
Chapter 12
Irradiation Hardening and Deformation

Exposure of metals to irradiation results in an increase in the yield strength over a
wide temperature range and is most pronounced at Tirr < 0.3Tm. Typical engineering
stress–stress curves for fcc and bcc steelsare shown in Fig. 12.1. Note that for both
crystal structures, in addition to increasing the yield strength, the ductility (mea-
sured either by total elongation or by uniform elongation) is reduced. Irradiation
also increases the yield strength, σy much more than it does the ultimate tensile
strength (σUTS or UTS) for both fcc and bcc metals. The approach of σy to σUTS
results in a loss of ductility to the limit where σy = σUTS and uniform elongation is
zero. In bcc metals tested at low temperature, high fluences may even result in the
disappearance of necking deformation with fracture occurring on the elastic line,
rendering them totally brittle.

Irradiation-induced hardening in both fcc and bcc metals is caused by the pro-
duction of the various defects discussed in Chaps. 3, and 7–9:

– Defect clusters
– Impurity–defect cluster complexes
– Dislocation loops (faulted or unfaulted, vacancy or interstitial type)
– Dislocation lines (dislocation loops that have unfaulted and joined the dislo-

cation network of the original microstructure)
– Voids and bubbles
– Precipitates

This chapter will focus on the mechanisms of irradiation hardening in metals due
to the various irradiation-produced defects. Before beginning a discussion of
hardening, it is helpful to briefly review the basic elements of elasticity and plas-
ticity theory [1], which will serve as a basis for understanding the effect of irra-
diation on hardening.

Additional material to this chapter can be downloaded from http://rmsbook2ed.engin.umich.edu/
movies/
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12.1 Elastic and Plastic Deformation

12.1.1 Elasticity

In the elastic region, deformation is proportional to load, and the relation is known
as Hooke’s law:

r ¼ Ee; ð12:1Þ

where σ is stress, ε is strain, and E is the modulus of elasticity in tension or
compression. While a tensile force in the x-direction produces extension along the
x-axis, it also produces a contraction along the transverse y- and z-directions. The
transverse strain is a constant fraction of the longitudinal strain:

eyy ¼ ezz ¼ �vexx ¼ �vrxx
E

; ð12:2Þ
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Fig. 12.1 Effect of irradiation on the stress–strain behavior (a) schematic and (b) example in an
austenitic (fcc) stainless steel, and (c) schematic and (d) example in a ferritic (bcc) steel
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where v is the Poisson’s ratio and has a value of 0.25 for perfectly isotropic elastic
materials, but is approximately 0.33 for most metals. For a three-dimensional state
of stress, the resulting strains are as follows:

Stress x-Strain y-Strain z-Strain

σxx exx ¼ rxx
E

eyy ¼ �vrxx
E

ezz ¼ �vrxx
E

σyy exx ¼ �vryy
E

eyy ¼ ryy
E

ezz ¼ �vryy
E

σzz exx ¼ �vrzz
E

eyy ¼ �vrzz
E

ezz ¼ rzz
E

Superposition of strain components yields:

exx ¼ 1
E
½rxx � vðryy þ rzzÞ�

eyy ¼ 1
E
½ryy � vðrxx þ rzzÞ�

ezz ¼ 1
E
½rzz � vðrxx þ ryyÞ�:

ð12:3Þ

Adding the strain components gives the following:

exx þ eyy þ ezz ¼ 1� 2v
E

ðrxx þ ryy þ rzzÞ; ð12:4Þ

and

rm ¼ 1=3ðrxx þ ryy þ rzzÞ ð12:5Þ

is the hydrostatic or mean stress, and

D ¼ exx þ eyy þ ezz ð12:6Þ

is the volume strain. Shear stresses produce shear strains according to the following
relations:

exy ¼ rxy
l

; eyz ¼ ryz
l

; exz ¼ rxz
l

; ð12:7Þ

where μ is the shear modulus.
The stress–strain relations for an isotropic solid involve three elastic constants, v,

E, and μ, that are related as follows:

l ¼ E
2ð1þ vÞ : ð12:8Þ
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In a general anisotropic linear elastic solid, there are up to 21 independent elastic
constants. Since the constants must obey various geometrical constraints for a given
crystal structure, the number of independent elastic constants is reduced consid-
erably in structures possessing a high degree of symmetry.

