
Chapter 4
Point Defect Formation and Diffusion

The first step in understanding the effects of irradiation on materials is to under-
stand, on the atomic level, the nature of radiation damage. In the previous chapters,
we developed a quantitative description of the process of displacing an atom from
its lattice site by the transfer of kinetic energy from a high-energy particle. The
recoiling lattice atom travels through the crystal, colliding with its neighbors and
displacing these also from their sites. A cascade of atomic collisions is created by
the original particle with the end result being a number of vacant lattice sites and an
equal number of displaced atoms wedged into the interstices of the lattice. The basic
defects (vacancies and interstitials) form the foundation for all observed effects of
irradiation on the physical and mechanical properties of materials. Determination of
the concentration and diffusion of these basic defects is the subject of this chapter.

4.1 Properties of Irradiation-Induced Defects

Various types of defects exist in any crystalline lattice. These include the following:

– Point defects (0D): vacancies and interstitials
– Line defects (1D): dislocation lines
– Planar defects (2D): dislocation loops and
– Volume defects (3D): voids, bubbles, stacking-fault tetrahedra.

The most basic of these are point defects. Following [1], we will start with
interstitials.

4.1.1 Interstitials

An interstitial is an atom that is located in a position of a crystal that is not a regular
lattice site. There are two broad classifications of interstitial sites in the various
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cubic crystal lattices: octahedral sites and tetrahedral sites, and these will be briefly
reviewed. The fcc lattice is cubic with unit cell of length a (lattice constant) and
with atoms located at the corners and the faces of the cube (Fig. 4.1). Each corner
atom is shared by eight unit cells and each face atom is shared by two unit cells, so
the number of atoms per unit cell is 8 corner atoms × 1/8 atom/unit cell + 6 face
atoms × 1/2 atoms/unit cell = 4. Octahedral sites are interstitial positions that are
surrounded by an octahedron where the lattice atoms make up the six vertices of an
octahedron. There are four octahedral sites per unit cell in the fcc lattice, the center
of the unit cell and the edges. The center site is wholly within the unit cell, but the
sites on the edges are each shared by four unit cells (Fig. 4.2(a)). So the total
number of octahedral interstitial sites per unit cell is 1 + 12 edge sites × 1/4 site per
unit cell = 4 sites. There are also tetrahedral interstitial sites in the fcc lattice in
which the atom is located inside a tetrahedron formed by lattice atoms. These are
located inside the corners of the unit cell (Fig. 4.2(b)). There are a total of 8
tetrahedral sites (one for each corner) in the fcc unit cell.

In the bcc lattice, the atoms reside at the corners of the unit cell with one in the
center of the cell for a total of two atoms per unit cell; 1 + 8 corner sites × 1/8
site/unit cell = 2 sites (Fig. 4.3). Octahedral interstitial sites are located on the faces
and the edges of the unit cell giving 6 faces × 1/2 site per face +12 edges × 1/4 sites
per edge = 6 sites per unit cell (Fig. 4.4(a)). Tetrahedral interstitial sites are located
on the faces and in the corners of the faces. There are 6 faces × 4 locations per
face × 1/2 sites/face = 12 tetrahedral sites (Fig. 4.4(b)).

The hcp unit cell is not cubic but rather hexagonal and is defined by the c/a ratio
where a is the length of a side of the regular hexagon and c is the height of the cell
(Fig. 4.5). There are six atoms per unit cell in the hcp lattice; twelve on the corners
shared by six cells (=2) plus two on the faces shared by two cells (=1) plus three
inside the cell at a height of 1/2c (=3). There are six octahedral sites per unit cell, all
wholly contained within the unit cell (Fig. 4.6(a)). There are also six tetrahedral

Fig. 4.1 Face-centered cubic
(fcc) lattice unit cell
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sites per unit cell, four wholly contained within the unit cell and six that are shared
by each of three cells (Fig. 4.6(b)).

Our simple picture of interstitials is not a true physical picture because the stable
configuration of self-interstitial atoms (SIA) in metals is the dumbbell or
split-interstitial configuration where two atoms are associated with or “share” a
single lattice site. Since the atom cores repel each other, the atoms arrange

(a) (b)

Fig. 4.2 Interstitial positions in the fcc unit cell, (a) octahedral site and (b) tetrahedral site

Fig. 4.3 Body-centered cubic
(bcc) lattice unit cell

(a) (b)

Fig. 4.4 Interstitial positions
in the bcc unit cell,
(a) octahedral site and
(b) tetrahedral site
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themselves in the lowest energy orientation. This turns out to be with the dumbbell
axis along the 〈100〉 direction for fcc metals, the 〈110〉 direction for bcc metals, and
the 〈0001〉 direction for hcp crystals (Fig. 4.7).

To accommodate two atoms in one lattice site, atoms adjacent to the dumbbell
are displaced slightly off their lattice positions which then perturbs neighboring
atoms and so on. These displacements emanate from the defect, forming an elastic
displacement field. The symmetry of the displacement field is reflected by the SIA
configuration in the bcc lattice (Fig. 4.8).

Consider a 〈100〉 dumbbell interstitial configuration in fcc aluminum. The
separation distance of the two dumbbells is about 0.6a. The nearest neighbor
spacing in the fcc lattice is along 〈110〉 and is a=

ffiffiffi
2

p� �
, so the separation distance of

a 〈100〉 dumbell is about 20 % smaller than the nearest neighbor distance in the
undistorted lattice. The four nearest neighbors to each dumbbell are displaced
outwards by about 0.1a and the total relaxation volume is about 2Ω, where Ω is the
atomic volume. The relaxation volume is determined by treating the crystal as an

Fig. 4.5 Hexagonal close-packed (hcp) unit cell

(a) (b)

Fig. 4.6 Interstitial positions in the hcp unit cell (a) octahedral site and (b) tetrahedral site
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elastic continuum and inserting an atom as an interstitial (or removing one to create
a vacancy) and determining the amount of distortion resulting in the lattice. The
high relaxation volumes due to SIAs cause large lattice distortions, which lead to
strong interaction with other SIAs and with other lattice defects (dislocation,

fcc
bcc

hcp(a) (b) (c)

Fig. 4.7 Configurations of SIAs in (a) fcc, (b) bcc and (c) hcp lattices

[110]

[111]

Fig. 4.8 Split interstitials in
the bcc lattice
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impurity atoms). The net effect of this elastic interaction is an attraction of mobile
SIAs to these defects. Experimental values for the relaxation volume in several
metals appear in Table 4.1.

4.1.2 Multiple Interstitials

Multiple interstitials form by the agglomeration of mobile SIAs at elevated tem-
peratures. Multiple interstitials have a high binding energy on the order of 1 eV.
Since the energy needed to dissociate a SIA from a large cluster approaches the SIA
formation energy (2–4 eV), SIA clusters are very stable against dissociation at low
temperatures.

Computer simulation predicts that the stable configuration of a di-interstitial in
fcc metals is two parallel dumbbells on nearest neighbor sites (Fig. 4.9). The stable
structure of tri-interstitials in fcc metals is predicted by computer simulation to be
three orthogonal 〈100〉 dumbbells on nearest neighbor sites. The anticipated con-
figuration of di-interstitials in the bcc lattice is two 〈110〉 dumbbells on nearest
neighbor sites.

