in the biological environment, also have what can be
thought of as a valence. This valence, however, possesses the hydro-
pathic character of the molecule or residue and can only be satisfied
by associating non-covalently with other species (or intramolecu-
larly) providing complementary character. Simply, where the target
species possesses a hydrogen bond donor, its complement should
be an acceptor, or where the target is hydrophobic, its complement
is likewise hydrophobic. This “theory” is, of course, an expression
of a well-known and accepted dogma. However, with our unique
HINT computational framework we have a powerful set of tools to
systematize, tally, and visualize all such interactions.

5.1 Conformation

and Folding

In a protein or other complex biomolecule, fulfillment of the
hydropathic valence of each residue or distinct domain may be
wholly or partially reached by the molecule’s adaptation of alternate

Understanding Water and Its Many Roles in Biological Structure: Ways to Exploit. . . 103



conformations wherein complementary groups within the mole-
cule are paired. Thus, the folding of proteins to “bury” their
hydrophobic portions as much as possible, the formation of salt
bridges and other hydrogen bonds, and the notably higher popula-
tion of the most polar residues on the surface of a protein can be
explained. We recently showed that even the specific conformations
that a residue adopts, i.e., its sidechain rotameric state as expressed
by the χ dihedrals, are responsive to this principle [23]. At least for
tyrosine [23], the small set of experimentally observed side-chain
conformations are associated with a limited number of 3D hydro-
pathic environments, which provide different approaches to satisfy
tyrosine’s hydropathic valence. We are continuing to document this
phenomenon with other residue types. Also, we are exploring
extensions of the principle to protein backbone angles, which rep-
resent the local secondary structure.

5.2 Solvation In the context of hydropathic valence, solvation is just a conse-
quence of fulfilling the valence needs of the polar portion of a
molecule. Within a protein, water molecules are found in locations
that meet both the hydropathic valence needs of the location and
have adequate space for it. The large majority of waters are thus
found in locations accessible to the surface and bulk solvent, i.e., in
pockets, crevices, and cavities. Water molecules on a protein surface
that are structurally conserved are often most strongly associated
with the most polar protein side chains such as Asp, Glu, Lys, or
Arg. Other water molecules found on the surface are, in turn,
associated with these. As a specific example, while tyrosine does
not carry a strongly polar side chain, the phenolic –OH can act as
either or both a hydrogen bond acceptor and donor. Also, the
phenyl ring can potentially act as an acceptor from a water molecule
although this is rarely observed in crystal structures. Our analysis of
tyrosine environments [23] clearly indicated that water molecules
played hydropathic roles in fulfilling valence that were indistin-
guishable to the tyrosine from those played by other polar atoms
on amino acid residues.

5.3 Docking Docking two molecules together is in practice an attempt to com-
putationally satisfy—optimally—both of the molecules’ hydro-
pathic valences. However, as seen above, there are many easy-to-
ignore factors at play, like ionization state, tautomerization, and
especially water. Nowhere have these blind spots been more obvi-
ous than in protein-protein docking. Only in the last 2–3 years have
protein-protein docking algorithms even started to incorporate
water in their methodologies [65–68], although a number of pro-
grams and protocols have been available for ligand-protein docking
with water for a number of years: the genetic-algorithm GOLD
[69] suite has an option for one-by-one toggling of known crystal-
lographic waters [69]. Similarly, Flex-X [70], AutoDock [71], and
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GLIDE [72, 73] have shown significant improvements in docking
performance with algorithms to simulate contributions of interfa-
cial waters. Lastly, full-scale molecular dynamics run post-docking
in explicit solvent [74, 75] has shown some success but at much
higher computational cost. Such explicit water methods have been
developed to estimate ligand-binding free energy with thermody-
namic integration, free energy perturbation theory, and linear inter-
action energy (LIE) models [76–78].

We were specifically interested in the roles that water molecules
play at protein-protein interfaces, as PPI inhibitors are an emerging
area for drug discovery research [79]. A huge obstacle is that there
is seldom a well-defined binding pocket for small molecules.
Instead, areas at PPIs with high energy must be identified as poten-
tial sites for ligand binding, and interfacial water molecules are
obvious targets [27, 28, 80]. We performed two exhaustive studies
of these complexes [27, 28]. Among the several key conclusions of
this work, two stand out: (1) water-mediated protein-protein inter-
actions are more pH change resistant than direct interactions
because the “bridging” water can easily adapt donating two pro-
tons to donating one and accepting one to accepting two protons,
and (2) there are more water molecules apparently “trapped”
(~26 %) between the two proteins and not making favorable inter-
actions with either than there are water molecules “bridging”
(~21 %) between the two. These two observations highlight the
crucial importance of explicitly including water in modeling of
interactions and the inherent difficulty of doing so: If over one-
fourth of all water molecules at a protein-protein interface are
seemingly unfavorable energetically, how can such water molecules
be predicted?

6 Conclusions

Although water molecules are ubiquitous in the biological milieu,
they are often ignored or poorly represented in many computa-
tional studies. Many of the methods and algorithms described
above for dealing with water are not very computationally sophisti-
cated and are not CPU intensive. They are, however, intuitive,
which is, in our view, very important. Also, because of their basis
in an experimental measurement of a thermodynamic property, the
technologies that we have provided are also inherently inclusive of
thermodynamic properties.

There are many moving parts in real molecular associations
such as a small-molecule binding to a protein to elicit a biological
activity. The two isolated molecules are at first solvated and as they
come together the water–molecule interactions are mostly replaced
by molecule–molecule and water–water interactions, although
some of the water molecules may be retained to fill voids or to
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form bridging molecule–water–molecule interactions. De-
structuring a water molecule by sending it to the bulk is an entropic
effect. Conformational adjustments are made by both molecules, if
doing so gains more free energy of binding than is expended for
adopting a higher energy conformation. Ionization states of acidic
or basic moieties may be changed or alternate tautomeric forms
may be adopted—again if that is energetically worthwhile. Of
course, this is all proceeding in a concerted manner. Some of
these events are amenable to quantum mechanical methods, others
are amenable to molecular dynamics simulations, but still others are
more phenomenological in nature and cannot be expressed with
first principle physics.

So, how can we use the knowledge of water and its many roles
for drug discovery and design? First, pay attention to hydrophobic
interactions and recognize that, in water, they are more than just
London force interactions and contribute one-third or more of the
binding free energy. Also, the presence of hydrophobic-polar inter-
actions often indicates good possibilities for chemical modification
that yields improved binding. Second, be guarded in acceptance of
water molecules reported in crystal structures because (a) they
could actually be an ion or other species and/or (b) the set may
be incomplete—the number of waters reported correlates strongly
with structure resolution. Third, carefully evaluate the ionization
states of key residues in the target site and putative ligands. There is
some good news here: because the two prototypical interactions
depicted in Fig. 8a, b are not too energetically dissimilar, it may be
possible to perform virtual screening, etc. by enumerating only the
target’s ionization state options in multiple runs (i.e., not enumer-
ating every potential ligand state). Fourth, Rank or other simple
metrics of water conservation can provide design clues, but the
more conserved a water appears to be, the more tenacious it will

Fig. 8 Two interaction models for amine interacting with carboxylic acid.
(a) Carboxylate with ammonium; (b) carboxylic acid with amine
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be. However, there may not be the substantive gain in energy
expected by displacing such a water molecule as it may not actually
be a large gain in entropy, and constrained bridging water mole-
cules can be equally effective and, in fact, make the complex more
resistant to pH changes [28].

Acknowledgements

Dedicated to Donald J. Abraham for his many contributions to the
development of structure-based drug discovery, to understanding
of the hydrophobic effect, and to the conception of HINT.

References

1. Jensen MØ,Mouritsen OG, Peters GH (2004)
The hydrophobic effect: molecular dynamics
simulations of water confined between
extended hydrophobic and hydrophilic sur-
faces. J Chem Phys 120(20):9729–9744

2. Shan Y, Kim ET, Eastwood MP, Dror RO,
Seeliger MA, Shaw DE (2011) How does a
drug molecule find its target binding site? J
Am Chem Soc 133(24):9181–9183

3. Dror RO, Pan AC, Arlow DH, Borhani DW,
Maragakis P, Shan Y, Xu H, Shaw DE (2011)
Pathway and mechanism of drug binding to G-
protein-coupled receptors. Proc Natl Acad Sci
U S A 108(32):13118–13123

4. Lindorff-Larsen K, Piana S, Dror RO, Shaw
DE (2011) How fast-folding proteins fold.
Science 334(6055):517–520

5. Kier LB, Tombes R, Hall LH, Cheng C-K
(2013) A cellular automata model of proton
hopping down a channel. Chem Biodivers 10
(3):338–342

6. Mobley DL, Dumont E, Chodera JD, Dill KA
(2007) Comparison of charge models for fixed-
charge force fields: small-molecule hydration
free energies in explicit solvent. J Phys Chem
B 111(9):2242–2254

7. Hansch C, Hoekman D, Leo A, Weininger D,
Selassie CD (2002) Chem-bioinformatics:
comparative QSAR at the interface between
chemistry and biology. Chem Rev 102
(3):783–812

8. Kellogg GE, Joshi GS, Abraham DJ (1992)
New tools for modeling and understanding
hydrophobicity and hydrophobic interactions.
Med Chem Res 1:444–453

9. Hansch C, Leo A (1979) Substituent constants
for correlation analysis in chemistry and biol-
ogy. Wiley, New York

10. Abraham DJ, Leo AJ (1987) Extension of the
fragment method to calculate amino acid zwit-
terion and side chain partition coefficients.
Proteins 2(2):130–152

11. Nys G, Rekker R (1974) The concept of hydro-
phobic fragmental constants (f-values). II
Extension of its applicability to the calculation
of lipophilicities of aromatic and hetero-
aromatic structures. Chem Ther 9(4):361–374

12. Kellogg GE, Abraham DJ (2000) Hydropho-
bicity: is LogPo/w more than the sum of its
parts? Eur J Med Chem 35(7):651–661

13. Levitt M (1983) Molecular dynamics of native
protein. I Computer simulation of trajectories.
J Mol Biol 168(3):595–617

14. Levitt M, PerutzMF (1988) Aromatic rings act
as hydrogen bond acceptors. J Mol Biol 201
(4):751–754

15. Burnett JC, Kellogg GE, Abraham DJ (2000)
Computational methodology for estimating
changes in free energies of biomolecular associ-
ation upon mutation. The importance of
bound water in dimer-tetramer assembly for
beta 37 mutant hemoglobins. Biochemistry
39(7):1622–1633

16. Burnett JC, Botti P, Abraham DJ, Kellogg GE
(2001) Computationally accessible method for
estimating free energy changes resulting from
site-specific mutations of biomolecules: sys-
tematic model building and structural/hydro-
pathic analysis of deoxy and oxy hemoglobins.
Proteins 42(3):355–377

17. Kellogg GE, Burnett JC, Abraham DJ (2001)
Very empirical treatment of solvation and
entropy: a force field derived from log Po/w. J
Comput-Aided Mol Des 15(4):381–393

18. Cozzini P, Fornabaio M, Marabotti A, Abra-
ham DJ, Kellogg GE, Mozzarelli A (2004)

Understanding Water and Its Many Roles in Biological Structure: Ways to Exploit. . . 107



Free energy of ligand binding to protein: eval-
uation of the contribution of water molecules
by computational methods. Curr Med Chem
11(23):3093–3118

19. Cozzini P, Fornabaio M, Marabotti A, Abra-
ham DJ, Kellogg GE, Mozzarelli A (2002)
Simple, intuitive calculations of free energy of
binding for protein-ligand complexes. 1. Mod-
els without explicit constrained water. J Med
Chem 45(12):2469–2483

20. Fornabaio M, Cozzini P, Mozzarelli A, Abra-
ham DJ, Kellogg GE (2003) Simple, intuitive
calculations of free energy of binding for
protein-ligand complexes. 2. Computational
titration and pH effects in molecular models
of neuraminidase-inhibitor complexes. J Med
Chem 46(21):4487–4500

21. Honig B, Nicholls A (1995) Classical electro-
statics in biology and chemistry. Science 268
(5214):1144–1149

22. AbrahamDJ, Kellogg GE, Holt JM, Ackers GK
(1997) Hydropathic analysis of the non-
covalent interactions between molecular subu-
nits of structurally characterized hemoglobins.
J Mol Biol 272(4):613–632

23. Ahmed MH, Koparde VN, Safo MK, Neel
Scarsdale J, Kellogg GE (2015) 3D interaction
homology: the structurally known rotamers of
tyrosine derive from a surprisingly limited set of
information-rich hydropathic interaction envir-
onments described by maps. Proteins 83
(6):1118–1136

24. Spyrakis F, Amadasi A, Fornabaio M, Abraham
DJ, Mozzarelli A, Kellogg GE, Cozzini P
(2007) The consequences of scoring docked
ligand conformations using free energy corre-
lations. Eur J Med Chem 42(7):921–933

25. Amadasi A, Spyrakis F, Cozzini P, AbrahamDJ,
Kellogg GE, Mozzarelli A (2006) Mapping the
energetics of water-protein and water-ligand
interactions with the “natural” HINT force-
field: predictive tools for characterizing the
roles of water in biomolecules. J Mol Biol 358
(1):289–309

26. Amadasi A, Surface JA, Spyrakis F, Cozzini P,
Mozzarelli A, Kellogg GE (2008) Robust clas-
sification of “relevant” water molecules in
putative protein binding sites. J Med Chem
51(4):1063–1067

27. AhmedMH,HabtemariamM, SafoMK, Scars-
dale JN, Spyrakis F, Cozzini P, Mozzarelli A,
Kellogg GE (2013) Unintended conse-
quences? Water molecules at biological and
crystallographic protein-protein interfaces.
Comput Biol Chem 47:126–141

28. Ahmed MH, Spyrakis F, Cozzini P, Tripathi
PK, Mozzarelli A, Scarsdale JN, Safo MA,

Kellogg GE (2011) Bound water at protein-
protein interfaces: partners, roles and hydro-
phobic bubbles as a conserved motif. PLoS
One 6:e24712

29. Grochowski P, Trylska J (2008) Continuum
molecular electrostatics, salt effects, and coun-
terion binding—a review of the Poisson-
Boltzmann theory and its modifications. Bio-
polymers 89(2):93–113

30. Kellogg GE, Chen DL (2004) The importance
of being exhaustive. Optimization of bridging
structural water molecules and water networks
in models of biological systems. Chem Biodi-
vers 1(1):98–105

31. Kuhn B, Fuchs JE, Reutlinger M, Stahl M,
Taylor NR (2011) Rationalizing tight ligand
binding through cooperative interaction net-
works. J Chem Inf Model 51(12):3180–3198

32. Schaal W, Karlsson A, Ahlsén G, Lindberg J,
Andersson HO, Danielson UH, Classon B,
Unge T, Samuelsson B, Hultén J, Hallberg A,
Karlén A (2001) Synthesis and comparative
molecular field analysis (CoMFA) of symmetric
and nonsymmetric cyclic sulfamide HIV-1 pro-
tease inhibitors. J Med Chem 44(2):155–169

33. Lam PY, Jadhav PK, Eyermann CJ, Hodge
CN, Ru Y, Bacheler LT, Meek JL, Otto MJ,
Rayner MM, Wong YN (1994) Rational design
of potent, bioavailable, nonpeptide cyclic ureas
as HIV protease inhibitors. Science 263
(5145):380–384

34. Garcı́a-Sosa AT, Mancera RL, Dean PM
(2003) WaterScore: a novel method for distin-
guishing between bound and displaceable
water molecules in the crystal structure of the
binding site of protein-ligand complexes. J Mol
Model 9(3):172–182

35. Lu Y, Wang R, Yang C-Y, Wang S (2007)
Analysis of ligand-bound water molecules in
high-resolution crystal structures of protein-
ligand complexes. J Chem Inf Model 47
(2):668–675

36. Raymer ML, Sanschagrin PC, Punch WF, Ven-
kataraman S, Goodman ED, Kuhn LA (1997)
Predicting conserved water-mediated and polar
ligand interactions in proteins using a K-near-
est-neighbors genetic algorithm. J Mol Biol
265(4):445–464

37. Barillari C, Taylor J, Viner R, Essex JW (2007)
Classification of water molecules in protein
binding sites. J Am Chem Soc 129
(9):2577–2587

38. Trott O, Olson AJ (2010) AutoDock Vina:
improving the speed and accuracy of docking
with a new scoring function, efficient optimiza-
tion, and multithreading. J Comput Chem 31
(2):455–461

108 Mostafa H. Ahmed et al.



39. Spyrakis F, Cavasotto CN (2015) Open chal-
lenges in structure-based virtual screening:
receptor modeling, target flexibility consider-
ation and active site water molecules descrip-
tion. Arch Biochem Biophys 583:105–119

40. Alphey MS, Pirrie L, Torrie LS, Boulkeroua
WA, Gardiner M, Sarkar A, Maringer M, Oehl-
mann W, Brenk R, Scherman MS, McNeil M,
Rejzek M, Field RA, Singh M, Gray D, West-
wood NJ, Naismith JH (2013) Allosteric com-
petitive inhibitors of the glucose-1-phosphate
thymidylyltransferase (RmlA) from Pseudomo-
nas aeruginosa. ACS Chem Biol 8(2):387–396

41. Bayden AS, Moustakas DT, Joseph-McCarthy
D, Lamb ML (2015) Evaluating free energies
of binding and conservation of crystallographic
waters using SZMAP. J Chem Inf Model 55
(8):1552–1565

42. Fornabaio M, Spyrakis F, Mozzarelli A, Coz-
zini P, Abraham DJ, Kellogg GE (2004) Sim-
ple, intuitive calculations of free energy of
binding for protein-ligand complexes. 3. The
free energy contribution of structural water
molecules in HIV-1 protease complexes. J
Med Chem 47(18):4507–4516

43. Goodford PJ (1985) A computational proce-
dure for determining energetically favorable
binding sites on biologically important macro-
molecules. J Med Chem 28(7):849–857

44. Cross S, Baroni M, Carosati E, Benedetti P,
Clementi S (2010) FLAP: GRID molecular
interaction fields in virtual screening. Valida-
tion using the DUD data set. J Chem Inf
Model 50(8):1442–1450

45. Wallnoefer HG, Liedl KR, Fox T (2011) A
GRID-derived water network stabilizes molec-
ular dynamics computer simulations of a prote-
ase. J Chem Inf Model 51(11):2860–2867

46. Yang Y, Lightstone FC, Wong SE (2013)
Approaches to efficiently estimate solvation
and explicit water energetics in ligand binding:
the use of WaterMap. Expert Opin Drug Dis-
cov 8(3):277–287

47. Pitt WR, Goodfellow JM (1991) Modelling of
solvent positions around polar groups in pro-
teins. Protein Eng 4(5):531–537

48. Kortvelyesi T, Dennis S, Silberstein M, Brown
L, Vajda S (2003) Algorithms for computa-
tional solvent mapping of proteins. Proteins
51(3):340–351

49. Schymkowitz JWH, Rousseau F, Martins IC,
Ferkinghoff-Borg J, Stricher F, Serrano L
(2005) Prediction of water and metal binding
sites and their affinities by using the Fold-X
force field. Proc Natl Acad Sci U S A 102
(29):10147–10152

50. Kellogg GE, FornabaioM, Chen DL, Abraham
DJ (2005) New application design for a 3D
hydropathic map-based search for potential
water molecules bridging between protein and
ligand. Internet Electron JMol Des 4:194–209

51. Spyrakis F, Fornabaio M, Cozzini P, Mozzarelli
A, Abraham DJ, Kellogg GE (2004) Compu-
tational titration analysis of a multiprotic HIV-
1 protease-ligand complex. J Am Chem Soc
126(38):11764–11765

52. Koparde VN, Scarsdale JN, Kellogg GE (2011)
Applying an empirical hydropathic forcefield in
refinement may improve low-resolution pro-
tein X-ray crystal structures. PLoS One 6:
e15920

53. Ullmann GM, Kloppmann E, Essigke T, Kram-
mer E-M, Klingen AR, Becker T, Bombarda E
(2008) Investigating the mechanisms of pho-
tosynthetic proteins using continuum electro-
statics. Photosynth Res 97(1):33–53

54. Antosiewicz JM, Shugar D (2011) Poisson–-
Boltzmann continuum-solvation models:
applications to pH-dependent properties of
biomolecules. Mol Biosyst 7(11):2923–2949

55. Bashford D (2004) Macroscopic electrostatic
models for protonation states in proteins.
Front Biosci J Virtual Libr 9:1082–1099

56. Gunner MR, Mao J, Song Y, Kim J (2006)
Factors influencing the energetics of electron
and proton transfers in proteins. What can be
learned from calculations. Biochim Biophys
Acta Bioenerget 1757:942–968

57. Goh GB, Knight JL, Brooks CL 3rd (2012)
Constant pH molecular dynamics simulations
of nucleic acids in explicit solvent. J Chem
Theor Comput 8(1):36–46

58. Wallace JA, Shen JK (2011) Continuous con-
stant pHmolecular dynamics in explicit solvent
with pH-based replica exchange. J Chem
Theor Comput 7(8):2617–2629

59. Donnini S, Tegeler F, Groenhof G, Grubm€ul-
ler H (2011) Constant pH molecular dynamics
in explicit solvent with λ-dynamics. J Chem
Theor Comput 7(6):1962–1978

60. Li H, Robertson AD, Jensen JH (2005) Very
fast empirical prediction and rationalization of
protein pKa values. Proteins 61(4):704–721

61. Bayden AS, Fornabaio M, Scarsdale JN, Kel-
logg GE (2009) Web application for studying
the free energy of binding and protonation
states of protein-ligand complexes based on
HINT. J Comput Mol Des 23(9):621–632

62. Tripathi A, Fornabaio M, Spyrakis F, Mozzar-
elli A, Cozzini P, Kellogg GE (2007)
Complexity in modeling and understanding

Understanding Water and Its Many Roles in Biological Structure: Ways to Exploit. . . 109



protonation states: computational titration of
HIV-1-protease-inhibitor complexes. Chem
Biodivers 4(11):2564–2577

63. Kellogg GE, FornabaioM, Chen DL, Abraham
DJ, Spyrakis F, Cozzini P, Mozzarelli A (2006)
Tools for building a comprehensive modeling
system for virtual screening under real
biological conditions: the computational titra-
tion algorithm. J Mol Graph Model 24
(6):434–439

64. Martin YC (2009) Let’s not forget tautomers, J
Comput Mol Des 23(10):693–704

65. Chen J, Brooks CL III, Khandogin J (2008)
Recent advances in implicit solvent-based
methods for biomolecular simulations. Curr
Opin Struct Biol 18(2):140–148

66. Kastritis PL, van Dijk ADJ, Bonvin AMJJ
(2012) Explicit treatment of water molecules
in data-driven protein-protein docking: the sol-
vated HADDOCKing approach. Methods Mol
Biol 819:355–374

67. Van Dijk ADJ, Bonvin AMJJ (2006) Solvated
docking: introducing water into the modelling
of biomolecular complexes. Bioinformatics 22
(19):2340–2347

68. Parikh HI, Kellogg GE (2014) Intuitive, but
not simple: including explicit water molecules
in protein-protein docking simulations
improves model quality. Proteins 82
(6):916–932

69. Verdonk ML, Chessari G, Cole JC, Hartshorn
MJ, Murray CW, Nissink JWM, Taylor RD,
Taylor R (2005) Modeling water molecules in
protein-ligand docking using GOLD. J Med
Chem 48(20):6504–6515

70. Kramer B, Rarey M, Lengauer T (1999) Eval-
uation of the FLEXX incremental construction
algorithm for protein-ligand docking. Proteins
37(2):228–241

71. Morris GM, Huey R, Lindstrom W, Sanner
MF, Belew RK, Goodsell DS, Olson AJ
(2009) AutoDock4 and AutoDockTools4:

automated docking with selective receptor flex-
ibility. J Comput Chem 30(16):2785–2791

72. Friesner RA, Banks JL, Murphy RB, Halgren
TA, Klicic JJ, Mainz DT, Repasky MP, Knoll
EH, Shelley M, Perry JK, Shaw DE, Francis P,
Shenkin PS (2004) Glide: a new approach for
rapid, accurate docking and scoring. 1. Method
and assessment of docking accuracy. J Med
Chem 47(7):1739–1749

73. Halgren TA, Murphy RB, Friesner RA, Beard
HS, Frye LL, Pollard WT, Banks JL (2004)
Glide: a new approach for rapid, accurate dock-
ing and scoring. 2. Enrichment factors in data-
base screening. JMed Chem 47(7):1750–1759

74. Jorgensen WL, Chandrasekhar J, Madura JD,
Impey RW, Klein ML (1983) Comparison of
simple potential functions for simulating liquid
water. J Chem Phys 79(2):926–935

75. Toukan K, Rahman A (1985) Molecular-
dynamics study of atomic motions in water.
Phys Rev B Condens Matter 31(5):2643–2648

76. K€astner J, Senn HM, Thiel S, Otte N, Thiel W
(2006) QM/MM free-energy perturbation
compared to thermodynamic integration and
umbrella sampling: application to an enzymatic
reaction. J Chem Theory Comput 2
(2):452–461

77. Gutiérrez-de-Terán H, Aqvist J (2012) Linear
interaction energy: method and applications in
drug design. Methods Mol Biol 819:305–323

78. Abel R, Young T, Farid R, Berne BJ, Friesner
RA (2008) Role of the active-site solvent in the
thermodynamics of factor Xa ligand binding. J
Am Chem Soc 130(9):2817–2831

79. Wells JA, McClendon CL (2007) Reaching for
high-hanging fruit in drug discovery at
protein-protein interfaces. Nature 450
(7172):1001–1009

80. Guo W, Wisniewski JA, Ji H (2014) Hot spot-
based design of small-molecule inhibitors for
protein-protein interactions. Bioorg Med
Chem Lett 24(11):2546–2554

110 Mostafa H. Ahmed et al.



Methods in Pharmacology and Toxicology (2016): 111–132
DOI 10.1007/7653_2015_45
© Springer Science+Business Media New York 2015
Published online: 12 August 2015

CAVITY: Mapping the Druggable Binding Site

Weilin Zhang, Yaxia Yuan, Jianfeng Pei, and Luhua Lai

Abstract

Identifying reliable binding sites based on three-dimensional structures of proteins and other macromole-
cules is a key step in drug discovery. A good definition of known binding site and the detection of a novel
site can provide valuable information for drug design efforts. CAVITY is developed for the detection and
analysis of ligand-binding site(s). It has the capability of detecting potential binding site as well as estimating
both the ligandabilities and druggabilites of the detected binding sites. CAVITY has been successfully
applied in many research projects as a stand-alone program or combined with other drug discovery
software. In this chapter, we introduce the computational methods and protocols used in CAVITY, and
use examples to further illustrate the detailed procedures of how to apply this computational software.

Keywords: Druggability, Ligandability, Binding site detection, CavityScore, CavityDrugScore

1 Introduction

Protein-ligand (macromolecule-ligand) interactions are involved in
many essential biological processes. Experimental techniques such
as X-ray crystallography, nuclear magnetic resonance (NMR), as
well as cryo-EM have been used to obtain a large amount of 3D
structural data, which provide enriched resources for structure-
based drug design. For a certain protein structure, evaluation of
whether it might be a potential drug target is important. Such an
assessment could help the researchers avoid intractable targets and
focus their efforts on the target sites with better prospective. Suit-
able geometry and physical-chemistry properties of a binding site
are essential for potent ligand binding. In this sense, many detailed
aspects are considered at molecular level to estimate the feasibility
of drug discovery on a certain target. For example, both NMR
fragment-based and virtual screening-based approaches have sug-
gested that favorable druggability is highly correlated with pocket
hydrophobicity and shape [1, 2].

Many computational structure-based methods have been
developed for the detection of binding sites in the past years [3].
Geometry-based, energy-based, and geometry-energy hybrid
schemes [4–6] are the most commonly used strategies. The major
properties adopted in these methods include volume,
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hydrophobicity, hydrogen bonding, potential energy, solvent acces-
sibility, desolvation energy, and residue propensities depending on
the individual algorithm. The geometry-based methods usually use
geometric criteria generated by first making a regular 3D grid
embracing the protein and then moving a small-molecule probe
around the grid to check for positions that are accessible and
inaccessible, or energetically favorable and unfavorable, based on
the distance and/or relatively simple interaction energy equations.
Energy-based methods adopt similar gridding procedure, but apply
certain particular strategies to compute the interaction energy
between protein atoms and small-molecule probes. For most of
the cases, both geometry-based and energy-based methods per-
form well. As demonstrated by different studies, over 95 % of the
known binding sites could be retrieved within the top five ranked
pockets detected by such programs [7, 8]. In general, geometry-
based algorithms are relatively faster and more robust in the case of
structural variations, while the energy-based methods tend to have
better accuracy in sub-pocket predictions. We will use CAVITY as
an example to show how such a program could help researchers in
their studies.

CAVITY is a structural geometry-based ligand-binding site
detection program with the capability of predicting both the
ligandabilities and druggabilites of the detected binding sites [8].
CAVITY was originally used in the de novo drug design tool
Ligbuilder 2.0 [9] to accurately reflect the key interactions within
a binding site as well as to confine the ligand growth within a
reasonable region; it was later developed into a stand-alone pro-
gram for binding site detection and analysis. The CAVITY
approach generates clear and accurate information about the shapes
and boundaries of the ligand-binding sites, which provide helpful
information for drug discovery studies: (1) For cases where a
protein-ligand complex of the target protein is available, CAVITY
can be used to detect the binding site regions which are not covered
by the known ligand(s) and provide clues for the improvement of
ligand-binding affinity. In addition, the predicted ligandability and
druggability of the binding site would tell the researchers whether
further improvement of the known ligand is promising. (2) For
cases where ligands are known, but the structural information of
ligand-target interactions is not available, CAVITY can be used to
detect the binding site and the binding mode of the known ligands
could be predicted by using molecular docking technique. (3) For
cases with no reported ligand, CAVITY can not only be used to
detect potential binding sites, but also to provide qualitative esti-
mations of ligandability and druggability for potential binding sites
on the target protein, which is very important for making an early-
stage decision about whether the protein is a promising target for a
drug discovery project. CAVITY has been used in many different
projects to help generate such information and clues [10–15].
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2 Computational Methods Used in CAVITY

2.1 Binding Site

Detection

CAVITY is a geometry-based method. The binding site detection
process includes six steps (Fig. 1).

1. A large 3D grid is made first to embrace the protein.

2. A spherical probe is used to roll around the surface of a protein
to erase the far-away grid positions and leave the occupied

Fig. 1 Schematic diagram of cavity detection in CAVITY. (a) Protein (black colored ) in grid box (green colored ).
(b) Using the eraser ball to remove grid points outside protein. (c) “Vacant” grid points after erasing. Four
cavities were shown in different colors. (d) Shrink each cavity until the depth reaches the minimal depth.
(e) Recover cavities to obtain the final result
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positions by protein atoms and vacant positions on the protein
surface.

3. Continuous pockets are split into separated cavities based on
the decrease of “layer depth.”

4. The sizes of the cavities are recovered to their original size after
shrinking separation process by increase of the “layer depth.”

5. Detected cavities are sorted according to CavityScore value.

6. Druggability of the detected cavities is characterized by Cavity-
DrugScore value.

2.2 Binding Site

Analysis

CAVITY uses CavityScore and CavityDrugScore [8] to make quan-
titative and qualitative predictions for the ligandability and drugg-
ability of a binding site, respectively. Ligandability is defined as the
chance of finding a small molecule binds to a certain target; drugg-
ability is the chance of being a good target for drug discovery.

The Cavity Score is defined as

Cavity Score ¼ Volume� Adjust volume

Surface area� Adjust surface area

where

Adjust volume ¼ Boundary volume 2 layersð Þ
�Hydrophobic volume

Adjust surface area ¼ Hydrogen bond donor surface areaþ
Hydrogen bond acceptor surface area

The value of CavityScore is related to the depth of the pocket,
the size of the pocket lip, the physicochemical properties of hydro-
phobicity, and the presence of hydrogen bond(s). Generally, a high
CavityScore comes from (1) large vacant volume, (2) small lip size,
(3) large hydrophobic volume, and (4) large hydrogen-bond-form-
ing surface. By using the training sets from PDBBIND [16, 17],
both the maximal experimental binding affinity pKd(Max) and
the average experimental binding affinity pKd(Ave) showed linear
relationship with CavityScore. Therefore, CavityScore is used to
predict the maximal and the average pKd of the binding site by a
linear equation [8, 18] (see Note 1):

pKd Maxð Þ ¼ 1:80� CavityScoreþ 2:7
pKd Aveð Þ ¼ 0:62� CavityScoreþ 3:6

“Druggability” stands for a more complicated property which
could be related to higher level properties of ligands (ADME/T)
as well as the role of the macromolecules act in cellular pathways
[19]. Sometimes marketing factors are also involved. Considering
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the complexity of “druggability,” many researchers have applied
machine learning algorithms to make a qualitative prediction,
where the descriptors related to more detailed and local specific
characteristics such as curvature, lipophilic surface, enclosure, and
polar interactions [20, 21]. For such approaches, a better training
set could improve the performance of the generated models
[22–25].

The Cavity Drug Sore is defined as

Cavity Drug Score ¼ N b �N h

N v
� 6000� Enclosure

where:

Enclosure ¼ N s

N v

Nb is the number of the hydrophobic and hydrogen-bonding grid
points inside the cavity; Nh is the number of hydrophobic grid
points; Nv is the total number of grid points inside the cavity; and
Ns is the number of grid points in the lip layers of the cavity. These
descriptors were trained and validated by NRDLD data set [25]
which contains crystal structures of 71 druggable and 44 less
druggable proteins from literatures. The main cutoff value between
druggable and less druggable proteins is �180. If a CavityDrug-
Sore value is lower than �180, the Druggability category will be
labeled as “Undruggable” which means that it may not be a good
targeting site. If a CavityDrugSore value is larger than �180 but
less than 600, the Druggability category will be labeled as “Hard”
which means that it may be relatively difficult to find a druggable
small molecule by targeting this site than a Druggable cavity. If the
CavityDrugSore value is larger than 600, the Druggability category
will be labeled as “Druggable.”

2.3 Availability

of CAVITY

CAVITY can be used on LINUX platforms. The binary files of
CAVITY are freely available to academic users at the website
http://www.ligbuilder.org.

An online computation server was also established at
http://www.ligbuilder.org/cavity/home.php
To install CAVITY, first uncompress the downloaded CAVITY

package:

tar -zxf cavity.tar.gz
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The software package contains the following directories and
files:

example/ Example file directory

default/ Default and preset input parameters

parameter/ Necessary structure parameters

cavity32 32-bit program

cavity64 64-bit program

cavity.input An input file template

whole.input An input file template for whole protein mode

ligand.input An input file template for ligand-guided detecting mode

area.input An input file template for area mode

The default executable file was compiled under 32-bit system
(cavity32) and 64-bit system (cavity64).

3 Procedure of Using CAVITY

For simplicity, we will use a protein-ligand complex as a starting
point to demonstrate the procedure of CAVITY. The protein we
choose is secretory phospholipase A2 (sPLA2). sPLA2 hydrolyzes
the acyl ester bond of phosphoglycerides at its sn-2 position and
liberates free fatty acids. It has been considered as a key enzyme of
inflammation [26] and many crystal structures of protein-ligand
complexes were reported [27–29].

A practical CAVITY process includes three major steps: (1)
prepare structure files (Section 3.1), (2) prepare CAVITY input
file for different running mode and run the program (Sec-
tions 3.2–3.4), and (3) analyze the results (Section 3.7). Because
CAVITY is a geometry-based method, it could also be used for
detecting pockets on DNA/RNAs (Section 3.5). Besides normal
parameters in the template input files, other parameters could also
be adjusted to satisfy more specific jobs for the advanced users
(Section 3.6). A server mode is also presented as the last part of
this section.

3.1 Preprocess

Protein Structures

as Input Data

A 3D-protein structure file in the Protein Data Bank (PDB) format
is required as input for CAVITY. Such a structure file could be
downloaded from PDB and preprocessed by visualization software
such as PyMOL [30] or generated by using other computational
modeling tools in PDB format [31]. If the “ligand-guided detect-
ing” mode is chosen, a ligand file must also be provided in Tripos
Mol2 file format [32].

116 Weilin Zhang et al.



The structure file of the example protein, human secretory
phospholipase A2 (PDB ID: 1DB4), could be downloaded from

http://www.rcsb.org/pdb/files/1db4.pdb.
The PDB files will be preprocessed first. With the help

of visualization modeling tools, we can easily remove the
unwanted molecules such as waters and ions. It is also important
to examine the structure for missing residues. In the following,
we illustrate the procedure of using the PyMOL program for
protein structure preparation. Other visualization tools can be
used similarly (see Notes 2 and 3).

1. Make a directory under the CAVITY directory and put the
downloaded PDB file here:

mkdir 1db4

cp 1DB4.pdb 1db4/.

2. Load original protein file with PyMOL, and open the down-
loaded PDB file 1DB4.pdb by File -> Open or

load 1DB4.pdb

3. Extract ligands if exists:

(a) Open the sequence viewer in the PyMOL viewer by

l Choose “Display” in the Menu and then choose
“sequence” or

l Click the small “S” button on the lower left panel.

(b) Select the ligand residue as indicated in Fig. 2 and a
“(sele)” item will be generated on the left panel.

(c) Click the small “A” button just behind (sele).

(d) From the prompt out menu, choose “extract object” and
then a new object “obj01” will be generated.

4. Remove water molecules:

Remove all the water molecules by:
remove resn HOH

5. Remove ion atoms:

Because the calcium atom is essential here for the binding site.
We will keep it in this example. If they are not necessary we
could remove them using similar command as we remove water
molecules (see Note 4).

6. Save input files:

Save the protein into file 1db4_protein.pdb. Save the ligand
into file 1db4_ligand.mol2 for later usage.

3.2 Binding Site

Detection: The Whole

Protein Detection

Mode

The whole protein detection mode is usually used when there is no
ligand reported for a target protein. CAVITY will search the entire
protein surface for all potential pockets as illustrated in Fig. 1.
This mode is the most time-consuming mode. Depending on the
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size of the target and the speed of the hardware, one computation
may take about 1 min to half an hour. Besides detecting potential
binding sites, CAVITY can also be used to provide a qualitative
estimation of ligandability and druggability for potential binding
site in the target protein, which would be important for early-stage
judgment of whether this target is promising for drug discovery.
In this part, we only use the 1db4_protein.pdb file.

1. Create an input file from template input file “whole.input” by:

cp whole.input cavity_1db4.input

2. Edit the input file with a text editor (vi, gedit, etc.).

Change the following lines of cavity_1db4.input:
RECEPTOR_FILE example/AA/1db4.pdb

to

RECEPTOR_FILE 1db4_protein/1db4_protein.pdb

Save this file.

3. Run CAVITY program:
cavity64 cavity_1db4.input

It will take 1–2 min for CAVITY to finish the calculation.

Fig. 2 Extract ligand from protein-ligand complex in PDB format using PyMOL

118 Weilin Zhang et al.



3.3 Binding Site

Detection: The Ligand-

Guided Detection Mode

When a protein-ligand complex of the target protein is available,
CAVITY can be used to detect the binding site regions that are not
covered by the known ligand and provide clues for the improve-
ment of ligand-binding affinity. With a prepositioned ligand in the
target protein, CAVITY is guided to define a detection boundary
much narrower than the whole protein mode, which is still larger
enough for the indicated local area. Therefore it will be ideal if the
size, shape, and location of the ligand are proper. To use this mode,
a ligand file in Mol2 format is required (seeNote 5). In most of the
cases, a ligand extracted directly from the complex structure will be
just fine. In this part, we use both 1db4_protein.pdb and 1db4_li-
gand.mol2 files.

1. Create a new directory “1db4_ligand” and copy the receptor
and ligand file to this directory:

mkdir 1db4_ligand

cp 1db4/* 1db4_ligand/.

