
Chapter 5
Radiation-Enhanced Diffusion and Defect
Reaction Rate Theory

We have developed an understanding of the formation of point defects, their motion
or diffusion in a solid, and the configurations of some of the common types of
defect clusters encountered in irradiated and unirradiated metals. Clearly, the for-
mation, growth, and dissolution of defect aggregates such as voids, dislocation
loops, etc., depend upon the diffusion of point defects and their reaction with the
defect aggregates. But they also depend upon the concentration of point defects in
the solid. The concentration at any point and time is a balance between the pro-
duction rate and the loss rate of point defects and is adequately described by the
point defect balance equations. The increase in diffusion or enhancement of atom
mobility in an irradiated metal is due to two factors: (1) the enhanced concentration
of the defects and (2) the creation of new defect species.

Recall that the diffusion of lattice atoms by way of the vacancy mechanism is
given by:

Dv
a ¼ fvDvCv;

where Dv is the vacancy diffusion coefficient, Cv is the vacancy concentration, and
fv is the correlation coefficient. Thus, increasing the concentration of vacancies will
increase the diffusion coefficient for the atoms in the metal. However, if other
mechanisms of diffusion are operative, such as interstitials or divacancies, then the
total diffusion coefficient for atoms, Da is written as follows:

Da ¼ fvDvCv þ fiDiCi þ f2vD2vC2v þ � � �

and diffusion of atoms in the metal is increased by opening new channels via defect
species which are usually not present in significant concentration at thermal equi-
librium. Under irradiation, Da is also written as Drad.

In this chapter, we will develop the transient and steady-state solutions to the
point defect balance equations in different temperature and microstructure regimes
within the framework of radiation-enhanced diffusion [1, 2]. The solutions to the
equations are used to determine the radiation-enhanced diffusion coefficient.
Reaction rate theory is then presented to develop an understanding of how point
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defects interact with the various defect aggregates. Radiation-enhanced diffusion
and defect reaction rate theory are essential to understanding the evolution of the
irradiated microstructure developed in Chaps. 6–10.

5.1 Point Defect Balance Equations

The development of radiation-induced vacancy and interstitial concentrations
occurs due to competing processes. Frenkel defects are created from the collisions
between high-energy particles and lattice atoms. These defects can be lost either
through recombination of vacancies and interstitials or by reaction with a defect
sink (void, dislocation, dislocation loop, grain boundary, or precipitate). The local
change in defect concentration of the various defect species can be written as the net
result of (1) the local production rate, (2) reaction with other species, and (3) dif-
fusion into or out of the local volume or the divergence of the flow. The main
reactions we will focus on in this treatment are vacancy–interstitial recombination
(v + i → h; where h represents a lattice site) and point defect reactions with sinks
(v + s → s, and i + s → s). These competing processes can be mathematically
described by the chemical rate equations:

dCv

dt
¼ K0 � KivCiCv � KvsCvCs

dCi

dt
¼ K0 � KivCiCv � KisCiCs;

ð5:1Þ

where
Cv vacancy concentration
Ci interstitial concentration
K0 defect production rate
Kiv vacancy–interstitial recombination rate coefficient
Kvs vacancy–sink reaction rate coefficient
Kis interstitial–sink reaction rate coefficient

The terms Kiv, Kvs, and Kis are the rate constants of the general form, KjX, that
describe the loss rate of point defects, j per unit point defect concentration to sinks
of type, X. Similar equations can be written for defect agglomerates such as di- and
trivacancies and interstitials. Note that the equations are nonlinear differential
equations and they are not mutually symmetric with respect to vacancy and
interstitial concentrations because of the difference in Kis and Kvs, making an
analytical solution difficult. The term “chemical” refers to homogeneous reactions,
where the rate depends only on concentration (“law of mass action”) and not on the
local distribution C(r) of the reactants. Thus, uniformity and thereby chemical
kinetics require that ∇C ≈ 0. This gives rise to a problem when considering
localized sinks, e.g., dislocations, grain boundaries, voids, and precipitate inter-
faces. Such local sinks violate the supposition of spatial uniformity in the host metal
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in that there is now locally a directed net flow of mobile point defects toward the
closest sinks. The divergence of the flow is equivalent to another “reaction” term,
r � DrC, in the kinetic balance equations. The locally valid rate equations are as
follows:

@Cv

@t
¼ K0 � KivCiCv � KvsCvCs þr � DvrCv

@Ci

@t
¼ K0 � KivCiCv � KisCiCs þr � DirCi:

ð5:2Þ

The solution to these equations requires the statement of boundary conditions in
addition to the initial local concentrations of the mobile defects (vacancies and
interstitials). However, we can assume that ∇C ≈ 0 if the mean defect separation is
greater than the mean distance between sinks, that is, the sink density is higher than
the defect density. This amounts to treating the sink as being uniformly distributed
and Eq. (5.1) applies.

We consider the following model for the solution to Eq. (5.1). A pure metal is
irradiated to produce only single vacancies and single interstitials in equal numbers
with no spatial correlation of the interstitial with its vacancy. The interstitials and
vacancies migrate by random walk diffusion, annihilating each other by mutual
recombination or at unsaturable fixed sinks. Sinks and defects are distributed
homogeneously in the metal. The diffusion coefficient of the metal is given by the
sum of terms due to its diffusion by vacancies and interstitials. The model will have
the following limitations:

1. The model applies to a pure metal. Binding of defects to atomic species and
limitation of defect motion due to binding and correlation effects are neglected,
f = 1.

2. The sink concentrations and strengths are time independent, or unsaturable.
3. Other than mutual recombination, defect–defect interactions (e.g., the formation

of divacancies or di-interstitials) are ignored.
4. Bias factors for diffusion of defects to sinks are set to unity (no preferential

absorption of specific point defects at specific sinks).
5. Diffusion terms in and out of a specific volume are not considered.
6. The thermal equilibrium vacancy concentration is neglected.

The rate constants are as follows:

Kiv ¼ 4privðDi þDvÞ � 4privDi ð5:3Þ

since Di ≫ Dv,

Kis ¼ 4prisDi ð5:4Þ

Kvs ¼ 4prvsDv; ð5:5Þ
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where riv, rvs, and ris are interaction radii for the reaction between the species given
by the subscripts and represent the radii of surfaces such that if crossed by the
defect, it is annihilated. The terms Di and Dv are the interstitial and vacancy
diffusion coefficients, respectively. The production term, K0, is the effective point
defect production rate in that it refers to the production of only freely migrating
defects that can give rise to long-range diffusion (see Chap. 3). The derivations of
the terms in Eqs. (5.3), (5.4), and (5.5) will be given in the Sect. 5.3.

Note that since the rate constants can differ by several orders of magnitude, the
equations are stiff. That is, the time increment needed to follow interstitial motion is
orders of magnitude too small to show any vacancy motion. Therefore, the equa-
tions must be solved using numerical techniques for stiff equations. But we can gain
insight into the processes by looking at analytical solutions to limiting cases. For
example, the defect concentrations initially increase linearly, with Cv = Ci = K0t.
Further development depends on the values of the temperature and sink concen-
tration, Cs. We will develop analytical solutions to Eq. (5.1) for four different
regimes (combinations of T and Cs): (1) low T and low Cs, (2) low T and inter-
mediate Cs, (3) low T and high Cs, and (4) high T.

5.1.1 Case 1: Low Temperature, Low Sink Density

The approximate solutions to Eq. (5.1) for low temperature and low sink density are
given in Fig. 5.1. Initially, defect concentrations build up according to dC/dt = K0

with Ci ∼ Cv, so Ci = Cv = C = K0t. Initially, the concentrations are too low for
either recombination or sinks to have an effect on the buildup. The buildup of point
defects will start to level off when the production rate is compensated by the
recombination rate. In the time regime where the production rate is balanced by the
recombination rate, we drop the last two terms from Eq. (5.1) and solve for the
“quasi-steady-state” concentrations:

dC
dt

¼ K0 � KivC
2 ¼ 0 ðC ¼ Ci ¼ CvÞ; ð5:6Þ

with the solution:

C ¼ K0

Kiv

� �1=2

: ð5:7Þ

Equating this concentration with that during the buildup phase:

K0t ¼ K0

Kiv

� �1=2

; ð5:8Þ
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yields the time at which losses to recombination compensate for the production rate
from irradiation:

t ¼ s1 ¼ ðK0KivÞ�1=2; ð5:9Þ

where τ1 is a time constant or characteristic time for the onset of mutual
recombination.

