
Chapter 13
Irradiation Creep and Growth

Creep is the time-dependent deformation of a metal under constant load and at high
temperature (T/Tm > 0.3). The metal responds by elongating with a strain defined
either as the nominal strain, e, calculated from the original length of the sample:

e ¼
Z l

l0

dl
l0

¼ l� l0
l0

; ð13:1Þ

or as the true strain, ε, determined from the instantaneous length of the sample:

e ¼
Z l

l0

dl
l
¼ ln

l
l0
¼ lnð1þ eÞ: ð13:2Þ

The nominal or engineering strain is related to the nominal or engineering stress
corresponding to the initial cross section of the sample, while the true strain is
related to the true stress corresponding to the instantaneous cross section. The
components of strain are elastic, anelastic, and plastic. Elastic strain is instanta-
neous, time-independent, and reversible upon release of the stress. Anelastic strain
is also reversible but depends on strain rate. Plastic strain is time-dependent and
irreversible and is characterized by a volume conservative change in shape or
distortion of the sample. Creep refers to the time-dependent component of plastic
strain.

In general, creep is a temperature-dependent process, requiring the thermal
formation of vacancies and the motion of vacancies by volume or grain boundary
diffusion, or the climb of dislocations over obstacles and glide along slip planes.
The probability of vacancy formation and of vacancy or dislocation motion is
proportional to exp(−Q/kT), where Q is the activation energy for the rate-limiting
process. Increased temperature provides the thermal energy required to overcome
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obstacles and barriers to dislocation motion. Creep is also dependent on the stress,
and the nature of the stress dependence provides information about the mechanism
by which it occurs. Due to the production of excess defects, irradiation can
accelerate creep. Irradiation creep is not strongly dependent on temperature, pri-
marily because the formation of vacancies and self-interstitials is provided by
energetic atomic displacement rather than by thermal processes. Creep is most
important in reactor applications in regions of intermediate temperature, high
neutron/ion flux, and low stress. However, before we attempt to understand the role
of irradiation in creep, we will review the main thermal creep mechanisms, as they
will constitute the foundation for understanding irradiation creep.

13.1 Thermal Creep

In most alloys, thermal creep proceeds through a sequence of stages as shown in
Fig. 13.1. In stage I, the metal undergoes strain hardening leading to a decrease in
strain rate with time. At long times, necking occurs due to localized deformation
resulting in an increase in the strain rate, stage III. Between these two stages is stage
II, during which the creep rate is either constant or a minimum. In this region, strain
hardening is balanced by recovery so that the creep rate is relatively constant. Creep
in this regime is designated as steady-state or secondary creep. This is also the
region of most technological importance and in which the majority of service life is
spent. The variables describing plastic deformation are the shear stress, σs, tem-
perature T, strain rate _e, and strain ε, or time, t. The key-independent variables
governing creep in metals in practical applications are temperature and stress, and
the deformation mechanisms can be characterized according to these variables. As
discussed in Chap. 12, Sect. 12.3, the Ashby-type deformation mechanism map can
be used to describe the various deformation processes as a function of normalized
stress and homologous temperature. In that chapter, we focused on the regions
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Fig. 13.1 Creep curve of a
metal exhibiting the classical
three stages of creep
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described by plastic collapse and dislocation glide. Here, we will focus on the
regions that exhibit rate-dependent plasticity, or creep.

Figure 13.2 shows a deformation mechanism map of pure nickel, for which we
can develop the equations for the strain rate. The strain rate in the region of
dislocation glide is given by the Orowan equation, which is a relationship between
the strain rate and dislocation velocity and is determined as follows. When an edge
dislocation moves completely across a slip plane, the upper half of the crystal is
sheared relative to the lower half by an amount equal to one Burgers vector,
b (Figs. 13.3(a)–(b)). If the dislocation moves only part way across the crystal, or a
distance Δx, then the top surface is translated by an amount bΔx/x relative to the
bottom surface (Fig. 13.3(c)). So the displacement of the top half of the crystal
relative to the bottom half is in relation to the fraction of the length the crystal has
slipped. If the area of the slip plane is A, then bΔA/A is the equivalent expression.
The shear strain, εs, is the displacement divided by the height, z, of the crystal and is
given by:

es ¼ bDA
A

1
z
: ð13:3Þ

The term zA is the volume of the crystal, V. For n dislocations of length, l, moving
an average distance, Dx, on the slip plane, the area swept out by the dislocation, ΔA,
can be written as nlDx giving:

es ¼ nblDx
V

: ð13:4Þ
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Fig. 13.2 Deformation
mechanism map for pure
nickel in which the strain rates
and deformation mechanisms
are given as a function of the
normalized shear stress and
the homologous temperature
(after [1])
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The term nl/V is the mobile dislocation density, ρm, and if the dislocations move
over the distance in a time interval Δt, Eq. (13.4) can be written as a strain rate:

_es ¼ qmbtd; ð13:5Þ

where td is the average dislocation velocity. Equation (13.5) can be expressed in
terms of the tensile strain rate, _e, as

_e ¼ 1=2qmbtd; ð13:6Þ

where 1/2 is an approximate Schmid orientation factor.
At steady state, ρm is a function of stress and temperature only. As given in

Eq. (7.32b), the shear stress σs = μb/R, where μ is the shear modulus and R is half the
distance to the next dislocation. Since R is proportional to ρ−1/2, then Eq. (7.32b)
becomes:

qm ¼ a
rs
lb

� �2

; ð13:7Þ
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Fig. 13.3 Displacement of
halves of a crystal due to
passage of a dislocation along
its slip plane
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where α is a constant of order unity. The form of Eq. (13.7) depends on the process
limiting plasticity at low temperature, discrete obstacles, lattice resistance, or
phonon/electron drag [1].

High-temperature plasticity is described by the following:

_e ¼ c
rs
l

� �n

; ð13:8Þ

where n varies between 3 and 10 and is termed power law creep. Power law creep
can occur by glide, climb-enabled glide, or Harper–Dorn creep, each process
characterized by a different dependence on the stress. At very high stresses (above
10−3μ), the strain rate is higher than predicted by power law creep and this regime is
termed power law breakdown where the creep rate is given in the following form:

_e ¼ B expðArsÞ exp �Q
kT

� �
; ð13:9Þ

where the activation energy, Q, often exceeds the values for self-diffusion.
At high temperatures and low stress (lower right portion of the map in Fig. 13.2),

diffusional flow can drive creep. For creep controlled by lattice diffusion, the creep
rate is described by:

_e ¼ ArsXDvol

kTd2
; ð13:10Þ

where Dvol is the volume diffusion coefficient and d is the grain size. When grain
boundary diffusion dominates, then the creep rate varies as d−3:

_e ¼ ApdgbrsXDgb

kTd3
; ð13:11Þ

where Dgb is the grain boundary diffusivity and δgb is the effective thickness of the
grain boundary. Equations (13.10) and (13.11) can be combined into a single
equation describing creep as:

_e ¼ ArsXDeff

kTd2
; ð13:12Þ

where the effective diffusion coefficient, Deff, is given by:

Deff ¼ Dvol 1þ pdgb
d

Dgb

Dvol

� �
: ð13:13Þ

A more complete discussion of diffusional creep will be given in Sect. 13.1.2. We
will focus first on dislocation creep as this is the mechanism of primary relevance to
irradiation creep.
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13.1.1 Dislocation Creep

Climb and Glide

In the climb and glide model, creep is controlled by the time required for a dis-
location and blocked by an obstacle, such as a void or loop, to climb to a slip plane
that does not intersect the obstacle so it is free to glide. The obstacle blocking the
slip of a dislocation on its glide plane causes additional dislocations generated by a
nearby source to pile up behind it, as shown in Fig. 13.4. The stress fields of the
dislocations overlap and create an increasing stress on the dislocation at the head of
the pileup. For a solid with a mobile dislocation density, ρm, each dislocation,
driven by a stress σ, travels a mean distance, l, by glide, resulting in a strain:

e ¼ qmbl: ð13:14Þ

The strain rate is as follows:

_e ¼ b
d
dt
ðqmlÞ ¼ bqm

dl
dt

þ bl
dqm
dt

; ð13:15Þ

where �t ¼ dl
dt

is the mean glide velocity, and
dqm
dt

is the generation rate of dislo-

cations. We will assume that qm�t � l
dqm
dt

, so that creep is controlled by dislocation

velocity and not dislocation generation and then the creep rate is the same as that
given in Eq. (13.5), _e ¼ qmb�t. However, if the moving dislocation encounters
obstacles along its path, which it must overcome, then the velocity must account for
the time that the dislocation is held up by the obstacle and not just its motion on the
glide plane. The effective velocity can be written as:

�t ¼ l
t
¼ l

tc þ tg
; ð13:16Þ

climbing dislocations

pileup

slip plane of mobile 
dislocations

row of 
obstacles

xy

glide
h

l

xy

Fig. 13.4 Schematic showing the pileup of dislocations behind an obstacle on the glide plane of
the dislocations
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where tg is the time spent in glide, tc is the time spent pinned at the obstacle, and l is
the distance between obstacles. As will be discussed in the next section, the dis-
location overcomes the obstacle by climbing to a slip plane that bypasses the
obstacle. The time required for climb is much greater than that for glide, so that
Eq. (13.16) reduces to:

�t � l
tc
: ð13:17Þ

For an obstacle of height h, the time that the dislocation spends climbing to a slip
plane that bypasses the obstacle can be written as:

tc ¼ h
tc
; ð13:18Þ

where tc is the climb velocity. Substituting Eqs. (13.17) and (13.18) into Eq. (13.5)
gives:

_e ¼ qmbl
tc
h
: ð13:19Þ

Equation (13.19) shows that determination of the creep rate amounts to determining
the obstacle height and the climb velocity of the dislocation. The obstacle height is
determined in the next section.

Obstacle Height

Obstacles to dislocations are often other dislocations. Equation (7.50) described the
force on a moving edge dislocation due to a stationary edge dislocation. That force
has two components, one in the x-direction (along the glide plane) and one in the
y-direction (perpendicular to the glide plane). From Eq. (7.50), those forces are as
follows:

Fx ¼ lb2

2pð1� vÞr cos h cos 2hð Þ ð13:20aÞ

Fy ¼ � lb2

2pð1� vÞr sin h 2þ cos 2hð Þ; ð13:20bÞ

where we have dropped the individual designations on the Burgers vectors.
Substituting for r using y = r cos θ gives:

Fx ¼ G
y
sin h cos h cos 2h ¼ G

y
gxðhÞ ð13:21aÞ

Fy ¼ �G
y
sin2 h 2þ cos 2hð Þ ¼ �G

y
gyðhÞ: ð13:21bÞ
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where G ¼ lb2

2pð1� vÞ and gx,y (θ) are functions of θ in Eqs. (13.21a) and (13.21b).