Table 4.1 Numerical values, compiled from different sources for some quantities characterizing
properties of radiation-induced point defects in metals (from [1])

Symbol Unit Al Cu Pt Mo W

Interstitials

Relaxation volume V i
relax Atomic vol. 1.9 1.4 2.0 1.1

Formation energy Ei
f eV 3.2 2.2 3.5

Equilibrium
Concentration at T�

m

Ci Tmð Þ – 10−18 10−7 10−6

Migration energy Ei
m eV 0.12 0.12 0.06 0.054

Vacancies

Relaxation volume Vv
relax Atomic vol. 0.05 –0.2 –0.4

Formation energy Ev
f eV 0.66 1.27 1.51 3.2 3.8

Formation entropy Svf k 0.7 2.4 2

Equilibrium
Concentration at Tm

Cv Tmð Þ – 9 × 10−6 2 × 10−6 4 × 10−5

Migration energy Ev
m eV 0.62 0.8 1.43 1.3 1.8

Activation energy
for self-diffusion

QvSD eV 1.28 2.07 2.9 4.5 5.7

Frenkel pairs

Formation energy EFP
f eV 3.9 3.5 5

*Estimated by assuming Sfi ¼ 8k

172 4 Point Defect Formation and Diffusion



4.1.3 Interstitial–Impurity Complexes

Impurity atoms in metals are efficient traps for SIAs. Stable complexes consisting of
undersized atoms and interstitials do not dissociate thermally below a temperature
where vacancies become mobile. One possible configuration is the mixed dumbbell
where one of the dumbbell atoms is replaced by the impurity atom (Fig. 4.10(a)).
Binding energies are of the order of 0.5–1.0 eV. Weaker trapping is observed with
oversized impurities (Fig. 4.10(b)).

Interstitial–impurity complexes require only a small activation energy to reorient
themselves by so-called cage motion. Shown in Fig. 4.10(a), the impurity can jump
between the indicated positions of the central octahedron, forming a new mixed
dumbbell with the adjacent host atom. Since all of the mixed dumbbells have the
impurity end toward the center of the cage, no long-range motion is associated with
cage motion. The activation energy of the reorientation jump in the cage is about
0.01 eV.

Movies 4.1 and 4.2 (http://rmsbook2ed.engin.umich.edu/movies/) show the
behavior of iron and chromium in an Fe–10 %Cr alloy following a displacement
cascade as a function of the relative sizes of the solutes. In Movie 4.1, chromium is
modeled as an oversized solute and in Movie 4.2 chromium is undersized. Note the
difference in the interstitial clusters following the cascade cooling period. The
undersize Cr in Movie 4.2 undergoes stronger trapping by the iron interstitials than

(a)

(b)

Fig. 4.9 Di-interstitials in the (a) fcc lattice in stable, metastable, and new stable positions and
(b) in the bcc lattice

4.1 Properties of Irradiation-Induced Defects 173

http://rmsbook2ed.engin.umich.edu/movies/


in the case of oversize Cr in Movie 4.1, resulting is a greater number of small
interstitial clusters containing Cr.

4.1.4 Vacancies

The vacancy, or missing lattice atom, is the simplest point defect in metal lattices.
All calculations and computer simulations show that the single vacancy structure is
a missing lattice atom with the nearest neighbors relaxing inward toward the
vacancy.

SIAs have a high formation energy (>2.0 eV), a large relaxation volume (*2Ω)
and a low migration energy (<0.15 eV) leading to a high mobility. Vacancies, on
the other hand, have low formation energies (<2 eV), low relaxation volume (0.1–
0.5Ω), and high migration energy (>0.5 eV) and are therefore much less mobile
than SIAs (Table 4.1). Further, the strain field of vacancies is isotropic in cubic
metals making them hard to investigate.

4.1.5 Multiple Vacancies

Multiple vacancies have small binding energies compared to interstitial clusters
(0.1 eV) but are often observed in irradiated metals. The configuration of multiple
vacancy clusters is shown for the fcc lattice in Fig. 4.11(a), and for the bcc lattice in
Fig. 4.11(b). The migration energy of divacancies is less than for single vacancies
(0.9 eV vs. 1.32 eV for Ni) but increases with increasing cluster size. It appears that
since the tetra-vacancy can only migrate by dissociation, it is the first stable nucleus
for further clustering.

(a) (b)

Fig. 4.10 (a) Mixed dumbbell configuration in the fcc lattice formed by an undersized impurity
and an atom of the host lattice. The vertices of the octahedron are the other locations of the
impurity as it makes a dumbbell with the other “face” atoms in the unit cell. (b) Trapping of an
interstitial to make a dumbbell with an oversized impurity in the fcc lattice
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(a)

(b)

Fig. 4.11 Configurations of
multiple vacancies in the
(a) fcc lattice and (b) bcc
lattice
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4.1.6 Solute–Defect and Impurity–Defect Clusters

Vacancies can bind to oversize solute or oversize impurity atoms in order to lower
the overall free energy of the solid. Estimates of the binding energy of a vacancy to
an oversize solute in the fcc lattice range from 0.2 to 1.0 eV [2]. Hence, these
solutes can act as efficient traps for vacancies in the lattice.

4.2 Thermodynamics of Point Defect Formation

Even in the absence of irradiation, a crystal cannot exist at a finite temperature in a
state of absolute perfection. Statistically, there is a finite probability that sufficient
energy will be concentrated, by local fluctuations, to form a defect in the crystal
lattice. For most purposes, it is fair to assume that the volume of the crystal is
constant, for which the Helmholtz free energy function applies. Following [3], if the
system is at constant pressure, then:

F ffi G ¼ Uþ pV � TS ¼ H � TS; ð4:1Þ

where U is the internal energy, H is the total enthalpy of the N atoms comprising the
system, S represents the disorder (entropy) in the system which can be characterized
by:

S ¼ k ln w; ð4:2Þ

where w is the number of possible different configurations of atoms and k is
Boltzmann’s constant.

Suppose that a crystal has n defects with N available sites. The increase in free
energy is:

DGf ¼ nDHf � TDS; ð4:3Þ

where ΔHf is the increase in enthalpy brought about by the introduction (formation)
of the defect and ΔS is the change in total entropy, determined as follows.

For one defect, there are N available sites and hence N possible configurations.
For n defects, there are N for the first, (N − 1) for the second, (N − 2) for the third,
etc., up to (N – n + 1) for the nth. This leads to N(N − 1)(N − 2)…(N – n + 1)
configurations in all. But because these are not all distinct and defects are indis-
tinguishable, the number above allows for n! ways of distributing N defects among
n sites. Hence, the number of possible different configurations is:

w ¼ N N � 1ð Þ N � 2ð Þ. . . N � nþ 1ð Þ
n!

; ð4:4Þ
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or

w ¼ N!
n! N � nð Þ! : ð4:5Þ

The mixing entropy is then:

DSmix ¼ k ln N!� ln n!� ln N � nð Þ!½ �: ð4:6Þ

Using Stirling’s approximation of ln x! ≃ x ln x for large x gives:

DSmix ¼ k lnw ffi k N lnN � n ln n� ðN � nÞ ln ðN � nÞ½ �: ð4:7Þ

In addition to ΔSmix, there is a contribution to ΔS from the vibrational disorder of
the presence of the defects. According to the Einstein model of lattice motion, the
atoms are represented as 3N independent linear harmonic oscillators and the
associated entropy is:

Sf ¼ 3k ln
kT
�hvE

� �
; ð4:8Þ

where vE is the natural frequency of the oscillator and ħ is Planck’s constant. If each
defect changes the vibration frequency of z neighbors to vr, the entropy is:

S0f ¼ 3kz ln
kT
�hvr

� �
¼ 3kz ln

kT
�hvE

� �
þ ln

vE
vr

� �� �
; ð4:9Þ

and for n defects, the total change in entropy due to vibrational disorder is:

n S0f � zSf
� � ¼ DSf ¼ 3nkz ln

vE
vr

� �
: ð4:10Þ

Taking both contributions to the entropy change and inserting them into the free
energy equation gives:

DGf ¼ nDHf � kT N lnN � n ln n� N � nð Þ ln N � nð Þþ n ln
vE
vr

� �3z
" #

: ð4:11Þ

In equilibrium, n will be such that it satisfies dΔGf/dn = 0 giving:

DHf

kT
¼ ln

N � n
n

vE
vr

� �3z
" #

: ð4:12Þ
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Assuming n ≪ N and letting n/N = C (concentration fraction):

C ¼ vE
vr

� �3z

exp
�DHf

kT

� �
: ð4:13Þ

Writing
vE
vr

� �3z

in terms of entropy gives the familiar equation:

C ¼ n
N

¼ exp
DSf
k

exp
�DHf

kT
¼ exp

�DGf

kT

� �
: ð4:14Þ

For vacancies, we have

Cv ¼ exp
Svf
k

� �
exp

�Ev
f

kT

� �
; ð4:15Þ

and for interstitials:

Ci ¼ exp
Sif
k

� �
exp

�Ei
f

kT

� �
; ð4:16Þ

where Ev
f ¼ DHv

f and Ei
f ¼ DHi

f are the formation energies for the respective defect
type, and DSvf ¼ Svf ;DS

i
f ¼ Sif : In metals, typical values for Ev

f are *1 eV, and for
Ei
f � 4 eV: Hence, the formation of vacancies requires considerably less energy than

the formation of interstitials (see Table 4.1) and so at thermal equilibrium, Cv ≫ Ci.
Let us look at an example.

Example 4.1 Calculate the equilibrium concentration of vacancies and inter-
stitials in aluminum at room temperature and 10 °C below the melting point.

(a) RT ≃ 20 °C or 293 K
From Table 4.1, we have

Ev
f ffi 0:66 eV Svf � 0:7k

Ei
f ffi 3:2 eV Sif � 8k;

and inserting into Eqs. (4.15) and (4.16) yields

Cv ¼ exp Svf =k
� �

exp �Ev
f =kT

� �� 1:6� 10�11

Ci ¼ exp Sif=k
� �

exp �Ei
f=kT

� �� 5:0� 10�51:

(b) At 10 °C below Tm or 650 °C (923 K)
Equations (4.15) and (4.16) yield
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Cv ¼ exp Svf =k
� �

exp �Ev
f =kT

� �� 5:0� 10�4

Ci ¼ exp Sif=k
� �

exp �Ei
f=kT

� �� 9:8� 10�15:

Besides doing an experiment, how do we go about obtaining an estimate for Ev
f ?

Suppose we create a small cavity in a rigid crystal that has a volume X ¼ 4=3pr3a
equal to the volume occupied by one atom, where Ω is the atom volume and ra is
the atom radius. Since we must conserve volume, we spread the material from the
cavity uniformly over the surface of a crystal. If the crystal is a sphere, we have:

R0 ¼ RþDR: ð4:17Þ

Since the crystal is a rigid medium and volume is conserved:

4pR2DR ¼ 4=3pr3a ; ð4:18Þ

and if the crystal is large compared to the size of the atom, then R ≫ ra and
ΔR ≪ R and:

DR ¼ r3a=3R
2: ð4:19Þ

If Ev
f is the difference in surface energy of the crystal with and without a cavity and

σ is the surface energy per unit area, then:

Ev
f ¼ 4pr2arþ 4pr RþDRð Þ2� 4pR2r

� 4pr r2a þ 2RDR
� �

;
ð4:20Þ

where the first two terms on the right-hand side of the equation are the energies
associated with the inner and outer surfaces after formation of the vacancy and the
last term is the energy of the surface of the crystal before formation of the vacancy,
and the ΔR2 term has been neglected. Substituting for ΔR from Eq. (4.19) gives:

Ev
f ¼ 4pr r2a þ

2
3
r3a
R

� �

¼ 4prr2a 1þ 2
3
ra
R

� �
;

ð4:21Þ

and since ra ≪ R, we have:

Ev
f � 4prr2a : ð4:22Þ

In most metals, σ * 10 eV/nm2 and ra * 0.15 nm, so Ev
f � 2 eV.
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If we treat the crystal as an elastic continuum, we get a different expression for
Ev
f :

Ev
f ¼ 4pr2ar� 12pra

r2

l
þ 6pra

r2

l
; ð4:23Þ

where the first term is the surface energy of the cavity, the second term is the
reduction in surface energy due to contraction of the surface by the surface tension,
and the third term is the elastic energy stored in the solid, μ is the shear modulus of
the crystal, and Ev

f � 1 eV: Note that an interstitial will cause a displacement that is
greater than ra, resulting in a greater formation energy as we have seen already.

4.3 Diffusion of Point Defects

Atoms in a lattice are in a constant state of motion due to thermal vibration, and this
means that point defects in the lattice are also in motion. The random nature of
thermal vibration gives rise to random walk of the atoms via the defects that are in
thermal equilibrium with their surroundings, known as self-diffusion. If foreign
atoms are present in a pure metal, their diffusion is known as heterodiffusion.
Self-diffusion arises when a local concentration gradient of defects appears in the
crystal, driving atoms to move in the direction that eliminates the gradient.
Diffusion is driven by forces other than the concentration gradient, such as stress or
strain, electric fields, temperature, etc. In the most general sense, diffusion is driven
by a difference in chemical potential. Diffusion in a polycrystal is a complex
mechanism due to the presence of grain boundaries, internal surfaces, dislocations,
etc. We will follow the analysis in [4] by starting with diffusion in a single crystal
and then expanding our treatment to include the polycrystalline case later on.

4.3.1 Macroscopic Description of Diffusion

Diffusion is governed by two fundamental laws derived by Fick in 1880. They
apply to any state of matter due to their general character regarding macroscopic
diffusion processes. The first law is a relationship between the flux, J, and the
concentration gradient of the diffusing specie:

J ¼ �DrC; ð4:24Þ

where D is the diffusion coefficient and ∇C is the composition gradient. For dif-
fusion in one-dimension,
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J ¼ �D
@C
@x

: ð4:25Þ

The minus sign indicates that diffusion takes place in the direction of decreasing
concentration of the diffusing specie. D is generally given in units of cm2/s or m2/s
and for solids between 20 and 1500 °C, 10−20 cm2/s < D < 10−4 cm2/s.

Fick’s second law gives a relation between the concentration gradient and the
rate of change of concentration caused by diffusion at a given point in the system:

@C
@t

¼ �r � J ¼ �r � DrC;

which, in one-dimension simplifies to:

@C
@t

¼ � @

@x
D
@C
@x

� �
: ð4:26Þ

If D is not a function of the concentration, then we can write Eq. (4.26) as:

@C
@t

¼ �Dr2C

¼ �D
@2C
@x2

:

ð4:27Þ

Equations (4.26) or (4.27) can be solved for certain limiting conditions enabling
D to be determined on the basis of various measurements.

While Fick’s laws provide a description of diffusion on the macroscopic scale,
we would like to understand diffusion on the microscopic level as well. Diffusion
occurs by several possible mechanisms depending on the nature of the diffusing
specie and the host lattice. We will examine these mechanisms and then derive a
description of diffusion on the microscopic level.

4.3.2 Mechanisms of Diffusion

To obtain a theoretical description of diffusion, we first consider the elementary act
of a jump of an atom from one stable position to another in the lattice. There are
several mechanisms of lattice diffusion, some requiring the presence of defects,
others not. The following types [5] can be distinguished.