For small elastic strains, there is no coupling between the expressions for normal
stress and strain and the equations for shear stress and shear strain and we can solve
for stress in terms of strain. Writing Eq. (12.4) in terms of stress:

rxx þ ryy þ rzz ¼ E
1� 2v

ðexx þ eyy þ ezzÞ; ð12:9Þ

subtracting σxx from both sides of Eq. (12.9) and substituting for (σyy + σzz) into the
first equation in Eq. (12.3) gives the following:

exx ¼ 1þ v
E

rxx � v
E
ðexx þ eyy þ ezzÞ; ð12:10Þ

and solving for σxx gives the following:

rxx ¼ E
1þ v

exx þ vE
ð1þ vÞð1� 2vÞ ðexx þ eyy þ ezzÞ; ð12:11Þ

or in tensor notation:

rij ¼ E
1þ v

eij þ vE
ð1þ vÞð1� 2vÞ eijdij; ð12:12Þ

where δij is the Kronecker delta with values δij = 1 for i = j, and δij = 0 for i ≠ j.
(Note that the terms eijdij imply the use of Einstein notation.) Upon expansion, this
expression yields three equations for normal stress and six equations for shear
stress. Equation (12.12) is often written in briefer notation using the Lamé constant,
defined as follows:

k ¼ vE
ð1þ vÞð1� 2vÞ : ð12:13Þ

Substituting for Eqs. (12.6), (12.8) and (12.13) for Δ, μ, and λ, respectively, into
Eq. (12.11) gives the following:

rxx ¼ 2lexx þ kD: ð12:14Þ

The stresses and strains can be broken into hydrostatic and deviatoric compo-
nents. Hydrostatic stress involves only pure tension and compression while devi-
atoric stress represents the shear stresses in the total state of stress. The distortion is
related to the stress deviator by:
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r0ij ¼
E

1þ v
e0ij ¼ 2le0ij; ð12:15Þ

while the relationship between hydrostatic stress and mean strain is given as:

rii ¼ E
1� 2v

eii ¼ 3Keii; ð12:16Þ

where K ¼ E
3ð1� 2vÞ is the bulk modulus or volumetric modulus of elasticity. The

bulk modulus is the ratio of the hydrostatic pressure to the dilatation that it produces:

K ¼ rm
D

¼ �p
D

¼ 1
b
; ð12:17Þ

where −p is the hydrostatic pressure and β is the compressibility of the solid. Note
that the hydrostatic component of the stress tensor produces only elastic volume
changes and does not cause plastic deformation. So the yield stress of a solid is
independent of the hydrostatic stress. The stress deviator involves shear stress and is
responsible for plastic deformation.

Two special cases of engineering importance are plane stress and plane strain.
The plane stress state occurs when one of the principal stresses is zero, such as in a
thin sheet loaded in the plane of the sheet (Fig. 12.2(a)) or an internally pressurized,
thin-walled tube. In this case, the principal stresses are given as:

r1 ¼ E
1� v2

ðe1 þ ve2Þ;

r2 ¼ E
1� v2

ðe2 þ ve1Þ;
r3 ¼ 0:

ð12:18Þ

The plane strain state is one in which one of the principal strains is zero such as
occurs when one dimension is much greater than the other two (Fig. 12.2(b)). In this

case, we have e3 ¼ 1
E

r3 � vðr1 þ r2Þ½ �; and combining with σ3 = v(σ1 + σ2) gives:

b

t

x

W

y

x

(b)(a)

Fig. 12.2 Examples of (a) plane stress state and (b) plane strain state
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e1 ¼ 1
E
½ð1� v2Þr1 � vð1þ vÞr2�;

e2 ¼ 1
E
½ð1� v2Þr2 � vð1þ vÞr1�;

e3 ¼ 0:

ð12:19Þ

Note that the expressions in Eqs. (12.18) and (12.19) are written in terms of
principal stresses and principal strains, which act normal to the principal planes.
Principal planes are those on which the maximum normal stresses act, and on which
no shearing stresses act.

