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    Chapter 1   

 Optogenetics: Basic Concepts and Their Development                     

     Yong     Ku     Cho      and     Dan     Li     

  Abstract 

   The discovery of light-gated ion channels and their application to controlling neural activities have had a 
transformative impact on the fi eld of neuroscience. In recent years, the concept of using light-activated 
proteins to control biological processes has greatly diversifi ed into other fi elds, driven by the natural diversity 
of photoreceptors and decades of knowledge obtained from their biophysical characterization. In this 
chapter, we will briefl y discuss the origin and development of optogenetics and highlight the basic con-
cepts that make it such a powerful technology. We will review how these enabling concepts have developed 
over the past decade, and discuss future perspectives.  
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1       Introduction 

 The word ‘optogenetics’ was initially used within the context of 
neuroscience [ 1 ], to describe the approach of using light to image 
and control neuronal activity in the intact, living brain. The idea 
of controlling biological function using light has been around for 
a long time, but it is in the fi eld of neuroscience that its need as a 
truly enabling tool has been envisioned early on [ 2 ,  3 ], and 
remarkably to the realization of such potential [ 4 – 6 ] with wide 
acceptance over the past decade. The success of optogenetics in 
neuroscience has sparked interest of many scientists and engineers 
in other fi elds, and now the defi nition of optogenetics has broad-
ened to encompass the general fi eld of biotechnology that com-
bines genetic engineering and optics to enable gain or loss of 
well-defi ned function, often in the intact animal [ 7 ,  8 ]. In this 
chapter, we will briefl y go over the historical background of the 
origin of optogenetics and highlight the basic concepts of optoge-
netics that make it such a powerful technology. We will review 
how these enabling concepts have developed over the past decade, 
and discuss future perspectives.  
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2     Original Concepts: A Brief Historical Perspective 

 The seed for the birth of optogenetics in neuroscience may have 
been planted a long time ago by the pioneering work of Ramón y 
Cajal, who provided foundational evidence that neurons are the 
signaling units of the nervous system, and that they exist in many 
distinctive morphologies [ 9 ]. Since then, studies followed to show 
that indeed many different types of neurons exist, classifi ed based 
on their physiological characteristics, anatomical location, mor-
phology, and gene expression profi le [ 10 – 12 ]. It is still unclear 
how many  cell types   exist in the human brain, but it is speculated 
that there are about 1000 neuronal cell types just within the mam-
malian cortex [ 13 ,  14 ]. In a general sense, it is agreed that a spe-
cifi c cell type carries out the same function within a neural circuit 
[ 15 ]. Therefore, identifi cation of all cell types and mapping out 
their connectivity is essential in order to understand how the ner-
vous system works. Identifi cation of different cell types must be 
accompanied with functional characterization within their normal 
context, the nervous system. For this reason, neuroscientists have 
been looking for a way to perturb individual cell types within the 
intact brain. This was clearly expressed by Francis Crick in his 
insightful discussion published in 1979, in which he proposed the 
need for a ‘method by which all neurons of just one type could be 
inactivated, leaving the others more or less unaltered’ [ 2 ]. 

 Optogenetics is arguably the fi rst technological breakthrough 
that enables such experiments. It makes the crucial connection 
between cell-type information and the ability to perform gain or 
loss of function experiments. Prior to the development of optoge-
netics, experimental approaches existed in neuroscience to use 
light as a way to control neural activity. For example, ‘caged’ com-
pounds such as secondary messenger molecules, ions, and neu-
rotransmitters have been developed that are initially inert, but 
become active upon light  illumination   [ 16 ,  17 ]. Even though these 
photochemical approaches did not provide ways to control specifi c 
 cell types  , they laid the groundwork for the use of millisecond tim-
escale illumination in intact cells and tissue [ 17 ]. Cell-type specifi c 
activation of neurons was fi rst achieved in a series of pioneering 
work by the Miesenböck group, by heterologously expressing an 
invertebrate rhodopsin with other interacting proteins [ 18 ], and 
ligand-gated ion channels that can be activated by synthetic photo- 
caged precursors [ 19 ,  20 ]. Around this time, microbial rhodopsins 
that function as single component light-gated ion channels were 
discovered [ 21 – 23 ]. Remarkably, these microbial photoreceptors 
could be heterologously expressed  in   mammalian neurons to opti-
cally trigger action potentials with millisecond timescale precision 
[ 4 ]. These fi ndings, along with the fact that these rhodopsins 
 contain a covalently bound all- trans   retinal chromophore   naturally 
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produced in nearly all cell types including mammalian cells and 
tissues [ 24 ,  25 ], catalyzed the wide adoption of these molecules 
in neuroscience.  