Exchange and ring mechanisms: The exchange mechanism (Fig. 4.12) consists
of the exchange of lattice positions involving two atoms located in adjacent crystal
sites. It does not require the presence of defects, and it is highly improbable in
close-packed crystals since it requires considerable deformation and hence an
enormous activation energy. The ring mechanism (Fig. 4.13) is less energy
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intensive but requires the coordinated movement of three to five atoms. Since the
probability of this is low and the energy required is still high, both the exchange and
ring mechanisms are unimportant in crystals containing defects.

Vacancy mechanism: This is the simplest mechanism of diffusion and occurs in
metals and alloys (Fig. 4.14). Diffusion occurs by the jump of an atom from its
lattice site to a vacant site. For an atom to move by this mechanism, the presence of
a neighboring vacancy is required. Since movement of the vacancy is opposite that
of the atom, vacancy-type diffusion is regarded as either a movement of the atom or
the equivalent movement of the vacancy. However, as we will see, the diffusion
coefficient for vacancy diffusion is not equal to that for atom diffusion.

Interstitial mechanism: This mechanism involves the movement of an atom from
one interstitial position to another (Fig. 4.15). It requires considerable energy in

Fig. 4.12 Exchange
mechanism of diffusion

Fig. 4.13 Ring mechanism
of diffusion
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order to push its way through the barrier atoms separating the interstitial sites in the
crystal (recall the role of barrier atoms in our calculation of displacement energy in
Chap. 2). In reality, this mechanism only occurs when the diffusing species is of an
atom type that is smaller than the host lattice atoms.

Interstitialcy mechanism: This mechanism involves the displacement of nearby
lattice atoms to an interstitial site and generally occurs when atom diameters are
comparable. There are two variants of this mechanism: the collinear variant in
which displaced atoms move along a straight line (Fig. 4.16(a)) and the
non-collinear variant in which the displaced atom moves to the interstitial position
at an angle to the direction of movement of the displacing atom (Fig. 4.16(b)).

Dumbbell interstitial mechanism: This process involves the symmetrical place-
ment of an interstitial and a lattice atom about a single lattice site such that they

Fig. 4.14 Vacancy
mechanism of diffusion

Fig. 4.15 Interstitial
mechanism of diffusion
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share the lattice site. Figure 4.17 shows a 2D schematic of the sharing of a single
lattice site by two atoms. Recall from our discussion in Sect. 4.1 that the dumbbell
is a very stable configuration for the interstitial and that there are preferred direc-
tions for the dumbbell that depend on the lattice, and minimize the energy.

Crowding (crowdion) mechanism: This mechanism occurs when an atom is
added to a lattice plane, but it does not reside in an interstitial position. To
accommodate the atom, lattice atoms over, perhaps, 10 lattice constants are all
shifted with respect to their lattice sites. The configuration can be thought of as a
dumbbell spread over 10 atoms along a row, rather than two (Fig. 4.18). Actually,
we have already seen a crowdion in our discussion of focusing collisions.
Re-examine Fig. 3.4 and you will see a crowdion emanating from the displacement
spike. This configuration is not a stable configuration and exists only temporarily as
the energy for the knock-on atoms is expended.

Despite the numerous mechanisms for diffusion of atoms in a solid, diffusion
usually occurs by either the vacancy or interstitialcy mechanisms. Ultimately, we
want to obtain a mathematical relation between the macroscopic parameters for
diffusion (i.e., the self-diffusion coefficient) and the elementary acts of defect jumps
represented by the coefficients of diffusion for defects, or the microscopic process.
We will assume that the self-diffusion process consists of a completely random
walk of defects, i.e., there is no correlation between successive jumps of the defects.

2
1

3 2 1

3

2
1

3

Fig. 4.17 Dumbbell interstitial mechanism of diffusion

(a) (b)

Fig. 4.16 Interstitialcy mechanism of diffusion (a) collinear variant and (b) non-collinear variant
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Although this is reasonable for defect diffusion, it is not strictly true for atom
diffusion. As mentioned earlier, jumps of defects and hence, atoms, are due to
thermal vibrations of very high frequency. The Debye frequency is *1013 s−1. The
frequency of atom jumps is orders of magnitude lower, *108 s−1 at say, 700 °C.
This means that once every 105 vibrations, a thermal fluctuation is large enough for
an atom to overcome the energy barrier separating it from the next stable position.
Let us take a closer look at the jumping process.

4.3.3 Microscopic Description of Diffusion

Suppose that at time zero, a single impurity atom is placed in a position in a crystal
which is designated as the origin. The atom proceeds to jump from one site to
another in a completely random manner. Each jump is of distance λ, but since the
medium is assumed to be isotropic, each jump is arbitrary and independent of
previous jumps. After a time t, the displacement, r, of the particle from the origin is
measured. If the experiment is repeated several times, r will not be the same
because of the stochastic nature of the process. Rather, the displacements will be
distributed according to a function Pt(r) where Ptd

3r is the probability of finding the
atom in a volume element d3r a distance r from the origin after time t. The quantity
that best describes the extent of migration is the mean square displacement, r2,
which is given by the second moment of the distribution:

r2 ¼
Z

all space

r2Pt rð Þd3r ¼ 4p
Z1
0

r4Pt rð Þdr: ð4:28Þ

We will first compute r2 without knowledge of Pt(r).

Fig. 4.18 Crowdion
mechanism of diffusion
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If the atom makes Γ jumps per unit time, the time interval t corresponds to a
number of n jumps given by:

n ¼ Ct: ð4:29Þ

Each jump is represented by a vector ki; where the subscript, i, refers to the jump
number. The vectors are all of the same length, λi, but of random direction. The
position of the diffusing atom after n jumps (Fig. 4.19) is the vector sum of the ki or:

r ¼ k1 þ k2 þ k3 . . . þ kn: ð4:30Þ

The magnitude of the square of the displacement is obtained by taking the scalar
product of r with itself:

r2 ¼ r � r ¼ k1 þ k2 þ k3 . . . þ knð Þ � k1 þ k2 þ k3 . . . þ knð Þ: ð4:31Þ

The scalar product of two sums is equivalent to squaring the sums, giving:

r2 ¼
Xn
i¼1

ki � ki þ 2
Xn�1

i¼1

Xn
j6¼i

ki � kj: ð4:32Þ

The first term is equal to nλ2 and the second term can be rewritten as:

ki � kj ¼ k2 cos hij; ð4:33Þ

and

r2 ¼ nk2 þ 2k2
Xn�1

i¼1

Xn
j 6¼i

cos hij; ð4:34Þ

r

λ

Fig. 4.19 Random jump of a defect in an isotropic solid
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or

r2 ¼ nk2 1þ 2
n

Xn�1

i¼1

Xn
j6¼i

cos hij

 !
: ð4:35Þ

The mean square displacement is obtained by averaging r2 over a large number of
experiments. The term cos θij can range from −1 to 1, and by nature of the random
hopping process, the average value of cos θij for any i j combination is zero. Hence,
the last term disappears and:

r2 ¼ nk2; ð4:36Þ

or

r2 ¼ k2Ct: ð4:37Þ

Equation (4.37) relates the mean square displacement to the microscopic properties
of jump distance and jump frequency. Now, we wish to compute r2 from a
macroscopic viewpoint.

