
Chapter 2
The Displacement of Atoms

2.1 Elementary Displacement Theory

The struck lattice atom of energy T is referred to as a primary knock-on atom, or
PKA. This atom moves through the lattice encountering other lattice atoms. Such
encounters may result in sufficient energy transfer to displace this lattice atom from
its site resulting in two displaced atoms. If this collision sequence continues,
a series of tertiary knock-ons is produced resulting in a collision cascade. A cascade
is a spatial cluster of lattice vacancies and atoms residing as interstitials in a
localized region of the lattice. Such a phenomenon can have a profound effect on
the physical and mechanical properties of the alloy, as will become evident later.
Here, we are concerned with being able to quantify the displacement cascade. That
is, for a neutron of energy Ei, striking a lattice atom, how many lattice atom
displacements will result? We have already discussed in detail the nature of neu-
tron–nucleus and atom–atom collisions. Now, we will develop a model for deter-
mining the number of atoms displaced by a PKA of energy T.

Recall that to quantify radiation damage, we require a solution to the damage
rate equation:

Rd ¼ N
Z Ê

E
_ / Eið ÞrD Eið Þ dEi; ð2:1Þ

where N is the lattice atom number density, ϕ (Ei) is the energy-dependent particle
flux, and σD (Ei) is the energy-dependent displacement cross section. The dis-
placement cross section is a probability for the displacement of lattice atoms by
incident particles:

rD Eið Þ ¼
Z T̂

T
_ r Ei; Tð Þ v Tð Þ dT ; ð2:2Þ
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where σ(Ei, T) is the probability that a particle of energy Ei will impart a recoil
energy T to a struck lattice atom, and ν(T) is the number of displaced atoms
resulting from such a collision. Chapter 1 provided the energy transfer cross section
appearing in Eq. (2.2) for various types of particles in various energy ranges. This
chapter will be devoted to supplying the second term in the integrand, ν(T), the
number of atom displacements resulting from a primary recoil atom of energy T,
and the limits of T between which displacements occur. Finally, we will develop the
displacement cross section and an expression for the displacement rate.

2.1.1 Displacement Probability

As a first step, we define Pd(T) as the probability that a struck atom is displaced
upon receipt of energy T. Clearly, there is some minimum energy that must be
transferred in order to produce a displacement. We will call this energy, Ed. The
magnitude of Ed is dependent upon the crystallographic structure of the lattice, the
direction of the incident PKA, the thermal energy of the lattice atom, etc. These
considerations will be discussed in detail later. By definition of Ed, the probability
of displacement for T < Ed is zero. If Ed is a fixed value under all conditions, then
the probability of displacement for T ≥ Ed is one. Hence, our simplest model for the
displacement probability is a step function:

Pd Tð Þ ¼ 0 for T\Ed

¼ 1 for T �Ed;
ð2:3Þ

and is shown in Fig. 2.1. However, Ed is not constant for all collisions due to the
factors mentioned earlier. The effect of atomic vibrations of the lattice atoms would
be expected to lower the value of Ed or introduce a natural “width” of the order kT
to the displacement probability. Further, as will be discussed later, the effect of
crystallinity will also contribute strongly to the blurring effect on Ed. In fact, the
picture in Fig. 2.1 and Eq. (2.3) is only strictly true for an amorphous solid at 0 K.
A more realistic representation is shown in Fig. 2.2 and is represented as:
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Fig. 2.1 The displacement probability Pd(T ) as a function of the kinetic energy transferred to a
lattice atom, assuming a sharp displacement threshold
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Pd Tð Þ ¼ 0 for T\Edmin

¼ f Tð Þ for Edmin � T\Edmax

¼ 1 for T �Edmax ;

ð2:4Þ

where f(T) is a smoothly varying function between 0 and 1. Given the displacement
probability, the next task is to find the number of displacements as a function of the
energy transferred. Kinchin and Pease [1] developed a simple theory to find the
average number of displaced atoms initially created by a PKA of energy T in a
given solid lattice. Their analysis is based on the following assumptions:

1. The cascade is created by a sequence of two-body elastic collisions between
atoms.

2. The displacement probability is 1 for T > Ed as given by Eq. (2.3).
3. When an atom with initial energy T emerges from a collision with energy T′ and

generates a new recoil with energy ε, it is assumed that no energy passes to the
lattice and T = T′ + ε.

4. Energy loss by electron stopping is given by a cutoff energy Ec. If the PKA
energy is greater than Ec, no additional displacements occur until electron
energy losses reduce the PKA energy to Ec. For all energies less than Ec,
electronic stopping is ignored, and only atomic collisions occur.

5. The energy transfer cross section is given by the hard sphere model.
6. The arrangement of the atoms in the solid is random; effects due to crystal

structure are neglected.

Assumption 1 is fundamental to all theories of a cascade consisting of isolated point
defects. Elimination of this restriction allows the cascade to be represented by a
displacement spike discussed in Chap. 3. Assumption 2 neglects crystallinity and
atomic vibrations, which will add a natural width or “blurring” effect to the dis-
tribution. Later on, we will relax Assumptions 3, 4, 5 and 6.

P (T)

1

T
Ed0

0

d

Fig. 2.2 The displacement probability as a function of the kinetic energy transferred to the lattice
atom allowing for a blurring of the threshold due to atomic vibrations, impurity atoms, etc.

2.1 Elementary Displacement Theory 79

http://dx.doi.org/10.1007/978-1-4939-3438-6_3


2.1.2 The Kinchin and Pease Model for Atom
Displacements

Consider the two moving atoms created when a PKA first strikes a stationary atom.
After the collision, the PKA has residual energy T − ε and the struck atom receives
an energy ε − Ed, giving:

v Tð Þ ¼ v T � eð Þþ v e� Edð Þ; ð2:5Þ

where Ed is the energy consumed in the reaction. By neglecting Ed relative to ε, i.e.,
ε ≫ Ed according to Assumption 3, then Eq. (2.5) becomes:

v Tð Þ ¼ v T � eð Þþ v eð Þ: ð2:6Þ

Equation (2.6) is not sufficient to determine v(T) because the energy transfer ε is
unknown. Since the PKA and lattice atoms are identical, εmay lie anywhere between
0 and T. However, if we know the probability of transferring energy in the range (ε,
dε) in a collision, we can multiply Eq. (2.6) by this probability and integrate over all
allowable values of ε. This will yield the average number of displacements.

Using the hard sphere Assumption 5, the energy transfer cross section is as
follows:

r T; eð Þ ¼ r Tð Þ
cT

¼ r Tð Þ
T

for like atoms, ð2:7Þ

and the probability that a PKA of energy T transfers energy in the range (ε, dε) to
the struck atom is as follows:

r T ; eð Þde
r Tð Þ ¼ de

T
; ð2:8Þ

for γ = 1 (like atoms). Multiplying the right-hand side of Eq. (2.6) by dε/T and
integrating from 0 to T yields:

v Tð Þ ¼ 1
T

Z T

0
v T � eð Þþ v eð Þ½ �de

¼ 1
T

Z T

0
v T � eð Þdeþ

Z T

0
v eð Þde

� �
:

ð2:9Þ

A change in variables from ε to ε′ = T − ε in the first integral in Eq. (2.9) gives:

v Tð Þ ¼ 1
T

Z T

0
v e0ð Þ de0 þ 1

T

Z T

0
v eð Þ de; ð2:10Þ
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which is really a sum of two identical integrals. Therefore,

v Tð Þ ¼ 2
T

Z T

0
v eð Þ de: ð2:11Þ

Before solving Eq. (2.11), let us examine the behavior of ν(ε) near the displacement
threshold, Ed. Clearly when T < Ed, there are no displacements and:

v Tð Þ ¼ 0 for 0\T\Ed: ð2:12Þ

If T is greater than or equal to Ed but less than 2Ed, two results are possible. The first
is that the struck atom is displaced from its lattice site, and the PKA, now left with
energy less than Ed, falls into its place. However, if the original PKA does not
transfer Ed, the struck atom remains in place and no displacement occurs. In either
case, only one displacement in total is possible from a PKA with energy between Ed

and 2Ed, and:

v Tð Þ ¼ 1 for Ed � T\2Ed: ð2:13Þ

Using Eqs. (2.12) and (2.13), we may split the integral in Eq. (2.11) into ranges
from 0 to Ed, Ed to 2Ed, and 2Ed to T and evaluate:

v Tð Þ ¼ 2
T

Z Ed

0
0deþ

Z 2Ed

Ed

1deþ
Z T

2Ed

v eð Þde
� �

;

yielding:

v Tð Þ ¼ 2Ed

T
þ 2

T

Z T

2Ed

v eð Þde: ð2:14Þ

We can solve Eq. (2.14) by multiplying by T and differentiating with respect to
T giving:

T
dv
dT

¼ v; ð2:15Þ

with the solution:

v ¼ CT : ð2:16Þ

Substituting Eq. (2.16) into Eq. (2.14) gives:

C ¼ 1
Ed

; ð2:17Þ
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and therefore:

v Tð Þ ¼ T
2Ed

for 2Ed � T\Ec: ð2:18Þ

The upper limit is set by Ec (Assumption 4). When a PKA is born with T > Ec, the
number of displacements is v(T) = Ec/2Ed. So the full Kinchin–Pease (K–P) result is
as follows:

v Tð Þ ¼

0 for T\Ed

1 for Ed � T\2Ed

T
2Ed

for 2Ed � T\Ec:

Ec

2Ed
for T �Ec

8>>>>>>><
>>>>>>>:

ð2:19Þ

Note that if Ec is ignored, T/2Ed is a true average since the number of displacements
can range from 0 (no energy transfers above Ed) to T/Ed − 1 (every collision
transfers just enough), and for large T, T/Ed ≫1. So the maximum value of v(T) is T/
Ed. The full displacement function described by Eq. (2.19) is shown in Fig. 2.3.

2.1.3 The Displacement Energy

A lattice atom must receive a minimum amount of energy in the collision in order to
be displaced from its lattice site. This is the displacement energy or displacement
threshold, Ed. If the energy transferred, T, is less than Ed, the struck atom will
vibrate about its equilibrium position but will not be displaced. These vibrations
will be transmitted to neighboring atoms through the interaction of their potential
fields, and the energy will appear as heat. Hence, the potential fields of the atoms in
the lattice form a barrier over which the stuck atom must pass in order to be
displaced. This is the source of the displacement threshold energy.

1

0
Ed 2Ed Ec

PKA energy (T)

Fig. 2.3 The number of
displaced atoms in the
cascade as a function of the
PKA energy according to the
model of Kinchin and Pease
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Since metals are crystalline, the potential barrier surrounding an equilibrium
lattice site is not uniform in all directions. In fact, there are directions in which the
surrounding atoms will remove large amounts of energy from the struck atom
yielding a high potential barrier. Along directions of high symmetry, there exist
open directions along which the threshold displacement energy is low. Since the
direction of the recoil is determined from the collision event which is itself a
random process, the recoil direction is entirely random. The single value often
quoted for displacement energy in radiation damage calculations then represents a
spherical average of the potential barrier surrounding the equilibrium lattice site.