3     Genetic Targeting: Cell- Type   Specifi city and Beyond 

 As discussed above, cell-type specifi city is a defi ning feature of 
optogenetic experiments. In some ways, gain or loss of function 
experiments on distinct cell types are analogous to genetic knockin 
or knockout experiments in molecular biology. However, while the 
defi nition of gene is clear, the defi nition of cell type can be ambigu-
ous and variable. This is particularly true in highly complex systems 
such as the mammalian  neocortex   [ 15 ,  26 ]. To account for such 
high complexity, many parameters have been used to describe each 
cell type, such as developmental lineage, anatomical location, den-
dritic and axonal morphology,  electrophysiology  , and gene expres-
sion. Nonetheless, recent advances in single cell analysis methods 
have provided evidence that gene expression patterns can capture 
many of these diverse cellular phenotypes [ 10 ,  27 ]. Therefore, 
the use of genetically encoded tools is well justifi ed for probing the 
function of each cell type, and is likely to expand as we gather more 
gene expression data. 

 In principle, optogenetic tools can be driven by cell-type spe-
cifi c promoters or enhancers [ 28 ,  29 ] to achieve cell-type specifi c 
expression. However, this approach is not suitable in many cases 
for several reasons. First, it is rare to fi nd a single genetic regula-
tory element exclusive for a given cell type. Cell identity in most 
cases seems to  be   defi ned by a combination of multiple gene 
expression patterns [ 8 ,  10 ,  15 ,  30 ]. Even when cell-type specifi c 
genetic regulatory elements are accessible, they may not drive 
high enough expression of optogenetic tools for effi cient control 
[ 31 ]. Moreover, reproducing endogenous expression pattern of 
genes requires the entire transcription unit and all associated regu-
latory factors [ 11 ], which are undefi ned in many cases, and can be 
hard to transport. A widely used strategy to achieve cell-type spe-
cifi c expression that circumvents these problems is using  viral vec-
tors   in transgenic animals expressing recombinase in genetically 
defi ned population of cells. In these approaches, viral vectors such 
as  lentivirus   or  adeno- associated virus (AAV)   carry an optogenetic 
tool under relatively strong promoters such as  EF-1α promoter   
(Fig.  1a ). The optogenetic tool encoding gene is initially present 
in reverse frame to prevent expression, and requires recombinase 
activity for inversion and subsequent expression (Fig.  1a ). The 
recombinase gene expression is driven in genetically defi ned cell 
types, for which the expression level is relatively unimportant. 
Cre-recombinase has been widely used for this purpose, due to the 
availability of increasing number of cell-type specifi c Cre-transgenic 
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lines [ 32 ]. Recently, this approach has been further developed to 
enable targeting of neural cell types defi ned by multiple genetic 
markers. Transgenic animals that express multiple recombinases 
driven by independent promoters are infected with  viral vectors   
carrying a combination of these recombinase sites, resulting in 
intersectional targeting [ 33 ,  34 ].

   Using viral vectors also enable other useful modes of targeting. 
One approach is to target neurons based on their axonal projec-
tions or synaptic connectivity (Fig.  1b, c ). For example, modifi ed 
rabies virus can retrogradely transduce neurons [ 35 ,  36 ], while 
herpes simplex virus and vesicular stomatitis virus can antero-
gradely transduce across axon terminals [ 37 ,  38 ]. These viruses can 
be used to deliver Cre-recombinase transsynaptically [ 37 ,  39 ], 
allowing the targeting of neurons projecting to a genetically 
defi ned populations. Recently, it was also shown that certain sero-
types of AAV also can mediate effi cient retrograde transduction 
[ 40 ]. These tools enable targeting optogenetic tools based on their 
axonal projection [ 41 – 43 ] and potentially synaptic connectivity. 

