
Chapter 7
Dislocation Microstructure

One of the most profound consequences of irradiation on the microstructure of
materials is the formation of dislocation loops. Dislocation loops have a bias for
interstitials and thus have a strong impact on the development of the irradiated
microstructure. They also influence the deformation behavior and, consequently,
the ductility and hardening of irradiated materials, as will be discussed in Chap. 12.
In this chapter, we will review the origin and character of dislocations, their
mobility and multiplication and their stresses, strains and energies. The character of
dislocation loops will be examined, and models for nucleation and growth will be
presented. Finally, the stacking fault tetrahedron (SFT) will be discussed. For a
more in-depth treatment of dislocations, the reader is referred to [1–4].

7.1 Dislocation Lines

The discovery of dislocations in crystals has its origin in the discrepancy between
the measured and theoretical stress needed to cause shear in a crystal. Consider the
stress required to shear a crystal along a given atomic plane. A shear of one atomic
distance requires that atoms above the plane all move one lattice spacing relative to
those below (Fig. 7.1). To reach the saddle point, each atom must move horizon-
tally a distance of one atom radius, a. Since the separation of two planes is *2a,
the shear strain at the saddle point is γ ≈ a/2a * 1/2. In a perfectly elastic crystal,
the ratio of shear stress to shear strain is the shear modulus:

rs
c
¼ l: ð7:1Þ

For a typical shear modulus of 17 GPa and a shear strain of 1/2, the shear stress
from Eq. (7.1) is *8.5 GPa. However, experiments, for example on magnesium,
produce deformation at shear stresses of*1 MPa, which is different from theory by
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a factor of 104! The reason is the existence of dislocations that provide for much
reduced shear stresses in crystals.

A dislocation is a line that forms a boundary between a region of the crystal that
has slipped and one that has not. The two basic types of dislocations lines are the
edge and the screw. In an edge dislocation, atoms over the cut surface are shifted in
a direction perpendicular to the dislocation line. An edge dislocation can also be
thought of as the insertion of an extra half plane of atoms (Fig. 7.2). In a screw
dislocation, the atoms over the cut surface are shifted in a direction parallel to the
dislocation line (Fig. 7.3a). The screw dislocation itself is a pole about which a
spiral ramp of planes circles (analogous to a parking garage ramp) (Fig. 7.3b).
There also exist mixed dislocations in which the shift is neither parallel nor per-
pendicular to the dislocation line, but at some arbitrary angle. Figure 7.4 shows a
mixed dislocation in a crystal in which the dislocation line is curved. Note that the
boundary separating slipped and unslipped regions is circular. At point A (front
face), the dislocation is of pure edge character. At point B (side face), the dislo-
cation is of pure screw character. In between, the dislocation is mixed with the
proportion of screw character and edge character varying continuously with dis-
tance along the line. Figure 7.5 shows the construction of a mixed dislocation.

A dislocation line can also be made in the form of a closed loop rather than a line
that terminates at the crystal surface. Following Fig. 7.6, we make a cut along
ABCD and shift the atoms parallel to the plane and then rejoin them. Note that
segments AB and DC have edge character and segments BC and AD have screw
character. Segments AB and DC have opposite sign in that one has a half plane
above the cut and one has the half plane below it. The same is true with segments
BC and AD. This loop is termed a perfect dislocation loop.
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Fig. 7.1 Initial position of atoms above and below a slip plane and the motion of the atoms above
the slip plane required to cause slip
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Fig. 7.2 An edge dislocation described as an extra half plane of atoms above the slip plane
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Now suppose that instead of shifting atoms parallel to the plane as we did in the
example of a perfect loop, we fill up the cut with more atoms. The shift of atoms on
each side of the cut is perpendicular to the surface. Figure 7.7 shows that by
insertion of a disk of atoms into the cut, that every segment of the dislocation loop
has pure edge character. This is very different from the perfect loop with edge
character and screw character. This dislocation loop is called a prismatic or Frank
loop. One variation is to remove a disk of atoms from the cut rather than insert an
extra plane of atoms.

7.1.1 Dislocation Motion

Dislocations can move in two modes: glide and climb. Glide is the motion of a
dislocation on its slip plane and is a conservative motion in that it requires no
long-range mass transport in order to occur. Experiments have shown that the
logarithm of the dislocation velocity is proportional to the logarithm of the shear
stress causing glide:

A

B

Fig. 7.4 Curved dislocation line with pure edge character at point A, pure screw character at point
B, and mixed character along the length of the dislocation

screw 
dislocation

(a) (b)

Fig. 7.3 (a) A screw dislocation formed by a cut and a shift of atoms in a direction parallel to the
cut line. (b) A schematic showing the “parking ramp” nature of a screw dislocation in which atom
planes spiral about the dislocation line
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Fig. 7.5 Construction of a dislocation line with mixed character
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Fig. 7.6 A perfect dislocation loop in a crystal in which the character of the loop varies with
position along the loop
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ln tg / ln rs; ð7:2Þ

which implies a power law relationship between shear stress and dislocation
velocity:

tg ¼ rs
rD

� �m

; ð7:3Þ

where m is the stress exponent (*1.65), and σD is the value of the stress that yields a
dislocation velocity of 0.01 m/s [5]. Experiments also show that the logarithm of the
dislocation velocity is proportional to the reciprocal of the absolute temperature, T:

ln tg / 1
T
; ð7:4Þ

leading to the following description of the velocity of a gliding dislocation in terms
of stress and temperature:

tg ¼ f rð Þ exp �E=kTð Þ: ð7:5Þ

When dislocations glide, they displace the crystal above the slip plane relative to
that below. Figure 7.8 shows that if an edge dislocation glides to the surface, the
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Fig. 7.7 A Frank dislocation
loop formed by insertion of a
circular plane of atoms
between existing planes in the
lattice
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result is a step on the surface of magnitude equal to the Burgers vector. Screw
dislocations will also produce a step on the surface, but on a face that is perpen-
dicular to the dislocation line (Fig. 7.9). The perfect loop described in the last
section will also result in displacement of the crystal when it reaches the surface.
Figure 7.10 shows the displacement of the crystal above the slip plane relative to
that below. Note that the displacements are entirely consistent with the character of
the dislocation where it intersects the surface as shown in Figs. 7.8 and 7.9.

A Frank loop is essentially an edge dislocation. The slip plane for this type of
loop is defined by the intersection of the loop edge and the adjacent crystal and
consists of a cylindrical surface projecting above and below the plane of the
loop. Figure 7.11 shows how surface atoms would be displaced if the loop was to
glide to the surface. However, this mode of motion is not energetically favorable,
and this loop is more likely to move by climb rather than glide.

Dislocations also move by a non-conservative process called climb. Climb is an
important process for edge dislocations and prismatic loops, since unlike screw
dislocations that can glide on any plane containing the dislocation, there is only one
possible slip plane for an edge dislocation to glide. Climb is the extension or
recession of the extra half plane of atoms by absorption or emission of a vacancy,
absorption of an interstitial atom, or emission/absorption of clusters of vacancies or
single interstitial atoms (SIAs). Figure 7.12 shows the positive climb of an edge
dislocation by absorption of a vacancy at the dislocation core. In order for the edge
dislocation to move up one lattice spacing, all of the atoms along the edge (into the
paper) must absorb a vacancy. Positive climb results in a decrease in the size of the
extra half plane, while negative climb results in the increase in the size of the extra

=

Fig. 7.8 Slip produced by movement of edge dislocations to the surface of a crystal

=sr s

Fig. 7.9 Slip produced by movement of screw dislocations to the surface of a crystal
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half plane. Positive climb is associated with a compressive strain and will be
promoted by a compressive stress component perpendicular to the extra plane.
Similarly, a tensile stress applied perpendicular to the extra plane promotes growth
of the plane and thus negative climb. Since they are essentially edge dislocations,
Frank loops climb in the same manner, where positive climb results in loop
shrinkage and negative climb results in loop growth. Note that there is a funda-
mental difference between the nature of the stress that produces slip and that which
produces climb. Slip occurs as the result of shear stress, and climb occurs as a result
of a normal stress.

Since climb requires that vacancies move through the lattice either to or away
from the extra half plane, the rate of climb will be dependent on both the diffusion

=

screw edge

Fig. 7.10 Slip produced by movement of a perfect dislocation loop to the surface of a crystal

Fig. 7.11 Slip produced by movement of a Frank loop to the surface of a crystal

(a) (b) (c)

Fig. 7.12 Positive climb of an edge dislocation by absorption of vacancies at its core
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coefficient of vacancies and their concentration. In unirradiated solids, this means
that climb will be most important at high temperature. However, in irradiated solids,
the increased population of vacancies will make climb more important at lower
temperatures. Further, the elevated concentration of interstitials means that they too
can contribute to climb in a direction that is opposite to that of vacancies.

7.1.2 Description of a Dislocation

A description of a dislocation consists of the specification of the vector defining the
line direction, s, and the Burgers vector defining the atom shift, b. The Burgers
vector is defined as follows:

1. Define a positive direction, s, along the dislocation line (e.g., into the paper).
2. Construct a plane perpendicular to the dislocation line.
3. Starting in a region of perfect crystal (away from the dislocation core), complete

a counterclockwise circuit around the dislocation line (in the plane of the paper)
4. The Burgers vector, b, is the vector needed to close the circuit.

The rule is shown schematically in Fig. 7.13 for a screw dislocation. Following
this convention, the Burgers vector of an edge dislocation is perpendicular to the
dislocation line. The Burgers vector of a screw dislocation is parallel to the
dislocation line.

For an edge dislocation, we can determine the Burgers vector in the following
manner. Sighting down the dislocation line (along the positive s direction), we
make a counterclockwise circuit around the dislocation. The vector connecting the
end point to the origin is the Burgers vector. Figure 7.14 shows an example of the
determination of the Burgers vector using the construction rule. (Note that it does
not matter which direction is called positive, but we need to adopt a convention in
order to determine the orientation of the line and the extra half plane in the crystal.
If we sighted in the opposite direction, b will be in the opposite direction. What
matters is the specification of s relative to b.) Following the convention, Fig. 7.15a
shows a dislocation with line direction, s, pointing into the paper and b pointing to
the left. The dislocation in Fig. 7.15b is identical to that in Fig. 7.15a since the

s direction of 
dislocation line

counterclockwise circuit 
around dislocation line

b

Fig. 7.13 Convention for finding the Burgers vector of a dislocation line characterized by
direction s
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relationship between s and b is the same. However, the dislocation shown in
Fig. 7.15c is of opposite sign.

For a screw dislocation, we consider a left-handed screw (counterclockwise
rotation; see Fig. 7.16). With this convention, s and b are in the same direction.
Figure 7.17a shows a screw dislocation with Burgers vector in the same direction as
s. The dislocation shown in Fig. 7.17b is identical to that in Fig. 7.17a, but the
dislocation shown in Fig. 7.17c is of opposite sign as the other two.

An edge dislocation glides in the direction of its Burgers vector. A screw dis-
location glides in a direction perpendicular to its Burgers vector. We adopt the
following convention to determine the direction of motion of a dislocation line. The
positive direction of motion is obtained by a counterclockwise rotation on a plane
parallel to the slip plane and through 90° from the positive direction of the dis-
location line itself. The rule is shown by the illustration in Fig. 7.18a. Figure 7.18b,
c shows the positive direction of motion for an edge and screw dislocation,
respectively. Figure 7.19 shows the direction of motion for a dislocation loop that is
characterized by a single Burgers vector (perfect loop) and changes character along
the dislocation line.

Starting
Point

End
Point

Starting
Point

End
Point

b

(a) (b)

Fig. 7.14 The Burgers circuit for an edge dislocation following the convention shown in
Fig. 7.13 for (a) a region of perfect crystal, and (b) a region containing an edge dislocation

s

b

s

b s b

(a) (b) (c)

Fig. 7.15 Examples of identical edge dislocations (a) and (b) and an edge dislocation of opposite
sign (c)
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7.1.3 Displacements, Strains, and Stresses

Dislocations interact with each other and with other microstructure features through
their stress fields. Therefore, it is important to establish the stress and strain fields
around a dislocation as well as the energy associated with the dislocation line. We
will begin with the screw dislocation and then treat the edge dislocation. Recall the
orientation of the screw dislocation is one in which the Burgers vector is parallel to
the dislocation line, which means that the displacement of atoms is in the direction
of the dislocation line. If we describe the dislocation in cylindrical coordinates,
Fig. 7.20, then there is no displacement along the r or θ directions so that:

ur ¼ uh ¼ 0: ð7:6Þ

In Cartesian coordinates, the displacement in the x–y plane is zero. The only dis-
placement is in the z-direction, and from inspection, we have in cylindrical
coordinates:

uz ¼ b
2p

h; ux ¼ uy ¼ 0; ð7:7Þ

s

s s

bb

b

(a) (b) (c)

Fig. 7.17 Examples of identical screw dislocations (a) and (b), and a screw dislocation of
opposite sign (c)

b

S

Fig. 7.16 The Burgers circuit for a screw dislocation following the convention shown in Fig. 7.13
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Fig. 7.19 Positive direction of motion of a perfect loop characterized by a single Burgers vector

positive direction 
of motion

positive sense 
of dislocation

looking from upper 
to lower half
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of motion
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positive direction 
of motion

positive direction 
of motion
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Fig. 7.18 (a) Rule for determination of the direction of motion of a dislocation on its slip plane
and examples of the positive direction of motion for (b) edge and (c) screw dislocations
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and in Cartesian coordinates:

uz ¼ b
2p

tan�1 y
x
; ð7:8Þ

where b is the magnitude of the Burgers vector. From elasticity theory, we can
calculate the strain from the displacement as:

ehz ¼ 1
r

@uz
@h

� �
¼ b

2pr
; err ¼ ehh ¼ ezz ¼ erh ¼ erz ¼ 0; ð7:9Þ

and in Cartesian coordinates:

exz ¼ b
2p

y
x2 þ y2

¼ b
2pr

sin h

eyz ¼ � b
2p

x
x2 þ y2

¼ � b
2pr

cos h

exx ¼ eyy ¼ ezz ¼ exy ¼ 0:

ð7:10Þ

The stress field of the screw dislocation is determined from the relation between
stress and strain:

rhz ¼ lehz ¼ lb
2pr

; rrr ¼ rhh ¼ rzz ¼ rrh ¼ rrz ¼ 0; ð7:11Þ

and

rxz ¼ lb
2p

y
x2 þ y2

¼ lb
2pr

sin h

ryz ¼ � lb
2p

x
x2 þ y2

¼ � lb
2pr

cos h

rxx ¼ ryy ¼ rzz ¼ rxy ¼ 0:

ð7:12Þ

x

y

z

r

s

b

Fig. 7.20 Screw dislocation
in the Cartesian coordinate
system
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For an edge dislocation as shown in Fig. 7.21, the displacement of atoms is in the
x-direction. The displacement is not so simple here, but we know that the dislo-
cation will be similar at any point along the z-axis and hence, the stress state is one
of plane stress. The displacement field around the edge dislocation in Cartesian
coordinates is:

ux ¼ b
2p

tan�1 y
x
þ kþ u

kþ 2l
xy

x2 þ y2

� �

uy ¼ b
2p

�l
2 kþ 2lð Þ log

x2 þ y2

c
þ kþ l

kþ 2l
y2

x2 þ y2

� �
uz ¼ 0;

ð7:13Þ

where the constant c is added to make the log term dimensionless, but is irrelevant
since stresses and strains are derivatives of the displacements. The resulting strains
are as follows:

exx ¼ � by
2p

ly2 þ 2kþ 3lð Þx2
kþ 2lð Þ x2 þ y2ð Þ2

eyy ¼ by
2p

2kþ lð Þx2 � ly2

kþ 2lð Þ x2 þ y2ð Þ2

exy ¼ b
2p 1� vð Þ

x x2 � y2ð Þ
x2 þ y2ð Þ2

ezz ¼ exz ¼ eyz ¼ 0;

ð7:14Þ

where v is Poisson’s ratio, λ is the Lamé constant, and v ¼ k
2 kþ lð Þ : The stresses

around an edge dislocation are then:

x

y

sz

b

Fig. 7.21 Edge dislocation in
the Cartesian coordinate
system
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rxx ¼ �lb
2pð1� mÞ

yð3x2 þ y2Þ
ðx2 þ y2Þ2 ¼ �lb

2pð1� mÞr sin hð2þ cos 2hÞ

ryy ¼ lb
2pð1� mÞ

yðx2 � y2Þ
ðx2 þ y2Þ2 ¼ lb

2pð1� mÞr sin h cos 2h

rxy ¼ � lb
2pð1� mÞ

xðx2 � y2Þ
ðx2 þ y2Þ2 ¼ lb

2pð1� mÞr cos h cos 2h

rzz ¼ vðrxx þ ryyÞ ¼ �lmby
pð1� mÞðx2 þ y2Þ ¼

�lmb
pð1� mÞr sin h

rxz ¼ ryz ¼ 0:

ð7:15Þ

The stresses in cylindrical coordinates are as follows:

rrr ¼ rhh ¼ lb
2p 1� vð Þ

sin h
r

rrh ¼ �lb
2p 1� vð Þ

cos h
r

rzz ¼ �lvb
2p 1� vð Þ

sin h
r

rhz ¼ rrz ¼ 0:

ð7:16Þ

7.1.4 Energy of a Dislocation

Energy is stored in any elastic medium that is stressed. Applying a tensile stress to a
rod produces a tensile strain, which is proportional to the stress in an elastic solid.
Consider a unit cube within the rod. A stress, σ, is the total force applied across a
face of the cube. The strain is the fractional distance the cube elongates in the
direction of the stress. So the work done (energy/unit volume) on the cube is the
force times the distance, or:

W ¼
Z emax

0
rde; ð7:17Þ

and from Fig. 7.22, we have:

W ¼ 1=2rmaxemax: ð7:18Þ
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For a generalized stress field, the stored energy per unit volume is as follows:

W ¼ 1=2 rxxexx þ ryyeyy þ rzzezz þ rxyexy þ rxzexz þ ryzeyz
� �

; ð7:19Þ

and in cylindrical coordinates:

W ¼ 1=2 rrrerr þ rhhehh þ rzzezz þ rrherh þ rrzerz þ rhzehzð Þ; ð7:20Þ

where σij = σji.
Applying Eq. (7.20) to the screw dislocation gives:

W ¼ 1=2 rhzehzð Þ ¼ lb2

8p2r2
: ð7:21Þ

The elastic energy per unit length of the dislocation line is:

El ¼
Z R

rc

W2prdr ¼ lb2

4p

Z R

rc

dr
r
¼ lb2

4p
ln

R
rc

� �
þ ec: ð7:22Þ

The limits on the integral are the dislocation core radius, rc, and R. The dislocation
core radius is that distance below which linear elasticity does not hold and is
generally taken to be several Burgers vectors in magnitude. R is the outer dimension
of the crystal, or for polycrystalline materials, R could be taken to be the grain
radius. However, a further constraining condition is the presence of other dislo-
cations, which is the case even in a well-annealed metal in which the dislocation
density is still*108 cm−2. So R is often taken to be the distance midway to the next
dislocation. However, the elastic energy is not highly sensitive to R since it appears
in the ln term. The term εc is the energy of the dislocation core radius, which is not
included in the integral since linear continuum elasticity theory breaks down in this
region. Assuming that the stress level in the core is μ/30, then for a dislocation core
radius of 5b, the value of εc is approximately μb2/10, which is about 10–20 % of the
value of that in the elastic strain field (ln term).

max

max

Fig. 7.22 Elastic stress–
strain curve showing the
stored energy in the strain
field
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For an edge dislocation, the elastic energy per unit length determined in the same
way as for the screw dislocation is as follows:

El ¼ lb2

4p 1� vð Þ ln
R
rc

� �
þ ec; ð7:23Þ

which is different from the screw dislocation by a factor of (1 − ν) in the
denominator of the first term, or a factor of about 1.6 for ν* 0 3. For typical values

of R and rc,
lb2

2
�El � lb2: The elastic energy per unit length of dislocation line is

also called the line tension and is denoted by Γ. Generally, Γ is taken to have the

value
lb2

2
:

7.1.5 Line Tension of a Dislocation

Under a uniform applied shear stress, σs, an element of dislocation line, ds, is
displaced in a direction normal to ds by an amount dl (Fig. 7.23). The area swept
out by the dislocation line element, ds, is dsdl. The average displacement of the
crystal above the slip plane relative to that below is by an element:

dx ¼ dsdl
A

� �
b; ð7:24Þ

where A is the area of the slip plane. The force creating the shear stress is σsA, and
the work done is as follows:

dW ¼ Fdx ¼ rsA
dsdl
A

� �
b

¼ rsdsdlb:
ð7:25Þ

s

ds
dl

b

Fig. 7.23 Dislocation line
segment ds sweeping out an
area dsdl in the direction of
the Burgers vector
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Since force is work divided by the distance over which it is applied:

F ¼ dW
dl

¼ rsdsb; ð7:26Þ

and the force per unit length is as follows:

Fl ¼ dW=dl
ds

¼ rsb: ð7:27Þ

Consider a curved dislocation line. The line tension produces an inward radial force
that tends to straighten out the dislocation line. The dislocation will only remain
curved if a shear stress exists to resist the line tension. We wish to determine the
shear stress required to maintain the curvature. Consider a segment of a dislocation
line as shown in Fig. 7.24. The outward force due to the shear stress is as follows:

rsbds ¼ 2rsbRdh: ð7:28Þ

The inward restraining force is as follows:

2C sinðdhÞ� 2Cdh: ð7:29Þ

From Eqs. (7.28) and (7.29), we have the force balance:

2Cdh ¼ 2rsbRdh; ð7:30Þ

and solving for σs yields the shear stress in terms of the line tension:

rs ¼ C
bR

: ð7:31Þ

For:

C � lb2

2
; then rs ¼ lb

2R
; ð7:32aÞ

s
d

ds

R

sindd

Fig. 7.24 Inward restraining force on a dislocation line segment ds due to a shear stress σs
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and for

C � lb2; then rs ¼ lb
R
: ð7:32bÞ

One mechanism of formation of dislocations in solids is the Frank–Read mecha-
nism. The mechanism is shown in Fig. 7.25 and occurs as follows. A dislocation
line segment defined by ABCD and Burgers vector b is such that segments AB and
DC are immobile and only segment BC lies in a slip plane. The dislocation segment
BC is pinned at the points B and C. The temperature is assumed to be low enough
that that climb is not an option. Under an applied stress, the segment BC bows out
slightly in response to the stress and adopts the curvature as prescribed by the line

tension on the dislocation given in Eq. (7.32a) rs ¼ lb
2R

; and for l = 2R, rs � lb
l
:

When the force arising from the curvature of the dislocation line can no longer
balance the force produced by the applied stress, the dislocation becomes unstable
and bows out to adopt the configuration shown in Fig. 7.25c. Note that at this point,
the line segments P and P′ have opposite character, and as the dislocation continues
to bow out, they come in contact with each other and annihilate, leaving a region of
perfect crystal and a perfect loop. The applied shear stress will cause the loop to
expand and will also start the process of creating a new loop from the same BC
segment. This process can continue to occur, and one such pinned dislocation can
produce many loops and will continue as long as the loops are able to expand away
from the source. Figure 7.26 shows a micrograph of a Frank–Read source in a
silicon crystal. Eventually, the back stress caused by the previous loops will pro-
duce a retarding force on the source, and it will shut down. Back stress due to
dislocation pileup is discussed in Chap. 12.

A

B C

D

b

b B Cl

B C B C

(a) (b)

(c) (d)

P’ P

Fig. 7.25 Frank–Read source for the production of dislocations
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7.1.6 Forces on a Dislocation

We consider here the application of an external stress on a solid containing a
dislocation. For example, the application of a shear stress, σxy, on a solid containing
an edge dislocation (Fig. 7.27) produces motion in the +x-direction. In moving a
dislocation a distance L, the external applied stress will have done an amount of
work/unit length of dislocation line equal to σxybL. Then, the force is F ¼ rxyb:
Note that the force is in the +x-direction.

For a screw dislocation, application of a shear stress, σyz, results in a force σyzb,
where the force is in the +x-direction (Fig. 7.28). Application of a shear stress σxz
produces a force −σxzb, where the force is in the –y-direction, and motion is
perpendicular to the slip plane.

What if we apply a stress to an edge dislocation that produces a force in a
direction perpendicular to the slip plane? A tensile stress, σxx, applied to the edge
dislocation in Fig. 7.29 will produce a downward force on the dislocation equal to
–σxxb. The only way that the dislocation can respond to this stress is to climb.

Fig. 7.26 Micrograph of a Frank–Read source in a silicon crystal (from [6])
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y

z
s

F

b

xy

b

Fig. 7.27 Force on an edge dislocation with character s|001|, b|100| due to a shear stress σxy
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Ultimately, we would like to be able to determine the force on any dislocation in
a solid subjected to a generalized stress. For example, if we orient a dislocation
along the +z-direction and its slip plane is perpendicular to the y-axis, then the
Burgers vector can be described by:

b ¼ bxiþ bzk; ð7:33Þ

where bx and bz are edge and screw components of the Burgers vector, and i and
k are unit vectors in the x- and z-directions, respectively. This is a mixed dislocation
as it’s Burgers vector contains components in more than one direction. An external
stress placed on the surfaces of a crystal containing a dislocation includes six
components: σxx, σyy, σzz, σxy, σxz, and σyz. Of these six stress components, only σyz
and σxy exert a force on an edge dislocation that will cause motion in the slip plane.
Stress components σxz and σxx cause motion perpendicular to the slip plane. The
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Fig. 7.28 Force on a screw dislocation with character s|001|, b|001| due to a shear stress σyz
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Fig. 7.29 Force on an edge dislocation with character s|001|, b|100| due to a normal stress σxx
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term σzz does no work, nor does σyy. The total force on a unit length of dislocation
line is then:

F ¼ rxybx þ ryzbz
� �

i� rxxbx þ rxzbzð Þj; ð7:34Þ

where the first term is the force component parallel to the slip plane, the second
term is the force component normal to the slip plane, and n = (i, j, k) defines the unit
vector.

A dislocation of mixed character represents the most general case of a force on a
dislocation due to an arbitrary stress field. For a mixed dislocation, the Burgers
vector is as follows:

b ¼ bxiþ byjþ bzk

¼ b1iþ b2jþ b3k:
ð7:35Þ

Therefore, we write the incremental work done on a dislocation of Burgers vector
described by Eq. (7.35) due to an arbitrary stress σij as follows:

dW ¼
X3
i¼1
j¼1

birijnjdA; ð7:36Þ

or in matrix notation:

dW ¼ b r ndA; ð7:37Þ

where r is the stress tensor, n is the unit vector perpendicular to the slip plane, and b
is the Burgers vector. Actually, b is a column vector so that Eq. (7.37) is written as
follows:

dW ¼ bTr � n dA: ð7:38Þ

The term n dA can be written as dA which is just:

L s� dlð Þ; ð7:39Þ

where s is the unit vector in the direction of the dislocation line, L is the length of
the dislocation line, and dl (=dxi + dyj + dzk) is the unit vector in the slip plane and
is normal to s and n Recall that b = bxi + byj + bzk, so b has a component only in the
direction dl. Since A · B × C = A × B · C, then:

dW ¼ LbTr� s � dl; ð7:40Þ
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and:

1
L
dW ¼ bTr� s � dl: ð7:41Þ

The term bTr� s in Eq. (7.41) is the force per unit length on a dislocation due to an
external stress that tends to displace the dislocation, and is designated:

f ¼ bTr� s; ð7:42Þ

and is known as the Peach–Koehler equation.
Let us apply the Peach–Koehler equation to the case of an edge dislocation

described by Burgers vector and direction: b
1
0
0

������
������ and s

0
0
1

������
������ and shown in Fig. 7.30.

We write the first quantity in Eq. (7.42) as follows:

bTr ¼ b 100j j
rxx rxy rxz
ryx ryy ryz
rzx rzy rzz

������
������ ¼ b rxx rxy rxzj j; ð7:43Þ

and then taking the cross product with s gives:

bTr� s ¼ b
i
rxx
0

j
rxy
0

k
rxz
1

������
������: ð7:44Þ

The cross product, or determinant, is brxyi� brxxj; and the force on the dislocation
is as follows:

x
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b

s

Fig. 7.30 Orientation of an edge dislocation for the determination of the forces due to a
generalized stress field
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f ¼ brxyi� brxxj: ð7:45Þ

Note that fx = bσxy is a glide force in the +x-direction and the force component
fy = −bσxx is the climb force in the −y-direction. Only σxy and σxx can exert forces on
a dislocation with Burgers vector and direction defined as in this example.