The value of Ed may be roughly estimated using an argument by Seitz [2]. The
energy of sublimation, Es, for most metals is about 5–6 eV. Since half as many
bonds are broken by removing an atom from the surface of a crystal as opposed to
the interior, the energy to remove an atom from the interior is then 10–12 eV. If an
atom is moved from its lattice site to an interstitial position in the direction of least
resistance and time is allowed for neighboring atoms to relax (an adiabatic
movement), an energy of 2Es is needed. Since in reality, the struck atom is not
always projected in the direction of least resistance and time is not allowed for the
relaxation of neighboring atoms, a greater amount of energy (perhaps 4–5 Es) is
needed. Thus, we would expect Ed to be 20–25 eV.

Accurate determination of the displacement energy can be made if the interac-
tion potential between lattice atoms is known. This is accomplished by moving the
atom in a given direction and summing the interaction energies between the moving
atom and all other nearest neighbors along the trajectory of the struck atom. When
the total potential energy reaches a maximum, the position corresponds to a saddle
point and the difference between the energy of the atom at the saddle point, E*, and
its energy in the equilibrium position, Eeq, represents the displacement threshold for
the particular direction. Since the interaction energy in these collisions is only tens
of eV, the Born–Mayer potential would be the most appropriate potential to use in
describing the interaction. These calculations can be carried out over all directions
and averaged to obtain a mean Ed for a particular solid.

To appreciate the significance of the variation in interaction energies or potential
barriers with crystal direction, we will consider the case of copper. In the cubic
lattice, there are three crystallographic directions that may be considered easy
directions for displacement: ⟨100⟩, ⟨110⟩ and ⟨111⟩. In particular, ⟨110⟩ is the
close-packed direction in the fcc lattice and ⟨111⟩ is the close-packed direction in
the bcc lattice. Figure 2.4 shows how an atom is displaced along each of these
directions in the fcc lattice. In each case, the displaced atom K passes through the
midpoint of a set of “barrier atoms,” B, in the direction of the L atom, with the atom
configuration dependent on the direction. For a K atom displaced in the ⟨110⟩
direction, the atoms are located at the corners of a rectangle to which the path of K
is perpendicular. When the K atom passes through the barrier, it loses kinetic
energy in glancing collisions, which initially becomes potential energy of the
barrier atoms. The energy need not be shared equally between the four B atoms.
This is illustrated by drawing a set of contours of constant Ed in the place of the B
atoms (Fig. 2.5). Then, if K only receives a quantity of energy Ed ⟨110⟩ in the
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collision event, it will be displaced if its initial direction is contained within a small
cone of solid angle centered about the ⟨110⟩ direction. For small energies, the cone
intersects the B atom plane in a circle, but as the energy transferred increases, the
intersection deviates significantly from a right circular cone (Fig. 2.5). The contours
are in fact generated by the intersection of a complex but symmetrical
three-dimensional surface with a sphere which is described about the atom K as
center. This contour pattern can be constructed by accounting for the interaction
between the K atom and each of the B atoms at every point in time while simul-
taneously accounting for interactions between each of these five atoms and other
atoms in the surrounding region of the crystal. This is a very difficult problem, the
solution of which depends heavily on the interaction potential. In principle, at least,
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Fig. 2.4 Struck atom, K, and barrier atoms, B, for various directions of the struck atom in the fcc
lattice
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Fig. 2.5 Equi-potential
contours in the barrier plane
for a struck atom, K, traveling
close to the <110> direction
and heading toward the
barrier plane defined by the
barrier atoms, B (after [3])
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we can obtain all the information we need about the directional dependence of the
thresholds. Figure 2.6 shows the displacement threshold as a function of direction in
fcc copper and gold. Note that displacement threshold energies along ⟨100⟩ and
⟨110⟩ are low, but the value along ⟨111⟩ is high due to the large distance between
barrier atoms in this direction and the two sets of barriers between the atoms on the
body diagonal of the unit cell.

This dependence will be further illustrated in an example using the fcc lattice and
a parabolic repulsion function. Figure 2.7 shows a lattice atom on the face of a unit
cell in an fcc crystal receiving energy from a collision. Its flight trajectory is in the
⟨110⟩ direction, which is equidistant from four atoms located on the faces of the
unit cell. In an fcc lattice, each atom is surrounded by 12 nearest neighbors.
Displacement will be dependent on several important factors. They are the number
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and (b) in copper (after [4])
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of barrier atoms, B, the impact parameter, z (the distance of closest approach to the
B atoms), and the distance from the K atom in its lattice site to the barrier, y. These
quantities are given in Table 2.1 for the fcc lattice. The energy required to displace
an atom will increase with B and y and decrease with z. Since z is smallest for the
⟨110⟩ direction, this will be the most difficult to penetrate. Also z100 < z110 and
y100 > y110, so both factors will make displacement along ⟨110⟩ easier than along
⟨100⟩. Let us take the specific example of displacement in the ⟨100⟩ direction of the
fcc example and calculate a value for Ed.

The energy of a single atom in a normal lattice site is as follows:

Eeq ¼ �12U; ð2:20Þ

where U is the energy per atom of the crystal. Since only half as many bonds are
broken in the sublimation process, this energy is just:

Es ffi 6U; ð2:21Þ

and since Es * 4–5 eV, U is about 1 eV.
To describe the interaction of the lattice atoms as they are pushed together in the

solid, we will use a simple parabolic repulsion as opposed to the Born–Mayer
potential:
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Fig. 2.7 Displacement of a lattice atom along the <100> direction in the fcc lattice and the
variation of energy of the atom with position along its path (after [5])

Table 2.1 Parameters used for the determination of Ed in the fcc lattice

Direction # B atoms Impact parameter, z Distance to barrier, y

⟨100⟩ 4 a
2

a
2

⟨110⟩ 4
ffiffiffi
6

p

4
a

ffiffiffi
2

p

4
a

⟨111⟩ 3 affiffiffi
6

p a
3
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V rð Þ ¼ �Uþ 1
2
k req � r
� �2

r\req

V rð Þ ¼ 0 r� req;
ð2:22Þ

where k is the force constant characterizing the repulsive position of the potential.
The force constant can be expressed as [5]:

ka2 ¼ 3t
b
; ð2:23Þ

where
k force constant
a lattice constant
υ a3/4 = specific volume of an atom
β compressibility

In our example, the equilibrium spacing of the struck atom and the four atoms
forming the square barrier is req = a/√2. When the atom is at the center of the square,
it interacts with the four atoms at the corners a distance a/2 away. Hence, the energy
at the saddle point is as follows:

E� ¼ 4V
a
2

� �
¼ 4 �Uþ 1

2
ka2
� � 1ffiffiffi

2
p � 1

2

	 
2
" #

: ð2:24Þ

The displacement energy in the ⟨100⟩ direction is then:

Ed 100h i ¼ e� � eeq ¼ 8Uþ 2 ka2
� � 1ffiffiffi

2
p � 1

2

	 
2

: ð2:25Þ

Typical values for ka2 and U for metals are 60 and 1 eV, respectively, yielding Ed

⟨100⟩ ≅ 13.1 eV. This value is in reasonable agreement with that given in Fig. 2.6.
Table 2.2 gives values of Ed for various metals [6]. Note that for the transition
metals, the accepted value of Ed is 40 eV.

2.1.4 The Electron Energy Loss Limit

Now that we have established a lower limit on the energy transfer necessary to cause
a displacement, Ed, let us turn our attention to the high-energy regime of collisions.
Recall that at low energies (T < 103eV), Sn ≫ Se, and we may assume that nearly all
of the energy loss of the PKA goes toward elastic collisions (Fig. 1.18). However, as
the PKA energy increases, the fraction of the total energy loss that is due to electron
excitation and ionization increases until above the crossover energy, Ex, Se > Sn.

2.1 Elementary Displacement Theory 87

http://dx.doi.org/10.1007/978-1-4939-3438-6_1


Our expression for v(T) in Eq. (2.19) must therefore be modified to account for this
variation in the amount of kinetic energy available for displacement collisions.

Figure 2.8 shows (dE/dx)n for carbon recoils in graphite using Eq. (1.163) and
Lindhard’s Thomas–Fermi result, the latter showing that Eq. (1.163), which pre-
dicts a constant value of 250 eV/nm, is a good approximation for energies up to at
least Ea. Note that at high energies (T ≫ Ex), electronic energy losses predominate
by several orders of magnitude. However, at low energies (T ≪ Ex), the situation is
reversed.

Fortunately, because of departures from the hard sphere model, the primary
recoil creates secondaries with average energies far below T̂=2. These will almost

Table 2.2 Recommended
values of the effective
displacement energy for use
in displacement calculations
(from [6])

Metal Lattice (c/a) Ed, min (eV) Ed (eV)

Al fcc 16 25

Ti hcp (1.59) 19 30

V bcc – 40

Cr bcc 28 40

Mn bcc – 40

Fe bcc 20 40

Co fcc 22 40

Ni fcc 23 40

Cu fcc 19 30

Zr hcp 21 40

Nb bcc 36 60

Mo bcc 33 60

Ta bcc 34 90

W bcc 40 90

Pb fcc 14 25

Stainless steel fcc – 40
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Fig. 2.8 Energy loss from
electronic and nuclear
stopping as a function of
energy (after [7])
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always be in the range where electronic excitation can be neglected. To obtain
ν(T) to a fair approximation, we calculate the energy Ec, dissipated in elastic col-
lisions by the PKA:

Ec ¼
Z �T

0

dE=dxð ÞndE
dE=dxð Þn þ dE=dxð Þe

: ð2:26Þ

We can then use Eq. (1.190) for (dE/dx)e and Eq. (1.130) for (dE/dx)n with Ť = Ea.
The modified damage function is the original Eq. (2.19) with T replaced by Ec:

v Tð Þ ¼ Ec

2Ed
: ð2:27Þ

As an estimate of Ec, we can use the maximum energy a moving atom (of energy E)
can transfer to an electron as

4me

M
E; ð2:28Þ

and equating this with the ionization energy of the struck electron belonging to the
target atom, we have:

Ec ¼ M
4me

I: ð2:29Þ

Kinchin and Pease [1] equated Ec and Ex, implying that all energy above Ex is lost
in electron excitation, and displacements account for all the energy loss below Ec.
Figure 2.9 shows v(T) for graphite using Lindhard’s (dE/dx)n. Note that for recoils
with energy below Ec, the simple theory gives a fair description, but for T > Ec, the
losses in electron excitation are important.
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Fig. 2.9 Number of
displaced atoms per primary
recoil compared to the simple
K–P result of T/2Ed (after [7])
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2.2 Modifications to the K–P Displacement Model

2.2.1 Consideration of Ed in the Energy Balance

Snyder and Neufeld [8] make the assumption that an energy Ed is consumed in each
collision such that the relation in Assumption 3 of the K–P displacement model will
read:

T ¼ T 0 þ eþEd; ð2:30Þ

and both atoms move off after collision, no matter how small their energy. When
compared with the Kinchin–Pease model, it may be expected that v(T) would
decrease since an energy loss term is added. However, because atoms are allowed to
leave the collision with energy less than Ed, an increase in v(T) will occur. Since
these two changes to ν(T) nearly cancel, the result is very similar to the K–P model:

v Tð Þ ¼ 0:56 1þ T
Ed

	 

for T [ 4Ed: ð2:31Þ

2.2.2 Realistic Energy Transfer Cross Sections

The weakest point of the K–P displacement model is the assumption of hard sphere
collisions (Assumption 5). In fact, more realistic energy transfer cross sections can
be used while still maintaining the proportionality of Eq. (2.19). Sanders [9] solved
Eq. (2.5) using an inverse power potential (r−s) to obtain:

v Tð Þ ¼ s 2
1

sþ 1 � 1
� � T

2Ed
; ð2:32Þ

which for the inverse square potential becomes:

v Tð Þ ¼ 0:52
T
2Ed

; ð2:33Þ

reducing the Kinchin–Pease result by a factor of 2.
However, the use of this potential has its shortcomings because it is applied to all

collisions in the cascade, while its region of validity is limited to those values of
T such that ρ < 5a. Physically, the effect of realistic scattering is to make a larger
number collisions generate T in the subthreshold regions below Ed where they are
removed from multiplication chain.

