
Chapter 8
Irradiation-Induced Voids and Bubbles

The formation and growth of voids and bubbles is of intense interest for material
performance in radiation environments at elevated temperature. The first observa-
tion of voids in irradiated metals was published by Cauthorne and Fulton in 1967
[1]. Voids can have a profound influence on material properties because solids
undergo volumetric swelling when voids form and grow. It has been suggested that
the US breeder reactor program experienced a setback of nearly a decade by this
surprising observation, as scientists scrambled to understand this phenomenon and
the consequences to reactor internals. Since that time, a great deal of effort has been
expended toward understanding their formation and growth. Figure 8.1 shows
examples of voids in irradiated stainless steel, aluminum, and magnesium. Voids of
this size and number density can cause tens of percent increases in volume,
translating into significant changes in linear dimensions as well. The challenge of
designing a reactor to accommodate swelling of this magnitude quickly becomes
monumental.

The formation and growth of voids shares much in common with bubbles. Yet
because of their nature—a void is essentially an empty cavity—bubble mechanics
are more complicated. It is by virtue of the fact that insoluble gases are formed by
transmutation when certain metals are irradiated that drew attention to the subject of
bubbles in irradiated metals. Under irradiation, it is possible for large numbers of
inert gas bubbles to form, which significantly alter the physical and mechanical
properties of metals. Fast and thermal spectrum reactors generate helium via
transmutation, and the first wall of a fusion reactor is susceptible to bubble for-
mation due to the high gas loading from reaction products in the plasma. Numerous
examples exist in reactor systems where bubbles form and alter material properties,
one of the most important being the structural materials of fission reactors. This
chapter will address the theory of void and bubble nucleation and growth, along
with elucidating the most important factors affecting these processes in reactor
systems.
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Fig. 8.1 Micrographs of irradiation-induced voids in (a) stainless steel, (b) aluminum, (c) and
(d) magnesium [2, 3]
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8.1 Void Nucleation

The driving force for the formation of voids in solids is the supersaturation of
vacancies due to irradiation defined by:

Sv ¼ Cv

C0
v
; ð8:1Þ

where C0
v is the thermal equilibrium concentration of vacancies. During irradiation,

defects react to form clusters and the clusters either grow by absorption of defects of
the same type, or shrink by absorption of defects of the opposite type. For a cluster
of vacancies to grow into a void, there must be a net increase in the number of
vacancies absorbed over the number of interstitials absorbed. Thus, we will be
interested in the equilibrium void distribution function, ρ0(n) (where n is the
number of vacancies in the void), which is developed by a supersaturation of
vacancies in the solid. The distribution function gives the number of vacancy
clusters in each size class. Under non-equilibrium conditions, there will be a net
flux, J, of voids from one size class to the next larger size class. This is the
nucleation current and is the quantity we are interested in finding. The presence of
an inert gas in the nucleation process is then considered.

8.1.1 Equilibrium Void Size Distribution

Analogous to the case of point defects (discussed in Chap. 4) and following the
derivation in [4], the equilibrium void size distribution is determined from the change
in Gibbs free energy of a system containing a distribution ρ0(n) of vacancy clusters:

G ¼ G0 þ
X
n

q0 nð ÞGn � kT
X
n

lnwn; ð8:2Þ

where G0 is the free energy of the perfect lattice, the second term is the work to
form a void distribution, and the last term is the entropy contribution to the number
of ways that the voids can be distributed in a lattice. The quantity Gn is the Gibbs
free energy (reversible work) required to form a void of size n:

Gn ¼ Hn � TSn ¼ En þ ptn � TSn; ð8:3Þ

where
En the energy required to form a void of n vacancies
υn volume change (= nΩ)
p hydrostatic stress
Sn the excess entropy associated with the process
wn the number of ways of placing ρ 0 (n) voids of size n in the solid.

Neglecting the last two terms on the right, Gn reduces to Gn ≅ En.

8.1 Void Nucleation 381

http://dx.doi.org/10.1007/978-1-4939-3438-6_4


For large values of n, the energy of the void can adequately be represented by the
surface energy:

EV ¼ 4pR2
Vc; ð8:4Þ

where γ is the surface energy of the solid per unit area and RV is the void radius
which is related to the number of vacancies in the void by:

n ¼ 4pR3
V

3X
; ð8:5Þ

where Ω is the atomic volume. The reader should note that the expression in
Eq. (8.4) is the same as was developed in Eq. (7.58) and for the limiting case of a
vacancy, as in Eq. (4.22). Equation (8.4) is, however, an approximation since the
energy should properly include terms for the contraction of the surface and for the
elastic energy stored in the solid (see Eq. 4.23). Combining Eqs. (8.4) and (8.5)
gives:

En ¼ 36pX2� �1=3
cn2=3: ð8:6Þ

The last term in Eq. (8.2) is the product of the temperature and the mixing entropy.
It can be obtained by calculating the number of ways in which voids can be
distributed in a crystal containing N0 lattice sites per unit volume. The procedure is
the same as that used for vacancies in Sect. 4.2 and results in:

wn ¼ nq
0ðnÞ N0=nð Þ!

N0=n� q0 nð Þð Þ! q0 nð Þð Þ! : ð8:7Þ

We now define the chemical potential of a void of size n as μn that is related to the
Gibbs free energy by:

ln ¼
@G
@q0nð Þ

�����
T ;p;n

: ð8:8Þ

Substituting Eq. (8.7) into Eq. (8.2), using Stirling’s approximation for the factorial
term in Eq. (8.7), and taking the derivative as required by Eq. (8.8)
(∂G = ∂ΔG since ΔG = G − G0) gives:

ln ¼ En þ kT ln
q0 nð Þ
N0

� �
: ð8:9Þ
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We have neglected ρ0(n) compared to N0 because the void concentration is low. For
monovacancies (n = 1), Eq. (8.9) reduces to:

lv ¼ Ev þ kT ln
Cv

N0

� �
: ð8:10Þ

Since the equilibrium concentration of vacancies in a solid is given by:

C0
v ¼ N0 exp

�Ev
f

kT

� �
; ð8:11Þ

substituting for N0 from Eq. (8.11) into Eq. (8.10) gives:

lv ¼ kT ln
Cv

C0
v

� �
¼ kT ln Sv: ð8:12Þ

The criterion for chemical equilibrium is that the chemical potential of reactants and
products in the system be the same, i.e.,

nlv ¼ ln: ð8:13Þ

Substituting Eqs. (8.9) and (8.12) into the criterion for chemical equilibrium,
Eq. (8.13) gives:

q0 nð Þ ¼ N0 exp n ln Sv � nn2=3
	 


; ð8:14Þ

where

n ¼ 36pX2� �1=3 c
kT

: ð8:15Þ

Substituting Eq. (8.15) into Eq. (8.14) and considering only the term inside the
exponent, we have:

n ln Sv � nn2=3 ¼ n ln Sv �
36pX2� �1=3

cn2=3

kT
: ð8:16Þ

Expressing Eq. (8.14) as ρ0(n) = N0 exp (−ΔGn
0/kT) gives the following expression

for ΔGn
0:

DG0
n ¼ �nkT ln Sv þ 36pX2� �1=3

cn2=3; ð8:17Þ

which is just the free energy change in the solid on forming a spherical void
consisting of n vacancies on some particular site. A schematic of Eq. (8.17) is
shown in Fig. 8.2 in which the free energy is plotted as a function of the number of
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vacancies in a void. Note that the first term decreases linearly with n, while the
second term increases as n2/3. Accounting for the magnitude of the factors in each
term, the resulting sum is a curve with a maximum at a value of n*. This is the
critical size of a void embryo which must be achieved in order for the embryo to
grow into a void. At the critical point, vacancy addition and removal both cause a
reduction in the Gibbs free energy of the system, so this is an unstable point. Above
the critical size, addition of vacancies to the embryo causes a decrease in the free
energy, which means that void growth is favored, while loss of vacancies causes an
increase in the free energy, so this reaction is not favored. Note also that thermal
fluctuations add an increment to the embryo size, pushing the critical size to a
higher value and thus making it more difficult to nucleate a stable void.

8.1.2 Void Nucleation Rate

The nucleation rate of void embryos (consisting of n vacancies) can be described
using the same formalism that was used to describe vacancy loop nucleation in
Chap. 7 and developed in [5–7]. However, for the sake of continuity, that derivation
will be repeated here for the case of void embryos. Recall from Eq. (7.74) that the
nucleation rate of a void embryo of size n is given by:

Jn ¼ q0 nð Þbv nð ÞZ; ð8:18Þ

where ρ0(n) is the concentration of voids of size n vacancies, βv(n) is the absorption
rate, and Z, the Zeldovich factor (defined in Sect. 7.6.1) and the void concentration
is given by:
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Fig. 8.2 Schematic
illustration of ΔGn

0, the free
energy of formation of a
spherical void consisting of
n vacancies and the effect of
thermal fluctuations on the
critical size void embryo
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q0 nð Þ ¼ N0 exp
�DG0

n

kT

� �
; ð8:19Þ

where N0 is the number of sites on which voids can be formed and ΔGn
0 is the

change in free energy in the solid upon formation of the void and is given in
Eq. (8.17). The value of ΔGn

0 for the critical void embryo size, ΔGk
0 (for embryo size

nk), is the activation barrier for void formation shown in Fig. 8.3 by the lower curve
and is given as:

DG0
k ¼ �nkkT ln Sv þ 36pX2� �1=3

cn2=3k : ð8:20Þ

The void nucleation rate is the nucleation current given in Eq. (8.18). The void
nucleation current, Jn, and activation barrier, ΔGk

0, apply to the case where only
vacancies are present. However, under irradiation, vacancies and interstitials are
produced in equal numbers, so the presence of interstitials must be accounted for.
We now consider the case where interstitials can also impinge on voids. The
analysis is similar to that just presented, but more complicated due to the intro-
duction of another specie that will make void nucleation more difficult.

Consider now the nucleation of vacancy clusters on one particular kind of
attractive site [4–6] such as the compressive stress field around a dislocation. The
following assumptions are made:

1. The lattice is in thermal and dynamic equilibrium, which are minimally affected
by displacement and thermal spikes.

2. Monovacancies and solvent monointerstitials are the only mobile point defects
present.

3. The defects obey dilute solution thermodynamics.
4. A steady-state concentration of vacancies and interstitials exists.

nk nk

kT

1/Z'

0

# vacancies in void

'

k

k

n
n

Fig. 8.3 Schematic nucleation curves showing the various parameters which are important in void
nucleation. ΔGk

0 is the activation barrier to nucleation if interstitials are not present, while ΔGk
′ is

the same quantity if interstitials are present during the nucleation process (after [6])
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Assumption (1) is reasonable as thermal spike lifetimes are very short (10−12 s)
and dynamical equilibrium should be attained in similar time intervals. Assumption
(2) is generally not valid since gas atoms are often present and are known to play an
important role in nucleation (treated in Sect. 8.1.3). Assumption (3) should be valid
for low defect concentration (≤10−4 atomic fraction). The final assumption is a
gross oversimplification since the microstructure continues to evolve with
increasing dose causing sink strength, and therefore defect concentrations, to
continually change.

The following derivation of the void nucleation rate from kinetic considerations
is similar to that for loops, in which the nucleation rate is expressed as the flux of
clusters between adjacent size classes in a phase space of cluster size. A flux is the
concentration times velocity or the product of concentration, jump frequency, and
jump distance. The flux between any two size classes, say n and n + 1, is:

Jn ¼ bv nð Þq nð Þ � av nþ 1ð Þq nþ 1ð Þ � bi nþ 1ð Þq nþ 1ð Þ; ð8:21Þ

where ρ(n) and ρ(n + 1) are the number of n-mer (voids containing a net of
n vacancies) and (n + 1)-mers per unit volume. βv(n) is the rate of vacancy capture
by a n-mer, and αv(n + 1) and βi(n + 1) are the rates of vacancy loss and interstitial
capture by a (n + 1)-mer, respectively. The first term in Eq. (8.21) represents an
addition to the n + 1 size class by capture of a vacancy by a void of n-mer size class.
The second term is a loss from the (n + 1)-mer size class by loss of a vacancy, and
the third term is a loss from the (n + 1)-mer size class by capture of an interstitial.
Interstitial emission is of low probability and is neglected. Figure 8.4 shows the
various processes described by Eq. (8.21) in phase space.

Setting J = 0 in Eq. (8.21) is equivalent to equilibrating the size classes since
there is no net flux between size classes (as we did in Sect. 7.6). If we neglect
interstitials, then we can write Eq. (8.21) as:

av nþ 1ð Þ ¼ bv nð Þq0 nð Þ
q0 nþ 1ð Þ : ð8:22Þ

n n + 1

0
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β

β

v

v
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Fig. 8.4 Illustration of the processes governing the flux between adjacent void sizes in a phase
space of void size
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Combining Eqs. (8.21) and (8.22) gives:

Jn ¼ bv nð Þ q nð Þ � q nþ 1ð Þ q0 nð Þ
q0 nþ 1ð Þ þ

bi nþ 1ð Þ
bv nð Þ

� �� �
: ð8:23Þ

Since ρ0(n) = N0 exp (−ΔGn
0/kT), we note that:

q0 nð Þ
q0 nþ 1ð Þ ¼ exp

dG0
n

kT

� �
; ð8:24Þ

where δGn
0 ≡ ΔGn+1

0 − ΔGn
0. We now define new functions of n, ρ′ (n), and δGn

′ such
that by analogy with Eq. (8.24):

q0 nð Þ
q0 nþ 1ð Þ ¼ q0 nð Þ

q0 nþ 1ð Þ þ
bi nþ 1ð Þ
bv nð Þ ¼ exp dG0

n=kT
� �

; ð8:25Þ

where

dG0
n ¼ DG0

nþ 1 � DG0
n; ð8:26Þ

and ΔGn
′ is not generally a free energy because of the term

bi nþ 1ð Þ
bv nð Þ in Eq. (8.25).

Using the expression in Eq. (8.25), we can rewrite the equation for Jn in terms of
q0 nð Þ

q0 nþ 1ð Þ by substituting Eq. (8.25) into Eq. (8.23) to give:

Jn ¼ bv nð Þ q nð Þ � q nþ 1ð Þ q0 nð Þ
q0 nþ 1ð Þ

� �
: ð8:27Þ

Rearranging Eq. (8.27) gives:

Jn ¼ �bv nð Þq0 nð Þ q nð Þ
q0 nð Þ �

q nþ 1ð Þ
q0 nþ 1ð Þ

� �
; ð8:28Þ

and noting that:

q nð Þ
q0 nð Þ �

q nþ 1ð Þ
q0 nþ 1ð Þ

� �
Dn

¼
@

q nð Þ
q0 nð Þ
� �
@n

; ð8:29Þ

gives:

Jn ¼ �bv nð Þq0 nð Þ @ q nð Þ=q0 nð Þ½ �
@n

; ð8:30Þ

which is the basic flux equation. Rearranging Eq. (8.25) by taking the natural log of
both sides and summing from j = 0 to n − 1 gives:
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Xn�1

j¼0

ln
q0 jð Þ

q0 jþ 1ð Þ
� �

¼
Xn�1

j¼0

� ln
bi jþ 1ð Þ
bv jð Þ þ exp

dG0
j

kT

 !" #( )
; ð8:31Þ

and:

ln
q0 nð Þ
q0 0ð Þ
� �

¼
Xn�1

j¼0

� ln
bi jþ 1ð Þ
bv jð Þ þ exp

dG0
j

kT

 !" #( )
: ð8:32Þ

We can identify two boundary conditions. The first is the quantity ρ′(0), which may
be evaluated by noting that as βi(n)/βv(n) → 0, ρ′(0) = ρ0(0) and that ρ0(0) → N0,
which is simply the number of nucleation sites per unit volume. Since N0 (and
hence ρ′(0)) is independent of void concentration, we can write:

ln
q0 nð Þ
q0 0ð Þ
� �

¼
Xn�1

j¼0

� ln
bi jþ 1ð Þ
bv jð Þ þ exp

dG0
j

kT

 !" #( )

¼ �DG0
n

kT
:

ð8:33Þ

Since as βi(n)/βv(n) → 0, ρ′(0) → ρ0(0), and ρ0(0) is just N0, the number of
nucleation sites per unit volume, we have then:

q0 nð Þ ¼ N0 exp
�DG0

n

kT

� �
; ð8:34Þ

and
ΔGn

0 activation barrier without interstitials,
ΔGn

′ activation barrier with interstitials.

The upper curve in Fig. 8.3 shows ΔGn
′ as functions of n. Note that ΔGn

′ is larger
than ΔGk

0 and requires a larger void size due to the hindering effect of interstitials on
the void nucleation process. The maxima in the two curves occur at nk, ΔGk

0 and nk
′ ,

ΔGk
′ .
Now, the steady-state void nucleation rate may be calculated from the expression

for Jn in Eq. (8.30):

Jk ¼ Z 0bkq
0
k; ð8:35Þ

which is the rate at which voids escape over the potential barrier of height ΔGk
′ in

units of [voids/cm3 s]. The term βk is the rate of single vacancy impingement on a
void of size nk

′ . If clusters are assumed to be spherical, then the vacancy
impingement rate is expressed by the rate constant for point defect absorption by
spherical sinks, as in Eq. (5.84). Since void embryos are small, the capture rate is of
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mixed-control type in which both diffusion and reaction rate limitations are of
comparable magnitude:

bv nð Þ ¼ 4pRVDvCv

1þ a=RV
; ð8:36Þ

where a is the lattice parameter, assuming that the rate at which vacancies leave a
void depends on the size of the void but not on the concentration of vacancies or
interstitials or details of the dynamics. Note that for large voids, a/RV → 0 and
βv(n) has a pure diffusion character.

The term Z′, analogous to Z but in the presence of interstitials, is:

Z 0 ¼ � 1
2pkT

@2DG0
n

@n2

� �1=2
n0k

: ð8:37Þ

The subscript indicates that the second derivative is to be evaluated at n = nk
′ . Its

value is the width of ΔGk
′ at kT units below the maximum and is in the order of

0.05. The second derivative is found from Eq. (8.25) to be:

1
kT

@2DG0
n

@n2

� �
n0k

¼ 1
kT

@2DG0
n

@n2

� �
exp

1
kT

@DG0

@n

� �� �� �
n0k

; ð8:38Þ

giving:

q0k ¼ N0 exp �DG0
k=kT

� �
; ð8:39Þ

where ΔGk
′ is determined by evaluating Eq. (8.33) at nk

′ .
Since the critical void nucleus size is taken as the maximum of the ΔGn

′ curve,
differentiating Eq. (8.17) and substituting the result into Eq. (8.33) permit evalua-
tion of ΔGn

′ . The maximum in ΔGn
′ is determined by setting @DG0

n=@n ¼ 0:

n0k ¼
32pc3X2

3 kTð Þ3 ln
bv nð Þ � bi nþ 1ð Þ

b0v nð Þ

 !" #3 ; ð8:40Þ

where Cv=C0
v ¼ bv nð Þ=b0v nð Þ. Since RV ¼ 3

4
nX
p

� �1=3

, the radius corresponding to

nk
′ is:

r0k ¼
2cX

kT ln
bv nð Þ � bi nþ 1ð Þ

b0v nð Þ

 !" # : ð8:41Þ
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Note that as βi → βv, r0k ! 1, which says that if the capture rate for vacancies and
interstitials is the same, then the critical void embryo size would need to be ∞.

Figure 8.5 plots ρ′(n) as a function of cluster size n for various values of βi/βv for
Sv = 430 and T = 627 °C. Note the effect of increasing the interstitial arrival rate for
a fixed vacancy arrival rate. With increasing arrival rate ratio, (βi/βv), the slope of
the distribution, dρ/dn, decreases everywhere. The reason is that increasing the
interstitial flux increases the fraction of embryos of a given size n which actually
shrink to the next smallest size (n − 1), whereas to maintain the constrained dis-
tribution requires that the increased fraction be balanced by a decreased concen-
tration of nuclei of size n relative to that of size (n − 1).

Increasing the arrival rate ratio also shifts the minimum in the distribution
ρ′(n) to larger sizes and to lower concentrations. Since the nucleation rate is pro-
portional to ρ′(n), it decreases tremendously by the deepening and widening of the
minimum in ρ(n) as the arrival rate ratio increases. The nucleation rate in Fig. 8.5
decreases about 6 orders of magnitude as the arrival rate ratio is increased from 0 to
0.97.