2. Create an input file from template input file “cavity.input” by:

cp ligand.input cavity_1db4_ligand.input

Then edit the input file with a text editor. Change the following
lines to user-defined receptor and ligand file names
(“1db4_protein.pdb” and “1db4_ligand.mol2” respectively):

RECEPTOR_FILE example/AA/1db4.pdb

LIGAND_FILE example/AA/1db4.mol2

to

RECEPTOR_FILE 1db4_ligand/1db4_protein.pdb

LIGAND_FILE 1db4_ligand/1db4_ligand.mol2

3. Run CAVITY program:

cavity64 cavity_1db4_ligand.input

It will take 1–2 min for CAVITY to finish the calculation.

3.4 Binding Site

Detection: The Area

Mode

In some cases, we may be only interested in certain part of the
protein, but do not have a protein-ligand complex structure avail-
able to use the ligand-guided detection mode. Manually assigning
the detection boundary will be a solution for such cases. In the
“Area mode,” a detection boundary is defined by the minimum and
maximum 3D dimensional coordinates. Therefore, the region
could be adjusted to various volumes and positions.

1. Open the 1db4_protein.pdb file in PyMOL.

(a) Open the sequence viewer as we did in Section 3.1.
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(b) Select HIS47.

(c) In the lower command line type:

get_extent sele

(d) The minimum and maximum XYZ coordinates of this
selection will be returned as an array:

cmd.extent: min: [56.222, 26.532, 37.984]

cmd.extent: max: [61.443, 29.846, 41.611]

Here, we define the Area mode detection region by subtracting
and adding 16 to the minimum and the maximum coordinates,
respectively. The values are as follows:

min: [40.222, 10.532, 21.984]

max: [77.443, 45.846, 57.611]

We will put these values into the input file later.

2. Create a new directory “1db4_ligand” and copy the receptor
file to this directory:

mkdir 1db4_area

cp 1db4/1db4_protein.pdb 1db4_area/

3. Create an input file from template input file “cavity.input” by:
cp area.input cavity_1db4_area.input

Then edit the input file by a text editor to define the region for
CAVITY to search. As we already have the values in step 1, change
the following lines:

RECEPTOR_FILE example/AA/1db4.pdb

MIN_X XX.XX

MAX_X XX.XX

MIN_Y XX.XX

MAX_Y XX.XX

MIN_Z XX.XX

MAX_Z XX.XX
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To

RECEPTOR_FILE example/AA/1db4.pdb

MIN_X 40.22

MAX_X 77.44

MIN_Y 10.53

MAX_Y 45.85

MIN_Z 21.98

MAX_Z 57.61

4. Run CAVITY program:

cavity64 cavity_1db4_area.input

It will take 1–2 min for CAVITY to finish this calculation.

3.5 DNA/RNA With the force field parameters for DNA and RNA, CAVITY can
also be used to detect potential pockets on DNA and RNA seg-
ments. In the example directory, a brief example is provided using a
DNA double-helix fragment (4AH1).

1. Create a new directory DNA_test and copy the input pdb file to
this directory:

cp example/DNA/4AH1 DNA_test/.

2. Create an input file from template input file cavity.input by:

cp whole.input cavity_DNA_test.input

Then edit the input file with a text editor to assign the recep-
tor’s file name. Change the following lines:

RECEPTOR_FILE example/AA/1db4.pdb

to

RECEPTOR_FILE DNA_test/4AH1.pdb

Because the cavities in DNA/RNA system are relatively larger
compared to protein-ligand system, we will use a specialized
input parameter set contained in file “large.input” instead of
standard input by commenting out the line:

INCLUDE ./default/standard.input

By adding a “#” at the beginning of the line. Then deleting “#”
at the beginning of this line:

#INCLUDE ./default/large.input

To

INCLUDE ./default/large.input

Save this file.

CAVITY: Mapping the Druggable Binding Site 121



3. Run CAVITY program:

cavity64 cavity_DNA_test.input

It will take 1–2 min for CAVITY to finish the calculation.

3.6 Result Analysis The names of the output files resulted from CAVITY will be pre-
fixed with the name indicated by RECEPTOR_FILE and the
binding-site index number. For the example (1db4) described
above, the following files will be generated in the same directory
as indicated in the RECEPTOR_FILE parameter’s value:

1db4_protein_summary.txt

1db4_protein_surface.pdb

1db4_protein_vacant.pdb

1db4_protein_surface_1.pdb

1db4_protein_vacant_1.pdb

1db4_protein_pharmacophore_1.pdb

1db4_protein_pharmacophore_1.txt

. . .

3.6.1 View the Summary

and Estimate the

Ligandability and

Druggability

Name_summary.txt(1db4_protein_summary.txt): This file con-
tains the main characteristics to describe the potential pockets,
including CavityScore, pKd(Max), pKd(Ave), Vacant volume, Sur-
face, DrugScore, and Druggability Category. Some of these
descriptors are also included in the visualization files. User can
view this file with a plain text editor.

Example:
1db4_protein/1db4_protein_surface_1.pdb

REMARK 5 Predicted Maximal pKd: 10.61

REMARK 5 Predicted Average pKd: 6.26

REMARK 6 DrugScore: 567.00

REMARK 6 Druggability: Hard

The pKd(Max) and pKd(Ave) indicate the ligandability of
the binding site in a more intuitive way. The pKd(Max) suggests
the upper limit of binding affinity for compound optimization; the
pKd(Ave) suggests the most possible average Kd values for the
ligands in this pocket. If these values especially the pKd(Max) are
less than 6.0 (equivalent to Kd ¼ 1 μM), this binding site may not
be a suitable drug design target [8, 18].

“ligandability” is only part of the “druggability” that reflects
the possibility of finding small active ligands. To have a better
discrimination between druggable binding sites and undruggable
binding site, druggability category derived from CavityDrugScore
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is used to give a more readable version. If the cavity’s druggability
category is labeled as “Undruggable,” it may not be a good posi-
tion for the binding of druggable small molecules. If the cavity’s
Druggability category is labeled as “Hard,” it may take much more
efforts to find a druggable small molecule. If the Druggability
category is “Druggable,” it is possible to find a high affinity as
well as druggable small molecule.

Besides these properties, Vacant volume is another important
geometrical descriptor. If it is less than 200 Å3, it will be difficult for
a small molecule to bind to this cavity.

3.6.2 Graphic

Visualization of the CAVITY

Result

CAVITY will also output the following visual files for a graphic view
of the detection results.

NAME_surface.pdb: This output file stores the surface shape of the
binding site and CavityScore. By using molecular modeling
software like PyMOL (see Note 6), users could view this
file and obtain an insight into the geometrical shape of the
binding site.

NAME_vacant.pdb: This output file stores the volume shape of the
binding site. By using molecular modeling software, user could
view this file, obtain an insight into the geometrical shape of the
binding site, and evaluate the size of small molecules that may
bind to this site.

NAME_cavity.pdb: This output file stores the protein atoms form-
ing the binding site. By using molecular modeling software,
user could view this file and obtain an insight into the residues
that constitute the binding site.

NAME_pharmacophore.pdb: This output file stores the pharma-
cophore model derived from key interaction grid site inside the
binding site [33]. It is in the PDB file format, in which nitrogen
atoms represent hydrogen-bond donor sites; oxygen atoms
represent hydrogen-bond acceptor sites; and carbon atoms
represent hydrophobic sites. By using molecular modeling soft-
ware, user could view this file and obtain an insight into the key
pharmacophore features of the binding site.

NAME_pharmacophore.txt: This output file stores the information
of the derived pharmacophore model. It lists the pharmaco-
phore features and the internal distances between them. It also
ranks all the features according to their binding scores. It is the
text version of the corresponding NAME _pharmacophore.
pdb. It can be used as input for other software.

3.7 Input Parameters There are several other input parameters besides the input para-
meters that we modified in the template files above. We put several
critical parameters in the predefined input parameter files which can
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be used for different types of systems (Section 3.7.1). For advanced
users, more detailed descriptions of important parameters are
provided in Section 3.7.2.

3.7.1 Predefined Input

Parameter Sets

For convenience, we provided default running parameter sets to
adapt different tasks. Predefined critical parameters for pocket
detection, such as SEPARATE_MIN_DEPTH, are included in
such parameter sets. Users may simply load them into input param-
eter file by using the keyword INCLUDE. These predefined files
are under the path cavity/default/:

Overall default set:

default.input: The overall default parameter set of CAVITY.

Detection mode set:

standard.input: For common binding site, default.

peptide.input: For shallow cavity, e.g., peptide-protein and protein-
protein interface.

large.input: For large and complex cavity, e.g., large protein-
protein interface, multi-function cavity, multi-substrate cavity,
channel, and nucleic acid site.

super.input: For super-sized cavity, e.g., large channel and large
polymer interface.

3.7.2 Important

Parameters

Users can manipulate individual parameters for their own purpose.
Such parameter assignment should be declared in the top input
parameter file (such as cavity_1db4_protein.input). The values
assigned here will override the values in those predefined parameter
set files. The declaration could be commented out by adding # at
the beginning of the line. Below are detailed descriptions of the
important files and parameters for running CAVITY.

RECEPTOR_FILE: The PDB file presenting the target protein.
This file is required for running CAVITY.

DETECT_MODE: Detect mode of CAVITY.

0: Whole protein mode: CAVITY will detect the whole protein to
find all potential binding sites, and this is the default mode.

1: Ligand mode: CAVITY will detect around the ligand-binding
region indicated by a given Mol2 file. It helps the program to
locate the interested binding site. However in most cases,
CAVITY could locate the binding site without a given ligand’s
coordinates. Users may try this mode if not satisfied with the
result from using the whole protein mode and only interested
in the known ligand-binding region.

LIGAND_FILE parameter is required for this mode.
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2: Area mode: CAVITY will detect the specific space area assigned
by user. X_MIN, X_MAX, Y_MIN, Y_MAX, Z_MIN, and
Z_MAX are the minimum and maximum coordinates in 3D
space of the detection region. These parameters are required
for this mode.

LIGAND_FILE: This Mol2 file presenting a ligand of the target
protein (needed if DETECT_MODE is 1). It guides CAVITY
to define detection boundary; therefore it will be ideal if the
size, shape, and location of the ligand are properly set. A ligand
extracted directly from the complex structure will be just fine.
Below are some advanced parameters:

For input section:

PARAMETER_DIRECTORY: The path of the directory “parame-
ter” where the force field parameters used by Cavity are located.

HETMETAL: Determine whether metal irons are considered when
detecting the cavities. Default: Yes.

YES: Metal irons in the protein will be considered.
NO: Metal irons in the protein will not be considered.
HETWATER: Determine whether water molecules are considered

when detecting the cavities. Default: No.
YES: Water in the protein will be considered.
NO: Water in the protein will not be considered.

For output section:

OUTPUT_RANK: This is a user-defined CavityScore cutoff. CAV-
ITY will only output detected binding sites whose CavityScore
is greater than OUTPUT_RANK. User may increase this value
to prevent CAVITY outputting useless results.

For cavity detection process:

RADIUS_LENTH: The radius of eraser ball (unit: 0.5 Å). User
may increase this radius to detect plane and shallow binding
site, e.g., peptide-binding site and protein-protein interface.

Default: 10.
SEPARATE_MIN_DEPTH: Default minimal depth of binding

site. When linkage between sub-cavities does not reach this
value, the sub-cavities will be split.

MAX_ABSTRACT_DEPTH: Default abstract depth. Increase this
value if the real binding site is much larger than the detection
result, and vice versa.

MAX_ABSTRACT_LIMIT_V: Default abstract volume. Increase
this value if the real binding site is much larger than the detec-
tion result, and vice versa.

SEPARATE_MAX_LIMIT_V: Default max limit volume. Increase
this value if the real binding site is much larger than the detec-
tion result, and vice versa.
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3.8 The CAVITY

Online Server

In case the user does not want to use the command line version
of CAVITY, an online CAVITY server is also available (see Fig. 3).
The url is

http://www.ligbuilder.org/cavity/home.php

Below are the procedures of binding site mapping using the
CAVITY server:

1. Preprocess protein file as in Section 3.2.

2. Upload the protein PDB file and a ligand file if your want to use
ligand-guided detecting mode. Set advanced parameters if
necessary.

3. Provide an e-mail address to receive the notification when job is
finished.

4. Submit.

5. When the job is finished, the server will send an e-mail to the
user with a link to a result page that contains all the result files
for download.

Fig. 3 The interface of the CAVITY web server
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4 Case Study

In this section, we use a practical example to illustrate the use of
CAVITY for the detection of novel druggable binding site.

D-3-Phosphoglycerate dehydrogenase (PGDH) from Escheri-
chia coli catalyzes the first critical step in serine biosynthesis, and can
be allosterically inhibited by serine (see Fig. 4). PGDH contains
three distinctive domains: the substrate-binding domain, the
nucleotide-binding domain, and the regulatory domain, and it
forms a tetramer composed of four identical subunits. The overall
structure of the PGDH tetramer could be described as a dimer of
dimers [34]. Each fundamental dimer is stabilized by a contact of
the nucleotide-binding domain, further dimerized through con-
tacts of the regulatory domains. L-Serine binds to the two adjacent
regulatory domains by forming a hydrogen bond network [35].

Structure-based drug design has been applied mainly on the
discovery of small molecules directly targeting the sites of known
ligands. As most of the known ligands bind to the substrate-
binding sites, the biological effects of these ligands are based on
the direct inhibition of certain target’s function. Recognition of

Fig. 4 The structure of PGDH (PDB ID: 1PSD). (a) The PGDH Tetramer with each monomer showed in a different
color. (b) Binding sites of NAD and L-serine on a PGDH monomer. Pictures were generated using PyMOL
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allosteric sites as potential targeting sites presents an entirely new
way to design diverse effectors [36]. However, it is challenging to
directly find a ligand for a potential site with unknown functions.
Although high-throughput screening (HTS) with carefully
designed bioassay could be a solution [37, 38], a well-developed
computational method for allosteric site detection is also an attract-
ing strategy for such problem.

For the PGDH project, it is interesting to know whether there
are other sites, besides the L-serine-binding site, for small molecule
binding and enzyme activity regulation. To this end, we first iden-
tified potential ligand-binding sites of PGDH using CAVITY [39].
In addition to the known substrate-binding site and L-serine-bind-
ing site, more than ten sites were detected by CAVITY in each
monomer. Five to six sites with high CavityScores were then eval-
uated using the two-state Go model-based allosteric site prediction
method [11, 14]. Sites I and II (Fig. 5) were predicted as potential
allosteric sites, which were then used to virtually screen for binding
molecules using molecular docking [15].

Below we described the process of identifying potential binding
sites using CAVITY. By examining the potential sites’ Druggability,

Fig. 5 The CAVITY predicted binding pockets of PGDH. (a) Three binding pockets of PGDH using the inactive
conformation were detected by program CAVITY. The NAD-binding position is denoted by the ligand NAD.
The site I (in red brown) locates at the opposite side of the NAD-binding site. The site II (in cyan) locates near
the L-serine-binding site. (b) Residues and key interaction sites in site I. (c) Residues and key interaction sites
in site II. These figures are generated based on the residue files and pharmacophore files. This picture was
generated using PyMOL
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the potential allosteric sites could be distinguished from other
undruggable sites for further computational/biological
verifications.

Files of this case study could be downloaded from
http://www.ligbuider.org/cavity/1YAB_protein.tar.gz

4.1 About the Input

PDB Files

This compressed downloadable package contains two directories:
the “inactive” and the “active,” for the two conformational studies
presented below.

The “inactive” directory contains the bound conformation
denoted in [11]. The X-ray structure of inactive conformation of
PGDH (PDB ID: 1PSD) contains both NAD and serine bound at
their corresponding binding sites. The “active” directory contains
the bound conformation denoted in [11]. The X-ray structure of
the active conformation PGDH (PDB ID: 1YAB) contains NAD at
its binding site.

4.2 Preprocess

and Computation

For computational efficiency, only a monomer (chain A) is
extracted from the PDB file without small molecules for the study
of the inactive conformation (1PSD). For the active conformation
(1YAB), one further step was conducted to mutate the MSE residue
toMet due to the lack of force field for theMSE residue (seeNote 7).
After the extraction of monomers, the whole protein mode
mentioned in Section 3.2 was used to detect the potential cavities.

4.3 Result Analysis

and Discussion

In both the active and inactive PGDH conformations, the NAD-
binding site was ranked No. 1. For the inactive conformation, site I
was ranked No. 2 with a predicted average pKd of 6.96 and volume
of 1012 Å3. Site II was ranked No. 4 with a predicted average pKd

6.57 and volume 1201 Å3. Both of their druggabilities were cate-
gorized as “HARD.”

For the active conformation, site I was ranked No. 4 with a
predicted average pKd 6.08 and volume 955 Å3. Site II was ranked
No. 3 with a predicted average pKd 6.49 and volume 954 Å3. Here,
the druggability of site I was categorized as “HARD” while site II
was categorized as “Undruggable” with a DrugScore very close to
the cutoff value.

The differences in the rank and category were due to the
variation of the PGDH conformations. Although ranked differ-
ently, both allosteric binding sites could be discriminated from
other “undruggable” sites. These results illustrated the robustness
of CAVITY for different conformations.

In our PGDHproject, a two-state Gomodel-based allosteric site
prediction algorithm was applied to distinguish these two potential
allosteric sites from other detected sites. These two sites were then
used for virtual screen to identify potential allosteric effectors. For
site II, three inhibitors with the lowest IC50 21.6 μM were found
[11]. For site I, two compounds demonstrated low-concentration
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activation and high-concentration inhibition phenomenon in
enzymatic bioassay. One compound exhibited an AC50 value of
34.7 nM and IC50 of 34.8 μM [15]. The discovered novel allosteric
sites of PGDH were substrate independent and different from the
known L-serine-binding site.

This example demonstrates that CAVITY can be used in the
identification of novel binding site(s), which is particularly useful in
locating potential allosteric sites for proteins and other
macromolecules.

5 Notes

1. The linear equations of pKd(Max) and pKd(Ave) have been
modified to current form in the updated version of CAVITY.

2. When the structural information of certain part of the target
macromolecule was not available (such as flexible loop
regions), CAVITY will continue its detection on the rest part
of the target. Therefore if the missing residues are far away from
the true binding sites, the overall result of identified cavities will
not be affected too much. But if that missing part is at an
essential region, then reconstruction by certain computational
modeling approaches [40, 41] may be needed.

3. Currently, CAVITY will process PDB files with one model. For
NMR structure file which usually contains multiple models,
user may split them into multiple files and use CAVITY to
calculate each of them.

4. If certain water molecule is considered to be important, user
may keep that water molecule(s) and remove other water
molecules in the preprocess step. Then declare “HETWATER
YES” in the main input parameter file.

5. According to our experience, sometimes the mol2 file gener-
ated by PyMOL [30] is not in good quality. In such a situation,
user may first save the ligand structure into PDB format, and
then use Open Babel [42] or ChemAxon Standardizer [43] to
generate the mol2 file.

6. PyMOL is recommended for graphic visualization. The residue
PDB files and pharmacophore PDB files could be displayed
correctly in most of the molecular modeling software. Because
we use condensed atom points to represent the surface and
vacant, some molecular modeling software may not display
these files correctly. Please try different software if you cannot
view these files.

7. For advanced user, it is possible to add a custom-defined resi-
due in the file parameter/RESIDUE_DEF. The format is in an
Amber [44] like style.
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Methods for Detecting Protein Binding Interfaces

Nurit Haspel

Abstract

Protein molecules often come together in complexes in order to achieve their biological functions in the
living cell. Since the three-dimensional structure and the functionality of proteins are closely related to each
other, characterizing the structural and dynamical properties of protein complexes through experiments or
computational modeling is important for understanding their roles in the basic biology of organisms.
Certain specific regions of a protein may play a critical role in its structural, dynamical, and functional
properties. A protein molecule binds to another protein or to a drug molecule through a specific site on its
surface, which is commonly known as the binding interface. Prediction of binding interfaces can assist in
drug design, protein engineering, protein function elucidation, molecular docking, and analyzing the
networks of protein-protein interactions. Experimental detection of binding interfaces can provide a wealth
of information, but is time consuming and sometimes inaccurate. Computational methods can validate and
complement experimental studies in a cost-efficient way. In this chapter we present a short survey of
computational methods that have been suggested over the past two decades for the detection of protein-
protein and protein-drug binding interfaces, focusing on methods that use specific amino acids as determi-
nants of binding interfaces. Later, we describe our work in using evolutionary conservation and structural
features to detect binding interfaces in proteins and guide protein-protein docking.

Keywords: Docking, Evolutionary conservation, Machine learning, Protein binding interfaces,
Protein-protein interaction

1 Introduction

Protein complexes play a central role in cellular organization and
functions, including ion transport and regulation, signal transduc-
tion, protein degradation, and transcriptional regulation [1–3].
Since the three-dimensional structure and the functionality of pro-
teins are closely related to each other, analyzing protein complexes
and their structures is crucial for understanding the roles of protein
complexes in the basic biology of organisms. Such structural infor-
mation is also essential for drug discovery. Proteins usually bind to
drug molecules or to other proteins through a specific site on their
surfaces; residues of such sites tend to be evolutionarily conserved.
Below we review some of the recent methods for the detection of
binding interfaces through sequence conservation and the charac-
teristics of protein surfaces.
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1.1 Detecting

Binding Interfaces

Through Amino Acid

Conservation

The amino acids on protein binding interfaces are evolutionarily
highly conserved due to their importance to protein functions.
Different approaches have been developed to detect the specific
amino acids that contribute to the specificity and strength of pro-
tein interactions. Studies have shown that protein binding inter-
faces are often hydrophobic [4]. Hydrophobic residues interact
with each other through van der Waals (VdW) interactions. Elec-
trostatic interactions and hydrogen bonds also contribute to pro-
tein interaction with other molecules [5]. Binding interfaces can be
detected experimentally through mass spectrometry, crystallo-
graphic structures of protein complexes, thermodynamic studies,
alanine-scanning mutagenesis for hotspot detection [5–7], and
yeast-two-hybrid (Y2H) [8] among others. The subject has been
reviewed in [9].

Experimental methods are often costly and sometimes inaccu-
rate. To this end, computational methods can complement and aid
experimental techniques. Many computational methods focus on
finding the so-called hotspots, which are residues on protein sur-
faces that are involved in binding by forming energetically favorable
interactions. Hotspot residues are normally clustered on the pro-
tein surface rather than randomly distributed [10]. Those compu-
tational methods detect binding interfaces using sequence
information [11], structural information [5], as well as physico-
chemical properties of binding interfaces [12]. For example, the
evolutionary trace (ET) method [13, 14] extracts sequence conser-
vation information from families of homologous proteins and ranks
the amino acids according to their conservation. The sequence
conservation patterns are then mapped onto the protein surface
to generate clusters and identify functional interfaces. Figure 1
shows an example of a protein complex with the conserved residues
obtained by the ET server highlighted [14]. The SiteLight method
[15] uses phage display libraries, which can be tested for binding to
target molecules by means of binding affinity-based selection: It
maps the peptide library onto a protein surface. Given a collection
of sequences derived from biopanning against the target molecule,
the binding interface between the template and the target can be
predicted. This method is applicable to any types of complexes
made up of a protein template and a target molecule. The joint
evolutionary trees (JET) method [16] is a more recent method
based on the ET method described above. In this method, Gibbs-
like sampling of distance trees is used to analyze homologous
sequences to reduce the effects of erroneous multiple alignment
and weak homologues on distance tree construction. Sequence
analysis using the JET method is sensitive to the effect of individual
residues and avoids the overrepresentation of highly homologous
sequences. Patches of protein surfaces are predicted to be binding
sites through clustering, which takes into account both physico-
chemical properties and sequence conservation.
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1.2 Detecting Protein

Complexes Through

Docking

Protein docking is the computational modeling of the binding of
two or more proteins or a protein and a smaller ligand, often a drug
candidate, into a complex. It is a challenging problem [17–20]
because docking two protein molecules involves searching for
low-energy complexes in a space of N � M + 6 dimensions,
where N and M are the total number of (x, y, z) coordinates that
are employed to represent each one of the unbound protein struc-
tures. For a protein containing m atoms, its total number of coor-
dinates equals m � 3. The extra six degrees of freedom is the
number of translation and rotation parameters that correspond to
the different placements of one monomer onto another. The large
number of parameters results in a high-dimensional search space.
As a result, most protein-protein docking methods focus on rigid-
body docking, where the monomeric structures are considered
rigid. In this way, the focus is on finding the placements that result
in low-energy dimeric structures. Protein-drug docking involves
the docking of a small molecule onto a protein, and flexibility can
often be introduced at the ligand level, with limited flexibility at the
receptor level [21]. Due to the size of small molecules, docking can
be performed as part of virtual screening of large databases.

The geometric search of protein docking is followed by a
ranking stage, where the docking candidates from the search stage
are ranked by a scoring function that takes into account geometric

Fig. 1 VEGF in complex with domain 2 of the FLT-1 receptor (PDB:1flt).
Conserved residues are highlighted as spheres. The conservation information
is taken from the Evolutionary Trace (ET) server [14]
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and physicochemical factors. Computational docking methods
often produce, in addition to near-native but slightly incorrect
complexes, a large number of low-energy false-positive complexes,
where the two proteins are bound on the wrong interface. Scoring
functions are used to distinguish the near-native complexes from
the false positives.

Detecting the correct interaction interface is a fundamental
challenge in molecular docking. Studies have demonstrated that
such interfaces exhibit a higher degree of evolutionary conservation
than other regions on the molecular surface [13, 16]. However,
conserved residues may form a small part of interaction interfaces
for various reasons [22]. These findings suggest that ranking of
amino acids by evolutionary conservation is a reasonable approach
to locate the interaction interface, even if partially. The extent to
which binding interfaces contain evolutionary-conserved amino
acids has been employed as a scoring function to rank computed
bound configurations [23]. Some methods have incorporated
knowledge of the location of conserved residues to guide the search
for bound configurations. For instance, the energy function
employed for minimization can include terms that reward matching
of surface regions with high conservation [24].

In the next section we describe our work in detecting binding
interfaces through geometry, biophysics, and evolutionary conser-
vation. First, we describe a method for protein-protein docking and
refinement guided by geometry and detection of clusters of con-
served residues. Next, we describe a method that combines evolu-
tionary conservation, rigidity analysis, and machine learning to
detect critically important regions in proteins, including binding
interfaces. It should be noted that while our work focuses on
protein-protein binding, the methods described here can be readily
applied to protein-ligand binding and incorporated into drug
design and virtual screening.

2 Methods

2.1 Using

Evolutionary

Conservation to Guide

Protein Docking

In our earlier work [25, 26] we suggested a docking approach
followed by complex refinement. This is a geometry-guided
method, which considers transformations that match complemen-
tary regions on the protein surfaces. The search and refinement are
guided by geometry, and by finding clusters of conserved residues
on the protein surface. This allowed us to narrow the search space
to find near-native docking candidates. Based on findings that
evolutionary conserved regions are good indicators of functional
interfaces [16], the search was limited to evolutionarily conserved
regions. This greatly reduced the number of considered transfor-
mation. The JET method mentioned above [16] was used by the
docking method to rank amino acids according to their
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evolutionary conservation. This information was then used to filter
geometrically complementary surface regions on the input pro-
teins. Matching geometrically complementary and evolutionary
conserved regions resulted in rigid transformations that produce
putative docking results. In what follows we describe the docking
and refinement methods in detail.

Molecular Surface Representation and Critical Points: Docking
algorithms aim to find the best match between the binding surfaces
of two molecules. Therefore, the molecular surface of the input
protein(s) is first represented by solvent-accessible surface area
(SASA) which is calculated by computing the Connolly surface
[27]. This is a dense representation that maintains the 3D coordi-
nate, the normal mode, and a numerical value to indicate the type
of the surface—convex, saddle, or concave. A sparse, simpler repre-
sentation is then calculated [28]. This representation retains critical
points, which are projections of the center of gravity of a Connolly
face on the molecular surface. Critical points are denoted caps, pits,
or belts that correspond to convex, concave, or saddle faces, respec-
tively. The critical points cover key locations on the molecular
surface and represent the shape of a molecule. Every critical point
inherits the conservation score of its closest amino acid on the
molecular surface.

Active Triangles: The JET score for each amino acid ranges from
0.0, least conserved, to 1.0, most conserved. An iterative version,
iJET, repeats the analysis 50 times to obtain an average score for
each amino acid. Amino acids with at least 50 % surface accessibility
and JET score above a predefined threshold are denoted “active”
and assumed to participate in the interaction interface. The rest of
the amino acids are treated as “passive”. Lower threshold leads to
larger surface area and more rigid-body transformations to be
considered. Higher threshold leads to smaller surface area and
more targeted docking process. Our experiments [25] suggest
that thresholds of 0.25–0.75 do not affect the accuracy of the
method in reproducing the native assembly. The active/passive
designation is inspired by [29].

We define active triangles using critical points. A critical point
p1 with conservation score above a predefined threshold (we used
0.5 in [25]) is selected first. Two more critical points, p2 and p3
(not necessarily conserved), are then selected from the molecular
surface according to angle and distance constraints: We make sure
that the points are not collinear, and that p2 and p3 lie no closer
than 2 Å and no further than 5 Å from p1. The minimum and
maximum distances ensure that no two points are on the same VdW
sphere of an amino acid, and that no triangle covers large parts of
the molecular surface. The angle and distance parameters were
taken from [30]. See Fig. 2a. We use active triangles to limit the
number of tested transformations. We then sort the triangle’s
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vertices by lexicographic order. Since triangles capture a small
surface area, two triangles that share the first vertex in the lexico-
graphic ordering usually represent the same region in the molecular
surface. For this reason, no two triangles are allowed to share the
first vertex in the lexicographic ordering. Triangles are hashed by
their center of mass to further reduce the number of unique active
triangles. Given n critical points, the above constraints result in
fewer than n active triangles.

Rigid Body Transformations: To calculate a rigid-body transforma-
tion we define a local coordinate frame for each monomer. Active
triangles are employed for this purpose. First, one of the mono-
mers, denoted as A, is arbitrarily selected as the “base” monomer.
The other “moving monomer” is referred to as B. For each active
triangle selected from A, a matching active triangle is selected from
B. We only consider geometry at this stage, as in [31]. These two
triangles define two local coordinate frames. The rigid-body trans-
formation aligns the frames by superimposing their origins and
rotating B to be congruent with A (see Fig. 2b).

2.2 Docking

Refinement Using

Evolutionary Traces

The protein-protein interfaces predicted by computational docking
methods are often not accurate and need to be further refined.
We devised a docking refinement method using geometry and evolu-
tionary conservation to improve the interface packing [26]. The
input to the refinement process is a protein complex structure gener-
ated by a docking method. The refinement proceeds in cycles—each
cycle seeks to improve the conformation of one unit with respect to
the other one (a unit corresponds to a monomer of the complex).
Application of this method is not limited to dimers, as done in this
paper. It can be extended to complexes with multiple chains [32].
The refinements are done through small-scale rigid-body rotations

Critical
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C xDD
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Fig. 2 (a) An illustration of an active triangle. The triangle has three non-collinear surface points, at least one of
which must be critical. The distances between the points are between 2 and 5 Å. (b) A reference frame
(coordinate system) defined by three non-collinear points
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focusing on the vicinity of the input structure in order to reduce the
computation time and avoid large changes to the protein structure.
Monomers are rotated by a random angle within a predefined range
around an arbitrary axis passing through the centroid of the unit (see
below). Each rotation results in a new complex conformation, which
is ranked by an ET- and biophysics-based scoring function for the
interface. This process is repeated several times to further improve the
results. During each cycle, only K top-scoring conformations are
selected for the next iteration to avoid exponential growth of the
search space. After the new top scoring conformations are obtained
for the selected pair of units, the results are energyminimized for 200
steps using NAMD [33] at the end of each cycle. A small number of
minimization steps were applied to relax the local structure near the
interface without affecting the overall protein structures. The output
structures are the minimized top K conformations generated at the
last cycle, which are the refined versions of the input structure.

Creating Random Conformations with Uniform Distribution: A
probabilistic approach is used to expand the search space. For
each input docked conformation, 100 random conformations are
generated by rotations around an arbitrary axis [34] passing
through the centroid of the monomer. Both the rotation angle
and the rotation axis are selected randomly from a uniformly
distributed set. As the input docked conformations are supposed
to be rather close to the native conformation, large-scale changes to
the protein structures need to be avoided. Therefore, �5� is con-
sidered a reasonable range for small-scale rotations. The arbitrary
rotation axis is selected from the set of all unit vectors in a unit
sphere centered at the centroid of the chain (see details below).
A 3D vector V is represented by two angles: the angle between V-
andX-axis (α) and the angle between V- and Z-axis (β). Then the x,
y, and z components of V can be expressed as follows:

V x ¼ cos αð Þ;V y ¼ sin αð Þ;V z ¼ cos βð Þ

The arbitrary rotation axis is selected out of the 360 � 360 three-
dimensional unit vectors by randomly selecting α and β values
between 1 and 360�. This approach allows a wide conformational
search space.

Scoring Function: The scoring function we aim to optimize is
computed for the interface atoms, which are defined for each
chain as the atoms within at most 6 Å to the adjacent chain
atoms. In our previous work [35], the scoring function consisted
of effective distance restraints [29] and surface complementarity
[24] based on evolutionary conservation of residues, as well as
VdW and electrostatic terms taken from the AMBER ff03 force
field [36]. In the work described here [26], we calculated the
interface conservation based on the ET scores of each interface
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residue, as described below. The scoring function contains a con-
servation component, based on the assumption that the function-
ally important surfaces of proteins should consist of clusters of
highly conserved residues [13]. We experimented with native struc-
tures of different proteins and observed that indeed such clusters
are created (see Fig. 1). It should be noted that clusters of con-
served residues appear in other parts of the protein as well, possibly
due to protein allostery and the fact that many proteins have
multiple interaction sites. The ET rank files for every protein are
taken from the Evolutionary Trace Server [13, 37]. For each inter-
face atom, we define the evolutionary conservation value as in the
equation below:

ci ¼ μ� residueRankð Þ=σ

where residueRank is the ET rank value of the residue that the atom
belongs to, μ is the mean of ET rank values of residues in the chain,
and σ is the standard deviation of ET rank values of residues in the
chain. It is easy to see that for lower ET rank values, which represent
lower mutation rates, conservation values will be higher. Similarly,
ET rank values larger than the mean will have negative conservation
values. Atoms with positive conservation values are considered
conserved. We found that the conservation values significantly
correlate with lRMSD (least root mean square deviation) values
between the refined complexes and the native structures.

The conservation term of our interface scoring function is then
defined as

Econservation ¼
X

i, j
f i; jð Þ

where f, the conservation value for the interface atom pair i and j, is
defined as

f i; jð Þ ¼ �ci � c j if ci < 0 and c j < 0
ci � c j otherwise

�

Each interface atom i on one monomer and interface atom j on the
other monomer are considered in computing the conservation
term. We should make sure that Econservation is not biased towards
larger interfaces. For example, given two conformations—one with
an interface of 1000 atoms where 300 of them are conserved, and
the other with an interface of 300 atoms where 200 of them are
conserved. In this case, the former interface should not be preferred
over the latter by only counting the number of conserved atoms on
the interface. For this reason, non-conserved atoms (i.e., atoms
with negative conservation values) also have negative impact on the
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calculation. It should be noted that the VdW term used for the
refinement had the more permissive 9–6 terms, to allow soft
clashes.

2.2.1 Case Study:

Complex of Eglin with

Subtilisin Carlsberg

We docked several complexes produced by the method described
above and subsequently refined them. The refinement is performed
iteratively in two steps. In the first step, 100 conformations are
generated as described above and are ranked using our scoring func-
tion. The 10 conformationswith lowest interface energies are fed into
the second step for further refinement. In the second step, 100 new
conformations are generated for each of the 10 conformations pro-
duced in the first step. The resulting 1000 new conformations are
ranked by the scoring function and the 10 lowest energy conforma-
tions are returned. We found that further iterations do not signifi-
cantly improve the results. We show here an example of the results
obtained for one protein-protein system—the complex formed
by eglin with subtilisin Carlsberg (PDB: 1CSE). In this case, the
refinement improved the lRMSD values up to 23 % and all 10 solu-
tions are better than the input docked structure. Table 1 shows the
results for the top five solutions. Figure 3 shows the native, docked

Table 1
Refinement results

Conformation Docked Sol. 1 Sol. 2 Sol. 3 Sol. 4 Sol. 5

lRMSD 3.35 2.58 2.58 2.64 2.56 2.67

Total interface size 879 709 725 744 722 735

Conserved interface size 530 450 467 482 466 476

lRMSD values in Å with respect to the native structure, number of interface atoms, and number of conserved interface

atoms are shown for the initial docked structures and the top five refinement solutions for 1CSE

Fig. 3 Illustration of the 1CSE complex: (a) Native complex. (b) Input docked complex. (c) Refined complex
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and refined complex with the interface atoms highlighted as spheres.
The correlation coefficient between the lRMSD values and the VdW,
electrostatic, and conservation termswere�0.56,�0.11, and�0.57,
respectively, which shows the relative contribution of the conserva-
tion term to the refinement.

2.3 Detecting Critical

Regions in Proteins

Functionally important amino acids are not limited to the binding
interface. Other regions in a protein, such as flexible hinges, also
play an important role in protein structure and function. Detecting
various critical regions in proteins facilitates the analysis and simu-
lation of protein rigidity and conformational changes, and aids in
characterizing protein-protein binding. We developed a machine-
learning-based method to analyze and predict critical residues in
proteins [38, 39]. We combined residue-specific information and
data obtained by two complementary methods: KINARI-Mutagen
[40], which performs graph-based analysis to find rigid clusters of
amino acids in a protein, and combining evolutionary conservation
scores to find functional interfaces in proteins, similar to the dock-
ing refinement work discussed above. We devised a machine
learning model that combined both methods and other features
including amino acid type and SASA. We applied the method to a
dataset of proteins with experimentally known critical residues, and
were able to achieve over 77 % prediction rate, more than either of
the methods separately. The ET Server [17] provided the residue
rank files for a large number of proteins. The range of rank values in
ET files vary from protein to protein, which makes it a difficult task
to evaluate the relative conservation of a residue in one protein
chain with respect to another. We used the normalized score
devised in [26] and described above: ci ¼ (μ � residueRank)/σ,
where residueRank is the ET rank value of the residue, μ is the mean
of ET rank values of residues in the chain, and σ is the standard
deviation of ET rank values of residues in the chain. Lower ET rank
values represent lower mutation rates and higher conservation
rates. Similarly, Larger ET rank values will have negative conserva-
tion values. Atoms with positive conservation values are considered
critical.

Rigidity Analysis and KINARI: Rigidity analysis [41, 42] is a
graph-based method that detects rigid and flexible regions in pro-
teins. A mechanical model of the molecule is built based on cova-
lent bonds as hinges and other interactions, like hydrogen bonds
and hydrophobic interactions, are represented as hinges or bars. A
graph is constructed from the mechanical model such that each
body is associated to a node, a hinge between two bodies is asso-
ciated to five edges between two nodes, and a bar is associated to an
edge. Efficient algorithms based on the pebble game paradigm [43,
44] are used to analyze the rigidity of the graph and infer the rigid
and flexible regions of the mechanical model and the protein.
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KINARI-Web [45] is a web server for rigidity analysis of molecular
structures. KINARI-Mutagen [40] is a tool that relies on a rigidity-
theoretical approach that evaluates the effects of mutations that
may not be easy to perform in vitro. It relies on the loss of hydrogen
bonds and hydrophobic interactions upon a residue’s change to
glycine, to predict the effects of a mutation. It simulates mutating a
residue to glycine by removing its side-chain hydrogen bonds and
hydrophobic interactions from the molecular model. It identifies
critical residues based on the degree to which an in silico mutation
to glycine affects the protein’s rigidity. Because there are more
experimental data on alanine mutations than glycine, another fea-
ture, which allows the mutation of residues to alanine, was added to
KINARI-Mutagen.