For many years, investigators have been intrigued that Eq. (2.19) appears to
overestimate v(T) in metals by a factor of 2–10 [10] and yet attempts to measure the
energy dependence of ν(T) over a large energy range (50–200 keV recoil atoms in
gold) gave a quadratic rather than linear relationship. In 1969, Sigmund [11] took a
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different approach to this problem by considering the recoil density F(T, ε) dε
defined as the average number of atoms recoiling with an energy in (ε, ε + dε) as a
consequence of a primary ion slowing down from T to zero energy. The recoil
density can be expressed in a form that uses the power law approximation of the
Thomas–Fermi differential cross section [12]:

r T ; eð Þ / T�me�1�m; ð2:34Þ

where 0 ≤ m ≤ 1, giving:

F T; eð Þ ¼ m
w 1ð Þ � w 1� mð Þ

T

eþUbð Þ1�me1þm
; ð2:35Þ

for T ≫ ε ≫ Ub, where

w xð Þ ¼ d lnC xð Þ½ �=dx; ð2:36Þ

Ub is the binding energy lost by an atom when leaving a lattice site, and Γ(x) is the
gamma function or the generalized factorial function. Since a recoiling atom is
displaced when ε > Ed, we obtain

v Tð Þ ¼
Z T

Ed

deF T; eð Þ ¼ 1þUb=Edð Þm�1
w 1ð Þ � w 1� mð Þ

T
Ub

	 

; ð2:37Þ

for T ≫ Ed ≫ Ub. The value of m is chosen in such a way [13] that σ(T, ε) describes
collisions at low energies, i.e., 2Ed ≤ T ≤ 100Ed. This constrains m ≤ 1/4. For m = 0,
Eq. (2.37) reads:

v Tð Þ ¼ 6
p2

T
Ub

ln 1þUb=Edð Þ: ð2:38Þ

This is an upper limit for displacement processes since loss of defects by
replacement collisions has been neglected.

A characteristic feature of displacements in metals is the large recombination
volume of an isolated point defect, of the order of 100 atomic volumes or more.
Hence, Ed is the energy lost to the environment by an atom trying to escape the
recombination volume. This has the consequence that in cascades, many defects are
lost by replacement collisions [14]. The binding energy Ub is only a few eV and
thus negligible as compared to Ed, reducing Eq. (2.38) to:

v Tð Þ ¼ 6
p2

T
Ed

¼ 1:22
T
2Ed

	 

; ð2:39Þ

which is about 22 % greater than the result of Eq. (2.19) which accounted for
replacement collisions.
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2.2.3 Energy Loss by Electronic Excitation

Even for E > Ec, collisions of the PKA with electrons compete for energy loss
against collisions with lattice atoms. These two processes can be treated indepen-
dently, and each can be represented by separate energy transfer cross sections. The
formulation originally presented by Lindhard et al. [15] is summarized here as
presented by Olander in [5] as a more realistic treatment of energy loss by electronic
excitation (Assumption 4).

As a PKA traverses a distance dx of a solid, three things may happen: (1) It
collides with an electron, (2) it collides with an atom, or (3) nothing. Let pe dεe be
the probability that a collision between the PKA and an electron in the interval
dx transfers energy in the range (εe, dεe) to the electron:

pedee ¼ Nre T ; eeð Þdeedx; ð2:40Þ

where σe(T, εe) is the energy transfer cross section from the PKA to the electron.
Similarly, for a PKA and lattice atom:

padea ¼ Nra T ; eað Þdeadx; ð2:41Þ

and the probability that nothing happens in dx is as follows:

p0 ¼ 1�
Z ee;max

0
pedee �

Z ea;max

0
padea

¼ 1� N dx re Tð Þ � ra Tð Þ½ �;
ð2:42Þ

and εe,max and εa,max are the maximum energies transferable to an electron and
atom, respectively, by a PKA of energy T. We rewrite the conservation equation for
v(T) by weighting with the appropriate probability for the process by which it is
created and integrating over the permissible ranges of energy transfers:

v Tð Þ ¼
Z ea;max

0
v T � eað Þþ v eað Þ½ � pa dea

þ
Z ee;max

0
v T � eeð Þpe dee þ p0v Tð Þ:

ð2:43Þ

Substituting for pe, pa, and p0 yields:

ra Tð Þþ re Tð Þ½ �v Tð Þ ¼
Z ea;max

0
v T � eað Þþ v eað Þ½ �ra T; eað Þ dea

þ
Z ee;max

0
v T � eeð Þre T ; eeð Þ dee:

ð2:44Þ
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Since the maximum energy transferred to an electron is very small compared to T, v
(T − εe) can be expanded in a Taylor series and truncated after the second term:

v T � eeð Þ ¼ v Tð Þ � dv
dT

ee; ð2:45Þ

and the last term in Eq. (2.44) can be written as:

Z ee;max

0
v T � eeð Þ re T; eeð Þdee ¼ v Tð Þ

Z ee;max

0
re T ; eeð Þ dee

� dv
dT

Z ee;max

0
eere T ; eeð Þ dee:

ð2:46Þ

The first integral on the right of Eq. (2.46) is the total cross section for collisions of
the PKA with the electron and cancels the corresponding term on the left in
Eq. (2.44). The second integral on the right of Eq. (2.46) is the electronic stopping
power of the solid divided by the atom density. Combining Eqs. (2.46) and (2.45),
we have:

v Tð Þþ dT=dxð Þe
Nr Tð Þ

� �
dv
dT

¼
Z Tmax

0
v T � eð Þþ v eð Þ½ � r T ; eð Þ

r Tð Þ
� �

de; ð2:47Þ

where the subscript “a” on T and σ has been dropped with the understanding that
these quantities refer to atomic collisions. Equation (2.47) can be solved using the

hard sphere assumption, but where
dE
dx

	 

e
is given by Eq. (1.190), i.e.,

dE
dx

	 

e
¼

kE1=2; giving:

v Tð Þ ¼ 2Ed

T
þ 2

T

Z T

2Ed

v eð Þde� kT1=2

rN
dv
dT

: ð2:48Þ

After simplification, the final result is as follows:

v Tð Þ ¼ 1� 4k

rN 2Edð Þ1=2
" #

T
2Ed

	 

; for T � Ed; ð2:49Þ

where k is a constant depending on the atom number density, N, and the atomic
number. The term σ is the energy-independent hard sphere collision cross section.
Note that when electronic stopping is properly accounted for in the basic integral
equation, the entire concept of a definite energy, Ec, separating regimes of elec-
tronic energy loss from atomic collisions can be dismissed.

However, Eq. (2.49) is still plagued by the use of the hard sphere assumption.
Lindhard realized that in order to ensure that reliable predictions are obtained, a
realistic energy transfer cross section must be used. Lindhard also realized that the
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parameter v(T) need not be interpreted solely as the number of displacements
produced per PKA, but could be taken to be that part of the original PKA energy,
which is transferred to the atoms of the lattice (rather than the electrons) in slowing
down. In reality, collisions of the PKA with atoms compete with collisions with
electrons. But the processes can be treated as independent events. Nevertheless, the
expression for v(T) needs to be reformulated.

In 1975, Norgett, Robinson, and Torrens [17] proposed a model to calculate the
number of displacements per PKA according to:

mðTÞ ¼ jED

2Ed
¼ jðT � gÞ

2Ed
; ð2:50Þ

where T is the total energy of the PKA, η is the energy lost in the cascade by
electron excitation, and ED is the energy available to generate atomic displacements
by elastic collisions and is known as the damage energy. The displacement effi-
ciency, κ, is 0.8 and is independent of M2, T, and temperature. The quantity ED is
defined by:

ED ¼ T
½1þ kNgð2Þ� ; ð2:51Þ

and inelastic energy loss is calculated according to the method of Lindhard using a
numerical approximation to the universal function, g(2):

gð2Þ ¼ 3:4008 21=6 þ 0:40244 23=4 þ 2

kN ¼ 0:1337Z1=6
1

Z1
A1

	 
1=2

;
ð2:52Þ

where 2 is the reduced energy given by:

2 ¼ A2T
A1 þA2

	 

a

Z1Z2e2

	 


a ¼ 9p2

128

	 
1=3

a0ðZ2=3
1 þ Z2=3

2 Þ�1=2;

ð2:53Þ

a0 is the Bohr radius, and ε is the unit electronic charge. If Ed ∼40 eV, then
ν = 10ED, where ED is in keV.

The displacement function can also be written as the Kinchin–Pease result
modified by a damage energy function, ξ(T), given by:

m Tð Þ ¼ n Tð Þ T
2Ed

	 

; ð2:54Þ
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where

n 2ð Þ ¼ 1

1þ 0:1337Z1=6
1

Z1
A1

	 
1=2

3:4008 21=6 þ 0:40244 23=4 þ 2� � ; ð2:55Þ

and giving the same result as in Eq. (2.50) except for the exclusion of the dis-
placement efficiency, κ. Figure 2.10 shows the effect of accounting for damage
efficiency in the Kinchin–Pease result. Note that the function approaches 1.0 as the
recoil energy is reduced. As energy increases, the damage efficiency drops faster for
light materials.