The force on themoving dislocation due to the applied shear stress isF = σxybThis force is
balanced by that due to the repulsion from the stationary dislocation, Eq. (13.21a) giving:

rxyb ¼ Fx ¼ G
y
gxðhÞ: ð13:22Þ

The blocked dislocation is also subjected to a climb force provided by Fy in
Eq. (13.21b). Under this force, the dislocation will climb in a direction perpendicular
to its slip plane until it reaches the point where the glide plane no longer intersects the
obstacle. During its climb, the angle between the two dislocations increases starting
from a value near θ = 0. Referring back to the variation in force between the two
dislocations as a function of angle and separation distance, r, shown in Fig. 7.32, we
replot the angular dependence of the forces in Fig. 13.5 over the range 0 ≤ θ ≤ π for a
separation given by y, where the angular dependence is given by gx,y(θ) in Eqs. (13.
21a) and (13.21b) and y = rsin θ. Note that the restraining force between the two
dislocations increases with θ initially. Once the angle reaches π/8, the restraining
force is at a maximum. If the force due to the applied stress has remained in balance
with the restraining force, then for values of θ above π/8, the applied stress will
exceed the restraining force and the dislocation will be free to move beyond the
obstacle. Setting gx(θ) to its maximum value in Eq. (13.22) and designating the value
of y at this point as the height of the obstacle, h, that must be overcome for the
dislocation to be able to continue to glide yield an expression for h:

h ¼ y ¼ G
4rxyb

¼ lb
8pð1� vÞrxy �

lb
16rxy

for v� 1=3:
ð13:23Þ

When there are n dislocations in a pileup against the obstacle, the stress in
Eq. (13.23) is multiplied by n.
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Fig. 13.5 Plot of the angular
components, gx(θ) and gy(θ),
of the force on an edge
dislocation due to a stationary
edge dislocation where y is
the vertical separation
distance between the two
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Climb Velocity

An edge dislocation of Burgers vector, b, subjected to a normal stress, σ, perpen-
dicular to the extra plane of atoms climbs in the direction normal to the slip plane.
Climb occurs by absorption or emission of vacancies at the dislocation core. We
will assume that this process occurs along the entire length of the dislocation line.
When the solid is under an applied stress, σ (tensile is positive), the vacancy
concentration in equilibrium with the dislocation is given by:

CðRÞ ¼ C0
v exp

rX
kT

� �
; ð13:24Þ

where Ω is the atomic volume and C0
v is the equilibrium vacancy concentration in

the solid, a distance R away, where R is the distance between dislocations in the
solid and is given by R ¼ 1

� ffiffiffiffiffiffiffiffi
pqd

p
, where ρd is the dislocation density such that

πR2ρd = 1 (area per dislocation × dislocations per unity area = 1). The distance
R also defines the unit cell that reproduces, on average, the collection of ρd dis-
locations in the solid.

Driven by the difference in vacancy concentration between the dislocation core
and the radius of the cylinder of the unit cell, defined by R, the vacancy flux to the
dislocation is as follows:

J ¼ 2prDv
dCv

dr
; ð13:25Þ

where Cv is the vacancy concentration in the region rc < r < R, (rc is the dislocation
core radius), and is described by the diffusion equation in cylindrical coordinates:

1
r
d
dr

r
dCv

dr

� �
¼ 0; ð13:26Þ

with boundary conditions:

CvðRÞ ¼ C0
v exp

rX
kT

� �
CvðrcÞ ¼ C0

v :

ð13:27Þ

The solution to Eq. (13.26) subject to boundary conditions in Eq. (13.27) is as
follows:

Cv ¼ C0
v � C0

v 1� exp
rX
kT

� �� �
lnR=r
lnR=rc

: ð13:28Þ
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For
rX
kT

small, we can approximate the exponent by ex * x + 1, and Eq. (13.28)

becomes:

Cv ¼ C0
v 1þ rX

kT

� �
lnR=r
lnR=rc

: ð13:29Þ

Evaluating the gradient of the concentration profile at r = rc gives:

dCv

dr
¼ C0

v
rX
kT

1
lnR=rc

1
rc
; ð13:30Þ

and the flux, as in Eq. (13.25), becomes:

Jv ¼ 2pDvC0
vrX

kT lnR=rc
: ð13:31Þ

The flow of vacancies to the dislocation per unit length is JΩ, or Jb3, where
Ω * b3. The sheet of atoms has a thickness of b so dividing by b gives the flow of
volume per unit length per unit thickness, or the flow per unit distance perpen-
dicular to the glide plane, which is just the climb velocity:

tc ¼ 2pDvC0
vrXb

2

kT lnR=rc

¼ 2pDvolrb2

kT lnR=rc
;

ð13:32Þ

for DvC0
vX ¼ Dvol:

We now have all the elements required to derive the creep rate due to dislocation
climb and glide over obstacles. Recall that the creep rate is given by Eq. (13.19) as

_e ¼ qmbl
tc
h
. For the case where the dislocations are being created by Frank–Read

sources, the creep rate can be expressed as the product of the Frank–Read source
density, ρFR, the area swept out by the source times the Burgers vector, Ab, and the
inverse of the waiting time, υc/h or:

_e ¼ qFRAb
tc
h
: ð13:33Þ

Substituting in for h from Eq. (13.23) and tc from Eq. (13.32) gives:

_e ¼ 16p2qFRAb
3Dvolrð1� vÞnrxy

lbkT lnR=rc
: ð13:34Þ
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The number of dislocations, n, in a pileup is given by [2]:

n ¼ pð1� vÞlrxy
lb

; ð13:35Þ

where l is the length of the pileup, and the stress σ = nσxy [2]. Substituting into
Eq. (13.34) gives:

_e ¼ 16p2qFRADvolð1� vÞ3l2r4xy
l3kT lnR=rc

: ð13:36Þ

Weertman [3, 4] suggests that the quantity ρFRAl
2 is proportional to r�1

xy , yielding:

_e ¼ Cp2Dvolð1� vÞ3r3xy
l3kT lnR=rc

; ð13:37Þ

where C is a constant. According to Eq. (13.37), the creep rate due to climb and
glide is proportional to the self-diffusion coefficient and the stress to the power 3.

Climb and Annihilation

Climbing dislocations can also encounter other dislocations of opposite sign, cre-
ating an attractive force between them that drives the climb and results in mutual
annihilation of the dislocations [5]. Figure 13.6 shows dislocation loops spaced
apart from each other and on different slip planes. Dislocations of opposite sign will
experience an attractive force that will cause them to climb toward each other and to
annihilate. This is an important mechanism in that it provides a means for limiting
the dislocation density in the solid. The creep rate is determined using the same

Fig. 13.6 Dislocations
climbing toward each other to
mutual annihilation
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equation as for climb over obstacles and is caused by glide of dislocations, and
piled up behind the lead dislocation, once annihilation has occurred (Fig. 13.7).
That is,

_e ¼ qFRAb
tc
h
¼ qFRAb

tc
; ð13:38Þ

where tc is the waiting time defined by tc/h. The climb velocity is the same as
determined in Eq. (13.32), but the height is now the distance between two dislo-
cations that are climbing toward each other. Referring back to the climb force
caused by a normal stress, Eq. (13.22) showed that:

r ¼ Fy

b
ffi � G

by
: ð13:39Þ

The rate of approach of the two dislocations of opposite sign is 2 tc, and combining
Eq. (13.32) for tc and Eq. (13.39) for σ gives

dy=dt ¼ 2tc ¼ �2
2pbDvolG
kT lnR=rcy

� �
; ð13:40Þ

and integrating Eq. (13.40) between the limits y = h at t = 0 and y = 0 at t = tc gives:

tc ¼ kT lnR=rch2

8pbDvolG
: ð13:41Þ

For n dislocations produced by each Frank–Read source, the waiting time per
dislocation is tc/n, where n is approximated by l/h [3]. Substituting Eq. (13.41) into
Eq. (13.38) gives:

_e ¼ qFRAb
28plDvolG

kT lnR=rch3
: ð13:42Þ

In Eq. (13.42), A is the area swept out by the dislocation and can be approximated
by πl2, where the distance l between sources on a slip plane is given as (h ρFR)

−1/2,

Fig. 13.7 Arrangement of a network of Frank–Read sources that produce dislocations that climb
to annihilation (after [5])
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where ρFR is the source density and h is the separation between sources normal to
their slip planes. Substituting the expressions for A and l in Eq. (13.42) gives:

_e ¼ 8p2b2DvolG
kTq0:5FR lnR=rch4:5

: ð13:43Þ

Substituting for h Eq. (13.23), and G (line below Eq. (13.21b)) gives:

_e ¼ Cp5:5ð1� vÞ3:5Dvolr4:5xy

kTq0:5FRb
0:5l3:5 lnR=rc

; ð13:44Þ

where C is a constant that contains the numerical terms. Note that the stress is raised
to the power 4.5 rather than 3.0 in the climb to glide mode. In both climb models,
the creep rate is proportional to Dvol or exp(−Evol/kT).

13.1.2 Diffusional Creep

In the high-temperature low-stress regime of the deformation mechanism map, if we
ignore the role of dislocations, then atom diffusion by way of vacancies controls
creep. Consider the case of an idealized, cuboidal grain of edge length d on which a
stress is applied as shown in Fig. 13.8(a). The faces will act as the sources and sinks
for vacancies. Under the applied stress, vacancies will follow the paths described by
the dashed lines and atoms will move in the opposite direction (solid lines). Note

atom motion

vacancy motion

stress 
state

(a)

(b)

Fig. 13.8 Idealization (a) of
a more realistic picture of
vacancy and atom flow
between grain faces
(b) aligned with tensile or
compressive directions of the
applied stresses
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that the vacancy flow is from the faces acted on by the tensile stress to those acted
on by the compressive stress. The atom flow is in the opposite direction, from the
faces acted on by a compressive stress to those acted on by a tensile stress. A more
realistic picture of the process is shown in Fig. 13.8(b). The creation of a vacancy
on the face acted on by a compressive stress, σ, due to thermal activation requires
that the free energy of vacancy creation be increased by, σΩ, the work expended on
transferring a volume Ω. A vacancy created on the face acted on by the tensile
stress, σ, means that the free energy will be lowered by the same amount, σΩ.
Therefore, at equilibrium, the vacancy concentration at the respective faces is as
follows:

Ct
v ¼ C0

v exp
rX
kT

� �

Cc
v ¼ C0

v exp
�rX
kT

� �
;

ð13:45Þ

where σ is the magnitude of the stress, and the superscripts t and c refer to tensile
and compressive, respectively. The vacancy flow rate, A across the area d2 acted on
by the stress is as follows:

A ¼ Jvd
2: ð13:46Þ

The magnitude of the vacancy flux, Jv, is given by Fick’s law:

Jv ¼ Dv
dC
dx

� jDv
Ct
v � Cc

v

d
;

ð13:47Þ

where Dv is the vacancy diffusion coefficient, and κ is a coefficient of propor-
tionality between the mean vacancy diffusion path and the cube edge d. Substituting
Eqs. (13.45) and (13.47) into Eq. (13.46) gives:

A ¼ DvC
0
vjd exp

rX
kT

� �
� exp

�rX
kT

� �� �
: ð13:48Þ

Recognizing that Dvol ¼ DvC0
vX and that the difference in exponentials can be

written using the hyperbolic sine function, Eq. (13.48) becomes:

A ¼ 2jdDvol

X
sinhðrX=kTÞ: ð13:49Þ
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The strain is just the atom volume, Ω, transferred to the compressive faces per unit
area (d2) divided by the dimension, d:

e ¼ X
d2

1
d
: ð13:50Þ

Since the flow rate of vacancies to the boundary is A, then the strain rate becomes:

_e ¼ A
X
d3

¼ 2jDvol

d2
sinh rX=kTð Þ; ð13:51Þ

and for σΩ/kT small (*1), the sinh term can be approximated by its argument,
yielding:

_e ¼ Bvol
DvolrX
d2kT

; ð13:52Þ

where Bvol is the constant 2κ. Note that the creep rate is controlled by stress to the
power n = 1 and is inversely proportional to the square of the grain diameter. The
temperature dependence is governed by the volume diffusion coefficient Dvol exp
(−Evol/kT) and is identical to that due to dislocation creep described in the last
section. Extension of this mechanism to polycrystals [6] results in the exact same
expression. Diffusional creep due to volume or lattice diffusion of atoms by way of
vacancies is termed Nabarro–Herring (N–H) creep after the individuals who first
derived the creep expression [7, 8].