For a screw dislocation with Burgers vector and direction given by: b
0
0
1

������
������ and

s
0
0
1

������
������; and shown in Fig. 7.31, we have:

bTr ¼ b 001j j
rxx
ryx
rzx

rxy
ryy
rzy

rxz
ryz
rzz

������
������ ¼ b rzx rzy rzzj j; ð7:46Þ

and then taking the cross product with s gives:

f ¼ bTr� s ¼ b
i
rzx
0

j
rzy
0

k
rzz
1

������
������ ¼ bryzi� brzx j; ð7:47Þ

and fx = bσzy and fy = −bσzx. Note that only σzy and σzx can exert a force on a
dislocation defined in this example.

7.1.7 Interactions Between Dislocations

The Peach–Koehler equation can also be used to determine the stress on a dislo-
cation due to that from a second dislocation. The difference is that the stress is due
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Fig. 7.31 Orientation of a screw dislocation for the determination of the forces due to a
generalized stress field
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to the presence of the second dislocation rather than external application. We will
examine interactions between dislocations by looking at edge–edge, screw–screw,
and edge–screw interactions. We will begin with the edge–edge interaction.

Edge–edge interaction

To find the force on dislocation (2) due to the presence of dislocation (1), we
locate dislocation (1) at the origin of our coordinate axes and dislocation (2) at some
arbitrary position (Fig. 7.32(a)). According to the Peach–Koehler equation, the
force is as follows: f ¼ bT

ð2Þ
r
ð1Þ

� s
2ð Þ
, where the Burgers vector and direction are

those of dislocation (2), and the stress is due to dislocation (1). The first term in the
cross product then becomes:

bTr ¼ b 100j j|fflffl{zfflffl}
2ð Þ

rxx rxy 0
ryx ryy 0
0 0 rzz

������
������|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

1ð Þ

¼ b rxx rxy 0j j; ð7:48Þ

and

f ¼ bTr� s
2ð Þ
¼ b

i j k
rxx rxy 0
0 0 1

������
������ ¼ brxyi� brxx j: ð7:49Þ
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Fig. 7.32 (a) Orientation of dislocations to determine the force on edge dislocation (2) due to edge
dislocation (1), and x- and y-components of the force (b) in the x–y plane, and (c) as a function of θ
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The force on dislocation (2) can be written as:

F ¼ lbb 2ð Þ

2l 1� vð Þr cos h cos 2hð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fx hð Þ

i� lbb 2ð Þ

2p 1� vð Þr sin h 2þ cos 2hð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fy hð Þ

j; ð7:50Þ

and the force components in the x–y plane are shown in Fig. 7.32(b), and as a
function of θ in Fig. 7.32(c).

Note that if dislocation (2) has the same s but the Burgers vector is in the
opposite direction, then the net effect on the resultant force is simply a change in
sign of each of the terms in Eq. (7.50) but preservation of the magnitudes. If

dislocation (2) has Burgers vector b
0
1
0

������
������; then the preceding analysis becomes:

bTr ¼ b 010j j|fflffl{zfflffl}
2ð Þ

rxx rxy 0
ryx ryy 0
0 0 rzz

������
������|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

1ð Þ

¼ b rxy ryy 0j j; ð7:51Þ

f ¼ bTr� s
2ð Þ
¼ b

i j k
rxy ryy 0
0 0 1

������
������ ¼ bryyi� brxy j: ð7:52Þ

In this case, the x-component of the force produces a positive climb force to the
right, and the y-component of the force produces a negative (downward) glide
force.

Screw–screw interaction

For two screw dislocations as shown in Fig. 7.33(a), the force on dislocation
(2) due to dislocation (1) is as follows:

f ¼ bTr� s
2ð Þ
¼ b

i j k
rxz ryz 0
0 0 1

������
������ ¼ bryzi� brxz j; ð7:53Þ

where the x-component of the force, bσyz, is to the right, and the y-component of the
force, −bσxz, is downward in Fig. 7.33. The force on dislocation (2) can be written as:

F ¼ lbb 2ð Þ

2pr
ðcos hiþ sinhjÞ: ð7:54Þ

The force is in a direction that is perpendicular to the dislocation line. It is repulsive
if the dislocations are of the same sign and attractive if the dislocations are of
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opposite sign. The force on the dislocation at the origin due to the dislocation at
(r, θ) is equal in magnitude but opposite in sign from the force on the dislocation at
(r, θ) due to that at the origin. The force components in the xy-plane are shown in
Fig. 7.33(b), and the magnitude of the forces as a function of θ are shown in
Fig. 7.33(c).

Edge–screw interaction

The last example is the determination of the force between an edge and a screw
dislocation as defined in Fig. 7.34. We know that an edge dislocation has no xz or yz
stress components, which are needed to move a screw dislocation. So we can state

the following rules: For an edge dislocation with b
1
0
0

������
������ and s

0
0
1

������
������; the only stresses

that produce a force on it are σxx and σxy. The stress field around the dislocation has
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Fig. 7.33 (a) Orientation of dislocations to determine the force on screw dislocation (2) due to
screw dislocation (1), and (b) the x- and y-components of the force on a screw dislocation due to
another dislocation in the x–y plane, and (c) as a function of θ
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components σxx, σyy, σzz, and σxy. For a screw dislocation with b
0
0
1

������
������ and s

0
0
1

������
������; the

only stresses that produce a force on it are σxz and σyz. The stress field around the
dislocation has components σxz and σyz.

7.1.8 Extended Dislocations

Slip occurs in the fcc lattice on (111) planes and in the 〈110〉 direction, as shown in
Fig. 7.35. The Burgers vector is a/2[110], which is the shortest lattice vector con-
necting an atom at the cube corner with a neighboring atom at the center of a cube face.
However, the atom arrangement on the {111} slip plane is such that slip in the [110]
direction is not the easiest path. Figure 7.35(b) shows the atom arrangement on a
close-packed (111) plane. The {111} planes are stacked in the sequenceABCABC…,
such that the centers of the A plane of atoms fall on top of each other, and similarly for
the B and C planes of atoms. The vector b1 ¼ a=2 101


 �
shown in Fig. 7.35(b) is the
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Fig. 7.34 Orientation of
dislocations to determine the
force on screw dislocation (2)
due to edge dislocation (1)

A A

AAA

A A

B B

B

CC

C

b1

b2 b3

A

B

C

F

E

D

(a) (b)

Fig. 7.35 (a) Close-packed (111) slip plane in the fcc lattice. (b) Slip directions
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observed slip direction. However, if atoms are considered as hard spheres, this
direction represents a high-energy path as atoms moving from one B site to another
must climb over the A atoms. A simpler path is by way of vectors b2 and b3, which is
along the “valleys” between the A atoms. This dislocation reaction is given by:

b1 ! b2 þ b3; a=2 10�1½ � ! a=6 2�1�1½ � þ a=6 11�2½ �: ð7:55Þ

Essentially, the Burgers vector, b1, of the total dislocation has been dissociated into
two partial dislocations b2 and b3. Figure 7.36(a) shows the atom arrangement of
the partial dislocations on the {111} plane, and Fig. 7.36(b) shows the vector
diagram of the dissociation of the total dislocation into two partial dislocations. The
partials are often called Shockley partials, and the combination of the two partials is
termed an extended dislocation. Dissociation is independent of dislocation char-
acter, and the partial dislocations move as a unit that maintains the equilibrium
width between them. The space between the partials is referred to as the faulted
region or the stacking fault, and its size is determined by the stacking fault energy,
SFE. The lower the SFE, the greater the separation of the partials, and the higher the
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Fig. 7.36 Slip on the
close-packed (111) plane in
the fcc lattice. (a) Location of
atoms in a Shockley partial.
(b) Dislocation dissociation
into partial dislocations
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energy, the closer they are together. Stacking faults are important in cross-slip as the
partials must recombine for cross-slip to occur. Extended dislocations also occur in
hcp lattices, but are not commonly observed in bcc metals.

7.1.9 Kinks and Jogs

Both edge and screw dislocations can acquire jogs or steps in the dislocation line by
interaction with other dislocations. The jogs are of two types. A jog that lies in the
slip plane instead of normal to it is called a kink. Figure 7.37(a) shows an edge
dislocation with a kink of screw character that lies in the slip plane of the edge
dislocation, and Fig. 7.37(b) shows a screw dislocation with a kink of edge ori-
entation. Kinks are unstable as they can line up and annihilate during glide.
A second type of jog is shown in Fig. 7.37(c) in which the jog and the dislocation
are of edge orientation. These types of jogs are able to glide since they lie in the slip
plane of the dislocation. The only difference between the motion of the jogged edge
dislocation and the ordinary edge dislocation is that instead of gliding along a single
plane, it glides over a stepped surface. Another type of jog is the most important in
plastic deformation and is shown in Fig. 7.37(d). This is a screw dislocation con-
taining a jog with an edge orientation. The only way the screw dislocation can
move to a new position and take its jog with it is by climb of the jog. Figure 7.37(e)
shows the movement of a jogged screw dislocation as the segments between jogs
bow out in the slip plane under an applied stress producing a trail of vacancies left
behind the jog as the dislocation moves in its slip plane.

7.2 Faulted Loops and Stacking Fault Tetrahedra

Because of their importance in irradiated materials, we will discuss Frank loops at
greater length. Frank loops are important in irradiated materials because they are
often nucleated in a displacement cascade. Recall that the cascade consists of a core
of vacancies surrounded by a shell of interstitials (Figs. 3.3 and 3.9). If the vacancy
core or the interstitial shell collapses (condenses) onto a close-packed plane, Frank
loops may be generated. In both cases, a stacking fault results. Vacancy conden-
sation produces an intrinsic fault, and interstitial condensation results in an extrinsic
stacking fault. The faults are described as follows.

In regular, close-packed lattices such as fcc and bcc, atom layers follow a regular
stacking sequence. In the fcc lattice, the stacking sequence is ABCABCABC…,
indicating that every third layer lies over the first layer. Removal of a layer of atoms
results in a break or a fault in the stacking sequence. Removal of a plane of atoms
produces an intrinsic stacking fault, which is also known as a single fault, and the
dislocations attached to the single fault are S-dislocations, giving an S-Frank dis-
location (Fig. 7.38(a)). For example, the sequence is modified to
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ABCAB/ABCABC…, where “/” denotes the fault or missing plane of atoms.
Insertion of an extra plane of atoms produces a double fault in the stacking
sequence: ABCAB/A/CABC… (Fig. 7.38(b)). This is an extrinsic or double fault,
and the dislocations are D-dislocations giving a D-Frank loop. The Burgers vector

b
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direction of
motion

direction of motion

b

slip plane

vacancies

b

(a) (b)

(c)

(d)

(e)

Fig. 7.37 Kinks and jogs in
dislocations. (a) Edge
dislocation with a kink of
screw character. (b) Screw
dislocation with a kink of
edge orientation. (c) Edge jog
in an edge dislocation.
(d) Edge jog in a screw
dislocation and direction of
motion of the dislocation.
(e) Movement of a jogged
screw dislocation of part
(d) showing bowing of the
segments between jogs and the
trail of vacancies left behind
the trail of jogs (after [7])
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of the S-Frank and D-Frank loops are identical. Since a Frank loop results from
addition or removal of close-packed planes, b must be directed normal to the
(111) plane and has a length equal to the spacing between planes, a=

ffiffiffi
3

p
; then the

Burgers vector is described by b = a/3[111]. Since it is extremely difficult to move
on its slip plane (the glide plane is actuallya cylinder defined by the edge of the
loop), the Frank loop is considered to be sessile or immobile since its glide plane is
a cylinder defined by the projection of the loop perimeter in a direction perpen-
dicular to, and above or below, the plane of the loop (see Fig. 7.11). A Frank loop
can also unfault either autocatalytically or by reaction with a dislocation line to
form a perfect loop. This process is described in Chap. 12.

Another dislocation configuration that can form in irradiated metals is the SFT.
A SFT is a three-dimensional stacking fault configuration that is in the shape of a
tetrahedron. SFTs are believed to evolve directly from vacancy clusters produced in
cascades. They are also believed to evolve from Frank loops. A Frank loop will
always lie on a (111) plane in an fcc lattice. Figure 7.39(a) shows a loop of
triangular shape on a (111) plane with edges parallel to [110] directions. A Frank
dislocation that is parallel to a [110] direction can lower its energy by splitting into
a Shockley dislocation, a/6[211], and a stair-rod dislocation. The slip plane of the
Shockley dislocation is also a (111) plane, but it is different from that containing the
Frank loop. Figure 7.39(b) shows two of the three Shockley dislocations formed
from the three sides of the Frank loop, moving up (111) planes. Each Shockley has
left behind it a stair-rod dislocation, a/6[110], in the position formerly occupied by
a side of the Frank dislocation loop (edge of the triangle). The stacking fault
contained in the Frank loop now bends at the stair-rod dislocation and extends up
onto the close-packed (111) planes of the Shockley dislocations. As the Shockley
dislocations move up the planes shown in Fig. 7.39(b), they eventually meet at the
intersections of their slip planes and the intersections of Shockley dislocations result
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Fig. 7.38 Schematic of (a) intrinsic stacking fault and (b) extrinsic stacking fault
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in other stair-rod dislocations along the remaining three edges of the tetrahedron.
The final configuration is a tetrahedron whose sides are stacking faults and whose
edges are stair-rod dislocations (Fig. 7.39(c)). The Frank dislocation and the
Shockley dislocations no longer exist.

Dislocations can also interact with SFTs. MD simulation of the interaction of a
dissociated a/2[110] dislocation (into two Shockley partials, a/6[121]) on the
(111) glide plane shows that several types of interaction are possible [8]. When the
SFT is in the slip plane of the dislocation, the SFT may be cut by the dislocation
and recovers by a shift of the structure above the glide plane to regain its original
shape. The interaction can also create ledges in the SFT that can reduce stability and
lead to dissolution. TEM observations show that SFTs can be cut multiple times by
dislocations in channels.

7.3 Defect Clusters

As described in Chap. 3, the fraction of defects produced in a cascade is between 20
and 40 % of that predicted by the NRT model due to intracascade recombination.
Of these, not all appear as single interstitial atoms or isolated vacancies. A
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Fig. 7.39 A stacking fault
tetrahedron (SFT) formed by
faults on each of the faces of
the tetrahedron (after [1])
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significant fraction of defects are created in the form of clusters, rather than as
single defects. Vacancy clusters may grow to form voids, which are an important
microstructure feature that influences both dimensional (Chap. 8) and mechanical
(Chap. 12) properties of materials. If the clusters are stable, they may also migrate
away from the cascade region and be absorbed at sinks such as dislocations and
grain boundaries. Interstitial and vacancy clusters must be treated separately since
in general, interstitial clusters are stable and vacancy clusters are not. Their
mobilities differ as well with interstitial clusters exhibiting greater mobility than
their vacancy counterparts.