At t = 0, N impurity atoms are introduced into a restricted region of a host
crystal. As a consequence of diffusion (random hopping), the N atoms spread out
from the origin in a manner described by C(r, t) which is obtained by solving Fick’s
second law (assuming D is not a function of concentration):

@C
@t

¼ D
1
r2

@

@r
r2
@C
@r

� �
; ð4:38Þ

with initial condition C(r, 0) = 0, for r ≠ 0. Since the N atoms remain in the crystal,
C(r, t) is subject to the constraint:

Z1
0

4pr2C r; tð Þdr ¼ N; ð4:39Þ

with boundary condition that the concentration drops to 0 at infinity, C(∞, t) = 0.
The solution to Eq. (4.38) subject to the initial and boundary conditions becomes:

C r; tð Þ ¼ N
exp �r2=4Dtð Þ

4pDtð Þ3=2
: ð4:40Þ

The probability of finding the single atom in a spherical shell between r and
r + dr after time t is equivalent (in the macroscopic diffusion description of the
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problem) to the fraction of the N atoms located in the same volume element after
time t. Pr(r) and C(r, t) are related by:

Pt rð Þ ¼ C r; tð Þ
N

¼ exp �r2=4Dtð Þ
4pDtð Þ3=2

: ð4:41Þ

The mean square displacement is:

r2 ¼ 4p
Z1
0

r4Pt rð Þdr

¼ 4p

4pDtð Þ3=2
Z1
0

r4 exp �r2=4Dt
� �

dr;

ð4:42Þ

or

r2 ¼ 6Dt: ð4:43Þ

Comparing to r2 ¼ k2Ct from our microscopic solution Eq. (4.37), we have:

D ¼ 1
6
k2C ð4:44Þ

which is the Einstein formula and is the link between the microscopic diffusion
parameters λ and Γ, and the macroscopic diffusion parameter, D.

4.3.4 Jump Frequency, Γ

We define Γ as the total number of jumps per second for an atom. Therefore, in a
time increment δt, we expect Γδt jumps. The quantity Γδt is proportional to z, the
number of nearest neighbors (sites), pv, the probability that a given neighboring site
is vacant, and ω, the frequency with which an atom jumps to a particular site. Thus,
the frequency with which an atom jumps to any neighboring equilibrium site, Γ, is
the product of the jump frequency to a single site, ω, the number of nearest
neighbor sites, z, and the probability that one site is vacant, pv or:

C ¼ zpvx; ð4:45Þ

and
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Dv
a ¼ 1

6
zk2pvx; ð4:46Þ

where we have properly included the subscript, a and superscript, v to indicate that
this is the diffusion coefficient for atom diffusion via vacancies. Also note that the
jump distance λ is related to the lattice constant by λ = Aa, where the coefficient, A,

depends on the diffusion mechanism and the crystal structure. The terms 1
6zA

2 are
often lumped together into a single parameter, α, such that:

Dv
a ¼ aa2pvx; ð4:47Þ

and if vacancy motion is random, then pv = Nv and:

Dv
a ¼ aa2Nvx: ð4:48Þ

Let us look at an example of how to determine α for a specific diffusion process and
crystal structure.

Example 4.2. Vacancy diffusion in the bcc and fcc lattices
In the case of the vacancy mechanism of diffusion in a bcc structure, each
atom has eight nearest neighbors (z = 8). The jump distance is related to a by

A ¼
ffiffiffi
3

p

2
; and hence, α = 1. For the simple interstitial diffusion mechanism in

a bcc lattice, z = 4 and A =
1
2
giving α =

1
6
.

For the fcc lattice, z = 12 and A ¼ 1ffiffiffi
2

p , giving α = 1. For interstitials in the

fcc lattice, z = 12 and A =
1
2
, and α =

1
2
.

Before continuing, it is instructive to point out the difference between vacancy
diffusion and atom diffusion via a vacancy mechanism (vacancy self-diffusion). In
determining the components of Γ, we noted that Γ depends on the probability, pv,
that a neighboring lattice site is vacant. This is a necessary condition for an atom
jump via a vacancy. However, if we are following the migration of the vacancy,
then Γ depends on the probability that a neighboring lattice site to the vacancy is
filled by an atom. Since in all but the most extreme cases this probability is ∼1, and
the equation for vacancy diffusion is given as follows:

Dv ¼ aa2x; ð4:49Þ

and differs from that for vacancy self-diffusion by the factor Nv.
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4.3.5 Jump Frequency, ω

In calculating ω, we will ignore detailed atomic movements and instead deal in
terms of “activated complexes” or regions containing an atom midway between two
equilibrium sites (Fig. 4.20). The number of atoms diffusing per second is then
obtained by multiplying the number of activated complexes (nm) by the average
velocity of the atoms moving through this barrier �tð Þ divided by the width of the
barrier (δ). The jump frequency is then:

x ¼ Nm�t
d

; ð4:50Þ

where Nm is the mole fraction of activated complexes. The work done in moving an
atom across this barrier is equal to the change in Gibbs free energy for the region,
ΔGm:

DGm ¼ DHm � TDSm: ð4:51Þ

Using ΔGm, the equilibrium mole fraction of atoms in the region of the saddle point
in Fig. 4.20, Nm can be calculated; in the same way, we calculated Nv. Instead of
mixing vacancies to raise the free energy by ΔGv per mole, we are mixing com-
plexes to raise the free energy an amount ΔGm per mole. The ideal entropy of
mixing is the same for vacancies as for complexes so, at equilibrium, nm out of
N atoms will be in the neighborhood of the saddle point at any instant and:

nm
N

¼ Nm ¼ exp
�DHm þ TDSm

kT

� �
¼ exp

�DGm

kT

� �
: ð4:52Þ

From Eq. (4.50), x ¼ Nm�t
d

and �t=d is the frequency (call it v) at which atoms at the

saddle point jump to the new site. Thus, nmν out of N atoms will jump from one site
to a given site per second, and the average jump frequency is:

E
ne

rg
y

Fig. 4.20 Passage of the “activated complex” from one stable position, through a saddle point, to
another stable position
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nmv
N

¼ x ¼ v exp
�DGm

kT

� �
¼ v exp

�DSm
k

� �
exp

�DHm

kT

� �

¼ v exp
Sm
k

� �
exp

�Em

kT

� �
;

ð4:53Þ

where v is the Debye frequency (*1013 s−1) and Em = ΔHm and Sm = ΔSm.
A more precise treatment considers the fact that not all jump directions are equal

and that inequality is reflected in the frequency. So-called multifrequency models
are used to describe diffusion in dilute alloys [6]. For vacancy-atom jumps in fcc
alloys, there are five frequencies of interest, as shown in Fig. 4.21. The solute atom,
shown as shaded, will exchange with the vacancy with a jump frequency ω2. Near
to the solute atom, solvent atoms may have jump frequencies that are different from
the value ω0 characteristic of pure solvent. ω1 is the frequency for solvent-vacancy
jumps between a pair of sites that are both nearest neighbors of a solute. ω3 is for
vacancy jumps from first to more distant neighbor sites (second, third, or fourth)
and are referred to as dissociative jumps. Finally, ω4 is the frequency for the
reverse, or associative jumps onto first neighbor sites. All other solvent-vacancy
jumps are assumed to occur with the frequency ω0. Thus, each jump frequency, ωj,
will have an Arrhenius-type temperature dependence with activation enthalpy, Hj,
and pre-exponential factor, νj, yielding equations of the form:

xj ¼ mj exp
�Hj

kT

� �
: ð4:54Þ

1

1

2

3

4

0ω

0ω

0ω
0ω

1ω

2ω

3ω

3ω

3ω

4ω

4ω

4ω

Fig. 4.21 Frequencies ωj for
vacancy-atom jumps in fcc
crystals. The arrows indicate
the direction the vacancy
moves. The circled numbers
indicate the order of
neighbors to the solute atom
at the origin (after [6])
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4.3.6 Equations for D

We are now in a position to write the expressions for the diffusion coefficients for
the motion of the defects and of the atoms by way of the defects.