Eventually, the interstitials (first) and then the vacancies (later) will begin to find
the sinks, and sinks will start to contribute to annihilation. Ci and Cv remain
approximately equal until a time τ2, which is the time constant for the process of
interstitials reacting with the sinks. Because Di > Dv, more interstitials are lost to
sinks than vacancies, which is described by:

dCi

dt
¼ �KisCiCs; ð5:10Þ

so the interstitial concentration will decay and the vacancy concentration will rise
(since their only sink is interstitials and interstitials are being lost to sinks), yielding:

CvðtÞ ¼ K0KisCst
Kiv

� �1=2

CiðtÞ ¼ K0

KivKisCst

� �1=2
:

ð5:11Þ

(The derivation of Eq. (5.11) is Problem 5.15 at the end of the chapter.) The time at
which these equalities occur is obtained by equating the concentrations in the
bounding time regimes of quasi-steady state and buildup of interstitials/decay of
vacancies (Fig. 5.1):

Cv ¼ K0

Kiv

� �1=2

¼ K0KisCst
Kiv

� �1=2

Ci ¼ K0

Kiv

� �1=2

¼ K0

KivKisCst

� �1=2
;

ð5:12Þ

and solving for the time yields the time constant for the onset of the buildup regime:

t ¼ s2 ¼ ðKisCsÞ�1: ð5:13Þ

After a while, at time τ3, true steady state will be achieved. τ3 is the time constant
for the slowest process, which is the interaction of vacancies with sinks. Solving
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Eq. (5.1) for the steady-state concentration of vacancies and interstitials by setting
dCv/dt = dCi/dt = 0 gives:

Css
v ¼ �KisCs

2Kiv
þ K0Kis

KivKvs
þ K2

isC
2
s

4K2
iv

� �1=2

Css
i ¼ �KvsCs

2Kiv
þ K0Kvs

KivKis
þ K2

vsC
2
s

4K2
iv

� �1=2
:

ð5:14Þ

Since vacancies and interstitials are produced in equal numbers and equal numbers
are lost to recombination, the loss of each to sinks must be equal at steady state,
and:

KvsCv ¼ KisCi: ð5:15Þ
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Fig. 5.1 Log–log plot of vacancy and interstitial concentration versus time for case (1) low
temperature and low sink density (after [2])
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For the case of low temperature and low sink density, Cs is small, and the vacancy
and interstitial concentrations in Eq. (5.14) are approximated as:

Css
v ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0Kis

KivKvs
;

r
Css
i ffi

ffiffiffiffiffiffiffiffiffiffiffiffi
K0Kvs

KivKis

r
: ð5:16Þ

Equating these expressions to those from the previous (buildup) region gives:

Cv ¼ K0KisCst
Kiv

� �1=2
¼ K0Kis

KivKvs

� �1=2
: ð5:17Þ

and solving for the time gives the time constant for the onset of steady state:

t ¼ s3 ¼ KvsCsð Þ�1: ð5:18Þ

The buildup shown in Fig. 5.1 is really a schematic and not the actual buildup. The
transitions between regimes are not so sudden. For example, if the sink density is
assumed to be zero, the exact solution to Eq. (5.1) is as follows:

CvðtÞ ¼
ffiffiffiffiffiffiffi
K0

Kiv

r
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
KivK0t

p� �
: ð5:19Þ

5.1.2 Case 2: Low Temperature, Intermediate Sink Density

Increasing the sink density has the effect of bringing τ2 closer to τ1 (see Fig. 5.2).
That is, the region of mutual recombination is shrunk at the expense of annihilation
at sinks. In fact, when:

s1 ¼ s2 or ðK0KivÞ�1=2 ¼ ðKisCsÞ�1; ð5:20Þ

the plateau disappears.

5.1.3 Case 3: Low Temperature, High Sink Density

The main effect of a high sink density is that interstitials find the sinks before they
find vacancies because Cs ≫ Cv at short time (Fig. 5.3). That is, the time to reach
linear buildup (loss of interstitials to sinks), τ2, becomes shorter than the time to
reach quasi-steady state due to vacancy–interstitial interaction, τ1. In this case, the

5.1 Point Defect Balance Equations 213



interstitial concentration comes into a quasi-steady state with production and an-
nihilation at sinks:

dCi

dt
¼ 0 ¼ K0 � KisCiCs; ð5:21Þ

resulting in the quasi-steady-state concentration:

Ci ¼ K0

KisCs
: ð5:22Þ

Equating interstitial concentrations in the linear buildup regime with the
quasi-steady-state regime gives the following:

K0t ¼ K0

KisCs
; ð5:23Þ
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Fig. 5.2 Log–log plot of vacancy and interstitial concentration versus time for case (2) low
temperature and intermediate sink density (after [2])
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and solving for t gives the value for the time constant τ2:

t ¼ s2 ¼ ðKisCsÞ�1: ð5:24Þ

Note that since interstitials have found the sinks before finding the slower vacan-
cies, the vacancy concentration continues to rise according to Cv = K0t. A com-
petition soon arises between annihilation of interstitials at sinks and recombination
with vacancies:

KisCiCs ¼ KivCiCv ffi KivCiK0t; ð5:25Þ

yielding the time constant for the transition between the regimes where interstitials
go to sinks and mutual recombination dominates:

t ¼ s4 ¼ KisCs

KivK0
: ð5:26Þ
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Fig. 5.3 Log–log plot of vacancy and interstitial concentration versus time for case (3) low
temperature and high sink density (after [2])
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In the regime following τ4, Cv rises but more slowly, and Ci decreases slowly
according to:

Cv ¼ ðK0KisCst=KivÞ1=2

Ci ¼ ðK0=KisKivCstÞ1=2:
ð5:27Þ

Steady state arrives at:

s3 ¼ 1
KvsCs

; ð5:28Þ

with

Css
v ¼ �KisCs

2Kiv
þ K0Kis

KivKvs
þ K2

isC
2
s

4K2
iv

� �1=2

Css
v ¼ �KvsCs

2Kiv
þ K0Kvs

KivKis
þ K2

vsC
2
s

4K2
iv

� �1=2
:

ð5:29Þ

Note that the steady-state concentrations are the same as Eq. (5.14) given earlier in
case (1), but without the simplification of dropping the terms in Cs since in this
case, the sink density is high and cannot be neglected.

5.1.4 Case 4: High Temperature

At high temperature, the defect annihilation rate at the sinks keeps the concentration
of interstitials low (Fig. 5.4). Since recombination does not contribute much, the
rate equations become the following:

dCv

dt
¼ K0 � KvsCsCv

dCi

dt
¼ K0 � KisCsCi;

ð5:30Þ

with steady-state solutions:

Cv ¼ K0

KvsCs
; Ci ¼ K0

KisCs
; ð5:31Þ
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with characteristic times given by:

interstitial annihilation at sinks:K0t ¼ K0

KisCs
) t ¼ s2 ¼ ðKisCsÞ�1 ð5:32Þ

vacancy annihilation at sinks:K0t ¼ K0

KvsCs
) t ¼ s3 ¼ ðKvsCsÞ�1: ð5:33Þ

The time evolution of vacancy and interstitial concentrations displayed in Fig. 5.4
ignores the presence of thermal vacancies, which may be significant at higher
temperatures. The buildup of radiation-induced vacancies and interstitials at high
temperature, including an initial presence of thermal equilibrium vacancies, is
shown in Fig. 5.5. Note the effect of sink (dislocation) density and defect pro-
duction rate.
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Figure 5.5a shows that increasing the sink density lowers the vacancy concen-
tration since sinks absorb the vacancies (loss term is proportional to Kvs). Also for a
fixed sink density, a higher displacement rate results in a higher vacancy concen-
tration because the production rate is higher than the loss rate to sinks. The same is
true for interstitials shown in Fig. 5.5b. The kinks in the interstitial concentration
curves correspond to the temperature at which vacancies become mobile and
contribute to interstitial loss by mutual recombination as in Fig. 5.3. Comparing
Fig. 5.5a and b shows that the equilibrium concentration of interstitials is negligible
over the practical range of reactor component temperatures, while this is not the
case for vacancies.

The main objective of solving the point defect balance equations is to obtain
values for Ci and Cv to determine Drad, which is just the sum of CiDi and CvDv. The
preceding discussion shows that we can interpret radiation-enhanced diffusion
experiments after an isothermal irradiation at a constant flux for a time t in terms of
characteristic times. Table 5.1 summarizes the time constants for the various
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Table 5.1 Time constants for rate-limiting processes in the point defect balance equations

Time constant Value Process

τ1 ðK0KivÞ�1=2 Onset of mutual recombination

τ2 ðKisCsÞ�1 Onset of interstitial loss to sinks

τ3 ðKvsCsÞ�1 Onset of vacancy loss to sinks

τ4 s21=s2 ¼
KisCs

K0Kiv

Mutual recombination dominates interstitial loss to sinks
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rate-limiting mechanisms. For low sink density, recombination dominates at short
times, followed by interstitial annihilation at sinks and then vacancy annihilation at
sinks, which is the slowest process and controls the achievement of steady state. At
high sink density, interstitial annihilation at sinks dominates early, followed by
mutual recombination and then vacancy loss to sinks. As a rule, when τ1 < τ2,
mutual recombination dominates and when τ2 < τ1, sinks dominate. In summary, the
key factors affecting Ci and Cv are production rate, defect mobility, and sink
concentration.

5.1.5 Properties of the Point Defect Balance Equations

The point defect balance equations and their solutions possess interesting proper-
ties, which provide further insight into the behavior of vacancies and interstitials in
the diffusion of lattice atoms. They are the following:

1. The vacancy concentration referred to in the last section is really Cv � C0
v where

C0
v is the thermal equilibrium concentration of vacancies. In high-temperature

irradiations (T/Tm ≥ 0.5), this concentration is non-negligible. However, over all
irradiation temperatures of interest, C0

i =Ci � 1:
2. In the absence of sinks and thermal vacancies, Cv can be exchanged with Ci; that

is, Cv = Ci at any instant:

dCv

dt
¼ K0 � KivCiCv

dCi

dt
¼ K0 � KivCiCv

ð5:34Þ

Since Drad = DiCi + DvCv, and Ci = Cv, but since Di ≫ Dv, then interstitials
contribute much more to atom mobility than do vacancies.