To obtain void nucleation as βi/βv approaches 1 requires higher vacancy su-
persaturation. The strong dependence of nucleation on vacancy supersaturation is
affected only very slightly by the arrival rate ratio. Figure 8.6 shows that a factor of
10 increase in supersaturation causes the nucleation rate to increase from 1 to
1015 nuclei/cm3/s at 627 °C.

The effect of temperature on the vacancy concentration, C*, required to give a
fixed nucleation rate is shown in Fig. 8.7 by the set of curves identified by the
arrival rate ratios, βi/βv. Over most of the temperature range, C* increases with
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Fig. 8.5 Concentration of void embryos as a function of their size when the net flow of embryos is
constrained to be zero. The parameters are the arrival rate ratios βi/βv and the nucleation rates (in
s−1 cm−3) of the unconstrained system. For this example, T = 627 °C and Sv = 430. Solid circles
indicate the minima of n(x) (after [8])
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8.1 Void Nucleation 391



temperature even though the supersaturation Sv ¼ Cv=C0
v decreases. Note that Cv is

high at low temperature where the diffusion coefficient is small and there is not
much loss. Cv is small at intermediate temperature where annihilation and loss to
sinks are great. But Cv is high again at high temperature where C0

v �Cv: The
parameter p is the probability per defect jump that the defect is annihilated at a sink.
The values of p range from 10−7, typical of an annealed metal to 10−3, which is
typical of a heavily cold-worked metal.

Figure 8.8 gives the steady-state vacancy concentrations for several defect
production rates K0 and several nucleation rates J and for a sink-annihilation
probability of 10−7 and an arrival rate ratio of 0.99. The intersection of the defect
production rate and the nucleation rate provides the vacancy concentration at the
temperature of the intersection. Higher vacancy production rates promote greater
vacancy concentration and a higher nucleation rate.

In summary, the void nucleation rate is a function of the height of the activation
barrier. Inclusion of interstitials raises the activation barrier and reduces the
nucleation rate. The critical void size radius for survival and growth as a void is a
function of the activation barrier height with greater heights requiring larger critical
void sizes. Nucleation rate is strongly increased by vacancy supersaturation and a
reduced interstitial-to-vacancy arrival rate ratio.
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8.1.3 Effect of Inert Gas

Up to this point, we have assumed that a supersaturation of vacancies was sufficient
to create a void embryo. It is well known that inert gas atoms may act to stabilize a
void embryo and assist in the nucleation process. In fact, there is evidence to
suggest that gas atoms are always involved in the void nucleation process [6–10].
Hence, several theories have been proposed that involve void nucleation in the
presence of inert and non-inert gases [9, 11]. Here, we will consider a simple
treatment [4, 9] of an immobile, inert gas, which is just an extension of the theory
already developed. We will focus on helium since it is commonly produced by
transmutation reactions in core structural materials.

Helium is very immobile compared to vacancies or interstitials in the tempera-
ture range of void formation. Once helium is trapped by a void embryo, its return to
the matrix is very unlikely. Therefore, nucleation in the presence of helium does not
require us to consider the interaction between helium atoms, vacancies, and inter-
stitials in the formation of a void embryo. We may analyze the problem instead, by
treating the inert gas atoms as sites for the formation of void embryos by migration
of the point defects. In essence, this is a form of heterogeneous void nucleation
rather than the homogeneous process described in Sect. 8.1.2.

The phase space description of the gas-containing void behavior is similar to that
given in Sect. 8.1.2 and in [6]. The void is assigned coordinates specifying its
vacancy content (n) and the number of gas atoms it contains (x) (Fig. 8.9). The void
moves in the +n direction by capturing vacancies and in the opposite direction by
either thermal emission of vacancies or capture of interstitials:

_n ¼ b0vn
1=3 � av � b0i n

1=3; ð8:42Þ
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Fig. 8.9 Phase space for void nucleation showing movements of a void following point defect
capture (βi, βv, βx) or loss (αv, αx, Kc

x) (after [6])
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where b0v and b0i are the arrival rates of vacancies and interstitials to the void, αv is
the emission rate of vacancies from the void, and the factor n1/3 accounts for the
dependence of the capture rate on the void size. Similarly, movement in the positive
x-direction occurs by gas atom capture and in the opposite direction by resolution of
gas atoms (return of the gas atom to the matrix due to knockout by irradiation) or by
thermal emission of gas atoms:

_x ¼ b0xn
1=3 � ax � xKc

x ; ð8:43Þ

where βx
0 is the arrival rate of gas atoms, αx is the emission rate of gas atoms, and Kx

c

is the rate of gas atom resolution.
For the case where the voids are in equilibrium with the vacancy and gas atom

concentrations, the distribution of gas-filled void embryos containing n vacancies
and x gas atoms is:

q0 n; xð Þ ¼ N exp
�DG0 n; xð Þ

kT

� �
; ð8:44Þ

where ΔG0 (n, x) is the free energy of formation of the gas-filled void, also referred
to as an (n, x)-mer. For every (n − 1, x)-mer capturing a vacancy, a (n, x)-mer will
emit a vacancy, and for every (n, x − 1)-mer capturing a gas atom, a (n, x)-mer will
emit one. Then,

q0 n� 1; xð Þb0v n� 1ð Þ1=3¼ q0 n; xð Þav n; xð Þ; ð8:45Þ

and

q0 n; x� 1ð Þb0x x� 1ð Þ1=3¼ q0 n; xð Þax n; xð Þ; ð8:46Þ

and substituting Eqs. (8.45) and (8.46) into Eq. (8.42) to eliminate αv(n, x) and αx(n,
x) gives:

_n ¼ b0vn
1=3 1� b0i

b0v
� exp

1
kT

@DG0 n; xð Þ
@n

� �" #
ð8:47Þ

_x ¼ b0xn
1=3 1� xKc

x

b0xn
1=3

� exp
1
kT

@DG0 n; xð Þ
@x

� �" #
; ð8:48Þ

which are the velocities of the void in (n, x) phase space. However, we are inter-
ested in the nucleation rate, which requires more development and is described in
detail in [4].
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We start with a distribution of gas atom clusters, Mx, which is the number of gas
atom clusters per unit volume composed of x gas atoms. The total helium con-
centration in the solid is:

M ¼
X
x¼1

xMx; ð8:49Þ

and is determined by the helium production rate due to transmutation reactions. We
assume that nucleation of voids occurs independently and simultaneously on each
of the gas atom clusters characterized by Mx nucleation sites per unit volume.
Nucleation is driven by the vacancy and interstitial supersaturation. In addition to
heterogeneous nucleation at gas cluster sites, homogenous nucleation is assumed to
occur also on the N0 lattice sites in the solid. The total nucleation rate is the sum of
the contributions of the homogeneous and heterogeneous nucleation rates:

J ¼ Jhom þ
X
x¼1

Jx; ð8:50Þ

where Jhom is given by Eq. (8.35). In order to obtain the total nucleation rate, we
need to determine the heterogeneous nucleation rate Jx on the Mx gas cluster sites.

The distribution of helium void embryos containing n vacancies and x gas atoms,
ρ0(n, x), is governed by the reaction:

nv ¼ vnx; ð8:51Þ

where vnx denotes a void consisting of n vacancies and x gas atoms. Since helium is
immobile, there is no chemical reaction expressing the equilibration of gas atoms
between the voids and the bulk. The criterion of chemical equilibrium is then:

nlv ¼ lnx; ð8:52Þ

and the chemical potential of a void with n vacancies and x gas atoms is:

lnx ¼
@G

@q0 n; xð Þ : ð8:53Þ

The formulation of the total Gibbs free energy for the gas–vacancy cluster is similar
to the analysis presented earlier for vacancies alone. Analogous to Eq. (8.2) for
voids, the total Gibbs free energy is:

G ¼ G0 þ
X
x

X
n

q0 n; xð ÞGnx � kT lnwnx
 �

: ð8:54Þ
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As before, wnx is the number of ways of arranging ρ0 (n x) voids on Mi sites:

wnx ¼
Mx Mx � 1ð Þ. . . Mx � q0 n; xð Þ � 1½ �� �

q0 n; xð Þ½ �! ¼ Mx!

Mx � q0 n; xð Þ½ �! q0 n; xð Þ½ �! : ð8:55Þ

Using Eq. (8.55) in Eq. (8.54) and using Eq. (8.54) to determine the chemical
potential as given in Eq. (8.53) yield:

lnx ¼ Gnx þ kT ln
q0 n; xð Þ
Mx

� �
: ð8:56Þ

The reversible work to form a void embryo from n vacancies and x gas atoms is
[4, 12]:

Gnx ¼ 36pX2� �1=3
cn2=3 � xkT ln

MHnX
xkT

� �
: ð8:57Þ

The first term is the work to create a gas-free void consisting of n vacancies and is
the same as that given in Eq. (8.6) for void formation. The second term is work to
move the helium from the solid into the void. H in the second term is the Henry’s
law constant for the dissolution of helium in the metal. The expression for Gnx in
Eq. (8.57) is substituted into the expression for the chemical potential of a void with
n vacancies and x gas atoms, as in Eq. (8.56). Using the equality in Eq. (8.52) with
μv given by Eq. (8.12) and solving for ρ0 (n, x) give:

q0 n; xð Þ ¼ Mx exp n ln Sv � nn2=3 þ x ln
MHnX
xkT

� �� �
; ð8:58Þ

which is identical to Eq. (8.14) except for the extra term in the exponent and the
pre-exponential factor. In fact, for x = 0 and Mx = N0, the result reduces to
Eq. (8.14).

Using Eq. (8.44) with Mx substituted for N0 gives:

DG0 n; xð Þ ¼ �nkT ln Sv þ 36pX2� �1=3
cn2=3 � xkT ln

MHnX
xkT

� �
: ð8:59Þ

Figure 8.10 shows the free energy of void formation as a function of n and x. The
intercept of this surface at x = 0 (no gas) corresponds to the βi/βv = 0 curve in
Fig. 8.5 in which ρ′ is plotted as a function of n in Eq. (8.34), ρ′(n) = N0 exp (−ΔGk

′ /
kT), and for βi/βv = 0, then ΔGn

′ = ΔG(n, x = 0). Note that gas atoms in the void
reduce the energy barrier for nucleation below that value characteristic of gas-free
voids. The saddle point on the surface shown in Fig. 8.10 occurs at n = 11 and
x = 6. The plot, however, does not include interstitials (as would a plot of ΔGn

′ ),
which are included in the analysis in exactly the same manner as in the case of
homogeneous nucleation.
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The determination of the nucleation rate is done in the same manner as for
homogeneous nucleation, resulting in a nucleation current:

Jk;x ¼ Z 0
xbkxq

0
k n; xð Þ; ð8:60Þ

where

Z 0
x ¼

�1
2pkT

@2DG0 n; xð Þ
@n2

� �1=2
n¼nk

; ð8:61Þ

q0 n; xð Þ ¼ Mx exp �DG0 n; xð Þ=kTð Þ; ð8:62Þ

and

DG0 n; xð Þ ¼ kT
Xn
x¼0

ln
b0i
b0v

 !
þ exp

1
kT

@DG0 n; xð Þ
@n

� �" #
; ð8:63Þ

and the values of Z 0
k and ρ′(nk, x) are evaluated at the critical void size, nk, and βkx is

the rate of impingement of vacancies on a critical size void.

n x

Fig. 8.10 Plot of the free energy of void formation as a function of the number of vacancies
(n) and the number of gas atoms (x) in the void. Conditions are as follows: Sv = 600,
p0 = 507 MPa, T = 500 °C, γ = 1 J/m2 (after [12])
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To determine the nucleation rate on the gas atom clusters in the metal, we must
estimate the distribution of the available gas (M atoms/cm3) among the various
cluster sizes. For simplicity, the distribution Mx = M1

−(x+1) is assumed. This distri-
bution must satisfy Eq. (8.49). Figure 8.11 shows the results of calculations based
on Eqs. (8.60) to (8.62) for M equivalent to 10 ppm helium (equivalent to the
amount of helium expected in stainless steel cladding after a fluence of
5 × 1022n/cm2). Note that in the regime of vacancy supersaturation expected in a
reactor, heterogeneous nucleation on helium atom clusters far outweighs homo-
geneous nucleation. This behavior constitutes theoretical confirmation of the
often-observed enhancement of void nucleation of helium. The relative importance
of homogeneous and heterogeneous nucleation shifts according to the helium
concentration because Jhom(n) is proportional to N0, whereas Jx (n) is proportional
to Mx. At low fluence, homogeneous nucleation is dominant because there is not
enough helium to drive heterogeneous nucleation. However, since Jhom is quite low,
no voids are observed until sufficient helium has been generated by transmutation
reactions to give the high heterogeneous nucleation rate. This incubation time is
physically the relaxation time for the approach to steady state after a step increase in
supersaturation. For void formation with or without the presence of gas:

s ¼ 2bkZ
0
k

� ��1
: ð8:64Þ

This value is equivalent to a fluence of 1022 n/cm2 for fast reactor irradiation
conditions.

In summary, the effect of gas atoms is to substantially increase the void
nucleation rate by lowering the critical radius for a stable void embryo below that
for a gas-free void. Therefore, gas atom introduction into the lattice (either by
transmutation or by accelerator injection) promotes the formation of voids relative
to the pristine lattice.
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8.1.4 Void Nucleation with Production Bias

The evolution of dislocation loops under cascade damage conditions was discussed
in Sects. 7.5 and 7.6.2 for interstitial clusters. We can use the same treatment to
develop a formulation specific to void nucleation [14]. Given that the number of
vacancies in a spherical void can be written as:

dnv
dt

¼ 3n1=3v

a2
DvCv � DiCi � DvC

0
v

 � ð8:65Þ

CV
v ¼ C0

v exp 2cX=kTRVð Þ; ð8:66Þ

where a ¼ 3X=4pð Þ1=3, nv is the number of vacancies in a void, RV ¼ an1=3v , and Ω
is the atomic volume, the drift velocity, F(n) (from the Fokker–Planck treatment), is
now a single term equal to the RHS of Eq. (8.65). The diffusive spread, described
by the term D(n), is a sum of contributions due to single defect jumps, cascades, and
vacancy emission as:

D nð Þ ¼ Ds nð ÞþDc nð ÞþDe nð Þ; ð8:67Þ

where

Ds nð Þ ¼ 3n1=3

2a2
Dv Cv � C0

v

� �þDiCi
 �

; ð8:68Þ

Dc nð Þ ¼ 3n2=3

4a
Keff
v N2

dv

� �
kvNdv

þ Keff
i N2

di

� �
kiNdi

� �
; ð8:69Þ

De nð Þ ¼ 9DvC0
vn

2=3

2a2
; ð8:70Þ

and Keff
j is the effective generation rate of free point defects, Ndj and 〈Ndj

2 〉 are the
average number and the average square number of free point defects generated in a
single cascade, respectively, and kj

2 is the total sink strength for point defects of the
type j. The solution to the general kinetic equation is similar to that for the case of
interstitial clusters and is given in [14]. For the case of small critical vacancy size,
the void nucleation probability, Pm, is:
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Pm ffi b
6pRcrncr

DvCv � DiCið Þ
DiCi 1þ dn1=3cr

	 
 n0 � nv0ð Þ
2
4

3
5
1=2

� exp � g b=Rcrð Þn2=3cr � n2=30

1þ 1= den1=3cr

	 

þ dc=de

0
@

1
A;

ð8:71Þ

where n0 is the initial void embryo size (generally*4 vacancies), nv0 is a minimum
size of a void embryo below which it is no longer a void (generally *2–3
vacancies), d = dc +de, β = 2γΩ/kT, and Rcr and ncr are the size and vacancy content
of the critical size embryo. Assuming that production bias is the main driving force
for void growth at elevated temperatures, the ratio (DvCv − DiCi)/DiCi is estimated
as εi, the fraction of interstitials produced in cascades in the form of immobile
clusters. The term Rcr is determined from Eqs. (8.65) and (8.66) under that con-
dition that a void will grow if it receives a net vacancy flux (DvCv > DiCi):

Rcr ¼ bDvCV
v

DvCv � DiCi � DvCV
v
; ð8:72Þ

and R(n) = an1/3. The terms dc and de are strengths of the diffusive spread for
clusters and for vacancy emission relative to single point defects:

dc ¼ Dc ncrð Þ
n1=3cr Ds ncrð Þ

; de ¼ De ncrð Þ
n1=3cr Ds ncrð Þ

; ð8:73Þ

and the function η has a value between 0.55 and 0.84.
Application of Eq. (8.71) for various values of dc and de and for a void embryo

size of 4 vacancies leads to nucleation probabilities in the range 10−6 to 10−4 for
critical vacancy clusters of size ∼100 vacancies (Fig. 8.12). The nucleation rate is
then:

J ffi Keff
cl

Nd
Pm; ð8:74Þ

where Keff
cl is the effective generation rate of point defects in cluster and free form,

Nd is the average total number of point defects generated in a single cascade, and εi
is the fraction of interstitials produced in cascades in the form of immobile clusters.
Figure 8.13 shows the void nucleation rate calculated for annealed copper compared
with experimental data at 250, 300, and 350 °C and different surface energies, γs, and
for different values of de. In terms of void nuclei created cm−3 s−1, the nucleation
rate is in the range 1015 to 1018, which is larger than what was predicted by
conventional nucleation theory. Thus, the effect of production bias is to increase the
nucleation rate.
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8.2 Treatment of Defect Sinks in the Growth of Voids

Having determined expressions for the rate at which voids are nucleated in the
solid, we now turn to determining the rate at which the void nuclei grow into stable
voids. As mentioned earlier, we will assume that the nucleation and growth stages
are separated in time and that only after the void embryos are established does
growth begin. Of course, this is a simplification of the true in-reactor situation in
which the growth of stable nuclei is occurring simultaneously with nucleation.
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Void growth is determined by solving the point defect balance equations
developed in Chap. 5. These equations provide the vacancy and interstitial super-
saturations that drive the nucleation and growth processes. The concentrations of
vacancies and interstitials in the solid are determined by equating the rates of defect
production and removal by all mechanisms. By doing so, the time derivatives are
removed and the resulting solution has the form of a steady-state solution.
However, since the defect concentrations are changing with time (dose), the
steady-state solution is valid over only short time periods and is termed quasi-
steady state. The quasi-steady-state solution has value because the changes in sink
strength due to microstructure evolution are slow compared to the response time of
the defect populations. So in essence, the problem can be solved by assuming an
initial condition that properly characterizes the sink strengths, solving the point
defect balance equations for those sink strengths, then updating the sink strengths,
and iterating.

Rates of production and removal are assumed to be uniform throughout the
metal. Clearly, strong gradients will exist close to the sink. But they can be
neglected by homogenizing or smearing the sink strengths, that is, by replacing
discrete sinks by spatially uniform absorbers of point defects so that the aggregate
effect on defect absorption is the same in the homogenized sink case as in the
heterogeneous sink case. The sink strengths are those described in Chap. 5. Void
growth is then calculated according to rate theory as developed by Brailsford and
Bullough [14] subject to the following simplifications:

1. Discrete sinks are replaced by a continuous or smeared distribution of sinks.
2. Each sink is given a strength so that the current of defects to the smeared sink is

the same as the current to the actual sinks in the real material.
3. Steps 1 and 2 remove the spatial dependence of Cv and Ci, and the point defect

balance equations become:

@Cv

@t
¼ K0 �

X
X

AX
v � Riv

@Ci

@t
¼ K0 �

X
X

AX
i � Riv;

ð8:75Þ

where the first term on the right is the production rate of vacancies and
interstitials, the second term is the loss rate to all sinks, X, and the last term is the
loss rate due to vacancy–interstitial recombination.

4. Vacancy and interstitial concentrations, Cv and Ci, are calculated from
Eq. (8.75). The change in sink strength due to the flow of defects to the sink is
calculated, and the process, starting with Step 1, is iterated in order to advance in
time and dose.