 Another targeting strategy is to express genes using promoters 
and enhancers induced by neuronal activity. These genetic elements 
were identifi ed from immediate early genes that are known to rap-
idly induce expression upon neuronal activity [ 44 ,  45 ]. In many 
cases, these elements are triggered by calcium infl ux that activates 
calcium-dependent kinases [ 46 ]. These promoters have been used 
to specifi cally express optogenetic tools in neurons that gain activity 
during  specifi c   behavioral tasks in rodents, such as fear condition-
ing [ 47 ]. In  a   set of impressive demonstrations, Liu and others 

  Fig. 1    Genetic targeting strategies used in optogenetics. ( a ) Cell- type   specifi c targeting using a  viral vector   
carrying an optogenetic construct (e.g., ChR2-GFP, indicated in  green ) in reverse frame. The optogenetic con-
struct is expressed only in cells that express Cre-recombinase (indicated in  red ). ( b ) Targeting neurons that 
project in defi ned brain regions. Modifi ed rabies virus can retrogradely transduce neurons. ( c ) Targeting neu-
rons based on synaptic connectivity. Modifi ed rabies virus can be electroporated into a single neuron, and 
spread transsynaptically to label cells making synaptic connections       
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showed that these neurons could be specifi cally reactivated using 
the light-gated ion channel  channelrhodopsin-2 (ChR2)   driven by 
the activity-dependent promoter of c-Fos [ 47 ,  48 ]. This reactivation 
recreated the original behavior with only light activation, indicat-
ing optically controlled memory recall [ 47 ]. Ramirez and others 
later used the same approach to trigger fear response by optically 
activating a set of neurons activated during fear conditioning, 
demonstrating the creation of false memory [ 49 ]. Conceptually, 
these demonstrations show that optogenetics can be used to reac-
tivate cell populations specifi cally activated during a behavioral 
task, enabling activity-based targeting. Considering the diverse 
functionality of transcription factors that can sense a wide range of 
input signals [ 50 – 52 ], such responsive transcription may be a 
generalizable approach to express optogenetic tools to control cell 
populations that drive a specifi c functional output.  

4     Customizing Photoreceptors for Designed Control: Modes of Action 

 The use  of   microbial rhodopsins in  mammalian neural cells   is an 
inspiring demonstration of customizing naturally existing photore-
ceptors for controlling physiological properties in a completely 
new context. Owing to the diverse modes of action found in photo-
receptors (Fig.  2 ), the concept of repurposing naturally existing 
parts to control new biological functions has been implemented 
in many applications, and is expected to further develop as new 
photoreceptors continue to be discovered.