3. If there is only one type of sink, then at steady state:

K0 ¼ KivCiCv þKvsCvCs

K0 ¼ KivCiCv þKisCiCs;
ð5:35Þ

or

KvsCv ¼ KisCi; ð5:36Þ

and the absorption rate of interstitials and vacancies at sinks is equal, or the net
absorption rate at the sink is zero. Even for the case of multiple sink types, if the
sinks have the same “strength” for vacancies and interstitials, then the net flow
to any sink is zero.
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4. Inclusion of sink terms violates the symmetry with respect to Ci and Cv because
of the different values of K(Kvs ≠ Kis). Symmetry is present in the steady state
with regard to DiCi and DvCv (since Kis / Di and Kvs / Dv). The consequence is
that vacancies and interstitials contribute to atom mobility to the same extent
and their actions cannot be discriminated. At steady state:

0 ¼ K0 � KivCiCv � K 0
vsDvCvCs

0 ¼ K0 � KivCiCv � K 0
isDiCiCs;

ð5:37Þ

where the K terms have been written as K = K′D, giving:

DvCvK
0
vsCs ¼ DiCiK

0
isCs: ð5:38Þ

So if K 0
vs �K 0

is; then DiCi = DvCv which means that vacancies and interstitials
contribute equally to atom mobility. Even though the steady-state concentration of
interstitials is much lower than the steady-state concentration of vacancies, they
each contribute equally to atom mobility because of the faster rate of diffusion of
interstitials. For any particular sink to grow, it must have a net bias for either
vacancies or interstitials. In real metals, Kvs and Kis are not equal. Specific sinks
have a bias for certain point defects, allowing that sink to grow. This behavior is
described in more detail in Sect. 5.3.

5.1.6 Deficiencies of the Simple Point Defect Balance Model

The simple point defect model neglects numerous features of realistic systems that
must be incorporated in order to obtain accurate results. For example, no account is
taken for changing sink strengths, which occur as dose buildup continues due to the
formation of depleted zones and defect clusters. Also, sink bias is neglected. Bias is
an important factor affecting the development of the irradiated microstructure as
will become evident in Chaps. 7 and 8. Defect–defect interaction and defect–
impurity interaction have also been neglected. Defect–defect interaction will be
important in the formation of void and interstitial loop nuclei and cannot be
neglected if larger clusters are to be properly accounted for. These small clusters
will serve as traps or sinks for mobile defects. In fact, vacancy clusters have been
found to increase Drad in the mutual recombination range, but are insignificant for
high sink concentrations and temperatures where annealing to fixed sinks dominates
[4]. Finally, the equations are unable to account for defect gradients (and in the
simple form, for concentration gradients). These become very important in pro-
cesses such as radiation-induced segregation (Chap. 6), in which defect fluxes give
rise to concentration gradients in the alloying elements. Such processes may sig-
nificantly alter the behavior of sinks and the bias of the sinks.
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5.1.7 Point Defect Balance Equations in the Presence
of Cascades

In a cascade, vacancies and interstitials are produced simultaneously but in a
segregated fashion such that their distributions are separated from each other in
space [5]. After the initial thermal annealing period, vacancies segregate in a
vacancy-rich region (e.g., Figs. 3.3 and 3.4). Because of their high concentration
and high mobility, the interstitials immediately start to form clusters [6] and diffuse
at the same time. In molecular dynamics simulation of cascades, the interstitials are
consistently observed to form clusters even in low energy (�1–2 keV) cascades.
More interstitial clustering is likely to occur in higher energy cascades since the
concentration of interstitials in these cascades is likely to be higher. These clusters
have been found to be stable even at high temperatures. In general, the interstitial
population is likely to be partitioned into three portions: one that back diffuses into
the vacancy-rich zone and is lost through recombination with the vacancies, one
that is immobilized through interaction and clustering, and one that escapes the
cascade zone and engages in long-range migration. The relative proportion of these
three portions may be affected by the size and morphology of cascades and the
disposition of sinks in the vicinity of the cascade.

The vacancy population in the cascade core agglomerates during the “cool
down” period after the collision event and eventually collapses to form vacancy
loops or stacking fault tetrahedra. In the temperature range of interest, the immo-
bilization of vacancies in vacancy loops is only temporary. They will soon be
re-emitted during thermal annealing and become available to various sinks,
including voids, as freely migrating vacancies. At elevated temperatures (e.g., the
peak swelling temperature), vacancy loops are thermally unstable because of the
high line tension and would shrink by vacancy emission. The evaporation of
vacancies from the loops and their escape from the vacancy-rich zone provides the
mobile vacancies for microstructural evolution (e.g., void growth) and macroscopic
deformation.

On the other hand, the immobilization of interstitials in the interstitial loops is
permanent. Due to their high formation energy, they remain locked in interstitial
loops from the moment they are created. They are unavailable to the voids, whether
they grow to a network by receiving a net flow of interstitials, or shrink out of
existence by absorbing a net flow of vacancies, or are destroyed by dislocation
sweep or cascade overlap. The lifetime of vacancy loops is dominated by thermal
annealing and that of the interstitial loops is dominated by destruction.

This description of vacancies and interstitials in the cascade process means that
there is an asymmetry in the production of mobile point defects (that enters into the
mean-field description of microstructure evolution followed by the rate theory
approach). First, the proportion of vacancies that agglomerate into clusters is not
likely to be the same as that of the interstitials. Second, even if they are, while the
vacancy loops can still provide mobile vacancies by evaporation, the interstitial
clusters cannot. Thus, it is the difference in the stability and lifetime between
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vacancy and interstitial clusters generated during the cascade process that gives rise
to a biased production of available vacancies and interstitials. This production bias
could be a potent driving force for void growth and swelling during cascade
damage conditions.

It should be noted that the concept of production bias is valid not only for low
doses but also for high doses. One process that could maintain operation of the
production bias even at high doses is the climb or/and glide of dislocation segments
during irradiation. The mobile dislocation segments would keep sweeping the
interstitial clusters and would prevent the buildup of a high concentration of
interstitials in the form of clusters. However, bias is absent in the case of electron
irradiation when only Frenkel pairs are produced.

In case of cascade production, Eq. (5.1) must be modified to incorporate the
effect of production bias. If er is the fraction of defects that recombine in the cascade
and ev and ei are the fractions of clustered vacancies and interstitials, respectively,
then the production of isolated vacancies and interstitials is given as:

Kv ¼ K0ð1� erÞð1� evÞ
Ki ¼ K0ð1� erÞð1� eiÞ;

ð5:39Þ

and the point defect balance equations become the following:

dCv

dt
¼ K0ð1� erÞð1� evÞ � KivDvCv � KvsCvCs þ Lv

dCi

dt
¼ K0ð1� erÞð1� eiÞ � KivDvCv � KisCiCs;

ð5:40Þ

where Lv is the production of thermal vacancies from the various sinks (discussed in
more detail in Sect. 8.2.1). The continuous production of single interstitial atom
(SIA) clusters in displacement cascades is a key process that makes microstructure
evolution under cascade conditions qualitatively different from that during Frenkel
pair (FP) producing electron irradiation. For electron irradiation, Eq. (5.1) describes
the evolution of the defect concentration. In the case of production of clusters in
irradiations that generate cascades, Eq. (5.40) should be used.

However, another factor that impacts isolated defect concentration is the
mobility of SIA clusters. These clusters have been found to exhibit one-dimensional
(1D) migration rather than 3D migration characteristic of isolated point defects.
This high mobility results in the constant removal of SIA clusters from the bulk,
further increasing the defect imbalance. Note that SIA cluster removal by 1D
migration means that dislocation sweeping of clusters is not required to prevent the
buildup of the interstitial cluster concentration at high dose.

Damage accumulation under cascade conditions requires the inclusion of the
mobile (glissile) SIA cluster concentration, CgiLðxÞ; in the defect balance equations
of Eq. (5.40):
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dCv

dt
¼ K0ð1� erÞð1� evÞ � KivDvCv � KvsCvCs þ Lv

dCi

dt
¼ K0ð1� erÞð1� eiÞ � KivDvCv � KisCiCs

dCgiLðxÞ
dt

¼ KgiLðxÞ � KgðxÞCiCgiLðxÞ;

ð5:41Þ

where CgiLðxÞ is the concentration, KgiLðxÞ is the production rate, and Kg(x) is the
rate constant for interstitial interaction with glissile SIA loops (clusters) of size
x. The solution of Eq. (5.41) will be discussed in Chap. 8, Sect. 8.3.8 on void
swelling.

5.2 Radiation-Enhanced Diffusion

In a pure metal, the diffusion coefficient under radiation is given by:

Drad ¼ DvCv þDiCi: ð5:42Þ

Because the concentrations of vacancies and interstitials under irradiation are much
greater than those produced thermally, the radiation-enhanced diffusion coefficients
are much larger than thermal diffusion coefficients. Despite the shortcomings, it is
interesting to see how well the simple point defect balance equations are able to
estimate the effect of irradiation on diffusion. Figure 5.6 shows a plot of log Drad
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versus log t for the case of annealed Ag-30 % Zn at 40 °C irradiated with 2.5 MeV
electrons at a flux of 3.7 × 1015 m−2 s−1 [2]. The thin solid black lines are the
interstitial and vacancy components and the thick solid blue line is their sum as
calculated from Eq. (5.42) by Sizeman [2], and the dashed red line is the experi-
mental data. The experiment actually measures the Zener relaxation time, τz (see
[1]), which is proportional to Drad. The experimental result confirms the existence
of a maximum in Drad as in case (1) for low temperature and low sink density. This
result also shows that the interstitial component dominates at times less than that to
achieve steady state, τ3, since Di > Dv (by assumption) and Ci > Cv for τ < τ3.