1. The vacancy diffusion coefficient is given by:

Dv ¼ aa2x;

where

x ¼ v exp
�DGv

m

kT

� �
¼ v exp

Svm
k

� �
exp

�Ev
m

kT

� �
;

then

Dv ¼ aa2x ¼ aa2v exp
Svm
k

� �
exp

�Ev
m

kT

� �
: ð4:55Þ

2. The vacancy self-diffusion coefficient is the product of the vacancy diffusion
coefficient and the probability that the nearest neighbor site is vacant, Nv:

DvSD ¼ Dv
a ¼ aa2Nvx;

where

Nv ¼ exp
�DGv

f

kT

� �
¼ exp

Svf
k

� �
exp

�Ev
f

kT

� �
;

giving

DvSD ¼ Dv
a ¼ aa2v exp

Svf þ Svm
k

� �
exp

�Ev
f � Ev

m

kT

� �
: ð4:56Þ

3. The interstitial diffusion coefficient is:

Di ¼ aa2x;

or

Di ¼ aa2v exp
Sim
k

� �
exp

�Ei
m

kT

� �
: ð4:57Þ
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4. The interstitial self-diffusion coefficient is the interstitial diffusion coefficient
times the probability that a neighboring site contains an interstitial, Ni:

Di
a ¼ aa2Nix;

where

Ni ¼ exp
�DGi

f

kT

� �
¼ exp

Sif
k

� �
exp

�Ei
f

kT

� �
;

giving

Di
a ¼ aa2v exp

Sif þ Sim
k

� �
exp

�Ei
f � Ei

m

kT

� �
: ð4:58Þ

The diffusion coefficients are all different in detail, but similar in form as they
consist of two factors: a constant that is independent of temperature and an
exponential of temperature containing an energy term. All equations for D can be
rewritten in the form:

D ¼ D0 exp �Q=kTð Þ; ð4:59Þ

where D0 = αa2ν is the temperature-independent term and Q is the activation
energy. For vacancy diffusion, we have:

Qv ¼ Ev
m; ð4:60Þ

and for vacancy self-diffusion we have:

Qv
a ¼ Ev

f þEv
m: ð4:61Þ

For interstitials, we have:

Qi ¼ Ei
m; ð4:62Þ

and for interstitial self-diffusion, we have:

Qi
a ¼ Ei

f þEi
m: ð4:63Þ

It follows that the activation energy for diffusion of atoms in a crystal depends on
both the energy of formation of defects and the energy required for their migration
in the periodic field of the crystal lattice. Experiments can be conducted to confirm
the temperature dependence of D and also the values of Q. The terms in the
pre-exponential factor for the various diffusion mechanisms are provided in
Table 4.2 for the fcc and bcc lattices.
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Example 4.3. Determination of Dv
a and Di

a for fcc copper at 500 °C
For copper:

Ev
f ¼ 1:27 eV, Ei

f ¼ 2:2 eV
Ev
m ¼ 0:8 eV, Ei

m ¼ 0:12 eV
Svf ¼ 2:4k; Sif ¼ � 0

and we neglect Svm and Sim.
For the fcc lattice, z = 12, A ¼ 1=

ffiffiffi
2

p
; and a * 0.3 nm, giving:

Dv ¼ aa2v exp
�0:8
kT

� �
ffi 5� 10�6 cm2=s

Di ¼ aa2v exp
�0:12
kT

� �
ffi 7� 10�2 cm2=s

Dv
a ¼ aa2v exp

2:4k
k

� �
exp

�1:27� 0:8
kT

� �
ffi 3� 10�13 cm2=s

Di
a ¼ aa2v exp

�2:2� 0:12
kT

� �
ffi 3� 10�16 cm2=s

Note that while Di/Dv * 104 due to the smaller migration energy for
interstitials than for vacancies, Di

a=D
v
a � 10�3 because of the very high

interstitial formation energy compared to that for vacancies. Plots of the

Table 4.2 Parameters in the
expression for the diffusion
coefficient, D ¼ aa2Nx;

where a ¼ 1
6
zA2 for the

various diffusion mechanisms
in the fcc and bcc lattices

Diffusion mechanism z A α N D

fcc

Vacancy 12 1	 ffiffiffi
2

p 1 1 a2ω

Vacancy self-diffusion 12 1	 ffiffiffi
2

p 1 NV a2Nvω

Interstitial 12 1/2 1/2 1 1
2
a2ω

Interstitial self-diffusion 12 1/2 1/2 Ni 1
2
a2Niω

bcc

Vacancy 8 3	 ffiffiffi
2

p 1 1 a2ω

Vacancy self-diffusion 8 3	 ffiffiffi
2

p 1 Nv a2Nvω

Interstitial 4 1/2 1/6 1 1
6
a2ω

Interstitial self-diffusion 4 1/2 1/6 Ni 1
6
a2Niω
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diffusion coefficients are shown in Fig. 4.22. Note that the vacancy diffusion
coefficient is larger than the vacancy self-diffusion coefficient and has a
smaller slope.

The behavior of self-interstitial atoms in bcc iron at 323 °C is illustrated in
Movie 4.3 (http://rmsbook2ed.engin.umich.edu/movies/). In this movie, the green
balls are the interstitials and the red ball is the vacant lattice site, and together they
form a SIA dumbbell in which the two green atoms share a single lattice site.
The SIA originates as a 〈110〉 split-dumbbell interstitial and then rotates into a
〈111〉 interstitial and moves in one-dimension through the 〈111〉 crowdion saddle
position. Movie 4.4 shows a di-SIA consisting of two parallel 〈111〉 split-dumbbells
that migrates along the 〈111〉 direction and also rotates to different 〈111〉-type
orientations.

4.4 Correlated Diffusion

Earlier we assumed that irrespective of the kinds of defects present in a crystal
lattice, successive jumps of atoms are completely random or uncorrelated. This
means that after n jumps, all possible directions for the (n + 1)th jump are equally
probable. This is true for vacancies or interstitials since all structural elements
surrounding them are at all times identical. Since the vibrational frequency of a
lattice atom is several orders of magnitude greater than the jump frequency, equi-
librium in the region surrounding the defect is rapidly established between suc-
cessive jumps and the next jump occurs with no effect of the previous jump on its
direction. But this does not always hold true for atom diffusion as described in [5]
and in the following.

ln
 D

1/T

Da

Dv

2.07

0.8

v

Fig. 4.22 Comparison of
plots of ln D versus 1/T for
vacancy diffusion and
vacancy self-diffusion
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If we consider the case of a radioactive tracer to track atom diffusion, a tracer
will make a jump if a vacancy is in its immediate vicinity. The second jump is
uncorrelated with the first if the probability of the second jump is the same for all
directions. However, the tracer arrives from a position that is vacant at the time of
its arrival. Hence, when it is “preparing” for the next jump, the chance that the
position from which it has arrived is unoccupied is greater than for any other
position around the atom. The two jumps are correlated since the probability of the
tracer returning to its former position is higher than for making a jump in any other
direction. In other words, the tracer has a greater tendency to move in the direction
from which it came than in the direction it is headed, or from Eq. (4.35), cos h2\0:

Since jumps in the direction from which it came are most probable, the tracer
will have traveled a shorter (net) distance than that traveled by the vacancy.
Therefore, the self-diffusion coefficient of the tracer (which is a measure of the rate
of this process) is smaller than that of the atoms constituting the lattice, since the
self-diffusion of the tracer is a correlated random walk, whereas the movement of
the vacancies and consequently of the atoms constituting the lattice are not
correlated.