Towards a Combined Approach: While evolutionary conservation
and rigidity analysis use different approaches that measure different
properties, they have one important thing in common—both aim
to discover highly important residues in proteins. Therefore, com-
bining them can provide richer, more accurate information about
the relative importance of residues in a protein. Therefore, in [38]
we applied the evolutionary conservation-based score and
KINARI-Mutagen to a large dataset of proteins to test whether a
combination of these methods can provide more information about
the importance of residues than any of the methods separately. Our
aim was to use machine learning to smoothly integrate the two
approaches into a combined method that can provide more accu-
rate and robust prediction of the importance of residues in proteins.
We tested our data against the Protherm dataset [46] that contains
information about single-point mutations, and a dataset of interac-
tion partners, PiSite [47]. PiSite searches the PDB for different
protein complexes that include the same protein, and returns infor-
mation about that protein’s interaction sites and partners, at the
residue level.

Classification Using Machine Learning: Machine learning is a
branch of artificial intelligence, which aims to classify, group, and
learn from data. The classification generally contains the following
stages: (1) Representing a set of known data points (training data)
as a set of feature vectors labeled by classes. Often there are two
classes—positive and negative, but there can be more than two; (2)
training the set to construct a model that best explains the data, and
(3) using the model to classify a set of unknown data points (test
data). Support Vector Machines (SVM) [48] are a type of machine
learning model which constructs a high-dimensional hyperplane
that best separates the two classes of data and defines a kernel
function to map the data onto the plane. There are many different
types of kernels, and the most popular ones are linear, polynomial,
radial basis function (RBF), or sigmoid. Many machine learning
and statistical methods have been developed to help predict the
effects of mutations and to infer which residues are critical [49–52].
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Extraction of Experimental Data: We searched the Protherm
Database [46] for single point mutations to Glycine or Alanine
with known ΔΔG values. ΔΔG is the change to the protein’s free
energy value (ΔG) following the mutation. A negative value means
that the mutation has a destabilizing effect on the protein.

Feature Selection: We used an SVM library, libsvm [48], to train and
test our data. The features we selected were:

1. Amino acid type: Charged (D,E,K,R), polar (N,Q,S,T),
aromatic (F,H,W,Y), or hydrophobic (A,C,G,I,L,M,P,V).

2. Evolutionary Trace score, normalized according to the
equation above.

3. Rigidity score, expressed as the size of the largest rigid cluster
obtained by KINARI Mutagen.

4. SASA of the residue.

The feature vectors were labeled as +1 (destabilizing muta-
tion according to Protherm) or �1 (not destabilizing). Our
threshold for destabilization was a ΔΔG value of �0.5 or less.
We conducted a threefold cross-validation by conducting three
tests where the roles of the test and training set rotated between
three equal sized, randomly selected samples. The data was then
scaled to the [�1,+1] range in order to have all the features in the
same order of magnitude. Grid-based cross-validation was used to
select the optimal penalty C the RBF kernel parameter γ for the
training set. The training set was trained to build the model using
the RBF kernel and the test set was classified using the obtained
model.

2.3.1 Case Study:

Barnase

Figure 4 shows the prediction of critical residues using the SVM
classifier, evolutionary traces and rigidity, respectively, with respect
to the experimental data from the Protherm database for barnase
(PDB:1bni). The Protherm database contains experimental data for
47 residues. 38 of them (80.1 %) are critical and 9 are not critical
according to our criteria outlined above. The SVM approach
correctly predicted 38 out of 47 residues (80.1 %) to be critical or
non-critical. 30 residues out of the 38 were true positives and 8 true
negatives. Out of the rest, eight were false positives and one false
negative.

The ET-based score correctly predicted 27 residues (57.5 %)
and the rigidity analysis correctly predicted 30 residues (63.8 %).
There is only partial overlap between the residues identified by the
three methods, and the SVM classifier had much better prediction
ability than any of the methods separately. Both the conservation
and the rigidity based approach showed weaker positive correla-
tion with the experimental data (correlation coefficients of 0.31
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and 0.18, respectively), but the SVM classifier showed much
higher correlation with experiment (correlation coefficient of
0.57). It should be noted that the majority of residues for which
experimental information exists are critical, so the test set as well
as the SVM-based model are biased towards critical, rather than
non-critical residues. See [39] for more details. Figure 5 shows the
protein structure with the critical residues highlighted, both for
the experimentally detected residues and the true positive critical
residues detected by the SVM classifier. It can be seen that the
classifier missed several residues but was able to detect most of
them, especially on the surface.
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Fig. 4 Comparison of experimentally available criticality data with our SVM based approach (a) conservation
(b) and rigidity analysis (c) for Barnase (PDB:1bni). The bottom line (0) indicates non-critical residues and the
top line (1) indicates critical residues. An � and a circle at the same position show an agreement between
computational and experimental data. The x-axis is a serial residue number and is not necessarily the residue
number in the protein
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2.3.2 Case Study: Critical

Residues on Binding Sites

Analysis of experimental data shows that known critical residues
may have different percentages of solvent accessibility. This is not
surprising since buried critical residues play an important role in
maintaining the protein structure, while critical residues on the
surface are related to binding sites. To further validate this assump-
tion, we searched the PiSite Database [47] for binding sites and
interaction partners. We found that Bovine Pancreatic Trypsin
Inhibitor (PDB:1bpi) has six different binding partners and ten
binding states. The number of binding partners for each known
critical residue is shown in the last column of Table 2. Out of 13
solvent accessible critical residues that have ΔΔG less than�1.0, 11
residues had at least one binding partner, which means they are on
the binding interface. The SVM classifier correctly predicted most
of these residues as critical or not, and as seen in the table, most of
the incorrect predictions are associated with borderline ΔΔG values
(as mentioned above, we defined a residue as critical if its ΔΔG was
�0.5 or lower).

These results are very promising since detecting critical residues
on the interface would be very helpful for scientists working on the
docking problem. Halperin et al. [17] mentioned that binding sites
are typically part rigid and part flexible, with far greater extent of
movements in the interface than in any other exposed parts of the
structure. Hence, information about critical residues on the surface
would not just help in reducing the search space but also in detect-
ing residues that are critical for flexibility on the surface. Protein
binding can then be modeled more realistically with the flexible
residues on the binding site for a more compact docking.

Fig. 5 Illustration of Barnase (PDB:1bni) with critical residues highlighted in spheres. (a) Experimentally
determined critical residues. (b) Residues determined to be critical by our classifier
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Table 2
Rigidity analysis and conservation score analysis for protein bovine pancreatic trypsin inhibitor
(PDB:1bpi) with residue mutations to alanine

Mutation
WT residue
SASA (Å2) ΔΔG

Number of
binding partners SVM label

K46A 177.11 0.1 2 �1 (TN)

R53A 174.71 �0.1 2 �1 (TN)

T54A 68.66 �0.1 2 1 (FP)

T32A 114.38 �0.1 2 �1 (TN)

E49A 116.65 �0.2 1 �1 (TN)

G56A 20.42 �0.2 2 �1 (TN)

G57A 39.32 �0.2 0 �1 (TN)

R17A 211.65 �0.3 5 �1 (TN)

K15A 196.87 �0.4 5 �1 (TN)

K41A 105.59 �0.4 2 �1 (TN)

D50A 51.92 �0.4 1 1 (FP)

R42A 167.75 �0.5 2 1 (TP)

Q31A 79.04 �1.0 1 �1 (FN)

G28A 41.29 �1.0 1 1 (TP)

Y35A 14.74 �1.1 2 1 (TP)

P13A 70.66 �1.2 4 1 (TP)

Y10A 73.8 �1.2 1 �1 (FN)

V34A 117.65 �1.2 3 1 (TP)

I18A 98.24 �1.5 4 1 (TP)

S47A 35.24 �1.6 1 1 (TP)

M52A 122.96 �1.7 2 1 (TP)

G12A 16.54 �1.8 4 1 (TP)

R20A 36.99 �1.8 2 1 (TP)

F22A 21.02 �2.0 0 1 (TP)

G36A 0.25 �2.1 4 1 (TP)

I19A 158 �2.1 3 1 (TP)

N24A 35.71 �2.2 0 1 (TP)

G37A 36.14 �2.3 4 1 (TP)

N44A 19.98 �3.3 2 1 (TP)

WT ¼ wild type, TP ¼ true positive, TN ¼ true negative, FP ¼ false positive, FN ¼ false negative

The table rows are ordered by ΔΔG; the mutations that are least destabilizing are at the top of the table, while the
mutations that are most destabilizing are towards the bottom of the table
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3 Notes and Conclusions

Specific amino acids in proteins play a critical role in its structural
stability and dynamics. Being able to detect these amino acids is
very useful, as it can help in structural analysis, the simulation of
protein motions and the discovery of protein-protein and protein-
drug interactions and binding modes. There is increasing evidence
that binding interfaces in proteins are highly conserved and there
are many experimental and computational methods that detect
clusters of conserved residues or “hotspots” on protein surfaces.
In this chapter we introduced our work in discovering amino acids
that may be critical for protein structure and binding. First, we
showed a method for protein-protein docking and refinement
using a combination of geometric complementarity, physicochemi-
cal interactions and evolutionary conservation. Our goal was to bias
the docking search and ranking stages towards clusters of conserved
residues on the protein surface. We show that this approach indeed
helps reducing the computational cost and improve the prediction
of binding interfaces. In a subsequent work we devised a machine
learning classifier to predict the importance of amino acids in
proteins. The features we used were based on a graph-based
method to detect rigid and flexible regions in proteins, evolution-
ary conservation, amino acid type and SASA. We were able to
achieve high levels of prediction, higher than each one of the
features separately. More recently, we devised an artificial intelli-
gence (AI)-based method to predict and refine docked complexes
[53, 54]. The AI-based method uses more features and seems to
give very good results in predicting protein-protein interactions.
While the work described here focuses primarily on protein-protein
interactions, predicting binding interface and incorporating bind-
ing site knowledge into docking methods has many useful applica-
tions in drug design, virtual screening, and analyzing protein
dynamics.
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Glossary

AI Artificial intelligence
lRMSD Least root mean square deviation
PDB Protein Data Bank
SVM Support vector machine
VdW van der Waals

References

1. Goodsell DS, Olson AJ (2000) Structural sym-
metry and protein function. Annu Rev Biophys
Biomol Struct 29(1):105–153

2. Braun P, Gingras A-C (2012) History of
protein-protein interactions: from egg-white
to complex networks. Proteomics 12
(10):1478–1498

3. Jones S, Thornton JM (1995) Protein-protein
interactions: a review of protein dimer struc-
tures. Prog Biophys Mol Biol 63(1):31–65

4. Young L, Jernigan RL, Covell DG (1994) A
role for surface hydrophobicity in protein-
protein recognition. Protein Sci 3(5):717–729

5. Moreira IS, Fernandes PA, Ramos MJ (2007)
Hot spots – a review of the protein-protein
interface determinant amino-acid residues.
Protein Struct Funct Bioinform 68
(4):803–812

6. Andrew A (1998) Bogan and Kurt S Thorn.
Anatomy of hot spots in protein interfaces. J
Mol Biol 280(1):1–9

7. Hu Z, Ma B, Wolfson H, Nussinov R (2000)
Conservation of polar residues as hot spots at
protein interfaces. Protein Struct Funct Bioin-
form 39(4):331–342

8. Br€uckner A, Polge C, Lentze N, Auerbach D,
Schlattner U (2009) Yeast two-hybrid, a pow-
erful tool for systems biology. Int J Mol Sci 10
(6):2763–2788

9. Srinivasa Rao V, Srinivas K, Sujini GN, Sunand
Kumar GN (2014) Protein-protein interaction
detection: methods and analysis. Int J Proteom
12:2014

10. Engin Cukuroglu H, Engin HB, Gursoy A,
Gursoy O (2014) Hot spots in protein-protein
interfaces: towards drug discovery. Prog Bio-
phys Mol Biol 116:165–173

11. Ofran Y, Rost B (2003) Predicted protein-
protein interaction sites from local sequence
information. FEBS Lett 544(1-3):236–239

12. Assi SA, Tanaka T, Rabbitts TH, Fernandez-
Fuentes N (2010) Pcrpi: presaging critical resi-
dues in protein interfaces, a new computational
tool to chart hot spots in protein interfaces.
Nucleic Acids Res 38(6):e86

13. Lichtarge O, Bourne HR, Cohen FE (1996)
An evolutionary trace method defines binding
surfaces common to protein families. J Mol
Biol 257(2):342–358

14. Wilkins AD, Bachman BJ, Erdin S, Lichtarge O
(2012) The use of evolutionary patterns in
protein annotation. Curr Opin Struct Biol 22
(3):316–325

15. Halperin I, Wolfson H, Nussinov R (2003)
Sitelight: binding-site prediction using phage
display libraries. Protein Sci 12(7):1344–1359

16. Engelen S, Ladislas AT, Sacquin-More S,
Lavery R, Carbone A (2009) Joint evolution-
ary trees: a large-scale method to predict pro-
tein interfaces based on sequence sampling.
PLoS Comp Bio 5(1):e1000267

17. Halperin I, Ma B, Wolfson H, Nussinov R
(2002) Principles of docking: an overview of
search algorithms and a guide to scoring func-
tions. Protein Struct Funct Bioinform 47
(4):409–443

18. Huang S-Y (2014) Search strategies and evalu-
ation in protein–protein docking: principles,
advances and challenges. Drug Discov Today
19(8):1081–1096

19. Camacho CJ, Vajda S (2005) Protein-protein
association kinetics and protein docking. Curr
Opin Struct Biol 12(1):36–40

20. Kozakov D, Beglov D, Bohnuud T, Mottarella
SE, Xia B, Hall DR, Vajda S (2013) How good
is automated protein docking? Protein Struct
Funct Bioinform 81(12):2159–2166

21. Morris GM, Huey R, Lindstrom W, Sanner
MF, Belew RK, Goodsell DS, Olson AJ
(2009) Autodock4 and autodocktools4: auto-
mated docking with selective receptor flexibil-
ity. J Comput Chem 30(16):2785–2791

22. Fernandez-Recio J (2011) Prediction of pro-
tein binding sites and hot spots. Wiley Inter-
discip Rev Comput Mol Sci 1(5):680–698

23. Tress M, de Juan D, Graña O, Gomez MJ,
Gomez-Puertas P, Gonzalez JM, Lopez G,
Valencia A (2005) Scoring docking models
with evolutionary information. Protein Struct
Funct Bioinform 60(2):275–280

Methods for Detecting Protein Binding Interfaces 149



24. Kanamori E, Murakami Y, Tsuchiya Y, Standley
D, Nakamura H, Kinoshita K (2007) Docking
of protein molecular surfaces with evolutionary
trace analysis. Protein Struct Funct Bioinform
69(4):832–838

25. Hashmi I, Akbal-Delibas B, Haspel N, Shehu A
(2012) Guiding protein docking with geomet-
ric and evolutionary information. J Bioinform
Comput Biol 10(3):1242008

26. Akbal-Delibas B, Hashmi I, Shehu A, Haspel N
(2012) An evolutionary conservation based
method for refining and re-ranking protein
complex structures. J Bioinform Comput Biol
10(3):1242002

27. Connolly ML (1983) Analytical molecular sur-
face calculation. J Appl Cryst 16(5):548–558

28. Norel R, Lin SL, Wolfson HJ, Nussinov R
(1999) Examination of shape complementarity
in docking of unbound proteins. Protein Struct
Funct Genet 36(3):307–317

29. Dominguez C, Boelens R, Bonvin A (2003)
Haddock: a protein-protein docking approach
based on biochemical orbiophysical informa-
tion. J Am Chem Soc 125(1):1731–1737

30. Fischer D, Lin SL, Wolfson HL, Nussinov R
(2005) A geometry-based suite of molecular
docking processes. J Mol Biol 248(2):459–477

31. Wolfson H, Rigoutsos I (1997) Geometric
hashing: an overview. IEEE Comp Sci and
Eng 4(4):10–21

32. Akbal-Delibas B, Haspel N (2013) A conserva-
tion and biophysics guided stochastic approach
to refining docked multimeric proteins. BMC
Struct Biol 13(Suppl 1):S7

33. Phillips JC, Braun R, Wang W, Gumbart J,
Tajkhorshid E, Villa E, Chipot C, Skeel RD,
Kale L, Schulten K (2005) Scalable molecular
dynamics with NAMD. J Comput Chem
26:1781–1802

34. Craig JJ (1989) Introduction to robotics.
Mechanics and control, Electrical and com-
puter engineering: control engineering. Addi-
son Wesley, Reading, MA

35. Akbal-Delibas B, Hashmi I, Shehu A, Haspel N
(2011) Refinement of docked protein complex
structures using evolutionary traces. In:
2011 I.E. international conference on bioinfor-
matics and biomedicine workshops (BIBMW).
IEEE, Washington, DC, pp 400–404

36. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong
G, Zhang W, Yang R, Cieplak P, Luo R, Lee T,
Caldwell J, Wang J, Kollman P (2003) A point-
charge force field for molecular mechanics
simulations of proteins based on condensed-
phase quantum mechanical calculations. J
Comput Chem 24(16):1999–2012

37. Wilkins A, Erdin S, Lua R, Lichtarge O (2012)
Evolutionary trace for prediction and redesign

of protein functional sites. Methods Mol Biol
819:29–42

38. Akbal-Delibas B, Jagodzinski F, Haspel N
(2013) A conservation and rigidity based
method for detecting critical protein residues.
BMC Struct Biol 13(Suppl 1):S6

39. Jagodzinski F, Akbal-Delibas B, Haspel N
(2013) An evolutionary conservation & rigid-
ity analysis machine learning approach for
detecting critical protein residues. In: CSBW
(Computational Structural Bioinformatics
Workshop), in proc of ACM-BCB (ACM Inter-
national conference on Bioinformatics and
Computational Biology). ACM, New York,
NY, pp 780–786

40. Jagodzinski F, Hardy J, Streinu I (2012) Using
rigidity analysis to probe mutation-induced
structural changes in proteins. J Bioinform
Comput Biol 10(3):1242010

41. Jacobs DJ, Rader AJ, Thorpe MF, Kuhn LA
(2001) Protein flexibility predictions using
graph theory. Proteins 44:150–165

42. Jacobs DJ, Thorpe MF (1995) Generic rigidity
percolation: the pebble game. Phys Rev Lett
75:4051–4054

43. Lee A, Streinu I (2008) Pebble game algo-
rithms and sparse graphs. Discret Math 308
(8):1425–1437

44. Jacobs DJ, Hendrickson B (1997) An algo-
rithm for two-dimensional rigidity percolation:
the pebble game. J Comput Phys 137:346–365

45. Fox N, Jagodzinski F, Li Y, Streinu I (2011)
KINARI-Web: a server for protein rigidity
analysis. Nucleic Acids Res 39(Web Server
Issue):W177–W183

46. Kumar MD, Bava KA, Gromiha MM, Praba-
karan P, Kitajima K, Uedaira H, Sarai A (2005)
Protherm and pronit: thermodynamic data-
bases for proteins and protein–nucleic acid
interactions. Nucleic Acids Res 34(suppl 1):
D204–D206

47. Higurashi M, Ishida T, Kinoshita K (2009)
PiSite: a database of protein interaction sites
using multiple binding states in the PDB.
Nucleic Acids Res 37(suppl 1):D360–D364

48. Chih C. Chang, Chih J. Lin. 2011. LIBSVM: a
library for support vector machines. ACM
Trans Intell Syst Technol 2(3):1–27

49. Cheng J, Randall A, Baldi P (2006) Prediction
of protein stability changes for single-site
mutations using support vector machines. Pro-
tein Struct Funct Bioinform 62:1125–1132

50. Lise S, Buchan D, Pontil M, Jones DT (2011)
Predictions of hot spot residues at protein-
protein interfaces using support vector
machines. PLoS One 6(2):e16774

51. Worth CL, Preissner R, Blundell L (2011)
SDM-a server for predicting effects of

150 Nurit Haspel



mutations on protein stability and malfunction.
Nucleic Acids Res 39(Web Server Issue):
W215–W222

52. Xavier SureshM,Michael GromihaM, SuwaM
(2015) Development of a machine learning
method to predict membrane protein-ligand
binding residues using basic sequence informa-
tion. Adv Bioinform 2015:7

53. Akbal-Delibas B, Pomplun M, Haspel N
(2014) AccuRMSD: a machine learning
approach to predicting structure similarity of

docked protein complexes. In: Proceedings
of ACM-BCB (5th ACM International con-
ference on Bioinformatics and Computa-
tional Biology). ACM, New York, NY, pp
289–296

54. Akbal-Delibas B, Pomplun M, Haspel N.
AccuRefiner: a machine learning guided refine-
ment method for protein-protein docking. In:
Proc of BICoB (7th international conference
on Bioinformatics and Computational Biol-
ogy), Honolulu, Hawaii, March 2015

Methods for Detecting Protein Binding Interfaces 151



Methods in Pharmacology and Toxicology (2016): 153–166
DOI 10.1007/7653_2015_62
© Springer Science+Business Media New York 2015
Published online: 23 April 2016

MDock: An Ensemble Docking Suite for Molecular Docking,
Scoring and In Silico Screening

Chengfei Yan and Xiaoqin Zou

Abstract

Molecular docking refers to computational methods for the prediction of the binding mode and binding
affinity between two molecules. Over decades of development, protein–ligand docking methods have been
widely used for in silico screening of molecular libraries for drug candidates, serving as a valuable tool in
structure-based drug design. MDock is a protein–ligand docking suite originally released from our labora-
tory in 2007, which incorporates the iteratively derived knowledge-based scoring function and the ensem-
ble docking method. In this chapter, we describe the methodology and usage of MDock for molecular
docking and in silico screening. The MDock suite is freely available to academic users through applications
at http://zoulab.dalton.missouri.edu/mdock.htm.

Keywords: Molecular docking, Scoring function, In silico screening, Binding affinity

1 Introduction

Molecular docking refers to an approach that predicts the binding
mode and affinity between two interacting molecules. This
approach has been widely applied to protein–ligand binding, pro-
tein–protein binding, and protein–nucleic acid binding. Molecular
docking is also an important tool for structure-based drug design
[1–6]. Given a potential drug target with a known three-
dimensional atomic structure, a key step for drug design is to find
small molecules that can bind tightly to a specific site on the target
and enhance (or inhibit) the function of the target. Due to its high
efficiency and low cost, molecular docking is often used for the
screening of large chemical libraries for drug candidates. The top-
ranked compounds from in silico screen are normally evaluated in
biological assays; the confirmed active compounds are advanced for
further lead optimization.

One of the examples of molecular docking tools is MDock, a
protein–ligand docking suite released by our laboratory in 2007
[7]. MDock docks a rigid ligand to the protein by matching a
subgroup of the ligand atomic centers to the sphere points that
represent the negative image of the binding pocket, a strategy that
was proposed by Kuntz and co-workers [8, 9]. Each docked pose is
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scored in combination with local optimization by using ITScore, an
iteratively derived knowledge-based scoring function [10–12]. The
pose with the lowest score is considered as the predicted binding
mode, and the corresponding score is considered as the predicted
binding energy score. Specifically, to account for ligand flexibility,
multiple low-energy ligand conformers are pre-generated, and each
conformer is docked to the protein independently. The docked
conformer with the lowest score among all the conformers being
docked is set as the predicted binding mode for the ligand, and the
corresponding score is the predicted binding energy score.

To account for protein structural variations during ligand bind-
ing, MDock also allows users to dock a ligand simultaneously to
multiple protein structures (up to 99 structures), a procedure
referred to as ensemble docking. The ensemble docking algorithm
in MDock is computationally efficient, with a computational time
comparable to single protein docking [7, 13].

In this chapter, we will describe the methodology and the usage
of MDock for molecular docking and in silico screening in detail.
To further illustrate the usage of MDock for in silico screening, we
will use the designed ligands for spleen tyrosine kinase (SYK),
which were donated by GlaxoSmithKline (GSK) to the Community
Structure-Activity Resource (CSAR) 2014 benchmark (http://
www.csardock.org/) [14–16], for a case study.

2 Materials

2.1 The MDock

Package

The MDock suite is freely available to academic users through
application at http://zoulab.dalton.missouri.edu/mdock.htm.
MDock is an open source software written in Fortran. For users
who prefer to modify MDock’s source code, the Intel Fortran
compiler is required for compiling the executables. For users who
apply MDock directly to docking studies, the pre-compiled execut-
able files (MDock,clu_sph, and get_sph) are provided in the bin
directory of the MDock package and are ready for use. Here,
MDock is the command for docking, get_sph is for selecting the
sphere points that cover the binding region, and clu_sph is for
clustering the sphere points from multiple protein structures for
ensemble docking. The source codes are placed under the Source_
codes directory. The documentation and the demo parameter files
are under the Manual directory. The tutorial files are under the
Tutorial directory. Linux users can run the programs directly after
MDock is installed and the bin directory is added (e.g., by typing
source Install_MDock or by adding the path manually). For win-
dows users, a Windows Linux emulator Cygwin (https://www.
cygwin.com/) is recommended.
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2.2 The Overview

of the MDock

Methodology

MDock implements a similar method to UCSF DOCK [17] to
orient the rigid ligand to the binding pocket by exhaustively match-
ing [7] the ligand atomic centers to the sphere points that represent
the negative image of the binding pocket. The uniqueness of
MDock lies in its iteratively derived scoring function (referred to
as ITScore) and its ensemble docking method. MDock is conve-
nient for in silico screening.

2.2.1 The Iterative

Scoring Function

ITScore is a knowledge-based scoring function that was originally
developed in our laboratory in 2006 [10, 11]. The main idea for
the extraction of ITScore is to iteratively adjust the pairwise poten-
tials by comparing the experimentally observed pair distribution
functions ( gobs

ij ðrÞÞ derived from the native structures and the
predicted pair distribution functions ( gk

ij ðrÞÞ derived from the
sampled decoys (including the native structures), with each decoy
carrying a Boltzmann weight calculated from the interaction poten-
tials of the current step. Finally, (gk

ij ðrÞ) converge to (gobsij ðrÞ) with
all the native structures having the lowest energies in comparison
with their decoys. The idea is described by the following equations:

ukþ1
ij ðrÞ ¼ uk

ij ðrÞ þ Δuk
ij ðrÞ, Δuk

ij ðrÞ ¼
1

2
KB T ½gkij ðrÞ � gobs

ij ðrÞ�, ð1Þ

where i and j represent the atom types of an atom pair, respectively,
and r is the distance between the atom pair. KB is the Boltzmann
constant, andT is the temperature.fuk

ij ðrÞgare the pairwise potentials
in the kth step, and fukþ1

ij ðrÞg are the updated potentials for the next
step. Given a set of initial potentials fu0

ij ðrÞg, the potentials are
updated using the above iterative equation, until fgk

ij ðrÞg converge
tofgobs

ij ðrÞgand all the native structures are associatedwith the lowest
energies compared to their corresponding decoys. The detailed
description of the iterative method is provided in [10].

It should be noted that we recently improved the scoring
function by using the refined set of PDBbind 2012 [18, 19] as
the new training set, which is much larger than the original training
set [20]. To reproduce the results of the case study in this chapter,
one should use the latest version of MDock (Ver. 2.0).

2.2.2 The Ensemble

Docking

MDock implements the ensemble docking method to account for
protein structural variations during ligand binding. Specifically,
multiple protein structures are superimposed with the protein con-
formational state treated as an additional dimension for parameter
optimization. The energy function for parameter optimization is
defined as

E ¼ Eðx, y, z,ϕ, θ,ψ ,nÞ, ð2Þ
where x, y, and z stand for the coordinates of the center of mass
of the ligand, and ϕ, θ, and ψ stand for the three Euler angles,
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respectively. n represents the nth protein structure in the protein
ensemble. MDock simultaneously optimizes the ligand coordinates
and the protein conformational variable n to automatically select
the optimal protein structure that best fits the ligand.

2.2.3 The In Silico

Screening

MDock can be easily applied to in silico screening. For a given
chemical database, the user is required to prepare a mol2 format
file that provides the coordinates and Sybyl atom types of the
chemical compounds. The charge and hydrogen information is
not needed for MDock. The effect of charges is implicitly consid-
ered in the pairwise interaction potentials of MDock through atom
types. MDock will then serially dock all the compounds onto the
given target protein, predict the binding modes, and rank these
compounds according to the predicted binding affinities. The top
candidates can be assayed for experimental verification.

2.3 Software

Dependencies

Several additional tools are also needed for file preparation for
MDock. All these tools are free for academic users.

1. UCSF Chimera [21]:
Chimera is used for preparing the protein and ligand files and
for analyzing the docking results. The software can be down-
loaded directly from the website http://www.cgl.ucsf.edu/
chimera

2. DMS (optional):
DMS is used for building the molecular surface. DMS can be
obtained from the website http://www.cgl.ucsf.edu/Over
view/software.html#dms. An alternative option is to use the
Write DMS tool in Chimera.

3. Sphgen_cpp:
Sphgen_cpp is an accessory tool of the UCSF Dock program
suite [17]. Sphgen_cpp is used for generating sphere points
based on the molecular surface files. Sphgen_cpp can be down-
loaded from the website http://dock.compbio.ucsf.edu/Con
tributed_Code/sphgen_cpp.htm.

4. OMEGA (optional) [22, 23]
The OMEGA is a program suite released by OpenEye Scien-
tific Software (Santa Fe, NM, USA, http://www.eyesopen.
com/). The software is free for academic users. OMEGA is
used for generating multiple conformations for a given ligand.
The input for OMEGA can be either three-dimensional (3D)
structures in pdb format or SMILES strings in smi format.
One may also use other programs to sample different ligand
conformers.

156 Chengfei Yan and Xiaoqin Zou

http://www.cgl.ucsf.edu/chimera
http://www.cgl.ucsf.edu/chimera
http://www.cgl.ucsf.edu/Overview/software.html#dms
http://www.cgl.ucsf.edu/Overview/software.html#dms
http://dock.compbio.ucsf.edu/Contributed_Code/sphgen_cpp.htm
http://dock.compbio.ucsf.edu/Contributed_Code/sphgen_cpp.htm
http://www.eyesopen.com/
http://www.eyesopen.com/


3 Methods

MDock requires the 3D structure of the protein target (or an
ensemble of protein structures), the 3D structure of the ligand,
and the file that contains the sphere points which represent the
negative image of the binding pocket. The preparation of these files
is described as follows:

3.1 Preparation

of the Protein

and Ligand Files

The structures of the protein and the ligand can be either the
experimentally determined or theoretically modeled structures.
MDock uses the SYBYL mol2 format files for docking. However,
for the preparation of the aforementioned sphere points, the pdb
file of the protein structure is also required. The pdb file and mol2
file can be easily converted from one to the other using Chimera.
Multiple structures of the ligand or multiple ligands can be stored
in a single mol2 file. MDock docks the multiple structures in the
ligand mol2 file one by one. For ensemble docking, the multiple
structures of the protein need to be superimposed together, which
can be done by the MatchMaker tool in Chimera. The protein
structures for ensemble docking can be NMR models, protein
structures bound with different ligands, or conformations sampled
by computational techniques such as Molecular Dynamics (MD) or
Monte Carlo (MC) simulations.

It is noted that solvent molecules, ions, and other co-bound
small molecules should be deleted when preparing the protein
structures for docking. MDock does not require the addition of
hydrogens and charges for the protein and the ligand. The hydro-
gen and the charge information in the input files is automatically
ignored.

3.2 Generation and

Selection of Sphere

Points for Docking

It takes the following steps to generate and select sphere points for
docking purpose:

1. Generating the molecular surface of the protein structure.
The molecular surface of the protein structure can be generated
using the following command:

dms protein:pdb �a �n �o protein:ms

where dms is taken from the molecular surface generation
software DMS, protein.pdb is the pdb file of the protein struc-
ture, and protein.ms is the output file which contains the coor-
dinates of the dots representing the molecular surface of the
protein. Alternatively, Chimera’s Write DMS tool can also be
used for sphere point generation.

2. Generating sphere points based on the molecular surface of the
protein structure.
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The file contains the sphere points for the protein structure can
be generated by

sphgen cpp �i protein:ms �o protein:sph

where sphgen_cpp is the executable of the Sphgen_cpp program
in the UCSF Dock software. The output protein.sph file con-
tains the coordinates of the sphere points of the protein
structure.

3. Defining the putative binding site.
A pdb-format file (denoted as “site.pdb”) that locates the puta-
tive binding site is required to prepare for the selection of the
sphere points that cover the binding region. For a protein
structure with known binding pocket, this pdb file can be either
the coordinates of the residues close to the center of the bind-
ing pocket or the coordinates of the co-crystallized ligand(s).
For a protein structure with no prior knowledge of its binding
pocket, users can use any binding site prediction tools or
servers, such as Q-SiteFinder [24], 3DligandSite [25], and
GalaxySite [26], to predict the binding pocket.

4. Selecting the sphere points that adequately cover the binding
region.
The sphere points which cover all the binding region can be
selected using the following command:

get sph site:pdb protein:sph

where get_sph is an accessory command in the bin directory,
which selects all the sphere points within a specified distance
(default: 3. 0 Å) from the atoms in “site.pdb.” The default
output files are recn.sph, recn.pdb, and sph.par. recn.sph contains
the selected sphere points that will be used by MDock in the
docking calculations. recn.pdb is for the display of the sphere
points in recn.sph using Chimera. sph.par saves the record of the
parameters used by get_sph.

Users should display recn.pdb in Chimera to examine whether
the binding region was adequately covered. If not, users should use
a larger cutoff for sphere points selection. The cutoff distance for
sphere points selection and other parameters for get_sph can be
specified in two ways:

1. Run get_sph interactively:

get sph site:pdb protein:sph �param
Users will be asked to provide a value for each parameter. If
users decide to use the default value for a parameter, simply hit
“Enter.” The parameters will be output in the sph.par file.
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2. Run get_sph with parameters defined in a parameter file, say,
sph.par:

get sph site:pdb protein:sph �param sph:par

All the parameters will then be read from this parameter file.
A detailed explanation of the parameters in get_sph is

provided in the manual of MDock.

For molecular docking against a single protein structure, the
sphere points in recn.sphwill be directly used for molecular docking.
The preparation is more complicated for molecular docking against
multiple protein structures. Specifically, the sphere points should be
prepared for each protein structure independently. Then, these
sphere points generated from individual protein structures are
combined and clustered as follows:

cat *=recn:sph > all :sph
clu sph all :sph recn:sph

The output file, “recn.sph”, comprises the coordinates of the sphere
points to be used for ensemble docking.

3.3 Molecular

Docking

3.3.1 Single (Protein)

Docking

The docking command, MDock, can be executed in three ways:

1. Run MDock using default parameters:

MDock protein:mol2 ligandðsÞ:mol2

The ligand(s).mol2 file contains a single ligand conformer or
multiple conformers of a ligand or multiple ligands. MDock
automatically docks all the conformers to the protein. This
method requires the sphere point file recn.sph as a standard
input. The default parameters will be used for the docking
calculation, the values of the parameters will be output in a
parameter file named MDock.par.

2. Run MDock interactively:

MDock protein:mol2 ligandðsÞ:mol2 �param

MDock will interactively ask users to provide a value for each
parameter. If users prefer the default value, hit “Enter” key. The
input values of the parameters will be saved in a parameter file
named MDock.par.

3. RunMDock by using the parameters pre-defined in a parameter
file, say, MDock.par:

MDockprotein:mol2 ligandðsÞ:mol2 �param MDock:par

MDock will search in MDock.par for the required docking
parameters. If any required parameter is missing, MDock will
interactively ask the user to specify the value for the parameter.
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Besides its application to molecular docking,MDock can also be
applied to binding mode optimization, scoring, and even target
selectivity. For detailed descriptions of the parameters for MDock,
the user can refer to the MDock manual.

3.3.2 Ensemble Docking For ensemble docking, the mol2 files for the multiple protein
structures should be under the same directory, with their file
names sharing a user-defined prefix followed by a double-digit
number (from 01 to 99) to label the protein structures. For exam-
ple, if we have eight protein structures for ensemble docking, we
define the prefix as PKA, then the eight mol2 files will be named
PKA01.mol2, PKA02.mol2, . . ., and PKA08.mol2. The command
to run MDock against multiple protein structures is

MDock PKA ligandðsÞ:mol2

Similar to single docking, ensemble docking also requires the
sphere point file, “recn.sph”, and can be run interactively with
user-defined parameters or with the parameters defined in a param-
eter file.

3.3.3 The Output Files

of MDock

MDock creates three files: a mol2 file that lists the docked modes
including their coordinates and energy scores (default: MDock.
mol2), an output file that lists the energy scores of the docked
modes (for ensemble docking, the corresponding protein structure
number for each docked mode is also included) (default: MDock.
out), and a file that records the information about the consumed
CPU time and the number of processed ligand conformers (default:
MDock.log).

4 The Case Study

The target SYK with its 276 ligands in the CSAR 2014 benchmark
is used for the case study. The CSAR benchmark provides the
SMILES strings of the ligands in an smi-format file (SYK_set.smi).
The pIC50 values of all the ligands for SYK and the complex
structures (in pdb format) for eight ligands (GTC000222 to
GTC000226, GTC000233, GTC000249 and GTC000250) are
also released in the benchmark.

In our docking study, up to 500 conformers for each ligand
were generated from its SMILES string using Omega 2.4.6 using
the following command:

omega2 -in SYK_set.smi -out ligs.mol2 -warts true -fromCT true
-strictfrags true -maxconfs 500 -flipper true

A total of 108,981 3D conformers for 276 ligands were gen-
erated and stored in mol2 files (ligs.mol2). Both single docking and
ensemble docking were performed. Specifically, the protein
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structure from the SYK-GTC000222 complex was used for single
docking. As for ensemble docking, the protein structures from the
eight released complexes were superimposed with Chimera, using
the protein from the SYK-GTC000222 complex as the reference
structure; these eight structures formed the protein conformational
ensemble.

The files containing the sphere points for single docking and
ensemble docking were prepared as described in Sect. 3.2. For
sphere point selection, we used the ligand coordinates (site.pdb)
from the PDB entry 1XBC [27], which contains SYK bound with a
small molecule that binds to the same binding pocket as those 276
ligands. 1XBC was also superimposed to the SYK-GTC000222
complex using Chimera.

Figure 1a, b show typical views of the protein structures and the
sphere points being selected for single docking and ensemble dock-
ing, respectively. The parameter files used for single docking and
ensemble docking are identical and are shown in Fig. 2. For each
ligand conformer, up to 1000 poses were rigidly sampled followed
by local optimization and scoring. Only the best scored pose for
each conformer was saved. The computations were performed
using a single 3.40 GHz Intel Core i7 CPU. Single docking took
56,265 s, whereas ensemble docking took 27,103 s. Ensemble
docking is more efficient in this case study because by using multi-
ple protein structures, the local optimization was more easily to
converge, and because with more protein conformers, ensemble
docking requires fewer than 1000 ligand poses to exhaustively
sample the possible binding poses.

Fig. 1 (a) The protein structure with the sphere points for single (protein) docking. (b) The protein structures
with the sphere points for ensemble docking
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For each ligand, the best-scored binding mode (i.e., the mode
with the lowest score) among all the docked conformers was con-
sidered as the predicted binding mode, and the corresponding
score was considered as the predicted binding energy score. The
root-mean-square-deviation (RMSD) of the heavy atoms between
the predicted binding mode and the native binding mode was used
as the metric for evaluating the performance of binding mode
prediction, whereas the Pearson correlation coefficient (r) between
the predicted binding energy scores and the � pIC50 values was
used to evaluate the performance of the binding affinity prediction.
Table 1 lists the RMSDs of the best predicted binding mode (with
the lowest RMSD) for the top 1 prediction and for the top 3
predictions, respectively, for the eight ligands with released com-
plex structures. The results of single docking and ensemble docking
are also shown, respectively.

It can be seen from Table 1 that single docking and ensemble
docking show comparable performances. An example of successful
ensemble docking for binding mode prediction is shown in Fig. 3:
The top prediction for the ligand GTC000222 achieved an RMSD
of 0. 866 Å compared with the native binding mode. For binding
affinity prediction, ensemble docking shows a better performance
than single docking: In the score versus � pIC50 plot shown in
Fig. 4, the predicted binding affinities for the 276 ligands with
ensemble docking achieved a higher correlation with the � pIC50
values (0. 72) than the correlation achieved from single docking
(0. 51).