Reaction rate constants for defect–sink reactions and sink strengths for the relevant
sinks were determined in Chap. 5 and summarized in Table 5.2. Recall that sinks are
classified as neutral (voids, grain boundaries, incoherent precipitates), biased
(dislocation network and dislocation loops), or variable biased (coherent precipitates
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and over/undersized solutes). For all sink types, the defect absorption rate is pro-
portional to the diffusion coefficient of the point defect and the difference in defect
concentration between the bulk and the sink surface. With the exception of dislo-
cation loops, the interstitial concentration at the sink surface is insignificant com-
pared to the bulk value and may be neglected. In the case of vacancies, their
concentration at the network dislocation core is maintained at the equilibrium
concentration. For voids and loops, the vacancy concentration at the sink surfaces
must also be determined. Once the sink strengths and the defect concentrations at the
sink surfaces are all known, then we can determine the net absorption rate of defects
by void nuclei and use this information to determine the growth rate of the voids.

8.2.1 Defect Absorption Rates and Concentrations at Sink
Surfaces

We seek to determine expressions for the absorption rates of defects for each of the
relevant sinks, categorized according to sink type. The general form of the
absorption rate is:

AX
j ¼ k2XDj Cj � CX

j

	 

¼ k2XDjCj � LXj ; ð8:76Þ

where Aj
X is the absorption rate of defect j by sink X, kX

2 is the strength of sink X, Dj

is the diffusion coefficient of defect j, Cj and Cj
X are the bulk concentration and sink

surface concentration of defect j, respectively, and Lj
X is the thermal emission rate of

defect j by sink X. Note that for neutral sinks, the sink strengths are dependent only
on the character of the sink and not the defect. This is the advantage of writing the
loss terms using sink strengths rather than reaction rate constants.

Neutral Sinks

The loss rate of point defects to voids can be written as:

AV
v ¼ k2VDv Cv � CV

v

� � ¼ k2VDvCv � LVv
AV
i ¼ k2VDiCi;

ð8:77Þ

where k2V is the sink strength of a void given in Table 5.2, CV
v is the vacancy

concentration at the void surface, LVv is the thermal emission rate of vacancies at the
sink surface, and all voids are assumed to be the same size. The loss rate of defects
to incoherent precipitates is:

AIP
v ¼ k2IPDvCv

AIP
i ¼ k2IPDiCi;

ð8:78Þ
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and to grain boundaries, the rate is:

Agb
v ¼ k2gbDvCv

Agb
i ¼ k2gbDiCi;

ð8:79Þ

where the sink strengths are given in Table 5.2, and thermal emission terms have
been neglected.

Among Eqs. (8.77), (8.78), and (8.79), the term that is yet to be determined is the
vacancy concentration at the void surface, CV

v . This is done as follows. Recall from
Eq. (4.15) that the thermal equilibrium concentration of vacancies in a solid is:

C0
v ¼

1
X
exp

Sf
k

� �
exp

�Hf

kT

� �
;

where

Hf ¼ Ef þ pX; ð8:80Þ

and the pΩ term was neglected for single vacancies embedded in the lattice. This
simplification does not hold in the solid surrounding a void where forces such as
surface tension, pressure due to gas in the void, or an external hydrostatic stress are
acting. For example, the existence of a void surface produces a surface tension that
can be determined, using Fig. 8.14, as follows:

Force
unit area

¼ 2prc sin h
A

ffi 2prc
pr2

h ¼ 2prc
pr2

r
R

	 

¼ 2c

R
; ð8:81Þ

where the approximation is that sin θ is replaced with θ for small θ. Hence, the
p term in Eq. (8.80) becomes:

p ¼ � 2c
R
; ð8:82Þ

R

sin

r

area A

Fig. 8.14 Schematic of the surface tension on a void of radius R
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where the minus sign enters because the surface tension acts in an inward direction
to shrink the void. The vacancy concentration at the void surface then becomes:

CV
v ¼ 1

X
exp

Sf
k

� �
exp � Ef

kT

� �
exp � pX

kT

� �
; ð8:83Þ

where

C0
v ¼

1
X
exp

Sf
k

� �
exp � Ef

kT

� �
; ð8:84Þ

and substituting for pΩ from Eq. (8.82) gives:

CV
v ¼ C0

v exp
2cX
RkT

� �
; ð8:85Þ

and Eq. (8.77) becomes:

AV
v ¼ k2VDv Cv � C0

v exp
2cX
RkT

� �� �
: ð8:86Þ

Biased Sinks

The defect loss rate to network dislocations is given by:

AN
v ¼ k2vNDv Cv � C0

v

� � ¼ k2vNDvCv � LNv
AN
i ¼ k2iNDiCi;

ð8:87Þ

where the sink strengths are given in Table 5.2 and the term C0
v is the thermal

equilibrium concentration of vacancies. For interstitial dislocation loops, the loss
term is:

AL
v ¼ k2vLDv Cv � CL

v

� � ¼ k2vLDvCv � LLv
AL
i ¼ k2iLDi Ci � CL

i

� � ¼ k2iLDiCi � LLi ;
ð8:88Þ

where the sink strengths are the same as for network dislocations since the dislo-
cation core is the same. However, the defect concentration at the sink surface is
different from the thermal equilibrium value because addition of a vacancy or an
interstitial to the dislocation loop contracts or expands, respectively, the size of the
loop and this requires a change in energy. The concentration of vacancies and
interstitials in equilibrium with a loop is CL

v and CL
i ; respectively. Following the

analysis in [4], the defect concentration in equilibrium with the loop is determined
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by considering the Gibbs free energy of a piece of metal containing nv vacancies
and ni interstitials at concentrations CL

v and CL
i ; and a single interstitial loop con-

taining mi interstitials:

G ¼ G0 þEL mið Þþ nvlv þ nili; ð8:89Þ

where G0 is the free energy of solid without the loop but with Cv and Ci defects,
EL(mi) is the energy of the loop, and μi,v are the chemical potentials of interstitials
and vacancies in the solid. For the system to be in chemical equilibrium, the transfer
of point defects between the solid and the loop must cause no change in the free
energy of the system:

dG ¼ dEL

dmi

� �
dmi þ lvdnv þ lidni ¼ 0; ð8:90Þ

and

dmi ¼ dnv � dni; ð8:91Þ

since the number of interstitials in the loop must come from the bulk. Eliminating
δmi from Eqs. (8.90) and (8.91) gives:

dEL

dmi

� �
dnv � dEL

dmi

� �
dni þ lvdnv þ lidni ¼ 0: ð8:92Þ

Since changes in vacancy and interstitial concentrations are arbitrary and inde-
pendent of each other, the coefficients of both changes are set equal to zero, leading
to:

dEL

dmi
þ lv ¼ 0

dEL

dmi
� li ¼ 0:

ð8:93Þ

From Eq. (8.12), the chemical potential of vacancies and interstitials in a solid with
concentrations CL

v and CL
i is:

lv ¼ kT ln
CL
v

C0
v

li ¼ kT ln
CL
i

C0
i
:

ð8:94Þ
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For vacancies and interstitials in equilibrium,

CL
vC

L
i ¼ C0

vC
0
i ; ð8:95Þ

or from Eq. (8.93):

lv ¼ �li: ð8:96Þ

Combining Eqs. (8.93) and (8.94) for vacancies and then for interstitials yields:

CL
v ¼ C0

v exp � dEL=dmi

kT

� �

CL
i ¼ C0

i exp
dEL=dmi

kT

� �
:

ð8:97Þ

Using Eq. (7.62) for the energy of a Frank loop:

EL ¼ 2plb2
ffiffiffi
3

p
a2mi

4p

� �1=2

þ p

ffiffiffi
3

p
a2mi

4p

� �
cSFE;

and dropping the second term for simplicity, then dEL/dmi becomes:

dEL

dmi
¼ H

2
ffiffiffiffiffi
mi

p ; ð8:98Þ

where Θ is 2πμb2
ffiffiffi
3

p
a2

4p

� �1=2

. Substituting into Eq. (8.97) yields:

CL
v ¼ C0

v exp � H
2
ffiffiffiffiffi
mi

p
kT

� �

CL
i ¼ C0

i exp
H

2
ffiffiffiffiffi
mi

p
kT

� �
:

ð8:99Þ

Note that the vacancy concentration in equilibrium with an interstitial loop is less
than the equilibrium vacancy concentration in the solid, while the reverse is true for
interstitials. The absorption rates of vacancies and interstitials at loops then become,
from Eq. (8.88):

AL
v ¼ zvDvqL Cv � C0

v exp � H
2
ffiffiffiffiffi
mi

p
kT

� �� �

AL
i ¼ ziDiqL Ci � C0

i exp
H

2
ffiffiffiffiffi
mi

p
kT

� �� �
:

ð8:100Þ
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Variable Biased Sinks

The sink strengths for variable biased sinks are given in Eq. (5.120) and are:

k2vCP ¼ 4pRCPqCPYv

k2iCP ¼ 4pRCPqCPYi;

where Yv,i are sink strengths for coherent precipitates for vacancies and interstitials
and the loss rate of point defects to coherent precipitates is:

ACP
v ¼ k2vCPDvCv ¼ 4pRCPqCPCvYv

ACP
i ¼ k2iCPDiCi ¼ 4pRCPqCPCiYi:

ð8:101Þ

8.2.2 Point Defect Balances

Now that we have expressions for the absorption rates of defects for each type of
sink, we can construct the steady-state, point defect balances for the solid under
irradiation:

K0 �
X
X

AX
v � Riv ¼ 0

K0 �
X
X

AX
i � Riv ¼ 0;

ð8:102Þ

and in the most general form:

K0 � k2vDv Cv � CX
v

� �� KivCvCi ¼ 0

K0 � k2i Di Ci � CX
i

� �� KivCvCi ¼ 0;
ð8:103Þ

where k2v and k2i are the total sink strengths for vacancy and interstitial loss:

k2v ¼ k2vV þ k2vIP þ k2vgb þ k2vN þ k2vL þ k2vCP

k2i ¼ k2iV þ k2iIP þ k2igb þ k2iN þ k2iL þ k2iCP;
ð8:104Þ

and theCX
v andCX

i are concentrations of vacancies and interstitials at the sink surface.
Now, since defect production rates and recombination rates in Eq. (8.103) are equal
and there is no net accumulation of point defects at coherent precipitates, then:X

X

AX
v ¼

X
X

AX
i ; ð8:105Þ
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or

AV
v þAIP

v þAgb
v þAN

v þAL
v þACP

v ¼ AV
i þAIP

i þAgb
i þAN

i þAL
i þACP

i ; ð8:106Þ

and therefore,

ðk2vV þ k2vIP þ k2vgb þ k2vN þ k2vL þ k2vCPÞDvCv � LVv � LNv � LLv

¼ ðk2iV þ k2iIP þ k2igb þ k2iN þ k2iL þ k2iCPÞDiCi � LLi :
ð8:107Þ

where the L terms are the thermal emission of the defect from the sink.
Substituting in for the expressions for sink strength and thermal emission from

the respective equations in Chaps. 5 and 7 gives:

4pRVqVDv Cv � C0
v exp

2cX
RkT

� �� �
þ zvqNDvðCv � C0

vÞþ 4pRCPqCPDvCvYv

þ zvqLDv Cv � C0
v exp � H

2
ffiffiffiffiffi
mi

p
kT

� �� �
¼ pRVqVDiCi þ ziqNDiCi þ 4pRCPqCPDiCiYi

þ ziqLDi Ci � C0
i exp

H
2
ffiffiffiffiffi
mi

p
kT

� �� �
;

ð8:108Þ

where terms for grain boundaries and incoherent precipitates are neglected for
simplicity. Since the thermal equilibrium interstitial concentration, C0

i , is extremely
small, the thermal emission of interstitials from loops can be neglected.

8.3 Void Growth

Now that we have determined the absorption rate of defects for each sink in the
solid, we focus on the void with the objective of developing an expression
describing its rate of growth. The void growth equation has its origins in the net flux
of vacancies to a void embryo. The net rate of absorption of vacancies by a void is:

AV
net ¼ AV

v � AV
i ¼ 4pRDvðCv � CV

v Þ � 4pRDiCi; ð8:109Þ

where

R is void radius (we have dropped the subscript V for simplicity)
Cv,i is vacancy/interstitial concentration in the solid
CV
v is vacancy concentration at the void surface, and thermal emission of

interstitials from voids is neglected.
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The rate of change in volume of the void is just the net absorption rate times the
defect volume, Ω:

dV
dt

¼ 4pRX DvðCv � CV
v Þ � DiCi

 �
; ð8:110Þ

and since

V ¼ 4
3
pR3; ð8:111Þ

we obtain the common form of the void growth equation:

dR
dt

¼ _R ¼ X
R

DvðCv � CV
v Þ � DiCi

 �
: ð8:112Þ

Our objective is to determine an expression for the void growth equation, which
amounts to determining the values for Cv, Ci, and CV

v . The general solution pro-
cedure is thus to solve the point defect balance equations in Eq. (8.75) for Cv and Ci

at some initial value of the void radius, R0, and then to use those values of Cv and Ci

in Eq. (8.112) to increment the void size from R0 to R′. Since sink strength changes
with void size, updated values of Cv and Ci must be obtained for the next void
growth increment. The process is then iterated to describe the change in void size
with time or dose. This process can be carried out numerically and with small time
steps in order to minimize the time increment over which the sink strengths are
assumed to be constant. In solving for void size in this way, changes to the mi-
crostructure can also be incorporated at the time step boundaries.

While a numerical solution of the void growth equation will produce the most
accurate result, it provides no insight into the governing processes during void
growth. Brailsford and Bullough [15] inserted the solution of Eq. (8.75) into
Eq. (8.112) to obtain an approximate analytical result that provides an excellent tool
for understanding the parameters governing void growth. Mansur [5, 16] advanced
the analysis to develop expressions for the dependence on critical parameters
affecting void growth. We begin by returning to the point defect balance equations
at steady state in order to determine the bulk concentrations of vacancies and
interstitials, Cv and Ci. Setting the time rate of change of the vacancy and interstitial
concentrations equal to zero in Eq. (8.75) gives:

K0 �
X
X

AX
v � Riv ¼ 0

K0 �
X
X

AX
i � Riv ¼ 0;

ð8:113Þ
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or

K0 � KivCiCv � KvsCvCs ¼ 0

K0 � KivCiCv � KisCiCs ¼ 0;
ð8:114Þ

with solutions:

Cv ¼ �KisCs

2Kiv
þ K0Kis

KivKvs
þ K2

isC
2
s

4Kiv

� �1=2

Ci ¼ �KvsCs

2Kiv
þ K0Kvs

KivKis
þ K2

vsC
2
s

4Kiv

� �1=2
;

ð8:115Þ

where Cs is the sink concentration. Using Table 5.2 to write the reaction rate
constants for vacancies and interstitials at sinks as sink strengths gives:

Cv ¼ �k2i Di

2Kiv
þ K0k2i Di

Kivk2vDv
þ ðk2i Þ2D2

i

4Kiv

" #1=2

Ci ¼ �k2vDv

2Kiv
þ K0k2vDv

Kivk2i Di
þ ðk2vÞ2D2

i

4Kiv

" #1=2
:

ð8:116Þ

Defining:

g ¼ 4KivK0

DiDvk2vk
2
i
; ð8:117Þ

and

k2v ¼ zvqd þ 4pRqV þ 4pRCPqCP

k2i ¼ ziqd þ 4pRqV þ 4pRCPqCP;
ð8:118Þ

where, for simplicity, we have neglected grain boundaries, incoherent precipitates
and bias factors on voids and coherent precipitates, and the network dislocations
and dislocation loops are represented by a single term with density ρd = ρN + ρL.
Using Eqs. (8.117) and (8.118), then Eq. (8.116) can be written as:

Cv ¼ Dik2i
2Kiv

ðgþ 1Þ1=2 � 1
h i

Ci ¼ Dvk2v
2Kiv

ðgþ 1Þ1=2 � 1
h i

:

ð8:119Þ
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The void growth rate from Eq. (8.112) can be written in the form:

_R ¼ _R0XðgÞ; ð8:120Þ

where

_R0 ¼
K0ðzi � zvÞqdX
Rðzvqd þ 4pRqVÞ

ziqd þ 4pRqV þ 4pRCPqCP 1þ ðzi � zvÞqd
zvqd þ 4pRqV

� � : ð8:121Þ

Equation (8.121) can be simplified by dropping the last term in the square brackets
in the denominator, since the difference (zi − zv) is small, giving:

_R0 ¼ K0ðzi � zvÞqdX
Rðzvqd þ 4pRqVÞðziqd þ 4pRqV þ 4pRCPqCPÞ

: ð8:122Þ

This growth term is independent of temperature and is proportional to the dislo-
cation bias for interstitials (zi − zv) and the defect production rate. Note that _R0 is:

– Independent of temperature;
– Proportional to the dislocation bias (zi − zv);
– Proportional to the defect production rate, K0.

The term X (η) is given by:

XðgÞ ¼ FðgÞ � 2f; ð8:123Þ

where

FðgÞ ¼ 2
g

ðgþ 1Þ1=2 � 1
h i

; ð8:124Þ

and η is a dimensionless parameter defined in Eq. (8.117). Substituting Eq. (8.123)
into Eq. (8.120) gives:

_R ¼ _R0FðgÞ � 2 _R0f: ð8:125Þ

The quantity η in the function F(η) can be simplified by substituting in for k2v and k
2
i

from Eq. (8.104) (or Table 5.2), giving:

g ¼ 4KivK0

DiDvðziqd þ 4pRqV þ 4pRCPqCPÞðzvqd þ 4pRqV þ 4pRCPqCPÞ
: ð8:126Þ

Using the approximation that zi ≅ zv and eliminating Kiv by using Eq. (5.61) gives:
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g ¼ 4zivK0X

Dva2ðzqd þ 4pRqV þ 4pRCPqCPÞ2
: ð8:127Þ

The expression for η is substituted into Eq. (8.124) to obtain an expression for F(η).
This function describes the effect of homogeneous recombination on void growth
(Fig. 8.15). When recombination is negligible, Kiv → 0 and η → 0, and F → 1, or
lim
g!0

FðgÞ ¼ 1.

Turning now to the second term in Eq. (8.125), we define for simplicity:

_Rth ¼ �2 _R0f; ð8:128Þ

so that Eq. (8.125) can now be written as:

_R ¼ _R0FðgÞþ _Rth; ð8:129Þ

The term ζ is a function of temperature and is expressed as:

f ¼ fðTÞ ¼ Dvðzvqd þ 4pRqvÞ½ziqd þ 4pðRqV þRCPqCPÞ�
2K0ðzi � zvÞ½zvqd þ 4pðRqV þRCPqCPÞ�

� ½4pRCPqCPC
V
v þ zvfqNðCV

v � C0
vÞþ qLðCV

v � CL
v Þg�:

ð8:130Þ

so that:

_Rth ¼ �2 _R0f ¼ �2Dvðzvqd þ 4pRqVÞ½ziqd þ 4pðRqV þRCPqCPÞ�
2K0ðzi � zvÞqd½zvqd þ 4pðRqV þRCPqCPÞ�

�
K0ðzi � zvÞqdX
Rðzvqd þ 4pRqVÞ

ziqd þ 4pRqV þ 4pRCPqCP 1þ ðzi � zvÞqd
zvqd þ 4pRqV

� �
� ½4pRCPqCPC

V
v þ zv½qNðCV

v � C0
vÞþ qLðCV

v � CL
v Þ��:

ð8:131Þ

1

0

 2

Fig. 8.15 The behavior of
F(η) in Eq. (8.124) as a
function of η
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By approximating zi ≅ zv, numerous terms in Eq. (8.131) cancel, leaving:

_Rth ¼ �DvX
R ziqd þ 4pRqV þ 4pRCPqCPð Þ
� 4pRCPqCPC

V
v þ zv qNðCV

v � C0
vÞþ qLðCV

v � CL
v Þ

 � �
:

ð8:132Þ

Substituting in for CV
v and CL

v from Eqs. (8.85) and (8.99), respectively, gives:

_Rth ¼ �DvX
R ziqd þ 4pRqV þ 4pRCPqCPð Þ
� 4pRCPqCPC

0
v exp

2cX
RkT

� �
þ zv

�
qN C0

v exp
2cX
RkT

� �
� C0

v

� ��

þ qL C0
v exp

2cX
RkT

� �
� C0

v exp � H
2
ffiffiffiffiffi
mi

p
kT

� �� ���
:

ð8:133Þ

Approximating exp (x) * x + 1 for small x in all but the first of the exponential
terms of Eq. (8.133) gives:

_Rth ¼ �DvX
R ziqd þ 4pRqV þ 4pRCPqCPð Þ
� 4pRCPqCPC

0
v exp

2cX
RkT

� ��

þ zvC
0
v qN

2cX
RkT

þ qL
2cX
RkT

þ H
2
ffiffiffiffiffi
mi

p
kT

� �� ��
;

ð8:134Þ

and pulling the term C0
v out into the coefficient yields:

_Rth ¼ �DvXC0
v

R ziqd þ 4pRqV þ 4pRCPqCPð Þ
� 4pRCPqCP exp

2cX
RkT

� �
þ zvqN

2cX
RkT

þ zvqL
2cX
RkT

þ h
2
ffiffiffiffiffi
mi

p
kT

� �� �
;

ð8:135Þ

which is the simplified expression for the thermal emission term. This term rep-
resents the thermal emission of defects from sinks. It is independent of defect
production rate and is strongly temperature dependent. Note that at very low
temperature, _Rth ! 0; because of the terms Dv and C0

v :

The rate of change in the void radius with time, _R, determined from Eq. (8.120),
can be used to determine the volumetric swelling rate:
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dV
dt

¼ 4pR2 _R: ð8:136Þ

Void swelling can be represented in terms of the void size distribution as follows. If
ρV(R) dR is the number of voids/cm3 with radii between R and R + dR, then the total
void number density is:

qV ¼
Z1
0

qV Rð Þ dR; ð8:137Þ

the average void size is:

�R ¼ 1
qV

Z1
0

RqV Rð ÞdR; ð8:138Þ

and the amount of void swelling is defined by the change in volume of the solid:

DV
V

¼ 4
3
p
Z1
0

R3qV Rð ÞdR: ð8:139Þ

If the void distribution is narrow, then we can approximate the integral in
Eq. (8.139) with:

DV
V

¼ 4
3
p�R3qV: ð8:140Þ

The equations provided in this section allow the determination of the rate of growth
of voids in a solid under irradiation and consequently the rate of swelling of that
solid. The following sections address the effects of various parameters on void
growth.