   Microbial rhodopsins (type 1  rhodopsins) mediate   either trans-
membrane ion transport (Fig.  2a, b ) or light sensing through sig-
nal transduction (Fig.  2c ). Microbial rhodopsins that mediate 
light-driven ion transport  have   been widely used to control mem-
brane potential in mammalian neurons [ 5 ]. They can be catego-
rized into two mechanistically distinct forms: ion pumps (Fig.  2a ) 
 that   can transport ions against their gradient and channels (Fig. 
 2b ) that passively conduct ions along the gradient established by 
other active transporters. Interestingly, all known light-driven ion 
pumps result in  hyperpolarization   of membrane potential through 
outward transport of proton or inward transport of chloride ion 
[ 53 ]. When heterologously expressed in mammalian neurons, they 
generate enough current to enable optical silencing [ 5 ,  54 – 56 ]. 
Recently, a light-driven  c  hloride pump with high sensitivity for far- 
red light named Jaws has been described that enabled noninvasive 
neural silencing through the intact  mouse   skull [ 57 ]. A  light-driven   
outward  sodium pump (KR2)   has also been found recently [ 58 ], 
that may be used for optical silencing of neurons. Unlike ion 
pumps, microbial rhodopsin ion channels cannot transport ions 
against their gradient, but enable control of  membrane   potential 
through selective conduction of specifi c ions. First described 
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  Fig. 2    Modes of action found in photoreceptors. ( a ) Light- activated   ion pumps. ( b ) Light-gated ion channels. 
( c ) Microbial sensory rhodopsins for light-activated  signal transduction  . ( d )  Animal rhodopsins   that function as 
light-activated G-protein coupled receptors. ( e ) Light- triggered   conformational change, leading to regulation of 
protein domain function through  allosteric   coupling or uncaging. ( f ) Homo/heterodimerization controlled by 
light.  Dronpa   and  UVR8   monomerize in the lit-state. ( g ) Multimerization upon light activation. Figure panels 
modifi ed from [ 63 ] with permission       
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examples are channelrhodopsins found in the green alga 
  Chlamydomonas reinhardtii    [ 21 ,  22 ], which conduct cations 
including proton,  sodium  ,  potassi  um,  and   calcium ions [ 22 ]. Even 
though the conductance of these channels are relatively low (about 
100-fold lower than high-conductance ion channels) [ 59 ,  60 ], 
their current depolarize mammalian neurons above their threshold 
to initiate action potentials [ 4 ]. Recently, more than 60 channel-
rhodopsin homologues were identifi ed by conducting a systematic 
search of transcriptome from 127 species of alga [ 61 ]. This study 
resulted in a high sensitivity channelrhodopsin with extremely fast 
channel  kinetics   named  Chronos  , and a red-sensitive channelrho-
dopsin named  Chrimson.   As a pair, these channelrhodopsins 
enabled independent multicolor activation of two distinct neural 
populations [ 61 ]. Another recent study identifi ed anion-conduct-
ing light-gated channels in the cryptophyte   Guillardia theta    that 
enabled rapid and reversible optical silencing of rat neurons [ 62 ]. 
So far, microbial sensory rhodopsins have not been applied in 
optogenetic experiments, perhaps due to the requirement of trans-
membrane or soluble transducers that are not readily compatible 
with other  cell types  . In depth discussion of biophysical properties 
of microbial rhodopsins and their impact as  optogenetic   tools have 
been discussed elsewhere [ 63 ]. 

 Animal rhodopsins (type II  rhodopsins)   share structural 
homology to  microbial rhodopsins,   but act as  G-protein coupled 
receptors (GPCRs)   that upon light  illumination  , catalyze GDP to 
GTP exchange in heterotrimeric G proteins (Fig.  2d ). In fact, 
rhodopsins constitute the largest GPCR family—over 700 
rhodopsin- like GPCRs have been found in humans [ 64 ]. Based on 
the extensive structure–function relationship studies of GPCRs 
[ 65 ,  66 ], Khorana and colleagues demonstrated that the cytoplas-
mic domains of a bovine rhodopsin can be replaced by analogous 
sequences from a non-light sensitive GPCR, such as β 2 -adrenergic 
receptor (β 2 -AR) to create a chimeric light-sensitive β 2 -AR [ 67 ]. 
This strategy has been extended to create light-driven rhodopsins 
coupled to Gq and Gs  signaling pathways   [ 68 ], Gi/o coupled 
pathways [ 69 ,  70 ]. It was also found that  heterologous expression   
of unmodifi ed forms of rhodopsins enables light-driven activation 
of endogenous G proteins of the host cell [ 71 ]. Unlike microbial 
rhodopsins that keep the  retinal chromophore   throughout the 
 photocycle  , certain  animal rhodopsins   such as bovine rhodopsin 
lose the chromophore after light activation, requiring consistent 
supply of  retinal   cofactors [ 72 ]. Fortunately, in mammalian cells 
and brain tissue, suffi cient concentration of retinal cofactors are 
present to generate enough functional rhodopsins. However, even 
in cell types where the retinal chromophore is less abundant, 
the retinal cofactor supplementation may be avoided by using 
‘non- bleaching’ G-protein coupled opsins that remain associated 
with the chromophore [ 73 ]. 
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 Other than rhodopsin based photoreceptors, light-sensing pro-
teins found in plants and microbes have been applied in controlling 
cell signaling in diverse  cell types  , including mammalian cells, yeast, 
and bacteria. These proteins function by inducing light-triggered 
conformational change coupled to other protein domains (Fig.  2e ), 
homo/heterodimerization (Fig.  2f ), or multimerization (Fig.  2g ). 
A prominent example that undergoes conformational change upon 
light activation is the  Light-Oxygen-Voltage (LOV)   domains found 
in photoreceptor systems of plants, fungi, and bacteria [ 74 ,  75 ]. In 
these systems, LOV domains may control the activity of an  effector   
domain directly fused to it through  allosteric   coupling or steric 
inhibition. For example, the  bacterial chemosensor FixL    was   made 
light-activatable by replacing its Per-ARNT-Sims (PAS) motif 
(which is structurally homologous to LOV domains) with the LOV 
domain Ytva [ 76 ]. In this example, an α-helical coiled coil linker of 
the LOV domain undergoes a rotational movement upon light acti-
vation, which activates a histidine kinase domain fused to it. In 
other examples, the conformational change in the LOV domain 
leads to unfolding of an α-helix in the lit-state, resulting in ‘uncag-
ing’ of the effector domain fused to it (Fig.  2e ). Such light-activated 
uncaging approach has been successfully applied in several synthetic 
constructs including a photoactivatable GTPase  Rac1   and Cdc42 
[ 77 ], peptide binding motifs [ 78 ], and tethered toxins [ 79 ]. Even 
though such photo-uncaging approach seems to be a generally 
applicable design, in many cases it requires several levels of optimi-
zation customized to each molecule for effective control. For 
instance, in the photoactivatable Rac1, Ca 2+ -mediated interaction 
between residues at the interface of the LOV domain and Rac1 
turned out to be crucial for effective light control [ 80 ]. Since such 
conformation-dependent interactions are hard to be predicted, 
de novo design of a photoactivatable construct still remains a 
challenge. Such diffi culties may be overcome by using  Dronpa  , 
which is a photoactivated fl uorescent protein that seems to allow 
modular design of optical control. Upon light activation, Dronpa 
not only changes fl uorescence, but also monomerizes through the 
unfolding of a β-sheet [ 81 ]. This feature has been used to design 
 photoactivatable GTPases   and proteases [ 82 ]. 