At temperatures below the range where Nabarro–Herring creep occurs, grain
boundary diffusion dominates mass transport. Coble [9] first derived an expression
for grain boundary-dominated diffusion assuming spherical grains, yielding the
following expression:

_e ¼ Bgb
DgbdgbrX
pd3kT

: ð13:53Þ

In this expression, Dgb is the grain boundary diffusion coefficient, δgb is the grain
boundary width, and the constant Bgb * 148 [6]. Note that while the stress
dependence is the same as for N–H creep, the grain size dependence is d−3 rather
than d−2. Due to the nature of grain boundary diffusion versus volume diffusion,
Coble creep will dominate at lower temperatures and N–H creep will dominate at
higher temperatures, and both will contribute in the intermediate temperature range.
The diffusional creep rate can therefore be described by a common equation:

_e ¼ B
rX
d2kT

Deff ; ð13:54Þ
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and as was shown earlier, Deff is the effective diffusion coefficient given by:

Deff ¼ Dvol 1þ p
d
Dgbdgb
Dvol

� �
; ð13:55Þ

and the constant B = 14 [6]. It follows then that grain boundary diffusion will
contribute to the creep rate at larger values of Dgb/Dvol and for smaller grain sizes d.

13.2 Irradiation Creep

Irradiation significantly increases the creep rate over that due to thermal creep or
induces creep in temperature regimes where thermal creep is negligible. Both
stainless steels and zirconium alloys exhibit irradiation creep rates that are signif-
icantly larger than thermal creep rates at the same temperature. In fact, at light water
reactor core temperatures, thermal creep is negligible, but the irradiation creep rate
can exceed 10−6 s−1. Irradiation increases the numbers of interstitials and vacancies
in the solid, but the effect of this increase is not merely to accelerate thermal
creep. In fact, as will be shown, irradiation does not accelerate diffusional creep
rates. Rather, irradiation creep needs to be understood in the context of enhanced
defect production, the application of a stress, and the developing irradiation
microstructure. The formation and growth of loops and voids play important roles
in the creep process. As will be shown, the stress-induced nucleation of dislocation
loops and the bowing of dislocation lines by stress-assisted preferential absorption
of interstitials can account for the transient portion of the creep behavior, but climb
and glide are required to explain steady-state creep. The following sections present
the mechanisms responsible for creep in metals under irradiation and their depen-
dencies on the independent variables of dose rate, temperature, and stress as well as
the developing microstructure.

13.2.1 Stress-Induced Preferential Nucleation of Loops
(SIPN)

The application of an external stress can enhance the probability of interstitial loops
nucleating on planes with a preferred orientation. Interstitial loops will be more
likely to nucleate on planes perpendicular to an applied tensile stress than parallel to
the stress. Vacancy loops will be less likely to nucleate on planes perpendicular
(non-aligned) to the tensile stress and more likely to nucleate on planes parallel
(aligned) to the stress. In either case, such preferential loop nucleation will cause the
solid to increase in length in the direction of the applied tensile stress (Fig. 13.9).
This process is termed the stress-induced preferential nucleation, SIPN mechanism
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of irradiation creep [10]. If f is the excess fraction of aligned interstitial loops, then
the concentration of aligned loops, NAL, [11] is as follows:

NAL ¼ 1=3ð1� f ÞNL þ fNL; ð13:56Þ

and the concentration of non-aligned loops, NNL, is as follows:

NNL ¼ 2=3ð1� f ÞNL; ð13:57Þ

where NL is the total loop concentration. The excess fraction of aligned interstitial
loops is determined as follows.

If n interstitials are required before the interstitial aggregate is able to form an
interstitial loop, then the probability that such an aggregate will form, p, in response
to a normal stress is as follows:

pi ¼ exp
rinX
kT

,Xn0
j¼1

exp
rjnX
kT

; ð13:58Þ

where the subscript i refers to the ith orientation of n0 possible loop orientations,
and the number of loops in the ith orientation is as follows:

Ni
L ¼ piNL: ð13:59Þ

Defining fi as the excess fraction of interstitial loops in the ith orientation, then:

piNL ¼ 1
n0

1�
Xn0
j¼1

fj

 !
NL þ fiNL; i ¼ 1. . .n0; ð13:60Þ

giving:

fi ¼ exp
rinX
kT

� 1
� �,Xn0

j¼1

exp
rjnX
kT

: ð13:61Þ

preferred orientation

not preferred 
orientation

Fig. 13.9 Schematic of the
influence of stress on the
nucleation of dislocation
loops
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We can simplify the description by reducing the n0 possible orientations to the three
orthogonal directions. Then, for a uniaxial tensile stress orthogonal to the i = 1
orientation, the other two orthogonal orientations (i = 2, 3) will have p2 = p3 = 0,
and:

f1 ¼ exp
r1nX
kT

� 1
� ��

exp
r1nX
kT

þ 2
� �

; ð13:62Þ

and f2 = f3 = 0.
Using the result from Eq. (13.62), the creep strain due to the asymmetry in the

loop population is as follows:

e ¼ 2=3 pr2LbNAL � 1=2pr2LbNNL
	 


: ð13:63Þ

Substituting for NAL and NNL from Eqs. (13.56) and (13.57) gives:

e ¼ 2=3fpr2LbNL; ð13:64Þ

where b is the Burgers vector, and rL is the average loop radius. The creep rate is
obtained by taking the time derivative of the creep strain given in Eq. (13.64),
yielding:

_e ¼ 4=3fbprLNL _rL; ð13:65Þ

and defining ρL = 2πrLNL as the loop line length per unit volume gives:

_e ¼ 2=3fbqL _rL: ð13:66Þ

If the argument of the exponential term in the expression for f in Eq. (13.62) is
small compared to 1, then the exponent can be replaced by exp(x) * x + 1,
yielding:

f ¼ rnX
3kT

; ð13:67Þ

where the subscript on the stress is dropped, and Eq. (13.66) becomes:

_e ¼ 2
9
rnbX
kT

qL _rL: ð13:68Þ

Note that the creep rate is proportional to stress and the loop growth rate, _rL.
Brailsford and Bullough [10] have shown that the creep rate can be related to
swelling if the irradiated microstructure consists of only loops and voids as sinks
and the absorption rate of vacancies by voids equals the absorption rate of inter-
stitials by loops. In Eq. (13.65), the product of 2πrLb (edge area of loop of thickness
b) and _rL is the interstitial volume added to the loop. Multiplying by NL loop/unit
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volume gives the volume fraction increase of the loop due to the net absorption of
interstitials. If this is balanced by a corresponding and equal net absorption of
vacancies to voids to produce a fractional swelling rate, _S, then Eq. (13.65) becomes:

_e ¼ 2=3f _S: ð13:69Þ

Substituting for f using Eq. (13.67) for the case where n is small yields:

_e ¼ 2
9
rnbX
kT

_S; ð13:70Þ

and generalizing for the case where the total dislocation density is ρ = ρL + ρN
gives:

_e ¼ 2
9
rnX
kT

qL
q

_S: ð13:71Þ

A more general treatment [12] of strain due to an anisotropic distribution of
loops describes the strain in a volume due to a continuous distribution of dislocation
loops [13] using the strain tensor:

eij ¼
XM
k¼1

qkAknki b
k
j

DV
; ð13:72Þ

The equation describes the strain ε caused by M groups of loops in a volume ΔV,
where the kth group of loops all have the same Burgers vector b, area A, normal
vector n, and number density ρ. The subscript i denotes x-, y-, z-directions of the
loop normal vector, and subscript j denotes the contribution of loop Burgers vectors
to the x-, y-, z-directions. M represents individual grains within a polycrystal. For a
single grain:

ekij ¼
Nkp d

2

� �2
nki b

k
j

DV
; ð13:73Þ

where Nk is the total number of the kth loop in the volume ΔV, and d is the measured
loop diameter. Solution of Eq. (13.73) requires an expression for Nk. Taking as an
example, irradiation of T91 at 500 °C to 1 dpa during application of a tensile stress
of 180 MPa, the a 〈100〉 loop distribution is shown in Fig. 13.10(a) and plotted in
Fig. 13.10(b). Note that loops form preferentially with their normal in the direction
of the tensile stress according to the following equation:

Nk=N ¼ a� bhk; ð13:74Þ

where the constants α and β are fitting constants, and θ is defined as the angle
between the loop normal and the tensile axis as shown in Fig. 13.11. Substituting
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the expression for Nk in Eq. (13.74) into Eq. (13.73) and simplifying [12] yields the
strain in direction i:

ei ¼ bqp
d
2

� �2

Rp=2
/¼0

Rp=2
h¼0

niða� bhÞd/dh

Rp=2
/¼0

Rp=2
h¼0

ða� bhÞd/dh
� 1
3
evol: ð13:75Þ

T91, 500°C,
180 MPa, ~1 dpa (FC)

Angle Between Loop Normal and Tensile Axis (°)

N
or

m
al

iz
ed

 L
oo

p 
D

en
si

ty

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1.0

60

50

40

30

20

10

0

70

80

A
verage L

oop Size (nm
)

Density

Size

100 nm

a<010> loops

a<100> loopsBlack dot damage

(b)(a)

Fig. 13.10 (a) TEM image of a 〈100〉 edge-on loops with g = 〈110〉 on the 〈100〉 zone axis and
(b) loop anisotropy plot of the loop density and size following irradiation at 500 °C with a tensile
stress of 180 MPa (after [12])
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The last term in Eq. (13.75) ensures volume conservation of creep by subtracting
one-third of the volumetric expansion caused by dislocation loops from the strain of
the three primary directions.

In the example provided, the creep strain due to anisotropy of the dislocation
loops observed in the samples was found to account for only about 4.4 % of the
total strain measured in the sample. This observation was consistent with previous
works that claimed that strain due to anisotropy in the dislocation loops was much
lower than the total measured strain [14], suggesting that another deformation
mechanism must be driving the irradiation creep behavior.

Whether SIPN can accurately account for the observed creep strains is a matter
of considerable debate. Matthews and Finnis [14] reviewed the arguments for and
against SIPN and noted that while observations have supported an increase in
preferred loop orientation with tensile stress, the magnitude of the measured creep
strain is higher than can be accounted for by preferred orientation by a factor of
2–4, even if n is assumed to be large (10–30). The greatest limitation of the model is
that once a loop is nucleated, the strain rate is determined by the irradiation dose,
but is independent of stress. Thus, creep should continue if the stress is removed
once nucleation has been completed. Also, if nucleation occurs before the stress is
applied, then creep should not occur. Clearly, SIPN cannot account for all of the
observed creep, but it may be a viable mechanism for a portion of the observed
creep strain rate. A compliment to loop nucleation is preferential absorption of
defects by loops caused by the applied stress, discussed in the next section.