8.3.1 Temperature Dependence

Figure 8.16 provides a typical plot of void swelling as a function of temperature.
Note that swelling is characterized by a peak at intermediate temperature. This
behavior should look familiar from the temperature dependence of RIS since the
origin is essentially the same. Low defect mobility limits void growth at low
temperature, and the approach of the defect concentration to the thermal equilib-
rium value limits void growth at high temperature due to a loss of supersaturation.
In the preceding analysis of the void growth equation, the two highly
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temperature-sensitive parameters are the vacancy diffusion coefficient Dv and the
equilibrium vacancy concentration C0

v. The temperature dependence of the term
_R0F gð Þ is contained in the parameter η, which is controlled by Dv. At low tem-
peratures, swelling is low because vacancies are practically immobile. A low value
of Dv makes η large and forces F to become small, resulting in a low value for the
term _R0F gð Þ. The term _Rth approaches zero since it is proportional to DvC0

v : Since
both F(η) and _Rth become small at low temperature, void growth ceases. Under
these conditions, the concentration of vacancies builds up and vacancies and
interstitials are lost to recombination.

At high temperature, the emission of vacancies by voids counterbalances the net
vacancy influx driven by irradiation and suppresses swelling. When in the void
growth equation η becomes small and F approaches unity, the term _Rth also
increases (but in the negative direction) and dominates at the highest temperatures.
Hence, a maximum in the growth rate is predicted at intermediate temperature
where both thermal emission and mutual recombination are less important and the
net flow of vacancies to voids is maximized. Figure 8.17 shows how the compo-
nents of the void growth rate combine to result in a peak at intermediate temper-
ature. This is found to be true with all metals.

Figure 8.18(a) shows an example of the sharp dependence of void swelling on
temperature in an Fe–Cr–Ni alloy irradiated in the BN-350 reactor as a function of
dose and temperature. All the data were for irradiation over a fixed time period,
reflecting the variation of dose rates with position in the core. Closed symbols
represent samples in which voids were found, and open symbols were samples that
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T/TmFig. 8.16 Swelling in nickel
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416 8 Irradiation-Induced Voids and Bubbles



exhibited no voids. Note that despite the differing doses and dose rates, void
nucleation occurs with a very sharp temperature threshold at about 302–307 °C,
illustrating the high sensitivity of void formation to temperature. The general

T T T

R0F

+

Rth

=

R

Fig. 8.17 Construction of the total void swelling rate _R from its components _R0F and _Rth
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Fig. 8.18 (a) Dose–
temperature plot of swelling
in a Fe–Cr–Ni alloy irradiated
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showing the sharp
temperature threshold for
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(b) Schematic of the
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behavior of the void number density and size with temperature is shown in
Fig. 8.18(b). With increasing temperature, the void density falls logarithmically and
the size increases, which is the typical behavior for a process that is dominated by
nucleation at low temperatures where the void growth is slow and by growth at high
temperature where the free energy difference driving void growth is small.

Figure 8.19 shows images of the microstructure in a baffle bolt used to secure
baffle–former plates against the baffle in a pressurized water reactor. In this case, the
head was closest to the core (received the highest dose) and was exposed to the
coolant, hence the lowest temperature. Gamma heating caused the temperature to
exceed the coolant temperature (*320 °C) along the length of the bolt. While the
doses differ somewhat, the dominant influence of temperature is noted by both the
lack of voids in the lowest temperature location (head) and the largest void size at
the highest temperature (top shank).

8.3.2 Dose Dependence

Understanding how swelling depends on dose is critical in the design and operation
of components in radiation environments in which voids have the potential to form
and grow. From the discussion in the previous section, the dependence is com-
plicated by the occurrence of the defect production rate, K0, in the terms _R0 and F
(η). So we will take a different approach in determining the void growth rate

Bolt head, 0 mm Top shank, 25 mm Near threads, 55 mm 
19.5 dpa, ~320 C  12.2 dpa, ~340 C  7.5 dpa, ~330 C 

Fig. 8.19 Swelling in a cold-worked 316 SS baffle bolt in a PWR as a function of position along
the bolt length. The bolt head was closest to the core, and the temperature distribution is caused by
a combination of gamma heating and whether the bolt was exposed to the coolant (courtesy S.M.
Bruemmer and Garner FA, PNNL)
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dependence on dose, following that of Mansur [5]. Recall the expressions for Cv

and Ci given in Eq. (8.119):

Cv ¼ Dik2i
2Kiv

gþ 1ð Þ1=2�1
h i

Ci ¼ Dvk2v
2Kiv

gþ 1ð Þ1=2�1
h i

;

and for η as given in Eq. (8.117):

g ¼ 4KivK0

DiDvk2vk
2
i
:

We can write the term in brackets in Eq. (8.119) as:

gþ 1ð Þ1=2�1
h i

¼ 1þ 4KivK0

DiDvk2vk
2
i

� �1=2

�1

" #
: ð8:141Þ

Then, DvCv and DiCi can be written as:

DvCv ¼ DvDik2i zv
2Kiv

1þ 4KivK0

DiDvk2vk
2
i

� �1=2

�1

" #

DiCi ¼ DvDik2vzi
2Kiv

1þ 4KivK0

DiDvk2vk
2
i

� �1=2

�1

" #
:

ð8:142Þ

Neglecting thermal emission and substituting into Eq. (8.112) give:

_R ¼ XDvDi

2RKiv
1þ 4KivK0

DiDvk2vk
2
i

� �1=2

�1

" #
k2vzv � k2i zi
� �

: ð8:143Þ

Substituting for k2v and k2i from Eq. (8.104) and considering only coherent pre-
cipitates, network dislocations, and loops give:

_R ¼ XDvDi

2RKiv
1þ 4KivK0

DiDvk2vk
2
i

� �1=2

�1

" #

� 4pRCPqCP zCPi zv � zCPv zi
� �þ qL zLi zv � zLv zi

� �þ qN zNi zv � zNv zi
� � �

:

ð8:144Þ

Simplifying Eq. (8.144) for the case of voids and total dislocation density only,
we have:
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_R ¼ XDvDi

2RKiv
1þ 4KivK0

DiDvk2vk
2
i

� �1=2

�1

" #
qd zdi zv � zdvzi
� �

: ð8:145Þ

The term zdi zv � zdvzi
� �

is the bias of dislocations versus that for voids and is the
determinant of the propensity for a void to grow or shrink. Growth will occur if

zdi zv [ zdvzi; or stated as ratios,
zdi
zdv

[
zi
zv
, and shrinkage will occur if the inequality is

in the other direction. The presence of other sinks will affect swelling through their
inclusion in the terms k2v and k2i : The larger the sink strengths, the lower will be the
void growth rate due to the loss of defects to those sinks.

The limiting behaviors of Eq. (8.145) are the cases in which recombination

dominates
4KivK0

DiDvk2vk
2
i
� 1 (loss of defects to recombination is much larger than that

lost to sinks) and loss to sinks dominates
4KivK0

DiDvk2vk
2
i
� 1 5½ �. Assuming that the only

sinks besides voids are network dislocations, we have:

_R ¼ X
R

DiDvK0

zNi z
N
v Kiv

� �1=2Q1=2
i Q1=2

v zNi zv � zNv zi
� �

1þQvð Þ1=2 1þQið Þ1=2
: recombination dominant ð8:146Þ

_R ¼ XK0QiQv

RqN 1þQvð Þ 1þQið Þ zNi zv � zNv zi
� �

: sink dominant; ð8:147Þ

where

Qi;v ¼
zNi;vqN

4pRqVzi;v
ð8:148Þ

is the ratio of dislocation sink strength to void sink strength. Note that the growth
rate is dependent on K0

1/2 when recombination is dominant, as in Eq. (8.146).
However, when sinks are dominant, Eq. (8.147) shows that the growth rate is
proportional to K0. Multiplying Eq. (8.147) by 4πR2ρV and given that Ω = 1/N0, the
site density gives the volume swelling rate:

d DV=Vð Þ
dt

¼ K0
zi � zv
zv

� �
Q

1þQð Þ2 : ð8:149Þ

This is the same expression that can be obtained from Eq. (8.122) by neglecting the
effect of coherent precipitates. For Q = 1 and zi − zv = 0.01, we have:

DV
V

% ffi 1=4� dose in dpað Þ: ð8:150Þ
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Garner [19] has shown that over a wide dose range, the steady-state swelling rate in
austenitic stainless steels is of the order of *1 %/dpa (Fig. 8.20). The linear
dependence is consistent with a sink-dominated process, but the magnitude of the
coefficient is a factor of four greater than that predicted by Eq. (8.150). The dis-
crepancy is likely due to the effect of clusters that is not accounted for in the rate
theory model. A closer look at the behavior of vacancies and interstitials in the
cascade shows that the fraction of vacancies and interstitials that form clusters is
larger than has been accounted for thus far. Vacancy clusters form near the cascade
core, and interstitial clusters form near the cascade periphery. Mobile interstitial
clusters can reach sinks by migration of the cluster as a whole. Vacancies emitted
by vacancy clusters by thermal emission are also free to reach sinks. Since the
fraction of interstitials and vacancies in clusters is not the same, nor is their thermal
stability, the difference between vacancy and interstitial clusters results in a dif-
ference in the effective production rates of vacancies compared to that of intersti-
tials, termed the production bias, and can influence void swelling. The net result is

Displacements per atom

Sw
el

lin
g 

(%
)

800 20 40 60 0 20 40 600 20 40 60

650°C age
100 hr

10% CW
800°C, 1hr

10% strain 
650°C, 100hr

1%/dpa

540°C
core 1

540°C
core 4

Sw
el

lin
g 

(%
)

Neutron fluence (1026 n/m2, E > 0.1 MeV)

1%/dpa
1%/dpa

20% cold work 20% cold work

1150°C anneal

1150°C anneal
+650°C age

1300°C anneal

1150°C anneal

1150°C anneal
+650°C age

1300°C anneal

0 10 20 0 10 20 30

10

20

30

40

0

(a)

(b)
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that the sink strength of the clusters is much greater than that of the measurable
dislocation loops, resulting in a much greater driving force for void swelling than is
accounted for by the rate equation formulation. This is one of the reasons that the
observed steady-state swelling dependence on dose is greater than that predicted by
the rate equation formulation.

8.3.3 Role of Dislocations as Biased Sinks

The dislocation structure of an alloy can exert a profound effect on the swelling
behavior. Equation (8.122) demonstrates that both a biased sink (e.g., dislocations)
and a neutral sink are necessary for void growth. If the bias is removed, zi = zv, then
_R0 ¼ 0 and swelling will not occur as defects will flow equally to each sink.

The Q-dependence of _R0 is shown in Fig. 8.21. Note that _R0 is a maximum at
Q = 1, or when the flow of vacancies to voids and dislocations is equal. The regime
Q > 1 is representative of the low-dose regime in which both R and ρV are small, so
vacancy loss to the existing dislocation network dominates. This is why
cold-worked alloys swell less. When Q * 1, then the flow of vacancies to voids
and dislocations is approximately equal. This is the regime where bias exerts its
greatest influence. If the flow of vacancies and interstitials to sinks is equal, and
more interstitials go to dislocations, then more vacancies must flow to voids. At
Q * 1, the flows are equal, so the bias is most effective in promoting void growth.
When Q < 1, defect flow to voids dominates the loss terms, and since few defects
flow to dislocations, the bias is not very effective in creating an imbalance in point
defect fluxes, so the flow of vacancies and interstitials to voids is similar in mag-
nitude and void growth slows or ceases. Although dislocations exhibit a slight

preference for interstitials
bd
bV

	 1
� �

, in a cold-worked material, the dislocations

provide so many sinks for vacancies that the effect of a vacancy supersaturation is
essentially multiplied, resulting in low void nucleation and growth rates. By the
same mechanism, grain boundaries provide unbiased sinks for point defects and
will keep the vacancy supersaturation too low for growth, provided that the grain
boundary area is large enough (i.e., very small grains). Figure 8.22(a) shows a plot

Q

0.25

1

2(1 )+
Q

Q

Fig. 8.21 Dependence of
swelling on the
dislocation/void sink strength
ratio, Q, in Eq. (8.149)
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of swelling rate versus the sink strength ratio, Q, for several austenitic stainless
steels, and Fig. 8.22(b) shows the same for ferritic–martensitic alloys. Indeed, the
dependence shown in Fig. 8.21 is obeyed in practice.

The effect of cold-work on swelling in reactor exposures is shown in Fig. 8.23.
Figure 8.23(a) shows the effect of cold-work on swelling in 316 stainless steel
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irradiated in EBR-II at 650 °C to levels of 33 and 50 dpa. Note that for both cases,
the amount of swelling decreases with increasing cold-work. Figure 8.23(b) shows
that cold-work affects the temperature dependence of swelling by suppressing the
magnitude of the swelling peak with increasing levels of cold-work. The data are
taken from a stainless steel irradiated to doses of 20–61 dpa in the RAPSODIE
reactor. Figure 8.23(c) shows the effect of cold-work on the dose dependence of
swelling in 304 stainless steel and that increasing cold-work decreases the amount
of swelling, but at reduced rates as the amount of cold-work increases. Note also
that these data show that the primary effect of cold-work is to extend the transient
swelling regime, rather than to alter the steady-state swelling rate.

8.3.4 Dose Rate Dependence

The location of the peak swelling temperature depends on the dose rate, sink
strength, and the predominant mode of defect loss. When the dose rate increases,
more point defects are created, but their migration velocities are unchanged. To
remove defects at the higher dose rate at steady state requires point defect con-
centrations to be higher, resulting in greater recombination and a reduction in the
net absorption of vacancies by voids and hence a reduction in the void growth rate.
As a result, the bell-shaped swelling curve is displaced to higher temperatures with
increasing dose rate. Figure 8.24 is a plot of the temperature dependence of the term
F(η) in Eq. (8.125) and illustrates the shift of the swelling peak with dose rate, K0,
similar to that for RIS shown in Fig. 6.9. Alternatively, at a given temperature, the
void growth rate decreases for increasing dose rate. At temperatures where thermal
emission is non-negligible, the void growth rate is a complicated function of dose
rate. Nevertheless, the experimental data substantiate the effect of dose rate on
swelling. Figure 8.25 shows swelling in annealed and cold-worked 316 stainless
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Fig. 8.24 Variation of the function F(η) in Eq. (8.124) with temperature, illustrating the shift of
the peak with dose rate, K0. Parameters used to construct the curves are as follows: ρd = 109 cm−2,
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f = 1.6 eV, zi − zv = 0.01, zv = 1, 4πRρV = 10−11 cm−2, Dv = exp(−1.4 eV/kT) cm2 s−1 (after [15])
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steel at temperatures between 562 and 610 °C over a range of dose rates. Note that
increasing dose rate has the effect of reducing the swelling rate at a given dose, but
that at steady state, all data have a similar slope, indicating that the primary effect of
dose rate is on the duration of the swelling transition period.

If we move up the temperature scale, we can restore the same relative ratio of
recombination rate to absorption rate at sinks. In fact, by requiring that this ratio be
invariant, we can obtain a relationship between temperature and dose rate, termed
the temperature shift.

8.3.5 Irradiation Variable Shifts

The concept of variable shifts was developed to provide a better understanding of
the relationship between variables in swelling [16]. The idea is that when one
irradiation variable is changed, a shift in other variables can be determined that will
preserve a physical quantity describing the behavior of defects during irradiation.
There are two such quantities that pertain to the limiting case where recombination
dominates defect loss. The number of defects per unit volume that have recombined
up to a time τ is:

NR ¼ Kiv

Zs
0

CiCv dt: ð8:151Þ

When the solid is at steady state and defect concentrations are controlled by
recombination, Eq. (8.116) gives:
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Cv ¼ K0

Kiv

ziDi

zvDv

� �1=2

Ci ¼ K0

Kiv

zvDv

ziDi

� �1=2

;

ð8:152Þ

and substituting into Eq. (8.151) yields:

NR ¼ K0s: ð8:153Þ

The number of defects lost to sinks per unit volume up to a time τ is:

NSj ¼
Zs
0

KjCjdt; ð8:154Þ

where K is the loss rate and C is the defect concentration and the subscript j denotes
the defect type. Substituting Eq. (8.152) into Eq. (8.154) gives for vacancies:

NSv ¼ Kv

K0Kivð Þ1=2
ziDi

zvDv

� �1=2

U; ð8:155Þ

where Φ is the dose and the expression for interstitials is identical.
These definitions can be used to determine relationships between any two of the

three variables: temperature, dose, and dose rate, taking the third to be constant. For
example, in the steady-state recombination-dominated regime, we may require Ns to
be equal for dose 1 and dose rate 1 to that for dose 2 and dose rate 2 at a fixed
temperature:

Kv

K01Kivð Þ1=2
ziDi

zvDv

� �1=2

U1 ¼ Kv

K02Kivð Þ1=2
ziDi

zvDv

� �1=2

U2;

and canceling terms in the equality gives:

U2

U1
¼ K01

K02

� �1=2

: ð8:156Þ

For a given change in dose rate, the shift in temperature required at constant dose to
keep Ns invariant is determined by equating the same terms, but with fixed dose
resulting in:

Dv

K0

� �1=2

1
¼ Dv

K0

� �1=2

2
; ð8:157Þ
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or substituting in for Dv from Eq. (4.55), Dv = D0 exp �Ev
m=kT

� �
:

T2 � T1 ¼
kT2

1

Ev
m
ln

K02

K01

� �

1� kT1
Ev
m
ln

K02

K01

� � : ð8:158Þ

For a change in dose, the shift in temperature required to maintain Ns invariant at
fixed dose rate is:

D1=2
v U

	 

1
¼ D1=2

v U
	 


2
; ð8:159Þ

and substituting in for Dv:

U2

U1
¼ exp

Ev
m

2k
1
T2

� 1
T1

� �� �
; ð8:160Þ

and rearranging gives:

T2 � T1 ¼
�2kT2

1

Ev
m

ln
U2

U1

1þ 2kT1
Ev
m

ln
U2

U1

: ð8:161Þ

There is another important temperature shift that, instead of requiring that Ns be
invariant, requires the net flux of vacancies over interstitials to a particular type of
sink (voids in this case) to be invariant, where the net flux is relevant to void
swelling. The temperature shift derived in this way for the recombination-domi-
nated regime to keep swelling rate (NR) invariant is [16]:

T2 � T1 ¼
kT2

1

Ev
m þ 2Ev

f
ln
K02

K01

1� kT1
Ev
m þ 2Ev

f
ln
K02

K01

: ð8:162Þ

where Ev
f is the vacancy formation energy.