Other applications of MDock can be found in our publications
[13, 20, 28, 29].

Fig. 2 The parameter file used for single (protein) docking and ensemble docking
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Table 1
Results of binding mode prediction on SYK with single (protein) docking and ensemble docking

Single docking (Å) Ensemble docking (Å)

Ligand Top 1a Top 3b Top 1 Top 3

GTC000222 0.864 0.864 0.866 0.866

GTC000223 0.942 0.942 2.124 0.965

GTC000224 3.198 2.555 2.705 2.705

GTC000225 1.318 1.008 1.685 1.032

GTC000226 2.268 2.049 2.172 2.023

GTC000233 1.967 1.310 1.877 0.894

GTC000249 0.656 0.656 1.698 1.698

GTC000250 0.799 0.799 3.422 0.748

a This column presents theRMSD between the native binding mode and the predicted binding mode of the ligand when

only the top prediction is considered
b This column shows theRMSD between the native binding mode and best predicted binding mode within the top three

predictions

Fig. 3 The binding mode of the ligand GTC000222 was successfully predicted by ensemble docking, with an
RMSD of 0.866 Å from the native binding mode. The protein is represented by its molecular surface. The
native ligand is in cyan, and the predicted binding mode is in magenta
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5 Notes

1. For the preparation of the protein structures for docking,
solvent molecules, ions and co-bound small molecules should
be removed.

2. MDock does not need to add hydrogens and charges for the
protein and the ligand. The information about hydrogens and
charges in the input protein and ligand files is automatically
ignored.

3. For ensemble docking, the multiple protein structures should
be superimposed for preparing the sphere points and docking
calculation.

4. For sphere point selection, users should manually examine the
sphere points to make sure that the whole binding region is
adequately covered by the sphere points. Otherwise, the value
of the cutoff distance should be increased to include more
sphere points.
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Pharmacophore Modeling: Methods and Applications
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Abstract

A pharmacophore represents the essential features of a molecular interaction and are an integral part of
modern computational drug discovery. This review provides an introduction into the basic concepts and
approaches of pharmacophore-based drug design using a practical example. Recently developed approaches
and tools for utilizing pharmacophores are also reviewed.

Keywords Pharmacophore, Virtual screening, Computer-aided drug design, Structure-based drug
design, Rational design, Protein–ligand interactions, Drug discovery

1 Introduction

Pharmacophores play an essential role in modern computational
drug discovery. Hundreds of reports of pharmacophore-based vir-
tual screens are reported every year [1], and pharmacophore mod-
eling is integrated in a number of commercial virtual screening
software packages such as Discovery Studio [2], MOE [3],
SYBYL-X [1], Phase [4], and LigandScout [2]. As the topic has
been expertly and comprehensively reviewed previously [5–12],
here we focus on reviewing basic concepts and recent developments
within the context of a practical example. For our running example
we use the ligand binding domain of estrogen receptor alpha (ERα)
as this system remains of clinical interest [13] and has a large
amount of structural and binding data available. The details of the
datasets used and how they are assessed are provided in Box 1.
Using this system and freely available tools, we describe how phar-
macophores are typically formulated, demonstrate some methods
for elucidating pharmacophores from structural and chemical data,
explain how pharmacophore matching is performed, and discuss
additional considerations when integrating pharmacophore match-
ing into a broader virtual screening workflow.
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Box 1:
ERα Example

The structure of the ERα ligand binding domain with the agonist estradiol
(PDB 1QKU)

For developing our pharmacophore models for ERαwe use a
training set of compounds with known activity and test our
models using a distinct test set of compounds. For a training
set, we use compounds from PubChem assay 629. This assay
measures the binding of the SRC-1 nuclear receptor interaction
domain to the ligand binding domain of ERα. Compounds
identified as active are either direct antagonists of ERα or inhi-
bitors of the ERα/SRC-1 interaction. For our training set we
consider only those compounds that demonstrated activity in a
confirmatory assay (PubChem assay 713) as active compounds
and only compounds that did not exhibit activity in the primary
assay (629) as inactive. Compounds with activity in the primary
assay that was not reproduced in the confirmatory assay are
ignored. The resulting set consists of 84,875 unique compounds
of which 221 (0.26 %) are active.

For our test set we use the esr1 target of the DUD-E [14]
database. This set is assembled from multiple sources and is
designed to support retrospective virtual screening. There are
21,068 compounds of which 383 (1.82 %) are active. Impor-
tantly, the active compounds include both antagonists and ago-
nists. This allows us to test predictions of protein–ligand binding

(continued)
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Box 1 (continued)

without concern for the phenotype of the compound, which is
particularly relevant for ERα since agonists and antagonists bind
in the same active site.

For each compound in both sets we generated a maximum
of 20 conformations, three-dimensional structures that realisti-
cally sample the internal torsions of the molecule. We used
RDKit [15], which is one of the best performing open-source
conformer generators [16], and the Universal Force Field (UFF)
[17]. From these conformers we created searchable pharmaco-
phore indices using Pharmer [18]. In reporting the performance
of our models we report the number of true positives (TP), false
positives (FP), precision, recall, F1 score, enrichment factor
(EF), and p-value of enrichment (pEF). The F1 score is the
harmonic mean of the precision and the recall and provides a
balanced assessment of screening performance, the enrichment
factor is the precision divided by the percentage of positives in
the input set, and the p-value of enrichment is the probability of
obtaining an enrichment at least as good as the observed enrich-
ment by chance (calculated using a hypergeometric test). A
compound is considered to match a pharmacophore model if
any of its conformers is a match.

2 What Is a Pharmacophore?

The concepts behind pharmacophores date back more than 100
years to the ideas of Paul Ehrlich, although these nascent concepts
substantially evolved over time to yield the current modern defini-
tion [19]. The official modern definition of a pharmacophore
is provided by the International Union of Pure and Applied
Chemistry [20]:

A pharmacophore is the ensemble of steric and electronic features
that is necessary to ensure the optimal supramolecular interac-
tions with a specific biological target structure and to trigger
(or to block) its biological response.

A pharmacophore does not represent a real molecule or a real
association of functional groups, but a purely abstract concept
that accounts for the common molecular interaction capacities
of a group of compounds towards their target structure. The
pharmacophore can be considered as the largest common
denominator shared by a set of active molecules.

Put more simply, a pharmacophore is a spatial arrangement of
generic molecular interactions that concisely explains the biological
activity of a ligand molecule. Typically the biological activity in
question is protein–ligand binding.
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Intrinsic to the pharmacophore concept is the three dimen-
sional arrangement of features. It is not only what features are
included in the pharmacophore, but also how these features are
presented to the receptor that matters. An ideal pharmacophore
describes a minimal arrangement of features that is necessary to
induce activity; however, it is not, by itself, a sufficient condition for
activity as molecules that match a pharmacophore may have addi-
tional properties that prevent activity. Realistically, for any given
system there will be an assortment of reasonable pharmacophores as
there may be a variety of possible binding modes and mechanisms
of action (e.g., competitive vs allosteric) that can induce the same
biological activity.

3 Feature Definition and Annotation

The most common features used to define pharmacophores are
hydrogen bond donors/acceptors, negative/positive charges,
hydrophobic regions, and aromatic rings. Excluded volumes,
which specify regions of space the molecule does not overlap, or
inclusion volumes, which specify regions of space a molecule must
overlap, may also be used to provide purely steric constraints. More
specific interaction features, such as metal interactions [21], may
also be specified. Highly specific features that map directly to
specific functional groups (e.g., mimics of protein side chains
[22]) violate the strict definition of a pharmacophore, but may
still be useful for virtual screening purposes.

Equally important as what features are specified is their arrange-
ment in space. For both pharmacophore elucidation and matching,
molecules must be annotated with pharmacophore feature points
that specify a precise location that represents the feature. A phar-
macophore model or query specifies a range of possible geometries
for a set of pharmacophore feature points. This is typically repre-
sented using tolerance spheres. A pharmacophore model for ERα is
shown in Fig. 1. We consider this pharmacophore the ‘canonical’
pharmacophore for ERα binding [23]. A molecule can be said to
match a pharmacophore model if there exists a reasonable pose and
conformation of the molecule that places the necessary features of
the molecule within the specified tolerance spheres (e.g., a ring
center should lie within an aromatic tolerance sphere).

Although feature definition and annotation may seem straight-
forward, in practice comparative studies of different pharmaco-
phore modeling packages [24–26] found substantial differences in
how molecules are annotated with pharmacophore features. Differ-
ent software packages may identify different protonation states of a
molecule, resulting in different hydrogen bond features. Weak
hydrogen bond acceptors/donors (e.g., ester oxygens or thiols)
may or may not be annotated. The direction of hydrogen bond
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features is necessarily approximate when annotating a single mole-
cule as the true orientation of the bond depends on the geometry of
the full complex. Charged features are likewise dependent on pro-
tonation states and different choices can be made as to the center of
a multi-atom charged group. Hydrophobic feature annotation dis-
plays the most variance across packages [25, 26] as there is no clear
canonical way to reduce hydrophobic regions to a minimal set of
informative points. As a consequence of the different annotation
schemes, care should be taken when attempting to transition phar-
macophore models between different modeling environments.

For our ERα running example, we will use the open-source
Pharmer [18] pharmacophore software to identify pharmacophore
features in molecules. Pharmer uses OpenBabel [27] to assign
protonation states and formal charges to molecules and identifies
pharmacophore features using a set of SMARTS [28] expressions,
which can be customized by the user if desired. If a feature consists
of multiple atoms, the feature point is placed at the geometric
center of the matched atoms. Groups of hydrophobic features
that are all within 2 Å of each other (i.e., they form a clique) are
merged into a single feature.

Fig. 1 A pharmacophore for estradiol binding to the ligand binding domain of
ERα. This pharmacophore model was constructed from a crystal structure (PDB
1QKU) and literature reports [23]. The hydroxyl groups at either end of estradiol
make hydrogen bonds to the receptor. A hydrogen acceptor interaction is
represented with an orange mesh sphere and a hydrogen donor interaction is
represented by a white mesh sphere. Additionally, these interactions have a
direction, indicated by the arrows. The core of estradiol is hydrophobic and
buried in a hydrophobic cavity. These interactions are represented with green
mesh spheres. The aromatic ring also contributes to binding, and this interaction
is indicated with a purple mesh sphere. All spheres have a radius of 1 Å. Image
generated with PyMOL [39] using the load_query plugin from Pharmer [18]
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4 Elucidating Pharmacophores

Assigning pharmacophore features is the first step in elucidating a
pharmacophore model. The challenge of pharmacophore elucida-
tion is to determine the subset of possible features of a molecule (or
molecules) that best explains the observed biological activity. Phar-
macophore elucidation methods are broadly categorized as ligand-
based, receptor-based, and ligand-receptor based depending on the
type of data they use as input.

4.1 Ligand-Based

Pharmacophore

Elucidation

Ligand-based pharmacophore elucidation takes as input a set of
known actives: molecules that demonstrate the desired biological
activity such as enzyme inhibition. The structure of the receptor
and the three-dimensional binding mode of the ligands are not
presumed to be known. These methods typically work by enumer-
ating and overlaying conformations of the input molecules in an
attempt to find those pharmacophores that are shared by the largest
set of molecules. As the molecular alignment problem is computa-
tionally challenging and the objective for ranking alignments is
unclear, several approaches have been proposed [5, 10]. We sum-
marize the most recently proposed approaches here.

GAPE [29] improves upon the genetic algorithm based GASP
[30] program by updating the scoring function and supporting
partial matching of pharmacophore features, which allows the elu-
cidated pharmacophore to contain features that aren’t present
across all input ligands. Similarly, multiobjective genetic algorithm
(MOGA) [31] was enhanced by adding partial feature matching,
including a clique detection based alignment initialization proce-
dure, and biasing the conformational search to prefer torsions that
are common in known structures. A novel fingerprint based
approach [32] decomposes generated conformers into triangles
that are then discretized into fingerprints to support efficient over-
lay generation. An alternative combinatorial optimization strategy
for pharmacophore elucidation is growing neural gas optimization
(GNG). GNG is the basis of PENG [33], which generally achieves
better alignments than the default MOE [3] algorithm and was
successfully used in a prospective pharmacophore screen for leuko-
triene A4 hydrolase. Ant colony optimization has also been pro-
posed a viable optimization method [34] while distance geometry
provides an alternative to rigid alignment methods [35].

Instead of reducing molecules to pharmacophore interaction
points, a potentially more sophisticated and informative approach
(but more computationally demanding) is to compute molecular
interaction fields (MIFs) [36]. FLAPpharm [37] is a recent example
of an MIF based approach to pharmacophore elucidation.

As an example of ligand-based pharmacophore elucidation, we
applied the freely available PharmaGist [38] webserver to our
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training set. PharmaGist performs multiple flexible alignments of
the input ligands to produce a series of ranked pharmacophores. As
PharmaGist is limited to a maximum of 32 input ligands, we
provided the 32 highest affinity ligands from our training set. The
highest ranked five feature model is shown in Fig. 1a and the results
of screening our test set with different sized models is shown in
Fig. 1b. With this input set, PharmaGist failed to identify the
canonical pharmacophore model, and the models that were identi-
fied did not result in a significant enrichment. This should not be
seen as an indictment of PharmaGist, as it performs well in other
contexts [40], but it does illustrate the challenges inherent in
deriving a pharmacophore model from only ligand data.

The success of ligand-based methods is highly dependent on
the nature of the provided input set, and comparing such methods
requires a standardized benchmark. Such benchmarks for evaluat-
ing pharmacophore elucidation and molecular alignment algo-
rithms were recently published [41, 42], however the methods
discussed here have yet to be comprehensively and comparatively
evaluated. Previous evaluations of older methods [43, 44] found
that automatic pharmacophore elucidation can be successful, but
benefits from expert intervention, particularly in the choice of the
set of molecules used as input.

4.2 Receptor-Based

Pharmacophore

Elucidation

If ligand-binding information is not available (or is limited), but the
structure of the protein target is known, receptor-based pharmaco-
phore elucidation can be used. Even in the absence of a known
structure, homology models may be productively used, as has
been done for serotonin transporters [45] and G-protein-coupled
receptors [46, 47]. Receptor-based elucidation was recently com-
prehensively reviewed [48]. The primary tasks are identifying phar-
macophore features in the ligand-space from the receptor and
selecting the most important features.

Geometric rules can be used to project receptor features (e.g.,
a hydrogen acceptor) into ligand space (e.g., a complementary
hydrogen donor). As these projections are necessarily imprecise,
they can be complemented (or replaced) by more sophisticated
methods that compute grid energies [49], dock molecular frag-
ments [50], or perform simulations. Simulation methods, such as
Site-Identification by Ligand Competitive Saturation (SILCS)
[51, 52], use molecular dynamics to simulate the target protein in
solution. As the dynamics of the receptor are simulated, even an
unbound, apo, structure may sample bound-like states. The
simulated environment includes probe molecules, which may be as
simple as the water molecules themselves [53], or may be a selection
of organic fragments with different chemical properties, as with
SILCS. Regions where a probe appears frequently are likely interac-
tion points. For example, a hydrophobic probe, such as benzene,
will disproportionately favor a hydrophobic pocket on the protein.
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Docking methods are less computationally demanding than
simulation methods as they usually do not account for protein
flexibility (or, if they do, limit themselves to side-chain flexibility
[54]). These methods dock chemical probes and cluster and score
the results to identify binding ‘hot spots’ that can be converted to
pharmacophore features based on the chemical properties of the
probe. A probe can be as simple as water [55] for identifying
hydrogen bond interactions or a panel of chemically diverse probe
molecules can be used. For example, the FTMap webserver [56]
uses 16 different probe molecules. The application of FTMap to
both bound and unbound ERα structures is shown in Fig. 2. We
generate consensus pharmacophores by merging like features that
are within 3 Å of each other and only retaining those features that
match a majority of probes (i.e., more than 8). For both structures,
the top FTMap clusters correctly identify the estradiol binding site
from the full protein analysis. However, the canonical interactions
are best captured in the analysis of the bound structure. On the
other hand, the unbound structure analysis reveals a third interac-
tion site that, while not relevant to the agonist estradiol, is fre-
quently the target of antagonists. As shown in Fig. 2c, both
consensus pharmacophores generate significant enrichments,

Features Ligands TP FP Precision Recall F1 EF pEF
5 9 1 178 0.56% 0.26% 0.004 0.309 0.961

4 18 41 2166 1.86% 10.70% 0.032 1.041 0.418

3 27 131 8083 1.59% 34.20% 0.031 0.892 0.958

a

b

Fig. 2 (a) The alignment found by PharmaGist from the 32 highest affinity
members of our training set. The five feature pharmacophore ranked highest
by PharmaGist is shown. This identifies a generally linear and planar set of
aromatic features (purple), that might correspond to the hydrophobic core of the
canonical pharmacophore, but the hydrogen acceptor features (orange) are not
clear matches to the canonical pharmacophores. (b) The results of using the top
ranked five, four, and three feature pharmacophores to screen our test set. The
resulting enrichments are not significant
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although the unbound-based pharmacophore lacks generality as it
matches a total of 18 compounds. These results indicate how
dependent receptor-only methods are on the receptor structure
and illustrate the appeal of simulation methods that consider the
dynamics of the protein rather than rely on a single structure. They
also show the amount of implicit information present in a bound
receptor structure, even in the absence of the cognate ligand.

4.3 Ligand-Receptor

Pharmacophore

Elucidation

A protein–ligand complex provides the most direct method for
elucidating a pharmacophore. Given a complex, straightforward
rules can be applied to identify all the interacting features of a ligand
[4, 57–59]. For example, a hydrogen donor on the ligand must be
an appropriate distance and angle removed from a hydrogen accep-
tor on the receptor, or a hydrophobic group on the ligand must be
buried in a hydrophobic pocket. However, identifying all the inter-
acting features is not sufficient to identify a usable pharmacophore
as the pharmacophore should consist of only the most essential
features, and pharmacophore models with too many features will
be overly selective and possibly not match any compounds.

Interacting features can be prioritized for inclusion in a phar-
macophore model by computing the energetic contributions of the
corresponding functional group [60], or cross-referencing with the
results of a receptor-based analysis. For instance, interactions that
are present in the protein–ligand complex, but are not picked up by
docking or simulation methods, are likely less relevant. Simulation
can also be used to refine the positions of the interacting features to
partially account for receptor flexibility [61].

If ligand activity data is available, then an excellent way to
elucidate an informative pharmacophore from a set of interacting
features is to simply enumerate all possible pharmacophore models
and evaluate them on a well constructed training set. We demon-
strate this approach applied to ERα in Fig. 3. We generated all
possible combinations of three, four, and five features from the
nine interacting pharmacophore features identified by Pharmer
from the bound ERα (PDB 1QKU) structure. All features were
represented by directionless 1 Å tolerance spheres. The best
performing models of each size, as determined by the F1 score on
the training set, are shown in Fig. 3. All three models capture
components of the canonical pharmacophore. The three feature
model consists of the major polar contacts, the four feature model
adds in a hydrophobic center, and the five feature model adds an
aromatic interaction and exchanges a hydrogen donor for an
additional hydrophobic feature. All three models have excellent
performance on our test set, as shown in Fig. 3d. Enrichments are
highly significant and range from 22X to 78X while even the most
selective five feature pharmacophore retrieves 18.5 % of the actives
in the test set.
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5 Identifying Pharmacophore Matches

Pharmacophore search identifies those library compounds that
match a pharmacophore. Pharmacophore search technologies can
be categorized as fingerprint-based or alignment-based.
Fingerprint-based approaches [62–64] use a variety of methods to
reduce the spatial relationship between pharmacophore features in
a database conformer to a Boolean or numeric fingerprint. For
example, all distances between pharmacophore features can be
assigned into discrete bins (e.g., distances of 1–2 Å between a
hydrophobic and hydrogen donor feature) where each bin corre-
sponds to a unique position in a Boolean fingerprint. Alternatively,

Features TP FP Precision Recall F1 EF pEF

Bound 5 54 265 16.93% 14.10% 0.154 11.209 <10−10

Unbound 6 5 13 27.78% 1.31% 0.025 21.157 10−5

a

c

b

Bound Unbound

Fig. 3 (a and b) The results of running FTMap on a bound (PDB 1QKU) and unbound (PDB 2B23) ERα receptor
structure. The top ranked clusters of chemical probes identified by FTMap are shown overlaid estradiol
(green). Consensus pharmacophore features derived from these clusters are shown as mesh spheres.
Hydrophobic features are green, hydrogen donors white, and hydrogen acceptors orange. The top two clusters
are shown as magenta (left) and cyan (right) sticks and overlap the polar contacts from the canonical
pharmacophore (Fig. 1). In the unbound structure, HIS-524 (right) is flipped away from the binding site
resulting in a less compact cluster that, unlike the bound structure cluster, does not clearly identify the
canonical polar contact. In the unbound structure a third cluster (yellow) identifies a hydrophobic pocket that is
often filled by antagonists. These clusters serve to both identify the binding site and characterize the most
likely interactions and pharmacophore features in the absence of ligand binding data or protein–ligand
structures. (c) The results of using these pharmacophore models to screen our test set. Both result in
significant enrichments, but the pharmacophore derived from the bound structure retrieved substantially more
active compounds
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distance information can be directly stored within a numeric finger-
print, as is done with FLAP [64], to eliminate the error introduced
by discretizing distances at a cost of decreased computational effi-
ciency. Numeric fingerprints may also consist of histograms of
distances, as is the case with Triplets of Interaction fingerprints
[65] and Atom Pair 2D-fingerprints (APfps) [66]. APfps is also
noteworthy since it computes topological distances in the 2D
molecule (i.e., the number of bonds between atoms) and so does
not depend on the generation of molecular conformations. This
simpler approach still produces reasonable correlations with three-
dimensional shape similarities. Another example of a 2D pharma-
cophore search tool is PhAST [67] which uses a novel string
alignment approach.

Fingerprint-based approaches are typically used as similarity
measures. For example, the fingerprint of a molecule is compared
to the fingerprint of a model using a Tanimoto (Jaccard) similarity
coefficient. These approaches generally are not capable of generat-
ing an alignment of a matching molecule to the model, nor is there
necessarily any guarantee that such an alignment is feasible. None-
theless, pharmacophore similarity measures naturally integrate with
other fingerprint-based methods [68] and, in addition to their
utility in virtual screening, are useful for other purposes such as
assessing binding site similarity [69, 70] and “target fishing” for
novel targets of known ligands [58].

Alignment-based approaches perform a three-dimensional
alignment between the pharmacophore model and a molecule,
often by solving maximum common subgraph problems [71].
This is typically done using rigid conformations of database com-
pounds (as with our example workflow), but flexible alignment
methods, where the conformation of the compound is fit ‘on-the-
fly’ to the target pharmacophore model, are also used. However,
flexible alignment methods are computationally more expensive
and it is not clear that they provide superior results [72]. Alignment
methods can be used as similarity metrics by computing the volu-
metric overlap of pharmacophore features [73], but their primary
advantage is that they produce poses of the matching molecules
aligned to the pharmacophore model.

Both fingerprint and alignment approaches typically evaluate
every possible molecule (conformer) in the search database and
search times scale with the size of the database. More recently,
index-based methods of searching, which scale with the breadth
and complexity of the query, not the database size, were developed
for searching and aligning libraries of rigid conformers. AnchorQu-
ery [22] is limited to chemical spaces containing a predefined
‘anchor’ fragment that is used to define the coordinate system of
the molecule. Pharmacophore features of rigid conformations are
then stored in a spatial index at these anchor-oriented coordinates.
Pharmer [18], used in our workflow, is a general purpose
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pharmacophore search tool that stores geometric triplets of phar-
macophore features in a specialized KD-tree data structure.
Searches are performed by looking up the component triangles of
a pharmacophore model in this index, which is a sublinear time
operation with respect to the size of the database.

A number of pharmacophore tools are freely available online as
web applications. The iDrug website [74, 75] supports binding site
analysis, pharmacophore elucidation, and pharmacophore search of
more than 800,000 compounds using a semi-flexible alignment
approach. It can also be used to search small, user-provided data-
bases. PharmMapper [76] searches over 7000 receptor-based phar-
macophores for matches to a provided query ligand. That is, the
query is a ligand and the results are pharmacophore models
that correspond to targets the ligand might bind. AnchorQuery
[22, 77] integrates with PocketQuery [78] to support the analysis
of protein–protein interaction structures and structure-based phar-
macophore elucidation. It has a search database of more than two
billion conformations of over 31 million synthetically accessible
molecules, all designed to contain an amino acid analog. ZINC-
Pharmer [59, 79] uses Pharmer [18] to search the purchasable
subset of the ZINC database [80], which currently consists of
more than 22 million molecules. Its interface is shown in Fig. 4
during a search for the pharmacophore of Fig. 3c. This search

3 4 5

Features Train F1 TP FP Precision Recall F1 EF pEF

3 0.189 214 537 28.50% 55.87% 0.377 21.921 <10−10

4 0.301 140 139 50.18% 36.55% 0.423 55.404 <10−10

5 0.326 71 50 58.68% 18.54% 0.282 78.111 <10−10

a

d

b c

Fig. 4 (a–c) The best performing pharmacophore models of three different sizes on our ERα training set, as
determined by their F1 score on the training set. All possible subsets of three, four, and five interacting
features from the ERα bound structure, PDB 1QKU, were generated and evaluated. (d) Applying these models
to our test set results in highly significant enrichments. As a total of 336 models were evaluated, these
enrichments remain statistically significant after applying the Bonferroni multiple test correction
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took less than 8 s to identify 80,000 matches out of more than 215
million conformations.

6 Using the Results of Pharmacophore Search

Pharmacophore search is often successful at creating enriched sub-
sets, as in Fig. 3. However, this is rarely the final result as often there
are more hits than it is feasible to screen. Furthermore, the nature
of a pharmacophore is that it identifies the existence of beneficial
features, not the presence of disadvantageous features. For exam-
ple, a compound may match a pharmacophore, but still exhibit
severe steric or electrostatic clashes with the receptor. Additional
processing of the pharmacophore hits can eliminate clearly undesir-
able compounds while prioritizing compounds for screening.

Metrics derived directly from the pharmacophore match, such
as the root mean squared deviation (RMSD) between matched
features, have a limited ability to adequately prioritize compounds,
particularly when the initial pharmacophore model is already spe-
cified using small tolerances. Figure 5 shows this for the results of

Fig. 5 The ZINCPharmer [79] online pharmacophore search interface with the pharmacophore from Fig. 3c
shown. The search of the 22 million compounds of the ZINC purchasable subset identified more than 80,000
matches and took less than 8 s

Pharmacophore Modeling: Methods and Applications 179



the three point pharmacophore of Fig. 3. When ranked by RMSD,
the distribution of actives in the result set has no clear bias toward
lower ranked, lower RMSD, compounds.

A more effective method of ranking hits is to fully use the
structure of the receptor to optimize the pharmacophore aligned
pose in the binding site. This can be done by docking the com-
pounds to the binding site [81]. Alternatively, if an alignment-
based method of search is used, the resulting aligned pose can be
energy minimized using the same scoring functions used in docking
to find a pose near the pharmacophore that is at a local minimum.
We applied this approach to the 751 compounds of the test set that
matched the three feature pharmacophore shown in Fig. 3.We used
the minimization software smina [82], a fork of AutoDock Vina
[83] that is customized to better support energy minimization and
scoring function development. When minimized against the estra-
diol bound structure (PDB 1QKU), there is a substantial improve-
ment in the ranking of the true actives, as shown in Fig. 5b. Of the
top 100 compounds, 66 are active. However, there is also a notice-
able anti-enrichment where many active compounds are ranked
poorly. Inspection of the pharmacophore aligned poses of these
compounds shows that many antagonists have unresolvable clashes
with the agonist-bound receptor. Specifically, as shown in Fig. 6,
they overlap with helix 12 of the ERα binding domain. This is a
common binding mode of ERα antagonists. In these cases, as
shown by the antagonist-bound structure shown in Fig. 6, the
receptor adopts a substantially different conformation where helix
12 is shifted which allows larger ligands in the binding site. When
our pharmacophore aligned compounds are minimized and ranked
with respect to this antagonist-bound receptor, the result is an
impressive prioritization of active compounds as shown in Fig. 5c.
Of the top 100 compounds, 99 are active.

Although using docking scoring functions to minimize and rank
pharmacophore aligned poses is an effective and computationally
efficient approach, the inverse approach, where pharmacophores
are used to filter or guide docking algorithms have also been success-
fully applied. For example, pharmacophores have been applied as a
post-processing step to docking when targeting VEGFR-2 [84] and
hLTC4S [85]. The integration of pharmacophore similarity mea-
sures into DOCK [86] produced dramatic improvements in pose
reproduction when measured over more than 1000 protein–ligand
complexes [87].
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7 Discussion

We have demonstrated, through our ERα running example, that a
pharmacophore-oriented screening process can be remarkably
effective. However, we cannot claim the success we demonstrated
with ERα generalizes to other targets. First and foremost, this is a
retrospective evaluation: it is easier to arrive at the right answer
when the right answer is already known. In particular, we purposely
selected a target that is extensively studied and has a well-

Fig. 6 The distribution of active compounds among the 751 compounds matched by the three feature
pharmacophore of Fig. 3 in our test set when ranked by different methods. (a) Ranked By pharmacophore
RMSD. (b) Minimized and ranked against agonist bound receptor (PDB 1QKU). (c) Minimized and ranked
against antagonist bound receptor (PDB 3ERT)

Pharmacophore Modeling: Methods and Applications 181



established pharmacophore [23]. It was no coincidence that the
structures we developed our models from contained this known
pharmacophore. There may also be a historical bias present in our
compound sets as the discovery of some of the active compounds
may have been guided by knowledge of this pharmacophore. Fur-
thermore, our test set was constructed as a benchmark set and
contained both agonists and antagonists. This allowed us to predict
binding without concern for the ultimate phenotype.

An additional concern is the possibility of overlap between our
training and test sets. Although they contained distinct sets of
compounds, a high degree of chemical similarity between training
and test sets can result in overly optimistic assessments of predictive
performance [88]. When projected onto a two-dimensional sur-
face, as shown in Fig. 7, the active compounds in our training and
test sets do have some degree of overlap. Importantly, however, the
active compounds found to match our three feature pharmaco-
phore of Fig. 3 are not limited to this overlapping region. In fact,

Fig. 7 Agonist-bound (PDB 1QKU) and antagonist-bound (PDB 3ERT) structures
of ERα shown with estradiol (green) and an inhibitor (magenta) that ranked
nearly last when its pharmacophore aligned pose was minimized against the
agonist-bound receptor but in the top ten when minimized against the
antagonist-bound receptor. The main difference in the bound receptors is the
movement of helix 12, shown in yellow in the agonist-bound conformation and
orange in the antagonist-bound conformation. This helix is displaced in the
antagonist-bound form and, consequently, inhibitors that bind to this
conformation clash severely with the agonist-bound receptor
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they span the full space of active compounds in our DUD-E test set.
This demonstrates that pharmacophores can generalize across a
diversity of chemotypes and underlines their applicability to scaf-
fold hopping.

We have reviewed the fundamental concepts, most recent
advances, and common approaches to using pharmacophores in
computational drug discovery and shown that a pharmacophore-
centered workflow can achieve impressive virtual screening hit rates
on an example ERα target. With the recent advances of index-based
pharmacophore search methods and the availability of online tools
for searching millions of commercially available compounds within
seconds, there is no better time to integrate pharmacophore
approaches into drug discovery projects.

Fig. 8 Active compounds from our ERα training set (PubChem assay 629) and
test set (the est1 benchmark of DUD-E [14]) mapped onto a two dimension
space. Principal components analysis (PCA) was used to reduce the OpenBabel
[27] FP2 fingerprints of the full set of active compounds to the two main principal
components (PC1 and PC2). Although the training set does overlap the test set,
most compounds in the test set are not in this overlapping region. More
importantly, the compounds identified as hits in Fig. 5 span the space, indica-
ting that pharmacophores are not limited to the chemical space they are trained
on (e.g., they are suitable for scaffold hopping)
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Abstract

Fragment-based drug design (FBDD) is a promising approach for drug discovery. Experimental FBDD
faces some intrinsic limitations and challenges such as the high requirements for the quality of target
proteins and biophysical techniques. Computational FDBB can be used independently or in parallel with
experimental FBDD to significantly improve the efficiency and success rate of lead discovery and optimiza-
tion. In this chapter, we describe the protocols of computational FBDD, the recent advances in new
algorithms and some successful examples. Both the advantages and the limitations of various computational
methods are also discussed.

Keywords: Computational fragment-based drug design, Fragment informatics, Fragment docking,
Fragment-based de novo design

1 Experimental Fragment-Based Drug Design

The key step in drug discovery is to discover small molecules that
bind to a biological target with high affinity and selectivity. Conven-
tionally, high-throughput screening (HTS) is a routine method to
identify initial hit or lead compounds in the pharmaceutical industry
[1]. However, HTS has several limitations such as small coverage of
drug-like chemical space [2] (106–107 screening compounds versus
1060 drug-like molecules), low hit rates and unfavorable physico-
chemical properties (e.g., large molecular weight and high hydro-
phobicity) [3]. Thus, the optimization of HTS-derived hits into
drug-like candidates could be a difficult task with low efficiency.

As an alternative approach, fragment-based drug design
(FBDD) is becoming an efficient method for drug discovery [4].
FBDD constructs novel drug-like lead compounds from small
fragments by taking advantages of both random screening and
structure-based drug design (SBDD). Compared to HTS, FBDD
has several advantages, including sampling a larger chemical space
(higher chemical diversity), higher hit rates, and higher ligand
efficiency (LE ¼ �log IC50/number of heavy atoms) [5, 6]. The
workflow of FBDD is depicted in Fig. 1. The first step of FBDD is
to detect weak to moderate binders (5 mM to 1 μM) of the desired
target by screening a library containing hundreds to thousands of
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fragments at a high concentration [7, 8]. The detection methods
for fragment screening include nuclear magnetic resonance (NMR)
[9, 10], mass spectroscopy (MS) [11, 12], X-ray crystallography
[13], and surface plasmon resonance (SPR) spectroscopy [14, 15].
These biophysical techniques are highly sensitive to the relatively
weak fragment binders. Then, on the basis of the structural infor-
mation of the target-fragment complex, various optimization stra-
tegies, such as fragment linking, fragment evolution, fragment
optimization, and fragment self-assembly, can be used separately
or in combination to increase the affinity and drug-likeness of
fragment hits [16]. Finally, the lead-to-candidate optimization is
technically similar to that of conventional drug design methods [4].

Although FBDD has made a great success in drug discovery
[17–19], it still faces some intrinsic limitations and challenges.

Fig. 1 The complementarity between computational and experimental FBDD
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Firstly, the sampling of a larger region of drug-like space is still
required. Despite its better performance than HTS, a FBDD study
using a typical library of 103 fragments can only sample approxi-
mately the chemical diversity space of 109 molecules. Secondly,
current fragment screening methods depend largely on high quality
target proteins, expensive equipment, and specific expertise [20],
which limits their application to a broader range of targets. For
example, the application of FBDD to membrane proteins (e.g.,
G-protein coupled receptors, GPCRs) remains a significant chal-
lenge because of the high demand on the amount, purity and
solubility of target proteins for labeling or crystallization [21].
Thirdly, it is difficult for current FBDD methods to treat flexibility
and selectivity during fragment detection and optimization [22,
23] because the conformation and key interactions of the original
fragment hits may be changed once they are constructed into a new
molecule. Therefore, most of the FBDD methods need to be
improved to take ligand specificity or selectivity into account.

2 Computational Fragment-Based Drug Design

To overcome the limitations of experimental FBDD, computational
approaches provide an alternative to improve the efficiency and
success rate of drug discovery. The protocol for computational
FBDD includes (Fig. 1): (1) construction of a virtual fragment
library; (2) fragment-based active site mapping and characteriza-
tion; (3) fragment docking to identify initial hits; (4) hit-to-lead-to-
candidate optimization [24–31]. The computational FBDDprocess
can be used as a integrated workflow. Any single step in this process
can also be used as a complementary method to assist experimental
FBDD in an efficient and cost-effective manner (Fig. 1).

As compared with experimental FBDD, computational
approaches have several advantages. First, high quality fragment
libraries can be constructed by computational approaches. Various
computational filters can be designed to improve the chemical
diversity, physicochemical properties, solubility and synthetic acces-
sibility of the fragment library [7, 8, 32]. Computational methods
are also useful to exclude fragments with unwanted chemical
groups and incorporate drug-like fragments, such as the most
frequently occurring fragments from known drugs. Secondly, larger
fragment databases can be explored by computational tools. Unlike
the low-throughput nature of experimental FBDD, virtual frag-
ment screening can identify potent hits without using complicated
detection techniques. Molecular docking can be used as a prescreen
tool to reduce experimental efforts of FBDD. Thirdly, computa-
tional approaches provide efficient and flexible optimization strate-
gies to improve the activity and drug-likeness of the fragment hits.
Substructure search and similarity-based search can be used to
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accelerate hit expansion and obtain structure–activity relationship
(SAR) information for a secondary design [33, 34]. Moreover,
totally new compounds can be designed using fragment hits as
“seeds.” The selection of most promising fragment hits for the
subsequent optimization is facilitated by computational analysis of
the structural information of the protein-hit complex. In silico
SBDD methods are also able to build up or assemble the fragment
hits into a new molecule with improved potency and drug-likeness.
For example, an appropriate linker to join fragment hits can be
virtually screened by de novo drug design algorithms [35, 36]. For
the designed molecules, their binding affinities and binding poses
are predicted by molecular docking and molecular dynamics simu-
lations, and the best compounds can be subjected for chemical
synthesis and biological assaying [37, 38]. Computational SBDD
tools now play an important role in fragment-to-lead and lead-to-
candidate optimization studies and have led to several clinical can-
didates [28, 29].

3 Construction of a Fragment Library

3.1 The Definition

of a Fragment

It is difficult to give a precise definition for the term ‘fragment’.
Generally, a fragment is a substructure of a more complex molecule,
which has low molecular weight, high solubility and weak binding
affinity with the target protein. In FBDD, fragments are often used
as building blocks to design lead compounds with improved
biological activity. The most well-accepted definition of fragments
is the “rule of three” (RO3) [39]. The physicochemical properties
of a fragment should meet the criteria: (1) MW � 300 Da; (2)
hydrogen bond donors (HBA) and acceptors (HBD) � 3; (3)
LogP � 3. Additional physicochemical properties for a fragment
include: (1) rotatable bonds � 3, (2) polar surface area (PSA)
� 60 Å2. According to the literatures, a typical fragment hit in
FBDD has the MW in the range of 120–250 and the binding
affinity in the range 30 μM to 1 mM [16]. More recently, modifica-
tions or extensions of the RO3 have been suggested [40–42].

3.2 How to Construct

a Virtual Fragment

Library

Library design for experimental FBBD can be referred to several
recent papers [7, 43, 44]. Herein, the construction of a virtual
fragment library was focused on. The first step is to break molecules
into fragments by in silico fragmentation methods. The publicly or
commercially available databases, such as PubChem [45], eMole-
cules [46], WOMBAT [47], ZINC [48], WDI [49], Medchem
[50], MDDR [51], and CMC [52], provide rich sources for frag-
mentation and fragment library design. Computational fragmenta-
tion approaches can be classified as substructure methods and
building block methods. The substructure approaches treat frag-
ment as a substructure of the molecule and completely analyze all
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possible fragments [53]. They are not specific fragmentation meth-
ods and are often used in similarity searches. The building block
methods use predefined breaking rules to dissect molecules into
chemically meaningful fragments (e.g., rings, functional groups,
side-chains, and linkers) and have broad applications in computa-
tional FBDD. For example, our group built drug-like fragment
libraries by decomposition of the molecules in MDDR database
[51] into rings, linkers, and side chains [54]. Virtual retro-synthesis
is another efficient way for fragmentation. RECAP is the most
widely used method that employs several common chemical reac-
tions as the rules to break structures and the bonds formed by one
of these reactions are cleaved [55]. RECAP has been successfully
used to explore drug-like fragments in marketed drugs [56, 57] and
construct synthetically feasible fragment libraries [58]. However,
RECAP only covers a very limited number of generally applicable
reactions. Lessel et al. used the Ftrees-FS (Feature Trees Fragment
Space Search) method [59, 60] to generate a huge fragment library
encoding about 5 � 1011 compounds based on more synthetic
protocols [61] Unlike RECAP, several methods constructed frag-
ment libraries that avoid using retro-synthetic rules. For example,
Cramer’s group developed Topomer search methodologies, such as
ChemSpace [62] and AllChem [63], to navigate fragment space
through known chemistry [64]. The maximum number of permit-
ted bond deletions per iteration and the total number of iterations
determine the average size of fragments and the composition of the
fragment population. According to Schulz’s evaluation of six
computational tools for the construction of a fragment library,
the best method to design a diverse fragment library is the itera-
tively removal protocol [44].