2.2.4 Effects of Crystallinity

The analysis thus far has assumed that the cascade occurs in a solid composed of a
random array of atoms. However, when the order of a crystal structure is imposed
(Assumption 6), two important effects occur that can alter the number of dis-
placements produced by a PKA; focusing and channeling. Focusing is the transfer
of energy and/or atoms by near head-on collisions along a row of atoms.
Channeling is the long-range displacement of atoms along open directions (chan-
nels) in a crystal structure in which an atom travels by making glancing collisions
with the walls of the channel which are just rows of atoms. Both processes can
result in long-range transport of interstitials away from the initial PKA or the
cascade. Both processes also reduce the number of displacements per PKA, ν(T), as
calculated from the simple Kinchin–Pease model.
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Fig. 2.10 The effect of electronic energy losses on the energy available for atomic displacements
(after [16])
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Focusing
The effects of focusing were first seen in the directional dependence of the threshold
energy, Ed. In an fcc lattice, for example, displacements occur in the ⟨100⟩ and
⟨110⟩ directions with the lowest energy transfer of any crystalline direction. Since
the direction of the primary knock-on is random, focusing must be possible for a
sizable range of polar angles off the close-packed direction. If exact head-on col-
lision were required to produce a linear collision chain, the phenomenon would be
of little practical significance since this probability is extremely low.

Focusing along an atomic row can be analyzed using the hard sphere approxi-
mation. The distance between atoms along a particular crystallographic direction is
denoted by D. Figure 2.11 shows two atoms of such a row in which a collision
sequence is initiated by the atom which was initially centered at A. This atom
receives energy T and moves off at an angle θ0 to the atomic row. The dashed circle
shows the atom position at the instant it strikes the next atom in the row. The radius
of the colliding sphere, R, is obtained from the Born–Mayer potential. The impact
transfers some of T to the second atom, which then moves off in the direction of the
line joining P and B at an angle θ1 to the row. From Fig. 2.11, we can also show that:

AP sin h0 ¼ PB sin h1: ð2:56Þ

If θ0 and θ1 are small, Eq. (2.56) can be approximated by:

APh0 	 PBh1; ð2:57Þ

and if θ0 and θ1 are very small, then:

AP 	 AB� PB ¼ D� 2R; and since PB ¼ 2R

D� 2Rð Þh0 ¼ 2Rh1;
ð2:58Þ

and

h0 D� 2Rð Þ ¼ h1 2Rð Þ: ð2:59Þ

A B

P

R D

0 1

Fig. 2.11 The simple
focusing effect assuming hard
sphere collisions
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If we further define a focusing parameter:

f 
 h1=h0; ð2:60Þ

then by Eq. (2.59):

f ¼ D
2R

� 1: ð2:61Þ

This permits us to write the following inequalities:

for f [ 1;D[ 4R and h0j j\ h1j j
for f\1;D\ 4R and h0j j[ h1j j: ð2:62Þ

Considering further collisions, by the time the momentum pulse reaches atom n, the
relation between angles is given by:

hn ¼ f hn�1

¼ f 2hn�2

¼ f 3hn�3

..

.

¼ f nh0 ¼ D
2R

� 1
	 
n

h0;

ð2:63Þ

or finally:

hn ¼ fð Þnh0 ¼ D
2R

� 1
	 
n

h0: ð2:64Þ

This last relation shows that if D > 4R, the focusing parameter f is greater than unity
so that the angles θn will increase in successive collisions. Conversely, if D < 4R, f
is less than unity and the angles θn converges to zero.

A set of conditions also exist under which the scattering angle θn will neither
diverge nor converge after successive collisions. These are the conditions for
critical focusing (θn = θn + 1 = …) which can be determined as follows. The recoil
angle of atom B can be related to the initial direction of atom A by applying the law
of sines to triangle APB:

sin p� h0 � h1ð Þ
sin h0

¼ D
2R

; ð2:65Þ
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which simplifies to:

sin h0 þ h1ð Þ
sin h0

¼ D
2R

: ð2:66Þ

The condition for critical focusing is θ1 = θ0. Applying this equality in Eq. (2.66)
gives:

sin 2h0
sin h0

¼ 2 cos h0 ¼ D
2R

; ð2:67Þ

and

cos h0 ¼ cos hc ¼ D
4R

; ð2:68Þ

or focusing will occur when cos h0 � D
4R

and:

cos hc ¼ D
4R

: ð2:69Þ

Equation (2.60) also shows that focusing of momentum is favored along rows of
atoms in the ⟨hkl⟩ directions for which the separation distance Dhkl is a minimum,
or the close-packed directions.

If we treat the atoms as having an energy-dependent radius, we can determine
the maximum possible energy for focusing at any given collision angle. The key is
to allow the potential between atoms to vary with separation. The critical focusing
energy, Ehkl

fc , is defined as that energy below which f < 1 and D < 4R, and focusing
is possible. In the hard sphere model, the relation between kinetic energy, E, and

potential energy V(r) for a head-on collision is given by Eq. (1.80) as V 2Rð Þ ¼ 1
2
E:

If V(r) is described by the Born–Mayer potential, Eq. (1.47), then V(r) = A exp
(−Br), and:

E ¼ 2A exp �2R=Bð Þ: ð2:70Þ

For a head-on collision, θc = 0, so cos hc ¼ D
4R

¼ 1; and we have:

Efc ¼ 2A exp
�D
2B

	 

: ð2:71Þ

This means that any angle greater than zero will result in defocusing for E ≥ Efc or
that focusing at an energy Efc can only occur for θ = 0°. Clearly then, the critical
focusing angle depends on the energy of the projectile. The relation between angle
and energy is developed by writing the expression for Efc in terms of D:
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D ¼ 2B ln
2A
Efc

	 

: ð2:72Þ

Now, for any atom of energy T reaching a separation of 4R:

4R ¼ 2B ln
2A
T

	 

: ð2:73Þ

Combining these equations gives:

D
4R

¼ cos hc ¼ ln 2A=Efcð Þ
ln 2A=Tð Þ ; T\Efc: ð2:74Þ

Note that the condition of critical focusing can be expressed in two ways:

1. Efc ¼ 2A exp
�D
2B

	 

: This condition gives the energy Efc for which focusing

occurs for a head-on collision (θc = 0).

2. cos hc ¼ ln 2A=Efcð Þ
ln 2A=Tð Þ : This condition gives the maximum angular deviation from

a head-on collision θc, at which a PKA of energy T can initiate a focused
sequence.

From the first expression, it should be apparent that focusing is a function of
crystallographic direction since D is a function of crystal structure. That is,

Ehkl
f ¼ 2A exp

�Dhkl

2B

	 

: ð2:75Þ

For example, in the fcc lattice, we have:

D 100h i ¼ a

D 110h i ¼
ffiffiffi
2

p

2
a

D 111h i ¼
ffiffiffi
3

p
a

therefore, since D⟨110⟩ < D⟨100⟩ < D⟨111⟩, we have E 110h i
f [E 100h i

f [E 111h i
f :

Typical values for Ef
⟨110⟩ are 80 eV in copper and 600 eV for gold. In any case,

Ef is much less than initial PKA energies.
From the preceding discussion, it should be apparent that focusing is only

applicable if a scattered atom is within an angle θc of an atomic row. Then, a focused
sequence can result. It is therefore important to determine the probability that the
initial direction of a struck atom is within a cone of apex θc about an atomic row.
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For a random starting direction, the probability of generating a focused collision
sequence at energy T is as follows

Pf Tð Þ ¼ h2c
4
: ð2:76Þ

Expanding cos θc in Eq. (2.69) gives:

1� 1
2
h2c 	

D
4R

; for small θc. Substituting from Eq. (2.76) gives:

Pf Tð Þ ¼ 1
2

1� D
4R

	 

; ð2:77Þ

or

Pf Tð Þ ¼ 1
2

1� ln 2A=Efcð Þ
ln 2A=Tð Þ

� �

¼ 1
2

ln 2T=Efcð Þ
ln Efc=2Að Þþ ln T=Efcð Þ
� �

:

ð2:78Þ

Since Efc/2A ≪ 1 and T/Efc * 1, then:

Pf Tð Þ ¼ 1
2
ln T=Efcð Þ
ln Efc=Að Þ T\Efc

¼ 0 T [Efc

ð2:79Þ

For n equivalent directions in the crystal:

Pf Tð Þ ¼ n
ln T=Efcð Þ
ln Efc=Að Þ : ð2:80Þ

For example, in copper, Efc * 80 eV, and for A * 20,000 eV,
Pf(60 eV) * 0.026n. For n = 12, then Pf * 0.3 or 30 %. Focusing refers to the
transfer of energy by elastic collisions along a line, but without involving the
transfer of mass. We will next discuss replacement collisions in which both energy
and mass are transferred.

Replacement Collisions
In addition to energy transfer, mass can be transferred by replacement of the struck
atom with the striking atom if the center of the first atom moves beyond the
midpoint of the two atoms as they reside in the lattice. In our analysis of focusing,
we assumed hard sphere collisions. However, if we assume that there is a softness
to the atom, three things occur:

1. The hard sphere model overestimates the angle of scattering for a particular
impact parameter, and hence, the amount of focusing must be overestimated.
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2. Atoms in the row feel the influence of the oncoming disturbance long before it
gets there so the atom is already moving. Since D is decreased, focusing is
enhanced.

3. Replacement becomes possible.

Referring to Fig. 2.12, as the collision proceeds, the distance x between atoms An

and An+l decreases continuously. The velocity of the center of mass (CM) is as
follows:

VCM ¼ M1

M1 þM2

	 

t1 þ M2

M1 þM2

	 

t2;

where t1 and t2 are in the laboratory system. The relative speed, defined by
g ¼ t1 � t2, gives:

t1 ¼ VCM þ M2

M1 þM2

	 

g

t2 ¼ VCM þ M1

M1 þM2

	 

g;

t = 0

t

t = tc

D D

D

x
An An+1

+ +

+ +

+ +

midpoint

V10

Vcm

x

t
0

D

tc

xm

(a)

(b)

Fig. 2.12 Head-on collisions in a focused chain when the interaction potential acts continuously
during the collision. (a) Atom positions during the collision initiated by the atom on the left.
(b) Separation of atoms An and An + 1 during the collision (after [5])

2.2 Modifications to the K–P Displacement Model 101



and the total kinetic energy of the two particles is as follows:

KE ¼ 1=2M1t
2
1 þ 1=2M2t

2
2;

and in terms of g and VCM is as follows

KE ¼ 1=2 M1 þM2ð ÞV2
CM þ 1=2lg2;

where μ is the reduced mass =
M1M2

M1 þM2

	 

. The total kinetic energy is divided into

two parts: one due to the motion of the system and another due to the relative
motion of the two particles. Conservation of total energy is given as Er + V(x) = Er0,
where V(x) is the potential energy at a head-on separation distance of x, Er0 is the
relative kinetic energy at infinite (initial) separation, and Er is the relative kinetic
energy at any point. Rewriting the kinetic energy in terms of g gives:

1
2
lg2 þV xð Þ ¼ 1

2
lg20

and

g0¼t10;

where g0 is the initial speed. This equation should be recognizable from our earlier
analysis in Chap. 1, Sect. 1.2.2. Recall that at x ¼ xmin; VðxminÞ ¼ 1=2lg20; and for
M1 = M2, then g0 = υ10 and V = E/2.