The various variable shifts described in this section are shown in the following
figures. Figure 8.26 shows the relationship between dose versus dose rate depen-
dence at a reference temperature of 200 °C for the case of Ns invariant, as in
Eq. (8.156). Figure 8.27 shows the temperature shift as a function of dose rate at
constant dose for three values of vacancy migration energy for Ns invariant, as in
Eq. (8.158), and Fig. 8.28 shows the same relationship for the constant dose rate
case, as in Eq. (8.161). Figure 8.29 shows the temperature shift as a function of
dose for constant dose rate to keep the swelling rate, NR, invariant, as in
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Eq. (8.162). Figure 8.30 shows that the temperature shift concept works well in
describing the shift in the peak in the swelling versus temperature curve in nickel
over more than five orders of magnitude in the dose rate as given by Eq. (8.162).

The general form of the temperature shift equation is [28, 29]:

T2 � T1 ¼
kT2

1

Ev
m þ nðEv

f þEv
Þ
M

1� kT1
Ev
m þ nðEv

f þEv
Þ
M

; ð8:163Þ
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where

M ¼ ln
K02k

2
i1k

2
v1

K01k
2
i2k

2
v2

þ lnB

" #
; ð8:164Þ

and

B ¼ k2i2 expð�Ev

=kT2Þ � k2v2 expð�Ei


=kT2Þ
k2i1 expð�Ev
=kT1Þ � k2v1 expð�Ei
=kT1Þ

" #2
: ð8:165Þ
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The value of n is determined by the dominant process responsible for point defect
removal, n = 1 for sink-dominated cases and n = 2 for recombination-dominated
cases, while the value of B is determined both by the dominant process and by the
mode of void growth. In the case where both interstitials and vacancies are diffusion
controlled:

B ¼ qd2
qd1

; for n ¼ 1; ð8:166Þ

B ¼ rc1
rc2

qd2
qd1

� �2
; for n ¼ 2; ð8:167Þ

where rc is the radius of the recombination volume and ρd is the dislocation density.
The term Ev;i


 represents the additional energy above the normal lattice migration
energy that the point defect must overcome on diffusing to the void and is nonzero
only for the case of reaction rate control. For interstitial and vacancy reaction rate
control:

B ¼ qd2
qd1

zdi expð�Ev

=kT2Þ � zdv expð�Ei


=kT2Þ
zdi expð�Ev
=kT1Þ � zdv expð�Ei
=kT1Þ
� �

; for n ¼ 1; ð8:168Þ

B ¼ rc1
rc2

k2i2 expð�Ev

=kT2Þ � k2v2 expð�Ei


=kT2Þ
k2i1 expð�Ev
=kT1Þ � k2v1 expð�Ei
=kT1Þ

" #
; for n ¼ 2: ð8:169Þ
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For interstitial reaction rate control and vacancy diffusion control,

B ¼ qd2
qd1

bzdi � zdvRv expð�Ei

=kT2Þ

bzdi � zdvRv expð�Ei
=kT1Þ
� �

; for n ¼ 1; ð8:170Þ

B ¼ rc1
rc2

bk2i2 � k2v2Rv expð�Ei

=kT2Þ

bk2i1 � k2v1Rv expð�Ei
=kT1Þ

" #2
; for n ¼ 2; ð8:171Þ

where Rv is the void radius and b is the Burgers vector. The dominant process of
point defect loss as well as the mode of void growth affects the form of the
temperature shift expression. When recombination dominates, the temperature shift
is smaller since 2Ev

f occurs in the denominator. But when sinks dominate, the value
is Ev

f . The reason for this is that the radiation-induced void growth rate is pro-
portional to generation rate when sinks dominate, while it is proportional to the
square root of the generation rate if recombination dominates (see Eqs. 8.146 and
8.147), However, the thermal emission rate depends on the same exponential in
temperature in both cases. Thus, a given initial ratio of thermal emission rate to
radiation-induced growth rate of voids may be recovered after a given increase in
dose rate by a smaller increase in temperature where recombination dominates.

8.3.6 Effect of Production Bias

We now must consider the case of cascade formation in which both vacancy and
interstitial clusters and loops are formed during the damage process. The vacancy
clusters, however, are not stable and will emit vacancies that become freely
migrating vacancies and are available to various sinks, including voids. Due to their
high formation energies, immobilization of interstitials in clusters is permanent. So
there is a bias between vacancy and interstitial production in cascade damage.
Recall the point defect balance equations Eq. (5.1) that account for the incorpo-
ration of both vacancies and interstitials into clusters and the emission of vacancies
from vacancy clusters. The following [30] point defect balance equations are
rewritten using sink strengths instead of reaction rate constants yielding:

dCv

dt
¼ K0ð1� erÞð1� evÞ � k2vDvCv � KivDiCiCv þ Lv

dCi

dt
¼ K0ð1� erÞð1� eiÞ � k2i DiCi � KivDiCiCv;

ð8:172Þ

where εr is the fraction of defects that recombine in the cascade and εv and εi are the
fraction of clustered vacancies and interstitials, respectively, and k2v and ki

2 are the
total sink strengths for vacancies and interstitials, respectively, where:
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k2 ¼ k2V þ k2N þ k2vcl þ k2icl ð8:173Þ

where subscripts “V” and “N” refer to voids and network dislocations, respectively,
and subscripts “vcl” and “icl” represent vacancy and interstitial loops or clusters,
respectively, Kiv is the recombination coefficient, and Lv is the thermal emission
term given by:

Lv ¼ LVv þ LNv þ Liclv þ Lvclv : ð8:174Þ

The swelling rate is given in Eq. (8.110) as:

dðDV=VÞ
dt

¼ 4pRX½DvðCv � C0
vÞ � DiCi�;

and accounting for production bias caused by the formation of clusters, we can
determine the steady-state swelling rate from Eqs. (8.172) and (8.174), neglecting
recombination, to give [30]:

dðDV=VÞ
dt

¼ zik2Vk
2
dð1� evÞK
k2vk

2
i

þ k2Vðei � evÞK
k2i

þ k2VLv
k2v

� k2VDvC
V
v ; ð8:175Þ

where z-i is the dislocation bias, K = (1 − ɛr)K0, and CV
v is the vacancy concentration

at the void surface. The swelling rate in Eq. (8.175) can be rewritten as a sum of two
contributions: a dislocation bias–driven contribution and a production bias–driven
contribution, i.e.,

dðDV=VÞ
dt

¼ dðDV=VÞ
dt

����
db
þ dðDV=VÞ

dt

����
pb

or

dðDV=VÞ
dt

����
db
¼ zik2Vk

2
dð1� evÞK
k2vk

2
i

þ k2V
k2v

LVv þ LNv � ðk2V þ k2NÞDvC
V
v

 � ð8:176Þ

dðDV=VÞ
dt

����
pb
¼ k2Vðei � evÞK

k2i
þ k2V

k2v
Lvclv þ Liclv � ðk2vcl þ k2iclÞDvC

V
v

 �
: ð8:177Þ

In Eq. (8.176), the first term corresponds to swelling due to the biased arrival
(caused by the usual dislocation bias) of mobile vacancies at the voids. The second
term corresponds to effects caused by the emission of vacancies from the voids (that
tends to anneal the voids) and from the dislocation network (that increases swel-
ling). The swelling rate in Eq. (8.176) does not contain effects due to the interstitial
and vacancy clusters formed during cascade damage. In Eq. (8.177), the first term
represents the reduction of the interstitial flux to voids due to interstitial clustering
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(which would help swelling). The second term represents the flux to the voids of
vacancies evaporating under the line tension from the vacancy loops. The line
tension of the interstitial loops, on the other hand, favors the absorption of
vacancies that are otherwise available to the voids.

Where interstitials are assumed not to cluster, i.e., ɛi = 0, and the lifetimes of the
vacancy loops are limited to those due to thermal and bias-driven annealing, the
second term in Eq. (8.177) can then be shown to cancel the first term and the ev
contribution in Eq. (8.176). The collapse of a cascade into vacancy loops then does
not produce any appreciable effects on the swelling rate. With the immobilization of
the interstitials in interstitial loops and their subsequent destruction by dislocation
sweep and cascade collapse, the re-emission of vacancies from the vacancy loops
essentially produces a production bias that drives the swelling according to
Eq. (8.177), as discussed earlier in this section.

Under electron irradiation, there is no cascade effect, i.e., ɛi = ev ¼ 0 and K = K0.
Therefore, in this case, the swelling is purely dislocation bias driven and
dðDV=VÞ

dt

����
db

is the only contribution. In the case of cascade damage, however,

neither ɛi nor ev are likely to be zero. For simplicity, we may use a previously
obtained result [30] that the vacancy loop contribution in Eq. (8.177) vanishes due

to mutual cancelation. Then,
dðDV=VÞ

dt

����
pb

is given by:

dðDV=VÞpb
dt

¼ k2V
k2i

eiK: ð8:178Þ

Note that ɛi need not be very large, just a few percent is enough to make a
significant contribution to the total steady-state swelling rate of the order of 1 % K.

As described in the preceding paragraphs, the origin of the “production bias” lies
in the special features of damage production in the form of cascades. The physical
reason for this bias is the immobilization of a certain fraction of interstitials in the
form of thermally stable clusters in the cascade zone. During irradiation at elevated
temperatures, the vacancies would evaporate from the collapsed or uncollapsed
cascade and would diffuse not only to the interstitial clusters but also to the cavities.
Thus, the number of interstitials tied up in the clusters represents approximately the
number of vacancies available for the cavity growth. This is basically the strength
of the production bias.

The net result of the production bias is precisely the same as that of the dislo-
cation bias, namely the production of an excess of vacancies. However, it is also
quite apparent that the physical processes involved in the two mechanisms are very
different. In the case of dislocation bias, the interstitial atoms are expected to
migrate to dislocations where they are preferentially annihilated due to the strain–
field interaction. In the cascade damage situation, this mechanism would not
operate effectively since a large number of interstitials are immobilized in the form
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of interstitial clusters. In the case of production bias, it is the interstitial–interstitial
interaction (and not the interstitial–dislocation interaction) that determines the bias.

However, as noted in Chap. 5, Sect. 5.1.7, and discussed in Chap. 7, Sect. 7.3.3,
more recent work has shown that interstitial clusters can have very high 1D
mobility. This high mobility allows them to escape to annihilate at sinks such as
grain boundaries, thus creating a production bias without the need for dislocation
motion. Then, SIA clusters are composed of glissile (g) and sessile (s) components,
or ɛi = ɛi

g + ɛi
s. In the case of glissile SIA clusters, an additional equation is needed in

the point defect balance equations of Eq. (8.172) to account for the glissile inter-
stitial clusters [31]:

dCv

dt
¼ K0ð1� erÞð1� evÞ � k2vDvCv � KivDiCiCv þ Lv

dCi

dt
¼ K0ð1� erÞð1� eiÞ � k2i DiCi � KivDiCiCv

dCgiclðxÞ
dt

¼ KgiclðxÞ � k2gDgiclCgiclðxÞ;

ð8:179Þ

where CgiclðxÞ is the concentration, KgiclðxÞ is the production rate, kg
2 is the sink

strength, and Dgicl is the diffusion coefficient of glissile SIA clusters of size x. The
sink strength of the glissile cluster can be written as:

k2g ¼ 2
prdqd
2

þ pr2VqV þ rvclqvcl þ riclqicl
	 
2

; ð8:180Þ

where σvcl and σicl are the interaction cross sections and ρvcl and ρicl the number
densities of the sessile vacancy and mobile SIA clusters, respectively. Note that σvcl
and σicl are proportional to the product of the loop circumference and the corre-
sponding capture radius, similar to rd for dislocations.

Swelling can be calculated from the solutions of Eqs. (8.179) and (8.110).
Writing Eqs. (8.179) to include the individual sink strengths from Eqs. (8.173)
yields:

dCv

dt
¼ K0ð1� erÞð1� evÞ � ðk2V þ zdvqd þ ziclv k2icl þ zvclv k2vclÞDvCv � KivDiCiCv þ Lv

dCi

dt
¼ K0ð1� erÞð1� eiÞ � ðk2V þ zdvqd þ zicli k2icl þ zvcli k2vclÞDiCi � KivDiCiCv

dCgicl

dt
¼ Kgicl � DgiclCgiclk2g ¼ Kgicl � 2DgiclCgicl

prdqd
2

þ pr2VqV þ rvclqvcl þ riclqicl
	 
2

;

ð8:181Þ
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At steady state and neglecting recombination, Eqs. (8.181) becomes:

Kv ¼ DvCvðk2V þ zdvqdÞþDvCvz
icl
v k2icl þDvCvz

vcl
v k2vcl þ 2DvCvKxgriclqicl

Ki ¼ DiCiðk2V þ zdvqdÞþDvCvz
icl
v k2icl þDiCiz

vcl
v k2vcl � 2DvCvKxgriclqicl

Kgicl ¼ DgiclCgiclk
2
g;

ð8:182Þ

where

Kv ¼ K0ð1� erÞð1� evÞ
Ki ¼ K0ð1� erÞð1� eiÞ;

ð8:183Þ

and K ¼
ffiffiffiffiffiffiffiffiffi
k2g=2

q
.

The vacancy supersaturation is obtained from the difference between DvCv and
DiCi using the first two equations in Eqs. (8.182):

DvCv � DiCi ¼ Bd
zdvqd

k2V þ zdvqd
DvCv þ egi K0ð1� erÞ

k2V þ zdvqd
1� rvclqvcl þ riclqicl

K

	 

;

ð8:184Þ

where ɛi
g is the fraction of interstitials in glissile clusters and Bd is the dislocation

bias term given by Bd ¼ ðzdi � zdvÞ=zdv. The swelling rate is given by:

dðDV=VÞpb
dt

¼ k2VðDvCv � DiCiÞ � 2Dg
iclC

g
iclxgKpr

2
VqV; ð8:185Þ

and substituting Eq. (8.184) into Eq. (8.185), the swelling rate becomes:

dðDV=VÞpb
dt

¼ K0ð1� erÞ Bd
k2Vz

d
vqd

ðk2V þ zdvqdÞðk2V þ zdvqd þ ziclv k2icl þ zvclv k2vclÞ
�

þ egi
k2V

k2V þ zdvqd
1� rvclqvcl þ riclqicl

K

	 

� pr2VqV

K

� ��
:

ð8:186Þ

The first term in brackets on the right-hand side of Eq. (8.186) represents the
influence of the dislocation bias, and the second one describes the production bias.
The factor (1 − εr) accounts for the intracascade recombination of defects, which is
a function of the recoil energy and reduces the rate of defect production compared
to the NRT value, K0. Swelling rate is also a function of recoil energy by virtue of
the dependence on ɛi

g, which increases with PKA energy up to about 10–20 keV.
The effect of the two biases, dislocation and production, are quite different. The

dislocation bias depends only on the microstructure and predicts continued void
growth. The production bias can be positive or negative, depending on the
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microstructure. The first term in Eq. (8.186) decreases the effect of production bias
due to recombination of the SIA clusters at sessile vacancy and SIA clusters, while
the second term arises from the capture of SIA clusters by voids. The latter term
may become equal to zero or even negative; hence, the combination of the two bias
factors does not necessarily lead to a higher swelling rate.

Considering only Frenkel pair production, the swelling rate given by Eq. (8.122)
predicts that the swelling rate will be small at a low dislocation density. If this is the
case, then the swelling rate in well-annealed metals at low doses should be small.
Experiments have shown that the void swelling rate in fully annealed pure copper
irradiated with fission neutrons up to about 0.01 dpa is *1 %/dpa [32], which is
similar to the maximum swelling rate found in materials at high doses. Referring to
Eq. (8.186), in annealed materials, the dislocation bias term is negligible. At low
doses, the void size is small, and therefore, the void cross section for the interaction
with SIA glissile clusters (πrV

2 ρV/Λ) is small. (Also, at low dose, the cluster density
will be small, so the term in parentheses in the second line of Eq. (8.186) *1).
Thus, the swelling rate is driven by the production bias:

dðDV=VÞ
dt

� K0ð1� erÞegi
k2V

k2V þ zdvqd
: ð8:187Þ

When zdvqd � k2V, the swelling rate is determined by the cascade parameters:

dðDV=VÞ
dt

� K0ð1� erÞegi : ð8:188Þ

Note that the swelling rate given in Eq. (8.188) is the maximum swelling rate that
can be achieved by production bias. Referring to Eq. (8.187) and assuming that
there is no interaction of mobile SIA clusters with voids and sessile clusters, the
swelling rate is given by:

dðDV=VÞ
dt

� 1=2K0ð1� erÞegi ; ð8:189Þ

where the sink strength ratio,
k2V

k2V þ zdvqd
= ½, the value achieved when Q = 1 in

Eq. (8.148). Data have shown that 1 − εr = 0.01 and ɛi
g in good agreement with MD

simulations of cascades, yielding a maximum swelling rate of *1 %/dpa.
Production bias helps to explain some additional observations. Golubov et al. [31]

and Singh et al. [34] compared the microstructure of annealed copper irradiated with
2.5 MeV electrons, 3 MeV protons, and fission neutrons at *520 K. For all irradi-
ations, the damage rate was*10−8 dpa/s. The average recoil energies were estimated
to be about 0.05, 1, and 60 keV, respectively, and the primary damage form was
Frenkel pairs for electrons, small cascades for protons, and large cascades for neu-
trons. Thus, the cascade efficiency (1 − εr) was highest for electrons and lowest for
neutrons. If dislocation bias is responsible for swelling, then the swelling rate is
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proportional to the damage rate and must be highest for electron irradiation and
lowest for neutron irradiation. Figure 8.31 shows just the opposite with a swelling
rate for neutron irradiation of about 50 times that for electrons, with protons in
between. These results can be understood from Eq. (8.186). Under electron irradi-
ation, only the first term on the right-hand side operates as egi ¼ 0. The swelling rate is
low in this case because of the low dislocation density. Under cascade damage
conditions, the damage rate is smaller because of the low cascade efficiency. But in
this case, ɛi

g≠ 0 and the second term on the right-hand side of Eq. (8.186) is dominant.
Cascade production of SIA clusters can also affect the nucleation of voids

through damage accumulation. The sink strengths of the clusters, k2vcl and kicl
2 , at

steady state are given by [31]:

k2vcl ¼
esvKv

Dv expð�Evcl=kTÞðk2V þ zdvqdÞ � egi Kv
ðk2V þ zdvqdÞ 1� 1

xsvcl

� �
ð8:190Þ

k2icl ¼
esi
egi
ðk2V þ zdvqdÞ 1� 1

xsicl

� �
; ð8:191Þ

where Evcl is an effective binding energy of vacancies with the vacancy clusters,
xvcl; icl are the mean sizes of the vacancy and SIA glissile clusters, and ɛi

s,g are the
fraction of interstitials in sessile (s) and glissile (g) clusters. From Eq. (8.191), the

Copper
Experiments

Neutron
Protons
Electrons

Calculations

(1) Neutron
(2) Proton
(3) Electron

Dose (dpa)

Sw
el

lin
g 

(%
)

510

410

310

210

110

010

110

410 310 210

irrT

(1)

(3)

(2)

250 C

Fig. 8.31 Experimentally measured and calculated void swelling in pure copper after irradiation
with 2.5 MeV electrons, 3 MeV protons, and fission neutrons. The calculations were performed in
the framework of the Frenkel pair 3D model (PF3DM) for electron irradiation and using the
production bias model (PBM) for irradiation with protons and fission neutrons (after [31])
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steady-state sink strength of sessile SIA clusters is inversely proportional to the
fraction of SIAs produced in cascades in the form of mobile SIA clusters, and thus,
k2icl ! 1 when ɛi

g → 0, or as the fraction of interstitials in glissile clusters goes to
zero, the sink strength of the (sessile) clusters approaches infinity. Such a case may
be reached in large cascades as produced from neutron irradiation combined with
impurities that may provide cluster immobilization. The “incubation period” of
swelling observed in many alloys may be due to this process. A possible scenario
may be that during the incubation period, the material is purified by RIS on SIA
clusters because of their high density. At high enough doses, the high number
density of SIA clusters decreases via the absorption of excess vacancies, restoring
conditions for damage accumulation and consequent void growth.