 Another mode of action found in photoreceptor domains is 
light-induced interaction. Certain LOV domains, such as the fun-
gal LOV domain Vivid (VVD) [ 83 ] and bacterial LOV domain 
EL222 [ 84 ], homodimerize upon light activation (Fig.  2f ). Plant 
photoreceptors such as   Arabidopsis thaliana     UVR8   exist as dimers 
in the dark but  monomerize   upon UV  illumination   [ 85 ]. Other 
photoreceptor domains such as  Arabidopsis thaliana  
 Cryptochrome-2 (CRY2)   and  Phytochrome B (PhyB)   heterodi-
merize with a specifi c partner (Fig.  2f ), cryptochrome-interacting 
basic helix–loop–helix 1 (CIB1)    and phytochrome interacting fac-
tor (PIF), respectively [ 74 ].  Such   light-induced interactions have 
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been used primarily to control intracellular signaling, by recruiting 
signaling proteins to or away from a specifi c intracellular site of 
action, resulting in signal activation or inhibition through seques-
tration. Activities of various kinases, including  Ras/ERK   [ 86 ], 
 phosphoinositide-3 kinase (PI3K)   [ 87 ], and receptor tyrosine 
kinase (RTK) [ 88 ] have been controlled using this approach. 
Several studies also demonstrated optical control of DNA tran-
scription using light-induced binders that mediate the recruitment 
of transcription activation domains [ 89 ,  90 ] or activation of Cre- 
recombinase [ 91 ,  92 ]. Interestingly, CRY2 has been shown to 
undergo multimerization upon  illumination   (Fig.  2g ), which has 
been used to mediate light-dependent activation of Rho GTPase 
[ 93 ],  RTK   fi broblast growth factor receptor [ 94 ], and actin polym-
erization [ 95 ]. The use of photoreceptors for optogenetic control 
of cellular  signaling pathways   has been extensively reviewed 
recently [ 63 ,  96 ,  97 ].  