We also assume that the interaction energy at the initial separation is V Dð Þ �
1
2lg

2
0: The time rate of change of the separation distance is equal to the relative

speed:

dx
dt

¼ �g: ð2:81Þ

Taking the collision time as twice the time needed to reach the distance of closest
approach:

tc ¼ �2
Z xm

D

dx
g
¼ �2

Z V xmð Þ

V Dð Þ

dV
gdV=dx

; ð2:82Þ

where xm is the distance of closest approach.
Since V(x) = A exp(–x/B), then:

dV
dx

¼ �A
B
exp �x=Bð Þ ¼ �V

B
; ð2:83Þ

102 2 The Displacement of Atoms

http://dx.doi.org/10.1007/978-1-4939-3438-6_1


and:

g ¼ 1
2
lg20 � V xð Þ

� �
4
M

� �1=2

¼ E
2
� V

� �
4
M

� �1=2

¼ 2
E
2M

� V
M

� �1=2

;

ð2:84Þ

where μ = M/2 for like atoms and 1=2lg20 ¼ 1=4Mt210 ¼ E=2: Substitution of
Eqs. (2.83) and (2.84) into Eq. (2.82) yields:

tc ¼ B
2M
E

	 
1=2Z E=2

V Dð Þ

dV

V 1� 2V=Eð Þ1=2
ð2:85Þ

¼ 2B
2M
E

	 
1=2

tanh�1 1� 2V Dð Þ
E

� �1=2
: ð2:86Þ

Note that the definition of a hard sphere radius has been used for the upper limit,
i.e., xm is taken to be 2R(E). For V(D)/E ≪ 1,

tc ¼ B
2M
E

	 
1=2

ln
2E

V Dð Þ
� �

: ð2:87Þ

Since the speed of the center of mass is
t10
2

¼ E
2M

	 
1=2

; the distance moved by the

CM during the collision time, tc, is as follows:

x ¼ tc
E
2M

	 
1=2

: ð2:88Þ

If x >D/2, atom An will end up to the right of the initial halfway point and replacement
will occur, and An will occupy the lattice site occupied by atom An + 1. Relating the
distance x to energy by substituting for tc from Eq. (2.87) into Eq. (2.88) gives:

x
B
¼ ln

2Er

V Dð Þ
	 


: ð2:89Þ

For x = D/2:

exp
D
2B

	 

¼ 2Er

A exp �D=Bð Þ ;
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and the replacement energy becomes:

Er ¼ A
2
exp

�D
2B

	 

: ð2:90Þ

According to the above arguments, and comparing to Eq. (2.71), focused
replacement is possible when the energy transported in the collision chain satisfies:

E[Er ¼ 1
2
A exp

�D
2B

	 

¼ 1

4
Efc: ð2:91Þ

Therefore, we get focused replacement, or:
Efc/4 < T < Efc focused replacement
T < Efc/4 focused momentum/energy packet

Hence, mass transfer can occur when E is between Er = Efc/4 and Efc, which from
our previous example is about the same or slightly less than the displacement
energy, Ed. Figure 2.13 shows where focusing and replacement collisions fall on the
energy spectrum of the PKA.

Assisted Focusing
In our analysis of focusing, we have not accounted for the effects of surrounding
atoms or nearest neighbors. Due to their repulsion of the moving atom, they tend to
act as a lens and aid in the focusing process. The net result of this assisted focusing is
to increase the critical energy for focusing, Efc, rendering focusing more probable.
Second, the ring of atoms surrounding a focusing event also tends to dissipate energy
by glancing collisions. This effect is augmented by the vibrational motion of the atom
rings, which can be increased with temperature. The length of the replacement chain
and the number of collisions in the chain decrease as the temperature increases. The
increased motion of the surrounding atoms increases the energy loss from the col-
lision sequence. Other effects that destroy the sequence are alloying elements and
defects such as interstitials, vacancies, and dislocations. Figure 2.14 shows the
number of collisions in a focused chain of initial energy E in room temperature copper
along with the focusing probability. Table 2.3 from Chadderton [18] gives the
focusing and replacement energies in various directions in fcc and bcc lattices as

E

   focused 
replacement

focused 
energy packet

Efc

Er = 1/4Efc

0

Fig. 2.13 Energy scale for focused energy transfer and focused replacement sequence
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modified by surrounding atoms (assisted focusing). Note that in all cases, the
focusing energies are larger when the surrounding atoms aid in the focusing process.

Channeling
Channeling is the long distance displacement of energetic knock-on atoms down an
open direction in the crystal lattice. Figure 2.15a shows a schematic of an atom
spiraling down an open channel in a crystal lattice, and Fig. 2.15b shows axial and
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Table 2.3 (a) Equations for Ehkl
fc in the fcc and bcc lattices considering assisted focusing

(after [18]). (b) Equations for replacement energies ðEhkl
r Þ in the fcc and bcc lattices (after [18])

(a)

〈hkl〉 Face-centered cubic Body-centered cubic

〈100〉 AðD110Þ2
2B2 exp �D110

4B

	 
"
2A exp �D111

B
ffiffiffi
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p
	 


〈110〉
2A exp �D110

2B

	 

4
ffiffiffi
2

p
D111ð Þ2A
15B2 exp �D111

ffiffiffi
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2
ffiffiffi
3

p
B

 !""

〈111〉 6
19

	 
1=2AðD110Þ2
B2

exp �D110

2B
19
12

	 
1=2
 !"

2A exp �D111
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(b)

〈hkl〉 Face-centered cubic Body-centered cubic

〈100〉
5A exp � D110

D
ffiffiffi
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p
	 


A
2
exp �D100
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B
ffiffiffi
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↑ In the (110) plane only
↑↑ Assisted focusing
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Fig. 2.15 (a) Schematic of an atom moving in a channel in a crystal lattice (after [19]), and
(b) axial and planar channels in the fcc lattice (after [20])
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planar channels along specific crystallographic directions in the fcc lattice. The
walls of the passageway consist of atomic rows. If the rows surrounding the channel
are close-packed, discrete repulsive forces between atoms are “smeared out” and the
atom appears to be traveling in a long cylindrical tube with radius Rch. The value of
Rch can be determined by equating pR2

ch with the cross-sectional area of the channel.
If the amplitude of the lateral oscillations of the moving atom is small compared to
Rch, the potential well provided by the channel wall is roughly parabolic in the
direction transverse to the channel axis.

The interaction of the moving atom with a channel wall (Fig. 2.16) can be
described by a harmonic channel potential:

VchðrÞ ¼ kr2; ð2:92Þ

where r is the lateral distance from the axis, and k is the force constant that depends
on the potential function describing atom–atom repulsion and channel dimension
Rch. Using the Born–Mayer potential to describe atom–atom interactions in this
energy regime, k becomes:

k ¼ A
DB

2pRch

B

	 

exp

�Rch

B

	 

; ð2:93Þ

where D is the atom spacing in the rows forming the channels. Moving atoms enter
the channel with a velocity component along the channel axis (Fig. 2.16) given by:

Vz0 ¼ 2E
M

	 
1=2

cos h0; ð2:94Þ

0

z

channel wall

E
r

Vch channel 
potential

0 Rch

Fig. 2.16 Trajectory of a
channeled atom (after [5])
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where (2E/M)1/2 = V0. The axial velocity is gradually reduced by inelastic energy
loss to the electron cloud. The moving atom undergoes simple harmonic motion in
the r direction with period τ given by:

s ¼ 2p
M
2k

	 
1=2

; ð2:95Þ

and the initial wavelength of the oscillation is equal to Vz0τ for θ0 = 0 or:

k ¼ 2p
E
k

	 
1=2

: ð2:96Þ

The amplitude of lateral oscillation is determined by the injection angle, θ0, and the
kinetic energy of the injected atom, E. The r component of the atom velocity as it
enters the channel is as follows:

Vr0 ¼ 2E
M

	 
1=2

sin h0 ffi 2E
M

	 
1=2

h0: ð2:97Þ

So the radial component of the kinetic energy is Eh20, which is equal to the potential
energy at the transverse amplitude, kr2max. Equating kinetic and potential energies
and solving for rmax gives:

rmax ¼ E
k

	 
1=2

h0; ð2:98Þ

and the trajectory of the channeled atom is as follows:

r ¼ h0
E
k

	 
1=2

sin
k
E

	 
1=2

Z

" #
: ð2:99Þ

The critical angle below which channeling can occur, θch, is obtained by equating
the transverse amplitude, rmax, and the channel radius, Rch:

hch ¼ Rch
k
E

	 
1=2

: ð2:100Þ

Note that θch decreases as E increases, as expected. When the mean free path between
collisions is of the order of a few atom spacings, large-angle collisions become
probable and channeling dissipates. The channeling probability is difficult to deter-
mine since an atom must be knocked into the channel, but there are no atoms near the
channel axis. The event probably starts with an impact on an atom forming the
channel wall. If the entrance angle is small enough, it may begin to channel.
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There is no upper limit on energy for channeling. Instead, θch just becomes smaller
asE increases. Theminimum channeling energy occurs when the wavelength is*nD
or a few atom spacings (n * 2). Essentially, there develops a resonance between
impulses from channel walls and transverse oscillations. The trajectory terminates in
a violent collision. Recall that our treatment is only valid if λ ≫ D. Solving for E in
Eq. (2.96) and letting λ = 2D yieldEch* 0.1 kD2. For copper, Ech is about 300 eV.Ech

is larger for large mass because k increases with mass. Channeling is a high-energy
phenomenon and is most significant for light atoms, while focusing is a low-energy
phenomenon that is most significant for heavy atoms.

Effect of Focusing and Channeling on Displacements
The probability of a crystal effect is a function of recoil energy. P(T) is used for
either Pf or Pch, but since Ef * 100 eV, Pf is quite small. The equation governing
cascade effects can be modified to account for crystal effects by modifying
Eq. (2.14):

v Tð Þ ¼ P Tð Þþ 1� P Tð Þ½ � 2Ed

T
þ 2

T

Z T

2Ed

v eð Þde
� �

: ð2:101Þ

The first term on the right of Eq. (2.101) represents the lone displaced atom, which
results if the PKA is channeled or focused on the first collision. The second term
gives the number of displacements created by a PKA that makes an ordinary
displacement on the first collision. Assuming P ≠ P(T), Eq. (2.101) is differentiated
with respect T to yield:

T
dv
dT

¼ 1� 2Pð ÞvþP: ð2:102Þ

Integration gives

v Tð Þ ¼ CT 1�2Pð Þ � P
1� 2P

; ð2:103Þ

and the constant, C can be found by substitution into Eq. (2.102):

C ¼ 1� P

2Edð Þ 1�2Pð Þ ;

resulting in the final solution:

v Tð Þ ¼ 1� P
1� 2P

T
2Ed

	 
 1�2Pð Þ
� P
1� 2P

: ð2:104Þ

2.2 Modifications to the K–P Displacement Model 109



For small P, ν (T) can be approximated by:

v Tð Þ ¼ T
2Ed

	 
 1�2Pð Þ
: ð2:105Þ

It should be noted that the most important crystal effect is channeling, which is most
important at high energies. For example, for P = 7 %, a 10 keV PKA in iron
produces 100 displacements or about half the amount with P = 0. Figure 2.17 shows
where channeling occurs on the PKA energy scale. Note that channeling is a
high-energy phenomenon and that there is a gap between the replacement energy,
below which replacements or focused energy transfer occurs, and the channeling
energy, above which channeling occurs. Given the K–P model for displacement and
the various modifications to the basic model, we now turn to the determination of
the number of displaced atoms.