7.3.1 Fraction of Defects Forming Clusters

In-cascade clustering of defects is important because it promotes nucleation of
extended defects. Interstitial clustering can occur in one of two ways. In the first,
interstitial clusters are created in the transition between the collisional and thermal
spike phases in which atoms that are displaced from the cascade center due to the
initial shock wave are pushed into interstitial locations. Alternatively, clusters can
occur during the thermal spike phase by short-range diffusion driven by the elastic
interaction between neighboring interstitials. The probability of clustering and the
size of the clusters tend to increase with increasing PKA energy, and a higher
proportion of SIAs form clusters than do vacancies [9]. Figure 7.40 shows the
fraction of interstitials that form clusters as a function of the PKA energy in several
metals and, at 100 K, as determined by MD simulation [10]. Note that the clustered
fraction increases quickly with T as damage transitions from single displacements to
cascade morphology. In contrast to the Frenkel pair production efficiency (Fig. 3.21),
the clustered fraction varies with the metal, and while there are only 5 metals shown
here, the clustering appears to occur according to the crystal structure with the highest
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Fig. 7.40 The fraction, f cli ; of
SIAs that survive as clusters
containing at least two
interstitials in several metals
and Ni3Al at 100 K (after
[10])
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clustering fraction occurring for the fcc structure and the lowest for the bcc structure
with the hcp structure in between.

Note from Fig. 7.40 that with continued increase in T, the cluster fraction sat-
urates. This is likely due to the fact that very high-energy cascades break up into
several subcascades that resemble those at lower energy. As such, the surviving
defect fraction and the clustering fraction plateau at values representative of the
lower energy cascades. An example of subcascade formation is shown in Fig. 7.41
for a 100 keV cascade in 100 K iron where 5 and 10 keV cascades have been
superimposed into the same block of atoms for comparison.

While MD results show that the fraction of interstitials in clusters is larger in
copper than in α-iron by *70–45 % at 100 and 600 K for PKA energies above
5 keV [12], experimental evidence shows that the cluster density in copper is as
much as 103 higher than that in Fe [13]. While the size of this difference is not
understood, it may have its origins in the nature of the cluster as discussed in the
next section.

The dependence of in-cascade interstitial clustering on cascade energy is shown in
Fig. 7.42 for MD simulation temperatures of 100, 600, and 900 K, where the average
number of interstitials in clusters of size two or larger at each energy has been divided
by the total number of surviving interstitials in Fig. 7.42(a) and by the number of
displaced atoms predicted by the NRTmodel for that energy in Fig. 7.42(b). Note that

5 keV
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5 keV:
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100 keV:

0.26 ps
0.63 ps
0.70 ps

MD cascade simulations in iron at 100K: peak damage

Fig. 7.41 Energy dependence of subcascade formation (after [11])
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the relative scatter is much higher at lower energies, which is similar to the case of
defect survival shown in Fig. 3.17. The average fraction of interstitials in clusters is
about 20% of the NRT displacements above 5 keV, which corresponds to about 60%
of the total surviving interstitials. Although it is not possible to discern a systematic
effect of temperature below 10 keV, there is a trend toward greater clustering with
increasing temperature at higher energies. This can be more clearly seen in Fig. 7.42a
where the ratio of clustered interstitials to surviving interstitials is shown. Interstitial
clustering increases at higher temperatures due to the more compact nature and longer
lifetime of the cascade at higher temperature, providing more time for interstitials to
diffuse and interact. Recall from Sect. 3.6 and Fig. 3.22 that the Frenkel pair pro-
duction decreases slightly with temperature. Combining these results, the effect of
temperature can be described as resulting in an increasing fraction of the decreasing
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population of interstitials forming clusters as the temperature increases, yielding a net
increase in f cli : This effect of temperature on interstitial clustering is consistent with
the observations of increasing interstitial clustering fraction with temperature [14].

The clustered fraction can be broken down according to cluster size to reveal the
dependence of clustering on cluster size. Figure 7.43 shows the fraction of SIAs in
clusters of sizes ≃2, ≃3, and ≃4 in copper as a function of damage energy for an
irradiation temperature of 100 K. Note that the cluster fraction is very sensitive to
minimum cluster size, especially at lower damage energies, yielding a net decrease
in f cli :

Clustering of vacancies occurs within the core of the cascade as well, and the
extent of clustering varies with the host lattice. Based on the measurements of size
and number density of vacancy clusters in irradiated metals, the fraction of
vacancies in clusters is estimated to be less than 15 %. The energy and temperature
dependence of in-cascade vacancy clustering as a fraction of the NRT displace-
ments is shown in Fig. 7.44 for cascade energies of 10–50 keV. Results are shown
for clustering criteria of first, second, and fourth nearest neighbor, NN.
A comparison of Figs. 7.42(b) and 7.44 demonstrates that in-cascade vacancy
clustering in iron remains lower than that of interstitials even when the fourth NN
criterion is used. This is consistent with experimentally observed difficulty of
forming visible vacancy clusters in iron and the fact that only relatively small
vacancy clusters are found in positron annihilation studies of irradiated ferritic
alloys [15]. The true fraction may be larger because of the invisibility of small
clusters, but also the fact that vacancy clusters are not nearly as stable as interstitial
clusters as will be shown in the next section. The cascade energy dependence of
vacancy clustering is similar to that of interstitials; there is essentially zero clus-
tering at the lowest energies, but it rapidly increases with cascade energy and is
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relatively independent of energy above *10 keV. However, vacancy clustering
decreases as the temperature increases, which is consistent with vacancy clusters
being thermally unstable.

7.3.2 Types of Clusters

The structure of the cluster is a strong function of the crystal structure [13, 16]. In
α-Fe, MD simulation shows that the most stable configuration of small clusters (<10
SIAs) is a set of 〈111〉 crowdions. Next in stability is the 〈110〉 crowdion. As the
cluster size grows (>7 SIAs), only two configurations are stable, the 〈111〉 and
〈110〉 crowdions. These crowdions also may act as nuclei for the formation of
perfect interstitial dislocation loops with Burgers vector 1/2〈111〉 or 〈100〉,
respectively.

In fcc copper, the 〈100〉 dumbbell is the stable configuration of the SIA and the
smallest cluster is of the form of two 〈100〉 dumbbells. Larger clusters can have two
configurations: a set of 〈100〉 dumbbells or a set of 〈110〉 crowdions, each with
{111} as the habit plane. During growth, the clusters transform into faulted Frank
loops with Burgers vector 1/3〈111〉 and perfect loops with Burgers vector 1/2
〈110〉. The binding energy of SIA loops in Fe and in Cu is shown in Fig. 7.45(a, b),
respectively. Note that the binding energy for SIA loops in Cu is slightly higher
than for SIA loops in α-Fe, in agreement with the higher clustering fraction pre-
dicted by MD modeling. Figure 7.46 shows a micrograph of interstitial clusters and
small interstitial loops in a copper foil after irradiation with 30 keV Cu+ ions. Note
that these defect clusters are only a few nanometers in size. Cluster densities can
reach very high levels as shown in Fig. 7.47.
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The stability of vacancy clusters is low relative to interstitial clusters. The most
stable configurations for vacancy clusters in α-Fe are either a set of divacancies
concentrated on two adjacent {100} planes, or a set of first nearest neighbor
vacancies on a {110} plane. During cluster growth, the first type results in a perfect
dislocation loop with Burgers vector 〈100〉 and the second unfaults into a perfect
loop with Burgers vector 1/2〈111〉. Vacancy loops can also exist in the faulted
configuration. The loops will generally unfault to form perfect loops when the
number of vacancies reaches about 40 [12].

In fcc Cu, the most stable configurations of a vacancy cluster are the SFT and
faulted clusters on {111} planes that form Frank loops with Burgers vector 1/3
〈111〉. Binding energies of the various vacancy configurations in α-Fe and Cu are
shown in Fig. 7.48(a, b). Note that the binding energy of vacancies in the cluster is
much less than that for interstitials shown in Fig. 7.45(a, b). The binding energy per
defect for a four-defect cluster is less than 0.4 eV for vacancies, but is about 1.2 eV
for interstitials. Observation by transmission electron microscopy [18] reveals that
vacancy dislocation loops and SFT a few nanometers in size are formed by cascades
in many metals (Fig. 7.49).
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Fig. 7.46 Micrograph of
interstitial clusters and small
interstitial loops in copper
irradiated with 30 keVCu+.
Defects are highlighted by the
circles on the micrographs
(after [17])
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Fig. 7.49 Transmission
electron micrograph of
(a) defect clusters in gold
irradiated to 1.1 × 1022 n/m2

at 200 °C and (b) stacking
fault tetrahedra in silver
irradiated to 4.4 × 1021 n/m2

at 400 °C (after [18])
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7.3.3 Cluster Mobility

SIA created in the collision cascades of energetic recoil atoms in metals can form as
crowdions and clusters of coupled crowdions along close-packed directions. These
crowdions and clusters (essentially small, perfect dislocation loops) can migrate in
one-dimensional (1D) random walks by thermally activated glide with a very low
activation energy (< 0.1 eV) [19]. Movie 7.1 (http://rmsbook2ed.engin.umich.edu/
movies/) shows cluster formation and 1D glide in UHP iron irradiated with 150 keV
Fe ions at 400 °C. Clusters are just beginning to nucleate in this real-time recording
shown at 2× actual time. Compared to defects migrating in 3D, the SIA and SIA
clusters migrating in 1D have a much smaller probability of interacting with other
defects within the cascade region. Clusters migrating by 1D glide can change their
Burgers vectors by thermal activation or by interaction with another defect and
continue their 1D glide along another close-packed direction. The result is a 3D
diffusion path that is made up of segments of 1D glide, which is referred to as
“mixed 1D/3D” defect migration and shown in Fig. 7.50.

a

L
Z

r

(a) 3-D: lattice spacing (b) Pure 1-D

(c) Mixed 1-D/3-D: average length L betweeen 
direction changes

(d) Preferentially 1-D:

Z            rD D>>

Fig. 7.50 Schematic illustration of defect migration paths by (a) 3D random walk on the crystal
lattice, (b) 1D random walk, (c) mixed 1D/3D migration consisting of a 3D path made up of
segments of 1D random walks in different random close-packed directions, and (d) preferential 1D
migration consisting of segments of 1D random walks in the same direction broken by occasional
hops to adjacent atom rows (after [20])
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However, not all clusters are glissile. Besides stable, faulted Frank loops, SIAs
may form metastable arrangement of SIAs that do not reorganize into a stable,
glissile form by the end of the thermal spike. They are significant because if they do
not migrate away from the cascade, they may act as nucleation sites for the growth
of extended defects. Figure 7.42 indicates that the fraction of SIA clusters in a
metastable sessile configuration by the end of the thermal spike phase is between 10
and 30 %. The form of these clusters varies with crystal structure. In hcp metals,
small sessile clusters form a triangular arrangement of closely packed atoms on the
basal plane. In α-iron, three SIAs can form a triangle that is parallel to but displaced
from the {111} plane. If clusters form as faulted dislocation loops, such as b = 1/3
〈111〉 in fcc, 1/2〈110〉 in bcc, and 1/2〈0001〉 in hcp, then they are intrinsically
sessile and cannot exhibit glide. The ability to move arises from the clustered
crowdion form of these extended defects. They have a form best described as small
perfect interstitial dislocation loops with Burgers vector b = 1/2〈110〉 in fcc, 1/2
〈111〉 and 〈100〉 in bcc, and 1=3 11�20h i in hcp. Table 7.1 summarizes the Burgers
vectors of the glissile and sessile dislocation loops formed by vacancy and inter-
stitial clusters.

Mobile clusters can interact with other clusters or with impurity atoms such as
helium. The behavior of small interstitial clusters in the presence of impurity helium
atoms and vacancies is illustrated in Movies 7.2–7.4 (http://rmsbook2ed.engin.
umich.edu/movies/). In Movie 7.2, a SIA (green spheres) in bcc iron interacts with
two substitutional He (light blue spheres) atoms and the interaction leads to
recombination and ejection of the He into an interstitial position from which it
migrates and traps the other He substitutional atom. Movie 7.3 shows the inter-
action between a 6-SIA cluster and three substitutional He atoms. In this case,
recombination and He ejection occurs with two of the three He atoms resulting in a
cluster consisting of 4-SIA and one interstitial He atom, and a cluster consisting of
one interstitial He and one substitutional He. Movie 7.4 shows the interaction
between a 6-SIA cluster and a 4-He/6-vacancy cluster. Vacancies are denoted by
the red spheres. The interaction causes the recombination and rejection of He
resulting in a 4-He/1-SIA cluster.

Table 7.1 Summary of Burgers vectors of glissile and sessile loops in fcc, bcc, and hcp lattices
(after [10])

Crystal structure Burgers vector Cluster mobility

fcc b = 1/2〈110〉 Glissile

b = 1/3〈111〉 Sessile

SFT (vacancy) Sessile

bcc b = 1/2〈111〉, 〈100〉 Glissile

b = 1/2〈110〉 Sessile

hcp b ¼ 1=3 11�20h i Glissile

b ¼ 1=2 10�10h i; 1=2 0001h i Sessile
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The majority of SIA clusters are glissile. Di- and tri-interstitial clusters in both
α-iron and copper undergo one-dimensional glide along the crowdion direction
[13]. In these small clusters, the crowdion can rotate such that glide occurs in an
equivalent direction. This rotation results in essentially three-dimensional motion.
The rotation frequency is lower for tri-interstitials and increases with temperature
for both defects. Larger clusters are essentially perfect dislocation loops with a
Burgers vector along the crowdion axis, so that their movement can be considered
as thermally assisted glide in one dimension. Figure 7.51 shows 19- and
91-interstitial clusters in α-iron. Both loops extend over six (220) planes as shown
in the figures at the right of each cluster. The motion of these clusters is
one-dimensional and along 〈111〉. A feature of cluster motion is that the effective
correlation factor is greater than unity, i.e., a cluster that has moved one step has a
high probability of making the next step in the same direction. Movie 7.5 is an MD
simulation of a 19-SIA cluster in bcc iron at 287 °C. The cluster exhibits
one-dimensional motion in the direction of the Burgers vector.