13.2.2 Stress-Induced Preferential Absorption (SIPA)

At steady state, there are several distinct processes that may result in creep of a solid
under irradiation and stress. They are (1) the transfer of atoms from planes parallel
to the applied stress to those perpendicular to the applied stress, (2) the glide of
dislocations on planes inclined to the stress direction, and (3) the climb and glide of
dislocations due to the interstitial bias of the dislocation. The first is termed stress-
induced preferential absorption (SIPA), and the second process is termed preferred
absorption glide (PAG) [15]. PAG results from preferred absorption (SIPA) but is
an additional component to the creep strain since it describes the glide contribution
to the creep strain, whereas SIPA describes only the climb contribution to creep
strain. The third mechanism is creep strain from the climb and glide process due to
the net absorption of interstitials on dislocations of all orientations (i.e., unassisted
by stress) and is essentially the same process as the climb and glide model described
in Sect. 13.1 but for the case where the defect source is the excess interstitials. Note
that this process is tied to swelling as the corresponding net excess of vacancies
accumulates at cavities causing swelling.

The origin of the preferred absorption is the interaction between the dislocation
and defects. In conventional SIPA, the origin is the elastic interaction between the
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long-range stress field of the dislocation and that of the defect. Other origins for
SIPA are anisotropic diffusion and elastodiffusion. While differing in the details of
the origin of the interaction, all of these mechanisms result in a preferred absorption
of interstitials by dislocations.

The flux of excess interstitials absorbed by dislocations with orientation
described by j and density ρj is as follows:

Jj ¼ qjX zdji DiCi � zdjv DvCv þ zdjv DvC
dj
v

 �
; ð13:76Þ

where zdji;v are the capture efficiencies of dislocations of orientation, j, Div are the
diffusion coefficients, and Civ are the bulk concentrations of interstitials and
vacancies. The variable, Cdj

v , is the vacancy concentration in equilibrium with a
dislocation of orientation j. For a uniaxial tensile stress where j = 1:

Cd1
v ¼ C0

v exp
rX
kT

� �
ð13:77Þ

Cd2
v ¼ Cd3

v ¼ C0
v : ð13:78Þ

The interstitial flux, Jj, can also be related to the climb velocity as follows:

Jj ¼ bqjtj; ð13:79Þ

where ρj is the density of dislocations with their planes perpendicular to j. Substituting
for Jj from Eq. (13.79) into Eq. (13.76) and solving for tj gives:

tj ¼ X
b

zdji DiCi � zdjv DvCv þ zdjv DvC
dj
v

 �
: ð13:80Þ

Substituting Eq. (13.80) into Eq. (13.5) gives the total creep rate as:

_ej ¼ X zdji DiCi � zdjv DvCv þ zdjv DvCdj
v

 �
qj: ð13:81Þ

But Eq. (13.81) also includes contributions due to void swelling. That component
of the strain is just one-third of the volumetric swelling, or ε = 1/3(ε1 + ε2 + ε3), and
the swelling strain rate, _eS, is as follows:

_eS ¼ X
3

X3
n¼1

zdni DiCi � zdnv DvCv þ zdnv DvC
dn
v

� �
qn: ð13:82Þ
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The creep by climb due to preferential absorption of interstitials at dislocations is
then:

_ej ¼ Xðzdji DiCi � zdjv DvCv þ zdjv DvC
dj
v Þqj

� X
3

X3
n¼1

zdni DiCi � zdnv DvCv þ zdnv DvC
dn
v

� �
qn:

ð13:83Þ

For dislocations distributed isotropically among the three orthogonal directions:

q1 ¼ q2 ¼ q3 ¼ q=3: ð13:84Þ

Substituting Eqs. (13.77) and (13.78) for the equilibrium vacancy concentration and
Eq. (13.84) for the dislocation density into Eq. (13.83) for the stress direction
j = 1 = A (aligned dislocations) gives:

_eclimb ¼ 2
9
Xq Dzdi DiCi � DzdvDvCv

	 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
SIPA

þ DvC
0
v zdAv exp

rX
kT

� �
� zdNv

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PE

8>><
>>:

9>>=
>>;; ð13:85Þ

where Dzdi;v ¼ zdAi;v � zdNi;v , and zdAi;v denotes the capture efficiency of aligned dislo-

cations, and zdNi;v denotes the capture efficiency of non-aligned dislocations (j = 2).
The first term in square brackets is the dislocation climb creep rate due to prefer-
ential absorption of interstitials, or SIPA:

_eSIPA ¼ 2
9
Xq Dzdi DiCi � DzdvDvCv
	 


: ð13:86Þ

The second term in square brackets is the dislocation climb creep rate due to
preferred emission, PE [15], of vacancies:

_ePE ¼ 2
9
XqDvC

0
v zdAv exp

rX
kT

� �
� zdNv

� �
: ð13:87Þ

If the differences in capture efficiencies (preference) of the dislocations in different
orientations were removed, i.e., Dzdi ¼ Dzdv ¼ 0, then the first term disappears and
the creep rate is then due solely to thermal processes.
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13.2.3 Climb and Glide Due to Preferential Absorption
Glide (PAG)

While SIPA provides a mechanism for creep by dislocation climb, dislocations can
also contribute to creep by glide if they are able to overcome obstacles in their slip
plane by the climb process [15]. Under an applied stress, pinned dislocations will
glide until they reach a configuration where the restoring force due to line tension is
balanced by the applied stress. Since dislocations are pinned, creep is limited to the
elastic stress given by ε = σ/E. Climb enables the dislocation to overcome the initial
pinning points. The released segments bow out between new pinning points until,
again, the line tension balances the applied stress. Figure 13.12 shows the process
by which dislocation segments bow out between pinning points, are released from
the pinning points, and are then pinned again. Each cycle of climb and glide to
pinning results in an elastic deflection in addition to the strain due to climb, which
together, account for the total creep strain in the solid, all the while, the dislocation
network maintains its configuration. This mechanism has also been referred to as
“transient creep” because of its occurrence at low dose. However, since the dis-
location lines can continue to bow out after climbing over pinning points, it can also
account for steady-state creep.

Similar to Eq. (13.19), the creep rate due to climb and glide can be written as:

_eCG ¼ e
tc
l
; ð13:88Þ

where ε is the strain due to elastic deflection, tc is the climb velocity, and l is the
distance between pinning points. When pinning is caused by the network dislo-
cation density, l is given by l ¼ 1=

ffiffiffiffiffiffiffiffi
pqd

p
, and ρd is the dislocation density. Equation

(13.88) then becomes:

_eCG ¼ eðpqdÞ1=2tc: ð13:89Þ

1

2

3

4

Fig. 13.12 Schematic of glide by dislocation bowing and the pinning and unpinning of
dislocation segments
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The climb velocity can be determined from Eq. (13.80) by adding and subtracting
the velocity component due to volumetric swelling:

tj ¼ X
b

�
zdji DiCi � zdjv DvCv þ zdjv DvC

dj
v

 �

� 1
3qj

X3
n¼1

zdni DiCi � zdnv DvCv þ zdnv DvC
dn
v

� �
qn

�

þ X
3bqj

X3
n¼1

zdni DiCi � zdnv DvCv þ zdnv DvC
dn
v

� �
qn:

ð13:90Þ

The physical meanings of the terms in Eq. (13.90) are as follows. The first term in
square brackets is the climb velocity due to all processes contributing to vacancy
and interstitial absorption and vacancy emission. The second term in the square
brackets is the climb due to net point defect absorption and emission at dislocations
attributable only to swelling. Subtracting this term from the first term yields the net
result, enclosed in square brackets, being the climb velocity due only to the
volume-conserving processes of stress-induced preferential absorption and to pre-
ferred vacancy emission. The last term in Eq. (13.90) is the dislocation climb
velocity due to isotropic swelling. It is the terms in square brackets that are
responsible for the climb and glide process in the absence of swelling. Using
Eq. (13.84) and the average velocity of the dislocations given by:

t ¼ t1j j þ t2j j þ t3j j
3

; ð13:91Þ

equation (13.90) becomes:

t ¼ X
3b

zd1i DiCi � zd1v DvCv þ zd1v DvC
d1
v

�� ��þ 2 zd2i DiCi � zd2v DvCv þ zd2v DvC
d2
v

�� ��� �
:

ð13:92Þ

When preferential absorption and preferential emission occur without swelling, the
number of interstitials absorbed must be balanced by the number of vacancies
absorbed, so:

zd1i DiCi � zd1v DvCv þ zd1v DvC
d1
v

� � ¼ 2 zd2i DiCi � zd2v DvCv þ zd2v DvC
d2
v

� �
; ð13:93Þ

and Eq. (13.92) becomes:

t ¼ 2
3
X
b

zd1i DiCi � zd1v DvCv þ zd1v DvC
d1
v

� �
: ð13:94Þ
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Substituting the climb velocity given in Eq. (13.94) into the creep equation for
climb and glide, Eq. (13.89) gives:

_eCG ¼ 2
3
e
b
XðpqdÞ1=2 zd1i DiCi � zd1v DvCv þ zd1v DvC

d1
v

� �
: ð13:95Þ

After some manipulation of Eq. (13.95), Mansur [15] showed that the climb and
glide creep rate can be written as:

_eCG ¼ 4
9
eX
b
XðpqdÞ1=2DiCiDz

d
i ; ð13:96Þ

where Dzdi is defined after Eq. (13.85). Note that in both Eqs. (13.86) and (13.96),
the term Dzdi appears, which represents the difference in capture efficiencies
between aligned and non-aligned dislocations, and is therefore dependent on stress.
Mansur writes Dzdi ¼ Dz0ie (where Dz

0
i is independent of stress) so that _eSIPA / e and

_eCG / e2, and since ε = σ/E ,we have _eSIPA / r and _eCG / r2. Also, as shown in
Sect. 5.1.3, the term Ci is proportional to the defect production rate, K0, for

sink-dominated cases and to K1=2
0 for recombination-dominated cases. It should also

be noted that since there is no need for a net preferential absorption of interstitials at
all edge dislocations, creep can proceed in the absence of swelling.