2.3 The Displacement Cross Section

The results of previous sections may now be used to define the displacement cross
section as:

rD Eið Þ ¼
Z T̂

�T
v Tð Þr Ei;Qj; T

� �
dT; ð2:106Þ

where v(T) is the number of displacements caused by a PKA of energy T, σ(Ei, Qj, T)
is the general form of the energy transfer cross section, and Ť and T̂ are the minimum
and maximum transfer energies. This quantity was first presented in Eq. (2.2) and
gives the average number of displacements produced by an incoming neutron of
energy Ei. We can apply this expression to the various regimes of scattering in order
to determine their individual contributions to the total number of displacements.

E

     focused 
energy packet

Ech

Efc

0 eV

Er=1/4Efc

    focused 
replacement

channeling

20 eV

80 eV

300 eV

Fig. 2.17 Energy scale
showing focused energy
transfer and focused
replacement sequence and
channeling
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We will first determine σD(Ei) for each type of interaction using the basic K–P result
and then go back and add in the modifications.

2.3.1 Elastic Scattering

Consider σs(Ei, T) for elastic scattering. From Eq. (1.19),

rs Ei; Tð Þ ¼ 4p
cEi

rs Ei;/ð Þ:

In the case of isotropic scattering:

rs Ei;/ð Þ ¼ rs Eið Þ
4p

; rs Ei; Tð Þ ¼ rs Eið Þ
cEi

;

therefore,

rDs Eið Þ ¼ rs Eið Þ
cEi

Z cEi

Ed

v Tð ÞdT : ð2:107Þ

Should we wish to consider anisotropic elastic scattering in systems such as fast
reactors, the angular dependence of the elastic scattering cross section can be
written in a series of Legendre polynomials:

rs Ei;/ð Þ ¼ rs Eið Þ
4p

X1
‘¼0

a‘ Eið ÞP‘ cos/ð Þ; ð2:108Þ

where σs(Ei) is the total elastic scattering cross section for incident neutrons of
energy Ei, P‘ is the ‘th Legendre polynomial, and values of a‘ are the
energy-dependent coefficients of the cross section expansion. At neutron energies
encountered in thermal or fast reactors, it is sufficient to retain only the first two
terms, ‘ = 0 and ‘ = 1. Since P0 = 1 and P1 = cos ϕ:

rs Ei;/ð Þ ¼ rs Eið Þ
4p

1þ a1 Eið Þ cos/½ �: ð2:109Þ

Also, given that cos ϕ = 1–2T /γEi and substituting Eq. (2.109) into Eq. (2.106)
gives:

rDs Eið Þ ¼ rs Eið Þ
cEi

Z cEi

Ed

v Tð Þ 1þ a1 Eið Þ 1� 2T
cEi

	 
� �
dT : ð2:110Þ
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2.3.2 Inelastic Scattering

Since inelastic scattering is isotropic in the center-of-mass system:

rsj Ei;Qj;/
� � ¼ rsj Ei;Qj

� �
4p

: ð2:111Þ

Equation (1.30) gives the energy transfer cross section for inelastic scattering in the
resonance region as:

rsj Ei;Qj; T
� � ¼ rsj Ei;Qj

� �
cEi

1þ Qj

Ei

1þA
A

	 
� ��1=2

;

so that

rDsj Eið Þ ¼
X
j

rsj Ei;Qj
� �
cEi

1þ Qj

Ei

1þA
A

	 
� ��1=2Z T̂j

T
_
j

v Tð ÞdT; ð2:112Þ

where the minimum and maximum values of T(Ei, Qj, ϕ) are given by Eq. (1.27),
and setting cos ϕ = −1 and 1, respectively, gives:

T̂j ¼ cEi

2
1þ 1þA

2A
Qj

Ei
þ 1þ Qj

Ei

1þA
A

	 
1=2
" #

�Tj ¼ cEi

2
1þ 1þA

2A
Qj

Ei
� 1þ Qj

Ei

1þA
A

	 
1=2
" #

:

2.3.3 (n, 2n) and (n, γ) Displacements

The displacement cross section for (n, 2n) reactions can be written as:

rD n;2nð Þ Eið Þ ¼
Z Ei�E0

m

0
r n; 2nð Þ Ei; Tð Þ T

2Ed
dT ; ð2:113Þ

where σ(n, 2n) (Ei, T) is given by Eq. (1.40).
The displacement cross section due to (n, γ) reactions can be written as:

rDc Eið Þ ¼ rc

Z T̂

0

T
2Ed

dT: ð2:114Þ
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However, since we have assumed that the lattice atom recoils with an average
energy

T ¼ T̂
2
¼ E2

c

4 Aþ 1ð Þc2 ;

and that Eγ for a given isotope is either known or can be measured, Eq. (2.114) can
be simplified to:

rDc ¼ rc
T
2Ed

¼ rc
E2
c

8EdðAþ 1Þc2 : ð2:115Þ

The total displacement cross section due to these forms of neutron interaction then
becomes:

rD Eið Þ ¼ rDs Eið Þþ rDsj Eið Þþ rD n;2nð Þ Eið Þþ rDc

¼ rs Eið Þ
cEi

Z cEi

Ed

T
2Ed

1þ a1 Eið Þ 1� 2T
cEi

	 
� �
dT

þ
X
j

rsj Ei;Qj
� �
cEi

1þ Qj

Ei

1þA
A

	 
� ��1=2 Z T̂j

�Tj

T
2Ed

dT

þ
Z Ei�E0

m

0
r n;2nð Þ Ei; Tð Þ T

2Ed
dT

þ rc
E2
c

8Ed Aþ 1ð Þc2 ;

ð2:116Þ

where the terms are for elastic scattering, inelastic scattering in the resonance
region, (n, 2n) reactions and (n, γ) reactions, respectively.

2.3.4 Modifications to the K–P Model and Total
Displacement Cross Section

The displacement cross section can be modified to account for the relaxation of the
various assumptions made to the basic K–P model as in Sect. 2.2. These modifi-
cations are summarized in Table 2.4. Applying these correction terms to the basic
K–P result by consolidating Assumptions 1 and 3 into a single constant C′ and
using Eq. (2.104) for the effect of crystallinity transform Eq. (2.116) to read:
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rD ¼ rs Eið Þ
cEi

Z cEi

Ed

1� P
1� 2P

C0n Tð Þ T
2Ed

	 
 1�2Pð Þ
� P
1� 2P

" #

� 1þ a1 Eið Þ 1� 2T
cEi

	 
� �
dT

þ
X
j

rsj Ei;Qj
� �
cEi

1þ Qj

Ei

1þA
A

	 
� ��1=2

�
Z T̂j

�Tj

1� P
1� 2P

C0n Tð Þ T
2Ed

	 
 1�2Pð Þ
� P
1� 2P

" #
dT

þ
Z Ei�E0

m

0
r n;2nð Þ Ei; Tð Þ 1� P

1� 2P
C0n Tð Þ T

2Ed

	 
 1�2Pð Þ
� P
1� 2P

" #
dT

þ rc
1� P
1� 2P

C0n Tð Þ E2
c

8Ed Aþ 1ð Þc2
 !1�2P

� P
1� 2P

2
4

3
5:

ð2:117Þ

Using the more simplified expression for the effect of crystallinity, Eq. (2.104)
reduces Eq. (2.117) to:

Table 2.4 Modifications to the displacement cross section

Assumption Correction to ν(T ) = T/2Ed Equation in text

3: Loss of Ed 0:56 1þ T
2Ed

	 

Equation (2.31)

4: Electronic energy loss cutoff
n Tð Þ T

2Ed

	 

Equation (2.54)

5: Realistic energy transfer cross
section

C
T
2Ed

; 0:52\C� 1:22
Equation (2.33),
(2.39)

6: Crystallinity 1� P
1� 2P

T
2Ed

	 
 1� 2Pð Þ
� P
1� 2P

 T
2Ed

	 
 1� 2Pð Þ

Equation (2.104)

Equation (2.105)
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rD ¼ rs Eið Þ
cEi

Z cEi

Ed

C0n Tð Þ T
2Ed

	 
 1�2Pð Þ" #
1þ a1 Eið Þ 1� 2T

cEi

	 
� �
dT

þ
X
j

rsj Ei;Qj
� �
cEi

1þ Qj

Ei

1þA
A

	 
� ��1=2 Z T̂j

�Tj

C0n Tð Þ T
2Ed

	 
 1�2Pð Þ
dT

þ
Z Ei�E0

m

0
r n;2nð Þ Ei; Tð Þ C0n Tð Þ T

2Ed

	 
 1�2Pð Þ
dT

þ rc C0n Tð Þ E2
c

8Ed Aþ 1ð Þc2
 !1�2P

;

ð2:118Þ

or,

rD ¼ rDs þ rDi þ rD n;2nð Þ þ rDc: ð2:119Þ

The displacement cross section for stainless steel was calculated by Doran [21]
using the energy partition theory of Lindhard and is shown in Fig. 2.18.
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Fig. 2.18 The displacement cross section for stainless steel based on a Lindhard model and
ENDF/B scattering cross sections (after [21])
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2.4 Displacement Rates

Recall that the displacement rate was given in Eq. (2.1) as:

R ¼
Z Ê

E
_ N/ Eið ÞrD Eið ÞdEi:

This is the displacement rate density or total number of displacements per unit
volume per unit time [#/cm3 s]. To get a rough estimate of the order of magnitude of
this number, let us simplify the displacement cross sections as follows. Neglecting
(n, 2n) and (n, γ) contributions to displacements, all modifications to the simple K–
P displacement model (i.e., using ν(T) = T/2Ed), and neglecting Ed relative to Ei, the
displacement cross section due to elastically and inelastically scattered neutrons
only becomes:

rD Eið Þ ¼ rs Eið Þ
cEi

Z cEi

Ed

T
2Ed

1þ a1 Eið Þ 1� 2T
cEi

	 
� �
dT

þ
X
j

rsj Ei;Qj
� �
cEi

1þ Qj

Ei

1þA
A

	 
� ��1=2 Z T̂j

�Tj

T
2Ed

dT:

ð2:120Þ

Assuming that elastic scattering is isotropic (a1 = 0), neglecting inelastic scattering
and integrating between the limits Ed and γEi gives:

rD Eið Þ ¼ rs Eið Þ
cEi

Z cEi

Ed

T
2Ed

dT ; ð2:121Þ

and if γEi > Ec, then:

rD Eið Þ ¼ rs Eið Þ
cEi

Z 2Ed

Ed

dT þ
Z Ec

2Ed

T
2Ed

dT þ
Z cEi

Ec

Ec

2Ed
dT

� �

¼ rs Eið Þ
2cEiEd

cEiEc � E2
c

2

� �
:

ð2:122Þ

If we choose γEi * Ec, then we have:

rD Eið Þ 	 cEi

4Ed

	 

rs Eið Þ; ð2:123Þ

and Eq. (2.1) becomes:
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Rd ¼ Nc
4Ed

Z 1

Ed=c

rs Eið ÞEi/ Eið Þ dEi ð2:124Þ

¼ Nrs
c�Ei

4Ed

	 

/; ð2:125Þ

where Ēi is an average neutron energy and ϕ is the total neutron flux above energy
Ed/γ, and the term in brackets is the number of displacements (Frenkel pairs)
produced per neutron. The validity of assuming isotropic scattering and neglecting
inelastic scattering is shown in Figs. 2.19 and 2.20. Essentially, both approxima-
tions are reasonable at energies below one to a few MeV.