[111] projection
19-member SIA cluster [001] projection

representation of 
(220) planes

91-member SIA cluster

(a) (b) (c)

Fig. 7.51 A 19- and 91-interstitial cluster in (a) 11�1½ � and (b) [001] projections. Filled and open
circles represent the centers of mass of 〈111〉 crowdions and split dumbbells, respectively.
(c) Additional (220) lattice planes occupied by the clusters (after [21])
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The activation energy for cluster motion is between 0.022 and 0.026 eV in α-iron
and between 0.024 and 0.030 eV in copper [13]. The activation energy is weakly
dependent on the size of the cluster, allowing the cluster jump frequency to be
expressed as:

vn ¼ v0n
�s exp � Emh i=kTð Þ; ð7:56Þ

where 〈Em〉 is the average effective activation energy, ν0 is the size-independent,
pre-exponential factor, and the term n−S is the cluster size dependence, where a
value of *0.65 for s describes the cluster size dependence of the pre-exponential
factor for both α-iron and copper. Figure 7.52 shows the total pre-exponential factor
as a function of cluster size. This dependence is likely due to enhanced focusing of
the crowdion configuration for SIAs in a cluster, which results in increased prob-
ability of successive jumps.

Observations have shown that the mobility of clusters depends on the compo-
sition. When chromium is added to iron, cluster mobility is significantly reduced.
Movie 7.6 shows a comparison of loop hopping in UHP Fe and Fe-8 %Cr under the
same irradiation conditions of 150 keV Fe ions at 300 °C. Note that 1D loop
motion is evident in pure iron, but relatively rare in Fe-8 %Cr.
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Vacancy clusters that form perfect dislocation loops are also intrinsically glissile.
MD simulation shows that the mobility of perfect vacancy loops with b = 1/2〈110〉
and 1/2〈111〉 in Cu and α-iron, respectively, is only slightly lower than that of a
cluster of the same number of interstitial crowdions [13]. The result is shown in
Fig. 7.53 for a 37-defect cluster. As long as they are in the form of perfect loops,
they are mobile. Vacancy clusters that do not collapse to a dislocation structure or
that form a Frank loop or SFT are immobile.

7.4 Extended Defects

As described in the previous sections, vacancies and interstitials can cluster to form
other types of defects that will be important in defining the effect of irradiation on
both physical and mechanical properties of the solid. In principle, a cluster of point
defects could be one-dimensional (a line), two-dimensional (a disk), or three-
dimensional (a void). Vacancies and interstitials that cluster in numbers greater than
those discussed earlier will agglomerate into specific configurations in the crystal
lattice. In particular, they will take up the minimum energy configuration, which in
three dimensions is a void and in two dimensions is a loop or platelet with a
thickness of magnitude equal to one Burgers vector and lying between adjacent
close-packed planes.

It may be envisioned that following the radiation damage event, the core of the
displacement spike collapses (or the vacancies condense) onto the {111} plane,
forming a vacancy disk. The energy of the disk can be written as:

Ed ¼ 2pr2dc; ð7:57Þ
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where rd is the disk radius, and γ is the surface energy of the metal. For a small
number of vacancies, the aggregate form with the least energy is the spherical void.
The energy of the spherical void of radius rV is:

EV ¼ 4pr2Vc: ð7:58Þ

If Ω is the atomic volume, then the number of vacancies in the void is as follows:

nv ¼ 4
3
pr3V
X

: ð7:59Þ

The energy of the void written in terms of the number of vacancies, nv, is as
follows:

EV ¼ 4p
3nvX
4p

� �2=3

c ¼ ð6nvX
ffiffiffi
p

p Þ2=3c: ð7:60Þ

For a large number of vacancies, the planar loop is a more stable configuration and
this will be discussed shortly.

Another possible configuration of a cluster of vacancies is the SFT as described
in Sect. 7.2. The energy of the SFT is given by [4, 22, 23]:

ESFT ¼ lLb2

6p 1� vð Þ ln
4L
a

� �
þ 1:017þ 0:97v

� �
þ

ffiffiffiffiffiffi
3L

p 2
cSFE; ð7:61Þ

where v is Poisson’s ratio, a is the lattice parameter, γSFE is the energy of the
stacking fault, and L is the length of the edge of the tetrahedron and L = a(nv/3)

1/2.
A similar process involving interstitial condensation may occur around the edges

of the depleted zone where high interstitial concentrations may exist. The con-
densation of interstitials onto a close-packed plane produces an extra layer of atoms
and two breaks in the stacking sequence, as described in Sect. 7.2. For a disk of
radius rL, the energy of a faulted loop (vacancy or interstitial) is as follows:

EL ¼ 2prLCþ pr2LcSFE; ð7:62Þ

where the first term is the energy of the dislocation line, the second term is the
energy associated with the stacking fault, and Γ is the energy per unit length of
dislocation line. In the fcc lattice, faulted loops lie on the {111} planes, which have
an atom density of 4=

ffiffiffi
3

p
a2; or an area per atom of

ffiffiffi
3

p
a2=4: So the radius of a loop

consisting of n vacancies (or interstitials) is as follows:

rL ¼
ffiffiffi
3

p
a2n
4p

� �1=2

: ð7:63Þ
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Approximating Γ with μb2, Eq. (7.32b) where μ is the shear modulus and b is the
Burgers vector, Eq. (7.62) becomes:

EL ¼ 2plb2
ffiffiffi
3

p
a2n
4p

� �1=2

þ p

ffiffiffi
3

p
a2n
4p

� �
cSFE: ð7:64Þ

More precise expressions for the energy of faulted and perfect loops are given in
[4, 6, 22–24], and from [24], the energy of the faulted Frank loop is as follows:

EF ¼ 2
3

1
1� vð Þ lb

2rL ln
4rL
rc

� 2
� �

þ pr2LcSFE: ð7:65Þ

The energy of a perfect loop [18] is as follows:

EP ¼ 2
3

1
1� vð Þ þ

1
3

2� v
2 1� vð Þ
� �

lb2rL ln
4rL
rc

� 2
� �

; ð7:66Þ

where rc is the dislocation core radius. Equations (7.65) and (7.66) refer to both
interstitial and vacancy loops, and from these equations, the difference in energy
between a perfect loop and a Frank loop is as follows:

DE ¼ pr2LcSFE �
1
3

2� v
2 1� vð Þ
� �

lb2rL ln
4rL
rc

� 2
� �

: ð7:67Þ

Therefore, unfaulting is favorable if:

cSFE [
lb2

3prL

2� v
2 1� vð Þ
� �

ln
4rL
rc

� 2
� �

: ð7:68Þ

Equations for a disk, void, perfect loop, faulted loop, and SFT are plotted in
Fig. 7.54(a, b) for 316 stainless steel and zirconium, respectively. The values of the
material parameters are provided in the caption. Note that in general faulted defects
are more stable in zirconium than in stainless steel, and voids are more stable in
stainless steel than in zirconium. In stainless steel, voids are stable to relatively
large sizes and the energy of the faulted loop remains below that of the perfect loop
to large defect sizes. In zirconium, faulted loops and SFTs are more stable than
voids. The high susceptibility to void swelling in stainless steel and the absence of
voids in zirconium are in qualitative agreement with the formation energies for
these extended defects according to Fig. 7.54.

Since we have just shown that the void is a stable configuration only for small
numbers of vacancies, how then can we observe large voids with the number of
vacancies exceeding several orders of magnitude? It is well established that for
most metals, irradiation at low temperatures (<0.2T/Tm) results in aggregation of
vacancies and interstitials to form clusters that are bound by dislocations, i.e., loops
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and SFT (in metals with low SFE). At higher temperatures, vacancies can also
aggregate to form voids. Voids appear in a band of temperatures ranging from about
1/3 < T/Tm < 1/2 where insoluble gases such as helium have a strong effect on
stabilizing voids. At temperatures less than 1/3T/Tm, vacancies are not mobile
enough to reach the voids before annihilation with migrating interstitials. Also,
loops formed by vacancy collapse of cascades are stable against thermal dissoci-
ation at low temperatures and hence reduce the number of vacancies available for
void growth. At very high temperature, the thermal equilibrium vacancy concen-
tration becomes comparable with the radiation-induced vacancy concentration and
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Fig. 7.54 Formation energy
for various vacancy cluster
defects in (a) 316 stainless
steel and (b) zirconium as a
function of the log of the
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voids tend to shrink by vacancy emission. The subject of void and bubble nucle-
ation and growth will be discussed in more detail in Chap. 8.

7.5 Effective Defect Production

With a better understanding the importance of defect clusters, we can expand and
refine our description of defect production. Microstructure evolution is ultimately
controlled by the migrating defect fractions of vacancies and interstitials, MDFv,i.
The most straightforward component of the MDF is the isolated point defect
fraction, IDFv,i (discussed in Chap. 3), which is produced directly in the dis-
placement cascade. A second component is the mobile cluster fraction, MCFi,v
(discussed in Sect. 7.3.3) and is composed of mobile interstitial defect clusters and
mobile vacancy clusters. The third component is defects released from clusters by
evaporation, EDFv,i, and is most important for vacancies and interstitials at very
high temperatures. Taken together, these three sources of isolated defects comprise
the migrating defect fraction, MDFv,i. Zinkle and Singh [25] constructed a flow-
chart to show the evolution of the various defect forms (Fig. 7.55), which is an
expansion of the more simplistic case shown in Fig. 3.18 by inclusion of the
processes in dashed boxes. Zinkle and Singh summarized experiments from which
values for MDFv,i could be determined and found that in general
3 % < MDFi < 10 % and 1 % < MDFv < 10 % where the percentages refer to the
calculated NRT production rate. While there is considerable uncertainty regarding
the quantitative values deduced from experiments, the range can be used to bound
the expected available defect fraction.

The significance of these processes is that they are not often addressed in tra-
ditional rate theory models of microstructure evolution. To create an accurate
physical model of defect production and accumulation under cascade damage
conditions, the following must be included:

1. The production of a large fraction of defects heterogeneously in the form of
vacancy and interstitial clusters with the remainder as isolated vacancies and
interstitials

2. The bias for absorption of mobile interstitial clusters and freely migrating
interstitials at sinks

3. The fractions of interstitials and vacancies in clustered or isolated forms that are
not necessarily equal, which is equivalent to an asymmetric production of freely
migrating fractions of vacancies and interstitials

4. Vacancy evaporation from clusters formed during the cascade quench that
results in a temperature-dependent contribution to the fraction of freely
migrating vacancies

As will be shown in subsequent sections and in the discussion of void formation
and growth in Chap. 8, intracascade clustering and the thermal stability of inter-
stitial and vacancy clusters cause an asymmetry in the supply of migrating
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vacancies and interstitials, termed the production bias and this bias represents a
strong driving force for loop and void nucleation and growth.

7.6 Nucleation and Growth of Dislocation Loops

Dislocation loops resulting from vacancy and interstitial condensation are created
from clusters of the respective defects and either shrink or grow depending on the
flux of defects reaching the embryo. Once they have reached a critical size, the
loops become stable and grow until they unfault by interaction with other loops or
with the network dislocation density. The following sections describe the processes
of loop nucleation, growth, and unfaulting that determine the dislocation mi-
crostructure of a metal under irradiation.

Displacement Cascade Efficiency
            (  )

Intracascade Thermal
Recombination  (  )

Surviving Defect 
Fraction (SDF) (  )

Clustered Point Defect 
Fraction  (CDF) ( i,v )

Isolated Point Defect 
Fraction (IDF) ( i,v )

Immobile 
Clusters

Mobile 
Clusters

Evaporating 
Defects

Cascade Quench 
Annihilation And 

Mixing

Quenched Cascade Defect Fraction
(QDF)

MCFi,v IDFi,vEDFi,v

Migrating Defect Fractions (MDFi,v)

Fig. 7.55 Flowchart giving
the contributions to the
migrating defect fraction from
isolated defects, mobile defect
clusters, and evaporating
defects (after [25])
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7.6.1 Loop Nucleation

Various attempts have been made to determine the nucleation rate of dislocation
loops and voids. We will follow a treatment that is based on steady-state concen-
trations of vacancies and interstitials and assumes dilute solution thermodynamics,
as developed by Russell et al. [26]. In this treatment, the effects of cascades are
ignored. We will then introduce clustering theory and show how it can be applied to
the loop nucleation problem to account for the formation of defect clusters in
addition to point defects.

We begin by expressing the nucleation rate of a defect cluster of size n as the
flux of clusters between adjacent size classes in a phase space of cluster size.
Considering only one type of defect (vacancies, for example), the flux between any
two adjacent size classes can be written as follows:

Jn ¼ bv nð Þq nð Þ � av nþ 1ð Þq nþ 1ð Þ; ð7:69Þ

where ρ(n) and ρ(n + 1) are the numbers of n-mers (loops containing n vacancies) and
(n + 1)-mers per unit volume. βv(n) is the rate of vacancy capture by a n-mer, and
αv(n + 1) is the rate of vacancy loss by a (n + 1)-mer. The first term in Eq. (7.69)
represents an addition to the n + 1 size class by capture of a vacancy by a n-mer size
class. The second term is a loss from the (n + 1)-mer size class by emission of a
vacancy. Figure 7.56 shows the various processes described by Eq. (7.69) in phase
space. At steady state, Jn = 0 and Eq. (7.69) becomes the following:

rv nþ 1ð Þ ¼ bv nð Þ q0 nð Þ
q0 nþ 1ð Þ ; ð7:70Þ

where ρ0(n) is the equilibrium concentration of n-mer vacancy loops. Substituting
for αv(n + 1) from Eq. (7.69) into the expression for the nucleation rate, Eq. (7.70)
yields the following:

Jn ¼ bv nð Þ q nð Þ � q nþ 1ð Þ q0 nð Þ
q0 nþ 1ð Þ

� �

¼ �bv nð Þq0 nð Þ q nþ 1ð Þ
q0 nþ 1ð Þ �

q nð Þ
q0 nð Þ

� �
;

ð7:71Þ

and the term in brackets is just the derivative of the ratio ρ(n)/ρ0(n), or
@ q nð Þ=q0 nð Þ½ �

@n
: The nucleation rate then becomes:

Jn ¼ �bv nð Þq0 nð Þ @ q nð Þ=q0 nð Þ½ �
@n

; ð7:72Þ
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where

q0 nð Þ ¼ N0 exp �DG0
n=kT

� �
; ð7:73Þ

and N0 is the number of nucleation sites per unit volume, and DG0
n is the free energy

of forming the n-mer vacancy loop.
The steady-state nucleation rate of vacancy loops (consisting of k vacancies) can

also be described as the product of the loop concentration, the jump frequency of
the vacancy to the loop, and the jump distance, and is given by:

Jk ¼ q0kbkZ; ð7:74Þ

where q0k and βk are the values of q0ðnÞ and βv(n) at the critical size, k, and Z is the
Zeldovich factor that depends on the curvature of DG0

n near the maximum, at the
critical size. If DG0

n is approximated by a parabola in this region (lower curve in
Fig. 7.57), then:

Z ¼ � 1
2pkT

@2DG0
n

@n2

� �1=2
nk

; ð7:75Þ

where the derivative is evaluated at the critical loop size, nk. Its value is the width of
DG0

k at kT units below the maximum and is on the order of 0.05.
Consider now the presence of interstitials in the vacancy loop nucleation for-

mulation. The flux between any two size classes, say n and n + 1, now becomes the
following:

Jn ¼ bv nð Þq nð Þ � av nþ 1ð Þq nþ 1ð Þ � bi nþ 1ð Þq nþ 1ð Þ; ð7:76Þ

where all terms are as previously defined, and βi(n + 1) is the rate of interstitial
capture by a (n + 1)-mer. Interstitial emission is of low probability and is neglected.
Figure 7.58 shows the various processes described by Eq. (7.76) in phase space.