13.2.4 Climb and Glide Driven by Dislocation Bias

The preceding analysis describes creep that is driven by stress-induced preferential
absorption of interstitials at dislocations. The creep rate has both climb and glide
components, and the creep process is governed by dislocation segment bowing fol-
lowing climb to free the segment from the pinning points. Here, we consider creep that
is driven by the dislocation bias rather than preferential absorption. Clearly in order for
there to be a net absorption of interstitials by dislocations requires that there is an
equivalent net absorption of vacancies by other sinks in the solid. These sinks are
assumed to be voids. Creep due to the excess absorption of interstitials at dislocations
is equivalent to the thermal creep climb and glide mechanisms discussed in Sect. 13.2,
but with interstitial absorption replacing vacancy absorption. For this case, we return
to Eq. (13.19), which expresses the creep rate in terms of the climb velocity, tc, and
the obstacle height, h. Equation (13.79) gives the climb velocity in terms of the
absorption flux of interstitials at dislocations. For climb due solely to dislocation
bias, Eq. (13.76) for the interstitial flux becomes:

J ¼ qmX zdiDiCi � zdvDvC
d
v

	 

; ð13:97Þ
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and substituting the expression for J in Eq. (13.97) into Eq. (13.79) and solving for
tc gives:

tc ¼ X
b

zdi DiCi � zdvDvC
d
v

	 

: ð13:98Þ

Equation (13.98) also can be obtained directly from Eq. (13.90) by neglecting
thermal emission, Cdj

v � 0, and requiring that the zs for dislocations do not have an

orientation dependence, so that zdjv ¼ zdv and z
dj
i ¼ zdi . The obstacle height is given in

Eq. (13.23), and in the case of a dislocation pileup against an obstacle, the stress σxy
is replaced by nσxy where n is the number of dislocations in the pileup and is given
by Eq. (13.35). Substituting Eq. (13.98) for tc, Eq. (13.23) for h, and Eq. (13.35) for
n into Eq. (13.19) gives:

_e ¼ qml
2X8p2ð1� vÞ2r2xy

ðlbÞ2 zdiDiCi � zdvDvC
d
v

	 

: ð13:99Þ

When creep is driven by swelling, the absorption rate of interstitials at dislocations
is balanced by the same absorption rate of vacancies by voids:

qmðJdi � JdvÞ ¼ AV
v � AV

i ¼ 1
X
D _V
V

: ð13:100Þ

Substituting Eq. (13.100) into Eq. (13.99) gives:

_e ¼ qm
qd

8p2l2ð1� vÞ2r2xy
ðlbÞ2

D _V
V

; ð13:101Þ

where the term ρm/ρd is the fraction of the dislocation density that is mobile and can
contribute to creep. It should also be noted that irradiated metals often do not
exhibit pileups at obstacles. In this case, the number of dislocations in a pileup, n, is
set equal to 1 and the creep rate is proportional to the stress. Wolfer et al. [16]
showed that when Frank loops are the obstacles, the creep rate is proportional to
stress to the power n = 1.

13.2.5 Transient Creep

Creep can occur prior to the achievement of steady state by the vacancy and
interstitial concentrations. Such creep is referred to as transient creep. Three
transient creep processes are of greatest importance: glide-induced transient
absorption, start-up-induced transient absorption, and cascade creep.
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Glide-Induced Transient Absorption

In climb and glide creep, the climb process is the limiting step as glide occurs
extremely rapidly. In fact, the glide process is so rapid that steady-state concen-
trations of point defects cannot be maintained at the dislocation. As a result, the
dislocation absorbs both vacancies and interstitials rapidly in an effort to
re-establish the steady-state point defect diffusion profiles at its new location [17].
However, vacancies and interstitials are not absorbed in equal numbers, and the
imbalance in absorption rate gives rise to a form of transient creep termed
glide-induced transient absorption. Figure 5.3 in Chap. 5 shows that at steady state,
the bulk vacancy concentration exceeds the interstitial concentration by orders of
magnitude. Consequently, the flow of vacancies to the dislocation causes an
increment of positive climb, releasing the dislocation from an obstacle and pro-
ducing creep by glide. Figure 13.13 shows the increment of climb caused by excess
vacancy absorption prior to achievement of steady-state diffusion profiles. The
initial climb shown in the positive direction is the transient vacancy climb, and the
negative climb at longer times (Dt = 108 nm2) is the bias-driven interstitial climb. If
the transient positive climb is large enough to escape the barrier, the dislocation
glides to the next barrier. If the transient climb is inadequate, the steady-state climb
eventually reverses the dislocation motion, and escape occurs in the negative
direction. Once steady state has been achieved, then climb is controlled by the small
net excess of interstitials due to stress-induced preferential absorption described in
the preceding section. This form of transient climb can cause high creep rates at low
temperatures, where the steady-state vacancy concentration is high, as long as the
temperature is not too low so that vacancy diffusion is limiting.
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Start-Up-Induced Transient Absorption

Significant creep can also occur at low temperatures coincident with the start of the
irradiation. This creep process, referred to as start-up-induced transient absorption,
occurs by the absorption of interstitials prior to steady state when interstitials are
mobile, but vacancy diffusion is too slow for them to interact with the dislocations
[18]. Referring again to Fig. 5.3, at the start of irradiation at low temperature, the
concentrations of both vacancies and interstitials increase linearly with time until
interstitials begin to be absorbed at sinks. At this point in time, defined by the time
constant τ2, the interstitial concentration reaches a quasi-steady state, while the
vacancy concentration continues to climb. The continued buildup of vacancies
causes recombination to occur, resulting in a decrease in the interstitial concen-
tration and a slower rate of vacancy buildup with time. With additional increase in
the vacancy concentration, recombination dominates the loss process (at t = τ4)
causing a steeper decline in the interstitial loss rate and a smaller rate of vacancy
buildup. Eventually, steady state is reached when the vacancy concentration is high
enough that vacancies interact with sinks.

The contribution of interstitials to creep during this start-up transient can be
estimated by determining the number of excess interstitials, Ni, that are absorbed by
the dislocations in each time interval in Fig. 5.3. For example, in the time interval
τ4–τ2, the number of interstitials produced is K0 (τ4–τ2), and the number remaining
is K0/KisCs, so the number absorbed by the dislocation is as follows:

Ni ¼ K0ðs4 � s2Þ � K0=KisCs: ð13:102Þ

Using the same analysis, estimates can be made for the number of interstitials
absorbed during the time interval τ3–τ4, or until steady state is reached, at which
point the transient ends. Interstitial absorption results in climb-enabled glide as
described by Eq. (13.96), with Ni substituted for Ci. Figure 13.14 shows that the
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total creep strain in austenitic stainless steels can be dominated by start-up-induced
transient absorption at temperatures into the 300 °C range and near the 200 °C
range for ferritic alloys. As such, it is an important mechanism of creep at low
temperature and during the start-up phase of an irradiation.

Cascade Creep

One of the simplest transient creep models is based on the effect of stress on the
displacement spike volume. As described by Brinkman and Wiedersich [19], if a
load is applied to a solid during the occurrence of a displacement spike, then elastic
strain in the spike region is relaxed locally and frozen in. The strain rate from this
process is given by:

_ecas ¼ eeVcasaNrs/; ð13:103Þ

where the elastic strain εe = σ/E, Vcas is the volume of the cascade, α is the number
of spikes per neutron scattering event, N is the atom number density in the solid, σs
is the neutron scattering cross section, and ϕ is the fast neutron flux. Matthews and
Finnis [14] noted that this creep rate underestimates the observed irradiation creep
in neutron-irradiated structural materials. However, since defect generation does not
occur continuously over space and time, and not all defects escape the damage
region, strain caused by cascade effects may be important to consider. A dislocation
segment will make climb excursions in response to fluctuations in the local vacancy
concentration caused by a nearby cascade. During an excursion, there is a proba-
bility that the segment will be unpinned. Mansur [20] accounted for cascade effects
in the climb-enabled glide model by replacing tc=h in Eq. (13.19) by the release
frequency of pinned dislocation segments, ω:

_e ¼ qblx; ð13:104Þ

where:

x ¼
Xh
j�1

RjFj; ð13:105Þ

and Fj is the frequency with which a dislocation segment climbs to a height of at
least h:

Fj ¼ 4pNrs/
Z 1

0
q2Pjdr; ð13:106Þ

and Pj is the probability of climb of j or greater. The term, Rj, is the probability of
finding a dislocation a distance jb from the unpinning point and is given by:

Rj ¼ qj=q: ð13:107Þ
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The release frequencies and hence the creep rates determined using this model are
comparable to those from preferred absorption-driven climb or swelling-driven
climb [20].

13.2.6 Loop Unfaulting

Another possible interaction between an applied stress and interstitial loops that
could produce creep strain is loop unfaulting. As discussed in Chap. 7, dislocation
loops grow in size and eventually become unstable and unfault to become part of
the dislocation network. This process is equivalent to the production of mobile
dislocations which may then participate in the creep process by SIPA, PAG, or
climb and glide driven by interstitial bias. The maximum radius to which a loop can
grow, Rmax, is governed by the loop density and is given by:

4p
3
qLR

3
max ¼ 1: ð13:108Þ

When loops interact, they coalesce and contribute to the network dislocation
density. Interaction between individual dislocations and loops results in loop
unfaulting that also contributes to the network (see Chap. 12, Sect. 12.3). As the
dislocation density increases, the rate of loop interaction with the network increases
and the loop radius is limited to a value of the order of the network mesh length,

q�1=2
N , where ρN is the network dislocation density. Loop unfaulting can contribute

to irradiation creep strain since the presence of a stress will assist the nucleation of
the unfaulting dislocations with favorable orientations resulting in an increased
probability of unfaulting. The application of a shear stress in the plane of the loops
will induce a greater number of loops to shear in the direction favored by the stress
to produce a net shear of the crystal, which will appear as creep. If ρ is the total
dislocation density and ρs is the number of dislocation loops lying on a plane for
which the shear stress is a maximum, then the number of loops shearing in that
direction is given by Lewthwaite [21] as follows:

q1 ¼
qs exp

pR2
cbr
kT

� �

exp
pR2

cbr
kT

� �
þ exp � pR2

cbr
kT

� � ; ð13:109Þ

where Rc is the critical loop size for unfaulting [the maximum value is given by
Eq. (13.108)], and σ is the stress. The number of loops shearing in the opposite
direction is ρ2 = ρs–ρ1, and the strain due to the loop unfaulting is then:

e ¼ �Absðq1 � q2Þ; ð13:110Þ

13.2 Irradiation Creep 765

http://dx.doi.org/10.1007/978-1-4939-3438-6_7
http://dx.doi.org/10.1007/978-1-4939-3438-6_12
http://dx.doi.org/10.1007/978-1-4939-3438-6_12


where Ā is the average loop area, and bs is the magnitude of the Burgers vector of the
reaction producing the strain. Substituting in for ρ1 and ρ2 in Eq. (13.110) and aver-
aging the strain over all possible loop orientations (which gives a factor of 1/30) yields:

e ¼ q�Abs
30

exp
pR2

cbr
kT

� �
� exp � pR2

cbr
kT

� �

exp
pR2

cbr
kT

� �
þ exp � pR2

cbr
kT

� �
2
6664

3
7775: ð13:111Þ

The term in brackets can be written as the hyperbolic tangent of the argument,
giving:

e ¼ q�Abs
30

tanh pR2
cbr=kT

� �
: ð13:112Þ

If the argument is small compared to 1, then tanh x * x and Eq. (13.112) becomes:

e ¼ q�Abs
30

pR2
cbr=kT: ð13:113Þ

If loop growth is driven by swelling, then ρĀbs is replaced with D _V=V , the loop
volume pR2

cb is equated with the volume of the defects in the loop, ncΩ, and the

term
k2L

k2L þ k2N
is added to account for the network dislocation density as well, to

yield the creep rate in terms of the swelling rate:

_e ¼ D _V
V

k2L
k2L þ k2N

pR2
cbr=kT
30

: ð13:114Þ

Matthews and Finnis [14] noted that the unfaulting radius is large in austenitic
alloys and the creep rate can be significant, but because of the small critical loop
size in bcc metals, the contribution will be small.