Example 2.1. Neutron irradiation of iron
As an example, let us look at the damage caused by 0.5 MeV neutrons in Fe
in a fast flux that may be representative of the core of a fast reactor:

N = 0.85 × 1023 atoms/cm3

σs = 3 × 10−24 cm2

ϕ = 1015 neutrons cm−2s−1
cEi
4Ed

¼ 350 displaced atoms/neutron

Rd is 9 × 1016 displaced atoms per cm3 per second, or dividing Rd by
N gives *10−6 dpa/s or about 32 dpa/year. This is equivalent to each atom
being displaced from a normal lattice site once every 12 days.
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Fig. 2.19 Recoil energy
spectra from the elastic
scattering of fast neutrons
using data from ENDF/B files
(after [22])
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A second example can be worked for the displacement rate in the alu-
minum fuel plates in an MTR-type thermal neutron research reactor. In this
case, we have:

Ei * 0.5 MeV
N = 0.6 × 1023 atoms/cm3

σs = 3 × 10−24cm2

ϕ = 3 × 1013 neutrons cm−2s−1

cEi

4Ed
¼ 690 displaced atoms/neutron

Rd is 4 × 1015 displaced atoms per cm3 per second, or dividing Rd by
N gives *7 × 10−8 dpa/s or about 2 dpa/year. Note that even though the
number of displacements per neutron is almost a factor of 2 higher in Al than
in Fe, the damage rate is significantly lower because of the much lower fast
flux in this type of reactor.

2.5 Correlation of Property Changes and Irradiation Dose

The ultimate objective of the calculation of Rd is to provide a prediction of the
extent of change of a particular property of the material under irradiation. The
mechanical property may be yield strength, swelling, degree of embrittlement, etc.
Recall in the introduction that the determination of the number of displaced atoms
was motivated by the inability of particle fluence to account for property changes
(see Fig. 1 in the Introduction). While an improvement over units of exposure such
as neutron fluence, displacement rate alone cannot account for the macroscopic
changes observed, and a semiempirical method of correlating damage with
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Fig. 2.20 Displacement cross
section for nickel showing the
elastic and inelastic
components (after [21])
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macroscopic property changes has evolved known as the damage function method.
In this method, the atom displacement rate is replaced with the change in some
macroscopic property after a time t of irradiation. The displacement cross section is
replaced by the damage function for the particular mechanical property, Gi(E),
hence:

DPij ¼
Z Z

Gi Eð Þ/j E; tð Þ dE dt; ð2:126Þ

where ΔPij is the change in the property labeled by the index i, during an irradiation
time of t and in a neutron flux where ϕj(E,t) is the jth neutron differential spectrum.
Assuming energy–time separability, ϕj(E,t) = ϕj(E,)t, then Eq. (2.126) can be
rewritten as

DP kð Þ
ij ¼ t �

Z
GðkÞ

i Eð Þ/j Eð Þ dE; ð2:127Þ

where the superscript refers to the kth cycle of iteration.
The objective is to deduce a single function Gi(E) from a set of measured ΔPi

values. Given DP kð Þ
ij and ϕj(E) as input along with an initial approximation of

Gi(E) or G
0ð Þ
i Eð Þ; a computer code is used to generate iterative solutions G kð Þ

i Eð Þ.
An appropriate solution is obtained when the standard deviation of the ratios of all

measured-to-calculated values DPij=DP
kð Þ
ij reaches a lower value that is consistent

with experimental uncertainties. As it turns out, the resultant damage function is
highly sensitive to the initial approximation as shown in Fig. 2.21. But note that
since the shape of Gi(E) is the same as the displacement function, it is clear that they
are related. However, this result tells us that we cannot fully understand radiation
effects by only calculating the number of displaced atoms. We cannot treat radiation
effects as a black box. Rather, in order to understand the effect of the damage on the
properties of the material, we must understand the fate of these defects after they are
formed. This realization is reinforced by the property dependence on dose shown in
Fig. 2.22. Note that for the three property changes, resistivity, radiation-induced
segregation, and hardening, the functional dependence on dose is strikingly dif-
ferent between them. While property change certainly relates to displacement
damage, the nature of the change is not uniform but varies considerably depending
on the property measured. The next chapter explores the spatial and temporal
distribution of radiation damage. But before we examine the damage zone in detail,
let us complete our picture of the production of displacements by addressing the
damage created by charged particles such as ions and electrons.
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2.6 Displacements from Charged Particle Irradiation

Displacement from charged particles differs from that due to neutrons because as
they travel through the lattice, they lose energy via electronic excitation in addition
to via elastic collisions. Figure 2.23 shows the trade-off in energy loss mechanism
dominance with energy in the energy range of relevance for ion–solid interaction,
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Fig. 2.21 (a) 60 ksi yield strength damage function for 304 stainless steel irradiated and tested at
480 °C (after [23]) (b) Damage function for a 2.0 × 10−8 psi−1 �e=�r property change for stainless
steel (after [24])
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and Fig. 2.24 shows the residual ion energy as a function of ion penetration depth.
Note that electronic stopping will dominate at short depths, but elastic collisions
will dominate near the end of range. An expression for the number of displacements
from a charged particle can be derived from the analysis of energy lost from the
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Fig. 2.22 Dose dependence of swelling, resistivity, and radiation-induced segregation

dE
/d

x

E 1/2

electronic

nuclear

Fig. 2.23 Variation in nuclear and electronic stopping powers over the energy range of relevance
to ion–solid interactions

Io
n 

en
er

gy

Penetration depth

electronic 
stopping

nuclear 
stopping

Fig. 2.24 Residual range of an ion incident on a target and the regimes of electronic and nuclear
stopping dominance
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PKA by electronic excitation given in Sect. 2.2.3 and described by Eq. (2.40)
through Eq. (2.49). Equation (2.44) describes the loss of energy to both atoms and
electrons in the target by the PKA. We can revisit this analysis assuming that the
particle we are tracking is the incident ion. As was done in Eq. (2.45), we can
expand the terms for ν(T − εa) and ν(T − εe) in a Taylor series and truncate the series
after the second term, giving:

v T � eað Þ ¼ v Tð Þ � dv
dT

ea;

v T � eeð Þ ¼ v Tð Þ � dv
dT

ee;
ð2:128Þ

and the integrals involving the terms ν(T − εa) and ν(T − εe) can both be written in
the general form:

Z emax

0
v T � eð Þr T ; eð Þde ¼ v Tð Þ

Z emax

0
r T ; eð Þde� dv

dT

Z emax

0
er T ; eð Þ de

¼ v Tð Þr Tð Þ � dv Tð Þ
dT

S Tð Þ;
ð2:129Þ

where S(T) is the stopping cross section. Since in this treatment, the ion is the
incoming projectile, we will rewrite Eq. (2.129) using our established convention
that the incoming particle is of energy Ei and it transfers energy T to the target
atoms and electrons, and the maximum energy transfer is T̂ :

Z T̂

0
v Ei � Tð Þr Ei; Tð ÞdT ¼ v Eið Þ

Z T̂

0
r Ei; Tð ÞdT � dv

dE

Z T̂

0
Tr Ei; Tð Þ dT

¼ v Eið Þr Eið Þ � dvðEiÞ
dE

S Eið Þ;
ð2:130Þ

where Eq. (1.79) is used to transform the integral of the differential energy transfer
cross section, σ(Ei,T), to the total collision cross section, σ(Ei), and Eq. (1.129) is
used to transform the integral of Tσ(Ei,T) into the stopping cross section S(Ei).
Applying the results of Eqs. (2.129) and (2.130) into Eq. (2.44) gives:

dv Eið Þ ¼ dE
S Eið Þ

Z T̂

0
v Tð Þr Ei; Tð Þ dT : ð2:131Þ

Since we are concerned with the total number of displacements over the entire
range of the ion rather than the specific number of displacements over a distance
dx of the sample, we can integrate Eq. (2.131) over the entire range of ion energy
loss to obtain the number of displacements resulting from an incident ion with
initial energy Ei:

122 2 The Displacement of Atoms

http://dx.doi.org/10.1007/978-1-4939-3438-6_1
http://dx.doi.org/10.1007/978-1-4939-3438-6_1


v Eið Þ ¼
Z Ei

0

dE0

S E0ð Þ
Z T̂

Ed

v Tð Þr E0; Tð ÞdT

¼
Z Ei

0
rd E0ð Þ dE0

S E0ð Þ ;
ð2:132Þ

and

Z T̂

Ed

v Tð Þr E0; Tð ÞdT 
 rd E0ð Þ; ð2:133Þ

where E′ = E′(x) is the ion energy as a function of the traveled path length x as the
ion travels down to zero energy. We can work a simple example using an
approximation to the treatment given above. We are interested in the number of
collisions made by an ion as it passes through a solid. We will take I as the ion flux
in units of ions/cm2 s, and we can write the number of collisions per second in a
volume element of unit cross-sectional area and thickness dx which transfer energy
in the range (T, dT) to atoms of this element as:

NIr E; Tð Þdx: ð2:134Þ

The number of collisions per unit volume per unit time which transfer energy in (T,
dT) at depth x is NIσ(E, T) [collisions/cm3 s]. The number of displaced atoms for
each collision that produces a PKA of energy T is ν(T). Therefore, the production
rate of displaced atoms at depth x is as follows:

Rd xð Þ ¼ NI
Z cE

Ed

r E; Tð Þv Tð Þ dT ½displacements/cm3s]: ð2:135Þ

(Note that we have not accounted for the fact that I is a function of x (or E) and that
I(x) ≠ I0.) E is a function of x since the ion slows down by loss of energy to the
electrons of the target. The functional form of E(x) can be estimated using dE/
dx = kE1/2 as:

E xð Þ ¼ Eið Þ1=2�1=2kx
h i2

; ð2:136Þ

where Ei is the initial energy of the ion when it strikes the target. The number of

displaced atoms/atom/s is Rd(x)/N, and the dpa
ðions/cm2Þ

at a depth x is Rd(x)/NI. We

will assume that σ(E, T) can be described by Rutherford scattering, and using the
Lindhard treatment for ν(T) from the K–P model and assuming ξ = 0.5 gives:
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Rd
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¼
Z cEi

Ed

1
2
pZ2

1Z
2
2e

4

4
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2 1
Ei

4MiM

MþMið Þ2
1
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2Ed

dT

¼ pZ2
1Z

2
2e

4

4EiEd

Mi

M

	 

ln
cEi

Ed

dpa

ion/cm2 :

ð2:137Þ

Applying this result to 0.5 MeV protons in iron gives *10−18 dpa/(ions/cm2) at the
surface. 20 MeV C+ ions incident on nickel produce *3 × 10−18 dpa/(ions/cm2) at
the surface, but 50 times this amount at the damage peak. These values can be
compared to the damage rate from 0.5 MeV neutrons in iron:

Rd

N/
¼ cEi

4Ed

	 

rs

¼ 350� 3� 10�24

¼ 1� 10�21 displacements

n/cm2 :

ð2:138Þ

Comparing 0.5 MeV neutrons to 20 MeV C+ ions shows that over their range C+

ions produce 3000 times more displacements than do neutrons. Figure 2.25 com-
pares the displacement rates as a function of penetration depth for ions of various
mass and energy. As expected, for the same energy, ions of heavier mass deposit
their energy over a shorter distance resulting in higher damage rates. Note that due
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Fig. 2.25 Displacement-damage effectiveness for various energetic particles in nickel (after [25])
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to the large collision mean free path of a neutron as compared to an ion, the neutron
damage energy is low and constant over distances of millimeters.