The correlation effect is absent in the simple interstitial mechanism, but there is
correlation of motion by the interstitialcy mechanism. In both, the vacancy and the
interstitialcy mechanisms, Dtracer < Dlattice, and:

f ¼ Dtracer

Dlattice
; ð4:64Þ

and f is known as the Haven coefficient and is a measure of the degree to which
diffusion is random. Recall our earlier discussion of the measurement of the square
of the displacement by random walk given by Eq. (4.35):

r2 ¼ nk2 1þ 2
n

Xn�1

i¼1

Xn
j6¼i

cos hij

 !
;

where the mean square displacement is obtained by averaging over all values of
cos θij. In this expression, the term in brackets is f and the value of f for random
walk is 1 since the average over all cos θij is 0. But when there is correlation
between successive jumps, f is ≠1. For the vacancy mechanism of diffusion of a
tracer in a regular lattice [5]:

fv ¼ 1þ cos h

1� cos h
; ð4:65Þ
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and for interstitial diffusion,

fi ¼ 1þ cos h: ð4:66Þ

Since in both cases, cos h\0; then f < 1.

A simpler treatment of fv is that fv ¼ 1� P
1þP

; where P is the probability of a jump

of a tracer to a neighboring vacancy, and 1 − P is the probability that a neighboring
vacancy will move away as a result of jumps of lattice atoms. To a first approxi-
mation, P is equal to the reciprocal of the number of nearest lattice sites, z, around
the tracer. Therefore:

f ¼ 1� 1=z
1þ 1=z

¼ z� 1
zþ 1

: ð4:67Þ

For the fcc lattice:

f ¼ 1� 1=12
1þ 1=12

¼ 12� 1
12þ 1

¼ 0:85:

For the bcc lattice:

f ¼ 1� 1=8
1þ 1=8

¼ 8� 1
8þ 1

¼ 0:78:

For the simple cubic (sc) lattice:

f ¼ 1� 1=6
1þ 1=6

¼ 6� 1
6þ 1

¼ 0:71:

So, in our microscopic description of the diffusion coefficient, D, Eq. (4.44), we
account for correlated diffusion by including the correlation coefficient:

D ¼ 1=6f k2C ¼ f aa2x: ð4:68Þ

As an aside, the true correlation coefficient, f, actually consists of two terms,
f′ and f″ such that f = f′ f″. The quantity f″ was described in the previous paragraph
(as f) and f′ is related to the difference between the distances traveled during the
elementary act by the tracer atom and the defect:

f 0 ¼ ktracer
kdefect

: ð4:69Þ

In the case of a vacancy, f′ = 1 since λtracer = λvacancy, or the distance traveled by the
tracer and the defect are equal in one jump. The same is true for the simple
interstitial mechanism. But in the case of the interstitialcy mechanism, the tracer
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moves from an interstitial position to a lattice site (or vice versa). In both cases, it
travels a distance λtracer. However, the passage of a lattice atom from an interstitial
position to a lattice site is equivalent to the appearance of an identical atom dis-
placed from the lattice site in a neighboring interstitial position. Therefore, the jump
of a lattice atom from the interstitial position to a lattice site requires (for the
collinear case) a displacement of the lattice atom by a distance 2λtracer, or f′ = λtracer/
2λtracer = 0.5. For the non-collinear case, f′ = λtracer/6λtracer = 2/3. Table 4.3 sum-
marizes the correlation coefficient for various diffusion mechanisms in the common
crystal lattices.

4.5 Diffusion in Multicomponent Systems

Our discussion on diffusion so far has applied only to pure or single-component
systems. We have not accounted for multiple components such as impurities in a
pure metals and alloys. Diffusion in these systems was treated in experiments
conducted by Smigelskas and Kirkendall in 1947 [7] and analyzed by Darken in
1948 [8]. The result is that the diffusion coefficients of the two components in a
binary (A–B) system can be expressed as:

~D ¼ DANB þDBNA; ð4:70Þ

where DA,B are the intrinsic diffusion coefficients and are functions of composition,
and ~D is the interdiffusion coefficient. Since the partial diffusion coefficients depend
on the alloy composition, ~D is a complex, nonlinear function of concentration.
However, in the case of dilute solutions (NB → 0, NA → 1), the interdiffusion
coefficient is approximately equal to the partial diffusion coefficient of the solute.

The significance of this result can be appreciated by a brief review of the
elegance and implications of the experiment. In Kirkendall’s experiment,

Table 4.3 Correlation coefficients for the most common diffusion mechanisms in the various
crystal lattices (from [5])

Crystal lattice Diffusion mechanism Correlation factor

Simple cubic Vacancy 0.65311

Interstitial
Collinear
Non-collinear

0.80000
0.96970

Face-centered cubic Vacancy 0.72722

Interstitial
Collinear
Non-collinear

0.66666
0.72740

Body-centered cubic Vacancy 0.72722

Hexagonal close-packed Vacancy 0.78121
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molybdenum wires were wound around a block of brass (70Cu–30Zn) which was
then plated with a thick coating of copper. The molybdenum wires are insoluble in
copper and act as inert markers to locate the original interface. When the assembly
is heated in a furnace, the wire markers on opposite sides of the brass moved toward
each other, indicating that more material has left the brass than entered it, implying
that the diffusion coefficient of zinc is greater than that of copper.

The vacancy mechanism is the only diffusion mechanism that can account for
marker motion. If zinc diffuses by a vacancy mechanism, then the flux of zinc atoms
in one direction must equal the flux of vacancies in the opposite direction and the
number of zinc atoms leaving the brass is balanced by an equal number of
vacancies entering the brass. But the vacancies are absorbed by internal sinks, so
the result is that the volume of the brass diminishes and the markers move closer
together. The concept of a flux of atoms giving rise to a flux of defects will be
explored in depth in Chap. 6 on Radiation-Induced Segregation, which occurs by
the inverse Kirkendall effect.

4.6 Diffusion Along High-Diffusivity Paths

Metals and alloys used as structural engineering materials are polycrystals and are
thus, inhomogeneous, as they contain grain boundaries, dislocations, internal
interfaces due to precipitates or second phases, etc. To understand diffusion in these
systems, we must discuss the effect of these linear, planar and area defects on the
diffusion process. The primary difference between mono- and polycrystals is that
the latter consists of aggregates of crystals oriented (generally) at random. This
latter type of structure rarely shows anisotropy of diffusion. The important differ-
ence is that linear and planar defects represent high-diffusivity paths along which
diffusion can occur much faster than via point defects (bulk diffusion).

Grain boundaries are important high-diffusivity paths since the atom packing
density is lower. There exist several models of grain boundary diffusion, and all
assume that the boundary has a width, δ* 0.3– 0.5 nm. One model that is based on
the dislocation model of grain boundaries deserves special attention. In this model,
the grain boundary is regarded as a number of edge dislocations. The dislocation
density (#/unit length) increases with increasing misorientation angle, θ, between
two grains in contact (Fig. 4.23). From the figure:

d sin
h
2
¼ b

2
: ð4:71Þ

Hence, the distance between neighboring dislocations decreases with increasing
misorientation angle. A low-angle grain boundary consisting of many edge dislo-
cations can be regarded as a row of parallel channels in which packing of atoms is
loosest. In this region, the strain is high and the packing of atoms is loose, and the
diffusion coefficient will be the highest along the dislocation lines (cores).
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According to this model, diffusion along grain boundaries should be anisotropic and
depends on the angle θ. The grain boundary described as a slab of uniform thick δ,
and diffusion coefficient Dgb can also be viewed as a planar array of pipes of radius
p and spacing d. Grain boundary diffusion is related to diffusion along dislocation
cores (also known as pipe diffusion), described by Dp, by the following relation:

Dgbd ¼ Dp pp2=d
� �

; ð4:72Þ

and substituting for d from Eq. (4.71) gives:

¼ Dppp
2 2 sin h=2

b

� �

ffi Dppp2h
b

:

ð4:73Þ

The dislocation model of the grain boundary shown in Fig. 4.23 is expanded in
Fig. 4.24 to show that the extra half-planes of atoms can be regarded as edge
dislocations. In fact, the rate of diffusion along the grain boundary increases with
increasing misorientation angle, θ, and reaches a maximum at θ = 45° (Fig. 4.25).
At angles greater than 45°, the dislocation model of grain boundaries breaks down
since the distance between dislocations, d, would have to be smaller than the lattice
constant.