3.3 Major Fragment

Libraries for FBDD

The major fragment libraries and their key features are listed in
Table 1. These libraries can be freely downloaded in different file
formats (e.g., SDF, MDL, SMILE). Most of them meet the criteria
of the RO3 and can be used for both experimental and computa-
tional FBDD. However, the HBA and HBD criteria have not been
widely adopted [65]. Therefore, the ChemDiv fragment library
used softened filters for HBD (�7) and HBA (�7). Notably, the
majority of commercially available libraries are predominantly
populated with flat (hetero)aromatic fragments. However, the pro-
tein–ligand interaction is three-dimensional (3D). Thus, the design
of fragment library with enhanced 3D characteristics would help to
increase the fragment chemical space and discover ligand-efficient,
medicinally attractive, and chemically tractable fragment hits [66].
Fsp3 parameter, the number of sp3-hybridized carbons in total
carbon count, is an important criterion to evaluate the 3D proper-
ties of a compound library. ChemDiv (http://www.chemdiv.com/)
constructed a 3D fragment library (Fsp3 � 0.4 and/or at least one
chiral centers in structure) featured with bridged-fragments and
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spiro-fragments. Recently, several UK not-for-profit drug discovery
groups formed the 3D Fragment Consortium (http://www.
3DFrag.org) to build a shared library of between 500 and 3000
fragments with a complementary set of 3D fragments. Young’s
group constructed a unique set of 3D fragments containing highly
sp3-rich skeletons by diversity-oriented synthesis (DOS) [67].
Waldmann’s group built a natural-product-derived fragment
library containing 2000 structurally diverse molecules that are
rich in sp3-configured centers by the computational analysis of
more than 180,000 natural products [68]. This 3D fragment
library successfully yielded novel phosphatases inhibitors and stabi-
lizers of inactive conformations of p38a MAP kinase. Despite the
advantages of 3D fragment library, Jhoti et al. cautioned that there
was a tendency to increase fragment size in 3D fragment libraries,
and fragments should be simple enough to probe the basic archi-
tecture of all proteins [65].

3.4 Fragment Space Fragment space means combinations of molecular fragments and
their connection rules. Due to the “combinatorial explosion,” a
rather small number of fragments can span a large chemical space
[59]. The generation of drug-like and chemically tractable frag-
ment space provides basis to discover active compounds against a
large variety of targets [69]. Fragmentation and chemoinformatic
analysis of the large chemical database is the most commonly used
method to generate fragment space. For example, on the basis of
RECAP-based fragmentation of the WDI 2004 [49] and the Med-
chem03 [50] databases, Mauser et al. generated 1000-size frag-
ment space containing a subset with the most frequently occurring

Table 1
Major fragment libraries and their key features

Name
Number of
fragments Key features

ZINC Fragment Library 847,909 RO3 compliance and virtual library

Maybridge Fragment Libraries 2500 RO3 compliance, computationally engineered
diversity, and commercial availability

ChemBridge’s Fragment Library >7000 RO3 compliance and commercial availability

Enamine Golden Fragment
Library

1300 RO3 compliance, chemical diversity
(coefficient ¼ 0.885), and commercial availability

ChemDiv Fragment Library >15,700 Softened filters of RO3 (HBA and HBD � 7),
chemical diversity (coefficient ¼ 0.87), and
commercial available

ChemDiv 3D Fragment Library >4400 Softened filters of RO3 (HBA � 5 and HBD � 8), at
least one chiral center, spiro and bridged fragments
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fragments (2039 fragments) and a substructure-based diverse sub-
set (1923 fragments) [70]. The two subsets are complementary to
each other and their combination covers a larger part of the drug-
like chemical space. Tanaka et al. extracted fragments from the
ZINC database, performed network analysis of fragment libraries
and proposed an efficient compound-prioritization method for
fragment linking [48].

3.5 Fragment

Frequency Analysis

and Fragment Mining

Molecular fragments can be used as descriptors for chemoinfor-
matics analysis (e.g., similarity searches, diversity analysis) and are
associated with specific biological activities, and ADME/T (absorp-
tion, distribution, metabolism, excretion, and toxicity) profiles
[71–73]. Thus, analysis of distribution of fragments types, their
frequency of occurrence and co-occurrence in existing or virtual
compound databases provides important information for under-
standing the nature of fragment–activity and fragment–drug-like-
ness relationships. Chemoinformatics analysis of the most
frequently occurred fragments in drugs is helpful to fragment
library design and fragment optimization. Fragment frequency
analysis has also been used to build predictive models for biological
activity and ADME/T prediction [74–76].

Fragment frequency analysis includes occurrence and co-
occurrence analysis. Occurrence analysis characterizes fragment
distributions in large databases, while co-occurrence analysis com-
pares fragment sets in a pairwise manner. Bemis and Murcko per-
formed pioneering work on the analysis of drug-like fragments [56,
57], in which frequently occurred molecular frameworks and side
chains were identified in the CMC drug sets. Similar strategies have
been used to analyze other databases (e.g., MDDR, NCI) to find
drug-like fragments [76–81]. The resulted drug-like fragment
libraries and their correlations can inspire medicinal chemists with
innovative ideas for drug design and assist the investigation of
unexplored parts of chemical space. Moreover, fragment frequency
analysis has been extended to identify the privileged fragments in
oral drugs (with good bioavailability) [82], multi-targeting frag-
ments [83, 84], and the most popular fragment replacements in
drug-like molecules [85–87].

Bajorath’s group introduced a new concept named “fragment
profile” that was used to evaluate molecular similarity relationships
[88]. Fragment profiles are generated by MolBlaster which ran-
domly deletes chemical bonds of molecules in connectivity tables
and makes quantitative comparisons using entropy-based metrics.
Unlike molecular fingerprint, fragment profile is randomly gener-
ated and does not depend on predefined chemical descriptors, and
thus it can encode sufficient information for similarity evaluation.
On the basis of fragment profile, a new tool for ligand-based virtual
screening was developed [89]. Furthermore, a new methodology
to identify unique fragment signatures for molecular sets with
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similar activities and then map the fragment pathways of biologi-
cally active molecules was developed by the same group [90]. More
recently, Lounkine et al. developed FragFCA which uses chemically
intuitive queries of varying complexity to identify molecular frag-
ments and their combinations that are either specific for com-
pounds with different activity profiles or are unique to highly
potent molecules [91].

4 Fragment-Based Active Site Mapping

The second step in computational FBDD is to identify and charac-
terize important regions (hot spots) that can bind drug-like frag-
ments and contribute substantially to the binding free energy in the
binding pocket of the drug target. Such hot regions can be identi-
fied and characterized by fragment-based approaches. Multiple
solvent crystal structures (MSCS) is an experimental tool to predict
ligand-binding sites of target proteins [92, 93]. MSCS determines
consensus sites on the protein’s surface by exposing a crystalline
protein to various organic solvents (smaller fragments) in the case
that potential ligand binding regions can be co-localized with
multiple solvent molecules. However, MSCS and other experimen-
tal methods require an expensive investment in equipment and
resources. Thus, various fragment-based computational approaches
were developed to provide alternatives to predict the ligand-
binding sites of a protein (Table 2) [94].

Geometric algorithms and probe mapping/docking algorithms
are two major classes of methods for active site mapping [95]. For
the latter, fragments are used as molecular probes to detect hot
spots. GRID (a module in Molecular Discovery software package)
[96, 97] and multiple copy simultaneous search (MCSS, a module
in InsightII software package) [98] are two well-accepted methods.
GRID identifies favorable sites for small functional groups in pro-
tein binding sites by calculating 3D energymaps. MCSS determines
the most energetically favorable position of thousands of copies of
small functional groups, which are randomly placed into the binding
site and subject to energy minimization [99]. The copies with the
lowest energies can be regarded as “hot spots” of ligand binding.

Beside GRID and MCSS, a number of computational methods
have been reported [100, 101]. Several recent methods will be
highlighted in the following sections. CS-Map is a fragment-
based computational mapping program using a three-step algo-
rithm [84, 91]. First, regions with favorable electrostatics and
solvation are determined by rigid body search. Then, the regions
are refined by free energy calculation and docking. Finally, potential
regions are clustered, scored and ranked. CS-Map has the advan-
tages of better sampling of regions with favorable desolvation and
electrostatics by taking into account desolvation effect in its scoring
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function and using average free energies to cluster and rank the
positions of the docked ligands. Another new algorithm FTMAP
was developed by the same group as to CS-Map, which uses the
fourier transform correlation method for sampling protein–probe
complexes in combination with a highly accurate energy function
[83]. FTMAP is more efficient than CS-Map and free to academic
users (http://ftmap.bu.edu/login.php). As compared to the exper-
imental methodMSCS, FTMap not only could duplicate theMSCS
data for two targets of Parkinson’s disease, but can also discover hot
spots that are not found in the MSCS experiments [102].

Imai et al. developed 3D-RISM (three-dimensional reference
interaction site model) to identify the most favorable orientations
and positions of fragments on a protein surface [71]. A unique
feature of this method is its ability to achieve “entire ligand
mapping” on a protein surface in a real solution system by consid-
ering ligands and water at the same level in terms of the site
distribution. In addition, the influence of ligand concentration on
the binding mode can be investigated in the 3D-RISM-based
method. Molecular dynamics simulation, Monte Carlo simulation
and other computationally expensive methods have also been used
for fragment mapping, clustering and ranking. For example, Clark
et al. used grand canonical Monte Carlo simulation to compute

Table 2
Summary fragment-based computational tools for active site mapping

Method Key features Refs

GRID Global search of the entire protein surface, requires empirical
parametrization, and lack of water molecules in the model.

[106, 107]

MCSS The most established method with broad applications,
incorporation of physicochemical potential functions and
molecular simulation, and no consideration for the cooperative
effects of water and locating minimum enthalpy poses.

[98, 99]

CS-Map The ability of better sampling, finding small buried pockets
and desolvation term in the free energy calculation, different
dielectric constants for different targets.

[91]

FTMap A fast approach but lack of water molecules in the model. [83]

3D-RISM-based
method

A realistic model including the coexistence of water and
the influence of ligand concentrations on binding modes,
no consideration of protein structural change induced by
ligand binding.

[71]

Grand canonical Monte
Carlo simulation

Fast and simple parameters without prior knowledge and
calibration, lack of complete validation, and case sensitive.

[103]

Barril’s method The ability of detecting hot spots for both small molecules and
macromolecules, nonparametric, applicable to any target class,
computationally expensive, and limited sampling.

[72]
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binding free energies of a large number of fragment poses on the
entire protein surface and predict the affinities and preferred bind-
ing poses of small molecular fragments [103]. Barril’s group used
first-principles molecular simulations to detect binding sites by
quantifying the maximal binding affinity of a ligand [72]. This
method can efficiently evaluate the druggability of the target and
be applicable to any target class because it is not trained on a specific
data set. Although these methods are computationally expensive,
they can provide very detailed information for the interaction pre-
ferences of the binding sites.

5 Fragment Docking and Virtual Fragment Screening

Experimental FBDD only screens hundreds to thousands of frag-
ments. However, there are at least 250,000 commercially available
fragments [104], most of which remain untested. As a complemen-
tary approach, virtual fragment screening by molecular docking can
test a large portion of commercially available fragments. Carlsson’s
group performed parallel NMR-based biophysical screening and
docking-based screening of fragment libraries against the A2A
adenosine receptor (A2AAR) [105]. The results highlighted the
complementarily between biophysical and computational-based
fragment screens because there was no overlap between the hits
identified from the NMR- and docking-based screens. Siegal’s
results also supported that experimental and computational frag-
ment screening approaches could be pragmatically combined to
increasing chemical space coverage and discovering novel and
potent fragment hits [106]. In fact, fragment docking has already
been applied in combination with experimental fragment screening
for drug discovery purposes. For example, Brough et al. discovered
Hsp90 molecular chaperone inhibitors of by merging structural
features of various hits derived from both parallel fragment screen-
ing and fragment docking [107].

The main challenge for virtual fragment screening is the accu-
racy for fragment docking and scoring. First, it is difficult to deter-
mine the accurate binding pose and binding mode of fragments.
Since fragments are small in size and have low internal degrees of
freedom, a fragment might be accommodated by a number of
pockets on protein surfaces during docking calculations, which
can lead to falsely docked positions. It is also difficult to predict
the binding poses of a fragment even if it is placed into the correct
pocket, because alternative binding might yield similar docking
scores or calculated binding energies [108]. Secondly, most of the
scoring functions were developed and optimized for larger drug-
like molecules, which are not accurate enough to differentiate an
weakly active fragments among many non-active fragments [109].
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5.1 Docking

Software Used for

Fragment Docking

Several commercially available docking software, such as DOCK,
Glide and AutoDock, have been successfully used in fragment
docking and screening (Table 3). For example, Shoichet’s group
identified fragment-like AmpC β-lactamase inhibitors by docking
and ranking a library of 137,639 fragments using DOCK [110].
The hit rate is 48 % and the accuracy of the binding poses was
further validated by solving the crystal structures of fragment–
enzyme complexes. Glide [111, 112] is also efficient in fragment
docking [113, 114]. A study from AstraZeneca indicated that
GlideSP with its default settings provided a good enrichment in
virtual screening of fragment inhibitors of DNA ligase and prosta-
glandin D2 synthase [113]. Another evaluation study suggested
that Glide had good performance in sampling efficacy of fragment
docking, but its scoring functions remained to be further improved
[114]. AutoDock Vina was successfully used to discover dengue
virus (DENV) protease inhibitors by in silico fragment screening of
a library of 149,151 fragments [115, 116]. Fragment docking was
also implemented into several de novo drug design software (e.g.,
LUDI [97] and SEED [117]), which dock fragments into the
correct pocket of the active site and evolve them into new mole-
cules. For example, the program DAIM [92] developed by
Caflisch’s group can automatically decompose molecules into frag-
ments and then use the docking algorithms from SEED to select
the anchor fragments for docking [93, 96, 117]. Recently, this
fragment-based docking protocol was implemented into the
CHARMMing Web user interface [118].

5.2 Strategies to

Improve the Accuracy

of Fragment Docking

Although several docking software has achieved good hit rate and
docking accuracy, the fragment docking algorithm and scoring
function remain to be further improved. Currently, strategies to
improve the accuracy of fragment docking and scoring mainly
include: (1) using computationally intensive tools to the post-
docking process; (2) development of fragment-specific scoring
functions; (3) making the fragments larger during docking; (4)
docking multiple fragments simultaneously.

Table 3
Common programs used in fragment docking

Program Provider URL

Dock Brian K. Schoichet www.dock.compbio.ucsf.edu/DOCK3.7/

Glide Schrodinger www.schrodinger.com

AutoDock Arthur J. Olson www.autodock.scripps.edu

LUDI Accelrys/Discovery Studio 4.0 www.accelrys.com

DAIM/SEED Amedeo Caflish www.biochem-caflisch.uzh.ch/download/

RosettaLigand Rosetta Commons www.rosettacommons.org/software
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It was reported that the incorporation of intensive computa-
tional tools (e.g., MM/PBSA, MM/GBSA, and QM/MM) to
reoptimize and rescore binding poses of fragments could improve
the docking accuracy of fragment-like kinase inhibitors [119]. In
contrast, Kawatkar’s work indicated that such computationally
intensive procedures could not improve the enrichment [113].
Thus, the success of these computationally expensive rescoring
strategies might depend on specific targets.

In fragment docking, current scoring functions often fail to
distinguish the correct binding mode from the incorrect ones
[120]. One possible solution is to develop fragment-specific scor-
ing functions [114]. The binding nature of fragments, such as less
functional groups and fewer specific interactions, should be taken
into account during the parameterization of currently available
scoring functions. Moreover, force field-based scoring algorithm
as well as other more advanced methods for the evaluation of
protein–ligand interaction energies might be helpful to improve
the fragment-specific scoring functions [120]. Marcou’s study
revealed that the application of interaction fingerprints (IFP) for
posing and prioritizing fragments was statistically superior to con-
ventional scoring functions [121].

In some cases, docking enlarged fragments can improve the
accuracy of fragment docking. Fukunishi et al. developed the rep-
lica generation (FSRG) method that uses a set of larger molecules
(replica molecules) generated by adding side chains to the fragment
to optimize fragment docking. During docking, only complemen-
tarily between the surface of ligand and protein was evaluated
[122]. The efficiency of FSRG in finding active fragments from
the decoys was validated in six target proteins. However, successful
examples are still very limited. On the other hand, docking multiple
fragments simultaneously can simulate the real cases of fragment
binding because multiple fragments are always involved in the
process of molecular recognition. For example, Li’s group devel-
oped the MLSD strategy for multiple ligand simultaneous docking,
which can improve the sampling of docking poses and scoring of
binding energy by mimicking the real molecular binding processes
[123]. Moreover, fragments docked at different pockets of the
target protein can be linked to generate a new ligand. This multiple
fragments docking and linked strategy was successfully used to the
discovery of novel STAT3 (signal transducer and activator of tran-
scription 3) inhibitors [124].

Considering receptor flexibility as well as ligand flexibility is
also important to predict the binding mode and affinity of frag-
ments and increase the success rate of FBDD [23]. The use of
protein side chain rotamer libraries [125] and multiple receptor
conformations [126] is the most commonly used approaches to
address flexibility. RosettaLigand is a docking algorithm that can
handle full ligand and receptor flexibility simultaneously by using
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Monte-Carlo sampling and Rosetta full-atom energy function
[127]. Its advantage in fragment virtual screening was validated in
retrospective tests [128].

Moreover, preparing the protein structure carefully and choos-
ing appropriate parameters are also important for accurate fragment
docking [98]. Kumar’s work indicated that the availability of infor-
mation about active inhibitors, protein–ligand interaction, program
parameters, and screening protocols for drug-like ligands is helpful
to improve fragment screening performance [128]. Molecular
dynamics simulation is an efficient tool to investigate the confor-
mational space of the target proteins and provide reasonable con-
formation or conformational ensembles for subsequent fragment
docking. Ekonomiuk’s study indicated that using molecular
dynamics snapshots of NS3 protease for fragment-based docking
could identify small-molecule inhibitors that could not be identi-
fied by simply using the X-ray structure [129].

5.3 Case Study:

Discovery of Novel

Coagulation Factor

VIIa Inhibitors by

Fragment-Based

Virtual Screening

Coagulation factor VIIa is a new antithrombotic target. Most of the
factor VIIa inhibitors bound with the S1 pockets contains both
hydrophobic and cationic groups, leading to poor membrane per-
meability and oral absorption. In order to discover neutral S1-
targeting inhibitors and improve pharmacokinetic profiles, Cheney
et al. performed a fragment-based virtual screening study (Fig. 2a)
[130]. The first step was to construct a fragment library. The
Available Chemicals Directory (ACD) database was filtered on the
basis of drug-likeness, number of heavy atoms and rotatable bonds,
yielding about 18,000 fragments. This library was then screened by
the molecular docking programGlide and the protein flexibility was
considered by using protein ensemble docking. As a result, 250
compounds were finally selected and assayed. NMR binding assays
identified 28 initial hits and their binding mode was determined by
X-ray crystallography. As shown in Fig. 2c, the representative hit
2 (Ki ¼ 8.9 mM) bound to factor VIIa S1 pocket and formed a
hydrogen bond with Gly218. Based on the binding mode of lactam
2, a number of analogues with good inhibitory potency and
improved permeability were discovered. For example, compound
5 was cellular permeable and had a Ki value of 130 nM. Other
successful examples of fragment-based virtual screening are listed in
Table 4.

6 From Fragment Hits to Drug Leads

6.1 Computational

Approaches to Evolve

Fragments to Leads

A key step in FBDD is to evolve fragment hits into drug leads or
candidates by various structure-based design strategies [16].
Computational approaches have been extensively used in fragment
optimization, fragment linking and fragment assembly. Moreover,
fragment-based de novo drug design can be seen as the virtual
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process of FBDD. Both approaches use small fragments (building
blocks) as starting points to design drug-like compounds. De novo
drug design [137] is complementary to HTS and FBDD because it
is time and cost effective and capable of exploring larger chemical
space. As compared to experimental FBDD methods, de novo
design can provide potential solutions and reduce experimental
costs. Moreover, de novo design tools are helpful to overcome
the limitations of experimental FBDD. For example, at the stage
of fragment linking, it is difficult to predict the effects of the linkers
on the whole binding conformation. De novo design methods are
able to suggest reasonable linkers and predict the binding confor-
mation of the resulting molecules by docking and scoring. De novo
design contributes to computational FBDD by a procedure involv-
ing compound buildup, docking/scoring, and optimization. Up to
now, more than 30 de novo design tools have been developed [36,
58]. New methods focus on improving the efficiency in the sam-
pling of the chemical space, the accuracy of scoring functions,
synthetic feasibility and drug likeness [36].

6.2 Strategies to

Assemble and

Optimize Fragments

Fragment-based growing/linking and fragment hybridization are
two major strategies to assemble fragments into novel molecules. It
is difficult to evaluate all the solutions in a reasonable

Fig. 2 Discovery of novel coagulation factor VIIa inhibitors by fragment docking. (a) The protocol for fragment-
based virtual screening; (b) Fragment hits of virtual screening and fragment optimization; (c) Binding mode of
fragment hit 2 and optimized inhibitor 5
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Table 4
Recent examples of fragment docking and virtual screening

Target Fragment library
Docking
method

Hit
rate Fragment hit Activity Ref

Dopamine D3
receptor

In-house library
(12,905
fragments)

Glide 27 %
N

S
H2N

Cl

6

Ki ¼ 0.17 μM [131]

Histamine H4
receptor

In-house library
(12,905
fragments)

Glide 18 % H2N

N
NH

7

Ki ¼ 8.4 μM [131]

A2A adenosine
receptor

In-house library
(328,000
fragments)

DOCK 64 %

N

N
HN

N
HNH

O

8

Ki ¼ 2.2 μM [105]

Bromodomain 4 ZINC-based library
(238,408
fragments)

In-house
tool

10 %

O

N

9

IC50 ¼ 7.0 μM [132]

Aurora kinase A In-house library
(125 fragments)

Libdock
and
Glide

17 %

N
N
N
H

O

H2N

10

IC50 ¼ 852 nM [133]

β-lactamase ZINC (67,489
fragments)

DOCK 14 % HN
N

O

N
N
N N

11

Ki ¼ 3.1 μM [134]

(continued)
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computational time because the drug-like search space is about
1060 molecules. De novo drug design aims to efficiently find
“good” solutions rather than the best solutions. Advanced optimi-
zation algorithms, such as particle swarm optimization (PSO),
evolutionary algorithms [138], and ant colony optimization
(ACO) [139], can improve the sampling efficiency of the huge
chemical space [140].

For fragment growth, predefined conformation of a seed (fixed
scaffold) in the binding pocket of the receptor should be obtained
from structural biology or molecular docking. Then, the seed
grows fragment-by-fragment to fit the active site geometrically
and energetically. At each step, docking software was used for
binding pose prediction and the acceptance or rejection of the
fragment growth is guided by scoring functions. Early methods of
this type include: SmoG [141, 142], SPROUT [143], GrowMol
[144], GroupBuild [145], and GROW [146]. FlexNovo [147] was
developed by the incremental construction algorithm of docking
software FlexX [148] and was implemented into a comprehensive
software package named NovoBench [149]. FlexNovo can explore
thousands of fragments and incorporate various filters including
physicochemical properties and diversity. Moreover, NovoBench
also integrates a number of tools to meet the various demands of
computational FBDD including generation of fragment space
(Colibri [150] and FragView), property-based (FragEnum
[151]), and ligand-based (Ftrees-FS [59]) search algorithms.

During fragment growth, most of the methods treat the “seed”
as a fixed fragment. However, the conformation of the new mole-
cule may be changed. AutoGrow can tackle the problem by re-
docking each generated new compound during fragment addition
and generating new poses for eachmolecule [152]. An evolutionary

Table 4
(continued)

Target Fragment library
Docking
method

Hit
rate Fragment hit Activity Ref

Pneumococcal
Surface
Antigen A

In-house library
(1519 fragments)

FlexX 3 % H2N

HO

SO2NH2

12

39.5%
inhibition at
500 μM

[135]

Group X
secreted
phospholipase
A2

In-house library
(300,000
fragments)

Glide 10 % NHN

NH2

O
S

CH3

H3C

13

IC50 ¼ 20 μM [136]
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algorithm is used to evaluate the docking results of every population
and select the best one for subsequent generation. Fragment opti-
mized growth (FOG) algorithm improves the efficiency of fragment
growth by using the frequency of specific fragment-fragment con-
nections [153]. In addition, FOG can be trained to grow new
molecules with chemical and topological features similar to a specific
class of compounds (e.g., natural products and drugs) by the Topol-
ogy Classifier (TopClass) algorithm [153].

For fragment linking, fragments bound with different binding
pockets are linked to build new molecules. A number of de novo
design methods, such as CONCERTS [154], LUDI [155, 156],
CAVEAT [157], NEWLEAD [158], DLD [159], BUILDER
[160], and SKELGEN [161], can link fragments into a new mole-
cule, which is expected to have higher binding affinity than the
individual fragments. However, overall conformation of the gener-
ated molecules may be changed and key interactions between the
initial fragment and target might be lost. Thus, re-docking the new
ligands is necessary in the post-processing step. GANDI is a new de
novo design tool for automatically linking fragments and usesmulti-
objective evolutionary optimization strategy to simultaneously opti-
mize the force field energy [162]. Lai’s group developed LigBuilder
[163, 164], which uses a genetic algorithm to construct ligands
iteratively by fragment linking or growing. Moreover, synthetic
accessibility and drug-likeness are taken into account in LigBuilder
[165]. Notably, GANDI (http://www.biochem-caflisch.uzh.ch/
download/) and LigBuilder (http://ligbuilder.org/) are freely
available to academic users.

6.3 Scoring

Functions and Multi-

objective Optimization

In the fragment optimization process, scoring functions are crucial
to evaluate the binding affinity. Due to the huge number of itera-
tions, scoring functions are required to have the balance of speed
and accuracy. Scoring functions from molecular docking are widely
used, which can discriminate between inactive and active com-
pounds rather than rank the ligands with similar chemotypes
[166]. In this case, physics-based approaches, such as MM-
GBSA/PBSA [167, 168], free-energy perturbation (FEP) [169,
170], grand canonical Monte Carlo (GCMC) simulations [103],
single-step perturbation [171], and thermodynamic integration
(TI) [172], can accurately predict binding free energies but require
high computational sources. Even though, they are very helpful to
improve the success rate by reevaluating in the post-processing
stage. With the dramatic increase of the computational ability
(e.g., cloud computing), physics-based scoring functions will have
broader application in computational FBDD.

Single objective optimization only focuses on the interaction
scores. In contrast, the multi-objective optimization strategies is
more efficient to improve the quality of the designed molecules.
For example, MEGA combines graph-theory with evolutionary
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techniques to achieve an efficient global search for good solutions
[173]. Its optimization process includes binding affinity scorers,
molecular similarity scorers, and chemical structure scorers. Thus,
the molecules designed by MEGA may possess structural diversity,
good binding affinity and drug-like properties.

6.4 Synthetic

Accessibility and

Drug-Likeness

Synthetic accessibility is one of the important issues that remain to
be addressed in computational FBDD. The synthetic accessibility of
computer-designed structures can be improved by two approaches.
The first approach uses synthesizable building blocks and connec-
tion rules to design new molecules. Synthesizable building blocks
can be obtained from commercially available resources. Moreover,
virtual retro-synthesis rules can be used to decompose compound
databases to generate synthesizable building blocks. Such rules
(e.g., RECAP [55]) are based on commonly used organic synthesis
reactions [174, 175]. SYNOPSIS [175] was developed to cover
more types connection rules (70 selected organic reactions) and the
building blocks are selected from the ACD database [176]. The
second approach uses scoring functions to evaluate the synthesiz-
ability of the generated molecules (e.g., SYLVIA [165]) in the post-
processing step. Other computer-aided organic synthesis design
methods, such as Route Designer [177] and DOGS [58, 178]
can suggest synthetic routes for the designed molecules.

Drug-likeness is another important constraint in every stage of
computational FBDD. The fragment libraries are often constructed
by decomposition of the drug or drug-like database. In the post-
processing stage, Lipinski’s “rule of five” [179] is broadly used as
the filter before synthesis and biological evaluation. Moreover,
recent progress in computational ADMET prediction [180] is help-
ful to reevaluate the candidate molecules in a cost-effective manner.

6.5 Case Study:

Novel Activated Factor

XI Inhibitors Through

Fragment Docking

and Structure-Based

Fragment Linking and

Expansion

Activated factor XI (FXIa) inhibitors are anticipated to possess both
anticoagulant and profibrinolytic effects with a low risk of bleeding
[181]. A research group from AstraZeneca applied a computational
FBDD approach including virtual fragment screening, X-ray crystal-
lography, structure-based fragment optimization, and biological
assays to discover highly potent FXIa inhibitors [182]. The binding
pockets of FXIa can be divided into S1–S4 and S10–S20 and the S1
pocket is themost prominent and probable site for fragment binding.

An in-house library of AstraZeneca containing about 65,000
fragments were docked into the FXIa X-ray structure (PDB code:
1ZSJ) using the Glide software. After Glide scoring and visual
inspection, a total of 1800 structures were selected for experimental
screening. In the screening cascade, 1D NMR spectroscopy was
first used to identify primary fragment hits, followed by SPR and
enzymatic assays to determine KD and IC50 values, respectively.
Initially, 13 neutral or weakly basic fragment hits were discovered
by NMR. Subsequent similarity search yielded another 37 hits.
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Among them, the crystal structure of the representative hit 14
(6-chloro-3,4-dihydro-1H-quinolin-2-one, Fig. 3a) in complex
with FXIa were solved.

Fragment 14 was located into the S1 pocket and displayed a
IC50 value of 140 μM. Its quinolinone NH group forms a hydrogen
bond with the backbone carbonyl of Gly218 (Fig. 3b). Guided by
the binding mode, fragment 14 was further optimized to improve
the inhibitory activity. The first step is to extend fragment 14 to
interact with the S10 site (Fig. 3a). The linkers and extension groups
were designed by Glide docking and visual inspection. As a result,
compound 15 was synthesized, which showed minor improvement
in potency (IC50 ¼ 33 μM) and decrease in LE to 0.22. Further
addition of an S20 binding group led to substantial increase of the
activity. Compound 16 has an IC50 of 1 nM and a LE of 0.32,
which interacts with S1–S10–S20 binding pockets (Fig. 3c).

Fig. 3 Discovery of novel FXIa inhibitors through fragment docking and structure-based fragment linking and
expansion. (a) The process of fragment growth and fragment linking; (b and c) Binding mode of fragment hit
14 and optimized inhibitor 16 with the active site of FXIa
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7 Conclusion

Computational approaches play a synergistic role to experimental
FDBB by improving its performance. Computational FBDD can
also be used independently in lead discovery and optimization.
Fragment-based virtual screening and de novo design have been
widely used in drug discovery and have led to promising results.
Developing new docking and scoring methods that can accurately
predict the binding poses and the binding free energy of fragments
is of key importance to computational FBDD. Moreover, taking
the advantages of both computational and experimental FBDD and
merging them into an integrated drug design process will maximize
the efficiency of drug discovery. Therefore, future research on
computational FBDD should be focused on the development of
new docking and integration methods.
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Abstract

The study of molecular behavior at high levels of theoretical accuracy has entered into a new age in
computational drug discovery where quantum mechanical (QM) methods are becoming increasingly
popular. Theoretically rigorous calculations can be prohibitively computationally expensive and time
consuming. These two factors have necessitated the development of faster methods, and the fragment
molecular orbital method (FMO) is one such method that has been used for efficient and accurate QM
calculations in drug design. In this chapter, the use of FMO is described in detail for predicting geometry,
estimating the binding energy of the ligands, conformational sampling, analysis of molecular interactions,
deriving partial charges, and generating quantitative structure-activity relationship (QSAR) models.

Keywords QM (quantum mechanics), Quantum chemistry, FMO (fragment molecular orbitals
method), CADD (computer-aided drug design), SBDD (structure-based drug design), GAMESS
(general atomic and molecular electronic structure system), PIEDA (pair interaction energy decom-
position analysis)

1 Introduction

Quantum mechanical (QM) methods provide an accurate way to
compute the properties of chemical and biological systems; thus,
they are appealing for use in computer-aided drug design (CADD).
Historically, the use of QM methods has been viewed as too com-
putationally expensive for routine applications in large-scale
computational pipelines in CADD. However, in recent years, this
obstacle has been greatly reduced owing to an increased computa-
tional power of computers and the development in QM methods.
This has coincided with continued research into the applications of
QM methods in CADD, including examples in docking [1], devel-
oping scoring functions [2, 3], estimating ligand energy binding
[4], conformational sampling [5, 6], analysis of molecular interac-
tions [1], deriving partial charges [7], and building quantitative
structure-activity relationship (QSAR) models [1, 8, 9]. QMmeth-
ods are becoming an integral part of CADD because they are
regarded as the next evolutionary stage in the development of
more accurate methods to assist drug design.
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The theoretically less demanding alternative method to QM,
widely used to study biological systems, is molecular mechanics
(MM). In MM, the potential energy of the system is approximated
by the sum of the individual terms describing bonded and non-
bonded interactions between atoms. This is significantly less com-
putationally expensive compared to the requirement in QM to
solve the Schrödinger equation. The accuracy of MM strongly
depends on the force field used, and the transferability of para-
meters. The standard force fields like XPLOR [10], Chemistry at
HARvard Macromolecular Mechanics (CHARMM) [11, 12], or
Assisted Model Building with Energy Refinement (AMBER) [13]
usually provide accurate geometries of standard amino acid residues
and nucleic acids [14], but struggle with more exotic molecules like
ligands used in drug design, halogens, and metals (especially tran-
sition metals) [15, 16]. In addition, QMmethods can compute free
radicals, which often occur in the studies of radical damage in
biology, and QM methods are also needed to study biochemical
reactions, for example, in enzyme catalysis or when studying
excited states.

In the last decade, the computer industry has undergone a
significant transformation. While the clock speed of a single central
processing unit (CPU) has been stagnant for years because of the
limitation on the number of transistors that can be packed on a
silicon chip, the advent of multicore computing is changing the
computational sciences. Accelerators like graphical processing units
(GPUs), Intel’s many integrated core (MIC) architecture, and
field-programmable gate arrays (FPGAs) offer a revolutionary
potential to be harnessed. A number of MM, molecular dynamics
(MD), and QM programs like NAMD [17], AMBER [18, 19],
CHARMM, large-scale atomic/molecular massively parallel simu-
lator (LAMMPS), TeraChem [20], and general atomic and molec-
ular electronic structure system (GAMESS) [21] have been
adopted for accelerators yielding an overall speedup factor of 2–7
[22]. There is also a significant interest in developing and porting
drug discovery software programs on accelerators [23–28].

There has been a significant development in linear scaling
approaches in recent years, which resulted in availability of a large
number of linear scaling QM methods [29–31]. For example, a
number of fragment-based methods have been developed over
many years [32–40]. The fragment molecular orbital (FMO)
method [41–45], which is discussed in this chapter, has been
combined with many QM approaches. Analytic first and second
derivatives have been developed for the FMO method. A concise
introduction of FMO is given here and a detailed description is
found elsewhere [42–45].

The FMO method is a general approach applicable to a large
variety of systems: proteins, nucleotides (DNA and RNA), sacchar-
ides, molecular clusters, organic, and inorganic. Although in
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principle the FMO method can be applied to any system, in prac-
tice, some systems are difficult or perhaps impossible to configure
to yield a successful calculation with FMO. One example of a
difficult system is nanoclusters of metals. There is a continuous
effort to probe the applicability of the FMO method to new kinds
of systems and suggest efficient recipes for treating fragmentation
issues. For example, recently, the FMOmethod has been applied to
proteins interacting with inorganic surfaces [46, 47] which have
various potential medicinal applications. The FMOmethod also has
been used to study excited electronic states in proteins [48].

Consider the case of a large molecular system, for example, a
protein. It is made of amino acid residues. These residues are
polarized by the electrostatic field of the protein (and solvent),
and there is some charge transfer between residues, in particular,
in hydrogen bonding and salt bridges. A protein typically has many
charged residues, so these effects are substantial, in particular, the
polarization. The FMO method in its most commonly used two-
body expansion (FMO2) has two steps. In the first step, the many-
body polarization is accounted for by performing self-consistent
QM fragment calculations in the electrostatic field of the protein,
whereas quantum effects are accounted for at the intrafragment
level. This field, denoted as the electrostatic potential (ESP), is
computed from the electron densities of fragments. In the second
step, fragment pair calculations are performed in the converged
ESP to take into account interfragment quantum effects, such as
charge transfer and exchange repulsion (the repulsion arising from
the Pauli exclusion principle so that at short range electrons repel
each other).

It should be clear that this approach is not exact. In other
words, FMO treatment of the protein does not recover all of the
QM energies. However, the difference is insignificant. The reason
for the deviation lies in the neglected many-body QM effects. In
FMO2, the charge transfer coupling of two hydrogen bonds
between fragments I,J and J,K is neglected. This effect requires a
fragment triple (I,J,K) calculation. In other words, if some charge is
transferred from I to J, and some from J to K, obviously, these two
effects are coupled and cannot be computed independently, as is
prescribed by FMO2. The three-body FMO3 does take into
account this typically small effect. The error of FMO versus full
QM, however, appears in the absolute total energies. If one con-
siders energy differences, as commonly used in chemistry, for exam-
ple, in the computation of binding energies, the deviations are
usually very small. If the number of hydrogen bonds differs consid-
erably between the two structures whose energies are subtracted,
then the relative energies may have a noticeable error.

The issue of fragmentation in FMO has to be briefly described.
Accurate FMO calculations can be performed if the electronic states
of fragments are localized. For biological systems, a consequence of
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defining the fragmentation scheme amino acid residues across a
peptide bond will result in a large error. This is because there is a
strong delocalization of the electron density across a peptide bond.
Therefore, in FMO, peptide bonds are left unfragmented, and
instead, C–C bonds are detached (divided) between the amide
carbonyl carbon and the Cα atoms, so that residue fragments differ
from residues by a CO group. For nucleic acids several fragmenta-
tion schemes have been attempted [49].

Practically, graphical user interface (GUI) software such as
Facio [50] can automatically fragment systems commonly appearing
in biochemistry such as polypeptides, saccharides, and nucleotides,
so one does not need to manually fragment these systems. However,
for metal-containing enzymes, large ligands, and non-standard
systems, their fragmentation will require manual intervention. The
fragments in FMO are saturated by the ESP. In other words, no
hydrogen caps are used. The fragmentation preserves the charge of
fragments so that neutral, anionic, and cationic amino acids retain
their charge as fragment residues.

As described above, FMO2 is based on calculating polarized
fragments and evaluating the QM interactions between them. The
basic equation is for the total energy E of a system divided into N
fragments:

EFMO2 ¼
XN
I

EI þ
XN
I>J

EIJ � EI � EJ

� � ð1Þ

where EI are the energies of fragments, and EIJ are the energies of
dimers. Different wave functions and basis sets can be used in the
multilayer FMO approach (MFMO) [51]. Analytic first and second
derivatives of this energy can be evaluated and used in geometry
optimization or to simulate the IR spectra.