As presented in the description of clusters using the Fokker–Planck formulation
(Sect. 7.6), it was noted that the cluster size distribution is broadened by the
parameter D and shifted by the parameter F. Thus, with increasing dose, the
solution to the Fokker–Planck equation describes the broadening of the void size
distribution and the increase in the mean void size of the distribution with dose.
This general behavior can be compared with experimental swelling results for Fe–
Cr–Ni irradiated at 650 °C. Figure 8.32 shows that the mean size of the distribution
increases from about 11 nm at 9 dpa to over 50 nm by 80 dpa with a corresponding
broadening of the distribution. Since swelling is mainly sensitive to the shift of the
mean size of the distribution, linear swelling (ΔV/V ∝ dose) is obtained when the
growth rate is large compared to the diffusional broadening, in which case the
swelling rate is then given by the drift force alone.

8.3.7 Stress Dependence

Equation (8.125) shows that the void growth rate consists of two components. _Rth is
the thermal emission term and hence is the only part affected by the state of stress or
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internal gas pressure. Consequently, the internal gas pressure and stress begin to
affect the growth rate only when _Rth becomes significant, i.e., for temperatures
greater than the peak swelling temperature. When the solid is under a hydrostatic
stress and when voids contain gas that exerts a pressure on the void surface, the
equilibrium vacancy concentration at voids and dislocations will be different from
that in the stress-free, gas-free state. Brailsford and Bullough showed that the
pressure, but not the external stress, will affect the concentration of vacancies in
equilibrium with the void. Hence, the force balance for the gas-containing void in
mechanical equilibrium, as in Eq. (8.82), becomes:

r ¼ p� 2c
R
; ð8:192Þ

where σ is the hydrostatic stress and p is the gas pressure in the void. (In the case of
a non-equilibrium bubble, the appropriate stress is the radial component of the
stress tensor, σr.) The vacancy concentration at the surface of the void, given by
Eq. (8.85) in the gas-free case, becomes:

CV
v ¼ C0

v exp � X
kT

p� 2c
R

� �� �
: ð8:193Þ

Similarly, the equilibrium vacancy concentration adjacent to the network disloca-
tions becomes:

CN
v ¼ C0

v exp � rX
kT

� �
: ð8:194Þ

Repeating the solution to the void growth equation using the equilibrium vacancy
concentration at the void surface given by Eq. (8.193) and the equilibrium vacancy
concentration at the network dislocations given by Eq. (8.194) revises the thermal
emission term, Rth, in Eq. (8.135) (with ρCP = ρL = 0) as follows:

_Rth ¼
DvC0

vX
2zvqd rþ p� 2c

R

� �
RkT zvqd þ 4pRqVð Þ : ð8:195Þ

Note that shrinkage due to thermal emission becomes instead stress-enhanced
growth when the sum of the external stress and gas pressure exceeds the stress due
to surface tension:

rþ p[
2c
R
: ð8:196Þ

Note that for a stressed solid containing no gas, stress-enhanced growth will occur

when r[
2c
R
. For a void containing x gas atoms, Eq. (8.196) becomes:

440 8 Irradiation-Induced Voids and Bubbles



r ¼ 2c
R
� 3xkT

4pR3

� �
: ð8:197Þ

The void radius at which
dr
dR

¼ 0 is called the critical void radius and is given by:

Rcr ¼ 9xkT
8pc

� �1=2

; ð8:198Þ

and substituting into Eq. (8.197) gives the stress at the critical void size, which is
the critical stress for unlimited void growth:

rcr ¼ 4c
3

8pc
9xkT

� �1=2

: ð8:199Þ

The effect of stress on void growth in steel is given in Fig. 8.33. Note that there is
little effect of stress out to high dose when the stress is low. But when stress is
increased, the swelling increases rapidly at relatively lower doses. Figure 8.34 also
accounts for the presence of helium in the growth of voids under stress.

However, this formulation predicts that the void growth rate is proportional to
stress, which is counter to the 1 %/dpa observations. Also, as shown in Fig. 8.34,
the effect of stress is only significant at very high temperatures. Experimental data
have since shown that the prime role of stress is on shortening the transient swelling
regime, rather than increasing the swelling rate in the steady-state regime.
Figure 8.35 shows the effect of stress on swelling in modified 316 stainless steel
alloys irradiated in the PHENIX reactor. Note that with increasing stress, the
swelling rate (slope) approaches a constant value at lower doses. Stress can also
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affect the stability of void nuclei, which would explain the observation of more
rapid nucleation.

In the development of the nucleation rate of voids, the nucleation current and
number density of voids of size n were described by Eqs. (8.18) and (8.19),
respectively, for the case of vacancy condensation excluding interstitials:

Jn ¼ ZbN0exp
�DG0

n

kT

� �
; and q0 nð Þ ¼ N0 exp

�DG0
n

kT

� �
:
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with the free energy of formation of void of size n given by Eq. (8.17):

DG0
n ¼ �nkT ln Sv þ 36pX2� �1=3

cn2=3:

Accounting for the application of an external hydrostatic stress, σh, gives:

DG0
n rhð Þ ¼ �nkT ln Sv þ 36pX2� �1=3

cn2=3 � nrhX; ð8:200Þ

and

DG0
n rhð Þ ¼ DG0

n 0ð Þþ nrhX: ð8:201Þ

Note that the effect of gas pressure, p, in the void can also be accounted for by the
addition of a term, npΩ.

When interstitials are present, the free energy is given by Eq. (8.33):

DG0
n ¼ kT

Xn�1

j¼0

ln
bi jþ 1ð Þ
bv jð Þ þ exp

dG0
j

kT

 !" #
;

where dG0
j is the increment in free energy of a void in going from j vacancies to

j + 1 vacancies if no interstitials are present. By assuming that stress affects only the
free energy barrier (and not the critical nucleus size) and that the stress contribution
of the energy per atom is not dependent on the number of atoms in the cluster, then
we can approximate the free energy in Eq. (8.33) in a manner similar to that done in
Eq. (8.201) [38]:

DG0
n rhð Þ ¼ DG0

n 0ð Þþ nrhX: ð8:202Þ

Then, from Eq. (8.35), the ratio of stressed to unstressed steady-state nucleation
rates in a homogeneous, coprecipitation environment is:

Jn rhð Þ
Jn 0ð Þ ¼ exp � DG0

n � nrhX
� �

=kT
 �
exp �DG0

n=kT
 � : ð8:203Þ

Using Eqs. (8.22) and (8.23) to write the ratio of nucleation currents in terms of the
ratio of void number densities in the stressed and unstressed states gives:

Jn rhð Þ
Jn 0ð Þ ¼ Z 0 rhð Þbn rhð Þqn rhð Þ

Z 0 0ð Þbn 0ð Þqn 0ð Þ ¼ Z 0 rhð Þbn rhð Þ exp � DG0
n rhð Þ� � �

Z 0 0ð Þbn 0ð Þ exp �DG0
n 0ð Þ � ; ð8:204Þ

and provided that neither the arrival rate ratio, βn(σh)/βn(0), nor Z′ is sensitive to the
stress level [39], then Eq. (8.204) becomes:
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qn rhð Þ
qn 0ð Þ � exp nrhX=kTð Þ: ð8:205Þ

Example 8.1 Effect of stress on void density
Assuming an external stress of 100 MPa and a void cluster size of *15 at

a temperature of 450 °C, Eq. (8.205) gives an increase in the void number
density by a factor of *6. However, for a stress of 200 MPa, the increase is
34, and for 300 MPa, the factor becomes *200. Since both stress and
temperature appear in the exponent, the factor rises rapidly with an increase in
stress and with a decrease in temperature (Fig. 8.36). Referring back to
Fig. 8.35, the decreasing time to reach the steady-state swelling rate as stress
is increased is explainable by stress-enhanced nucleation, which will be more
important at lower temperatures, contrary to the effect of stress on the
steady-state swelling rate.

8.3.8 Effect of RIS

Recall from Chap. 6, Sect. 6.4, that RIS (radiation-induced segregation) of alloying
elements occurs at sinks, which can include voids. The result is a coated void in
which the void develops a shell of composition that is different from that in the
matrix. As we have seen, for austenitic stainless steels, the void coating is enriched in
nickel and depleted in chromium relative to the matrix. A primary effect of the
composition change is a change in diffusion coefficient leading to a change in the
void capture efficiency. The capture efficiency for the vacancy in the shell is [16, 40]:

zVv rVð Þ ¼ 1þ d=rV
1þDvd=DS

vrV
; ð8:206Þ

decreasing T
1

Fig. 8.36 Variation of the void nucleation rate and the void number density as a function of stress
and temperature, as described by Eq. (8.205)
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where rV is the void radius, δ is the thickness of the shell, and DS
v is the vacancy

diffusion coefficient in the shell. Recall that an expression for the composition
dependence of Dv in the shell, DS

v, was determined in Sect. 6.4 of Chap. 6. Using
the expression for the capture efficiency in the void growth equations results in a
reduction in void growth if DS

v\Dv and DS
i �Di.

A more important effect of the coating is the elastic interaction between a point
defect and a void surrounded with a coating that has different elastic constants than
the matrix. The result is a change in capture efficiency of the void for defects. The
capture efficiency due to a difference in elastic constants is given as:

zVi;v rVð Þ ¼ rV
rc

þ rV
rc þ dð Þ2

Di;v

wi;v

" #�1

; ð8:207Þ

where rc is the void plus coating radius and the transfer velocity, wi,v, is

wi;v ¼
Di;v exp �E


i;v=kT
	 

a

; ð8:208Þ

where a is the lattice parameter and E* is the repulsive interaction energy at its
largest positive value. The sign of E* is positive (repulsion) if the matrix of the shell
is stiffer than that of the matrix. Since E* is proportional to the square of the point
defect relaxation volume, the sink efficiency is much smaller for the interstitial than
for the vacancy due to the larger repulsion for the interstitial. So the stiffer shell
results in a repulsion that is greater for the interstitial than for the vacancy, making
void nucleation and growth more rapid in the case of a coated void (Fig. 8.37).
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A change in the shear modulus or lattice parameter in the shell can also alter the
preference of the void for vacancies and interstitials [41] by creating a barrier to
defect diffusion through the shell due to a change in the strain energy. When
segregation leads to a shell with a shear modulus or lattice parameter only slightly
higher than in the surrounding matrix, the void becomes a highly preferential sink
for vacancies and swelling is increased. Conversely, a reduction in the shear
modulus and lattice parameter should result in reduced void swelling. Figure 8.38
shows the effect of the shear modulus (1 – μbulk/μshell) on the interstitial/vacancy
capture ratio. For small voids, a few percent change in the shear modulus can result
in orders of magnitude change in the capture ratio. Allen et al. [42] compared the
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swelling and RIS behavior of a range of alloys with different nickel content.
Calculation of the lattice parameter for the void shell composition shows that the
swelling behavior can be explained by a decrease in lattice parameter at the void
surface (Fig. 8.39). In fact, segregation leads to a smaller lattice parameter with a
lower shear modulus, and the softer shell reduces void swelling.

8.3.9 Void Lattices

Voids have also been found to organize themselves in periodic arrays or lattices in a
metal under irradiation and also in periodic walls of defect clusters. Figure 8.40(a)
shows a void lattice in bcc Nb following irradiation with 8.5 MeV Ta+ to a dose of
300 dpa at 800 °C, and Fig. 8.40(b) shows a periodic array of planar {001} walls of
defects in Cu at 3 dpa. The lattices are much easier to form in bcc metals than in fcc
metals, though lattices have been observed in Ni, Al, and stainless steel. Their
formation is independent of the type of irradiating particle as long as cascades are
produced. Void lattices are a form of self-organization that occurs as responses of
complex systems to external stimuli. It is believed that self-organization results
from the collective interaction between system components under external forces
that drive the system far from equilibrium. In irradiated solids, the void patterns are
believed to be linked to the collective action of the point defects on the lattice
structure. Wall formation is restricted to a temperature range between 0.2 and 0.4
Tm, while void lattice formation occurs at somewhat higher temperatures.
Characteristic is the partial or complete isomorphy of the ordered defect structure
with the host lattice [44].

A full understanding of the formation of void lattices is still lacking, but the
theory is able to account for many of the parametric effects in lattice formation.
Kinetic rate theory and the determination of an instability threshold can explain
many of the observations to date. Transport and reactions of defects during bom-
bardment have been modeled by nonlinear diffusion–reaction equations for the
cases of periodic defect walls and of void lattices. The isotropic diffusion–reaction
models can describe conditions for the destabilization of the homogeneous defect
cluster distributions and predict characteristic periodicity lengths but have to be
modified substantially to account for the structural and orientation relationships
between ordered defect arrangements and crystal structure. Possible reasons for
these properties are (1) elastic interactions between defects that are probably
important in wall formation and (2) low-dimensional defect transport that is
probably important for void and bubble lattice formation. In general, ordered defect
structures form when the following general conditions are satisfied [43]:

1. Agglomeration of vacancies into clusters during the collisional phase of cascade
cooling.

2. A bias for dislocations toward preferential absorption of interstitials over
vacancies.
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Fig. 8.40 Void lattice in
(a) Nb irradiated with
8.5 MeV Ta+ at 800 °C to
300 dpa (after [43]) and
(b) periodic arrays of planar
{001} walls of defects in Cu
irradiated to 0.65 dpa
(after [44])
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3. An asymmetry in the production and diffusion of mobile point defects (pro-
duction bias).

4. Some degree of anisotropy during the evolution of clustered defects. This could
be triggered either by diffusional anisotropies of point defects, or by anisotropic
elastic interaction between defect clusters during the latter stages of their
evolution.

Two features of void ordering are as follows: (1) The symmetry and crystallo-
graphic orientation of a void lattice are always the same as those of the host lattice
and (2) the void lattices are formed under neutron and heavy ion but not electron
irradiation. The occurrence of void lattice formation under cascade damage con-
ditions (neutron or ion irradiation) and its absence under single Frenkel pair pro-
duction (electron irradiation) are strong evidence for a key role of the 1D motion of
thermally stable SIA clusters directly produced in cascades. In cubic metals, void
ordering is probably due to one-dimensional SIA loop glide. This mechanism
would also provide an explanation for the enhanced swelling adjacent to grain
boundaries. The role of crowdions is unclear because of their limited effective
diffusion range [44]. However, it has been shown that when there is anisotropic
transport of self-interstitial atoms by the crowdion mechanism (i.e., transport in
which some crystal directions are preferred over others), voids occupying spatial
positions that form a regular lattice grow faster, on average, than the randomly
distributed voids [45]. However, for the void lattice to form, randomly distributed
voids have to disappear. This can occur through stochastic void coarsening. Since
void evolution in this case is sensitive to the spatial variations in the void growth
rate, even a small fraction of interstitials moving as crowdions can significantly
affect the spatial behavior of the void ensemble, resulting in the dissolution of
randomly distributed voids with lower growth rates by stochastic fluctuations, and
the nucleation and growth of voids forming a regular lattice. A general result of all
models proposed to explain void lattice formation is that the existence of funda-
mental asymmetries in the behavior of v-type and SIA-type defects (production,
diffusion, and annihilation), in spite of their principle particle–antiparticle relation,
is a necessary prerequisite for the formation of ordered defect structures in metals
under particle bombardment [44].

8.3.10 Effect of Microstructure and Composition

The alloy microstructure can exert significant effects on void nucleation and
growth. Microstructure features such as composition, solute addition, and precipi-
tate structure are among the most important in influencing void behavior.

Major Element Composition

In simple Fe–Cr–Ni austenitic alloys, swelling drops dramatically with increasing
nickel content, reaching a minimum at about 50 at.%. Figure 8.41 shows that the
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swelling dependence of nickel holds for various particle irradiations. The effect of
Ni content on swelling is primarily due to the change in incubation dose as shown
in Fig. 8.42. In fact, the data in Fig. 8.43 show that at steady state, the swelling rate
is the same over a wide range of nickel content.

Chromium content also affects swelling of austenitic alloys. Figure 8.44 shows
that increasing chromium over the range 15 to 30 % results in greater swelling. Less
data are available on the systematic effect of Cr than for Ni, but the available data
suggest that swelling increases monotonically with Cr content. Swelling is much
less of a problem in ferritic alloys, but reaches a maximum with a chromium content
of about 15 at.%. Figure 8.45 summarizes the effect of Ni and Cr on swelling in
Fe–Cr–Ni alloys at 675 °C.

Solute Additions

Void swelling should be inhibited by additions of minor elements that bind either
vacancies or interstitials with sufficient strength to reduce the effective mobility, thus
preventing defects from reaching sinks and promoting recombination. The effect of
solutes on the point defect balance equations was presented in Chap. 6, Sect. 6.4. The
effect of solute addition on void swelling behavior can be determined by solving Eq.
(6.66) through Eq. (6.70) and the nucleation rate, as in Eq. (8.35), and the void
swelling rate, as in Eq. (8.112). Results of numerical methods solution [47] show
that with increasing values of binding energy, the activation energy for void
nucleation increases (Fig. 8.46). The void swelling rate decreases with increasing
binding energy as shown in Fig. 8.47. The net effect of solute addition on void
swelling is shown in Fig. 8.48, which indicates that for increased solute concen-
tration and binding energy, void swelling decreases. Data on the role of solutes in
swelling are in general agreement with the model. Figure 8.49 shows that Si and P
strongly influence the swelling of austenitic stainless steels. In fact, Si is a fast
diffuser and is known to alter the ratio of diffusivities of the solvent atoms. As shown
in Fig. 8.50, the effect of P on swelling is indeed in extending the incubation period
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to larger doses. Oversize solutes such as Hf have a similar effect in suppressing the
nucleation of voids in stainless steels irradiated at ∼300 °C. While other factors are
important, Fig. 8.51 shows that the addition of ∼1 wt% Hf to 316 stainless steel
results in the suppression of void formation during Ni++ ion irradiation at 500 °C
through a dose of 50 dpa, compared to an incubation dose of only 2 dpa for the
reference 316 stainless steel alloy.
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Precipitates

Precipitates can act as recombination sites for vacancy–interstitial annihilation to
reduce void swelling. Precipitates can also inhibit dislocation climb necessary for
dislocations to act as a preferential sink for interstitials and hence retard void
growth.

In fact, precipitates can affect cavity growth in three ways [51]. The first is a
direct effect in which voids that are attached to precipitates can undergo large
growth rates because the precipitate acts as a collector of point defects. Precipitates
can indirectly affect void growth by changing the overall sink strength of the solid
or by changing the characteristics of the matrix.

As discussed in Sect. 5.8, the coherent precipitate is considered to be a site where
constrained recombination of defects occurs due to the distribution of saturable traps
that acquire a steady-state occupation probability as a result of a balance between
defect capture, defect thermal release, and extrinsic recombination with the
anti-defect. However, incoherent precipitates accept any excess point defect flux that
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happens to impinge on it. These precipitates can accumulate defects and may act as
sites for rapid transport of defects, similar to grain boundaries. In fact, they can serve
as sites for the collection of defects which are then channeled to voids.

While the potential exists for precipitates to strongly influence void growth
through their action as sinks or recombination sites, measurements of the effect of
precipitation on void growth have failed to show that they play a significant role.

Grain Boundaries

In polycrystalline materials, voids are not homogeneously distributed throughout a
grain. A common observation is that a region adjacent to the grain boundaries is
absent of voids. This region extends to a roughly fixed distance into the grain from
the grain boundary and is referred to as the void-denuded zone, shown in Fig. 8.52
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for ion-irradiated Ni and for lath boundaries in ferritic–martensitic alloy HT9.
Considering only Frenkel pair production, e.g., electron irradiation, these denuded
zones occur because of the diffusion of vacancies to the grain boundary sink that
reduces the vacancy supersaturation near the grain boundary below the level needed
to sustain void nucleation. Note in Fig. 8.53 that denuded zone occurrence is
dependent on the sink strength of the grain boundary. In the same sample, a random
high-angle grain boundary (RHGB) exhibits a clear denuded zone (Fig. 8.53(a)),
but a coincident site lattice boundary (CSLB) shows no such zone (Figure 8.53(b)).
The difference is likely due to the low energy of the CSLB, resulting in a low sink
strength. Figure 8.53(c) is an extreme example of a heterogeneous void distribution
in ferritic–martensitic alloy HT9 that is, perhaps, due to the many void-denuded
zones next to grain boundaries.