Another excellent example of calculation of Drad verses measurement is pro-
vided by Rothman [1] for self-diffusion in copper at 200 °C in a crystal containing a
dislocation density of 1011 m−2 under irradiation with a net damage rate,
K0 = 10−6 dpa/s (similar to that experienced by a fast reactor core structural
material). In this case, Drad * 6.5 × 10−21 m2 s−1. Given that the thermal diffusion
coefficient is *1.4 × 10−27 m2 s−1, this represents an extremely large (>106)
increase due to irradiation. Figure 5.7 shows that at temperatures below 575 °C,
Drad exceeds the thermal equilibrium self-diffusion coefficient for this defect pro-
duction rate (curve 1). The various curves in Fig. 5.7 represent different combi-
nations of production rates and defect densities. Note that at low temperature,
mutual recombination dominates and Drad has an activation energy of Ev

m=2 (all
curves). At low sink density (1011 dislocations m−2 (curve 1), where ρd ∼ 4π
rvsCs = 4πrisCs), the mutual recombination region ties indirectly to diffusion by
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thermal equilibrium vacancies with increasing temperature. At high sink densities,
[1014 m−2 (curve 2) and 1015 m−2 (curve 3)], mutual recombination gives way to
annealing at fixed sinks at a critical temperature, determined as follows.

According to Eq. (5.36), for a single sink type:

CiKis ¼ CvKvs or Ci ¼ CvKvs

Kis
: ð5:43Þ

At steady state, Eq. (5.29) is applied and they can be rewritten in the following
form:

Cv ¼ KisCs

2Kiv
1þ 4K0Kiv

KisKvsC2
s

� �1=2

�1

" #

Ci ¼ KvsCs

2Kiv
1þ 4K0Kiv

KisKvsC2
s

� �1=2

�1

" #
:

ð5:44Þ

We define a parameter, η, such that:

g ¼ 4K0Kiv

KvsKisC2
s
: ð5:45Þ

Then using Eq. (5.44), Cv can be written as:

Cv ¼ FðgÞK0

KvsCs
; or CvKvsCs ¼ FðgÞK0: ð5:46Þ

where

FðgÞ ¼ 2
g
½1þ gÞ1=2 � 1�: ð5:47Þ

Equation (5.46) shows that F(η) determines the number of defects absorbed by
sinks in relation to the total rate of formation of the defects. If η → 0, then F
(η) → 1, i.e., all of the defects are lost to sinks and none to recombination. In the
limit of large η, F(η) * 2/η1/2 and F(η) → 0, indicating that mutual recombination
dominates defect loss. When F(η) = 1/2, the loss of defects to sinks and recom-
bination is equal. This occurs at a value of η of:

g ¼ 8 ¼ 4K0Kiv

KvsKisC2
s
: ð5:48Þ

Equation (5.48) can be solved for the critical temperature below which mutual
recombination will dominate, and above which loss to sinks will dominate.
(The term η will be revisited in Chap. 8 in describing the effect of recombination on
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void growth). Using Eqs. (5.3), (5.4), and (5.5) for Kiv, Kis, and Kvs, and defining
K 0
iv ¼ 4priv;K 0

is ¼ 4pris; andK 0
vs ¼ 4prvs; Eq. (5.48) can be written as:

8 ¼
4K0K 0

ivD
i
0 exp

�Ei
m

kT

� �

K 0
vsD

v
0 exp

�Ev
m

kT

� �
K 0
isD

i
0 exp

�Ei
m

kT

� �
C2
s

; ð5:49Þ

where Ev
i;m is the migration energy and Di;v

0 is the pre-exponential factor in the
diffusion coefficient for interstitials and vacancies, respectively. Equation (5.49)
simplifies to:

Tc ¼ Ev
m

k ln
2Dv

0C
2
sK

0
isK

0
vs

K0K 0
iv

� � : ð5:50Þ

At the highest temperatures, Drad is overwhelmed by thermal vacancies (all curves
in Fig. 5.7), and increasing K0 to 10−4 dpa/s (curve 4) raises Drad in the mutual
recombination range by a factor of 10.

Figure 5.8 shows the radiation-enhanced diffusion coefficient calculated for a
sample of nickel undergoing irradiation at a rate of 10−6 dpa/s for different sink
annihilation probabilities, p, where p−1 is the average number of jumps of a defect
between creation and annihilation at a sink [7]. The diffusion coefficient describing
radiation-enhanced diffusion, Drad, is shown by the solid line. The dashed line to the
left is the thermal diffusion coefficient and the solid horizontal line at the right is the
diffusion coefficient due to ballistic mixing,Dm [8], and will be discussed in Chap. 10.
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The difference between the curves forDrad andDth is the effect of radiation-enhanced
diffusion. As shown, irradiation can result in a several orders of magnitude increase in
the diffusion coefficient.

5.3 Defect Reactions

Each of the terms in the point defect balance equations represents a reaction. The
rate at which the reaction occurs will depend on the nature of the reacting species.
Following [3], we will develop expressions for the rates of each of the reactions in
the point defect balance equations, as they will be used in describing processes such
as void growth and dislocation climb. We have seen that the motion of mobile point
defects can be considered a random walk process. When one of these defects
encounters a specie in the crystal to which it becomes tightly bound, one or both of
the partners in the encounter are considered to disappear from the solid. Examples
include a vacancy or interstitial intersecting a free surface, grain boundary, dislo-
cation, void, etc., or a vacancy encountering a vacancy, an interstitial encountering
an interstitial, or a vacancy encountering an interstitial. Clearly, the rate of such
reactions is proportional to the concentrations of both species, or:

reaction rate of A and B ¼ KABCACB reaction/cm3 s, ð5:51Þ

where CA and CB are the concentrations of species A and B in units of
particles/cm3, and KAB is the rate constant of the reaction in cm3/s. Reactions can be
between two mobile particles (vacancy and interstitial at high temperature) or
between one mobile and one stationary defect, e.g., low temperature where
vacancies are immobile and interstitials are mobile, or between interstitials and
dislocation, grain boundaries, and voids.

There are two types of processes that will be of interest in dealing with the
reaction between point defects and sinks; reaction rate-controlled and
diffusion-controlled. In reaction rate-governed processes, there must be no macro-
scopic concentration gradients of either partner. If one partner is large compared to
the atomic-sized reactant, or if one is a strong sink, a concentration gradient may be
established in the vicinity of the stationary defect. Reactions between point defects
are examples of reaction rate-controlled processes. If a defect concentration gradient
is established, the overall process is governed by the rate of diffusion of the mobile
species to the stationary sink. This is the case with free surfaces, voids, and grain
boundaries. These defects are usually not treated by reaction rate theory.

As a first example of a reaction rate-controlled process, let us look at the
vacancy–vacancy reaction. Consider the reaction:

vþ v ! v2; ð5:52Þ
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that proceeds in the forward direction only and is characterized by the rate constant
K2v. In this example, one vacancy is assumed to be stationary and the other is
mobile. The rate of divacancy formation per cm3 is given as:

R2v ¼ P2vCv; ð5:53Þ

where Cv is the concentration of monovacancies and P2v is the probability per
second that another vacancy jumps into a site that is a nearest neighbor to a
particular vacancy (Fig. 5.9). A divacancy will form if a nearest neighbor site to a
vacancy is occupied by another vacancy, thus P2v depends on the crystal structure.
Taking the fcc lattice, all 12 nearest neighbor sites are equivalent, yielding:

P2v ¼ 12Px; ð5:54Þ

where Px is the probability per second that another vacancy jumps into one of the
nearest neighbor positions surrounding the vacancy. Px is proportional to:

1. The number of sites surrounding the nearest neighbor site from which another
vacancy could jump (seven sites as shown by the open red circles in Fig. 5.9)

2. The probability that one of these lattice positions is occupied by a vacancy, Nv

3. The jump frequency of a vacancy, ω, or

Px ¼ 7Nvx; ð5:55Þ

a

Vacancy

Nearest neighbor to vacancy

Nearest neighbor to nearest neighbor

Other lattice sites

Fig. 5.9 Locations of nearest
neighbors for the formation of
a divacancy in the fcc lattice
(after ref. [3])

228 5 Radiation-Enhanced Diffusion and Defect Reaction Rate Theory



and we can write the vacancy site fraction as Nv = CvΩ, where Cv is the
volumetric vacancy concentration and Ω is the atomic volume. Back substitution
of Eqs. (5.54) and (5.55) into Eq. (5.53) yields:

R2v ¼ 84xXC2
v ½cm�3 s�1�: ð5:56Þ

Comparison with the definition of the reaction rate, Eq. (5.51) gives the reaction
rate constant K2v:

K2v ¼ 84xX: ð5:57Þ

In the fcc lattice, D = a2ω, then:

K2v ¼ 84XDv

a2
: ð5:58Þ

Although the expression for the rate constant was derived for a vacancy–vacancy
reaction, the same formulation applies to any reaction between any specie (e.g.,
impurity) that occupies substitutional positions in the fcc lattice. It can also be used
for other lattice types, but the factor, 84, called the combinatorial factor, or z, is
dependent on the crystal structure. The combinatorial factor is the solid-state analog
of the cross section in particle interactions.