As described in more detail below, full geometry optimizations
of all atoms have been done with FMO for several small proteins
consisting of several hundreds of atoms, and a cellose nanoflake was
optimized using a parametrized QM method [52]. FMO/MD
because of its cost has so far found a very limited field of
applications.

FMO has been implemented in several programs, among which
ABINIT-MP [53], PAICS [54], and GAMESS [55] are most com-
monly used.

FMO is a dynamic and fast-developing method. In addition to
FMO applications in CADD, a number of advancements were
made to compute IR and Raman spectra with FMO [56] and
accurate computation of cross section for mass spectrometry [57].

The following sections detail examples of how various CADD
techniques have been approached using the FMOmethod [58, 59].
FMO applications are classified into two broad categories: energy
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computation with structure optimization andmolecular properties.
In the context of energy calculations, solvent models are also
described. Several approaches can be taken to perform geometry
optimizations with FMO, or optimization using MM can be
employed to produce structures used in FMO calculations.

2 Energy Computation and Structure Optimization

QM methods can provide very accurate energies and geometries.
The challenge in performing these calculations is in the size of the
system, which for traditional QM methods scales on the order of
N3–N7 (whereN is the number of atoms) depending on the level of
theory. Linear scaling methods like FMO as the name suggests scale
as N with a large pre-factor. Thus, FMO is a more tractable
approach for single-energy calculations, but it is still very expensive
for geometry optimization of large systems because of the number
of gradient calculations. In this section, we explain how very accu-
rate energies and geometries can be computed with FMO. The
treatment of other factors relevant for drug discovery, solvation,
and entropy is also discussed.

2.1 Binding Energy

Calculations

Prediction of binding affinities for small-molecule ligands to a
target protein and correlating structure, and the function of those
complexes, is one of the most challenging tasks in structure-based
drug design (SBDD). From a microscopic point of view, the bind-
ing free energy (ΔGbind) can be calculated as a difference between
the total energy of the protein-ligand complex (ΔGProtein+Ligand)
and the sum of the energy of the protein in apo form (ΔGProtein)
and the ligand alone (ΔGLigand):

ΔGbind ¼ ΔGProteinþLigand � ΔGProtein þ ΔGLigand

� � ð2Þ
Although this expression is quite simple, it has been proven difficult
to establish those values both experimentally and computationally.
Instead, in the drug discovery process, the half maximal inhibitory
concentration (IC50) values are often experimentally measured for
tested inhibitors. The dependence between IC50 and free energy of
binding can be expressed as

ΔGbind ¼ �RT lnIC50 ¼ ΔH � TΔS ð3Þ

where R and T stand for the universal gas constant and tempera-
ture, respectively.

The second part of the equation above divides the physical
effects of binding energy into enthalpy (ΔH) and entropy (ΔS).
Depending on the inhibitor series, the roles of enthalpy and
entropy in binding can be different, and ideally, both of those
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effects should be accounted for when performing calculations.
However, due to the relatively high cost of accurate entropy calcu-
lations, it is often either simplified or completely neglected. Indeed,
within a series of structurally related ligands, similar binding
entropy is often assumed, and binding energy is simplified to the
calculated enthalpy contribution.

FMO represents a reasonable compromise between calculation
speed and accuracy for affinity prediction. Large protein systems are
divided in an automatic manner along the protein backbone to
include only one amino acid residue per fragment. High-level
QM calculations are performed for each fragment pair and interac-
tions include nonclassical intermolecular forces, such as cation-π,
dipole-π, halogen-π, carbonyl n-π*, and so-called nonclassical
hydrogen bonds. In particular, the charge transfer and polarization
effects are important for hydrogen bonding accuracy prediction.
Pairwise calculations for a series of small-molecule ligands can also
facilitate rationalizing structure-activity relationship (SAR) effects,
directly indicating amino acids interacting stronger or weaker with
ligands in the series. The physical effect, which is not usually
included in the FMO calculations, is the entropy (configuration
sampling), which can also play a role in some ligand series.

The FMO method was successfully applied to study the bind-
ing affinity for a series of 28 published cyclin-dependent kinase
2 (CDK2) inhibitors, based on a number of X-ray crystal structures
[4]. It has been shown that the FMO-predicted gas-phase enthalpic
contribution to the binding energy at MP2/6-31G* theory level
correlates well with experimental IC50 values (r

2 ¼ 0.68). Further
calculations on the system included the entropic correction com-
ponent and solvation terms to more accurately estimate free ener-
gies of binding. The solvation energy was calculated using the
relatively simple Poisson-Boltzmann equation and the solvent-
accessible surface area (SASA) approach. Accounting for those
two effects significantly improved the overall correlation between
the calculated and predicted binding free energies (with r2 values
close to 0.9 for various models) [4].

In another study [74], the FMOmethod was used for structure
optimization and binding energy for four FK506 binding protein
(FKPB) complexes containing rapamycin and two synthetic
ligands. The geometry optimization for those complexes was per-
formed with the FMO-RHF method at 3-21G theory level, and
then refined at FMO-MP2 theory level with a 6-31G* basis set
using single-point energy calculations. For all ligands, the signifi-
cant part of the total binding energy resulted from the correlation
contribution, ranging between 70 and 80 % of total values. This
indicated the importance of QM effects in binding affinity predic-
tions. Similarly to the CDK2 study described above [4], solvation
effects were calculated with Poisson-Boltzmann surface area
method.
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The FMO method has also been used to evaluate binding
affinities of influenza A viral hemagglutinins (HA) [60, 61]. First,
selective binding of avian and human HA subtype H3 and
Neu5Acα2-3 and α2-6Gal (avian α2-3, human α2-6) was calculated
at the FMO-MP2/6-31G* theory level with the polarizable con-
tinuum model (PCM) for solvent. Hydrophilic interactions
between Gal-4 OH and side-chain NH2CO on Gln226 supported
by the intermolecular hydrogen-bond network to the 1-COO
group on Neu5Ac moiety were distinguished as a source of favor-
able interactions of avian H3 over the human species. Further
Gln226Leu substitution in the avian H3 HA1 domain increased
the binding affinity to human α2-6 due to dispersion forces. It was
also found that binding between human H3 and human α2-6 was
not governed by the hydrogen bond with the side chain of Ser228.
This derived fragment-based knowledge improved the understand-
ing of interactions between viral HAs and human α2-6 [60]. Bind-
ing specificity of three sialosides and HA was also estimated with
FMO-MP2/PCM/6-31G(d) calculations. Binding energy calcu-
lated for those complexes was similar for all of them, suggesting
that binding is not regulated by the sialoside homotropic allosteric
effect [61].

Until recently, the only way to compute accurately entropy and
free energies in FMO was by doing FMO/MD simulations [62].
However, they are expensive and so far have been mostly limited to
chemical reactions in an explicit solvent [63, 64]. The only other
example is the use of FMO-based QM/MM [54], applied to per-
form MD of a protein-ligand complex. Alternatively, there have
been various attempts in evaluating the entropy and free energy
from MM simulations [60, 61] and other modes [4].

However, with the developed analytic second derivatives of the
energy, it is possible to evaluate the entropy and free energies using
FMO. This is accomplished for a single minimum via the statistical
mechanics. FMO has been applied to study the free energies of
several chemical reactions in an explicit solvent [56, 65]. While
single minimum free energies do not include conformational
entropy, still it is a step forward to achieving the accuracy and
reliability needed for biochemical simulations. Free energies com-
puted from statistical mechanics for a single minimum using the
FMO/frozen domain and dimers (FDD) method (see Section 2.3)
have been reported for protein-ligand binding and enzymatic reac-
tions [66].

2.2 Solvation Effects Treatment of solvation effects is a difficult problem for atomistic
methods, because solvent molecules at room temperature tend to
have high entropy and the time scale required to analyze solvent
behavior is large, making dynamics simulations very expensive.
Water is the common solvent studied in biological systems, forming
hydrogen bonds to ligands, nucleic acids, and proteins, or trapped
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in hydrophobic protein clefts. In addition, polar solvents such as
water polarize the electronic state of the solute, and similarly the
solute polarizes the solvent. Although the electrostatic component
of solvent effects is relatively straightforward to take into account,
many models rely on various parameters such as atomic radii or an
effective dielectric constant for the solute, which often requires a
manual estimation. Solvent can be considered either explicitly as
atoms or implicitly via either a continuum (surface) representation;
some models rely on statistical distribution functions of solvent
molecules and may be considered as a separate category. Alternative
mixed approaches consider explicit and implicit models, which is
often resorted to by describing some strongly bound or otherwise
important solvent molecules explicitly, and the rest implicitly.

Implicit solvent models have a considerable computational
efficiency advantage over more accurate explicit models. The for-
mer do not require studying the dynamics of the solvent molecules.
On the one hand, implicit models typically rely on parameters
which have the potential of reproducing experimental results bet-
ter, but on the other hand, implicit models often neglect some
solvent effects, in particular, the charge transfer between solute
and solvent.

Two implicit solvation methods have been interfaced with
FMO: (a) polarizable continuum model (PCM) [67–70], Pois-
son–Boltzmann (PB) equation [71], and one statistical approach,
the reference interaction site model (RISM) [72]. There are several
ways to include solvent explicitly in FMO, by treating the solvent
either as FMO fragments or as effective fragment potentials (EFP)
[73]. The immense problem exists in the need to take into account
the movement of solvent molecules.

It has been shown on many occasions [60, 74] that neglecting
solvent effects results in a drastic overestimation of the binding
energies, which is due to the desolvation effect [75]. Solvent also
affects various electronic properties, such as pair interaction ener-
gies, which is known as the screening effects. This is described in
more detail below.

2.3 Geometry

Optimization (Ligand

and Protein Enzymes)

A straightforward application of the FMO analytic gradient to
geometry optimizations [76] of biochemical systems is possible
for small proteins. Chignolin (PDB: 1UAO) [77], Trp-cage
(1L2Y) [78], and crambin (1CRN) [79], as well as heparin oligo-
mer [80], have been optimized in solution. However, because
proteins are very flexible and take many geometry optimization
steps, it is computationally too expensive to optimize larger pro-
teins using the full approach. To accelerate geometry optimization,
partial schemes have been developed in which only a part of the
structure is optimized [81]: partial-energy gradient (PEG) [82]
and frozen domain (FD) [66, 83–85] are two approaches.
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In the FMO/FD method, three domains, A, B, and F, are
defined in a chemical system as shown in Fig. 1. The active domain,
A, includes atoms relaxed during geometry optimization. A drug
molecule is usually assigned to the domain A. The polarizable
buffer domain, B, includes fragments whose electronic state is
fully relaxed at each step of a geometry optimization. The domain
B consists of the domain A and includes some fragments around it,
typically within a distance of 3–5 Å. The frozen domain, F, contains
all atoms not included in the domain B. The electronic state of the
fragments in F is computed once at the beginning and kept fixed
during geometry optimization of atoms in domain A. Each frag-
ment is assigned to a domain. FMO/FD is based on the multilayer
FMO, and domains B and F are assigned to layers 1 and 2,
respectively.

Fig. 1 (a) Structure of prostaglandin H(2) synthase-1 (COX1) in complex with
ibuprofen (PDB:1EQG), optimized with FMO/FDD/RHF/STO-3G:B3LYP-D/6-31G*.
(b) Zoomed in active site with domain definition: active (A), polarizable buffer (B),
and frozen (F) domains are colored red, blue, and gray, respectively
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The FMO/FD energy (detailed definitions are given
elsewhere [83]) is

EFMO=FD ¼ EB þ ΔEAF ¼
X
I∈B

E
0
I þ

X
I>J

I , J∈B

ΔEIJ þ
X
I∈A

J∈F

ΔE
0
I J ð4Þ

The computational savings come from the assumptions that the
energy of fragments in F is constant. Thus, the gradient is zero and
the energy of monomers and dimers in F need not be reevaluated.

An additional saving can be made if one assumes that the
energy of dimers in B (excluding dimers containing at least one A
fragment) is also constant. This variation of FMO/FD is called
FMO/FDD (frozen domain and dimers). The energy is defined
in the following way:

EFMO=FDD ¼ EB þ ΔEAF 0 ¼
X
I∈B

E
0
I þ

X
I>J

I∈A, J∈B

ΔEIJ þ
X
I∈A
J∈F

ΔE
0
I J ð5Þ

FMO/FDD can considerably speed up calculations, especially if the
domain B is large, as is the case when one includes some fragments
in the binding pocket of a protein in B. For a short notation, both
FD and FDD are denoted by FMO/FD in the general discussion
below.

The FMO/FD method has some similarities with QM/MM
methods, but FMO/FD is a more general and potentially more
accurate approach. The F domain in FMO/FD is computed at a
QM level only once (with FMO1), whereas in QM/MM the bulk
of the system is computed with MM. Because all calculations in
FMO/FD are done with QM, there is no problem with link atoms,
and the active site itself can be easily resized. The polarizable buffer
calculations are done using FMO efficiently because of fragmenta-
tion, compared to full QM in QM/MM.

How do you set up FMO/FD calculations? The first step is to
choose the domain A. In drug discovery it usually includes a ligand
and possibly some part of the binding pocket. A large ligand can be
split into multiple FMO fragments, to determine functional group
effects on binding, for example [86]. It is possible to optimize only
some atoms in A, such as side chains. The next step is the definition
of the B domain. This can be done automatically by including all
fragments containing atoms within a certain distance, RB, from A.
Note that since all domains are defined in terms of FMO fragments,
even if a single atom belongs to domain B, then all atoms in that
fragment are included. Thus, care is required in choosing a compu-
tationally tractable RB (often about 3–5 Å, although charged
fragments in A typically necessitate larger radii). The remainder of
the system belongs to F. Another important issue is how to choose

226 Michael P. Mazanetz et al.



theories and basis sets. A high level of theory and a large basis set are
usually used for the domainBwhile a low level of theory and a small
basis set are used for the domain F, for example, RHF/STO-3G for
F and DFT/6-31G* for B.

To demonstrate a ligand optimization in a large system with
FMO/FDD, the solvated structure of prostaglandin H(2)
synthase-1 (COX-1) in complex with the reversible competitive
inhibitor ibuprofen (PDB: 1EQG) was chosen, containing
19,471 atoms total. The structures of the complex and domains
are shown in Fig. 1. The ibuprofen structure inside COX-1 was
optimized with FMO/FDD/RHF/STO-3G:B3LYP-D/6-31G*
where B was treated at the B3LYP-D/6-31G* level, while F was
described by RHF/STO-3G. The ibuprofen was assigned to A,
while B was defined by an RB value of 3.9 Å. There were 25
fragments in B: 19 protein residues, 1 ligand, and 5 water mole-
cules. The FMO/FDD optimization of the whole system took 31
steps computed in 32 h on 6 dual-CPU quad-core 2.83 GHz Xeon
nodes. The calculations of the F domain took 98 min in the
beginning, and each step of geometry optimization (B) took
about 59 min [83].

Alternatively, it is possible to combine FMO with MM and
optimize the coordinates of all atoms, the active-site atoms with
QM (FMO), and the rest with MM. This is an attractive way to run
simulations since the typical MM force fields are well parameterized
in terms of accuracy when the system is composed from standard
building blocks like amino acid residues in proteins or nucleotides
in DNA and RNA. At the same time, MM calculations are signifi-
cantly cheaper than QM calculations. The limitations of MM are
often uncertain accuracy for drug molecules and the inability to
deal with breaking and creating chemical bonds. There are many
variations of QM/MM. One of the implementations in GAMESS
interfaced with Tinker [87] is a mechanical embedding in the
integrated molecular orbital (MO) molecular mechanics
(IMOMM) method [88, 89] where the MO part can be a regular
QM or FMO [76, 90]. The main difference with typical QM/MM
is that in IMOMM there are no MM charges considered in QM
calculations. Another implementation is to have QM/MM based
on FMO, which has been implemented in PAICS interfaced with
AMBER [54].

In FMO/MM based on the IMOMM method, the first step is
to assign atoms to the FMO region, whose atoms have coordinates
R1, and assign the rest of the atoms to the MM region with
coordinates R2. The total energy and its gradient have two FMO
and MM contributions:

EFMO=MM ¼ EFMO R1ð Þ þ EMM R1;R2ð Þ ð6Þ
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∂EFMO=MM

∂R1
¼ ∂EFMO

∂R1
þ ∂EMM

∂R1

∂EFMO=MM

∂R2
¼ ∂EMM

∂R2

ð7Þ

The interaction energy between FMO andMM is included in EMM.

FMO/MM calculations are done in the following steps:

1. Prepare structure and assign atoms to MO and MM regions.

2. Optimize MM atoms while keeping FMO atoms fixed. Com-
pute MM energy and gradient.

3. Compute FMO energy and gradient.

4. Compute EFMO/MM energy and gradient from contributions
computed in previous steps.

5. If ∂EFMO/MM/∂R1 is not small enough, then update the
geometry and proceed to step 2.

An example of FMO/MM optimization has been reported
in the literature [90]. FMO/MM optimization was performed on
the explicitly solvated (6 Å shell) complex of CK2α and its
ligand ((1-(6-[6-(cyclopentylamino)-1H-indazol-1-yl]pyrazin-2-
yl)-1H-pyrrol-3-yl)-acetic acid) (PDB code: 3AT3). The FMO
region (R1) was defined as the ligand with all amino acid residues
and water molecules within 2.0 unitless FMO distance [91] from
the ligand. We assigned 667 atoms to the FMO region computed
with FMO2/RHF-D/6-31G and 1980 atoms to the MM region,
computed with AMBER-99 force field for protein, GAFF force
field for ligand, and TIP3P model for water. The calculations
were done on 112 CPU cores of Xeon 3.0 GHz. A single geometry
optimization step (including one FMO gradient and MM optimi-
zation) took 36 min.

Until recently, the studies of enzymatic reactions with FMO
relied on obtaining a reaction path with other approaches such as
QM/MM [92–95] and a subsequent use of FMO to refine ener-
getics (reaction energy and the barrier) via single-point FMO cal-
culations, and also in the analysis of the contributions of residues on
the catalytic activity.

Recently, two ways have been suggested to map reaction path-
ways with FMO/FDD. First, in constrained geometry optimiza-
tions, assuming the reaction coordinate is known a priori allows one
to map a reaction path [84, 85], and second, using the intrinsic
reaction coordinate (IRC). IRC requires a Hessian calculation at a
transition state, and the reaction path is mapped automatically from
the TS to both reactants and products [66]. Mapping a path for the
reaction of phosphoglycolohydroxamic acid and the triosepho-
sphate isomerase (PDB: 7TIM) using quantum mechanics for the
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whole system containing 9227 atoms took 102 h of computation
time on a PC cluster.

Another way to optimize large systems is to use very fast para-
meterized QM methods such as the density-functional tight bind-
ing (DFTB) combined with the fragment molecular orbital method
[96]. For a fullerite slab containing an impressive 1,030,440 atoms,
a single-point step in the geometry optimization with FMO-DFTB
took 83 min on 8 dual-CPU eight-core 2.00 GHz Xeon nodes
(128 cores).

3 Molecular Properties

Molecular properties, which can be computed with FMO, are very
diverse. They vary from multipole calculations [97] to FMO
descriptors for QSAR and scoring functions. Perhaps the most
important FMO application relevant to drug discovery is the analy-
sis of molecular interactions, which is covered in great detail; other
properties are reviewed briefly.

3.1 Molecular

Interactions in FMO

Although considerable progress has been achieved with various
linear-scaling QM methods, providing the total energies and gra-
dients, it is also very desirable to be able to divide the energy into
contributions corresponding to well-defined chemical constituents.
This is exactly what many fragment-based methods achieve as a by-
product of simulations (in addition to the total properties).

In FMO, it can be seen that the basic equation (Eq. (1)) has
some form of the subsystem properties, obtained from the energies
of monomers and dimers. Typically, however, Eq. (1) is rewritten
separating the ESP contributions. This is convenient because in
Eq. (1) the energies include the ESP contribution, which can be
very large (the interaction of the electronic state with the ESP), on
the order of hundreds of kcal/mol. It is more productive to use
internal energies, which describe the energy of fragments polarized
by the ESP, but from which the ESP energy is subtracted post-
factum for the analysis (this is rather similar to the notion of the
internal energy of the solute in solution in PCM).

For fragments I (and likewise for dimers IJ), the internal energy
EI

0
is obtained from the QM energy EI by subtracting the interac-

tion of the electronic density DI with the ESP VI:

E
0
I ¼ EI � Tr DIVI

� � ð8Þ
Using the internal energies, Eq. (1) becomes [91]

EFMO2 ¼
XN
I

E
0
I þ

XN
I>J

E
0
I J � E

0
I � E

0
J þ Tr ΔDI JVI J

� �� �
ð9Þ
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Here, the ESP contribution takes the form of the interaction of
the density transfer matrix ΔDIJ in the basis of the atomic orbitals
(it can also be called charge transfer) between fragments I and J
with the ESP of dimer IJ.

This equation is already very useful for analysis, as it describes
the energies of fragments and pair interactions (int). The latter are

ΔE int
I J ¼ E

0
I J � E

0
I � E

0
J þ Tr ΔDI JVI J

� � ð10Þ

The values called either pair interaction energies (PIE) or interfrag-
ment interaction energies (IFIE) in FMO have been used in many
applications to discuss the role of amino acid residues in binding a
ligand.

The above expression has more terms in solution. In addition,
it is possible to decompose the total values of PIEs into several
contributions in the PIE decomposition analysis (PIEDA)
[98–100]. The expression in solution (PCM) is

EFMO2=PCM ¼
X
I

E
00
I þ

X
I

ΔE solv
I þ

X
I>J

ΔE int
I J ð11Þ

Here, the fragments are polarized by both ESP of other fragments
and a potential from the solvent. The EI

00
term defines the internal

energy of fragments in solution, ΔEI
solv is the fragment solvation

energy, and ΔEIJ
int is the PIE in solution. The definitions are

ΔE solv
I ¼ ΔEcav

I þ ΔEes
I þ ΔE disp

I þ ΔE rep
I ð12Þ

The ΔEI
solv term in PCM is computed as the sum of the cavitation

(cav) energies (the free energy loss to create the cavity in solution),
to which one adds the electrostatic (es), dispersion (disp), and
repulsion (rep) solvent-solute interactions:

ΔE int
I J ¼ ΔEES

I J þ ΔE EX
I J þ ΔECTþmix

I J þ ΔEDI
I J þ ΔE SOLV

I J ð13Þ

The PIEsΔEIJ
int in solution are decomposed into the electrostatic (ES:

note that this is the solute-solute electrostatic interaction; do not
confuse it with the solute-solvent (es) interaction), exchange repul-
sion (EX), charge transfer, and higher order mix terms (CT + mix),
dispersion (DI), and solvent screening (SOLV):

ΔE SOLV
I J ¼ ΔEes2

I J þ ΔEes3
I J þ ΔE disp

I J þ ΔE rep
I J ð14Þ

The solvent screening ΔEIJ
SOLV is the direct solvent contribution to

PIEs (indirectly, solvent affects other components as well, because
the solute is polarized by the solvent). It is computed as the sum of
the electrostatic screening (es2), describing the interaction of the
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induced solvent charges with the solute (a counterforce to the
strong electrostatic solute-solute ES interactions), the coupling of
the solute density transfer ΔDIJ with the solute potential (es3), as
well as the non-electrostatic contributions to the solvent screening:
dispersion (disp) and repulsion (rep). The latter two describe non-
electrostatic components for the interaction of the solvent mole-
cules with the solute, counteracting the solute-solute interactions
of DISP and EX, respectively. Note that in PCM there is no explicit
solute-solvent charge transfer, so there is no solute-solvent coun-
terpart to CT + mix. The dominant part of ΔEIJ

SOLV is typically the
ΔEIJ

es2 component.

The interaction energies in solution ΔEIJ
int include the solvent

screening and commonly their values are smaller than PIEs in a
vacuum. It should be noted that the “perfect” screening, i.e., the
reduction of the electrostatic interaction by the factor of the dielec-
tric constant, ε, is observed only for the interaction of two-point
charges. Indeed, this picture is observed in the interaction of
two solvated ions at a relatively long distance computed with
PIEDA/PCM.

The question is however what is the physical nature of the
electrostatic solvent screening. PIEDA/PCM gives a simple answer
to this as the cross-interaction of the induced solvent charges with
the solute. Consider a cation,Q þ

1 , and an anion,Q �
2 . Between them

there is a very strong attractive interactionQ þ
1Q

�
2 =R12 whereR12 is

the separation. The screening in solvent arises because around each
ion there is an induced solvent charge of the opposite charge, q�1
and qþ2 . The interaction between the two charges Q þ

1 and Q �
2 in

solution has an additional interaction between the induced charges
and ions, Q þ

1 q
�
2 þ qþ1Q

�
2

� �
= 2R12ð Þ. The screening is thus directly

related to the induced charges. The cross-interaction is so called
because it is the interaction between one ion and the induced
solvent charge of the other ion, and vice versa. Finally, it can be
noted that the induced charge in the stand-alone case (when ions
are infinitely separated) is given by q�1 ¼ � ε� 1ð ÞQ þ

1 =ε, which
gives the expression that in solution the interaction between the
two ions is Q þ

1Q
�
2 = εR12ð Þ (see reference [98] for full derivation).

The actual electronic structure and the solvent-induced charge
distribution are much more complex. For example, let us consider a
protein. If there are only two charged residues in the whole protein,
and these two residues are quite far from each other (so that there is
little charge transfer between them), then the above picture of the
electrostatic interaction between them (ES) being reduced by the
factor of ε so thatΔEES

I J = ΔEES
I J þ ΔE SOLV

I J

� �
� ε can be expected to

hold approximately. This is because the solvent charges (which
determine the solvent screening) around each of the two ions are
determined to a good approximation by each ion independently.
Now imagine that there are three ions, two cationsQ þ

1 andQ þ
2 , and
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one anion Q �
3 , and the interaction of Q þ

1 and Q �
3 is to be

determined, with Q þ
2 lying near Q �

3 . In this case, the solvent
charges around the anion are now determined by both the anion
itself and the other cation (Q þ

2 ). This leads to the so-called charge
quenching effect [98] where the induced charges are reduced
(quenched) because of the addition of the solvent potentials due
to both Q �

3 and Q þ
2 , which determine the induced solvent charge

aroundQ �
3 . In this case, the potentials of the opposite ions have the

opposite sign. Thus, the total potential, the induced charge, and
the screening are reduced.

Summarizing, the presence of a third ion affects (reduces or
increases) the induced charges on the other two ions, and the
screening effect is now determined not only by the two ions them-
selves, but also by the third ion. Thus, in proteins with many-charge
residues, various kinds of screenings can be observed. In fact, FMO
provides a way of defining local dielectric constants either for the
fragments themselves or for individual pairs. Three types of the
effective screening are the regular screening ε > 1, negative screen-
ing ε < 0, and anti-screening 0 < ε < 1. In the regular screening,
the strong electrostatic ES interaction between two fragments is
reduced by the solvent, in the anti-screening screening it is
enhanced, and in the negative screening the sign of the interaction
changes. This complex picture arises because of the many-body
effects (e.g., the coupling of the solute potential of three charged
residues).

An alternative to PCM, which has its own strong and weak
points, is to use explicit solvent. One way is to describe the solvent
with effective fragment potentials (EFP) [101]. For the FMO/EFP
method, there is an analysis somewhat analogous to, but in other
ways different from, PIEDA, called interaction energy analysis
(IEA). It has been applied to analyze the solvent effects on the
protein-ligand binding [102]. While such explicit solvent treatment
in principle is ultimately superior to continuum treatment, there
remains the issue of having to average solvent configurations,
potentially requiring calculations to be performed in combination
with MD.

To improve the reliability of PIEs, the counterpoise correction
for the basis set superposition error (BSSE) can be applied to PIEs
[103, 104]. Also, a contraction of many-body effects in FMO3 and
FMO4 can be accomplished producing a formal two-body PIE
[90, 105]. It has been argued that this is useful for drug design as
amino acid residues can be subdivided into more than one frag-
ment, thereby producing a more detailed interaction picture. Basis
set superposition error (BSSE) corrections have been suggested for
pair interactions only [103, 104]. Alternatively, one can use the
complete basis set limit (CBS) in the FMO integrated into our own
n-layered integrated molecular orbital and molecular mechanics
(ONIOM) [106].
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A further aspect for consideration is the amount of configu-
rational contribution to the PIE. There are two ways to address this:
either to compute PIEs along an MD trajectory [103] or to use a
classical model describing the temperature effects on PIEs [107].

In understanding the interactions involved in biochemical sys-
tems, the details of fragment-fragment interactions are often
required beyond just the bulk information. For example, a ligand
can have two functional groups, and the contribution of each group
to the protein-ligand binding may be of interest. In the context of
FMO, this can make use of the configuration analysis for fragment
interaction (CAFI) [108] or a fragment interaction analysis based
on local MP2 (FILM) [109]. The former focuses on providing
polarization and charge transfer components, while the latter
focuses on the dispersion; both divide the total PIE into MO-
based contributions, and the MOs can be associated with a func-
tional group by looking at its space distribution.

3.2 Molecular

Interaction

Applications

One of the goals of structure-based drug discovery is to design
ligands, which can exploit favorable protein-ligand interactions,
and to minimize unfavorable interactions toward the protein target
of interest. The FMOmethod facilitates this process by making the
analysis of protein-ligand interactions possible from the output of
PIE and PIEDA calculations. These calculations provide both the
total energy of a ligand-protein interaction and the decomposed
energy components which can include electrostatics, exchange
repulsion, charge transfer, and higher order mix terms, dispersion,
and solvent screening. In addition, the reduced computational
expense of this linear scaling method allows for satisfactory
throughput of ligands for routine visual inspection of the results.
FMO therefore lends itself to many useful applications which
exploit molecular interactions, including:

l During structure- and fragment-based drug discovery when
there is a requirement to rationalize an SAR

l Investigating the thermodynamic profile of an X-ray crystal
fragment hit

l Ranking and prioritizing virtual screening hits, ligand-binding
poses, and results derived from scaffold-hopping studies

l Decomposing a ligand into fragments to study the structural
contributions to binding free energy

l Protein structure and stability studies

This section reviews examples of these applications in more
detail.

An SAR can be analyzed and the design of new molecules can
be driven using the FMO methodology. This process is optimal
when the initial starting points for the calculations are derived from
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X-ray crystal structures. Other researchers have opted to take a
random sample [110] from the production run of an MD simula-
tion, an averaged structure sampled from an MD trajectory [111],
or representative structures following clustering of the simulation
outputs [112]. Another approach would be to sample multiple MD
runs [47]. OftenMD simulations can be fairly time consuming, and
thus, an assumption is made that the conformation of the X-ray
crystal structure is likely to contribute significantly to the
Boltzmann-averaged potentials for the free-energy estimation.
Performing a single-point calculation in FMO with this starting
point is more likely to be a good representation of the system than
one from which the phase space is poorly sampled. This method has
been used previously to generate poses for FMO calculations [4].

For protein-ligand interactions, particularly in the context of
drug discovery and guiding medicinal chemistry, the most impor-
tant pairwise fragment interactions are those between the ligand
and the protein fragments. Subtle changes in ligand substituents
can be studied using FMO in a congeneric series of compounds.
Here an assumption is made that the ligand changes do not affect
protein-heavy atom positions, thereby reducing the need to re-
optimize the entire system. This has been demonstrated through
the analysis of 14 X-ray structures taken from the literature of
CDK2 inhibitors [4]. Here, the sum of the PIE for the 14 inhibi-
tors correlated well (r2 ¼ 0.68) with the free energy of binding as
calculated from the measured potencies. Using PIEDA, the quan-
tum mechanical component of ligand binding can be observed and
understood (Fig. 2). Compound 18 differs from 17 by a di-fluoro
substitution on the phenyl ring. The two fluorines have an additive
favorable influence in the charge transfer between the Lys33 and
the Asp145 residues of CDK2, as seen in Fig. 2a. There is an
increase in the total favorable interaction energy between 17 and
18, �7.1 kcal/mol and �25.3 kcal/mol, respectively, and a similar
increase in charge transfer, as seen in Fig. 2b. This QM effect, in
addition to potential solvation and entropic ligand conformation
effects, results in an increase in potency from 140 nM for 17 to
3 nM for 18.

The Facio software allows for a graphical representation of the
data [50, 113]. Single FMO PIEDA results are best viewed as
histogram plots whilst comparisons between a larger number of
ligands can be viewed as heat maps, as shown in Fig. 2. Amari et al.
developed a visualized cluster analysis of protein-ligand interactions
(VISCANA) which measures the squared Euclidean distance
between two ligands by their amino acid fragment—ligand interac-
tion energy patterns (fingerprints)—and clusters the ligands based
on the dissimilarity measure (Eq. (15)) [1]:

dIJ ¼
X
K¼1

ΔEIK � ΔEJK

� �2 ð15Þ
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This method is sufficiently computationally efficient at the FMO-
HF/STO-3G level that it has been applied to the analysis of VS hits
where 100 ligand-protein complexes can be calculated in less than a
day on a 60-processor cluster [1].

Recently, Kurauchi et al. have extended this work to incorpo-
rate the MACCS structural keys [114] of the ligand molecules into
the clustering and they also utilized self-organizing maps (SOM)
[115] and multidimensional scaling (MDS) [116] techniques to
assist in the visual interpretation of the clustering [117]. These
extensions were aimed at identifying false-positive ligands more
efficiently and in potentially identifying structural changes to
improve weaker binders or remove false-negative ligands.

The above procedures can also be used on multiple conforma-
tions of a single molecule, as derived from a molecular docking
experiment, for example. This enables a refinement of free energy
of binding predictions over those derived from the docking algo-
rithm, which traditionally has been cited as being better at generat-
ing poses as opposed to the accurate prediction of binding free
energies [118].

Fig. 2 (a) Left: Truncated X-ray structure of PDB ID 2VTP and the aryl moiety (in blue) on which the calculation
was based. Right: Structures of compounds 17 (PDB ID: 2VTO) and 18 (PDB ID: 2VTP) with the aryl moiety used
in the FMO calculation (blue) taken from [98] and the associated PIEDA plots for interactions with Lys33 and
Asp145. (b) Heatmap showing the PIE for the aryl moieties from compounds 17 and 18
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Figure 3 demonstrates that examination of a functional group
of ligands molecules can give an insight into the effect of ligand
binding within the local environment and the contribution that the
fragment has the total enthalpic free energy of binding of the whole
ligand. This can be quantified into a molecular metric, the fragment
efficiency (FEPIE) calculated by dividing the fragment PIE by the
fragment heavy atom count [86]:

FEPIE ¼ Fragment pair interaction energy=heavy atom count

ð16Þ
As an example with the protein renin, the peptidomimetic inhibitor
CGP38’560 and Aliskiren were fragmented to demonstrate the
ability of the method to illustrate the size and efficiency of different
molecular interactions. The derived PIE was divided by heavy atom
count to give a theoretical FEPIE, as seen in Table 1. As a result, the
ligand fragments have differing FEPIE values. The higher FEPIE

values contribute more to the enthalpic component of binding
than the lower FEPIE fragments. In particular, FMO illustrates the
opportunities to further optimize ligand functional groups to have
further gains in protein-ligand interactions.

An elaboration of this method is to apply FMO in a combina-
torial fashion to study the expansion of fragment- and lead-like hits,
to explore fragment merging, functional group replacements, and

Fig. 3 X-ray structures of peptidomimetics and fragmentation scheme used in the FMO analysis. Left: Top:
CGP 38’560 (PDB ID: 1RNE); bottom: Aliskiren (PDB ID: 2V0Z). Right: The corresponding fragmentation scheme
used during the FMO calculations
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scaffold hopping via multiple calculations based around a single-
crystal structure. Fragment linking strategies can also be realized in
circumstances where there are multiple distinct neighboring bind-
ing pockets on a protein surface and there are fragments which
occupy one or a number of these sites taken from one or more
crystal structures [119]. The ideal fragment-linking process will
produce positive cooperativity [120] between binding partners,
which is where a compound has additive potency gains through
combining the individual fragments. A recent review identified
several examples of fragment linking in the literature [4]. This has
been demonstrated in the fragment linking of two Hsp90 frag-
ments, 1 (IC50 ¼ 1500 μM) and 2 (IC50 ¼ 1000 μM), to yield
the more potent inhibitor 3 (IC50 ¼ 1.5 μM) [121], see Fig. 4.

These results were supported by FMO analysis using MP2 and
the 6-31G* basis set in combination with the PCM implicit solva-
tionmodel to generate PIE values (Fig. 5). The linking of fragments
1 (�8.87 kcal/mol) and 2 (�9.03 kcal/mol) using a propyl linker
to afforded inhibitor 3 (�41.3 kcal/mol) was confirmed in the
measured potency [121]. In successful fragment linking strategies,
the maintenance of the thermodynamic profile of the linking part-
ners is observed. Fragments which are stabilized through electro-
static dominant forces, like H-bonds, are predominantly enthalpic
in nature to the receptor and in addition they can accommodate a
degree of substitution. Thus, they are attractive starting points for
fragment expansion [122]. However fragments, which have an
entropic thermodynamic signature, are bound through more
hydrophobic interactions, such as in π-π stacking of aryl rings. This
entropic signature is associated with the hydrophobic effect of
fragment binding. An important consideration in ligand binding is
the contribution of hydration to the thermodynamics [123, 124].
Here, the removal of high-energy (unstable) water molecules from
the binding site upon ligand association has a major entropic

Table 1
Fragment efficiency (FEPIE)

Compound Activity (nM) Total PIE (kcal/mol) Fragmenta PIE (kcal/mol) FEPIE

CGP 38’560 1 �177 A �27.40 �1.71
A0 �28.43 �2.84
B �85.98 �4.78
C �34.84 �4.98

Aliskiren 0.6 �191 A �51.47 �3.43
B �83.95 �6.00
C �55.69 �5.57

Examination of the fragment contributions to the total pair interaction energies (PIE) for the peptidomimetic inhibitor
CGP 38’560 and Aliskiren. Showing the activity in nM, the total PI, and the fragment contributions to PIE and FEPIE
aSee Fig. 3 for the fragmentation scheme
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energetic contribution to the hydrophobic effect. We believe that
the ligand-binding sites with dominant dispersion interaction terms
identified by PIEDA are more likely to be associated with the
presence of these high-energy waters. Hydrogen bonds have a
large electrostatic energy term, whereas the dispersion energy term
is the dominant attractive component in hydrophobic interactions.
The ratio of the electrostatic and dispersion energy terms to the sum
of the PIE results is a useful metric to measure the suitability of a
fragment for hit expansion (see Fig. 5).

PIEDA [99] allows these terms to be extracted from the FMO
calculation, as shown in Fig. 5. Fragment 1 has a much larger
electrostatic component than fragment 2, which is dominant over
the dispersion energy contribution (ES/(DI + CT) ¼ 1.48) (see
Fig. 5). Hydrogen bonds are highly directional and when they are
optimally formed between a fragment and a receptor, they anchor
the fragment in place. This is in stark contrast with fragments which
bind through dispersion forces where there is increased entropy and
multiple binding poses are often possible, as was observed for
fragment 2 where two crystal structures gave two different binding
poses [121]. Fragment 2 has a reduced ES/(DI + CT) (see Fig. 5).

Fig. 4 The complex of fragments 1 (green) and 2 (cyan) bound together in Hsp90 (PDB ID: 3HZ1) aligned to the
crystal structure (PDB ID: 3HZ5) of the Hsp90 inhibitor 3 (yellow)
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Capturing the thermodynamic nature of fragment binding in a
simple metric like ES/(DI + CT) is useful information in fragment
linking, and also particularly important in the selection of fragment
hits for further fragment expansion and evolution studies.