Fig. 4.23 Dislocation model
of a small-angle grain
boundary and the geometrical
relationship between the angle
of tilt, θ, the Burgers vector,
b, and the spacing between
the dislocations, d

200 4 Point Defect Formation and Diffusion



This result also indicates that there should be a relationship between the mean
value of the diffusion coefficient, �D, in a polycrystalline material and the grain size,
d, since as the grain size decreases, the grain boundary area per unit volume
increases. Therefore, �D should increase with decreasing grain size as shown in
Fig. 4.26. We can write the diffusion coefficient of a solid in which diffusion occurs
by bulk diffusion (vacancy mechanism) and grain boundary diffusion as:

Fig. 4.24 Expanded view of
the dislocation model of the
grain boundary shown in
Fig. 4.23
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Fig. 4.25 Effect of grain
boundary misorientation
angle on the diffusion of
atoms along grain boundaries
(after [5])
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�D ¼ Dv
a exp

�Qv
a

kT

� �
þDgb exp

�Qgb

kT

� �
; ð4:74Þ

where Dv
a and Qv

a refer to vacancy self-diffusion, and Dgb and Qgb refer to grain
boundary diffusion. In most metals, Qv

a � 2Qgb; so at low temperature, grain
boundary diffusion dominates and at high temperature, diffusion is dominated by
bulk, or volume diffusion (Fig. 4.26).

Pipe diffusion along dislocation cores can also influence low temperature lattice
diffusion and the total diffusion coefficient can be estimated simply by:

�D ¼ gDp þ 1� gð ÞDv
a ; ð4:75Þ

where �D is the mean diffusion coefficient, Dp is the diffusion coefficient for dis-
locations and Dv

a is the self-diffusion coefficient, and g is the fraction of time that the
diffusing atom spends within the dislocation. As the dislocation density increases,
g increases, and since Dp [Dv

a ; then �D increases as well.
This general formulation can also be applied to interface or surface diffusion

occurring on internal and external surfaces of solids. In general, for defects in the
lattice, the more loosely bound the atoms, the lower is the activation energy and the
higher is the diffusion coefficient. So surface diffusion requires a lower activation
energy than for other forms of diffusion since each surface atom has only half the
nearest neighbors as it does in the bulk, and generally:

Qsurface\Qgb\Qp\Qv
a ; and so Dsurface [Dgb [ Dp [Dv

a : ð4:76Þ

Nomenclature

a Lattice constant
A Factor depending on geometry and diffusion mechanism
C Concentration
Dy

x Diffusion coefficient of species x via y
Dgb Diffusion coefficient for grain boundary diffusion

Fig. 4.26 The effect of grain size on the character of diffusion in polycrystalline solids
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~D Interdiffusion coefficient
�D Mean value of diffusion coefficient in a polycrystalline material
Dlattice Diffusion coefficient of lattice atom
Dp Diffusion coefficient for pipe diffusion
Dtracer Diffusion coefficient of tracer atom
E Energy
f Correlation (Haven) coefficient
F Helmholtz free energy
g Fraction of time a diffusing specie spends within a dislocation
G Gibbs free energy
H Enthalpy
J Flux [cm−2]
k Boltzmann’s constant
n Number of defects
nm Number of activated complexes
N Number of sites
pv Probability that a lattice site is vacant
P Pressure, also probability
Q Activation energy
R Radius
ra Radius of an atom
S Entropy
T Temperature
U Internal energy
V Volume
z Number of nearest neighbors
α 1

6zA
2

δ Width of the barrier in an activated complex, also grain boundary width
γ Stacking fault energy
Γ Jump frequency
κr Thermal conductivity
Λ Jump distance
μ Shear modulus
v Frequency, also Poisson’s ratio
vE Natural frequency of an oscillator
vr Perturbed frequency of an oscillator
σ Surface energy
�t Average velocity of atoms moving through barrier in activated complex,

Eq. (4.50)
ω Jump frequency to a single site
Ω Volume of an atom
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Subscripts

a Atom
E Natural contribution to v
f Formation
gb Grain boundary
i,v Interstitials, vacancies
m Migration
p Pipe
r Vibrational contribution to ν
th Thermal

Superscripts

FP Frenkel pair
i,v Interstitials, vacancies
mix Mixing

Acronyms

SIA Single interstitial atom

Problems

4:1 Many metals occur with both bcc and fcc structure, and it is observed that the
transition from one structure to the other involves only insignificant volume
change. Assuming no volume change, find the ratio Dfcc/Dbcc where Dfcc and
Dbcc are the closest distances between metal atoms in the respective structures.

4:2 For a Ni lattice, calculate the following parameters for atomic chains along the
(110) direction:

(a) the number of atoms per unit chain length,
(b) the number of chains per unit area, and
(c) the product of the two. What is this product?

4:3 In the past, investigators have sometimes considered an interstitial atom as
having been produced by the transfer of an atom from a normal lattice site to
an interstitial site, thus resulting in a one-to-one correspondence between the
concentrations of vacancies and interstitials. However, the equilibrium number
of vacancies is generally orders of magnitude greater than the equilibrium
number of interstitials at a given temperature. Explain.

4:4 The magnitude of the relaxation volume, |V|, is greater than 1.0 for interstitials
and is less than 1.0 for vacancies. Explain.

204 4 Point Defect Formation and Diffusion



4:5 In terms of the jump frequency to a particular neighboring site, ω, and the
lattice constant, a, what is the diffusion coefficient for impurity atoms whose
equilibrium position is the octahedral interstitial site in:

(a) the fcc lattice?
(b) the bcc lattice?

4:6 Consider a rigid crystal in the shape of a sphere of radius R. We create a small
cavity of radius r (one atomic volume) in the center of the sphere. The material
that was in this volume is spread uniformly over the surface of the sphere
(assuming this can be done), increasing the radius of the sphere to R′.

(a) Show that for an atomic radius of 0.15 nm and an intrinsic surface
energy, σ * 10 eV/nm2, the formation energy of a vacancy is of order
≃2 eV

(b) If instead of a rigid solid, the crystal is treated as an elastic continuum,
how would this affect the value of Ev

f you calculated for part (a)? Why?

4:7 Calculate the diffusion coefficients for interstitials and vacancies in copper at
484 °C. Neglect the contributions of mixing entropy. Use 0.361 nm for the
lattice constant. Also, calculate the vacancy self-diffusion coefficient. Why is
this so much lower than the diffusion coefficients for vacancies?

4:8 In a laboratory experiment conducted at 10 °C below the melting point of
copper, 0.02 % of the atom sites are vacant. At 500 °C, the vacant atom
fraction was 5.7 × 10−8.

(a) What is the vacancy formation energy?
(b) How many vacancies are there per cm3 at 800 °C?

4:9 For the case in Problem 4.7, determine the thermal equilibrium concentrations
of vacancies and interstitials.
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