The rate of vacancy emission from a vacancy loop will be governed by tem-
perature, size, and lattice energetics. Since the defect fractions are as high as 10−4, a
cluster has a defect in its immediate vicinity only this small fraction of time.

n n + 1

capture

ßv(n)

v (n+1)

thermal emission

Fig. 7.56 Illustration of the capture and emission processes governing the flux of clusters between
adjacent size classes in a phase space of cluster size
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The emission probability should be affected only slightly during this time interval
and not at all otherwise. Therefore, we conclude that αv is a value characteristic of a
system without interstitials. Setting J = 0 in Eq. (7.76) is equivalent to equilibrating
the size classes since there is no net flux between size classes. If we neglect
interstitials, then from Eq. (7.76) we can write as follows:

av nþ 1ð Þ ¼ bv nð Þq0 nð Þ
q0 nþ 1ð Þ : ð7:77Þ

Combining Eqs. (7.76) and (7.77) gives:

Jn ¼ bvðnÞ qðnÞ � qðnþ 1Þ q0ðnÞ
q0ðnþ 1Þ þ

biðnþ 1Þ
bvðnÞ

� � �
: ð7:78Þ

Since q0ðnÞ ¼ N0 expð�DG0
n=kTÞ; we note that:

q0ðnÞ
q0ðnþ 1Þ ¼ exp

dG0
n

kT

� �
; ð7:79Þ

nk nk

G˚k

G'k

kT

G
˚ n
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' n
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1/Z'

0

# defects in loops

Fig. 7.57 Schematic nucleation curves showing the various parameters which are important in
cluster nucleation. DG0

k is the activation barrier to nucleation if interstitials are not present, while
DG0

k is the same quantity if interstitials are present during the vacancy cluster nucleation process
(after [26])

n n + 1

v(n)

i (n+1)

v (n+1)

Fig. 7.58 Illustration of the capture and emission processes governing the flux of clusters between
adjacent size classes in a phase space of cluster size and including the effect of interstitial capture
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where dG0
n 	 DG0

nþ 1 � DG0
n: The term dG0

n is the difference between the free
energies of creating loops of j + 1 and j vacancies from single vacancies at the
prevailing supersaturation. We now define new functions of n, q0ðnÞ, and dG0

n such
that by analogy with Eq. (7.79):

q0ðnÞ
q0ðnþ 1Þ ¼

q0ðnÞ
q0ðnþ 1Þ þ

biðnþ 1Þ
biðnÞ

¼ expðdG0
n=kTÞ; ð7:80Þ

where

dG0
n ¼ DG0

nþ 1 � DG0
n; ð7:81Þ

and DG0
n is not generally a free energy because of the term

biðnþ 1Þ
biðnÞ

in Eq. (7.80).

Using the expression in Eq. (7.80), we can rewrite the equation for Jn in terms of
q0ðnÞ

q0ðnþ 1Þ by substituting Eqs. (7.80) into (7.78) to give the following:

Jn ¼ bvðnÞ qðnÞ � qðnþ 1Þ q0ðnÞ
q0ðnþ 1Þ

 �
: ð7:82Þ

Rearranging Eq. (7.82) gives the following:

Jn ¼ �bvðnÞq0ðnÞ
qðnþ 1Þ
q0ðnþ 1Þ �

qðnÞ
q0ðnÞ
� �

; ð7:83Þ

and noting that:

qðnþ 1Þ
q0ðnþ 1Þ �

qðnÞ
q0ðnÞ

� �
Dn

¼
@

qðnÞ
q0ðnÞ
� �
@n

; ð7:84Þ

gives:

Jn ¼ �bvðnÞq0ðnÞ
@ qðnÞ=q0ðnÞ½ �

@n
; ð7:85Þ

which is the basic flux equation. Rearranging Eq. (7.85) by taking the natural log of
both sides and summing from j = 0 to n − 1 gives the following:

Xn�1

j¼0

ln
q0ðjÞ

q0ðjþ 1Þ
� �

¼
Xn�1

j¼0

� ln
biðjþ 1Þ
bvðjÞ

þ exp
dG0

j

kT

 !" #( )
; ð7:86Þ
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and

ln
q0ðnÞ
q0ð0Þ
� �

¼
Xn�1

j¼0

� ln
biðjþ 1Þ
bvðjÞ

þ exp
dG0

j

kT

 !" #( )
: ð7:87Þ

We can identify two boundary conditions. The first is the quantity q0ð0Þ; which may
be evaluated by noting that as biðnÞ=bvðnÞ ! 0; q0ð0Þ ¼ q0ð0Þ and that q0ð0Þ !
N0; is simply the number of nucleation sites per unit volume. Since N0 (and hence
q0ð0Þ) is independent of loop concentration, we can write the equation as follows:

ln
q0ðnÞ
q0ð0Þ
� �

¼
Xn�1

j¼0

� ln
biðjþ 1Þ
bvðjÞ

þ exp
dG0

j

kT

 !" #( )
¼ �DG0

n

kT
; ð7:88Þ

and

DG0
n ¼ kT

Xn�1

j¼0

ln
biðjþ 1Þ
bvðjÞ

þ exp
dG0

j

kT

 !" #
: ð7:89Þ

Since biðnÞ=bvðnÞ ! 0; q0ð0Þ ! q0ð0Þ and q0ð0Þ is just N0, the number of
nucleation sites per unit volume, we have then:

q0ðnÞ ¼ N0 exp
�DG0

n

kT

� �
; ð7:90Þ

and

DG0
n ¼ activation barrier without interstitials

DG0
n ¼ activation barrier with interstitials:

The upper curve in Fig. 7.57 shows DG0
n as functions of n. Note that DG

0
n is larger

than DG0
k and requires a larger loop size due to the hindering effect of interstitials on

the loop nucleation process. The maxima in the two curves occur at nk, DG0
k and n0k,

DG0
k.
Now, the steady-state loop nucleation rate may be calculated from the expression

for Jn in Eq. (7.85):

Jk ¼ Z 0bkq
0
k; ð7:91Þ
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which is the rate at which loops escape over the potential barrier of height DG0
k in

units of loops/cm3 s. The term, βk, is the rate of single vacancy impingement on a
loop of size n0k The term Z 0 is:

Z 0 ¼ � 1
2pkT

@2DG0
n

@n2

� �1=2
n0k

: ð7:92Þ

The subscript indicates that the second derivative is to be evaluated at n ¼ n0k: As
with Z in Eq. (7.75), its value is the width of DG0

k at kT units below the maximum
and is of the order of 0.05. The second derivative is found from Eq. (7.69) to be:

1
kT

@2DG0
n

@n2

� �
n0k

¼ 1
kT

@2DG0
n

@n2

� �
exp

1
kT

@DG0

@n

� �� � �
n0k

; ð7:93Þ

giving:

q0k ¼ N0 exp �DG0
k=kT

� �
; ð7:94Þ

where DG0
k is determined by evaluating Eq. (7.89) at n0k:

The steady-state nucleation rate will not be established immediately after a
sudden change in supersaturation or temperature, but will lag by a characteristic
time, τ, known as the incubation time and is given by [26]:

s ¼ 2ðbkZ 02Þ�1: ð7:95Þ

Equations (7.89) and (7.94) also apply for interstitial loop nucleation except that Z′,
βk, and q0k are for interstitial loops rather than for vacancy loops, and DG0

n for
interstitial loops is given as:

DG0
n ¼ kT

Xn�1

j¼0

ln
bvðjþ 1Þ
biðjÞ

þ exp
dG0

j

kT

 !" #
; ð7:96Þ

where dG0
j is now the difference between the free energies of forming dislocation

loops of jþ 1 and of j interstitials (in the absence of vacancies), βk is the gross rate
of interstitial capture by the loop of critical size, and 1=Z 0 is the width of DG0

n (for
interstitials) a distance kT below the maximum at DG0

k, and the net number of
interstitials in the critical nucleus is denoted by n0k . The critical loop size n0k occurs
at the maximum of DG0

n and is determined by solving @DG0
n=@n ¼ 0 for n0k.
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More recent treatments of the nucleation rate call for setting the all the fluxes in
Eq. (7.69) equal to the steady-state flux, Jss, leading to a family of equations [27]:

J1 ¼ bvð1Þqð1Þ � að2Þqð2Þ ¼ Jss ð7:97Þ

J2 ¼ bvð2Þqð2Þ � að3Þqð3Þ ¼ Jss ð7:98Þ

J3 ¼ bvð3Þqð3Þ � að4Þqð4Þ ¼ Jss ð7:99Þ

..

.

Jn�1 ¼ bvðn� 1Þqðn� 1Þ � aðnÞqðnÞ; ð7:100Þ

where n ¼ nmax
v . Letting the ratio of shrinkage to growth, ak

�
bkv ¼ rk for all k ≤ 2,

and letting r1 = 1, the system of equations can be solved by multiplying the
equations for Jk by the product of all the rk with k ≤ i. That is, Eq. (7.98) is
multiplied by r2, Eq. (7.99) is multiplied by both r2 and r3. If the resulting set of
equations is summed, all the rk are eliminated except r1 and rn to yield:

J1 ¼ JSS ¼
bvð1Þqð1Þ � aðnÞqðnÞ Qn�1

j¼2
rj

1þ Pn�1

k¼2

Qk
j¼2

rj

: ð7:101Þ

The product term in the numerator is eliminated by noting that (1) for a nucleation
problem, the concentration of the monodefect, ρ (1) will be much greater than ρ (n),
and (2) the ratio of the shrinkage to growth terms rj is less than unity for n[ n
v:
Therefore, Eq. (7.101) becomes:

JSS ¼ bvð1Þqð1Þ 1þ
Xn�1

k¼2

Yk
j¼2

rj

" #�1

: ð7:102Þ

The advantage of this method to compute Jss is the elimination of the Zeldovich
factor and the approximations that must be made to compute it.

Russell [26] determined that based on vacancy and interstitial parameters and
their likely supersaturations in a solid under irradiation, that interstitial loop
nucleation is easier than vacancy loop nucleation because interstitial loop nucle-
ation is much less sensitive to vacancy involvement than is vacancy loop nucleation
to interstitial involvement. The primary reason is that Si is expected to be several
orders of magnitude greater than Sv during irradiation because of the very low
equilibrium concentration of interstitials. Nevertheless, nucleation by this mecha-
nism has been found to be difficult for both vacancy and interstitial loops, in
contrast to the observation of stable loop growth after fairly low doses.

7.6 Nucleation and Growth of Dislocation Loops 357



7.6.2 Clustering Theory

The nucleation of loops is essentially a clustering process in which enough of one
type of defect needs to cluster, in the presence of the other type of defect, to result in
a critical size embryo that will survive and grow. The cluster will shrink or grow
depending on the net condensation rate of defects on clusters. Generalizing the
description of cluster behavior in phase space given in the last section, and taking a
vacancy loop as an example, vacancy clusters, vj consisting of j vacancies will
shrink or grow according to the following:

dvj
dt

¼ K0j �
X1
n�1

½bvnðjÞþ binðjÞ�vj �
XJ
n¼1

avnðjÞvj

þ
Xj�1

n¼1

bvnðj� nÞvj�n þ
X1
n¼1

binðj� nÞvjþ n

þ
X1
n¼1

avnðjþ nÞvjþ n þ additional loss terms;

ð7:103Þ

where bvn and bin are the capture rates of migrating defect clusters νn or in by a
cluster of size νj, and avn is the corresponding emission or thermal dissolution rate.
The first term on the RHS is the direct production of clusters of size j. The second
term is the loss of clusters from size class j due to absorption of a vacancy or an
interstitial cluster of size n, where 1 ≤ n < ∞. The third term is the loss of clusters
from size class j due to emission of vacancy clusters of size n. The fourth and fifth
terms are the addition of clusters to size class j due to absorption of vacancy clusters
by smaller size classes and the absorption of interstitial clusters by larger size
classes. The sixth term is the addition of clusters to the size class j by loss of
vacancy clusters from larger size classes and the “additional loss terms” allow for
other mechanisms of contributing to the number of clusters in size class j.

Equation (7.103) can be solved numerically without further simplification. But
for large clusters and long irradiation times, the number of equations required
would be extremely large. A major simplification is to require clusters to grow or
shrink by only the addition or loss of single point defects, resulting in:

dvjðtÞ
dt

¼ K0j þ bðj� 1; jÞvj�1ðtÞþ aðjþ 1; jÞvjþ 1ðtÞ
� ½bðj; jþ 1Þþ aðj; j� 1Þ�vjðtÞ; j� 2:

ð7:104Þ

If it is assumed that j is a continuous variable and a Taylor series expansion is used
in Eq. (7.104) to relate all functions to their values at size j, the simplified
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description is a continuum diffusional approximation in size space, known as a
Fokker–Planck equation:

@vjðtÞ
@t

¼ K0j tð Þ � @

@j
vjðtÞ bðj; jþ 1Þ � aðj; j� 1Þ½ �� �

þ 1
2
@2

@j2
vjðtÞ bðj; j� 1Þþ aðj; jþ 1Þ½ �� �

;

ð7:105Þ

which is further simplified to:

@vjðtÞ
@t

¼ K0jðtÞ � @

@j
Fvj vjðtÞþ

@2

@j2
Dvj vjðtÞ

¼ K0jðtÞ � @

@j
Fvj vjðtÞ �

@

@j
Dvj vjðtÞ

� �
:

ð7:106Þ

The first term on the RHS of Eq. (7.106) is the direct production rate of clusters of
size j. The second term is the drift in size space driven by the excess condensation
of one point defect type over another:

Fvj ¼ zvDvCv � ziDiCið Þ ð7:107Þ

The drift term is responsible for the shift of the cluster size distribution to larger
sizes. The drift term ensures that a large cluster will inevitably grow in a radiation
field, but due to the evolving microstructure, the drift contribution is not constant
with dose. Cluster evolution is also very sensitive to the ratio of the concentration of
vacancies and interstitials, as Fv contains the difference in their contribution and can
change sign. The result is that the sign of Fv depends on the overall microstructure.