13.2.7 Recovery Creep

All of the irradiation creep mechanisms discussed thus far allow for or contribute to
the growth of the dislocation density, but do not account for the removal of dis-
locations, as must occur during creep. Matthews and Finnis [14] expressed the rate
of change in dislocation density in terms of the creep rate as follows:

_q ¼ _e
bl
� 2q3=2tc; ð13:115Þ
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where l is the mean dislocation glide length, and tc is the climb velocity. The first term
is the production rate of dislocations due to creep, obtained from Eq. (13.14), and the
second term is the loss due to annihilation. Taking the steady-state limit of _q ¼ 0, the
steady-state creep rate is expressed in terms of the dislocation density as follows:

_e ¼ 2blq3=2tc: ð13:116Þ

The stress dependence is determined by the dislocation density, the climb velocity,
and the slip length. The dislocation density varies with stress according to
Eq. (13.7) (in which the term, α, appears in the denominator inside the brackets)

q ¼ r2

a2l2b2
and contributes a σ3 term to the creep rate given in Eq. (13.116). For

stress-induced preferential absorption, we have from Eq. (13.86):

tSIPA ¼ 2
9
X
b

zdi DiCi � zdvDvCv þ zdvDvC
d
v

� �
; ð13:117Þ

substituting into Eq. (13.116) and equating Ω = b3 gives:

_e ¼ 4
9
r3l
a3l3

zdiDiCi � zdvDvCv þ zdvDvC
d
v

� �
: ð13:118Þ

If l is fixed by impenetrable obstacles and is therefore independent of stress, then
the stress dependence of the creep rate is σ3. However, if l is determined by the
dislocation density, then substituting for l from Eq. (13.88) and expressing the
dislocation density in terms of stress, Eq. (13.7) gives:

_e ¼ 4
9

r2bffiffiffi
p

p
a2l2

zdiDiCi � zdvDvCv þ zdvDvC
d
v

� �
; ð13:119Þ

where the stress dependence is σ2, which is the same stress dependence as in
preferential absorption climb and glide given by Eq. (13.99).

13.2.8 Diffusional Creep: Why There Is No Effect
of Irradiation

All of the mechanisms of irradiation creep discussed thus far are based on the actions
of dislocations. The reason is that while diffusional creep is a viable thermal creep
mechanism, it is unaffected by irradiation and can be understood as follows. Consider
the discussion of Nabarro–Herring creep in Sect. 13.1.2. There it was shown that
creep is driven by a difference in the equilibrium vacancy concentrations at the grain
boundaries oriented parallel to the tensile and compressive stress directions,
Eq. (13.45). Under irradiation, Eq. (13.47) is modified to include interstitials:
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Jv ¼ Dv
dCv

dx
� Di

dCi

dx
� jDv

Ct
v � Cc

v

d
� jDi

Ct
i � Cc

i

d
: ð13:120Þ

Substituting in for Ct
v and Cc

v from Eq. (13.45) and for Ct
i and for Cc

i using the
same equations but with the signs on the arguments of the exponential terms
reversed because of the opposite effect of stress on interstitials gives:

Jv ¼ jDv

C0
v exp

rX
kT

� �
� C0

v exp � rX
kT

� �
d

� jDi

C0
i exp � rX

kT

� �
� C0

i exp
rX
kT

� �
d

:

ð13:121Þ

Applying the approximation that the term
rX
kT

is small compared to 1 yields:

Jv ¼ 2jrX
dkT

ðDvC
0
v þDiC

0
i Þ �

2jrX
dkT

DvC
0
v; ð13:122Þ

where the approximation is due to the fact that although Di is greater than Dv, C0
v is

much greater than C0
i The vacancy flux given in Eq. (13.122) is the same as that in

Eq. (13.47), and thus, there is no effect of irradiation on Nabarro–Herring creep.
The reason is that the creep rate is driven by the difference in the equilibrium values
of defects at the grain boundaries, and these values do not depend on the con-
centration of vacancies or interstitials in the matrix. Irradiation simply serves to
increase the flow of defects to each boundary equally without a change in the net
amount. The same argument applies to Coble creep. As such, diffusional creep is
unaffected by irradiation and does not contribute to irradiation creep.

13.2.9 Comparison of Theory with Creep Data

Much like thermal creep, irradiation creep is characterized by an initially high creep
rate that declines with irradiation dose or fluence and transitions into steady-state or
secondary creep that is generally linear with dose. The difference between irradi-
ation creep and thermal creep is in the magnitudes. A general equation for irradi-
ation creep is as follows:

e ¼ A 1� exp �/t
C

� �� �
rþB0r

n/mt; ð13:123Þ

where the first term is transient creep, and the second term is steady-state
creep. A typical irradiation creep curve exhibiting transient and steady-state regimes
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is shown in Fig. 13.15 for 20 % CW 316 stainless steel. Irradiation creep rates are
much larger than those due solely to thermal processes. Of the mechanisms dis-
cussed, SIPN accounts best for the transitory nature of the primary creep regime,
but cannot explain steady-state creep. In the absence of swelling, steady-state
irradiation creep can be described by the second term in Eq. (13.123). Data show
that the creep strain rate is proportional to neutron fluence (m = 1), Fig. 13.16, and
also proportional to stress (n = 1). The creep strain is then often written as the
effective strain per unit of effective stress per dpa:

_�e=�r ¼ B0; ð13:124Þ
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where _�e is the effective strain rate, �r is the effective stress, and B0 is the creep
compliance. Note that the “rate” implied by the dot over �e is per dpa, not time. The
creep compliance, B0, is independent of composition, starting state, dpa rate, and
temperature over the range of reactor relevant conditions.

There are significant data to support the irradiation creep rate behavior described
by Eq. (13.124), and some of the most convincing data provided in Fig. 13.17 gives
a value of B0 of *3×10−6 MPa−1 dpa−1. The dependence of creep rate on stress to
the power n = 1 provides support for the SIPA mechanism of creep. Note also that
the strains appear to be independent of temperature over the range studied, sup-
porting irradiation creep as the mechanism behind the strain rate rather than thermal
creep, which has a very steep temperature dependence. The creep rate has also been
observed to vary as ϕ1/2 at low temperature, yielding a B0 dependence on flux of
(dpa rate)−1/2. In ferritic–martensitic alloy T91, the creep rate is found to follow an
approximately linear stress dependence in the low-stress regime, and a transition to
a strong dependence on stress (n * 14) in the high-stress regime, Fig. 13.18,
indicative of a transition from irradiation-induced creep by either SIPA or PAG at
low stress, to power law breakdown at high stress [23].

When void swelling occurs during creep, the steady-state creep rate is propor-
tional to the swelling rate and the relationship is described by the following
empirical equation [22]:

_�e=�r ¼ B0 þD _S; ð13:125Þ

where D is the creep-swelling coupling coefficient and _S is the instantaneous vol-
umetric swelling rate per dpa. While Eq. (13.125) is empirical, the relationship can
also be determined from theory as well. Recall Eq. (8.122) for swelling in which
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thermal emission of vacancies is negligible and recombination is negligible.
Assuming that the only point defect sinks are voids and dislocations and that the
dislocation sink strength is much greater than the void sink strength, then Eq. (8.122)
becomes:

_R ¼ K0ðzi � zvÞX
Rzizvqd

; ð13:126Þ

and the void swelling rate is as follows:

_S ¼ 4pR2 _Rqv¼
4pRK0qvX zdi � zdv

� �
zdi z

d
vqd

: ð13:127Þ

Substituting the expression for Ci from Eqs. (5.31) and (5.67) into Eq. (13.86) for
SIPA creep, where only the first term is retained, the creep rate can be written as:

_eSIPA ¼ 2
9
XqdDz

d
i K0

zdi qd
; ð13:128Þ

and the ratio of the creep rate to the swelling rate is as follows:

_eSIPA
_S

¼ 2
9
d

zdvqd
4pRVqV

; ð13:129Þ

where d ¼ Dzdi
zdi � zdv
� �. The linear dependence of creep rate on void swelling applies

as well to climb–glide creep.
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Some of the earliest and most convincing results supporting this coupling
between creep and swelling are shown in Fig. 13.19 for annealed 304 SS irradiated
in EBRII. The coupling was further supported by the strong correlation between
creep and swelling in pressurized tube experiments in the PHENIX reactor
(Fig. 13.20). Typical values for D are *10−2 MPa−1. Garner [22] presents a more
complete description of the dependencies of B0 and D on the various parameters
affecting creep. While the creep compliance and the coupling term are not strict
constants, the relation between creep, stress, flux, and swelling is well described by
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Eq. (13.125).The complexity of irradiation creep and its strong dependence on the
irradiated microstructure is illustrated by the observation by Garner et al. [24] that at
high levels of irradiation dose, the irradiation creep rate can drop to zero. This
phenomenon is illustrated in Fig. 13.21 in which instantaneous creep coefficient in a
stainless steel irradiated in EBR-II at 550 °C is observed to increase to a maximum
and then drop to zero at high dose. Note that deformation has not stopped, rather at
the point where the creep compliance goes to zero, the deformation can be totally
accounted for by the strain due to swelling, εlinear = εswelling/3. This occurrence has its
origin in the development of the dislocation network and loop microstructure. Under
irradiation and an applied stress, creep is sensitive to the anisotropy of the dislo-
cation microstructure and accounts for processes such as SIPA and PAG, in addition
to SIPN. In the absence of swelling, the degree of anisotropy increases with dose.
When voids begin to form, they consume vacancies and the matching interstitial flux
to dislocations overwhelms that in the void-free, dislocation-dominated case, causing
an increase in the creep rate that is coincident with the onset of swelling. When voids
become the dominant sink, they absorb both vacancies and interstitials in large
numbers. The consequence is twofold: a reduction in the creep rate caused by the
small excess interstitial flux to dislocations and a saturation in swelling due to low
excess vacancy absorption. The dependence of creep on composition and metal-
lurgical condition is largely determined by the response of swelling to those factors
in the regime where creep is driven by swelling.

13.2.10 Irradiation-Modified Deformation Mechanism Map

The deformation mechanism map for 316 stainless steel can be modified to account
for irradiation creep. Figure 13.22 shows the deformation map for 316 SS con-
structed in a manner identical to that for Fig. 12.31, but at a strain rate of 10−10 s−1

[25]. At this strain rate, irradiation creep is observable in the intermediate
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temperature regime. Below 20 °C, interstitial mobility drops and so does the irra-
diation creep rate. Above about 600 °C, Coble creep is the dominant creep
mechanism. The irradiation creep regime, therefore, lies at intermediate temperature
and intermediate stresses and can be described by the constitutive equation for
irradiation creep strain given by Eq. (13.125) in which the first term is due to
dislocation creep (lower temperature portion of irradiation creep regime) and the
second term is due to swelling-driven creep (higher temperature portion). The net
effect of irradiation is to extend rate-dependent deformation to lower stresses.