In the previous example, we forced one of the reactants to be stationary. When
the reaction is between two mobile species, the rate is (KAB + KBA) CACB, where
KAB is the rate constant calculated assuming that B is immobile and vice versa for
KBA. Therefore, if both vacancies are mobile, the result would be multiplied by a
factor of 2; K2v + K2v = 2K2v. Given this background, we now turn our attention to
the various terms in the point defect balance equations in order to develop
expressions for the reaction rate coefficients.

5.3.1 Defect Production

The first term in the defect balance equations of Eq. (5.1) is the production rate of
vacancies and interstitials and this was determined in Chap. 2, Eq. (2.125), where
the term in brackets is given the designation, νFP

K0 ¼ nmFPrsN/½cm�3 s�1�: ð5:59Þ

For stainless steel, vFP * 30 Frenkel pairs per collision, σs * 3 × 10−24 cm2 and
N * 7 × 1022 cm−3. The term, ξ, is the displacement efficiency (Chap. 3) that
accounts for the reduction in freely migrating point defects due to in-cascade
recombination and clustering.

5.3 Defect Reactions 229

http://dx.doi.org/10.1007/978-1-4939-3438-6_2
http://dx.doi.org/10.1007/978-1-4939-3438-6_3


5.3.2 Recombination

The second term in Eq. (5.1), KivCvCi, is the recombination rate. The rate constant
Kiv is the same for both vacancies and interstitials since they must recombine with
each other at the same rate. Reactions between vacancies and interstitials are of
great importance since the result is mutual annihilation or return to the perfect
lattice. Assuming a stationary vacancy and a mobile interstitial, and that recom-
bination occurs only when the interstitial jumps into a site that is nearest neighbor to
the vacancy, we can determine the recombination rate constant for an octahedral
interstitial in the fcc lattice. There are six octahedral sites as nearest neighbors to the
vacant lattice site and each interstitial site has eight octahedral nearest neighbors,
giving a value of 48 for the combinatorial factor:

Kiv ¼ 48XDi

a2
: ð5:60Þ

However, this is a bit unrealistic since (1) the stable form of the interstitial is the
split interstitial and (2) the vacancy and interstitial are attracted to each other by
virtue of their strain fields, causing spontaneous recombination to occur over dis-
tances greater than the nearest neighbor spacing. Therefore, a more realistic esti-
mate of the combinatorial factor, ziv, is *500:

Kiv ¼ zivXDi

a2
; and ziv � 500: ð5:61Þ

5.3.3 Loss to Sinks

The loss term represents all the possible sinks for vacancy and interstitial loss.
These sinks can be divided into three categories:

1. Neutral (unbiased) sinks show no preference for capturing one type of defect
over the other type. The rate of absorption is proportional to the product of the
diffusion coefficient of the point defect and the difference in the concentrations
of the point defect in the bulk metal and at the sink surface. The types of sinks in
this category are voids, incoherent precipitates, and grain boundaries.

2. Biased sinks exhibit preferential attraction for one defect type over the other.
Dislocations exhibit a stronger preference for interstitials than for vacancies. The
bias is due to the drift of interstitials down the stress gradient near the dislo-
cation core. Since absorption of interstitials enhances dislocation climb, the
dislocation is an unsaturable sink. Two types of dislocations are considered:
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networks in unirradiated metal and from unfaulted Frank loops, and interstitial
dislocation loops.

3. Variable bias sinks such as coherent precipitates act as traps that capture a defect
but preserve its identity until it is annihilated by the opposite type defect.
Impurity atoms and coherent precipitates act as recombination centers with a
limited capacity.

5.3.4 Sink Strengths

Reaction rate constants describe the reaction between a point defect and a sink
(which may be another point defect), and are designated KjX where j is the mobile
point defect and X is the sink. As such, they include the diffusion coefficient of the
point defect as well as a description of the tendency for the reaction to occur. It is
often useful to describe the tendency of a sink to absorb defects that is independent
of the defect properties. The sink strength, with units of [cm−2], is such a
description and it reflects the strength or affinity of a sink for defects. Sink strength
is independent of defect properties for neutral sinks. The sink strength is denoted by
k2jX; and is defined as:

absorption rate ¼ KjXCjCX ¼ k2jXCjDj; ð5:62Þ

so

k2jX ¼ KjXCX

Dj
; ð5:63Þ

or

k2j ¼
X
X

k2jX: ð5:64Þ

Both the rate constant and the sink strength are terms commonly used to describe
the action of sinks on the defects in the solid. Physically, k�1

j is the mean distance a
free defect of type j travels in the solid before becoming trapped.

Before we treat the various sink types, we will first look at the rate constants for
the two basic reaction processes: reaction rate-controlled processes and
diffusion-limited processes. We begin with reaction rate-controlled processes.
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5.4 Reaction Rate-Controlled Processes

5.4.1 Defect–Void Interaction

For reactions where capture is controlled by the rate at which the point defects enter
the trap site, we can use Eq. (5.61). For defect–void reactions, the term to be
determined is the combinatorial factor. For a void, the number of lattice points on
the surface of the sphere is 4πR2/a2, where the area occupied by a lattice point is
approximated by a2. The rate constant then becomes:

KvV¼ 4pR2XDv

a4
¼ 4pR2Dv

a
; whereX� a3; k2V ¼ 4pR2qV

a
; ð5:65Þ

where ρV is the concentration of voids in the solid.

5.4.2 Defect–Dislocation Interaction

Consider a cylinder about a dislocation line whose axis is coincident with the dis-
location line such that capture is certain for any vacancy entering the cylinder
(Fig. 5.10). The cylinder consists of zvd atomic sites on each of the crystal planes
intersected by the dislocation line. The cylinder defines the capture radius of the
dislocation, or the radius inside which entering defects are lost to the sink. If the
spacing between atom planes in the lattice is*a, then there are zvd/a capture sites per
unit length of dislocation. Letting ρd be the density of dislocation lines in the crystal
(in units of centimeters of dislocation line per cm3 of solid or cm−2), then there are zvd
ρd/a capture sites per unit volume. If the concentration of vacancies per unit volume

Rd

a

Fig. 5.10 Capture volume around a dislocation line, defined by the cylinder of radius Rd and with
sink sites lying on crystal planes separated by a distance a
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is Cv, then the vacancy site fraction is CvΩ. For a vacancy jump rate of ω, the rate of
vacancy capture rate by the dislocation per cm3 is given as:

Rvd ¼ zvdqd
a

CvXx ½cm�3 s�1�: ð5:66Þ

Since Ω * a3 and Dv = a2ω, we have:

Rvd ¼ DvzvdqdCv and reaction rate constantKvd ¼ Dvzvd; k
2
vd ¼ zvdqd

Rid ¼ DizidqdCi and reaction rate constantKid ¼ Dizid; k
2
id ¼ zidqd

ð5:67Þ

and zvd ≠ zid.

5.5 Diffusion-Limited Reactions

Reactions between defects and sinks cannot always be characterized as reaction
rate-limited. Reactions driven by defect concentration gradients are diffusion-
limited and must be treated differently. Such reactions are defect–void, defect–grain
boundary, and sometimes defect–dislocation interactions. Following [3], these
reactions are addressed here starting with defect–void reactions.

5.5.1 Defect–Void Reactions

Consider the case of ρV voids per unit volume, each of radius, R, which absorb a
particular type of point defect present in the solid and between the spherical sinks.
Focusing on a single sphere, the unit cell or capture volume surrounding each
sphere is defined as the portion of the solid that can be associated with each sphere.
The radius of the capture volume (see Fig. 5.11) around each sphere is defined by:

4
3
pR3

� �
qV ¼ 1: ð5:68Þ

The diffusion equation for the point defects will be solved in the spherical shell
R ≤ r ≤ ℛ. The concentration of point defects at a radial position r in the capture
volume at time t is denoted by C(r, t). The definition of the capture volume implies
that there is no net flux of point defects across the boundary at r = ℛ, which is
written as:

@C
@r

� �
R
¼ 0; ð5:69Þ
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and the point defect concentration at the surface of the sphere is given as:

CðR; tÞ ¼ CR: ð5:70Þ

The value of CR depends on the process. For insoluble gas atoms where the spheres
represent gas bubbles, CR = 0. For bubbles or voids where the point defects are
vacancies or interstitials, CR ¼ C0

v;i; the thermal equilibrium defect concentration.
If the defects are created uniformly in the capture volume and no sinks other than

the sphere are present, then the concentration C(r, t) is determined by solution of the
volumetric diffusion equation with a volumetric source term:

@C
@t

¼ D
r2

@

@r
r2
@C
dr

� �
þK0; ð5:71Þ

where D is the diffusion coefficient of the defects (assumed to be independent of
concentration) and K0 is the defect production rate per unit volume given by
Eq. (5.59).