5     Engineering Photoreceptors: A Multidimensional Problem 

 Even though it seems that natural photoreceptor systems rely on 
modularity of light-activated protein domains for controlling 
diverse  signaling pathways   [ 74 ,  98 ], development of a new opto-
genetic tool in general requires signifi cant engineering efforts for 
effective control. One major challenge is achieving adequate 
expression of optogenetic tools. As seen in the case of microbial 
opsins, the expression level of an optogenetic construct may be 
one of the limiting factors in achieving effective control. 
 Heterologous expression   of photoreceptor domains depends on 
the host  cell type  , and may yield low levels of functionally active 
form of the optogenetic tool. For example, a study that systemati-
cally compared channelrhodopsin homologues found that less than 
half of them showed detectable ion conduction when expressed in 
a mammalian cell line, and even less were functionally active in 
neurons [ 61 ]. One strategy to improve functional expression is to 
enhance the protein traffi cking to the desired compartment using 
targeting sequences [ 56 ,  99 ]. However, this approach is not gen-
eralizable [ 100 ], and achieving adequate expression of optogenetic 
tools in the desired cell type remains a challenge. 

 Another major challenge is the fact that optogenetic tools 
require multiple properties to be optimized. For example, critical 
properties of channelrhodopsins that impact their effectiveness in 
controlling neural activity include ion conductance, light sensitiv-
ity, spectral sensitivity, channel  kinetics  , and ion selectivity. 
Structure-guided mutagenesis studies have resulted in improved 
channelrhodopsins with fast kinetics [ 101 ], enhanced  photocurrent   
[ 102 ,  103 ], red-shifted spectral sensitivity [ 104 ], and altered ion 
selectivity [ 105 ,  106 ]. These studies demonstrated that key 
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properties can be tuned using mutagenesis, but also revealed that a 
single mutation often affects multiple properties (Fig.  3 ). For 
example, mutations at E123 in ChR2 (corresponding to D85, 
which is the Schiff base counter-ion in bacteriorhodopsin), affect 
channel kinetics and red-shifts  the   action spectra [ 101 ]. Mutation 
H134R in  ChR2   enhances  photocurrent   perhaps due to improved 
membrane expression, but slows channel  kinetics   [ 60 ,  107 ]. 
Mutations C128 and D156 slow down the channel kinetics drasti-
cally, which helps to keep open channels for longer periods of time, 
effectively enhancing the light sensitivity [ 108 ,  109 ]. The trend of 
multiple property modulation by a single mutation is also found in 
LOV domains. For example, in the   Avena sativa     phototropin   1 
LOV2,    mutations in the highly conserved residue Q513 reduce 
the structural changes between the dark and the lit-state and slow 
down the dark state return rate [ 110 ]. In addition, in the LOV 
domain VVD, mutations in M135 and M165 slow recovery kinet-
ics and enhance the affi nity of the lit-state VVD dimer [ 111 ]. 
Therefore, optimization of an optogenetic tool requires multidi-
mensional characterizations to measure all essential parameters 
[ 109 ], and in certain cases individual properties may not be inde-
pendently optimized. In other words, the fi tness landscape of 
 photoreceptors is a multidimensional space composed of poten-
tially dependent parameters. Since typical screens used for protein 
engineering rely on rapid measurement of one or two parameters, 
strategies such as directed evolution to optimize one parameter 
may result in de-optimization of others that are critical for tool 
performance. Currently, the general strategy is to combine random 
mutagenesis-based methods with structure-guided approaches and 
rely on additive benefi cial effects of multiple mutations to yield an 
optimal construct [ 105 ,  106 ,  112 ,  113 ]. In the future, screens that 
can characterize multiple parameters may be developed to perform 
multidimensional optimizations.

  Fig. 3     ChR2   residues that affect multiple properties when mutated. Residue numbers based on ChR2 sequence 
are labeled on the  X-ray   structure obtained from a chimera between ChR1  and   ChR2 (PDB code 3UG9). 
( a ) Side-view. ( b ) Top-view       
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6        Analogies to Optical Imaging: Multicolor Imaging Versus Optogenetics 