The third term is the diffusion in size space and Dvj is the irradiation-enhanced
diffusion coefficient given by:

Dvj ¼ 1
2
zvDvCv þ ziDiCið Þ: ð7:108Þ

The diffusion term causes the cluster size distribution to broaden with dose. The
diffusion term accounts for the fact that two different clusters introduced at the same
time at the same size may differ in size at a later time due to random encounters
with point defects.

Algorithms for the approximate solution of Eq. (7.106) are discussed by
Golubov et al. [28]. The features of the Fokker–Planck equation are illustrated in
Fig. 7.59 for the development of the interstitial loop size distribution for 316
stainless steel with initial dislocation density of 1013 m−2, irradiated at 550 °C at a
dose rate of 10−6 dpa/s. Note that with increasing dose, the mean loop size increases
[drift term in Eq. (7.106)] and the size distribution broadens [diffusion term in
Eq. (7.106)]. As small clusters grow and their geometry changes, so does the
capture efficiency for freely migrating defects. For very large cluster sizes, the
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Fokker–Planck equation is too simple as the defect production and cluster growth
depend on the microstructure. The effect of the damage microstructure in the
evolution of defect clusters must be accounted for in order to accurately predict
their behavior.

7.6.3 Cluster Evolution Via Cluster Dynamics Modeling

The evolution of defect clusters can also be modeled using the cluster dynamics
method. Classical rate theory defines a defect cluster by its character, atomic
configuration, and size (or number of point defects contained within), but not by its
spatial position since the theory assumes that the concentration of each cluster is
homogeneous on a mean field basis. In cases such as shallow ion implantations,
very thin specimens, or bulk specimens with inhomogeneous microstructure, the
accurate treatment of spatially varying damage production or special effects such as
surface sinks and dislocation interaction necessitates the inclusion of spatial
dependence into rate theory-based models. One such spatially dependent cluster
dynamics code is PARASPACE, which incorporates one spatial dimension inten-
ded to account for situations where key physical variables depend on position in
one primary spatial direction.

As described by [30], PARASPACE treats clusters of intrinsic defects (either
self-interstitials or vacancies) and foreign gas atoms (helium, krypton). Since the
probability that self-interstitials (I) and vacancies (V) coexist in a single cluster is
very low due to their strong tendency for recombination, no mixed I–V clusters are
considered. Clusters are defined using just one number (subscript) i, with its
absolute value being the number of point defects (I or V) contained and its sign
(“−” for I-clusters and “+” for V clusters) indicating the character of the cluster.
Two numbers, NI and NV, are chosen as the number of interstitials in the largest
I-cluster and the number of vacancies in the largest V cluster, respectively.
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Fig. 7.59 Development of
the interstitial loop size
distribution with dose in 316
stainless steel irradiated at a
dose rate of 10−6 dpa/s and a
temperature of 550 °C with
ρd = 1013 m−2 (after [29])
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Physically, these numbers prescribe the “phase space” within which the clusters can
interact with each other, and ensure the conservation of point defects. Numerically,
these numbers, together with the number of spatial grids, NX, set the number of
equations to be solved. NI and NV are chosen to be large enough so that the
computation results are not affected by the prescribed phase space. Since the system
may continuously evolve toward larger clusters, the initial values of NI and NV
may become limiting at high dose. This is continuously checked within the
PARASPACE code through the concentration and its gradient (with respect to i) at
the phase boundaries. If certain thresholds are exceeded at the boundaries, the
values for NI and NV are increased automatically and the time is reset to the last
step prior to the occurrence of this event.

With 1D spatial dependence, the system of ordinary differential equations
(ODE) describing defect evolution changes to a system of partial differential
equations (PDEs), and the PDEs generally have the following generic form:

@Cxn
i

@t
¼ /� PiðxnÞþDi

@2Cxn
i

@x2
þGRTþGREþART� ARE; ð7:109Þ

where Cxn
i refers to the volumetric concentration (in nm−3) of the ith cluster at the

depth position xn (in nm), ϕ is the particle flux (in nm−2 s−1), Pi(xn) is the production
“probability” (in particle−1 nm−1) of the ith cluster by irradiation that is obtained
through SRIM (combined with MD for intracascade recombination and clustering),
Di is the diffusivity of the ith cluster, GRT is the generation rate of the ith cluster by
trapping reactions (A + B → i) among other clusters, GRE is the generation rate of
the ith cluster by emission processes (C → i + B) of other clusters, ART is the
annihilation rate of the ith cluster by its trapping reaction with other clusters
(i + B → C), and ARE is the annihilation rate of the ith cluster by its own emission
process (i → A + B).

The reaction terms differ slightly among different clusters, and the exact equation
for the prescribed phase space (Λ = [−NI, NV]) is given as:

@Cxn
i

@t
¼ /� PiðxnÞþDi

@2Cxn
i

@x2
þ

X
mþ p¼i

m;p 6¼0
m;p2K

kþ
m;pC

xn
m C

xn
p �

X
m 6¼i

m 6¼0
m;mþ i2K

kþ
m;iC

xn
m C

xn
i � k�i C

xn
i ;

ð7:110Þ

for i = NV or −NI, where k+ is the trapping reaction constant and k− is the emission
reaction constant.

Initially, vacancy and interstitial concentrations are set equal to their thermal
equilibrium values and all cluster sizes are set to zero at all depth grids. The PDEs
given in Eq. (7.110) are converted to ODEs by introducing the same set of clusters
at each depth grid, and thus, the total number of ODEs is equal to the total number
of clusters multiplied by the total number of depth grids. Then the diffusion terms in
the PDEs are discretized as follows:
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; ð7:111Þ

at all depth grids except the surface(s) where the black-sink boundary condition is
enforced.

An example of the application of cluster dynamics modeling is irradiation of a
thin foil of Mo with 1 MeV Kr+ at a dose rate of 1.6 × 1011 ions cm−2 s−1 at a
temperature of 80 °C. Figure 7.60 plots the areal density of observable loops
(diameter > 1.3 nm) observed experimentally (Fig. 7.60a) and modeled using the
PASASPACE cluster dynamics code (Fig. 7.60b). Note that over a large range of
doses, there is excellent qualitative agreement in the areal density of loops.

7.7 Dislocation Loop Growth

The growth of loops can also be determined from the Fokker–Planck equations that
provide the size distribution of loops of all sizes (see Fig. 7.59). Applying
Eq. (7.104) to the case of interstitial loops gives an equation in the form:

dij
dt

¼ K0j þ bv jþ 1ð Þþ aiðjþ 1Þ½ �ijþ 1 � bv jð Þþ bi jð Þþ aiðjÞ½ �ij þ bi j� 1ð Þij�1; ð7:112Þ
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Fig. 7.60 Experimental (a) and model-predicted (b) areal densities of observable loops
(diameter > 1.3 nm) in Mo foils of various thicknesses irradiated at an ion flux of 1.6 × 1011

ions cm−2 s−1 at a temperature of 80 °C. The modeled densities were reduced by a factor of 1.9 to
account for loops out of contrast in experiments (after [30])
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where ij is the concentration of interstitial loops of size j and the term on the LHS of
Eq. (7.112) is the time rate of change of the population of interstitial loops of size
j. The terms βk (j) and αk (j) are the absorption and emission rates of defects of type
k from loops of size j. The first term on the RHS of the equality is the direct
production rate of clusters of size j. Practically, this term is different from zero up to
the tetrahedral cluster (j = 4). The first term in square brackets is the production of
clusters of size j by the emission of an interstitial or absorption of a vacancy by
clusters of size j + 1. The second term in square brackets is the loss of clusters of
size j by absorption of a vacancy or an interstitial, or emission of an interstitial. The
last term is the addition of clusters of size j by capture of an interstitials by clusters
of size j – 1. Solution of Eq. (7.112) results in the loop size distribution as a
function of time, which describes the evolution of interstitial loops with dose or
time.

Pokor et al. [31] used the Fokker–Planck formalism to model the evolution of a
population of loops via chemical rate theory in a homogeneous medium. In their
treatment, they allowed for production of clusters in the cascade containing up to
four defects and solved a set of equations for the concentration of defect clusters
consisting of two equations for individual vacancies or interstitials and
2N equations for the population of loops up to size N. The physics of the formu-
lation is contained in the expressions for the defect capture rates, β, and emission
rates, α, for each defect type, k, as a function of the cluster size, given as [31]:

bk jð Þ ¼ 2pr jð Þzc jð ÞDkCk; ð7:113Þ

ak jð Þ ¼ 2pr jð Þzc jð ÞDk

X
exp �Ebk jð Þ=kTð Þ; ð7:114Þ

where r(j) is the radius of an interstitial loop of size j, Dk and Ck are the diffusion
coefficient and concentration of defect k, zc(j) is the bias factor for the interstitial
loop of size j, and Ebk(j) is the binding energy of for a cluster of j defects of type k.
Pokor et al. [31] gives the following expressions for zc(j) and Ebi:

zc jð Þ ¼ zi þ
ffiffiffiffiffiffiffiffi
b

8pa

r
zli � zi

 !
1

jali=2
; ð7:115Þ

Ei
b ¼ Ei

f þ
E2i
b � Ei

f

20:8 � 1
j0:8 � j� 1ð Þ0:8
� �

; ð7:116Þ

where zi is the bias factor for a straight dislocation line for interstitials, a is the
lattice parameter, and b is the Burgers vector, zli and ali are parameters used to
describe the evolution of the bias with cluster size [32]. For the binding energy
term, Ei

f is the formation energy of an interstitial point defect Eq. (4.16), E2i
b is the

binding energy of a two-interstitial cluster, and j is the number of defects in a cluster
of size j and the expression comes from molecular dynamics simulations [33, 34].
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To account for the effect of the annihilation of the network dislocation density
with dose, they assumed that the rate of change of the density was proportional to
ρ3/2, giving dq

�
dt ¼ �Kb2q3=2, and resulting in a dislocation density that decreases

as 1/t2 (see next section). The network dislocation density in irradiated metals
evolves toward a saturation value with increasing dose. In stainless steel, it has been
observed to reach a saturation value of ∼6 × 10−14 m−2 over a temperature range
that spans 400–600 °C [35]. Cluster model results of the loop density and size for
three grades of stainless steel irradiated at 330 °C and to doses up to 40 dpa
calculated using Eqs. (7.112)–(7.116) are compared against measurements in
Fig. 7.61 and show relatively good agreement. Dislocation recovery plays an
important role in microstructure evolution as it represents a change in sink density.
Failure to account for the recovery of the initial dislocation network would lead to a
faster saturation of the loop structure in the 316 alloys. The most sensitive
parameters controlling the irradiation microstructure are the temperature, dose,
materials constants, and the initial network dislocation density.

Simpler treatments for determining the loop size distribution can be made by
neglecting the formation of defect clusters larger than the tetra-interstitial, limiting
the number of size classes and simplifying the cluster description. Stoller et al. [36]
described the evolution of larger loops by the equation:

dqj
dt

¼ ij�1s
�1
j � ijs

�1
jþ 1; ð7:117Þ
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where ρj is the number of loops in a given size class with radius rL, and the τj is the
lifetime of a loop of size j against growth to the next larger size class:

sj ¼
Z rjþ 1

rj

drL
dt

� ��1

drL; ð7:118Þ

and

drL
dt

¼ X
b

ziL rLð ÞDiCi � zvL rLð ÞDv Cv � CvLð Þ½ �; ð7:119Þ

where ziL and zvL are given by Eq. (5.100) and CvL ¼ C0
v exp EFX/kTð Þ; and EF is

the energy of a faulted loop from Eq. (7.65). Figure 7.62a shows a comparison of
the temperature dependence of the calculated maximum faulted loop density and
low fluence fast reactor data for 316 stainless steel with initial network dislocation
densities of 3 × 1015 m−2 (solid line) and 3 × 1013 m−2 (dashed line). Figure 7.62b
shows the dose dependence of the loop density for solution annealed 316 irradiated
at 500 °C.
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Semenov and Woo [37] accounted for the effect of production bias by writing
Eq. (7.119) for the rate of change in loop size to include terms due to interstitial
cluster and vacancy cluster absorption:

drL
dt

¼ X
b

Ji � Jv þ Jev þ Jcli � Jclv

 �

; ð7:120Þ

where Js are the fluxes due to single interstitials, single vacancies, vacancy thermal
emission, interstitial clusters, and vacancy clusters, respectively, and τd is the
lifetime of the dislocation loop. Substituting for the fluxes [36] results in:

drL
dt

¼ K0

qN þ qLð Þb
k2V ei � e0v
� �þ k2d�z 1� eið Þ

k2
� Ke

K0

� �
; ð7:121Þ

where K0 is the defect production rate, Ke is the vacancy thermal emission rate, ρN
and ρL are the network and loop dislocation densities, εi,v is the fraction of inter-
stitials and vacancies, respectively, that are immobilized by intracascade clustering,
e0v ¼ ev � Ke=K0; zd is the dislocation bias, k2V;d are the sink strengths of voids and

dislocations, k2 is the total sink strength and �z ¼ zdk2c
k2 þ zdk2d

: The steady-state

interstitial loop growth rate for 316 stainless steel with an effective point defect
production rate of 10−7 dpa/s is shown as a function of temperature in Fig. 7.63.
The growth rate is in units of Burgers vector, b per dpa. Note that the loop growth
rate is low at low and high temperatures and peaks at an intermediate temperature of
about 500 °C.
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7.8 Recovery

Growing dislocation loops eventually encounter either network dislocations or each
other. The maximum radius to which a loop can grow, Rmax, is governed by the
loop density, ρL as given by 4p