When a solid is irradiated at a temperature where point defects are mobile, the
loss of particles to the sink is partially compensated by the production rate so the

concentration changes slowly with time
@C
@t

� 0
� �

and Eq. (5.71) can be

approximated as:

D
r2

d
dr

r2
dC
dr

� �
¼ �K0: ð5:72Þ

R

spherical 
sinkcapture 

volume

Fig. 5.11 The unit cell for determination of the diffusion-controlled rate constant for defect
absorption by a spherical sink
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The solution to Eq. (5.72) subject to the boundary conditions given by Eqs. (5.69)
and (5.70) is given as:

CðrÞ ¼ CR þ K0

6D
2R2ðr � RÞ

rR
� ðr2 � R2Þ

� �
: ð5:73Þ

Since in many cases, the capture volume radius is much larger than the sink radius
and the defect concentration changes rapidly only very close to the sink, the capture
volume is divided into two regions (Fig. 5.12). In region 1, the diffusion term is
much greater than the source term and Eq. (5.72) can be approximated by:

1
r2

d
dr

r2
dC
dr

� �
¼ 0; ð5:74Þ

with boundary conditions:

CðRÞ ¼ CR ð5:75Þ

Cð1Þ ¼ CðRÞ: ð5:76Þ

The solution of Eq. (5.74) subject to the boundary conditions given by Eqs. (5.75)
and (5.76) gives:

CðrÞ ¼ CR þ ½CðRÞ � CR� 1� R
r

� �� �
: ð5:77Þ

The flux of particles at the void surface is defined by:

J ¼ �D
dC
dr

� �
R
: ð5:78Þ

1 2

R0

C( )

CR

C

r

Fig. 5.12 Regions of interest
in the solution of the diffusion
equation in a spherical shell
with a uniform volumetric
production rate of defects
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Using Eq. (5.77) gives:

J ¼ �D½CðRÞ � CR�
R

: ð5:79Þ

The absorption rate of point defects by the void is given as:

�ð4pR2ÞJ ¼ 4pRD½CðRÞ � CR�: ð5:80Þ

Requiring that point defects produced in the capture volume be absorbed by the
void gives:

4
3
p R3 � R3� �

K0 ¼ 4pRD½CðRÞ � CR�: ð5:81Þ

If ℛ3 ≫ R3, the balance becomes as follows:

CðRÞ ¼ CR þ K0R
3

3RD
: ð5:82Þ

Assuming that C(ℛ) ≫ CR in Eq. (5.80) and replacing C(ℛ) by C, we obtain the
total rate of diffusion-controlled absorption of point defects by the void by multi-
plying Eq. (5.80) by the number of voids per unit volume ρV:

Rate of absorption/cm3 ¼ 4pRDqVC: ð5:83Þ

The rate constant for diffusion-controlled reaction of point defects and a perfect
spherical sink of radius R is then:

KiV ¼ 4pRDi;

KvV ¼ 4pRDv;

k2V ¼ 4pRqV;

ð5:84Þ

where the subscripts on K refer to the reacting species, vacancies or interstitials
(v, i), and voids V.

5.5.2 Defect–Dislocation Reactions

Diffusion-controlled reactions between defects and dislocations occur in much the
same way as in the case of spherical sinks, but in cylindrical coordinates. Taking the
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capture radius of the sink to be Rd and the dislocation density to be ρd, we define the
unit cell such that:

ðpR2Þqd ¼ 1: ð5:85Þ

The diffusion equation is given as:

D
r
d
dr

r
dC
dr

� �
þK0 ¼ 0; ð5:86Þ

with boundary conditions:

CðRdÞ ¼ CRd ð5:87Þ

dC
dr

� �
R

¼ 0; ð5:88Þ

and solution:

CðrÞ ¼ CRd þ
K0R

2

2D
ln

r
Rd

� �
� 1=2

r2 � R2
d

R2

� �� �
: ð5:89Þ

Analogous to the case for spherical sinks in region 1, but in cylindrical geometry
instead, the diffusion equation is given as:

1
r
d
dr

r
dC
dr

� �
¼ 0; ð5:90Þ

with boundary conditions:

CðRdÞ ¼ CRd ð5:91Þ

CðRÞ ¼ C; ð5:92Þ

with solution:

CðrÞ ¼ CRd þ ½CðRÞ � CRd �
lnðr=RdÞ
lnðR=RdÞ : ð5:93Þ

The flux of defects to the dislocation line is given as:

J ¼ �D
dC
dr

� �
Rd

¼ �D½CðRÞ � CRd �
Rd lnðR=RdÞ : ð5:94Þ
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The absorption rate per unit length of dislocation line = −(2πRd)J

¼ 2pD½CðRÞ � CRd �
lnðR=RdÞ : ð5:95Þ

The rate of defect production in the capture volume

¼ pðR2 � R2
dÞK0; ð5:96Þ

and since all defects produced in the capture volume are captured by the
dislocation:

2pD½CðRÞ � CRd �
lnðR=RdÞ ¼ pðR2 � R2

dÞK0; ð5:97Þ

and

CðRÞ ¼ CRd þ
K0R

2

2D
lnðR=RdÞ for Rd=R 	 1; ð5:98Þ

so from Eq. (5.94) the rate of defect capture by dislocations per unit vol-

ume =
2pDqdC
lnðR=RdÞ ; and the rate constants for vacancies and interstitials are as

follows:

Kvd ¼ 2pDv

ln(R=RvdÞ
Kid ¼ 2pDi

ln(R=RidÞ ;
ð5:99Þ

and

k2vd ¼
2pqd

lnðR=RvdÞ
k2id ¼

2pqd
lnðR=RidÞ :

ð5:100Þ

Note that the combinatorial factors for vacancies and interstitials differ by the
capture radius. The capture radius for interstitials is slightly greater than that for
vacancies and is the origin of the dislocation bias for interstitials.
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5.6 Mixed Rate Control

Mixed rate control occurs when the reaction rate is determined by a combination of
processes. We can determine the rate constant for the combined processes by
adding the reciprocals of the rate constants to give the resistance due to series steps
of diffusion and surface attachment. For the case of voids, we use the rate constants
given by Eqs. (5.65) and (5.84) giving:

1
Keff

¼ 1
Kreaction

þ 1
Kdiffusion

; ð5:101Þ

to yield the effective rate constant:

Keff ¼ 4pRD

1þ a
R

; k2eff ¼
4pRqV

1þ a
R

: ð5:102Þ

For large spheres, a/R → 0 and the rate constant is that for diffusion only. This
result shows that reaction rate limitations to capture kinetics for spherical sinks are
only significant if the sphere radius is small, approaching the lattice constant.

For dislocations, the capture rates calculated from a diffusion-controlled process
verses a reaction rate-controlled process are as follows:

Kdiffusion ¼ 2pD
lnðR=RdÞ

Kreaction ¼ zdD;
ð5:103Þ

giving the effective rate constant for mixed-control:

Keff ¼ D
1
zd

þ lnðR=RdÞ
2p

; k2eff ¼
qd

1
zd
þ lnðR=RdÞ

2p

ð5:104Þ

Consider zd to be the area of a circular region of radius Rd multiplied by the number
of atoms per unit area. For the (100) plane of the fcc lattice, the number of
atoms/unit area is 2/a2 and:

Kreaction=D ¼ zd ¼ 2pR2
d

a2
¼ 24 for Rd � 0:6 nm and a� 0:3 nm: ð5:105Þ

For a dislocation line density of 1010 cm−2, Kdiffusion=D ¼ 2p
lnðR=RdÞ ¼ 1:4: So

capture of defects by dislocations is diffusion-controlled.
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5.7 Defect–Grain Boundary Reactions

Interactions between point defects and grain boundaries are important in the case of
radiation-induced segregation, discussed in Chap. 6. Following the analysis of
Heald and Harbottle [9], the sink strength of the grain boundary is determined by
considering a spherical grain of radius a, with grain boundary defect concentration
equal to the thermal equilibrium value, which will be neglected compared to the
irradiated-induced concentration. The loss to sinks within the grain is given as:

k2DC ¼ ðzdqd þ 4pRVqVÞDC; ð5:106Þ

where k2 is the sink strength for the grain interior due to dislocations and voids, and
the diffusion equation is given as:

d2C
dr2

þ 2
r
dC
dr

þ K0

D
� k2C ¼ 0; ð5:107Þ

subject to boundary conditions C(r = a) = 0 and C(r = 0) = finite. The solution to
Eq. (5.107) subject to the boundary conditions is given as:

CðrÞ ¼ K0

Dk2
1� a sinh ðkrÞ

r sinh ðkaÞ
� �

; ð5:108Þ

and the total flow of point defects to the grain boundary, A, is given as:

A ¼ �4pr2D
@C
@r

				
r¼a

¼ 4pK0a
k2

½ka cotðkaÞ � 1�: ð5:109Þ

Written in rate theory formalism, Eq. (5.109) becomes as follows:

A ¼ zgbDC0; ð5:110Þ

where zgb is the sink strength for an individual grain boundary and C0 is the
concentration at the grain center (r = 0), Fig. 5.13:

C0 ¼ Cðr ¼ 0Þ ¼ K0

Dk2
1� ka

sinhðkaÞ
� �

: ð5:111Þ

From Eqs. (5.109), (5.110), and (5.111), the grain boundary sink strength, zgb, is
given as:

zgb ¼ 4pa
ka coshðkaÞ � sinhðkaÞ

sinhðkaÞ � ka

� �
: ð5:112Þ
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For small grains and low sink strengths, ka → 0, and:

zgbðka ! 0Þ ¼ 8pa ¼ 4pd; ð5:113Þ

where d(=2a) is the grain diameter. When the sink strength is large, ka → ∞, and:

zgbðka ! 1Þ ¼ 4pka2 ¼ pkd2: ð5:114Þ

The grain boundary sink strength is the product of zgb and the grain density in
grains per unit volume, or ρgb = 6/πd3, giving:

k2gbðka ! 0Þ ¼ 24=d2; Kjgb ¼ 4pDjd; ð5:115Þ

and

k2gbðka ! 1Þ ¼ 6k=d; Kjgb ¼ pkDjd
2; ð5:116Þ

where j = i or v.
Generally, k2 * 1011 cm−2 and d > 10−3 cm so that Eq. (5.116) is the appro-

priate expression for the grain boundary sink strength. In fact, the grain boundary
sink strength is given by Eq. (5.116) whenever (zdρd + 4πRVρV) > 1/d.