13.3 Irradiation Growth and Creep in Zirconium Alloys

In addition to swelling and creep, there is another phenomenon that leads to strains
in some solids under irradiation. This phenomenon is termed growth. Swelling is
the isotropic volume expansion of a solid without an external stress. Creep is the
volume conservative distortion of a solid under an applied stress. Growth is the
volume conservative distortion of a solid without an applied stress. Growth is only
observed in non-cubic systems as it is highly dependent on anisotropy of the crystal
structure. For this reason, irradiation growth can be significant in hcp metals such as
zirconium and magnesium. Zirconium is stable in the α phase (hcp) below 863 °C
and in the β phase (bcc) between 863 °C and Tm. Alpha-Zr has an ideal c/a ratio of
1.589. Three types of planes play key roles in the deformation and growth behavior
of α-zirconium and its alloys:

– Prism I 10�10ð Þ and prism II 11�20ð Þ
– Pyramidal 11�21ð Þ; 11�22ð Þ; 10�12ð Þ
– Basal (0001)

Also of importance are the 10�12ð Þ and 11�22ð Þ planes. The prism, pyramidal, and
basal planes are shown in Fig. 13.23.
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Deformation in hcp metals occurs by both slip and twinning. For stresses along
the a-axis, slip occurs primarily on the 10�10ð Þ prism I plane in the 11�20h i direction.
At higher stress, slip occurs on the 10�11ð Þ and 11�21ð Þ pyramidal planes and in
a 〈c + a〉 direction, or along 11�23h i At high temperatures, slip can occur on the
(0001) basal plane in the a-direction, 1�210h i. Twinning is also a common defor-
mation mode in hcp metals. Twinning will occur for stresses that have a component
in the c-direction on one of the four pyramidal planes. The slip systems for
deformation along the c-direction and as a function of temperature are given in
Table 13.1. Note that different levels of stress are required to activate different
deformation mechanisms. Hence, the stress needed to cause plastic deformation is a

<0001> direction (basal pole)

(1120) plane (prism plane II)

<1120> direction

<1120> slip 
direction

(1010) plane 
(prism plane I) 
slip plane

(0001) plane 
(basal plane)

(1122) twin plane 
(compression)

(1012) twin plane 
(tension)

<1010> direction

<0001> direction

(1121) twin plane 

Fig. 13.23 Prism, pyramidal,
and basal planes in an hcp
structure (after [26])

Table 13.1 Slip systems for
deformation in zirconium

Tension (c-axis) Compression (c-axis)

Temp Plane Direction Plane Direction

Low 11�21ð Þ �1�121h i 11�21ð Þ �1�123h i
High 10�12ð Þ �1011h i 10�11ð Þ �1012h i
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function of direction. A crystal possessing properties that are directionally depen-
dent are called anisotropic.

Commercial production techniques result in Zr components in which the grains
are aligned along preferential directions of the crystal. The preferential orientation
of crystal directions is known as texture. The implication of texture in Zr compo-
nents is that the anisotropic nature of the single crystal is exhibited in the poly-
crystalline material. Further, the texture changes with deformation, and this is
known as texture rotation. The texture is quantified by the fi number or the fraction
of basal poles in the ith direction, where i = L, T, or N for longitudinal, transverse,
and normal, respectively. Note that fL + fT + fN = 1 always.

13.3.1 Microstructure of Irradiated Zirconium Alloys

To understand growth and creep in an anisotropic solid, we must have an under-
standing of the nature of the irradiated microstructure. One of the prime conse-
quences of the crystal structure of zirconium and its alloys is anisotropic diffusion
[27]. Another is that the dilatational strain of the self-interstitial is smaller in Zr than
in most cubic solids, resulting in smaller elastic interaction between dislocations
and interstitials, which gives rise to vacancy loop stability. In fact, this small
dilatational misfit may also explain the ease of Zr in accommodating interstitial gas
atoms. The irradiation microstructure of Zr alloys can be summarized as follows.

Vacancy and interstitial 〈a〉-type 1/3 〈1120〉 (prism plane) loops nucleate and
grow during neutron irradiation. Both are present in approximately equal numbers
between temperatures of 300 and 450 °C, but vacancy loops are unstable above this
range due to thermal emission. The relative numbers of vacancy and interstitial
loops are dependent on the proximity of biased sinks for either interstitials or
vacancies. The 〈a〉-type dislocation loops arrange themselves in layers parallel to
the basal plane, as shown in Fig. 13.24.

At doses above about 2.5 × 1025 n/m2, in the temperature range 300–500 °C, 〈c〉-
component dislocations start to develop on both the pyramidal and basal planes.
The latter consist of vacancy loops having Burgers vector 1=6 20�23h i. The basal
vacancy loops are believed to nucleate in collision cascades and owe their stability
to solutes that lower the stacking fault energy and stabilize them at small size.
Impurity segregation at dislocations near the loops or anisotropic diffusion is likely
to be the most important factors governing loop growth. Additional factors that are
important in 〈c〉-component loops are stress and the magnitude of the Burgers
vector.

At all temperatures, dislocation loop growth contributes to the network during
irradiation, and recovery of the dislocation network is not significant below 400 °C.
The 〈c〉-component vacancy sinks are likely net vacancy sinks and 〈c〉-type dis-
locations are probably net interstitial sinks. The fact that 〈c〉-component loops on
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basal planes are generally of vacancy character also indicates that the 〈c〉-compo-
nent network dislocations are also vacancy sinks since they climb in a similar
manner.

Grain boundaries serve as sinks for interstitial defects during irradiation of
annealed Zr. The bias is dependent on the grain boundary orientation and is a
minimum for boundary planes that are parallel to the basal plane (0001). Voids can
form in Zr at temperatures between 350 and 500 °C, and their formation is a strong
function of impurities and the presence of insoluble gases. When they form, they
also tend to be located at second phase particles. In fact, the lack of insoluble gases
is likely one of the reasons for the instability of voids and the stability of 〈c〉-
component loops instead. As in cubic metals, insoluble gases play an important role
in stabilizing small vacancy clusters against collapse to vacancy loops.

Lastly, radiation induces the formation (of ZrSn or ZrNb) or the dissolution or
redistribution and reprecipitation of intermetallic phases containing Zr and Fe, Cr or
Ni depending on temperature, solute content, and dose. The rebalancing of solute in
the matrix can have an impact on the processes of creep and growth.

13.3.2 Irradiation Growth

Growth is easiest to understand first in single crystal zirconium. Measurements of
growth of single crystal zirconium were first reported by Buckley in 1962 [29]. The
shape change that occurred involved an expansion along the a-axis and a con-
traction along the c-axis, with magnitudes that resulted in zero net volume change,

plate

loops on
prism planes

trace of 
basal plane

zone axis [1210]

foil

(0002)
(1010)

20 nm8 nm

electron
beam

Fig. 13.24 Schematic
diagram of the arrangement of
dislocation loops on prism
planes in irradiated zirconium
(after [28])
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consistent with the concept of growth as a volume conservative distortion process.
Results of these observations led to one of the first models of irradiation growth
which held that interstitials condensed as dislocation loops lying on the prism
planes and vacancies from depleted zones collapsed to form vacancy loops lying on
the basal planes. This process is equivalent to a transfer of atoms from basal planes
to prism planes via the irradiation-induced point defects, as shown schematically in
Fig. 13.25. The growth strains of single crystal zirconium as a function of neutron
fluence are shown in Fig. 13.26 in which there is a large positive growth strain in
the 〈a〉-direction, a negative growth strain in the 〈c〉-direction, and near zero strain
in the 〈c + a〉-direction. But subsequent, detailed TEM observations [27, 28] of the
dislocation loop structure of Zr that had undergone irradiation growth showed that
all of the irradiation-induced dislocation loops had Burgers vectors of the type,
b ¼ 1=3 11�20h i, or 〈a〉-type loops and no indication of 〈c〉-component loops. While
the loops with 〈a〉-type Burgers vector could account for the a-axis expansion, they

Fig. 13.25 Schematic of the
change in shape of single
crystal of α-zirconium
produced by interstitial
condensation on prism planes
and vacancy-depleted zone
collapse on basal planes
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do not account for the c-axis contraction. In fact, after an initial strain of about 10−4,
the growth quickly saturated. Irradiation to much higher doses showed that the
saturation was in fact temporary and that the growth strain exhibited a breakaway
behavior above *2.5 × 1025 n/m2 (Fig. 13.27). Breakaway growth has been
ascribed to the nucleation and growth of 〈c〉-component vacancy loops [29]. The
current evidence supports the nucleation of a low density of loops with 1=6 20�23h i
Burgers vectors that grow to relatively large sizes (>100 nm). In fact, much of the
growth strain in Zircaloy-2 at high fluence can be accounted for by excess inter-
stitial annihilation at 〈a〉-type loops and network dislocations with the corre-
sponding vacancies annihilating at the 〈c〉-component loops [33].

In polycrystalline zirconium alloys, irradiation growth consists of three com-
ponents: (1) a short-term transient due to irradiation-induced microstructure chan-
ges such as defect clusters or loops, (2) a crystallographic texture-dependent
steady-state growth component, and (3) a texture-dependent long-term transient
arising from breakaway growth [32]. The growth strain in a given direction of a
polycrystal, d, can be related to its crystallographic texture by the f numbers and is
proportional to the growth anisotropy factor, Gd:

Gd ¼ 1� 3f bd ; ð13:130Þ

where f bd is the resolved fraction of basal poles in the direction d. The values of f bd
are determined from basal pole figures obtained by X-ray diffraction using the
relationship:

f bd ¼
X
q

Vq cos2 q ; ð13:131Þ
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where Vq is the volume fraction of grains with their basal poles at an angle q from
the direction d. If the resolved fraction of basal poles in a given direction is equal to
1/3, then according to Eq. (13.130), the growth in that direction should be zero. The
growth strain in the longitudinal, transverse, and thickness directions of recrystal-
lized and cold-worked Zircaloy-2 irradiated at 287 °C and 327 °C fit the behavior
rather well [35]. Figure 13.28 shows that the growth behavior of recrystallized
Zircaloy-2 at 57 °C also follows Eq. (13.130).

Irradiation growth is weakly dependent on grain size with smaller grains giving
rise to larger growth. It is also dependent on cold-work with higher cold-work
resulting in a greater growth strain (Fig. 13.29). Growth appears to be dependent on
fluence, but there is not much evidence to support a flux dependence. Finally,
growth is observed to increase with temperature, with a rapid increase above about
400 °C due in part to an increase in volume. It has also been proposed that impurity
elements, such as Fe, can stabilize 〈c〉-component loop embryos and enable their
growth. Irradiation has been observed to amorphize Fe- and Cr-rich precipitates
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[37] causing the redistribution of iron into the matrix [38]. This dissolution process
may be a source of iron for 〈c〉-component loop stabilization at high fluences.

A model [39] has been developed that attempts to capture the sensitivity of the
growth rate to the microstructure by estimating the annihilation probabilities for
interstitials and for vacancies at the various microstructural sinks. It holds that
growth is driven by the difference in the anisotropy of interstitial and vacancy
migration in which (1–3f) growth can occur in cold-worked microstructures by
vacancy partitioning to the 〈c + a〉-network dislocations and interstitial partitioning
to the a-type dislocations. The linear dependence of the growth rate of cold-worked
and stress-relieved Zircaloy-2 is controlled by fast vacancy migration with a low
migration energy of 0.7 eV. The breakaway growth at high fluences is due to the
appearance of basal plane loops which act as strong vacancy sinks.