3 qLR
3
max ¼ 1: When loops interact, they coalesce and

contribute to the network dislocation density. Interaction between individual dis-
locations and loops results in loop unfaulting that also contributes to the network
(discussed in Chap. 12, Sect. 12.3). As the dislocation density increases, the rate of
loop interaction with the network increases and the loop radius is further limited by
the network dislocation density as described by Eq. (5.85), pR2

max

� �
qN ¼ 1:

However, observations of irradiated microstructures confirm that the dislocation
density saturates, implying that there must also be a process for removal of network
dislocations limiting their buildup. The process of recovery can explain the
behavior of the dislocation density with irradiation. The rate of change of the
dislocation density in a solid under stress at high temperature is assumed to behave
according to:

_q ¼ Bq� Aq2; ð7:122Þ

where ρ is the density of mobile dislocations and A and B are constants [Note that
while the rate of dislocation density change given by Eq. (7.122) is phenomeno-
logical by nature, a more accurate description of the physical process is provided by
Eq. (7.117)]. The first term of Eq. (7.122) is the production rate of dislocations and
the second term is the annihilation rate. The loss term is assumed to occur due to
mutual annihilation of pairs of dislocations of opposite sign, which implies a
reaction rate that is proportional to the square of the number of dislocations present
at a given time. Garner and Wolfer [39] showed that the generation rate of dislo-
cations is proportional to b2ϕρ1/2, so that Eq. (7.122) can be written as:

_q ¼ Bq1=2 � Aq3=2; ð7:123Þ

where B * b2ϕ and A * tc, where tc is the climb velocity of the dislocation (see
Chap. 13). At steady state (dρ/dt = 0), the saturation density is ρs = B/A. The
solution to Eq. (7.122) is given as:

q tð Þ
qs

¼ 1� e�x þ ffiffiffiffiffiffiffiffiffiffiffiffi
q0=qs

p
1þ e�xð Þ

1þ e�x
ffiffiffiffiffiffiffiffiffiffiffiffi
q0=qs

p
1� e�xð Þ ; ð7:124Þ

where ρ0 is the initial dislocation density and

x ¼ A
ffiffiffiffiffiffi
qst

p ¼ ffiffiffiffiffi
qs

p
tct: ð7:125Þ
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Using a saturation density, ρs of 6 × 1014 m−2, and initial dislocation densities, ρ0 of
3 × 1012 m−2 for annealed 316 SS and 7 × 1015 m−2 for 20 % CW 316 SS, the
dislocation densities calculated from Eq. (7.123) are shown in Fig. 7.64a. The
relationship between x in Eq. (7.124) and fluence was defined by the case where the
dislocation density for annealed 316 SS reached a value of 2 × 1014 m−2 at
2 × 1026 n/m2. Data are plotted in Fig. 7.64b. Note how well the model results of
Fig. 7.64a agree with the data. This agreement also establishes that the original
dislocations are not different from those produced during the irradiation with regard
to their ability to absorb point defects.

7.9 Evolution of the Interstitial Loop Microstructure

The evolution of the interstitial loop population can be described in terms of its
response to temperature and dose. The temperature regime that is important for
LWR operation is between 270 and 340 °C. Higher temperatures may be reached
from gamma heating in certain thick components such as PWR baffle plates. This
temperature range represents a transition region between what is commonly termed
as low-temperature (50–300 °C) and high-temperature (300–700 °C) behaviors.
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Fig. 7.64 (a) Calculated
dislocation density evolution
in 316 stainless steel at 500 °
C using Eq. (7.139), for
starting densities of
7 × 1015 m−2 and
4 × 1012 m−2, for cold-worked
and annealed conditions,
respectively (after [34]).
(b) Measured dislocation
density in 20 % cold-worked
and annealed 316SS after
irradiation in EBR-II at 500 °
C (after [40])
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Below 300 °C, the dislocation microstructure is characterized by a high density of
“black dots” (defect clusters that are too small to resolve in the TEM, <2 nm),
network dislocations, and a low density of Frank loops. A very small percentage of
the small loops in stainless steels are observed to be SFT, which is much less than
the 25–50 % of clusters in nickel or copper [10]. Near 300 °C, the radiation-induced
microstructure changes from one dominated by small dislocation loops to one
containing larger faulted loops and network dislocations (Fig. 7.65). Figure 7.66
shows large dislocation loops after irradiation at high temperatures. Above 300 °C,
the Frank loop population begins to decrease. Figure 7.67 shows the sharp decrease
in faulted loop density by a factor of over 1000 between 400 and 600 °C in
neutron-irradiated austenitic stainless steels. The increase in loop size with tem-
perature eventually leads to an increase in the loop unfaulting rate which con-
tributes to the reduction in Frank loop population at high temperature.

Loop density increases rapidly to saturation at low irradiation temperatures.
Figure 7.68 shows the increase in loop density in austenitic stainless steels irradi-
ated near 300 °C. Loop size is relatively insensitive to fluence below about 300 °C.
At these low temperatures, loop sizes and densities become dynamically stable as a
population when a balance is reached between new loop formation and the
destruction of existing loops. With increasing temperature in the low-temperature
regime, the density of fine loops decreases and the loop size increases.

The dislocation microstructure evolves into one composed of Frank loops and
network dislocations above about 300 °C. Loop density saturates at a few dpa and
the density is maintained (in a dynamic sense) at higher doses. The dislocation
network density increases in proportion to the faulted loop density as temperature is
increased though the overall dislocation density is expected to stay fairly constant
between 300 and 370 °C. In the higher temperature regime (400–600 °C), the
population consists of a low density of Frank loops and a dislocation network.
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Evolution may actually occur more slowly if other microstructural processes are
also occurring such as void and bubble nucleation and growth.

The description of defect cluster nucleation and evolution provides a backdrop
for understanding the phenomenon of void growth discussed in the next chapter. As

Fig. 7.66 Images of large
Frank loops in (a) a 300 series
stainless steel irradiated at
500 °C to a dose of 10 dpa
(from [42]), and (b)–(e) in
irradiated aluminum, copper,
nickel, and iron, respectively
(after [18])
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will be shown, void formation and growth is intimately linked to the production of
defect clusters and their growth into loops, as these microstructures constitute
critical sinks that will govern the fate of voids.

Nomenclature

a Lattice constant
A Area of slip plane
b Burgers vector
Cv,i Concentration of vacancies, interstitials
C0
v;i Thermal equilibrium concentration of vacancies, interstitials
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Fig. 7.67 Effect of
temperature on the Frank loop
density in the intermediate
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austenitic stainless steel (after
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dx Strength of diffusive spread for clusters by the x process
Dv,i Diffusion coefficient of vacancies, interstitials
Dkj Diffusion term in size space of defect k and cluster size j, Eq. (7.106)
Dl Climb diffusion coefficient
E Energy
Eb Binding energy
Ef Formation energy
El Dislocation loop energy
Em Migration energy
Emh i Effective activation energy for cluster motion
f cli Fraction of interstitials in clusters
Fkj Drift velocity in size space of defect k and cluster size j Eq. (7.106)
Gj Effective Frenkel pair production rate of species j
ΔG Change in free energy
G0 Standard free energy
in Cluster of n interstitials
k Boltzmann’s constant
kþ =� Rate constant for processes +/− in cluster dynamics Eq. (7.110)
k2v;i Total sink strength for vacancies, interstitials

l Length of dislocation line segment
L Length of edge of stacking fault tetrahedron
J Nucleation current. Also flux
K0 Defect production rate
Ke Vacancy thermal emission rate
m Stress exponent in relation between dislocation velocity and shear stress
n Unit vector
nk; n0k Critical cluster size
Nd Average number of defects generated in a single cascade
Nil Number density of interstitial loop
N0 Number of lattice sites per unit volume. Also number of nucleation sites
Pi Probability of growing an interstitial cluster
Pm Loop nucleation probability
r Defect cluster radius
rc Dislocation core radius
rL Loop radius
rk Critical cluster radius
s Positive direction of the dislocation line
T Temperature. Also PKA energy
Sv,i Supersaturation of vacancies, interstitials
uij Components of the displacement vector
υg Dislocation glide velocity
υn Cluster of n vacancies
V Volume
W Work
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zv,i Vacancy, interstitial bias factor
Z Zeldovich factor Eq. (7.75)
αj Emission rate of species j
βj Absorption rate of species j
γ Shear strain. Also surface energy
γSFE Stacking fault energy
δ Thickness of void shell
εc Strain associated with the dislocation core
εij Components of strain
εi0 Fraction of interstitials produced in cascades in the form of immobile

clusters
Γ Dislocation line tension
λ Lamé constant
λd Mean free path between consecutive interstitial cluster coalescing events
μ Shear modulus
v Poisson’s ratio. Also jump frequency
ρ(n) Number density of defect clusters of size n
vs Strength of drift term for clusters, by absorption of single defects
Ω Atomic volume
ρx Density of entity x
σ, σij Stress and components of stress
σs Shear stress
σD Value of shear stress that yields a dislocation velocity of 0.01 m/s
τ Incubation time Eq. (7.95)
τd Lifetime of dislocation loop

Subscripts

c Dislocation core
d Dislocation
i Interstitial
k Critical cluster size
L Loop
F Frank loop
N Dislocation network
P Perfect loop
v Vacancy
0 Initial

Superscripts

c Coalescence
cl Clusters
s Single defects
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+ Trapping
− Emission

Acronyms

ARE Cluster annihilation rate by emission
ART Cluster annihilation rate by trapping
EDF Evaporating defect fraction
GRE Cluster generation rate by emission
GRT Cluster generation rate by trapping
IDF Isolated point defect fraction
MCF Mobile cluster fraction
MDF Mobile defect fraction
NI Largest interstitial cluster
NN Nearest neighbor
NV Largest vacancy cluster
PBM Production bias model
PKA Primary knock-on atom
SFE Stacking fault energy
SIA Single interstitial atom
UHP Ultra-high purity

Problems

7:1. Draw billiard ball models of the extra half sheet of atoms which constitute
the following dislocations:

(a) The a/2[110] edge dislocation in the (111) plane of the fcc lattice.
(b) The a/2[111] edge dislocation on the (110) plane of the bcc lattice.

7:2. It is found experimentally that a certain material does not change in volume
when subjected to an elastic state of stress. What is Poisson’s ratio for this
material?

7:3. Determine the volume of a 10 cm diameter copper sphere that is subjected to
a fluid pressure of 12 MPa.

7:4. Assuming that atoms are hard elastic spheres, show that Poisson’s ratio for a
close-packed array of spheres is 1/3.

7:5. For a circular shaped disk lying on the (111) plane of an fcc crystal:

(a) Determine the energy as a function of the number of vacancies.
(b) How many vacancies could a spherical void have before it would

spontaneously convert to a vacancy disc?
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7:6. It is known that the amount of stored energy in a solid can be increased with
the addition of dislocations.

(a) Calculate this energy for aluminum with a dislocation density of
1012 m−2.

(b) It has also been suggested that this energy can be increased by appli-
cation of a shear stress, σs. Given that the straight edge dislocations in
part (a) are in the form of an equally spaced cubic-shaped network,
determine the shear stress, σs, needed to bow each dislocation segment
into a half circle, and calculate the resulting increase in stored energy.

7:7. Calculate the net density of edge dislocations in a thin simple cubic crystal
with lattice parameter a = 2 × 10−8 cm if it is bent to have a radius of
curvature of 10 cm. (The thickness of the crystal is no greater than 1 mm.)

7:8. In the circular shear loop shown in the figure below, let the x-axis be the
direction of the Burgers vector shown in the drawing, the z-axis in the plane
of the loop but perpendicular to the direction of the Burgers vector, and the
y-axis perpendicular to the plane of the loop. Let θ be the polar angle of the
circle measured from point A. At any point θ on the loop, the Burgers vector
has an edge component be that is perpendicular to the dislocation line at that
position and a screw component bs that is parallel to the line.

(a) Using the fact that the vector b with these components is constant (in
magnitude and direction) at all points on the loop, derive expressions
for be and bs as functions of θ.

(b) Suppose a shear stress σxy is applied to the loop. Show that the resultant
force on the dislocation line is always radially directed and has a
magnitude σxyb.

7:9. Plot the stress fields surrounding edge and screw dislocations as a function of
θ. Specifically, plot the following:

(a) σxx, σyy, and σxy versus θ for an edge dislocation
(b) σxz and σyz versus θ for a screw dislocation
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7:10. For the dislocations in the figure below:

(a) Calculate the magnitude of the components of force on dislocation
(2) due to dislocation (1).

(b) Repeat part (a) for angles of 0°, 30°, 45°, and 90°.
(c) At θ = 30°, will dislocation (2)

(i) glide toward or away from dislocation (1)?
(ii) tend to climb up or down? Why?

7:11. For the dislocations given in the sketch, find

(a) The force on dislocation (2) due to dislocation (1)
(b) In which direction will dislocation (2) climb and/or glide?
(c) Describe the stress and temperature dependence of these two processes

and under what circumstances each will contribute to creep.

(1) s ¼ 001j j; b ¼ b 100j j
(2) s ¼ 001

�� ��; b ¼b 010
�� ��

7:12. An edge dislocation having the properties s = k and b = bj is on a plane
x = X. Calculate the y-coordinates of the maxima and minima of the glide and
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climb forces (separately) that it would experience due to a fixed dislocation at
the origin (s = k) for the following three cases:

(a) b = bi
(b) b = bj
(c) b = b(1/2i +

ffiffiffi
3

p
/2j).

7:13. An edge dislocation (1) with s = [001] and b = b [100] is located at the origin
of a coordinate system. Another edge dislocation (2) with s = [001] and
b ¼ b

ffiffiffi
2

p ffiffiffiffiffi
20

p
 �
is located a distance r away from (1) and 45° CCW from the

x-axis.

(a) Calculate the glide and climb force on dislocation (2) due to dislocation
(1).

(b) Make a graph of the force on dislocation (2) as a function of θ (for a
given r) for 0 ≤ θ ≤ 2π.

7:14. Compute the local force on dislocation (2) due to dislocation (1) for the four
examples of interaction between two perpendicular dislocations listed below:

s1 ¼ 001½ � s2 ¼ 010½ �

b1 ¼ b

100½ �
100½ �
100½ �
010½ �

8>><
>>: b2 ¼ b

100½ �
010½ �
001½ �
010½ �

8>><
>>:

where the first dislocation passes through x = y = 0 and is parallel to the
z-axis, and the second dislocation passes through x = X and z = 0 and is
parallel to the y-axis.

(a) In which cases does the total force on dislocation (2) vanish?
(b) If dislocation is able to flex, sketch the shape it is likely to assume

provided the first dislocation passing through x = 0 remains straight.
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