5.8 Coherent Precipitates and Solutes

These types of sinks are known as variable bias sinks in that they act as traps for
vacancies and interstitials rather than as infinite sinks, in which the defect loses its
identity after being absorbed. The source of the attraction of vacancies and inter-
stitials to the trap is the relief of the strain field produced by the coherency between

x

Cv

0
0

G.B.

Fig. 5.13 Diffusion-controlled reaction between vacancies and a grain boundary
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the trap and the lattice. The coherent precipitate is of a structure in which the lattice
planes of the precipitate are continuous with those of the matrix, but due to the
difference in lattice parameters, there is a strain field at the interface where the
lattice planes from each are forced to match. The over- or undersized solute is a
limiting case of a coherent precipitate. The trap strength is limited by the capacity of
the interface to hold or trap a defect until the anti-defect arrives and results in
annihilation. Hence, no matter accumulates at this defect and thermal emission does
not occur. The interface does exhibit a bias for defects and this bias is a function of
the biased sinks in the solid. For example, if the biased sinks in the solid favor
interstitials, then k2i [ k2v and the trap interface will acquire slightly more vacancies
than interstitials. This excess of vacancies then causes the trap surface to become a
more effective sink for interstitials than for vacancies. The biases for the trap are
denoted by Yv and Yi (Brailsford and Bullough [10] and Olander [3] provide
detailed analyses of the bias factors), and the absorption rates of vacancies and
interstitials at the trap are given by:

ACP
v ¼ 4pRCPDvCvqCPYv ¼ KvCPCvqCP

ACP
i ¼ 4pRCPDiCiqCPYi ¼ KiCPCiqCP:

ð5:117Þ

If there can be no steady-state accumulation of defects at the trap, then there is no
net matter flow to or from the sinks and:

4pRCPqCPDvCvYv ¼ 4pRCPqCPDiCiYi; ð5:118Þ

so

Yi ¼ DvCv

DiCi
Yv; ð5:119Þ

and the rate constants and sink strengths are as follows:

KvCP ¼ 4pRCPDvYv; k2vCP ¼ 4pRCPqCPYv

KiCP ¼ 4pRCPDiYi; k2iCP ¼ 4pRCPqCPYi:
ð5:120Þ

So variable bias sinks play an interesting role in that they adjust their preference for
point defects in response to the relative sink strengths in the bulk.

The reaction rate constants for the various reactions are summarized in Table 5.2
for the various defect–defect and defect–sink reactions.
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5.9 Point Defect Recovery

When irradiated materials are annealed, they exhibit stages, or temperature regimes,
that correspond to the loss of defects by mutual annihilation or by diffusion to sinks.
Experimental studies use isochronal annealing followed by electrical resistivity at
low temperature to identify the major defect recovery processes. Irradiation and
electrical resistivity measurements are conducted at low temperature (e.g., 4 K)
where defects are immobile and thermal scattering contributions to resistivity are
minimal. The appearance of any given stage depends on the time and temperature
used in the annealing experiment, and often on the time and temperature of irra-
diation. Therefore, they are not precisely defined.

Since electrical resistivity is proportional to the total concentration of all
irradiation-produced point defects, the resistivity increase per unit irradiation dose
is therefore a measure of the concentration of stable defects produced at a given
irradiation temperature. Measurements of the change in electrical resistivity, Δρ, as
a function of annealing temperature provide information on the kinetics of defect
reactions. For example, if recombination of vacancies and interstitials occurs, a
decrease of Δρ with temperature follows. Figure 5.14 shows a plot of the fractional
change in defect concentration (Δρ/Δρ0 is proportional to N/N0) as a function of
temperature in pure copper after electron irradiation at 4 K. Note that there are five
major stages of annealing.

Based on the one-interstitial model, Stage I corresponds to the onset of SIA
migration. In fact, Stage I consists of five substages, IA–IE, as shown in Fig. 5.15.
Details of Stage I annealing of copper are shown in Table 5.3. The lower tem-
perature substages, IA, IB, and IC, are due to collapse of close Frenkel pairs. That is,
recombination of vacancy–interstitial pairs that were not created far enough away
from each other to escape the attractive forces and thus the interstitial recombines
with its vacancy counterpart. The differences between stages IA, IB, and IC may be
due to alternative interstitial structures or to directions of separation in the lattice.

0
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0.4

0.2

20 50 100 200 300 500 700T [K]

stage:

defect 
reactions:

I II III IV V

1i 1i 2i 4i 100i
500i

2v
1v 1v 1v 1v20v 40v
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BI

CI

D+EI

0.0

Fig. 5.14 Annealing stages
and defect reactions in pure
copper after electron
irradiation; i1 and v1 denote
single interstitials and
vacancies, respectively, i2 and
v2 di-interstitials and
divacancies (after [11])
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Stages ID and IE are due to recombination by long-range migration of interstitials.
Stage ID is due to correlated recombination in which the interstitial atom recom-
bines with the vacancy created by the same displacement event. Stage IE is due to
uncorrelated recombination of an interstitial with a vacancy from a different dis-
placement event. In these cases, recovery may consist of tens or hundreds of jumps.
Stages ID and IE are observed when the Frenkel pair density is small enough so that
the average distance of an interstitial atom to a vacancy from a different dis-
placement event is much larger than that to a vacancy from the same displacement
event. Note that interstitial clustering occurs simultaneously with recombination
and is responsible for the survival of interstitials at the end of Stage I and for the
incompleteness of recovery in this stage.

Stage II recovery describes migration and growth of small interstitial clusters and
SIA-impurity clusters and occurs in the temperature range 50–200 K in copper. The
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Fig. 5.15 Isochronal
annealing curves of a Pt
sample irradiated at 4.5 K
with 3 MeV electrons to
Δρ0 = 4 × 10−9 Ω cm.
Isochronal holding times were
20 min for temperature steps
of ΔT/T = 3.5 % (after [11])

Table 5.3 Stage 1 annealing of copper (after [12])

IA IB IC ID IE
Temperature (K) 16 28 32 39 53

Activation energy (eV) 0.05 0.085 0.095 0.12 0.12

Reaction order 1 1 1 1 1

Number of jumps 1 1 1 10 104

Impurity effect – Small
reduction

– Large
reduction

Large reduction

Dose effect – – – – Moves to lower T

Increasing e− energy Increase Reduce Increase
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minimal change in resistivity of Stage II is indicative of the importance of impu-
rities in this stage. Impurities can trap interstitials, delaying interstitial clustering
reactions. Stage II is more prominent in impure materials or when pure materials are
doped with impurities that could form SIA-impurity clusters.

In Stage III, vacancies migrate and annihilate at interstitial clusters. Vacancy
migration also results in vacancy agglomeration and at the end of Stage III, sur-
viving defects consist of small vacancy clusters and larger interstitial loops.
Vacancy clusters grow in Stage IV to such a size that they are visible in the
transmission electron microscope as small voids. Impurities may affect vacancy
clustering and alter Stage IV recovery. Stage V corresponds to the thermal disso-
ciation of vacancy clusters followed by vacancy annihilation at interstitial loops
such that at the end of stage V all damage is removed.

The specific processes that occur after Stage III are less well defined for several
reasons. For a number of metals (Al, Pt, Au), recovery is complete after Stage III
since the loss of mobile vacancies to interstitial clusters is apparently so great that
the residual vacancy clusters are not large enough to survive Stage III.
Multiple-defect structures are not easily formed by electron irradiation and so stages
IV and V are rather ill-defined. Defect clusters are more readily formed by neutron
or ion irradiation that produce large defect cascades in which separation of the
vacancy core from the interstitial shell enhances agglomeration reactions. In this
case, a much larger fraction of vacancies and interstitials survive Stage I and
Stage III, respectively. It also means that annealing behavior is dependent on the
irradiating particle. Further, the wide range of cluster geometries that can nucleate
and evolve make for a very complex microstructure with many recovery pathways.