 Another major direction in optogenetics has been to use multiple 
colors of light to control two independent  cell types   or processes 
 using   photoreceptor domains that have distinctive spectral sensitivi-
ties. This approach has been extensively explored using microbial 
opsins. For instance, ChR2, which has maximal sensitivity for blue 
light has been combined with  a   halorhodopsin which can be acti-
vated with yellow light to enable bidirectional control of neural 
activity [ 54 ,  55 ].  Proton pumps   with separation in their spectral 
sensitivity have been used to achieve two-color neural silencing 
[ 56 ]. Even though these studies demonstrated that triggering or 
inhibiting action potentials in neurons can be controlled by leverag-
ing the difference in spectral sensitivity of  microbial rhodopsins, a 
  recent study showed that achieving multicolor control relying on 
spectral separation alone may result in cross talk, due to the inher-
ent blue-light sensitivity found in rhodopsins [ 61 ]. Even the red- 
sensitive channelrhodopsin  Chrimson   was shown to trigger action 
potentials under strong blue light in neurons with high expression 
levels [ 61 ,  63 ]. However, detailed biophysical characterization of 
 Chrimson   revealed that its channel opening rate under  blue light   is 
 substantially   slower than that under red light, and is also dependent 
on light intensity [ 61 ]. Therefore, cross-activation of neurons under 
blue light was minimized by pairing Chrimson with the fast and 
light-sensitive channelrhodopsin  Chronos   and limiting the intensity 
and duration of blue light [ 61 ,  63 ]. The blue-light sensitivity of 
 microbial rhodopsins   may not be completely abolished unless the 
chromophore itself is altered. Many photoreceptors, including 
 LOV   domains and cryptochromes are also maximally sensitive to 
blue light, which may be hard to eliminate as in the case for micro-
bial rhodopsins. Therefore, strategies other than relying on spectral 
separation alone, such as leveraging differences in light sensitivity 
and  kinetics   under blue light may be necessary to reduce cross talk 
for multicolor control using other photoreceptors. 

 Although the concept of multicolor control in optogenetics 
may seem analogous to multicolor fl uorescence imaging, practical 
differences exist that require caution in designing optogenetic 
experiments with multiple light sources. In multicolor fl uorescence 
imaging, cross-activation of fl uorophores occurs quite often, but 
the emission from multiple fl uorophores can be fi ltered to obtain 
cross talk free images. In experiments using light-activated pro-
teins, any cross-activation causes change that cannot be fi ltered or 
eliminated. Depending on the biological question asked, small 
changes induced by cross-activation may become important, such 
as in experiments that  focus   on subthreshold changes in membrane 
potential. Therefore, when designing experiments that require 
multiple sources of light, such as using light-gated ion channels 
with calcium reporters [ 114 ], the  wavelength   and intensity of light 
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used for imaging should be tested for cross-activation of optical 
actuators. It is notable that blue-sensitive channelrhodopsins that 
seem to have negligible red-sensitivity can depolarize membrane 
potential under intense red light [ 113 ]. As described above, strate-
gies that capitalize on all aspects of biophysical properties of pho-
toreceptors may be used to prevent cross-activation, but may be 
diffi cult to completely eliminate small cross talks induced.  

7     Conclusion and Future Perspectives 

 Over the past decade, optogenetics has made a major impact on 
neuroscience research, by enabling the control of specifi c  cell types   
in the intact brain. A major advancement enabled using these tools 
was the ability to control specifi c cell types in intact systems with 
high spatial and temporal resolution. One potentially transforma-
tive future direction would be the integration of optical control 
methods with various detection methods to enable closed-loop 
control of biological systems, as achieved by several studies that 
demonstrated closed-loop control of neural circuit [ 115 – 117 ] and 
feedback-regulated control of cell signaling [ 118 ] and gene expres-
sion levels [ 119 ]. These studies suggest that optogenetic approaches 
will enable us to reveal the underlying mechanisms behind com-
plex intracellular signaling systems or multicellular dynamics and 
precisely tune it to achieve a desired outcome. They will also allow 
us to develop and test models of intact, complex biological systems, 
opening an era of real-time ‘process engineering’ in biological 
systems. Optogenetics may enable the application of advanced pro-
cess engineering approaches widely used in chemical and electrical 
systems to biological systems. 

 As discussed in this chapter, successful development of new 
optogenetic tools and their implementation is an interdisciplinary 
effort that requires tools tailored to the specifi c biological process 
studied. Targeting and achieving optimal expression in the desired 
cell type need to be tested, and the biophysical properties of pho-
toreceptors used need to be optimized to the spatial and temporal 
properties to be controlled. Therefore, users of optogenetic tools 
need to pay close attention to their biophysical characteristics, and 
tool developers need to identify ways to tune them.     
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