Figure 8.54 shows the normalized vacancy supersaturation (S/S0) profiles as a
function of distance from the grain boundary, represented as a fraction of the grain
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diameter, dg. Two features are of significance. First, regardless of grain size, the
vacancy concentration drops to nearly zero at the grain boundary, greatly reducing
the vacancy supersaturation in its vicinity. Second, with increasing grain size, the
depth-dependent portion of the vacancy supersaturation profile extends deeper into
the grain interior and its peak value becomes smaller as the grain size gets smaller.
Figure 8.55 shows the calculated grain size–dependent supersaturation and exper-
imentally measured swelling as a function of grain size. With decreasing grain size,
more and more vacancies produced in the grain interior manage to diffuse to and
annihilate at the grain boundaries. Thus, the volume of solid in which the vacancy
supersaturation can support void nucleation decreases with decreasing grain size.
The implication is that void swelling can be suppressed by reducing the grain size
below some critical size.

150 nm

200 nm

(a)

(b)

Fig. 8.52 Transmission electron micrographs of the void denuded zone (a) in ion-irradiated nickel
(after [52]) and (b) near lath boundaries in alloy HT9 irradiated with 5 MeV Fe++ ions at 460 °C to
375 dpa after preimplantation with 1 appm He (courtesy A. Monterrosa)
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Fig. 8.53 Denuded zone (a) at a random grain boundary, (b) at a CSLB in Fe–15Cr–15Ni
following neutron irradiation at 476 °C to 18 dpa (after [53]), and (c) in HT9 irradiated at 460 °C
to 375 dpa (courtesy K. Sun)
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The data shown in Fig. 8.55 come from 1 MeV electron irradiation that produces
isolated Frenkel pairs distributed homogeneously in the solid. In this case, damage
accumulation can be understood in terms of random, three-dimensional diffusion
and biased attraction of monointerstitials to dislocations using conventional rate
theory. Conversely, under cascade damage conditions, the nucleation and growth of
cavities are significantly enhanced in the zone immediately adjacent to the
void-denuded zone along the grain boundaries, referred to as the peak zone, as in
Fig. 8.56. This peak zone is believed to be a consequence of the production bias.
One-dimensional glide of small interstitial clusters will remove SIAs from the grain
interior to grain boundaries over distances up to several microns. The result is the
generation of a high vacancy supersaturation in the peak zone adjacent to the
denuded zone in cases where cascades are formed. Thus, the observation of the
peak zone formation under cascade damage conditions and its absence during
single-displacement conditions likely arise because of differences in recoil energy.
The consequence is that under cascade damage conditions, void swelling would
first increase with increasing grain size, reaching a maximum at a grain size when
the peak zone maxima overlap. Swelling would then decrease with grain size,
becoming independent of the grain size at sizes greater than the peak zone width.
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8.3.11 Effect of Reactor Operating History

Much of our understanding of void behavior in metals comes from irradiation in
reactors. The experimental data are used to validate models and to provide material
parameters to benchmark the models. Given that most models assume that reactor
parameters (temperature, dose rate, stress) are constant over time, it is often true that
in both commercial and test reactors these parameters can vary considerably during
operation and due to the shutdown–start-up cycle. It is not unusual for irradiation
experiments to experience numerous power (and hence temperatures) reductions
over the course of a six-month to one-year irradiation. Garner [55] cites one
instance in which a 600 °C, three-year irradiation, experienced 237 temperature
setbacks in the first year, during which the temperature fell to as low as 50 °C.
While the dose accumulated at these lower-than-target temperatures is low
(0.12 dpa in the 3.5 dpa accumulated in year 1), they can have a profound effect on
the microstructure.

Figure 8.57(a) shows the difference of dislocation loop size and number density
in Ni–2.0Si samples irradiated in JMTR at 400 °C for the case of “conventional”
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temperature control versus one where the temperature control was considerably
improved. The smaller mean loop size and larger density are likely the result of
additional loop nucleation during the periods where temperature was low, but the
neutron flux was nonzero. This low-temperature microstructure persisted at the

(a)

(b)

Fig. 8.57 (a) Effect of temperature control on dislocation loop formation and growth in Ni–2 %Si
irradiated at 400 °C in the Japan Materials Test Reactor (JMTR) to a dose of *1024 n/m2. LHS is
conventional control (0.92 × 1024 n/m2, E > 1.0 MeV), and RHS is improved control
(0.96 × 1024 n/m2). (b) Effect of shutdown rate on the formation of small dislocation loops in
Fe–15Cr–16Ni irradiated at in FFTF at 600 °C. The image on the left underwent a slow
temperature decrease during power shutdowns compared to a very rapid reduction in temperature
at shutdown for the sample on the right (after [55])
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nominal irradiation temperature and resulted in an alteration of the loop size dis-
tribution as compared to the case in which temperature was controlled.
Low-temperature loop nucleation in a high-temperature microstructure can also
affect the evolution of the void microstructure.

Figure 8.57(b) shows the microstructure of a Fe–15Cr–16Ni alloy irradiated at
600 °C in the Materials Open Test Assembly (MOTA) in the Fast Flux Test Facility
(FFTF) to comparable doses. The sample on the left was in an assembly, and reactor
shutdown occurred over a six-hour period during which the temperature was
reduced by 50–100 °C and then to gradually over the six-hour period during which
the flux was also decreased. Irradiation during cooling is responsible for the for-
mation of the fine dislocation loop structure. Following rapid shutdown during
which the neutron flux and temperature are decreased over a several minute period,
no fine loop structure is observed. The fast drop in temperature does not provide an
opportunity to accumulate enough dose in this intermediate-temperature regime to
cause loop nucleation.

The significance of these observations is twofold. First, that a low-temperature
dislocation microstructure introduced into a high-temperature microstructure can
alter the further development of that microstructure, affecting both loop and void
evolution. Second, only very small doses (<0.1 dpa) are required to nucleate the fine
loop structure that remains stable during the continuation of the irradiation at high
temperature. These data also provide additional information on the loop nucleation
rate, indicating that it is perhaps higher than current models can explain.

8.4 Bubbles

Up to this point, we have been treating voids as essentially empty cavities that grow
and shrink by the absorption of vacancies. We have accounted for the effect of gas
atoms on the nucleation of voids and also on the equilibrium vacancy concentration
at the void surface. But we have not discussed the magnitude of the pressure in the
void due to the gas and the effect this may have on the growth of the void. We also
have made no distinction between a void and a bubble. One question that we would
like to answer is how much gas must a void have in order to be considered a
bubble? In a practical sense, the distinction is largely one of degree and character.
A cavity is considered to be a bubble if the effect of the gas (on the surface energy
and due to the pressure) causes the cavity to become spherical. This is essentially
how voids and bubbles are distinguished in transmission electron microscopy. Due
to the periodicity of the lattice, cavities will be faceted with the facets lying on the
close-packed planes. But if the surface energy is changed by the gas, or if the gas
pressure is high enough, then the cavity will become spherical in shape. Of course,
very large voids will approach a spherical shape as the contribution of the facets
diminishes with increasing void radius.

Because insoluble gases are often formed by transmutation when certain ele-
ments are irradiated, inert gas bubbles form, which alter the mechanical and
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physical properties of an alloy. Bubble formation depends on the mobility of the gas
(in the form of either individual atoms or complexes), the minimum number of gas
atoms which are able to form a stable nucleus and the rate at which lattice vacancies
can be supplied to enhance the stability of a nucleated core.

Bubbles nucleate under irradiation and then grow or redissolve. The criterion is
that nucleation ceases when a gas atom diffusing at random is most likely to
encounter a pre-existing nucleus rather than take part in creating a new one. The
resulting bubble density varies inversely as the square root of the gas atom diffusion
coefficient and thus increases with decreasing temperature.

The following assumptions about bubble nucleation under irradiation are made.
Homogeneous nucleation is predicated on the premise that bubbles grow by the
interaction of gas atoms from a background atomic population on a random basis.
Thus, no account is taken of local effects such as cascade processes or precipitation
on lattice defects or impurity agglomerates. Concerning stable nuclei, we assume
that a pair of gas atoms is stable against thermal dissociation and that its activation
energy is such that its motion may be ignored with respect to that of single gas
atoms.

In this section, we will first consider the mechanics of bubbles followed by the
development of bubble growth models that will closely parallel void growth.

8.4.1 Bubble Mechanics

For a bubble of radius R, embedded in a solid medium, the change in the free
energy of the solid due to the bubble is:

dG ¼ V dpþ cdA: ð8:209Þ

Since

V dp ¼ d(pVÞ � p dV ; ð8:210Þ

and for an ideal gas, pV = constant and V = 4/3πR3, then:

dG
dr

¼ �4pR2 p� 2c
R

� �
: ð8:211Þ

Setting dG/ dr = 0 yields:

p ¼ 2c=R: ð8:212Þ

Thus, the equilibrium condition for a bubble is expressed by the force balance
p = 2γ/R, in which the force due to the outward pressure of the gas, p, is balanced by
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the inward-acting force due to the surface tension, 2γ/R. In the presence of a stress,
the force balance becomes:

p ¼ 2c
R
� r: ð8:213Þ

where positive stress is tension.
All bubble models require a specific relation between the number of gas atoms in

a bubble and its radius. The van der Waals equation of state is used to describe the
thermodynamic state of inert gas in bubbles. Let nx be the number of gas atoms in a
spherical bubble of radius R and the gas density is ρg. Then,

nx ¼ ð4=3pR3Þqg: ð8:214Þ

From the ideal gas law (pV = nkT), we have:

p
V
n
¼ kT or

p
qg

¼ kT or p ¼ 3nkT
4pR3 : ð8:215Þ

Using Eq. (8.212) for mechanical equilibrium to eliminate ρg and p in Eqs. (8.214)
and (8.215) gives:

nx ¼ 4=3pR3 2c
RkT

¼ 8pR2c
3kT

:

ð8:216Þ

For small R, 1/ρg is not proportional to R and we must account for the volume
occupied by the gas atoms themselves. We do this by modifying Eq. (8.215) to
include a term B which is a function of temperature and pressure. This gives us van
der Waals equation of state:

p
1
qg

� B

 !
¼ kT or

1
qg

¼ Bþ kT
2c

� �
R; ð8:217Þ

and Eq. (8.216) becomes:

nx ¼ 8pR2c
3ðkT þ 2Bc=RÞ ¼

4=3pR3

BþðkT=2cÞR : ð8:218Þ

For large R, the perfect gas approximation applies, and for very small R, the dense
gas limit applies. Physically, there is a minimum volume occupied by each atom, B,
and as R decreases, the volume per atom approaches this limit. The result is:
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1
qg

¼ B
nm3

atom
: dense gas limit ; ð8:219Þ

and

1
qg

ffi kT
2c

� �
R : ideal gas limit : ð8:220Þ

Note that for stainless steel at 500 °C, where γ* 1.75 J/m2, 2γ/kT ∼ 328 nm−2, then
1
qg

ffi 3� 10�4R
nm3

atom
:

The limiting cases corresponding to Eqs. (8.219) and (8.220) are:

nx ¼ 4pR3

3B

� �
for smallR ð8:221Þ

¼ 4pR2

3

� �
2c
kT

� �
for largeR : ð8:222Þ

If Eq. (8.212) is not satisfied, then the bubble is described as a non-equilibrium
bubble. That is, the bubble is not in equilibrium with the solid. Mechanical equi-
librium is usually maintained by a flow of vacancies to the bubble to provide the
additional volume needed to accommodate the influx of gas atoms. Whether
Eq. (8.212) is satisfied depends on the relative absorption rate of vacancies and gas
atoms by the bubble. A bubble of radius R can be considered as the absence of
(4/3πR3)/Ω matrix atoms where Ω is the atomic volume. The empty sphere of radius
R can be thought of as consisting of nv vacancies given by:

nv ¼ 4=3pR3

X
: ð8:223Þ

The number of gas atoms in a sphere of radius R in mechanical equilibrium is given
by Eq. (8.218). The number of vacancies per gas atom in an equilibrium bubble is
then:

nv
nx

¼ kT
2c

� �
R
X

þ B
X
: ð8:224Þ

Note that nx increases as R2, but nv increases as R3, so increasing numbers of
vacancies are needed per gas atom in order to maintain equilibrium.

Stress is accounted for by taking Eq. (8.213) and substituting for p from
Eq. (8.215) to give:
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r ¼ 2c
R
� 3nxkT

4pR3 ; ð8:225Þ

where σ is the hydrostatic tensile stress. The critical bubble radius for unstable
bubble growth is determined by setting dσ/dr = 0 and solving for R, yielding:

Rc ¼ 9nxkT
8pc

� �1=2

: ð8:226Þ

Substituting for Rc in Eq. (8.226) into Eq. (8.225) gives:

rc ¼ 128nc3

81nxkT

� �1=2

; or nx ¼ 128nc3

81r2ckT
: ð8:227Þ

The critical bubble radius, Rc, is related to the equilibrium bubble radius, R0, by
expressing Eqs. (8.216) and (8.226) in terms of the number of gas atoms in the
bubble, nx, and eliminating nx, giving:

Rc ¼
ffiffiffi
3

p
R0 ; ð8:228Þ

and the critical stress in terms of R0 is:

rc ¼ 4
ffiffiffi
3

p
c

9R0
: ð8:229Þ

Substituting for Eq. (8.222) into Eq. (8.225) to eliminate nx gives a relation between
the applied stress, the initial bubble size, and the critical bubble size:

rc ¼ 2c
Rc

1� R2
0

R2
c

� �
: ð8:230Þ

Equations (8.229) and (8.230) provide the bubble stability criterion in terms of the
applied stress and the bubble size. For bubbles of size R0, Eq. (8.229) gives the
critical stress for stability. For a solid with bubbles of size R0 < Rc, application of a
tensile stress σc will cause the bubble to grow to size Rc specified by Eq. (8.230). If
R0 > Rc or if σc is greater than the right-hand side of Eq. (8.229), then the bubble
will grow without bound. Or, for a given applied stress, Eq. (8.229) gives the
critical bubble radius for stability. Equation (8.226) can be compared to the stability
equation for a gas-free void in a solid subject to a stress, σ. For p = 0 in Eq. (8.213),
we have that σ = 2γ/R. The numerical coefficient in Eq. (8.229) is about 0.77, which
is less by about a factor of 3 than the coefficient for the void. The difference is due
to the effect of the gas pressure in the bubble that assists the stress.
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8.4.2 Growth Law

Analogous to void growth, the time rate of change of the volume of a bubble is
equal to the difference in the rates at which vacancies and interstitials are absorbed
and to the volume carried by each of these point defects:

d
dt

4
3
pR3

� �
¼ X ½4pRDvðCv � Cv

vÞ � 4pRDiðCi � Cv
i Þ� ; ð8:231Þ

and so the growth law is:

dR
dt

� _R ¼ X
R
½DvðCv � CV

v Þ � DiðCi � CV
i Þ�; ð8:232Þ

where CV
v and CV

i are the concentrations of vacancies and interstitials at the bubble
surface and Cv and Ci are the point defect concentrations in the bulk solid. The
thermodynamic vacancy concentration at the bubble surface given by Eq. (8.85) is
modified to include the effect of gas pressure in the bubble:

CV
v ¼ C0

v exp
�X
kT

p� 2c
R

� �� �
; ð8:233Þ

and for interstitials

CV
i ¼ C0

i exp
X
kT

p� 2c
R

� �� �
; ð8:234Þ

where C0
v and C0

i are the thermodynamic equilibrium concentrations of vacancies
and interstitials, respectively, for a stress-free solid and the exponential terms reflect
the presence of a mechanical stress acting on the solid equal in magnitude to p − 2γ/
R. Because C0

i is so small, the interstitial term, as in Eq. (8.234), can be neglected.
Setting dR/dt = 0 in Eq. (8.232) and substituting Eq. (8.233) for CV

v into the
resulting expression, taking logarithms and rearranging gives [56, 57]:

Rc ¼ 2c

pþ kT
X

ln Sv
; ð8:235Þ

where Sv is the effective vacancy supersaturation given by:

Sv ¼ DvCv � DiCi

DvC0
v

: ð8:236Þ
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Now, substituting Eq. (8.215) for p into Eq. (8.235) and rearranging gives:

gðRcÞ ¼ R3
c �

2cX
kT ln Sv

R2
c þ

3nxX
4p ln Sv

¼ 0; ð8:237Þ

where the expression denoted by the function g(Rc) is zero when Rc is a root. The
growth rate is plotted as a function of void radius in Fig. 8.58 for three conditions.
The lower curve is the case where Eq. (8.237) has three real roots, the middle curve
shows the case in which at least two of the roots are equal, and the upper curve has
one real root [57]. In case I, the roots are denoted RB

c and RV
c . A void containing

enough gas atoms that it is between RB
c and RV

c will shrink back to RB
c . A void with

the same number of gas atoms but with radius below RB
c will grow to RB

c and
stop. Finally, a void with the same number of gas atoms and with radius above RV

c
will grow without limit by bias-driven growth. As the number of gas atoms
increases, Eq. (8.237) is represented by curves that progress from I to II to III. In the
case of curve III, the number of gas atoms is large enough that there will be no
intersections with the dR/dt = 0 axis and these cavities will only grow by
bias-driven growth. At some critical number of gas atoms, there is just one inter-
section of the function dR/dt with the dR/dt = 0 axis. This case is represented by
curve II. In this case, the corresponding number of gas atoms is denoted as nx

* and
the corresponding minimum critical radius where RB

c and RV
c coincide is denoted as

R

c . The quantity, nx

*, is the maximum number of gas atoms that may be contained in
a cavity for there to still exist a critical radius, with a minimum value of R


c .
The minimum critical radius, R


c . can be found by taking the derivative of
Eq. (8.237) with respect to Rc, giving:

dgðRcÞ
dRc

¼ 3R2
c �

4cX
kT ln Sv

Rc: ð8:238Þ
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Setting Eqs. (8.237) and (8.238) to zero simultaneously yields the minimum critical
radius:

R

c ¼

4cX
3kT ln Sv

; ð8:239Þ

and from Eq. (8.226):

n
x ¼
128pc3X2

81ðkTÞ3ðln SvÞ2
: ð8:240Þ

Stoller et al. [57] noted that Eq. (8.240) can be written for non-spherical cavities
using a shape factor, FV, such that:

n
x ¼
32FVc3X

2

27ðkTÞ3ðln SvÞ2
; ð8:241Þ

where FV = 4π/3 for a spherical void. He also notes that more physically reasonable
solutions are obtained using a hard sphere equation of state rather than the ideal gas
law, which tends to overpredict swelling incubation times.

It should also be noted that Eqs. (8.240) and (8.228) are the same when σ is
replaced with Ω/ln S, indicating that the stability criterion is the same regardless of
whether the solid is acted on by an actual stress or an effective stress defined by the
irradiation-induced vacancy supersaturation. A bubble is stable for negative vacancy
supersaturation and can be stable or metastable for positive vacancy supersaturation,
depending on the magnitude of the supersaturation, the gas content, and the bubble
size according to Fig. 8.58. For a constant stress or irradiation-induced vacancy
supersaturation, when the stability limit is reached by gas absorption, a bubble starts
to grow by vacancy absorption and is transformed into a cavity. Equations (8.239)
and (8.226) describe the bubble-to-void conversion criterion.