Nomenclature

A Flow rate of defects to sink
a Lattice constant, also grain radius
C Concentration
CgiL Mobile SIA cluster concentration
Civ Interstitial, vacancy concentration
CR Vacancy concentration at void boundary
Cs Sink concentration
d Grain diameter
Drad Radiation-enhanced diffusion coefficient
Dth Thermal diffusion coefficient
Dm Ballistic mixing diffusion coefficient
Dy

0 Pre-exponential factor in the diffusion coefficient via defect y
Dy

x Diffusion coefficient for species x via y
Ey
m Migration energy of defect y

f Correlation coefficient
i Interstitial
v Vacancy
s Sink
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Jx Flux of atom or defect x across a marker plane
k Boltzmann’s constant
k2jX Strength of sink X for defect j

K0 Defect production rate
Kgb Rate constant for defect–grain boundary interaction
Kg Rate constant for interstitial interaction with glissile SIA loops
KgiL Production rate of glissile interstitial loops
Kid Rate constant for interstitial–dislocation interaction
Kiv Vacancy–interstitial recombination rate constant
Kis Interstitial–sink reaction rate constant
Kvd Rate constant for vacancy–dislocation interaction
Kvs Vacancy–sink reaction rate constant
K2v Divacancy formation rate constant
Lv Thermal vacancy production term
N Atom fraction
riv Vacancy–interstitial recombination radius
ris Interstitial–sink recombination radius
rvs Vacancy–sink recombination radius
p Sink annihilation probability
P2v Probability/second of forming a divacancy
Px Probability/second that a vacancy jumps to a nearest neighbor to a vacancy
Rd Dislocation core radius
Rid Reaction rate between interstitials and dislocations
Rvd Reaction rate between vacancies and dislocations
R2v Rate of divacancy formation
ℛ Radius of unit cell or capture volume surrounding a spherical sink
t Time
T Temperature
Tc Critical temperature defined by Eq. (5.50)
v2 Divacancy designation
zgb Sink strength for an individual grain boundary
zxy Combinatorial number for a reaction between x and y
εi,v Fraction of clustered interstitials, vacancies
εr Fraction of defects recombining in cascade
ϕ Particle flux
ρd Dislocation density
η Parameter defined by Eq. (5.45)
σs Microscopic scattering cross section
τx Time constant for process x
ω Jump frequency
Ω Atomic volume
ξ Production efficiency term
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Subscripts

a Atoms
CP Coherent precipitate
d Dislocation
g Glissile
gb Grain boundary
giL Glissile interstitial loop
i,v Interstitials, vacancies
m Migration
Rad Under irradiation
r Recombination
R Void radius
s Sink
V Void

Superscripts

i, v Interstitials, vacancies

Problems

5:1 Point defect concentration buildup during irradiation can be described by:

dCv

dt
¼ K0 � KivCiCv � KvsCvCs þr � ðDvrCvÞ

dCi

dt
¼ K0 � KivCiCv � KisCiCs þr � ðDirCiÞ

How do these equations simplify if you are irradiating a single crystal with
no defects present? In that case, what is the relationship between vacancy and
interstitial concentrations? Do the vacancy and interstitial concentrations
differ if you start with a sample that contains defects?

5:2 For pure nickel irradiated at 500 °C:

(a) Calculate the steady-state concentration of vacancies and interstitials.

K0 ¼ 5
 10�4dpa/s DHv
m ¼ 0:82 eV

Cs ¼ 109 cm�3 DHi
m ¼ 0:12 eV

riv ¼ ris ¼ rvs ¼ 10a DSvm ¼ DSim ¼ 0

m ¼ 1013s�1 a ¼ 0:352 nm

(b) For a dislocation density of 1012 cm−2, determine the temperature at
which mutual recombination gives way to annealing at fixed sinks.
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5:3 A perfect, single crystal Cu wire (cylinder) of radius R = 10 nm and length
L ≫ R is irradiated at 400 °C. The only sink present is the surface.

(a) Assuming negligible recombination, solve the diffusion equation:

@Cx

@t
¼ K0 þDxr2Cx

at steady state for x = interstitial or vacancy, to obtain the vacancy and
interstitial concentration profiles. What boundary condition do you use
at the surface? When you solve the equation pay attention to the
symmetry of the problem to eliminate terms in the expression for ∇2Cx.

(b) Calculate the rates of absorption (number of defects per unit area and
time) at the surface.

(Hint: remember that ∇2C is continuous.)

5:4 Calculate the steady-state radiation-enhanced diffusion coefficient for copper
at T/Tm = 0.5 in terms of K0, the defect production rate, and ρd, the dislo-
cation sink density.

5:5 Assume for a metal of interest that the interstitial–sink interaction radius and
the vacancy–sink interaction radius are equal. Two irradiations are performed
at low, but non-negligible sink density. The displacement rate is the same for
both irradiations. In the second irradiation, a minor alloying addition doubles
the diffusion coefficient of interstitials but does not change the diffusion
coefficient for vacancies. By how much does the ratio of the steady-state
vacancy to interstitial concentrations change? Explain physically what hap-
pens to the point defects.

5:6 A sample of aluminum is held at room temperature (20 °C) and irradiated
with a monoenergetic beam of 1 MeV neutrons at a flux of 1014 n/cm2s.
Assume that the capture radii riv = ris = rvs are all approximately 10a.

(a) At what sink density does defect annihilation at sinks overtake mutual
recombination?

(b) What is the value of the radiation-enhanced steady-state diffusion
coefficient of aluminum atoms? How does this compare to the diffusion
coefficient in the absence of irradiation?

(c) Verify that your calculations in part (b) do indeed represent a
steady-state condition, i.e., dCv/dt = dCi/dt = 0.

5:7 A defect-free Al crystal is irradiated at a displacement rate of 10−5 dpa/s.

(a) Calculate the steady-state concentration of point defects at T = 100 °C
and 500 °C.

(b) Once steady state is reached, the irradiation is stopped. Calculate the
time constant for recombination as a function of temperature.
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(c) One wishes to measure the defect concentration in the irradiated Al, a
process assumed to take 100 s. Determine the temperature range for
which the defect concentration can be kept within 1 % of its value at the
end of the irradiation for this length of time.
Assume the combinatorial factor, z = 500.

5:8 Following the analysis for the diffusion rate of point defects to spherical
sinks, derive an expression for the vacancy concentration profile around a
dislocation. What is the vacancy capture rate by dislocations?

5:9 For fcc nickel, determine whether vacancy capture by dislocations is a
diffusion-controlled or reaction rate-controlled process. What about inter-
stitial capture by dislocations?

zd Area of the circular region about the dislocation (defined by the capture
radius) multiplied by the number of atoms per unit area

rvd Capture radius for vacancies = 0.6 nm
rid Capture radius for interstitials = 0.7 nm
ρd 1010 cm−2

5:10 It can be shown that the time constant (characteristic time) for the process
v + s → s is τ3 = (KvsCs)

−1. At sufficiently high temperature, vacancies may
be mobile so that the reaction v + v → v2 may terminate the increase in
vacancy concentration with time. If the consumption rate of vacancies in
divacancy formation is KvvC2

v, determine the time constant for the onset of
steady state.

5:11 A sample of fcc copper with a low sink density (τ1 < τ2) is irradiated at low
temperature (T/Tm = 0.3) until steady state is reached. Some time later, all
sinks instantly disappear and a new steady state is reached. Determine the
magnitude of the change in Cv and Ci between the two steady states.

5:12 Explain the reason (or likely reasons) for the following observations:

(a) The displacement rate at the surface of a copper sample is 1000 times
higher when irradiated with 1 MeV Cu+ ions than with 1 MeV protons
at the same flux.

(b) A scattering experiment using 3 MeV B+ ions on Cu produces yields
that disagree sharply with calculations using the Rutherford scattering
formula.

(c) A single crystal of copper is irradiated with 2 MeV He+ ions and the
backscatter yield is only 5 % of that of a polycrystal.

(d) Irradiation of a metal with a high neutron flux does not produce a
measurable increase in the atom diffusion coefficient.

(e) Two metals are pressed together and heated to 0.5Tm. It is observed that
atoms from the metals intermix at the interface. Attempts to determine
the defect(s) responsible for the intermixing reveal that vacancies
account for 100 % of the atom mixing. True or false? Why?

250 5 Radiation-Enhanced Diffusion and Defect Reaction Rate Theory



5:13 Two engineers are arguing over how to test the effect of the high point defect
concentration developed during irradiation on the deformation rate of nickel
at 500 °C. Engineer #1 maintains that one can irradiate the sample to the
appropriate fluence at the temperature of interest, remove it from the reactor,
and heat it back up to temperature to perform the test. Engineer #2 insists that
the concentration of point defects decays almost immediately after irradiation
ceases and therefore, tests must be performed in situ. Who is right? Why?
(Hint: consider the point defect equation for the slowest defect (vacancy)
only, neglect recombination, and consider that the only sinks present are
dislocations at a concentration of 109 cm−2).

DNi
v ð500 �C)� 10�8 cm2=s

a� 0:3 nm

5:14 Assume a solid containing defect sinks is irradiated at a temperature T0, at
which only vacancies are mobile.

(a) For the case of a high sink density, estimate the time, t1, at which sinks
will contribute to interstitial annihilation. Neglect recombination.

(b) For the case of a low sink density, estimate the time, t2, at which
recombination will contribute to vacancy annihilation. Neglect the
effect of sinks.

(c) Describe what changes can be made in either the irradiation process or
the material microstructure to force t1 = t2.

Assume a quasi-steady-state condition exists, beginning at t1 in part
(a) and at t2 in part (b).

5:15 Show that, for a metal with a low sink density undergoing neutron irradiation
at low temperature (T/Tm < 0.2), when sinks contribute to interstitial anni-
hilation, the vacancy and interstitial concentrations as a function of time can
be written as:

Cv ¼ ðK0KisCst=KivÞ1=2

Ci ¼ ðK0=KivKisCstÞ1=2

(Hint: consider this case to be intermediary to the quasi-steady state and
steady-state cases such that dCi/dt < 0 and dCv/dt > 0 and write the point
defect balance equations as inequalities.)

5:16 Two bilayer samples with low sink strengths are being irradiated at low
temperature as part of a radiation-enhanced diffusion experiment. If the
displacement rate of the second sample is five times that of the first sample,
what is the difference in the radiation-enhanced diffusion coefficient?
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