As well as studying the nature of fragment binding during a
fragment-based drug discovery project, functional groups can also
be considered as fragments that are modified during hit and lead
optimization. Here, a virtual library of compounds can be built
around a functional group which is to be replaced or modified. This
is known as scaffold replacement [86]. An X-ray crystal structure is
routinely used as a starting point to explore chemical modification
to a ligand, and the use of an FMO in a predictive fashion to
measure the PIE changes can be performed. In this procedure,
the size of the system to be calculated is kept at a minimum.
Typically, the ligand and only the surrounding amino acid residues
are within 5 Å, to ensure reasonable throughput. This technique is
often used for initial fragment-hit expansion or for optimization of
a congeneric series of compounds and it is particularly effective for
solvent-inaccessible rigid-binding pockets as most of the energetic
terms not accounted for by the FMO method tend to cancel out.
We have termed this procedure “SAR-by-FMO” and an example of
this is reproduced below [58].
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Work at Astex during a fragment-based drug design campaign
against CDK2 identified a number of fragment hits, which were
then crystallized [125]. One of the resolved structures was the
fragment hit (PDB ID: 1WCC) [126], entry 1 in Table 2.

This fragment has low activity of 64 % inhibition at 1 mM. In
spite of this, the fragment forms a number of good enthalpic
hydrogen bonds with the backbone of the CDK2 Hinge region
including residues Glu81, Phe82, and Leu83. 1WCC thus is an
ideal fragment as it acts as a potential anchoring point for further
modification from some useful vectors off the molecule and it has a
good FEPIE value of �2.68. These are depicted in Fig. 6, and
following the FMO convention of fragmentation are labeled

Table 2
SAR-by-FMO

Compound ΔPIE (kcal/mol)

N

A

R1 R2

A R1 R2

1 0 N Cl NH2

2 1.31 N F NH2

3 1.21 N H NH2

4 1.44 C H NH2

5 0.37 C CH3 NH2

6 �1.09 N Cl H

7 0.12 N H H

8 0.31 N Cl OCH3

9 �2.76 N Cl NHCOCH3

10 �2.62 N

Cl N

11 0.34 C Cl NH2

12 0.38 N CH3 NH2

13 �1.59 N Cl NHPh

Fragment analysis using FMO to calculate the relative values of pair interaction energies (ΔPIE), using 1WCC as a
reference (PIE ¼ �21.44 kcal/mol) for a series of fragment replacements of 1WCC
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Phe-82, Leu-83, and His-84, respectively. An examination of the
PIEDA histogram plot reveals some important interactions, which
have recently become better understood in the field of medicinal
chemistry. An interaction that was not thoroughly examined in the
literature is that formed between the chloro substituent and the
gatekeeper Phe80 residue, which contributes favorably to about
3 kcal/mol of energy, Fig. 6b.

At the MP2/6-31G* level of theory the interaction can be
observed as being a combination of dispersion and CT energy
terms, Fig. 6a. This is likely as the chloro group has a positively
charged σ hole which is likely to interact with the electron-rich π-
system of Phe-80 [127]. Halogen-π bonds have traditionally been
poorly represented in MM force fields and the nature of the inter-
action has been misunderstood. Although it is also reasonable to
assume that the chlorine atom may be replacing a high-energy
solvating water molecule, which might exist in this part of the
binding pocket, the contribution from this type of halogen-π inter-
action cannot be ignored. Further examination of the PIEDA plots
shows that there is a pattern to the contributions that the
energy terms make to the individual residue-fragment interactions.
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This pattern seen for Phe-82, Leu-83, and His-84 is a typical
hydrogen-bond energy contribution. What we observe from the
X-ray structure is that only the Phe-82 NH forms a classical hydro-
gen bond to the ring N or 1WCC. Two additional hydrogen bonds
are formed to the carbonyl O of Glu81 and Leu83 and they are
nonclassical in nature. A good example of the usefulness of CH-π
interactions in understanding protein-ligand interactions is in the
work of Ozawa et al. in their study of the β-2 adrenergic G-protein-
coupled receptor [128].

The SAR-by-FMO approach can be demonstrated using
1WCC as a starting point, and performing simple modifications
to 1WCC, such that any induced fitting to the protein is reduced.
A small virtual library is designed, often based around easily sourced
commercial analogues. Their FMO interaction energies are calcu-
lated (Table 2) so that the effect of substituent changes on the
binding free energy can be predicted. Replacing the chloro in
1WCC (entry 1 Table 2) for a fluoro (entry 2), proton (entry 3),
or methyl group (entry 12) all result in a loss in binding energy (and
an increase in ΔPIE). This is the same for entries 4, 5, and 7. This
suggests that the chloro is necessary for activity. Further changes to
the ring system, chaining a ring N to a C, pyrazine to pyridine
(entry 11, Table 2), could be demonstrated by FMO to create less
favorable changes. However, substituent changes to the amino
group could offer further gains in potency. The authors went on
to prepare compound 13 (Table 2), which had reasonable activity
(IC50 ¼ 7 μM). This SAR-by-FMO analysis reveals that there are
other scaffolds that could have also been interesting fragment hits
for further investigation, including entries 6, 9, and 10 (Table 2),
all of which have increased binding interactions to the receptor
compared to the initial 1WCC fragment hit. This SAR-by-FMO is
equally applicable during hit-to-lead and in ligand-optimization
phases of drug design where the impact of small substituent
changes to a ligand is being examined.

The fragment replacement and the calculation of PIE are appli-
cable to proteins as well as to ligands. It is particularly useful in the
analysis of the robustness of homology models or to assess the
impact of single-point mutations in protein design to determine
protein stability for X-ray crystallography. An example of mutation
studies is the work in the area of the influenza virus. Recently, there
has been research performed to quantify, through the use of FMO
calculations, the mutations from the avian to the human hemag-
glutinin protein in strengthening the binding affinity of human
hemagglutinin to the human receptor [129]. Other researchers
have explored efforts to predict putative mutations in the hemag-
glutinin protein [130].

3.3 FMO-Derived

Partial Charges

Receptor-specific scoring functions can offer significant improve-
ments in ligand-binding affinity predictions. This can be useful,
especially when predicting electrostatic interactions, which in
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most of the current non-polarizable force fields (such as
AMBER94) are based on partial charges assigned to each atom.
FMO-derived charges were proven to give equally good or
improved correlations with experimental values when compared
to classical force field charges [7, 131–133].

It has been shown that partial charges derived from FMO
calculations in the pairwise manner agree well with those deter-
mined from the conventional molecular orbital method [131].
Three different methods were employed for charge comparison,
including charges from electrostatic potentials using the grid-based
method (CHELPG), the electrostatic potential fitting with Merz-
Kollman scheme (MK), and the restrained electrostatic potential
(RESP) fitting. The observed error between FMO and the conven-
tional molecular orbital systems was within 1 %. The dependency of
charges on the structural variation of the glycine trimer and the
reproducibility of the electrostatic potential on the surface of the
ligand-binding pocket of the estrogen receptor were also analyzed.
This has proven that the adverse effect of fragmentation on charge
derivation was rather minor, and results were consistent with the
conventional molecular orbital calculations. Also, the MK and the
RESP charges derived from FMO calculations showed good repro-
ducibility of electrostatic potential on the molecular surface [131].

It has been proposed that the classical electrostatic model can
be improved by introducing partial charges derived from high-level
quantum chemical calculations using relatively fast FMO calcula-
tions [7]. Those parameters have been used to characterize docking
results for estrogen receptor subtype α (ERα) and the retinoic acid
receptor of isotype γ (RARγ). A set of quantum mechanically
characterized ligands have been docked into the ERα and RARγ
receptors, which were characterized with both the force field and
the quantum-based scoring functions. For the ERα binding, the
affinity predictions were significantly improved when QM-based
partial charges were used, reaching R2 values of 0.81 and 0.54 for
QM and the classical electrostatic description, respectively. The
RARγ experimental and computational predictions were almost
equally good, with R2 values in excess of 0.9 for both the classical
and quantum-derived scoring functions [7].

In another study, receptor-specific FMO charges derived with
the optimally weighted RESP method were used to improve force
field system descriptions during MD simulations [132]. The reli-
ability of the FMO charges was proven based on a comparison with
the well-established AMBER94 force field. The MD simulation
performed on the crambin protein system also showed electrostatic
reproducibility within short time scale calculations. However, a
more significant variation of the structure during MD simulation
might lead to a less accurate electrostatic description. It is due to
the fact that FMO charges were based on a single-point structure,
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and they were not redistributed for the transient structures. For
that reason, FMO-derived charges were found to be the most
effective when dealing with short time scale MD simulations or
receptor-ligand docking, where the reproducibility of the electro-
static interactions is the most important [132].

Recently, protein-specific force field charges were used to
improve protein-ligand binding affinity calculations [133]. Both
FMO protein-specific charges and AMBER94 charges were applied
to study two protein systems, dodecin and hen egg-white lysozyme,
and their ligands. The molecular mechanics Poisson–Boltzmann
surface area (MM-PBSA) method was used to calculate binding
free energies for considered complexes. For the FMO-RESP
charges, the accuracy of the binding free energy was improved for
five ligands that were interacting with the dodecin receptor due to
the electrostatic energy, compared to the AMBER94 performance.
Although the magnitude difference between the partial charges
obtained with the FMO-specific force field and the AMBER94
force field was relatively small, a better correlation with the experi-
mental values was achieved with the former. For the hen egg-white
lysozyme system, the binding affinity correlation was equally good
for both charge sets [133].

3.4 FMO-Based

Molecular Descriptors

in QSAR, Scoring

Functions

There are two 3D-QSAR methods that have been used extensively
in CADD, comparative molecular field analysis (CoMFA) [134],
and comparative molecular similarity indices analysis (CoMSIA)
[135]. In a typical setup, partial least squares (PLS) is computed
to correlate molecular structure and connectivity of atoms to the
desired properties of the system. Both methods rely on molecular
interaction fields (MIFs) that are usually calculated by using classi-
cal force fields. Thus, CoMFA and CoMSIA suffer from all of the
drawbacks and weaknesses associated with the force fields. At the
same time, the QM methods are inherently more accurate than the
force fields and they can be a feasible alternative. The common
complaint is that the QM methods are too expensive, but this issue
can be partially addressed by using semiempirical or linearly scaling
methods like FMO. FMO has been used in CoMFA [136, 137] and
the use of FMO in CoMSIA methods has been discussed.

A key problem in QSAR is the choice of an accurate descriptor.
There are, for example, a few types of the molecular descriptors
available such as molecular weight, graph-based connectivity of
atoms, and charges of atoms. Using QM methods, including
FMO, allows computing arguably more useful and sophisticated
descriptors, like dipole moment, mean polarizability, partial charge,
and the highest occupied and the lowest unoccupied orbital ener-
gies. In addition to these descriptors, FMO can provide new valu-
able types of descriptors. These descriptors take advantage of the
fragmented nature of FMO, which allows extracting information
about interactions between fragments where fragments are defined

244 Michael P. Mazanetz et al.



as ligand and amino acids in the protein. Chuman et al. [8, 9, 111,
138–142] have used protein-ligand-binding energies and pair
interaction energies from FMO calculations as descriptors in
QSAR. The ligand-binding energy is defined as

ΔE ligand ¼ E complexð Þ � E proteinð Þ þ E ligandð Þ½ � ð17Þ
where each energy term is estimated with FMO. These energy calcu-
lations can include a dispersion calculation (empirical dispersion or
from MP2) and a solvation energy estimate by using, for example,
PCM. In other words, the enthalpy of ligand-binding energy can be
estimated very accurately.OnceΔEligand is computed, it canbeused as
any other descriptor in QSAR calculations. But, by using FMO, it is
possible to narrow down exactly which amino acid-residue ligand
interactions contributed mostly to the ligand-binding energy. More-
over, these interaction energies can be analyzed by type, for example,
electrostatic, dispersion, or charge transfer internal energies. These
internal energies can be used as descriptors by themselves as shown in
the work of Chuman et al. [138].

3.5 Molecular

Electrostatic Potential

The molecular electrostatic potential (MEP) is a useful tool to
analyze intermolecular electrostatic interactions and the properties
of the system. It is an especially important tool for CADD where
understanding electrostatic and topographic complementarity in a
receptor-ligand complex is key for rational SBDD. This tool is used
to predict ligand specificity, for example, the polarity in the active
site of a receptor, as a part of the docking routine.

MEP allows the visualization of the charge distribution of the
molecule on a molecular surface. The first requirement is to deter-
mine how to define the surface. One approach is to use van der
Waals molecular surface—a union of spherical atom surfaces—
where each atom surface is defined by the van der Waals radius.
These radii are derived for non-bonded atoms and as such they
provide an approximation of the surface. A more accurate way to
compute the surface is by computing the electron density of the
molecule with a QM method and extracting the electron density
isosurface. The commonly accepted electron density cutoff value is
0.002, which captures almost all of the electron density. The second
step is to compute the electrostatic potential. A widespread model
for computing electrostatic properties is the Poisson–Boltzmann
(PBE) equation:

�∇ � ε xð Þ∇ϕ xð Þ þ k2 xð Þ sinh ϕ xð Þ ¼ f xð Þ ð18Þ
where ϕ is the electrostatic potential, ε is the dielectric constant of
solute and solvent, k 2 is related to the ionic strength of the solution
and the accessibility of ions to the solute interior, and f describes the
distribution of atomic partial charges of solute. An efficient PBE
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solver for computing MEP is implemented in the popular package
APBS [143] as well as in the package DelPhi [144]. A more
accurate way to compute electrostatic potential is with a QM
method. Using Hartree-Fock or DFT, MEP can be computed as

φ rð Þ ¼
Xatoms

A

ZA

r�RAj j �
X
μν

Dμν

ð
χ*μ r

0
� � 1

r� r0j j χν r
0

� �
dr

0 ð19Þ

where ZA is the nuclear charge of atomA, μ and ν are atomic orbital
basis functions, and Dμν is the one-electron density matrix.

Many QM programs including GAMESS are capable of com-
puting MEP. It is also possible to compute MEP for very large
systems by using the FMO method [145]. Watanabe et al. have
shown how dimerization changes the MEP for the estrogen recep-
tor affecting its association with DNA [145]. To demonstrate MEP
computed with FMO implemented in GAMESS, we chose a small
Trp-cage miniprotein (PDB: 1L2Y) docked with deprotonated o-
phenolic acid. The electron density and MEP are computed at the
FMO2-RHF level of theory with STO-3G basis set. The cutoff
value is 0.002. The 1L2Y MEP with ligand is shown in Fig. 7.

Fig. 7 Electrostatic potential of Trp-cage protein (PDB: 1L2Y) docked with
deprotonated o-phenolic acid shown in the balls-and-sticks representation.
The 1LY2 MEP is shown on the electron density isosurface computed with the
cutoff value 0.002. Red signifies a negative charge while blue shows a positive
charge
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4 Conclusions and Outlook

There have been significant advancements in the field of QM
applications for drug research in recent years. On the methodolog-
ical side, a large number of promising linearly scaling QMmethods
have been developed. Some of these methods, like FMO, have
proven to be invaluable tools in drug design. At the same time,
new computer technologies like GPUs, MIC architecture, and
FPGAs provide the ability to significantly speed up calculations at
a fraction of the cost. Some of the assumptions (for example,
fragmentation of the system) made in the linear scaling methods
often allow efficient parallelization of the code. The combination of
these three factors drove the cost of QM calculations significantly
down on the commodity hardware like PC clusters. For example, at
the time of the publication, authors routinely run 1000–10,000
atom simulations on PC clusters. However, QM calculations are
still too expensive for large-scale ligand screening. Other problem-
atic QM areas are entropy, solvation, and dynamics. But these areas
can be effectively addressed by using classical MD with force fields.
In the future, we expect that there will be more widespread use of
both approaches for drug design.

In this chapter, we discussed in detail the use of FMO. Next, we
will summarize why the FMO method is well fitted for CADD:

1. It is a computationally inexpensive method compared to tradi-
tional QM methods.

2. An analysis of interactions between fragments can be done.
Thus, a wealth of information can be learned about the way a
drug interacts with amino acids in the active site. Therefore,
SBDD is a natural fit for FMO.

3. FMO can be applied for predicting geometry, estimating bind-
ing energy of the ligands, completing conformational sam-
pling, analyzing molecular interactions, deriving partial
charges, and generating QSAR models.

4. FMO is well suited to run in parallel on PC clusters [146] and
supercomputers [147], making it possible to run large-scale
simulations in a reasonable time. As a result, large-scale screen-
ing of ligands is possible on supercomputers.

5. Due to the availability of GUI [50, 113], setting up FMO
calculations and visualizing the results can be done almost
automatically, provided that a preliminary structure refinement
is performed (the structures available in PDB need to be pro-
tonated and usually optimized in some way), facilitating a
routine use of FMO in drug research.
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FMO is an efficient and accurate QM method, which is well
suited for CADD. It is our hope that FMO will become a standard
and widely used tool in CADD.
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Abstract

Cheminformatics utilizes various computational techniques to solve a wide variety of drug discovery
problems, including drug design and predictive toxicology. These computational exercises employ various
toolkits/libraries, workflows, databases, etc. for their applications in lead optimization, virtual screening,
chemical database mining, structure-activity/toxicity studies, etc. It is therefore important for such tech-
niques to be freely available. Open-access resources permit free use and redistribution of a product via a free
license, while open-source resources also provide source code that can be utilized to modify the product. In
order to extract the knowledge from enormous amount of data that accumulates at a staggering rate, open-
access or open-source cheminformatics packages also need to be efficient and user-friendly. In this chapter,
we record the recent advances in freely available (including both open access and open source) cheminfor-
matics toolkits, software (stand-alone and online applications), workflow environment, and databases. The
objective of this chapter is to get the readers acquainted with the freely available resources, so that they can
utilize those tools for solving different drug discovery challenges. We will start with the toolkit/libraries
such as Chemistry Development Kit (CDK), Open Babel, RDKit, ChemmineR, Indigo, chemf, etc., which
provide various functionalities that can aid researchers to develop their own cheminformatics software/
applications. Next we will discuss various cheminformatics software tools, including iDrug, PharmDock,
DecoyFinder, DemQSAR, Chembench, etc. which have recently been developed with a wide variety of
applications. We will further discuss workflow environments, including Konstanz Information Miner
(KNIME), Taverna, recent combinations, i.e., CDK-KNIME or CDK-Taverna and their contributions in
the cheminformatics field. At the end, we will briefly touch various recent databases, such as QSAR
DataBank, VAMMPIRE, CREDO, PubChem3D, MMsINC, etc., and their applications. The open-access
resources covered in this chapter would enable the medicinal chemists and cheminformaticians to solve
various problems encountered during their research.

Key words Open source, Open access, Cheminformatics, Tool kits, Software, Databases, Stand-alone
tools, Online tools, Workflows

1 Introduction

Cheminformatics is an applied field of chemistry that involves
the use of different computational resources for solving a
variety of problems arising in chemical, pharmaceutical, and allied
industries. This field is a combination of chemistry, computer sci-
ence, and information science that aids in transforming huge raw
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data into information and this information into knowledge.
Cheminformatics has revolutionized various areas including phar-
maceutical and chemical research, in taking faster decisions, cutting
cost, and hence increasing efficiency.

The availability of cheminformatics resources is based on the
provider/source that are commonly categorized into commercially
available, open access, or open source. Commercial resources are
normally well developed but expensive; thus, their users are limited
to those who can afford such costly services. Open-source
resources, on the other hand, are freely available (i.e., open access),
and their source code is openly accessible for modification or distri-
bution. To best support the majority of the scientific community in
resolving the different problems arising in multifarious areas of
chemistry, it is essential that cheminformatics resources are openly
accessible, which is not only important for resolving problems but
also critical for bringing new amendments to overcome shortcom-
ings of current resources and for exploring innovative concept/
ideas associated with cheminformatics resources. Developing and
managing such freely available cheminformatics resources is often
“community driven” and an outcome of a teamwork from numer-
ous contributors. In this chapter, we highlight the advances made
in a variety of freely available (both open access and open source)
cheminformatics resources, i.e., toolkits, software, workflow, and
databases.

2 Cheminformatics Toolkits

Cheminformatics toolkits are a set of libraries comprising of source
codes for various algorithms/functions that allow the cheminfor-
maticians to develop their own software applications for possible
use in structural similarity searching, virtual screening, database
mining, structure-activity relationship analysis, etc. The develop-
ment of open-source cheminformatics toolkits has started more
than a decade ago, and so far many highly functional toolkits have
been developed. Some toolkits were developed from the scratch,
e.g., Chemistry Development Kit (CDK) [1] and Open Babel [2],
while others, such as RDKit [3] and Indigo [4] toolkits, were made
open source by donating in-house source code under liberal
licenses. The development of such cheminformatics toolkits
became a part of the Blue Obelisk movement [5, 6] established in
2005 as a response to the lack of Open Data, Open Standards and
Open source (ODOSOS) in chemistry.

The main reason that these toolkits are so essential is that
their availability aids the development of a next generation of
cheminformatics software like Bioclipse [7], Avogadro [8], CDK
Descriptor Calculator GUI [9], etc., where there is no need to
concern about the low-level details of manipulating and/or
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handling various algorithms; thus one can focus on providing
additional functionality and/or ease of use [6].

In this section, we describe various cheminformatics toolkits
(see Table 1 for a brief summary) and their recent progress.

2.1 Chemistry

Development Kit (CDK)

The CDK is an open-source Java library for structural cheminfor-
matics and bioinformatics. This project was initiated in 2000 by
Christoph Steinbeck, Egon Willighagen, and Dan Gezelter, the
developers of Jmol [20] and JChemPaint [21]. Till date, it is one
of the most active open-source cheminformatics projects that are
being carried out with wide support from the scientific community.
The number of contributors to this project has increased to 89 in
2014 [22].

CDK toolkit provides many functionalities for developing new
software in the cheminformatics field such as various chemical
input/output (I/O) file formats, including simplified molecular-
input line-entry system (SMILES), Chemical Markup Language
(CML), and MIT Design Language (MDL); structure generators;
2D diagram editing and generation; 3D geometry generation;
substructure search using exact structures and Smiles ARbitrary
Target Specification (SMARTS)-like queries; molecular descriptor
calculation for quantitative structure-activity relationship (QSAR)
study; fingerprint calculation; International Chemical Identifier
(InChI) support (via JNI-InChI); etc., and in bioinformatics field,
the functionalities include cognate ligand detection, metabolite
identification, etc. [1, 23, 24].

At present, the CDK is the source for a number of software
projects including JChemPaint [21], SENECA [25], NMRShiftDB
[26], PaDEL-Descriptor [27], Jmol [20], JOELib, Nomen, Safe-
Base, and many more [28]. The functionality of CDK can also be
freely accessed through workflow system, such as KNIME and
Taverna, which are discussed in the workflow section of this
chapter.

The CDK developers regularly perform unit testing, code qual-
ity checking, bug fixing, and proper versioning of CDK library.
Information about the library functionality, core classes, inheri-
tance hierarchy, and the dependencies among the fundamental
classes of the CDK are well described in the literature [1, 10].

CDK is available for Windows, UNIX, andMac OS and is freely
distributed under the GNU Lesser General Public License (LGPL)
version 2.0 (v2). In contrast to the more common GNU General
Public License (GPL), the LGPL allows the use of the CDK in
proprietary software packages.

2.2 RDKit The RDKit was developed and employed at Rational Discovery
during 2000–2006, for building predictive models for absorption,
distribution, metabolism, elimination, toxicity, and biological
activity. In June 2006, Rational Discovery was shut down, but the
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toolkit was released as open source under BSD license. At present,
the open-source development of RDKit is actively contributed by
Novartis, which includes the source code donated byNovartis [29].

RDKit offers various functionalities such as different chemical
I/O formats, including SMILES/SMARTS, structure data format
(SDF), Thor data tree (TDT), Sybyl line notation (SLN), Corina
mol2, and Protein Data Bank (PDB); substructure searching;
canonical SMILES; chirality support (i.e., R/S or E/Z labeling);
chemical transformations (e.g., remove matching substructures);
chemical reactions; molecular serialization; similarity/diversity
selection; 2D pharmacophores; Gasteiger-Marsili charges; hierar-
chical subgraph/fragment analysis; Bemis and Murcko scaffold
determination; retrosynthetic combinatorial analysis procedure
(RECAP) and BRICS implementations; multi-molecule maximum
common substructure; feature maps; shape-based similarity;
RMSD-based molecule-molecule alignment; shape-based align-
ment; unsupervised molecule-molecule alignment using Open3-
DALIGN algorithm; integration with PyMOL for 3D
visualization; functional group filtering; salt stripping; molecular
descriptor library; similarity maps; machine learning; etc.

The Contrib directory [30] is a part of the standard RDKit
distribution that includes source code that has been contributed by
the community members, for instance, Local Environment Finger-
prints (LEF), a Python source code; plane of best fit (PBF), a C++
source code; matched molecular pair algorithm (mmpa), a Python
source code and sample data; a fragment indexing algorithm; and
synthetic accessibility (SA) score, a Python source code.

RDKit has an official website, i.e., http://www.rdkit.org/, for
online documentation, recent news, Wiki link, and other related
information. The core data structures and algorithms are written in
C++ programming language, but Python wrapper (generated using
Boost.Python) and Java and C# wrapper (generated using SWIG)
are also available. Here, wrapper or binding means a thin layer of
code that converts a library’s existing interface into a user’s com-
patible interface, so that one can use the library in other program-
ming languages. RDKit is supported by Mac, Windows, and Linux
operating system [31].

2.3 Open Babel Open Babel is an open-source chemical toolbox intended to be a
cross-platform library that is built to support interconversion
between various file formats used in cheminformatics, molecular
modeling, and related areas. In addition to the complete, extensible
toolkit/libraries, it also offers ready-to-use applications for the
development of cheminformatics software [2].

Open Babel 2.3 can perform reading, writing, and interconver-
sion of over 111 chemical file formats that includes reading and
writing of 82 and 85 file formats, respectively. These encompass
common formats used in cheminformatics (SMILES, InChI,
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MOL,MOL2), I/O files from a variety of computational chemistry
packages (GAMESS, Gaussian, MOPAC), crystallographic file
formats (CIF, ShelX), reaction formats (MDL RXN), file formats
used by molecular dynamics simulation (Amber) and docking
packages (AutoDock), formats used by 2D drawing packages
(ChemDraw), 3D viewers (Chem3D, Molden), chemical kinetics,
and thermodynamics (ChemKin, Thermo). It supports filtering
and searching molecule files using Daylight SMARTS pattern
matching and computes group contribution descriptors such as
LogP, polar surface area (PSA). and molar refractivity (MR). It
also provides extensible molecular fingerprinting and molecular
mechanics functions.

File formats are employed as “plug-ins” which aid users to
contribute new file formats. Further, depending on the file format,
Open Babel can extract additional information besides molecular
structure. For instance, property fields can be read from SDF files,
unit cell information can be extracted from CIF files, and vibra-
tional frequencies can be extracted from computational chemistry
log files. For each file format, multiple choices/options can be
chosen to read or write in a particular format.

Open Babel has its origin in a version of OELib, which was
released as open-source software by OpenEye Scientific under the
GNU GPL v2. In 2001, OpenEye decided to rewrite OELib in-
house as the proprietary OEChem library, and the existing code
from OELib was released as the new Open Babel project. Since
then, Open Babel has been developed and substantially extended as
an open-source project with extensive international collaborations.
Up to November 2014, it has over 324,780 downloads [32] and
more than 476 citations [33] and has been utilized by over 40
software projects. While the majority of the Open Babel library is
written in C++, its bindings have been developed for other pro-
gramming languages, including Java, .NET platform, Perl, Python,
and Ruby. These can be automatically generated from the C++
header files using the SWIG tool. Open Babel supports a wide
variety of C++ compilers (MSVC, GCC, Intel Compiler, MinGW,
Clang), operating systems (Windows, Mac OS X, Linux), and plat-
forms (32-bit, 64-bit). OpenEye scientific has also provided a set of
cheminformatics and modeling toolkits [34] that are freely accessi-
ble under the free public domain research license [35].

In summary, Open Babel offers a solution to deal with the
growing number of chemical file formats along with various func-
tionalities like conformer searching, 2D depiction, filtering, batch
conversion, and substructure and similarity search. For software
developers, it can be used as a library to handle data in ample of
areas such as organic chemistry, drug design, molecular modeling,
and computational chemistry [2, 36].

Scripting languages like Python are highly popular since they
allow rapid writing of scripts within a few lines of code and are well
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suited for common programming tasks in cheminformatics. For the
same reason, a Python wrapper for Open Babel called Pybel [37]
has been made available. It is an open-source, cross-platform
Python module that provides the functionality of the Open Babel
toolkit to Python programmers.

2.4 Cinfony In the present scenario, the most active open-source cheminfor-
matics toolkits under development comprise of Open Babel, the
CDK, and the RDKit. All of these toolkits share the same core
functionality although the implementation details and the chemical
model employed may differ. However, these toolkits are indepen-
dently developed, and therefore, each has certain specific function-
alities, e.g., these toolkit support different sets of file formats and
force fields and represent various molecular fingerprints and
descriptors in different ways. There are also features in each of the
toolkits that are not shared by the others.

To this end, Cinfony is a Python module which provides a
common interface for Open Babel, RDKit, and CDK through a
simple and robust method to pass the chemical models among
these toolkits. It is an extension of Pybel (discussed above), a Python
module that only provides access to Open Babel. It allows interop-
erability at the application programming interface (API) level,
which has the advantage of not requiring any changes to the exist-
ing software. It is platform independent and hence supported by all
operating systems such as Mac, Windows, and Linux operating
system and is released as open source under the BSD license. The
details about the barriers, interoperability, implementation, and
performance are well discussed in the literature [11].

2.5 Small Molecule

Subgraph Detector

(SMSD)

The chemical similarity determination between molecules is widely
used to compute chemical diversity and for clustering analysis of
similar molecules. This is a highly useful concept in cases like
discovering new drug-likemolecules. Maximum common subgraph
(MCS) is one of the recent methods that overcome nearly all the
shortcomings posed by descriptor- or fragment-based similarity
searches. All of the early MCS algorithms lacked chemical knowl-
edge to rank the MCS solutions, which led to the development of
SMSD toolkit [12].

SMSD is a chemically sensitive and robust tool, which uses a
combination of various graph-matching algorithms (i.e.,
CDKMCS, MCS+, and VF+ Lib [12]) for finding the MCS
among small molecules. It can generate bond-sensitive and bond
-insensitive MCS and ranks the solutions according to minimal
fragments, bond breaking energy, and stereochemical matches. It
also overcomes the disadvantages of MCS algorithm coded in the
CDK toolkit (CDKMCS) by first using the atom and bond count
filter to discriminate between two dissimilar structures before
performing the MCS search and, secondly, by using the VF+ Lib
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and MCS+ method. The reported disadvantages of CDKMCS
include: (a) it may treat two chemically nonidentical molecules as
identical because it works on the maximum common induced
subgraph (MCIS) principle, and (b) the runtime is high if two
graphs are large with few dissimilar edges.

SMSD is a combination of various algorithms (i.e., CDKMCS,
MCS+, and VF+ Lib). The choice of using which algorithm is
completely based on the complexity of the input molecules.
CDKMCS is used first for molecules whose bond count and atom
count are not equal. If the solution is not computed within a
limited set time, then it is passed to the MCS+ algorithm, which
starts the search from the scratch. If the d-edge count (those edges
that do not share similar bond types) is greater than 99,999, then
VF+ Lib is used to find MCS, which is very efficient in handling
medium- to large-sized graphs. The MCS solutions are then passed
to the chemical post-filters, which ranks the solutions in a chemi-
cally meaningful way. The three filters are applied in the following
orders: (a) specific matching of the chemical functional groups,
bond types, and stereochemistry of molecules are identified and
matched; (b) the resulting solutions are sorted in ascending order
of the total bond breaking energy required by this MCSmatch (i.e.,
lowest energy is highest ranked); and (c) the top solutions are
selected based on the above two steps (in the case that the matched
part of the molecule is detached from the reference structure, the
solutions are sorted again in decreasing order based on the number
of fragments generated). In such a way, one can get chemically
relevant MCS solutions computed in polynomial time.

SMSD can be applied in a variety of bioinformatics and che-
minformatics areas for exhaustive MCS matching. For example, it
can be employed to analyze metabolic networks by matching the
reactants with the products of the reactions. It can also be used to
detect the MCS/substructure in small molecules reported by meta-
bolomics experiments, as well as to screen for drug-like compounds
with similar substructures.

SMSD is a Java-based toolkit, which is platform independent
and is released under Creative Commons (CC) license [38]. This
toolkit is freely available at www.ebi.ac.uk [12].

2.6 Biochemical

Algorithms Library

(BALL) 1.3

BALL is written in C++ with a specific purpose of significantly
reducing the development time of building derived computational
applications while ensuring stability and errorless implementation
in the computational biology and molecular modeling field. It
provides an extensive set of data structures along with classes for
molecular mechanics (MM), file I/O, comparison and analysis of
protein structures, advanced solvation methods, and visualization.
BALL has been designed to be robust, easy to use, and also simply
extensible due to its object-oriented programming background. In
2010, a new version, i.e., BALL 1.3, was released, and this version
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showed significant improvements in functionality compared to the
previous version that had been released in 1999 [13].

BALL handles a variety of molecular structure formats. The
previously published version only supported the PDB and MOL2
molecular file formats, while version 1.3 additionally reads and
writes MOL, HIN, XYZ, KCF, and SD files. It also supports a
variety of other data sources, such as DCD, DSN6, GAMESS,
JCAMP, SCWRL, and TRR. Along with this, the new version also
offers functionality for generating and editing molecules. For pro-
teins, DNA, and RNA, BALL 1.3 can automatically deduce much
of the missing information such as connectivity or bond order or
missing hydrogen from an extensible fragment database. Both
fragment database and rotamer library have been significantly
improved in the latest version. A rotamer library allows the user
to easily determine the most likely side-chain conformation of a
protein residue or to switch between various rotameric states. The
new features also include a kekulizer (an aromaticity processor),
a secondary structure predictor, and hydrogen bond detection.

The previous version of BALL has provided two force field
classes, i.e., CHARMM and AMBER. In the 1.3 version, an imple-
mentation of the Merck Molecular Force Field (MMFF94) has
been included that allows handling of almost all types of organic
compounds. The energy minimization functions have been
extended via providing standard methods like steepest
descent and conjugate gradient and the well-known methods, i.e.,
L-BFGS and shifted L-VMM algorithms [13].

BALL is freely available and supported by all major operating
systems, including Linux, Windows, and Mac OS X. Previously,
BALL was distributed as a commercial product, but now it is
released open source under the GNU Lesser General Public
License (LGPL), and parts of the code are released under the
GNU GPL. The source code and binary packages are available
from the project website at http://www.ball-project.org [13].

2.7 Indigo In 2009, GGA software services released a toolkit titled “Indigo”
and related software under the terms of GNU GPL. It includes
some unique algorithms developed by GGA, along with some
standard well-known algorithms.

The main features of Indigo are:

l Supports commonly used and popular chemistry formats: mol-
files/Rxnfiles v2000 and v3000, SDF, RDF, SMILES,
SMARTS, and SMIRKS

l Supports tetrahedral and cis-trans stereochemistry

l Molecule and reaction rendering to PNG, SVG, and PDF files

l Molecule and reaction depiction

l Aromatization and kekulization
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l Canonical (isomeric) SMILES computation

l Exact and substructure matching for molecules and reactions

l Support matching and highlighting

l Matching of tautomers and resonance structures

l Computing molecule and reaction fingerprints

l Similarity search

l Maximum common substructure (MCS) algorithm

l R-group deconvolution and scaffold detection

It is a C++ language-based library, majorly focused on perfor-
mance and essential chemical features. The high-level wrappers or
bindings are built around it for Python, Java, and C# language.
This library also allows multi-threaded use. All binaries are sup-
ported by all the essential operating systems, i.e., Windows, Linux,
and Mac OS X, both 32-bit and 64-bit [39]. The JAVA GUI
utilities, command-line utilities, KNIME nodes, and documenta-
tion material are available on their official website [4]. A commer-
cial license version is also available for receiving ongoing support
and maintenance and for clients who like to include Indigo as a
component in their proprietary software product [4].

2.8

jCompoundMapper

jCompoundMapper [14] is an open-source Java library for the
encoding of chemical graphs as fingerprints. It offers a variety of
topological (e.g., radial atom environments, extended connectivity
fingerprints, depth-first search fingerprints, or autocorrelation vec-
tors) and geometrical (e.g., 2-point and 3-point encodings or
geometrical atom environments) fingerprints. It is based on CDK,
which offers the basic functionality for parsing, typing, and graph
algorithms for molecular data and also provides several fingerprint
functionalities. But unlike CDK, jCompoundMapper focuses on
exact definition of its encoding and provides functionality to export
the fingerprints or pairwise similarity matrices to formats of popular
machine learning toolboxes such as comma-separated value (csv)
format, LIBSVM format (sparse and matrix), and WEKA ARFF.
Hence, various data mining libraries can be directly applied on the
output files.

This library is built from various implementations of literature
fingerprints and descriptors used in comparison studies, and its
algorithms can be parameterized with various options to adapt
the encodings, for instance, by applying a custom labeling function;
adjusting the search depth, the distance cutoff, or the geometrical
scaling factor; etc.

jCompoundMapper is platform independent and is released
under the LPGL license. It features a command-line interface but
can also be used as a Java application programming interface (API).
The access via the API or the binary using the command-line
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interface enables the user to utilize the library for batch processing.
The source code and an executable library are available at Source-
Forge [40].

2.9 chemf Chemf is a chemistry toolkit, a first of its kind being built using a
functional programming language named “Scala” [15]. Scala is a
modern multi-paradigm open-source programming language that
is fully object-oriented with a strong support for typical concepts
from functional programming such as higher-order functions, type
inference, and pattern matching. It has one of the most expressive
type systems [41].

Most of the freely available and widely used cheminformatics
toolkits, such as the CDK or Open Babel, are written in object-
oriented languages using typical imperative concepts such as muta-
ble data structures and opaque methods to implement chemical
entities and algorithms. The developers of the Chemf toolkit have
discussed the advantages of functional programming compared to
the imperative programming languages and reported an example
for justification, i.e., the comparison between CDK’s and Chemf’s
SMILES parser [15].

Functional programming languages were designed with refer-
ential transparency in mind, and they encourage a more declarative
style of programming without the control statements and value
assignments that are typically found in imperative languages. An
expression in a program is called referentially transparent when it
performs calculation of the result just from its input parameters.
Functional programming significantly facilitates writing referen-
tially transparent functions and using immutable data structures.
The methods and objects written in most of the languages
(other than functional languages) are a priori unsafe to be used in
parallel computations (i.e., multi-threaded operations) unless
their documentation explicitly states differently. More detailed
information about the functional programming, Scala language,
and some examples illustrating its basic syntax and comparison with
other open-source toolkits are provided in the freely accessible
literature [15].

In summary, chemf is an open-source toolkit written in Scala
language and is released under GNU GPL and is currently under
development [42].

2.10

Cheminformatics

in Python (ChemoPy)

ChemoPy is an open-source package for computing the commonly
used structural and physicochemical features. It depends on several
other packages that are Pybel, RDKit, Open Babel, andMOPAC, in
order to provide its complete functionalities. It calculates about
16 feature groups composed of 19 various features that in all
comprises of around 1,135 descriptors. Additionally, it
offers seven types of molecular fingerprint systems that include
topological fingerprints, electro-topological state fingerprints,
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MACCS keys, FP4 keys, atom-pair fingerprints, topological torsion
fingerprints, and Morgan/circular fingerprints. Some of these fea-
tures and fingerprints are derived using Open Babel and RDKit.
Using MOPAC, ChemoPy computes a large number of 3D molec-
ular descriptors. Interestingly, ChemoPy is reported as the first
open-source package computing a large number of molecular fea-
tures based on the MOPAC optimization.

The ChemoPy toolkit encloses several modules and functions
manipulating drugmolecules. For instance, to obtain the molecular
structures easily, ChemoPy provides a downloadable module to get
molecular structures from four databases (i.e., KEGG, PubChem,
DrugBank, and CAS). Further, ChemoPy can compute a large
number of 2D and 3D descriptors and offers two ways to calculate
these molecular descriptors. One way is to utilize the built-in
modules, which consist of 19 modules responding to the calcula-
tion of descriptors from 16 feature groups, and the second way is to
call the PyChem2d or PyChem3d class by importing the pychem
module [43], which encapsulates commonly used descriptor calcu-
lation methods. Here, PyChem2d and PyChem3d are responsible
for the calculation of 2D and 3D molecular descriptors,
respectively.