13.3.3 Irradiation Creep

Time-dependent deformation in zirconium alloys is a combination of thermal creep,
irradiation creep, and growth. While the thermal creep component at reactor tem-
peratures is generally small if not negligible, irradiation creep and growth com-
ponents are not easily separable. The dependence of unirradiated zirconium tensile
and creep properties on temperature can be subdivided into three regions as shown
in Fig. 13.30. Below about 175 °C, the yield stress decreases with temperature, but
creep below the yield stress does not depend strongly on temperature. Region II is
the athermal region of creep and extends between about 175 and 523 °C in which
mechanical recovery balances strain aging and the net effect is that creep is inde-
pendent of temperature but does not readily reach steady-state creep. Above 523 °C,
the strong dependence of yield strength on temperature and the increased recovery
leads to steady-state creep rates at constant stress.
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In reactor, creep follows the phenomenological equation:

_e ¼ Arn/mGd expð�Q=kTÞ f ðtÞ or gðeÞ½ � ; ð13:132Þ

where f(t) and g(ε) are functions of time and strain, respectively, and other terms are
as previously defined. While the flux dependence is generally taken to be linear,
correlations show that the value of m varies between 0.25 and 0.85 at low fluxes
(1016 n/m2s) and rises to an asymptotic value of 1.0 at high fluxes (1018 n/m2s) [34].
The flux exponent also was found to decrease with temperature and become neg-
ligible above 523 °C (region III) [40]. The fluence dependence is generally linear,
but data exist to show that at high fluence (>*2 × 1025 n/m2), there is an upturn in
the creep rate (Fig. 13.31).

Creep of zirconium alloys is highly dependent on the stress. At 300 °C and low
stress (<1/3σy), n = 1. With increasing stress to values between 200 and 400 MPa,
n rises to a value of 2 and then increases rapidly at higher stresses and can reach a
value of 100 at a stress of 600 MPa (Fig. 13.32). Below about 300 °C, the tem-
perature dependence of creep is weak and the activation energy is between 16 and
40 kJ/mol (Fig. 13.33). The temperature dependence increases rapidly with tem-
perature, and Q can exceed 200 kJ/mol. However, the transition temperature for
Q is dependent on alloy content, metallurgical condition, and stress [34]. As with
growth, creep is highly dependent on the texture, which is included as the aniso-
tropy coefficient in Eq. (13.132). However, as shown in Fig. 13.34, the texture
dependence is greatest in the primary creep range. Creep in zirconium alloys is
believed to be due to slip of 〈a〉-type dislocations on prism planes with secondary
slip of 〈c + a〉-type dislocations on pyramidal planes. In Zircaloy-2 and Zr–2.5 %
Nb, slip of 〈a〉-type dislocations contributed over 90 % of the total strain [41]. The
most likely mechanism to explain creep at low stress is the SIPA mechanism. As
discussed earlier, this mechanism has an n = 1 stress dependence, which is con-
sistent with creep at low stress. The elastodiffusion origin of SIPA [42] in which
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diffusion of interstitials is anisotropic in an applied stress field is consistent with the
partitioning of interstitials to 〈a〉-type loops, facilitating their climb and glide.

A deformation-mechanism map for unirradiated Zircaloy-4 calculated assuming
a grain size of 150 μm [43] is shown in Fig. 13.35. The map was drawn as contours
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of constant strain rate in a stress–temperature space. All mechanisms were assumed
to act simultaneously, and the boundaries between the different mechanisms were
set to where the dominant mechanisms switched. An exception to this rule was the
transition to dislocation glide. For consistency between the strain rates in the dif-
ferent regimes, a transition stress of ~s=G = 4.8 × 10−3 was set below which dis-
location glide was not active. This is equivalent to a narrow region in which the
flow rate of the alloy is independent of temperature.
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Nomenclature
A Area of slip plane or dislocation loop
Ā Average loop area
a Lattice constant
b Burgers vector
B0 Creep compliance
Cv,i Concentration of vacancies, interstitials
C0
v;i Thermal equilibrium concentration of vacancies, interstitials

d Grain size
D Creep-swelling coupling coefficient
Deff Effective diffusion coefficient
Dgb Grain boundary diffusion coefficient
Di,v Interstitial, vacancy diffusion coefficient
Dvol Volume diffusion coefficient
e Engineering strain
E Energy or elastic modulus
Evol Activation energy for volume diffusion
f bd Resolved fraction of basal poles in the d direction
fi Fraction of interstitial loops aligned in direction i. Also resolved fraction

of basal poles of hcp unit cells in the i direction
Fi Component of force in the ith direction
Fj Frequency with which a dislocation climbs a height, h
Gd Anisotropy factor
h Obstacle height on glide plane
k Boltzmann’s constant
k2v;i Total sink strength for vacancies, interstitials

k2L;N Sink strengths for loops, networks

l Glide length on the slip plane
J Flux
n The number of interstitials is required to form an interstitial loop also,

number of dislocations in a pileup
n0 Number of possible loop orientations
N Atom number density
NL Number density of dislocation loops
Pj Probability of a dislocation climb of j or greater
rc Dislocation core radius
rL Dislocation loop radius
Rc Critical loop size for survival
Rj Probability of finding a dislocation a distance j from unpinning point
Rmax Maximum dislocation loop radius
S Loop number density
_S Swelling rate
t Time
T Temperature
Tm Melting temperature
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tc Dislocation climb velocity
td Average dislocation velocity
V Volume
Vcas Volume of cascade
Vq Volume fraction of grains with their basal poles at an angle q with

respect to a direction, d
D _V
V

Swelling rate

zdji;v Capture efficiencies of dislocation of orientation j

Dzdi;v Difference in capture efficiencies between aligned and non-aligned loops

α Number of spikes per neutron scattering event, constant in Eq. (13.74)
β Constant in Eq. (13.74)
ϕ Neutron flux
δ Effective thickness of the grain boundary
εs Shear strain
_e Strain rate
_�e Effective strain (or creep) rate
_em Swelling strain
ε, εij Strain and components of strain
εe Elastic strain
εvol Volume strain
μ Shear modulus
ν Poisson’s ratio
ω Release frequency of pinned dislocation segments
Ω Atomic volume
ρ Total dislocation density
ρm,L,N Mobile, loop, and network components of dislocation density
ρFR Frank–Read source density
σ, σij Stress and components of stress
σs Neutron scattering cross section. Also shear stress
�r Effective stress
θ Angle between loop normal and tensile axis in (Eq. 13.74)

Subscripts
AL Aligned loops
c Climb
d Dislocation
eff Effective
FR Frank–Read
g Glide
gb Grain boundary
i, v Interstitial, vacancy
NL Non-aligned loop
L Loop
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m Mobile
N Network
s Shear
S Swelling
vol Volume

Superscripts
c Compressive
dA Aligned dislocation loops
dN Non-aligned dislocation loops
D Dislocation
L Loops
V Void
n Stress exponent
m Flux exponent
t Tensile

Acronyms
GC Glide and climb
FR Frank–Read
N-H Nabarro–Herring
PA Preferential absorption
PAG Preferential absorption glide
PE Preferential emission
SIPA Stress-induced preferential absorption
SIPN Stress-induced preferential nucleation

Problems

13:1 Referring back to the void growth rate calculation in Problem 8.4 of Chap. 8:

(a) Calculate the irradiation creep rate for stainless steel as a function of
temperature and applied shear stress. Assume a void number density of
2 × 1015 cm−3 for the creep rate calculation.

(b) Identify the window in stress–temperature space in which the creep rate
remains below 0.01 %/h.

13:2 In the Hesketh model of irradiation creep by stress-enhanced vacancy–loop
collapse, depleted zones with less than mc * 200 vacancies remain in the
solid as vacancy platelets. For m < mc, the volume per platelet of size m is
mΩ. Using the inverse square distribution function for vacancy platelet (or
depleted zone) size produced by a neutron collision, compute the swelling
due to uncollapsed platelets in the absence of applied stress at a fast fluence
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of 1020 neutrons/cm2. Assume Σs = 0.2 cm−1, Ω = 0.012 nm3, and v = 500
Frenkel pairs per fast neutron collision.

13:3 An Inconel 718 bolt is used to hold a reactor mechanical component in place.
The lifetime of the bolt is determined by the stress relaxation (due to irra-
diation creep). The bolt must be replaced if the load drops to 10 % of the
initial load. For the small irradiation dose received by the bolt, assume the
creep strain rate ð_eÞ during irradiation is proportional to the displacement-
damage rate ð _/Þ and the effective stress (σ) as given in Eq. (13.124):

_e ¼ �B _/r

(a) Calculate the radiation damage (in dpa) when the bolt stress drops to
10 % of the initial value. Assume the elastic modulus E is a constant
value of 7.6 × 1010 Pa and the creep coefficient B is a constant value of
1.6 × 10−6MPa−1 dpa−1.

(b) Due to changes in fuel loading patterns, the dpa rate at the bolt decreases
by 50 % after 5 dpa. Recalculate the total dose to reach 10 % of the
initial preload. Does this change the time to replace the bolt?

13:4 A dislocation that absorbs vacancies and interstitials at different rates will
exhibit climb. The climb velocity υc is given by tc ¼ ðJdi � JdvÞb2 where Jdi is
the flux of interstitials to a unit length of dislocation line and b is the Burgers
vector. If the average obstacle size is 100 nm, calculate the mean time needed
for dislocations to climb over obstacles in fcc aluminum at 200 °C in a
monoenergetic neutron flux of 1014 n/cm2 s (E = 1 MeV). Assume that the
obstacles are not sinks for point defects and that kinetics are diffusion-limited.

Tm ¼ 660 �C
a ¼ 0:405 nm

Qv
f ¼ 3:2 eV

Qv
m ¼ 0:62 eV

Qi
f ¼ 0:66 eV

Qi
m ¼ 0:12 eV

Svth ¼ 0:7k

Sith ¼ 8k

Svm ¼ Sim ¼ 0

v ¼ 1013 s�1

qd ¼ 109 cm�2

b ¼ 0:2 nm

zid ¼ 1:02

zvd ¼ 1:0
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13:5 A creep experiment is performed on unirradiated 316 stainless steel
(Tm = 1750 K) samples at 300 °C and 700 °C in the laboratory at low stress.
Comparison experiments are performed on a second pair of 316 SS samples
at the same temperatures, but during irradiation in a neutron flux of
1 × 1014 n/cm2s (E > 1 MeV). A third pair of samples is tested in the
laboratory at the same temperatures but after being irradiated to a fluence of
1021 n/cm2 at the test temperatures.

(a) Make two plots, one for each temperature. Draw, label, and explain the
expected creep curves for each of these experiments.

(b) What mechanisms would you expect to control creep in each of these
experiments?

13:6 The 316 stainless steel sample irradiated at 700 °C in Problem 13.5 fails at
1 % strain in a creep test. The failure is attributed to helium embrittlement,
and calculations show that the total helium content in the metal was
1017 at/cm3, the grain size was 20 μm, and the swelling at failure was 30 %.
What is the stress at failure?

13:7 The generalized equation for thermal creep is as follows:

_e ¼ ADlb
kT

r
l

� �n b
d

� �p

; where D ¼ D0 expð�Q=kTÞ

D Diffusion coefficient
d Grain size
b Burgers vector
k Boltzmann’s constant
T Temperature (K)
μ Shear modulus
σ Applied stress
n Stress exponent
p Inverse grain size exponent
A Dimensionless parameter

(a) Are any of the variables that describe the creep affected by irradiation?

(b) If so, how would increasing the displacement rate during an irradiation
by an order of magnitude change the creep rate in a pure alloy with very
low sink density?

13:8 The generalized correlation between creep and swelling given in
Eq. (13.125) is as follows:

_�e=�r ¼ B0 þD _S

Comparing this equation to the generalized creep equation in Problem 13.7
implies that the stress exponent is 1. What does that tell you about the likely
mechanisms of creep?
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