Nomenclature

a Lattice constant
a0 Bohr radius of the hydrogen atom
A Atomic mass
A Pre-exponential constant in Born–Mayer relation, Eq. (1.47)
B Spacing between barrier atoms in crystal lattice
B Constant in exponent in Born–Mayer relation, Eq. (1.47)
c Speed of light
D Nearest neighbor spacing between atoms
Ec Cutoff energy; critical energy for focusing
Ech Critical energy for channeling
Efc Critical focusing energy
Ed Displacement energy
ED Damage energy
Ei Projectile energy
Er Critical energy for replacement collisions; relative kinetic energy
Es Sublimation energy
Eγ Gamma ray energy
Ei Incoming particle energy
E0
m Kinetic energy of incoming particle in CM system

E00
m Energy of neutron after (n, 2n) reaction

E∗ Saddle point energy
Eeq Energy of atom in equilibrium lattice site
f Focusing parameter
g Relative speed υ1 − υ2
G Damage function
Ī Excitation–ionization level
k Force constant; constant in the electronic energy loss term, kE1/2

m Mass of incoming particle; 1/s in power law expression
me Mass of the electron
M1 Mass of projectile
M2 Mass of target
N Atom number density
p, Pe, Pa Probability, referring to electron and atom
Pch Channeling probability
Pd Displacement probability
Pf Focusing probability
Q Excitation energy of nucleus
req Equilibrium spacing between atoms
rmax Transverse amplitude of channeled atom
R Atomic radius
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Rch Radius of channel
Rd Displacement rate [#/cm3 s]
s Exponent in the power law approximation
S, Se, Sn Stopping power electronic, nuclear
tc Collision time
T Energy transferred in collision
Ť Minimum energy transferred
T̂ Maximum energy transferred
�T Average energy transferred
T‘ Energy transferred to target atom after (n, 2n) reaction
U Energy per atom in a crystal
Ub Binding energy lost by an atom when leaving a lattice site
V(r) Potential energy
υ1 Velocity of projectile in laboratory system
υ2 Velocity of target in laboratory system
VCM Velocity of CM in laboratory system
Y Distance to atom barrier
z Impact parameter
Z Atomic number
β Compressibility
ε Secondary atom knock-on energy unit charge in Eq. (2.52)
εeq Energy of atom in a normal lattice site
ε* Energy of atom at saddle point
2 Reduced PKA energy
ϕ, Φ Neutron flux, fluence
γ 4M1M2/(M1 + M2)

2

η Energy lost to electronic excitation in the NRT model
κ Displacement efficiency
μ Reduced mass
υ Specific volume of an atom
ν(T) Displacement function
θ Scattering angle in laboratory system
θc Critical focusing angle
θch Critical channeling angle
σ(Ei) Total atomic collision cross section
σ(Ei, T) Differential energy transfer cross section
σD Displacement cross section
σs Scattering cross section
σsj Inelastic scattering cross section for the jth resonance
σ(n, 2n) Cross section for (n, 2n) reactions
σγ Cross section for (n, γ) reactions
τ Period for oscillation for a channeled atom
ξ Damage energy efficiency, Eq. (2.50)
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Problems

2:1 (a) Using the simple K–P model and assuming only elastic, isotropic
scattering, calculate the number of displacements per atom (dpa) in
nickel subjected to a fast neutron (2 MeV) fluence of 1022 n/cm2

(b) Using the relativistic expression for the electron–atom energy transfer,
calculate the minimum electron energy required to displace an atom in
(i) Al and (ii) W.

2:2 In a (n, 2n) reaction, a second neutron can only be emitted if the residual
excitation of the nucleus after emission of the first neutron exceeds the
binding energy of a neutron in the mass M nuclide. The recoil energy after
emission of the first neutron is taken to be the average value (cos ϕ = 0).
Write an expression for the recoil energy following the second emission.

2:3 An 56Fe nucleus undergoes an (n, γ) reaction resulting in the release of a
single 7 MeV gamma ray, on average. If a steel component is located in a
reactor where the peak thermal flux is 1 × 1014 n/cm2 s and the thermal/fast
flux ratio is one ðwhereEfast

ave � 1MeVÞ; determine the relative displacement
rates by fast neutrons, recoil nuclei, and gamma rays which undergo
Compton scattering. Assume σ(n, γ) * 4b, σs * 3b.

2:4 A slab of iron is exposed to a 20 MeV gamma source.

(a) What is the most probable interaction between the gamma and the
electrons in the Fe?

(b) Assume the reaction you chose in part (a) occurs. Can this lead to the
displacement of an Fe atom if the displacement energy is 40 eV?

2:5 A thermal neutron causes the following reaction

27Alþ n !28 Alþ c:

The gamma energy is 1.1 keV. The gamma will interact with lattice
electrons. What is the most probable event? For this event, what is the
maximum energy transferred? Does the resultant electron have enough
energy to displace an aluminum atom (assume the displacement energy is
25 eV). Can the recoil Al atom displace another aluminum atom?

2:6 The (n, γ) reaction in 56Fe releases a prompt gamma ray of energy
Eγ = 7 MeV.

(a) What is the recoil energy of the 57Fe product nucleus?
(b) Determine the number of displaced atoms per 57Fe recoil assuming

Ed = 40 eV.
(c) If the thermal component of the neutron flux in a fast reactor is

1013 n/cm2 s, what is the damage production rate due to the (n, γ)
reaction in 56Fe?
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(d) If the fast flux is given by ϕf (En) = 1015δ (En − 0.5), where En is in
MeV, what is the damage production rate due to the fast flux in iron?

Use the K–P displacement formula in (c) and (d). The scattering cross section
for 0.5 MeV neutrons is 3 barns. Also, r56a  2:5 barns for part (c).

2:7 Assuming that atom–atom interactions can be treated as near head-on col-
lisions, the appropriate potential function is then the Born–Mayer potential.
Write an expression for the threshold energy for unassisted critical focusing
along the [110] direction in fcc nickel in terms of the lattice constant, a.

2:8 For iron (equilibrium phase for 400°C), assuming a focusing collision
occurs, how much does the closest approach (the allowed equivalent hard
sphere radius calculated using a Born–Mayer potential) change between a
[100] collision chain and a [110] collision chain?

2:9 (a) Calculate the focusing energy of the ⟨111⟩ direction for gold under the
condition of assisted focusing.

(b) Will focusing occur along the ⟨111⟩ direction in the absence of assisted
focusing? Why?

(c) The experimental focusing energy of gold is 21,000 eV for the ⟨111⟩
direction. Compare your answer with this value.

2:10 (a) Determine the critical focusing energy for the ⟨111⟩, ⟨110⟩, and ⟨100⟩
directions in fcc copper and iron.

(b) Plot θc as a function of T < Ec for the ⟨111⟩ directions in Ni and Fe.
Comment on similarities and differences.

(c) Do the same for the ⟨110⟩ direction of each.
(d) Repeat parts (a) and (b) using the inverse square potential, V(r) = A/r2,

where A = 1.25 eV nm2.
(e) Over what energy range does focused replacement occur? How about

focused energy packets only?

2:11 For the focusing process as described in Problem 2.10, give a physical
explanation of why the critical angle for focusing, θc, should depend on the
projectile energy.

2:12 A 30 keV ion enters a channel in the solid lattice and loses energy only by
electronic excitation. Using the Lindhard stopping power formula Eq. (1.191),
determine the distance traveled by the ion before it is dechanneled. The
minimum channeling energy is 300 eV. Use k = 3.0NZ2/3 eV1/2/nm, where N
is the atomic density of the metal in nm−3.

2:13 Show that when channeling is accounted for in the collision cascade, the
average number of displaced atoms ν(T) is as follows:

v Tð Þ ¼ T=2Edð Þ1�2p;

where p is the probability that an atom with energy, E being channeled is lost
to the cascade. Assume that p ≠ f(E), T ≫ Ed, and p ≪ 1.
Assuming that all energy is lost by elastic collisions for 100 keV protons in
nickel determine:
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(a) The energy loss per unit length in the solid, dE/dx
(b) The range in the solid.

2:14 A crystal of copper is bombarded with monoenergetic (2 MeV) neutrons.

(a) Calculate the mean atomic displacement rate (displacements/cm3s)
using the simple Kinchin–Pease model and the following data:

Lattice parameter, Cu = 0 361 nm
Atomic weight of Cu = 63.54 amu
Displacement energy for Cu = 40 eV
ϕ = 1013 n/cm2s (2 MeV)
σs = 0.5 × 10−24 cm2 (2 MeV)

(b) Repeat part (a) but instead of 2 MeV neutrons, use a monoenergetic
thermal neutron beam with the same value of flux, σth = 3.78 × 10−24

cm2 and the recoil energy ∼ 382 eV.
(c) What would be the effect on your answer to part (a) by including

Lindhard’s damage energy function ξ(T)?
(d) How would your answer in part (a) be affected by assuming that the

channeling probability is 1, 5, 10 %?

2:15 For the 2 MeV neutron bombardment problem described in Problem 2.14,
how would you go about calculating the threshold energy for unassisted
critical focusing along the [110] direction?

2:16 Assume that the copper target in Problem 2.14 was bombarded by a beam of
2 MeV He ions instead of a beam of 2 MeV neutrons. Calculate the dis-
placement rate at the surface of the sample and compare to your result for
Problem 2.14.

2:17 The same copper sample as in Problem 2.14 is bombarded with 500 keV Cu+

ions at a flux of 1015 cm−2 s−1. Calculate:

(a) The displacement rate at the surface
(b) The location of the damage peak.
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