Equation (8.232) can be used to calculate the swelling rate due to bubble
swelling by assuming all gas to be in the bubbles, resolution to be insignificant, and
the gas to be ideal such that:

p ¼ nxkT
4=3pR3qB

; ð8:242Þ

where ρB is the total bubble density and nx ¼ _xt is the gas concentration in the solid
being produced by transmutation at a rate of _x The swelling rate due to bubble
growth is:

dðDV=VÞ=dt ¼ ð4pR2qB=XÞdR=dt: ð8:243Þ
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8.4.3 Bubble Growth by Dislocation Loop Punching

While vacancy diffusion is the prime mechanism contributing to bubble growth on a
fine scale, an additional mechanism for bubble growth in the case of high gas pressure
is dislocation loop punching. If the pressure in the bubble is large enough, the stress in
the solid nearby may reach a level where dislocation sources can be activated,
resulting in the growth of the bubble by punching out a dislocation loop (Fig. 8.59).
Recall that the stress required to operate a Frank–Read source is*μb/l, where l is the
spacing between pinning points. Dislocation sources that are easiest to activate will be
those with l* r0, where r0 is the radius of the bubble. So the excess pressure required
for the bubble to generate dislocations is then *μb/r0. The magnitude of the excess
pressure required to generate prismatic dislocations can be determined by comparing
the free energy change of the bubble upon creation of a dislocation loop of size equal to
the bubble, to the energy of the loop itself [59]. Thework to increase the bubble size is:

DF ¼ �pdV ¼ � p� 2c
r0

� �
pr20b; ð8:244Þ

where p is the pressure in the bubble, V is the bubble volume, γ is the surface
energy, and b is the Burgers vector magnitude. Neglecting the stacking fault energy
contribution, the energy of the prismatic dislocation loop of radius r0 given by
Eq. (7.64) is approximated as:

EL ¼ lb2r0
2ð1� vÞ ln

4r0
rc

; ð8:245Þ

where rc is the dislocation core radius. For dislocation loop formation to be ener-
getically possible,

p� 2c
r

� �
pr20b[

lb2r0
2ð1� vÞ ln

4r0
rc

; ð8:246Þ

or approximating EL as πμb2r0:

p[ ð2cþ lbÞ=r0: ð8:247Þ

P

Fig. 8.59 Schematic illustration of the growth of a bubble by dislocation loop punching (after [58])
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For typical values of γ and μ, the gas pressure in the bubble must be about an order
of magnitude greater than 2γ/r0 before dislocations can be generated and allow the
bubble to expand.

8.4.4 Bubble Lattices

Similar to void lattices described earlier, high levels of He can result in the orga-
nization of gas bubble lattices. In fact, gas bubble lattice formation has been
observed in bcc, fcc, and hcp metals following He injection at temperatures <0.3Tm
[60]. Helium bubbles in Cu are aligned with dense-packed rows parallel to matrix
{111} directions. Johnson et al. [60] measured the lattice constant of the He bubble
superlattice in Cu to be aHe = 7.6 nm, corresponding to a bubble density of 1025

bubbles/m3. Figure 8.60 shows a bright-field transmission electron micrograph of a
helium gas bubble lattice in molybdenum following 40 keV He+ irradiation to a
dose of 5 × 1021 He+/m2 at 500 °C. While the same forces driving the formation of
void lattices are expected to apply to bubble lattices, additional interactions may
arise due to the close spacing of overpressurized bubbles, such as bubble growth by
dislocation loop punching.

8.4.5 Helium Production

An important ingredient in bubble formation and growth is the production of
helium. In a reactor, He production is governed by the boron and nickel contents of
the alloy through the reactions:

10B(n; aÞ7Li ; ð8:248Þ

Fig. 8.60 He gas bubble superlattice formed in molybdenum following 40 keV He+ irradiation to
a dose of 5 × 1021 He+/m2 at 500 °C (after [43])
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and the two-step reaction:

58Ni(n; cÞ59Ni(n; aÞ56Fe : ð8:249Þ

The thermal neutron (n, α) cross section for 10B is very large, about 3837b, while
the thermal neutron cross sections for the reactions in Eq. (8.249) are 4.6b and
12.3b, respectively. For thermal reactors then, a large amount of helium is produced
early in life from transmutation of boron, but this source burns out by about 1 dpa
(*1021 n/cm2).

The presence of nickel in stainless steels provides a smaller but sustained source
of helium at higher dose. 59Ni is not a naturally occurring isotope and is produced
from 58Ni. Thus, this helium contribution involves a delay relative to that of
single-step threshold (n, α) reactions [61]. Since both steps of the sequence involve
cross sections that increase with decreasing energy and the second step exhibits a
resonance at 203 eV, the generation rate per dpa in fast reactors increases near the
core boundaries and out-of-core areas.

Nickel has five naturally occurring stable isotopes with 58Ni comprising 67.8 %
natural abundance, 60Ni comprising 26.2, and *6.1 % total of 61Ni, 62Ni, and 64Ni.
There is no natural 59Ni or 63Ni at the beginning of radiation. During irradiation in a
highly thermalized neutron spectrum, all nickel isotopes are strongly transmuted,
primarily to the next higher isotopic number of nickel. 59Ni has a half-life of
76,000 years and is progressively transmuted to 60Ni, while 58Ni is continuously
reduced in concentration. Therefore, the 59Ni concentration rises to a peak at a
thermal neutron fluence of 4 × 1022 n cm−2 where the 59/58 ratio peaks at *0.04
and then declines, as shown in Fig. 8.61.
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In this regard, thermal reactors produce greater amounts of helium at low-dose
and in a lower-dose-rate environment, making low-dose helium-induced swelling a
potentially greater problem in a thermal reactor than in a fast reactor. Figure 8.62
shows the production rate of helium from an alloy containing 58Ni and 10B in the
HFIR (thermal) reactor. Note that the production rate of helium is dominated at low
fluence by the contribution from 10B and at higher fluence by 58Ni. Helium buildup
for the same alloy in a fast reactor and a fusion reactor is shown for comparison.
Note that the helium buildup in a fusion reactor matches that in HFIR, and both are
higher than that in a fast reactor.

The reaction in Eq. (8.249) has another important consequence. The recoil of the
59Ni upon emission of the gamma ray produces only about five displacements per
event and usually is not a significant addition to the displacement dose. However,
the isotope 59Ni undergoes three strong reactions with thermal and resonance
(*0.2 keV) neutrons, two of which are highly exothermic and can significantly add
to the dpa level. These reactions, in order of highest-to-lowest thermal cross section,
are (n, γ) to produce 60Ni, followed by (n, α) and (n, p) to produce helium and
hydrogen, respectively.

Even at relatively low thermal-to-fast neutron ratios, the reaction sequence can
produce significant amounts of helium. For example, He/dpa ratios in the order of
*3–8 appm dpa−1 can be experienced along the length of a 316 stainless baffle bolt
in the baffle–former assembly of a pressurized water reactor [61], while comparable
rates in fast reactors are in the order of 0.1–0.2 appm dpa−1. In thermalized spectra,
the latter two reactions can quickly overwhelm the gas production produced by
nickel at high neutron energies. The 59Ni(n, α) reaction releases 5.1 MeV in the
form of a 4.8 MeV alpha particle, which loses most of its energy by electronic
losses that results in the deposition of significant thermal energy but the production
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Fig. 8.62 Helium buildup versus fluence for stainless steel in HFIR (thermal reactor), a fusion
reactor spectrum, and a fast reactor spectrum. In the figure, r is the atom fraction of boron or nickel
in the alloy and q is the initial fraction of the isotope listed in the figure (after [27])
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of only *62 atomic displacements per each event, and a recoiling 56 Fe carrying
340 keV, which is very large compared to most primary knock-on energies, and
produces *1700 displacements per event.

An example of the time-dependent increase in dpa rate in highly thermalized
light water spectra is shown for pure nickel in Fig. 8.63 for a thermal-to-fast ratio of
2.0. Note that the calculated increase in this figure addresses only the 59Ni(n, α)
reaction. Additional increases occur as a result of the 59Ni(n, p) and 59Ni(n, γ)
reactions, resulting in roughly doubling the dpa due to the three 59Ni reactions
before a calculated dose of *40 dpa is attained.

An even stronger example of the linkage of the 59Ni transmutation effect and the
displacement process has been observed [62]. In-core thermal-to-fast ratios in heavy
water-moderated reactors such as CANDUs are on the order of *10, but far from
the core, the ratio can be near *1000. Compression-loaded springs constructed of
high nickel alloy X-750 were examined after 18.5 years of operation far from the
core and were found to be completely relaxed. Calculating the 59Ni contribution, it
was deduced that full relaxation occurred in *3–4 years rather than the 650–
700 years one would predict based on dpa calculated without taking into account
the 59Ni contribution. Therefore, in this case, 59Ni contributed *95 % of the dpa
damage. Additionally, 1100 appm of helium was calculated to have been produced
at the midsection of the spring in *3 years, with *20,000 appm helium having
been produced when the spring was examined after 18.5 years of exposure.
Figure 8.64 shows calculations of H, He, and displacement damage in alloy X-750
garter springs used in CANDU reactors as a function of fluence. Note that at end of
life (*4.5 × 1023 n/cm2), the damage level is *65 dpa of which *62 dpa comes
from the recoil of 59Ni, the He level is 22,000 appm (338 appm He/dpa), and the H
level is *4500 appm (69 appm H/dpa). Such levels of He and potentially H will
cause significant bubble formation and swelling in the alloy.
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Fig. 8.63 Increase in dpa arising from the effect of 59Ni to produce helium when pure nickel is
irradiated in the HFIR test reactor in the peripheral target position where the thermal-to-fast ratio is
2.0 (after [62])
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Another consequence of the 59Ni sequence is the inducement of temperature
increases due to gamma heating. At the peak 59Ni level reached at 4 × 1022 n cm−2

(Fig. 8.61), the nuclear heating rates from the energetic (n, α) and (n, p) reactions
are 0.377 and 0.023 Wg−1 of nickel, significantly larger than the neutron heating
level of *0.03 Wg−1 of natural nickel. Thus, an increase in nuclear heating of
*0.4 Wg−1 of nickel must be added to the gamma heating rate at the peak 59Ni
level. Depending on the nickel level of the steel and the level of gamma heating,
which is the primary cause of temperature increases in the interior of thick plates,
this additional heating contribution may or may not be significant.

Gamma heating is also a strong function of the thermal-to-fast (T/F) neutron ratio
and the neutron flux, being *54 Wg−1 in the center of the HFIR test reactor where
the T/F ratio is *2.0. In pressurized water reactors in austenitic core internals,
however, the T/F ratios are lower by a factor of 2–10, depending on location, and the
gamma heating rates in the baffle–former assembly are*1–3 Wg−1. In this case, an
additional 0.4 Wg−1 of nuclear heating can be a significant but time-dependent
addition to total heating, especially for high-nickel alloys.

Nomenclature

a Lattice constant
AX
v;i Absorption rate of vacancies, interstitials by sink X

B Volume occupied by a gas atom in a bubble
Bd Dislocation bias term defined below Eq. (8.184) as Bd = (zi

d − zv
d)/zv

d

CgiL Concentration of glissile SIA loops
Cj Concentration of species j
Cj
0 Thermal equilibrium concentration of species j

CL
v Vacancy concentration in equilibrium with a dislocation loop

CV
v Vacancy concentration at the void surface

Dj Diffusion coefficient of species j
Dc Diffusive spread due to cascades
De Diffusive spread due to vacancy emission
Ds Diffusive spread due to single defect jumps
E Energy
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E j
b

Binding energy of specie j

EJ
f Formation energy of specie j

E j
m Migration energy of specie j

EvL Effective binding energy of vacancies with vacancy clusters
Ev;i

 See definition after Eq. (8.167)

FV Shape factor (= 4π/3 for spherical void)
g(Rc) Void growth rate factor, defined in Eq. (8.216)
G Free energy
G0 Free energy of perfect lattice
ΔG Change in free energy
ΔGn

0 Activation barrier for void nucleation without interstitials
ΔGn

′ Activation barrier for void nucleation with interstitials
H Enthalpy, also Henry’s law constant, as in Eq. (8.57)
J Nucleation current
k Boltzmann’s constant
k2g Sink strength for 1D diffusing SIA clusters

kX
2 Sink strength of sink X
kj
2 Total sink strength species j
keffcl Effective production rate of defects in clusters and free form
Kj Loss rate of species j
Kiv Vacancy–interstitial recombination rate
keffj Effective production rate of free defects of type j

K0 Defect production rate
kcx Rate of gas atom resolution
l Distance of cluster to a grain boundary
Lj Thermal emission rate of species j
mi Number of interstitial in an interstitial loop
M Helium concentration
Mx Helium cluster of x gas atoms
n Number of vacancies in a void
ncr Number of vacancies in a void of critical size
nk; n0k Critical void nucleus cluster size
nvi Number of vacancies and interstitials
Ndj Average number of defects of type j generated in a single cascade
N0 Number of lattice sites per unit volume
NR Number of defects per unit volume that have recombined
NS Number of defects per unit volume lost to sinks
p Gas pressure
Pm Probability of nucleating a void embryo of size m
Q Sink strength ratio
R Radius
rc Recombination volume radius, or dislocation core radius (Eq. 8.245)
r0 Prismatic dislocation loop radius
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R Void or bubble radius
Rg Grain radius
Rc Critical bubble radius
Rcr Critical void radius
Riv Vacancy–interstitial recombination rate
Rmax Saturation void size
R0 Equilibrium bubble radius
_R Rate of change of radius, growth rate
rk, rk

′ Critical void nucleus radius
S Entropy
Sj Supersaturation of species j
T Temperature
V Volume
ΔV/V Fractional volume
wn Number of ways of removing ρ0(n) voids of size n from a solid
x Number of gas atoms in a void
xvcl,icl Mean sizes of vacancy and SIA glissile clusters
zv Vacancy bias factor
zi Interstitial bias factor
ziv Combinatorial factor for vacancy–interstitial recombination
Z Zeldovich factor
Z′ Zeldovich factor in the presence of interstitials or in a stressed solid
αj Emission rate of species j
β 2γΩ/kT defined in Eq. (8.71)
βj Absorption rate of species j
δ Thickness of void shell
egi Fraction of interstitials in glissile clusters
εj Fraction of defect j that is lost to clusters
εr Fraction of Frenkel pairs that recombine during cascade cooling
Φ Fluence or dose
γ Surface energy
γSFE Stacking fault energy

Λ Defined in Eq. (8.182) as
ffiffiffiffiffiffiffiffiffi
k2g=2

q
η Defined in Eq. (8.117)
μ Shear modulus
μx Chemical potential of species x
ν Poisson’s ratio
θ Angle between surface and tangent to void, as in Eq. (8.81)
Θ Defined in Eq. (8.98)
ρ Void size distribution
ρx Density of entity x
σicl Interaction cross section for SIA loops
σvcl Interaction cross section for vacancy loops
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σh Hydrostatic stress
Σs Macroscopic neutron scattering cross section
τ Time Constant
Ω Atomic volume
ξ Defined in Eq. (8.15)
ζ Defined in Eq. (8.130)

Subscripts

B Bubbles
cr Critical size
CP Coherent precipitates
d Dislocations
db Dislocation bias
g Glissile clusters or gas
gb Grain boundary
g Glissile SIA loops
hom Homogeneous
i Interstitials
icl SIA loops
j Defect specie representation
IP Incoherent precipitates
L Dislocation loops
N Network dislocations
pb Production bias
s Sinks
v Vacancy
V Void
vcl Vacancy loops
0 Equilibrium

Superscripts

c Cascades
E Vacancy emission
g Glissile
L Loops
m Number of vacancies in a void embryo of size m
s Single defects, sessile
V Voids
0 Equilibrium
* Minimum critical value
′ In the presence of interstitials
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Problems

8:1 In a solid where the effect of interstitials is neglected (i.e., where βi/βv = 0),

(a) Determine the critical void embryo size (in terms of the number of
vacancies and void radius).

(b) Show schematically how the number of vacancies in the critical size
void embryo varies with:

(i) Temperature
(ii) Degree of vacancy supersaturation
(iii) Void surface energy
(iv) The presence of interstitials.

(c) How do your answers to parts (a) and (b) change when an inert gas is
present?

8:2 Determine the critical void embryo size for 316 stainless steel (a = 0.3 nm,
γ = 1.75 J/m2) irradiated at 500 °C so as to produce a vacancy supersaturation
of 103.

8:3 Derive Eq. (8.40).
8:4 Calculate and plot the relative void growth rate _R= _Ro for stainless steel

(Tm = 1823 K) as a function of T/Tm, given that

Qv
f ¼ 1:4 eV

Qv
m ¼ 1:09 eV

qd ¼ 1010 cm�2

Rs ¼ 0:3 cm�1

/ ¼ 1014 n=cm2s

m ¼ # displacements=neutron ¼ 100

ziv ¼ 30

zi ¼ 1:02

zv ¼ 1:00

a3 ¼ X ¼ 0:011 nm3

kT=2c ¼ 0:01 nm2

m ¼ 1013 s�1

Neglect voids as sinks (ρV ≃ 0) and precipitates (ρCP ≃ 0) and loops as sinks
(ρL ≃ 0). Assume the vacancy diffusion coefficient is given by
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Dv ¼ va2 expð�Qv
m=kTÞ

and the equilibrium vacancy concentration is given by

C0
v ¼ X�1 expð�Qv

f =kTÞ :

Assume the void diameter is 50 nm.
8:5 The equation for growth of a cavity is given by:

dR
dt

¼ X
R
½DvðCv � CV

v Þ � DiCi� :

Explain what happens to the cavity growth rate if the radiation dose rate
doubles. Assume low sink strength and low temperature. Explain what
happens if the radiation stops, but the sample is held at the same temperature
at which it was irradiated.

8:6 A solid is subjected to a neutron flux, resulting in void formation and growth.
At time t1, a condition is reached where the dislocation density is 109 cm−2,
the voids are all 100 nm in diameter at a density of 1014 cm−3, and the void
growth rate is zero. In the absence of thermal emission, however,
_R = 10−2 nm/s. The metal is instantaneously strained such that the dislocation
density increases by a factor of 10 and the void growth rate in the absence of
thermal emission increases to 8 × 10−2 nm/s. Determine the direction and
magnitude of the hydrostatic stress needed to suppress void growth. Assume
that the solid contains no dislocation loops or precipitates and that the voids
are gas free.

8:7 Pure nickel has been found to be highly susceptible to void formation when
irradiated in a fast neutron spectrum. Along with voids, perfect dislocation
loops are found in nickel. In comparison, Fe–18Cr–8Ni stainless steel is less
susceptible to void formation and faulted Frank loops are found, but voids
are also present.
As the nickel content in the stainless steel is increased, two other observa-
tions are made. The susceptibility to void formation decreases, and voids that
are present are surrounded by a nickel-rich shell.
Given the following information, explain each of these observations.

c=cSFE Nij \c=cSFE Fe; RNi\RFej

Element Cr Fe Ni

σeff(n, α) 0.20 0.23 4.20

480 8 Irradiation-Induced Voids and Bubbles



8:8 (a) Explain the reason for the characteristic bell-shaped plot of swelling
versus irradiation temperature.

(b) How and why is the shape changed by:

(i) Cold-work prior to irradiation
(ii) The addition of impurities
(iii) Grain size

(c) Explain why swelling and creep can affect each other.

8:9 You are designing the stainless steel fuel cladding for the advanced breeder
reactor. Your objective is to delay void nucleation and minimize void
growth. Concerning cladding fabrication, you can control:

(a) Grain size
(b) Degree of cold-work
(c) Precipitate density
(d) Impurity content of the steel.
From a design standpoint, you can control the normal operating temperature
of the cladding over a window of 100 °C.
Using void nucleation and growth theory, how can you utilize these five
parameters to reach this goal? Be quantitative where possible.

8:10 Annealing is a means of removing radiation damage from an alloy. For
stainless steel with both dislocation loop and void populations, explain what
will occur when the steel is annealed at 600 °C for several hours. In
describing the changes during annealing, indicate relative rates and end
points.

8:11 In the absence of gas atoms, we wish to eliminate voids in Cu by thermal
treatment at 400 °C. Calculate the length of time needed to accomplish this
for initial void radii of 5 and 30 nm. The surface free energy of copper is
1.73 J/m2.

8:12 Given that the number of gas atoms in a bubble can be described as

m ¼ ð4=3pR3Þqg
and that the gas atom density, ρg, can be described by

1=qg ¼ BþðkT=2cÞR

where B is the dense gas limit:

(a) Show that the volume increase that accompanies coalescence of
equal-sized gas bubbles is
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ðDV=VÞfinal=ððDV=VÞinitial ¼ =
ffiffiffi
2

p
:

(b) Assuming that the overall gas balance in UO2 can be given as

YF0t ¼ mN
where
Y noble gas yield of a fission event
F′ fission rate density
m gas atoms per bubble
N bubble density,

and all the gas remains in bubbles, develop an expression for the volu-
metric swelling rate and indicate the dependence on burnup.

(c) How would you account for

(i) Gas remaining in the matrix?
(ii) Resolution?
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