The developers of ChemoPy have recommended utilizing this
toolkit to analyze and represent the drugs or ligand molecules
under investigation and suggested that this package will be helpful
when exploring questions concerning drug activity, ADME/T, and
drug-target interactions [16].

ChemoPy is written solemnly in Python language. It is sup-
ported by Linux and Windows operating systems. New extensions
or functionalities can be implemented easily without cumbersome
or time-consuming modifications in the source code because of the
modular structure of ChemoPy [16].

2.11 ChemmineR ChemmineR is a cheminformatics package for analyzing drug-like
small molecule data in the popular statistical programming envi-
ronment R. The first version of this package was published in 2008
[17]. It comprised of functions for 2D structural similarity compar-
isons between compounds, similarity searching against compound
databases, functions for clustering entire compound libraries, and
visualizing the clustering results.

The recent version of ChemmineR released in 2013 has addi-
tional utilities and add-on packages, including functions for effi-
cient processing of large numbers of small molecules,
physicochemical/structural property predictions, structural simi-
larity searching, classification, and clustering of compound libraries
with a wide spectrum of algorithms, including mismatch tolerant
MCS search algorithm [44] used for pairwise compound compar-
isons. Accelerated compound similarity searching is now
enabled with eiR add-on package [45]. The current version
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of ChemmineR also integrates a subset of cheminformatics
functionalities implemented in the Open Babel C++ library. These
utilities can be enabled by installing the ChemmineOB package and
the Open Babel software. ChemmineR can automatically detect
ChemmineOB and make use of its additional utilities. Streaming
functionality allows processing of millions of molecules using
sdfStream function. The recent addition also includes fast and
memory-efficient fingerprint search, which supports the use of
atom pair or PubChem fingerprints, and improved SMILES sup-
port via new SMIset object class and SMILES import/export
functions.

ChemmineR is freely available from the Bioconductor official
website (http://www.bioconductor.org/packages/release/bioc/
html/ChemmineR.html). It is distributed under Artistic 2.0
license and is available for both Windows and Mac OS X operating
systems [17].

2.12 Compound-

Protein Interaction

with R (Rcpi)

Rcpi toolkit provides a freely available R/Bioconductor package
focusing on integrating bioinformatics and cheminformatics into
a molecular informatics platform for drug discovery. It aims
at providing a complete toolkit for complex molecular representa-
tion from small molecules and proteins and more complex
interactions, including protein-protein and compound-protein
interactions [18].

The functionalities provided by Rcpi toolkit can be divided into
four groups as follows:

(a) For small molecules:

l It calculates more than 300 molecular descriptors, includ-
ing constitutional, topological, geometrical, electronic,
hybrid, and molecular property descriptors.

l It calculates ten types of molecular fingerprints, including
standard and extended Daylight fingerprints, graph finger-
prints based on simple connectivity, hybridization finger-
prints only based on hybridization state, FP4 keys, E-state
fingerprints, MACCS keys, PubChem fingerprints, KR fin-
gerprints defined by Klekota and Roth, short path finger-
prints, etc.

l It can compute parallelized pairwise similarity derived by
fingerprints and five types of similarity measures within a list
of small molecules.

l It also perform parallelized chemical similarity search with
selected similarity metrics andMCS search between a query
molecule and a molecular database.
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(b) For protein sequences:

l It computes a large number of commonly used structural
and physicochemical descriptors, such as amino acid com-
position descriptors; autocorrelation descriptors; composi-
tion, transition, and distribution descriptors; conjoint triad
descriptors; quasi-sequence-order descriptors; and pseudo
amino acid composition descriptors; etc.

l It calculates six types of generalized scale-based descriptors
for proteochemometric (PCM) modeling, such as
generalized scale-based descriptors derived by principal
component analysis, amino acid properties, molecular
descriptors, factor analysis, and multidimensional scaling,
and generalized BLOSUM/PAM matrix-derived
descriptors.

l It computes profile-based protein features based on
position-specific scoring matrix (PSSM).

l It also performs parallelized similarity derived by protein
sequence alignment and Gene Ontology (GO) semantic
similarity measures between a list of protein sequences/
GO terms/Entrez Gene IDs.

(c) For interaction data:

By combining various types of descriptors for drugs and pro-
teins, interaction descriptors representing protein-protein or
compound-protein interactions could be conveniently gener-
ated with Rcpi, including:
l Two types of compound-protein interaction descriptors

l Three types of protein-protein interaction descriptors

(d) Several useful secondary utilities are also included in Rcpi that
are as follows:
l Parallelized molecule and protein sequence retrieval from

several online databases, such as PubChem, ChEMBL,
KEGG, DrugBank, UniProt, RCSB PDB, etc.

l Molecular reading/writing in SMILES/SDF formats for
small molecules and FASTA/PDB formats for proteins

l Molecular format conversion between around 140 types of
molecular file formats defined by Open Babel

It is recommended to use Rcpi to analyze and represent various
complex molecular data under study as well as to explore various
queries concerning structure, functions, and interactions of such
molecules in system biology perspective. Rcpi is freely available
from the Bioconductor official website (http://bioconductor.
org/packages/release/bioc/html/Rcpi.html) and is released
under Artistic 2.0 license. It is available for Windows and Mac OS

Recent Advances in the Open Access Cheminformatics . . . 271

http://bioconductor.org/packages/release/bioc/html/Rcpi.html
http://bioconductor.org/packages/release/bioc/html/Rcpi.html


X operating systems. Users can conveniently apply various statistical
machine learning methods in R to solve various problems in drug
discovery and computational biology [18].

2.13 Chemkit Chemkit is an open-source library developed by Kyle Lutz [19],
which supports molecular modeling, cheminformatics, and visuali-
zation functionalities. The key features provided by Chemkit
include I/O chemical file formats (pdb, cml, cjson, cube, fhz, fps,
inchi, mol, mol2, sdf, smi, etc.), access to the Web resources (e.g.,
Protein Data Bank, PubChem), calculation of various molecular
descriptors, automatic atom typing and topology building, and
visualization based on OpenGL.

The Chemkit library is written in C++ language, and it uses Qt
framework for graphics. It is released under the BSD license. It is a
cross platform library and is supported by Windows, Mac, and
Linux operating systems.

Other toolkits that are not recently updated and/or not actively
maintained but are worth mentioning include Chemfp 1.1 (http://
chemfp.com/; Python Library), Chemical Descriptor Library
(http://cdelib.sourceforge.net/doc/index.html; a C++ library),
PerlMol–Perl Modules for Molecular Chemistry (http://www.per
lmol.org/; collection of Perl scripts), MayaChemTools (http://
www.mayachemtools.org/; collection of Perl scripts), JOELib/
JOELib2 (http://sourceforge.net/projects/joelib/; Java library),
andmx-Java (https://code.google.com/p/mx-Java/; Java Library).

3 Cheminformatics Software

Software is a set of machine-readable instructions that directs a
computer’s processor to perform specific functions. It is usually
written in high-level programming languages that are easier and
more efficient for humans to understand and employ than the
machine language. Cheminformatics software provides various
ready-to-use cheminformatics functionalities like virtual screening,
chemical structural editor, QSAR model development, molecular
dynamics packages, etc. that are most often user-friendly tools
comprising of graphical user interface (GUI).

Software can be commercial, open access, or open source. They
can be developed with or without the use of external libraries/
toolkits. Existing libraries/toolkits may help reduce the software
development time because source codes for various algorithms are
already well defined in terms of efficiency and are ready to use.
However, in many cases, the developers prefer not to use external
toolkits to avoid the usage of inefficient or time-consuming algo-
rithms, but to develop their own more efficient algorithms.

In this section, we have divided the cheminformatics
software tools into two parts: stand-alone software and online tools.
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The stand-alone software is a tool/application that can work offline
anddoes not require another software package to run. Theonline tool
means a Web-based platform-independent software tool that runs
online, making the facilities available to users over the Internet.
Here, both open-access and open-source software are discussed,
including computer as well asmobile applications. The brief summary
of cheminformatics software and their home page, supporting
operating system, and programming languages are listed in Table 2.

3.1 Stand-Alone

Software Tools

3.1.1 Molpher

Molpher [46] is an open-source software framework for the system-
atic exploration of the chemical space.When a source/target molec-
ular pair is given as an input entry, Molpher identifies the structural
neighborhood through a process known as molecular morphing.
The molecular morphing process produces a path in the chemical
space by an iterative application of morphing operators, which
represent a structural change such as the addition or removal of an
atom or a bond. This path consisting of molecules called as morphs
and its surroundings constitutes a virtual chemical library focused
on a mechanistic class of compounds given by the characteristics of
the source/target pair. Although Molpher is written in C++ lan-
guage, it uses Boost C++ libraries [47] for standard tasks and
employs open-source cheminformatics RDKit [3] for chemical
functionalities. It could be easily incorporated into any computa-
tional drug design pipeline and thus is highly useful for either
discovery of novel drugs or as new tool for chemical biology [46].

3.1.2 PharmDock PharmDock [48] is a pharmacophore-based docking program that
combines pose sampling and ranking, which are based on opti-
mized protein-based pharmacophore models, with local optimiza-
tion using an empirical scoring function. The testing of
PharmDock for ligand pose prediction, binding affinity estimation,
compound ranking, and virtual screening yielded comparable or
better performance as compared to other existing and widely used
docking programs [49, 50]. This docking program comes with an
easy-to-use GUI within PyMOL [48].

3.1.3 VHELIBS VHELIBS (validation helper for ligands and binding sites) is a
software tool for assessing the quality of ligands and binding sites
in the crystallographic models from the PDB/PDB_REDO for the
non-crystallographers (i.e., users with little or no crystallography
knowledge). It allows the users to check how the ligand and bind-
ing site coordinates fit to the electron density map (ED) and to
validate the protein structures prior their use for the drug discovery
purposes [51].

3.1.4 MOLE 2.0 MOLE 2.0 [52] is an advanced software tool for analyzing the
molecular channel and pores of the biomolecular surface. MOLE
2 also estimates the physicochemical properties of the identified
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channels, i.e., hydropathy, hydrophobicity, polarity, charge, and
mutability; this feature was absent in the previously developed
related software tools, such as MOL 1.x [53], MolAxis [54, 55],
and CAVER 3.0 [56]. The estimated physicochemical properties of
the identified channels in the selected biomacromolecules corre-
sponded well with the known functions of the respective channels.
Thus, the predicted physicochemical properties by MOLE 2.0
provide useful information about the potential functions of identi-
fied channels [52].

3.1.5 FragVLib FragVLib is a free database mining software for performing similar-
ity search across database(s) of ligand-receptor complexes for iden-
tifying binding pockets which are similar to that of a target
receptor. The methodology employed relies on the graph represen-
tation of interfacial atoms for the ligand-receptor complex. The
interfacial atoms are defined as nodes, and the distances between
them are represented by edges connecting these nodes. The search
is based on 3D geometric and chemical similarity of the atoms
forming the binding pocket. For each match identified, the ligand
fragments corresponding to that binding pocket are extracted, and
thus the formed virtual library of fragments (FragVLib) is useful to
the structure-based drug design [57].

3.1.6 TB Mobile TB Mobile is a mobile application (app) that provides the useful
functionality for viewing and manipulating data about the antitu-
bercular compounds with activity againstMycobacterium tuberculo-
sis (Mtb), their targets, pathways, and other related information
available in the Collaborative Drug Discovery (CDD) database.
The app enables the similarity searching to identify the potential
targets and to retrieve the active compounds. The molecules can be
copied to the clipboard, opened with other apps, and bookmarked
and exported. TB Mobile may assist the researchers as part of their
workflow in identifying the potential targets for hits generated from
phenotypic screenings and in hit prioritizations. The TB Mobile
app is freely available from the Apple iTunes App Store and Google
Play [58].

3.1.7 JSME JSME is the free molecular editor (JSME) written in the JavaScript.
The actual molecule editing Java code of the JME editor was
translated into a JavaScript with the help of the GoogleWeb Toolkit
compiler and a custom library that emulates a subset of the GUI
features of the Java runtime environment (JRE). In this process, the
editor performance was enhanced by the additional functionalities
of a substituent menu; copy/paste, drag and drop, and undo/redo
capabilities; and an integrated help as compared to the previously
available JME applet. The editor supports a molecule editing on the
touch devices, such as iPhone, iPad, Android phones, and tablets in
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addition to the desktop computers. This new editor is easy to use
and easy to be incorporated into the Web pages [59].

3.1.8 CheS-Mapper CheS-Mapper (Chemical Space Mapper) is a 3D molecular viewer
software tool to visualize and explore the chemical datasets. It
divides a large dataset into clusters of similar compounds and con-
sequently arranges them in the 3D space, such that their spatial
proximity reflects their similarity. The tool detects the subgroups
(clusters) within the data and can be employed to analyze the data to
find the possible structure-activity relationship (SAR) information.
This tool also calculates different kind of features, such as structural
fragments as well as quantitative chemical descriptors [60].

3.1.9

ScreeningAssistant2 (SA2)

ScreeningAssistant2 (SA2) is an open-source Java software dedi-
cated to the storage and analysis of small to very large chemical
libraries. SA2 stores the unique molecules in a MySQL database
and encapsulates several cheminformatics methods such as provi-
der’s management, interactive visualization, scaffold analysis,
diverse subset creation, descriptors calculation, substructure/
SMART search, similarity search, and filtering. It facilitates the
management of chemical libraries through an intuitive and interac-
tive graphical interface and provides a set of advanced methods to
analyze and exploit their content. Thus, it is useful for removing a
variety of classes of compounds that are likely to be characterized as
false positives in biochemical screening [61].

3.1.10 LipidMapsTool LipidMapsTool is a software package for the template-based com-
binatorial enumeration of virtual compound libraries for lipids.
A set of command-line scripts is used to enumerate all possible
structures corresponding to the specified lipid abbreviations with-
out any additional input requirements from the user. The virtual
libraries are enumerated for the specified lipid abbreviations by
using matching lists of predefined templates and chain abbrevia-
tions, instead of core scaffolds and lists of R-groups provided by the
user. This tool is capable of generating large virtual compound
libraries for lipids with minimal input from the user [62].

3.1.11 DecoyFinder DecoyFinder [63] is a Python-based GUI application for the build-
ing of target-specific decoy sets. It selects a set of decoys for a target
from a compound database based on a given collection of active
ligands. The algorithm for decoy selection implemented in Decoy-
Finder is similar to that used to construct the DUD database [64,
65] and other benchmarks [66]. TheMACCS fingerprints [67] and
five physical descriptors are calculated for each active and potential
decoy molecule using the Open Babel toolbox [2]. The Decoys are
selected if they are similar to the active ligands according to five
physical descriptors (molecular weight, number of rotational
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bonds, total hydrogen bond donors, total hydrogen bond accep-
tors, and the octanol-water partition coefficient) without being
chemically similar to any of the active ligands used as an input
(according to the Tanimoto coefficient between MACCS finger-
prints). This is the first application designed to build the target-
specific decoy sets [63].

3.1.12 Open Molecule

Generator (OMG)

OMG is the first open-source structure generator, which produces
all the non-isomorphic chemical structures that match with a given
elemental composition. Also, this structure generator accepts addi-
tional input as one or multiple nonoverlapping prescribed substruc-
tures to drastically reduce the number of possible chemical
structures. OMG relies on a modified version of the Canonical
Augmentation Path approach, which grows intermediate chemical
structures by adding bonds and checks that at each step only unique
molecules are produced. When OMG was compared with the com-
mercially available structure generator such as MOLGEN [68], the
results obtained, i.e., the number of molecules generated, were
identical for elemental compositions having only C, O, and H.
The major advantage of OMG is that it is an open-source software;
thus, the user can understand the functioning of software and also
can customize the software according to his/her requirements.
This structure generator would be useful to many fields, especially
to the metabolomics area, where identifying the unknown metabo-
lites is still a major bottleneck [69].

3.1.13 mol2chemfig This tool is written in the Python language to convert a large
number of structures in molfile or SMILES format into the
LATEX source code. Its output is written in the syntax defined by
the chemfig TEX package, which allows for flexible and concise
description of chemical structures and reaction mechanisms. The
program is freely available through a Web interface. It also can be
locally installed on the user’s computer, and the source code is
accessible from the home page [70].

3.1.14 LICSS LICSS is the lightweight Excel-based chemical spreadsheet (open-
source software) which stores structures as SMILES strings. Chem-
ical operations are carried out by calling Java code modules, which
uses the CDK, JChemPaint, and OPSIN libraries to provide the
cheminformatics functionality. The compounds in the sheets may
be visualized (individually or combined), and the sheets may be
searched by substructure or similarity. The descriptors available in
CDK may also be calculated for all the compounds, and various
cheminformatics operations such as fingerprint calculation, Sam-
mon mapping, clustering, and R-group table creation may be car-
ried out. It can be used suitably on a sheet containing thousands of
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compounds without compromising the normal performance of
Microsoft Excel [71].

3.1.15 Avogadro The Avogadro library is an advanced semantic chemical editor,
visualization, and analysis platform. This framework provides a
code library and application programming interface (API) with
the three-dimensional visualization capabilities and has direct appli-
cations for research and education in the fields of chemistry, phys-
ics, materials science, and biology. Moreover, this application also
provides a rich graphical interface using dynamically loaded plug-in
through the library itself. The application and library can be
extended by implementing a plug-in module in C++ or Python to
explore different visualization techniques, build/manipulate
molecular structures, and interact with the other programs [8].

3.1.16 MyChemise My Chemical Structure Editor (MyChemise) is a new 2D structure
editor designed as a Java applet, which enables the direct creation of
structures in the Internet using a Web browser. It has a morphing
module, which allows the creation of different types of presentation
for dynamic visualization, for example, clear and simple illustration
of molecule vibrations and reaction sequences. Thus, this new
2D drawing program has a versatile way of creating structural
images [72].

3.1.17 Open3DALIGN Open3DALIGN is an open-source software tool which is capable of
carrying out conformational searches and multi-conformational,
unsupervised rigid-body alignment of 3D molecular structures. The
multiple alignment paradigms (i.e., atom-based, pharmacophore-
based and mixed) are implemented in the methodology. The mixed
and atom-based superposition algorithms give rise to the most con-
sistent andwell-ordered alignments, which are particularly suitable for
the 3D-QSAR techniques. The high computational performance, the
unsupervised nature of the alignment algorithms, and its scriptable
interface make Open3DALIGN an ideal component of automated
cheminformatics workflows. TheOpen3DALIGN tool is written inC
language and linked to high-performance BLAS and LAPACK
libraries with parallel algorithms implemented for high computational
performance using the multiprocessor architectures [73].

3.1.18 mpAD4 Norgan et al. [74] reported the multilevel parallelized AutoDock
4.2 (mpAD4) software which was built using system-level (MPI)
and node-level (OpenMP) parallelization to facilitate the applica-
tion of this docking software on MPI-enabled systems and multi-
thread the execution of individual docking jobs. The multi-
threading of AutoDock’s Lamarkian Genetic Algorithm with
OpenMP increases the speed of individual docking jobs; when
combined with MPI parallelization, it can significantly reduce the
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execution time of virtual screenings. This multilevel parallelized
AutoDock 4.2 software speeds up the execution of certain molecu-
lar docking workloads and allows the user to optimize the degree of
system-level (MPI) and node-level (OpenMP) parallelization to
best fit both the workloads and the computational resources.

3.1.19 DemQSAR DemQSAR is a stand-alone Java application tool that can be used to
predict the human volume of distribution (VDss) and human clear-
ance (CL). DemQSAR integrates the open-source CDK library to
compute various molecular descriptors and fingerprints, and thus
the QSAR models can be built without any additional software.
DemQSAR incorporates two state-of-the-art feature selection stra-
tegies: embedded Lasso and recursive feature elimination (RFE).
The appropriate quality measures are computed automatically
depending upon whether the analysis being performed is classifica-
tion based or regression based. In addition to the predicted VDss

and CL values, 2D images, SMILES codes, molecular formula, and
molecular weights are also computed for the uploaded compounds.
Due to its fully automated approach and good predictive power,
DemQSAR is an attractive tool for many QSAR/QSPR tasks [75].

3.1.20 Shape Shape software package is used for predicting 3D conformation of
carbohydrates up to a considerable size, which covers most of the
known biologically active oligosaccharide compounds. Because
detailed experimental three-dimensional structures of carbohy-
drates are often difficult to acquire, software, such as Shape, is an
alternative and attractive method for the prediction of oligosaccha-
ride conformations. The predictions of Shape agreed well with
experimental data as well as with other published conformation
prediction studies [76].

3.1.21 OrChem OrChem is an open-source extension of the Oracle 11G database
platform. It added the registration and indexing of chemical struc-
tures functions to support the fast substructure and similarity
searching. Its cheminformatics functionality is provided by the
CDK toolkit. OrChem provides similarity searching with response
times in the order of seconds for databases with millions of com-
pounds, depending on a given similarity cutoff [77].

3.1.22 PaDEL-Descriptor PaDEL-Descriptor is a free and open-source software for calculat-
ing the molecular descriptors and fingerprints. This software calcu-
lates 797 descriptors (663 1D and 2D descriptors, 134 3D
descriptors) and ten types of fingerprints. It has both graphical
user interface and command-line interface that function on all
major platforms (Windows, Linux, MacOS). PaDEL-Descriptor
supports more than 90 different molecular file formats and is
multi-threaded [27].
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3.1.23 QSARINS

and QSARINS-Chem

QSARINS (QSAR-INSUBRIA) is a free software for the develop-
ment, analysis, validation, and application of QSAR MLR models
according to the OECD principles. The updated version of QSAR-
INS, i.e., QSARINS-Chem, comprises several datasets of environ-
mental pollutants and their corresponding endpoints (i.e.,
physicochemical properties and biological activities). Those chemi-
cals can be accessed by querying CAS number, SMILES string,
compound names, etc., and the developed models can be down-
loaded in the QSAR model reporting format (QMRF) [78].

3.1.24 VEGA

Non-Interactive

Client (VEGANIC)

VEGA [79] (Virtual models for property Evaluation of chemicals
within a Global Architecture) is an open-source platform that
provides the valid QSAR models to be used especially under the
European legislation for chemical substances (REACH).
VEGANIC is a software under VEGA platform in which one can
execute all the VEGAmodels on the local machine without sending
any information to the server. It is freely available for download
from the VEGA website [79], and the endpoints and properties
such as BCF (bioconcentration factor), mutagenicity, carcinogenic-
ity, developmental toxicity, skin sensitization, LC50 aquatic toxicity,
biodegradability, and LogP can be determined.

3.1.25 OECD

QSAR Toolbox

OECDQSAR toolbox [80] is a software application intended to be
used by governments, chemical industries, and other stakeholders
in filling the gaps in (eco)toxicity data needed for assessing the
hazards of chemicals. The key features of this toolbox include
identification of relevant structural characteristics and potential
mechanism or mode of action of a target chemical, identification
of other chemicals that have the same structural characteristics
and/or mechanism or mode of action, filling the data gap(s),
using existing experimental data, and systematically grouping of
chemicals into categories according to the presence or potency of
a particular effect for all members of the category.

3.1.26 ChemAxon

Software Tools

ChemAxon is a software company specializing in developing pro-
gramming interfaces and end-user applications for cheminformatics
and life science research. It provides some of the noncommercial
and academic free version tools such as MarvinSketch, MarvinView,
MarvinSpace, Marvin JS, JChem Base/JChemCartridge, MolCon-
verter, and JChem for Excel applications [81].

3.1.27 DTC Lab

Software Tools

The Drug Theoretics and Cheminformatics laboratory (DTC Lab.,
Jadavpur University, India) has developed several open-access che-
minformatics tools, mostly dealing with QSAR studies. All the
stand-alone tools are built using Java language and can be freely
downloaded from the official website [82]. These basic QSAR tools
such as MLR plus Validation (for performing MLR and computing
all validation parameters), dataset division GUI (dataset division
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into training and test sets using various algorithms), data pretreat-
ment GUI (to remove constant and intercorrelated descriptors prior
to model development), modified K-medoid (clustering method),
AD-MDI and Euclidean (to define applicability domain), genetic
algorithm, stepwise MLR and MLR best subset selection (variable
selection methods), etc., are very helpful when performing QSAR
studies; manuals and sample input files of these software tools are
also provided.

3.2 Online Tools

3.2.1 iDrug

iDrug is a versatile Web-based server for pharmacophore and
similarity-based virtual screening and target identification to facili-
tate computational drug discovery. It provides ready-to-access
compounds and pharmacophore target databases (such as ZINC,
NCI, PharmTargetDB) for virtual screening and target identifica-
tion. Different modules such as Cavity (detects and scores potential
binding sites of a protein), Pocket v.2 (derives pharmacophore
models based on a given receptor of complex structure), Pharm-
Mapper (pharmacophore mapping), SHAFTS (3D similarity calcu-
lation), Cyndi (molecular conformation generation), and Pybel
(Python wrapper for the Open Babel cheminformatics toolkit)
have been incorporated and can work together as a pipeline. Differ-
ent molecular design processing tasks can be submitted and visua-
lized simply in one browser without installing locally any stand-
alone modeling software. It provides a novel, fast, and reliable tool
for conducting drug design experiments [83].

3.2.2 OCHEM OCHEM is a Web-based platform that provides the tools for
automation of typical steps necessary to create a predictive
QSAR/QSPR model. The platform consists of two major subsys-
tems: a database of experimental measurements and a modeling
framework. The database contains almost 10,000 data points for
the density, bubble point, and azeotropic behavior of binary mix-
tures. The OCHEM has the features that allow the reading and
uploading of data for binary nonadditive mixtures, creating special
descriptors for mixtures, and validating models. It is a useful Web-
based tool for the modeling and prediction of mixtures of chemical
compounds [84].

3.2.3 Chembench Chembench [85] is a Web-based tool for analyzing the experimen-
tal chemical structure-activity data (QSAR modeling and predic-
tion). It provides a broad range of tools for data visualization and
embeds a rigorous workflow for creating and validating the predic-
tive QSAR models and using them for virtual screening of chemical
libraries to prioritize the compound selection for drug discovery
and/or chemical safety assessment. It supports model building with
kNN [86] and random forest [87] techniques. User may predict a
specific activity or a spectrum of activities for a virtual chemical
library or a single compound (available libraries include NCI
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diversity set (http://dtp.nci.nih.gov/branches/dscb/diversity_
explanation.html), DrugBank [88], ChEMBL (http://www.ebi.
ac.uk/chembldb/), and Wombat [89]); user may also upload his
own library [85].

3.2.4 Spectral Game Spectral Game is a Web-based game where players try to match
molecules to various forms of interactive spectra, including 1D/2D
NMR, mass spectra, and infrared spectra. Player earns one point for
every correct answer, and the play continues until player supplies
the incorrect answer. The game is usually played by using a Web
browser interface. The spectra are uploaded as Open Data to
ChemSpider in JCAMP-DX format and are used for the problem
sets together with structures extracted from the website. The spec-
tra are displayed using JSpecView, an open-source spectrum view-
ing applet, which affords zooming and integration. The application
of the game is also utilized for the teaching of proton NMR
spectroscopy [90].

3.2.5 ACD/I-Lab Tool ACD/I-Lab [91] is a Web-based prediction engine which provides
structure-based predictions of the following properties: free basic
physicochemical properties and IUPAC naming capabilities for
structures containing 50 atoms or less, advanced physicochemical
properties (absolve, boiling point/vapor pressure, adsorption coef-
ficient/BCF, LogP, logD, pKa, solubility, etc.), ADME character-
istics (bioavailability, absorption, active transport, plasma binding,
Vd, Pgp inhibitors, and Pgp substrates), toxicity hazards (AMES
test, genotoxicity, aquatic toxicity, health effects, endocrine disrup-
tion, MRDD), NMR spectra and chemical shifts for 13C, and
systematic chemical nomenclature and structure generation
(IUPAC, index names). Several of these predictions are free, while
others require licenses.

4 Workflows

Workflow systems in various fields including cheminformatics allow
users/scientists to define, manage, and execute time-consuming
processes in succession and/or to perform recurring task effec-
tively. A workflow process is logically carried out using a GUI (see
Fig. 1) where various types of nodes or software components are
available for connection through edges or pipes that define the
workflow process. Here, nodes are defined by three parameters,
i.e., (1) input metadata, (2) algorithms or user-defined parameters
or rules, and (3) output metadata. Further, nodes can be connected
together only if the output of the previous node represents the
mandatory input requirements of the subsequent node. Edges or
pipes are the visual representation that provides information about
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the direction of execution process and are also used for dividing the
workflow process [92].

Workflows are increasingly employed and are very useful in
cheminformatics since numerous recurring tasks can be automated,
which in many cases significantly reduces the manual attention for
time-consuming multiple step processes, such as virtual screening
via various filters, docking of huge libraries, QSAR studies, etc.
There are several commercially well-established workflow systems
that are developed for the cheminformatics field such as Pipeline
Pilot [93] from Accelrys (now BIOVIA Pipeline Pilot) and the
InforSense Knowledge Discovery Environment (KDE) from Infor-
Sense [94]. Initially, Pipeline Pilot was mainly employed in the
cheminformatics field but later extended its functionality to other
scientific fields such as next-generation sequencing and imaging. In
2009, the InforSense organization was acquired by IDBS and the
KDE has further made progress in the translational medicine field
since then [95].

4.1 Open-Source

Workflows

In the open-source community, Konstanz Information Miner
(KNIME) and Taverna have made a significant impact and offer a
wide applicable domain. Cancer Grid (CaGrid) [96] is another
open-source workflow system which is an extension of Taverna.
myExperiment [97] is a collaborative environment where scientists

Fig. 1 Basic components of a workflow system (a snapshot of KNIME workflow was taken for demonstration)
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can safely publish their workflows and is the largest freely accessible
public repository of scientific workflows. Many examples of
KNIME and Taverna workflows that are highly useful for various
cheminformatics tasks can be found in the repository.

In this section, we will discuss in detail the recent developments
in the above mentioned open-source workflows, especially the new
functionalities/plug-in added in these workflow systems.

4.1.1 Taverna Taverna workflow management system was created by myGrid
team (http://www.mygrid.org.uk/) and is currently funded
through FP7 projects BioVeL (http://www.biovel.eu/), SCAPE
(http://www.scape-project.eu/), and Wf4Ever (http://www.
wf4ever-project.org/). It is licensed under the Lesser General Pub-
lic License (LGPL) Version 2.1. Taverna was initially used in bioin-
formatics but is now employed in other fields too, including
cheminformatics. Recently, the CDK toolkit was combined to
Taverna workflow system [98] to improve the handling of various
cheminformatics functionalities.

CDK-Taverna: The integration of CDK with Taverna was
started in 2005 to extend the functionalities of Taverna in the
cheminformatics domain. Both the CDK and Taverna, as well as
combined technology, are open source.

The CDK-Taverna 1.0 plug-in provides 164 different
workers (note that in case of Taverna, nodes are called workers).
These include workers for I/O of various chemical files and line
notation formats, databases I/O, and clustering methods and for
computing descriptors for atoms, bonds, and molecules. The mis-
cellaneous workers comprise of a substructure filter, a reaction
enumerator, an aromaticity detector, etc. The complete list of work-
ers with short description is provided at http://cdk.sourceforge.
net/cdk-taverna/workers.html. The architecture of Taverna does
not allow the “loop” function to control huge data entries to process
them one by one. Combining Taverna with CDK allowed workers
to act like loops and permit workflows to process large datasets using
Taverna’s iteration-and-retry mechanism. To allow storage and fast
retrieval of up to a million molecules without running into memory
limitations, the CDK-Taverna 1.0 supports database system using
the PostgreSQL relational database management system (RDBMS)
with the open-source Pgchem::tigress extension [98].

The version 2.0 of CDK-Taverna was further developed to
extend its usability and strength; CDK-Taverna 2.0 not only made
improvements in all workers but also major improvements to the
whole platform through a complete setup on the basis of Taverna
2.2 and CDK 1.3.5. This improved version now provides 192
different workers and supports 64-bit computing and multi-core
usages by paralleled threads allowing fast in-memory processing and
analysis of huge number of molecules, which benefits workers asso-
ciated with molecular descriptor calculation or machine learning.
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The data analysis abilities are also extended with newly added work-
ers that offer access to the open-source WEKA library for clustering
and machine learning in addition to dataset division into training
and test sets. CDK-Taverna 1.0 offered basic functions for combi-
natorial chemistry-related reaction enumeration; it supported the
use of only two reactants, a single product and one generic group
per reactant. As a comparison, the advanced reaction enumeration
options employed by CDK-Taverna 2.0 incorporated significant
improvements including multi-match detection, no limitation for
number of reactants, products or generic groups, and variable R-
groups, ring sizes, and atom definitions. This version also provided
two groups of workers to compute natural product (NP)-likeness
core for small molecules.

The CDK-Taverna 2.0 plug-in is built in Java (platform inde-
pendent) and supported by Windows, Linux, and Mac OS/X (32-
and 64-bit). It is released under the GNU LGPL. For its installa-
tion, it takes advantage of the plug-in detection manager of
Taverna. The plug-in is available at http://www.cdk-taverna.de/
plug-in/ and the user can select the desired version. The CDK-
Taverna plug-in uses Maven 2 as a build system. It also uses other
open-source components such as Bioclipse for visualization of
workflow results and Pgchem::tigress as an interface to the database
back end for storage of large datasets. A Wiki page is available for
this version, which provides general information about the project,
documentation, and installation procedure [99, 100].

CaGrid: Cancer Grid (CaGrid) is a workflow system, which
prefers to employ and extend Taverna due to a number of benefits
including integration with the Web services technology, plug-in
architecture which provides an easy integration of third party exten-
sions, and a wide scientific community base. CaGrid is the underly-
ing infrastructure of Cancer Biomedical Informatics Grid (caBIG)
and is built on the Globus Toolkit Grid middleware. CaGrid con-
sists of Web services as virtualized access points of data and analyti-
cal resources related to cancer detection, diagnosis, treatment, and
prevention [96].

Biological Data Interactive Clustering Explorer (BioDICE)
Taverna Plug-In: BioDICE is a recent Taverna plug-in [101] that
offers clustering analysis capacity and provides visualization of mul-
tidimensional biological datasets. The Self-organizing map (SOM)
is a well-known unsupervised method for data visualization and
clustering. The core algorithm in BioDICE is a fast learning SOM
(FLSOM), an improved version of the SOM algorithm that belongs
to the category of the emergent self-organizing maps (ESOM).
BioDICE is the first Taverna component performing SOM cluster-
ing with U-Matrix visualization. Other Taverna plug-ins, i.e., CDK
or RapidMiner, were lacking these functionalities; hence BioDICE
filled such a gap. The BioDICE plug-in and its documentation,
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tutorial, workflow, and dataset examples are available at http://
biolab.pa.icar.cnr.it/biodice.html.

4.1.2 KNIME KNIME was developed by a team of software engineers led by
Michael Berthold at the University of Konstanz, Germany. It is
licensed under GNU GPL. Initially, KNIME entered the market
as a data mining tool but rapidly gained popularity in the chemin-
formatics community. Further combination of KNIME with CDK
[102] extended a large amount of cheminformatics functionalities.

KNIME-CDK: The KNIME workflow platform supports a
wide range of functionality and has a large number of active users
in the cheminformatics community. Thus, CDK is combined with
KNIME to wrap the CDK’s core functionality and released to the
users. This KNIME-CDK plug-in, similar to the CDK-Taverna
plug-in, is open source and community driven.

KNIME-CDK [102] consists of various functions which include
molecule conversion to/from commonly used formats, generation
of signatures, fingerprints, and molecular properties. The plug-in
recognizes molecules in CML, SDFile, MDL Mol, InChI, and
SMILES formats via the Molecule to CDK node and can write
SDFiles via the CDK to Molecule node. All other operations are
performed on the internal CDK molecule representation that
includes generation of coordinates, hydrogenmanipulator, structure
sketcher, atom signatures, common fingerprints (e.g., MACCS and
Pubchem), 2D and 3D descriptor values (e.g., XLogP and Lipinski’s
rule of five), chemical name lookup via OPSIN, and substructure
search. It can also be utilized in the management and analysis of
chemical libraries through descriptors, conformer analysis via
RMSD, and NMR spectra prediction. The KNIME preference
page contains a CDK tab to set global visualization preferences,
and a renderer is provided to draw the molecules using the JChem-
Paint library. The different routes employed in the workflow can be
run in parallel and the nodes are always run multi-threaded.

KNIME-CDK plug-in has been developed in Java (platform
independent) and installed via the KNIME update mechanism. It is
build under GNU LGPL license.

5 Databases

A database is a collection of systematically organized or structured
repository of indexed information that allows easy retrieval, updat-
ing, analysis, and output of data. Freely accessible cheminformatics
databases include the databases of chemical structures, proteins,
QSAR models, drugs, biological targets, bioactive molecules, etc.
The widely used cheminformatics databases, their official links, and a
brief description about each database are illustrated in Table 3. Each
of these tabulated databases has its own application in specific areas.
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TheQsarDB [103] could be used to solve everyday QSAR and
predictive modeling problems, including applications in the field of
predictive toxicology. The utility and benefit of QsarDB can also be
applied to a wide variety of other endpoints.

VAMMPIRE [104], a matched molecular pair database, pro-
vides valuable information for structure-based lead optimization
and for fundamental studies such as understanding protein-ligand
interactions.

PubChem3D [105], an addition to the existing contents of
PubChem, provides a new dimension to its ability to search, subset,
export, visualize, and analyze chemical structures and associated
biological data.

MMsINC [106] is a database of nonredundant, richly anno-
tated, and biomedically relevant chemical structures. It has been
created to support chemo-centric approach to relate protein phar-
macology by ligand chemistry.

CREDO [107] is a novel and comprehensive publicly available
database of protein-ligand interactions, which uses contacts as
structural interaction fingerprints, implements novel features, and
is completely scriptable through its application programming
interface.

ChemBank [108] consists of freely available data derived from
small molecules and small molecule screens, which can be used to
guide chemists in synthesizing novel compounds or libraries and
aid biologists in identifying small molecules that block the specific
biological pathways of the target protein.

TheDrugBank database [88] contains the information of both
the drug (i.e., chemical, pharmacological, and pharmaceutical com-
pound) and drug targets (i.e., sequence, structure, and pathway).
The different categories of drugs include FDA-approved small
molecule drugs, FDA-approved biotech (protein/peptide) drugs,
nutraceuticals, and experimental drugs.

ChemDB [109] and ChemMine [110] are public databases of
small molecules and for chemical genomics, respectively. The
ChemMine database, a compound mining database, facilitates
drug and agrochemical discovery and chemical genomics screening.

The NCI DIS 3D database [111] is a collection of 3D struc-
tures of drugs. It was built and maintained by the Developmental
Therapeutics Program, Division of Cancer Treatment and Diagno-
sis, National Cancer Institute, Rockville, USA. This 3D database is
being used for identifying 3D pharmacophoric features in order to
discover novel active anticancer molecules.

ChemSpider [112] is a free online chemical structure database
owned by Royal Society of Chemistry. It provides fast access to over
32 million structures, properties, and associated information. By
combining and integrating compounds from varied data sources,
ChemSpider facilitates the discovery of chemical data from a single
online search. It offers both text and structure search for the query
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compound and provides a unique service to improve this informa-
tion by curation and annotation.

In summary, the information associated with all these databases
is a valuable resource of small molecules/drugs/proteins for
medicinal chemists, biologists, cheminformaticians, and bioinfor-
maticians for their exploitation in their respective researches.

6 Conclusion

This chapter highlights freely available cheminformatics resources
including toolkits, software, workflow, and databases. The readers
will get acquainted to the functionalities as well as the recent
advances of these open-source toolkits, workflow systems, ready-
to-use software, and freely accessible databases. The information
provided would assist the cheminformaticians, including program-
mers/developers, to explore and utilize these freely available
resources to resolve different computational challenges in the che-
minformatics field and further contribute in new advancement for
the next-generation cheminformatics resources.
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