The strain energy, U, is the energy expended by the action of external forces in
deforming an elastic body. The work performed during elastic deformation is stored
as elastic energy and is recovered upon release of the applied forces. Energy is the
product of force, F, through the distance, δ, over which it acts. In deformation of an
elastic solid, the force and deformation increase linearly from zero to a value of
1/2Fδ. This quantity is the area under the elastic portion of the stress–strain curve
that was presented in Chap. 7 (Fig. 7.22). If we subject a cube to a tensile stress in
the x-direction, then we can write an expression for the change in strain energy of
the solid:

dU ¼ 1=2F dd

¼ 1=2ðrxxAÞðexxdxÞ
¼ 1=2ðrxxexxÞðAdxÞ:

ð12:20Þ

Since A dx is the volume increment, the strain energy per unit volume or strain
energy density is:

u ¼ 1=2rxxexx

¼ 1=2
r2xx
E

¼ 1=2e2xxE:

ð12:21Þ

For pure shear stress:

u ¼ 1=2rxyexy

¼ 1=2
r2xy
l

¼ 1=2e2xyl:

ð12:22Þ
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Elastic strain energy for a three-dimensional stress state is obtained by superposi-
tion of Eqs. (12.21) and (12.22):

u ¼ 1=2ðrxxexx þ ryyeyy þ rzzezz þ rxyexy þ ryzeyz þ rxzexzÞ
¼ 1=2rijeij:

ð12:23Þ

Substituting expressions for strains from Eqs. (12.3) and (12.7) gives the following:

u ¼ 1
2E

r2xx þ r2yy þ r2zz

� �
� v
E
ðrxxryy þ ryyrzz þ rxxrzzÞ

þ 1
2l

r2xy þ r2yz þ r2xz

� �
;

ð12:24Þ

and substituting Eq. (12.12) into Eq. (12.24) gives the following:

u ¼ 1=2kD2 þ lðe2xx þ e2yy þ e2zzÞþ 1=2lðe2xy þ e2yz þ e2xzÞ: ð12:25Þ

Note that the derivative of u with respect to any strain component gives the cor-
responding stress component:

@u
@exx

¼ kDþ 2lexx ¼ rxx and
@u
@rxx

¼ exx: ð12:26Þ

12.1.2 Plasticity

Elastic deformation depends only on the initial and final states of stress and strain,
while plastic strain depends on the loading path by which the final state is achieved.
The stress required to cause metal to flow plastically to any given strain describes
the flow curve, which is given by the power law hardening relationship:

r ¼ Kenp; ð12:27Þ

where εp is the plastic strain, K is the stress at εp = 1.0, and n is the strain hardening
exponent. Note that n = 0 for perfectly plastic behavior and n = 1 for elastic behavior.
Typically, n is between 0.1 and 0.5. The shape of the power law hardening curve for
various values of n is shown in Fig. 12.3. The yield strength is easy to find in a tension
test. We would like to develop mathematical relations for predicting the conditions
under which plastic yielding begins when a material is subject to any possible
combination of stresses. However, there is currently no way of calculating the
relationship between the stress components to correlate yield in a three-dimensional
state of stress with yield in uniaxial tension. All yielding criteria are empirical.
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Von Mises proposed that yielding will occur when the second invariant of the
stress deviator (see for example [1]) exceeded some critical value, k2, where:

k2 ¼ 1=6 ðr1 � r2Þ2 þðr2 � r3Þ2 þðr3 � r1Þ2
h i

: ð12:28Þ

The value of k is determined by applying this expression to a uniaxial tension test in
which σ1 = σy, σ2 = σ3 = 0, (σy is the yield stress) giving:

r2y þ r2y ¼ 6k2; or ry ¼
ffiffiffi
3

p
k: ð12:29Þ

Substituting Eq. (12.29) into Eq. (12.28) gives the familiar form of the von Mises
yield criterion:

ry ¼ 1=
ffiffiffi
2

p
ðr1 � r2Þ2 þðr2 � r3Þ2 þðr3 � r1Þ2
h i1=2

; ð12:30Þ

and if shear stresses are present:

ry ¼ 1=
ffiffiffi
2

p
½ðrxx � ryyÞ2 þðryy � rzzÞ2 þðrzz � rxxÞ2 þ 6ðrxy þ ryz þ rxzÞ�1=2:

ð12:31Þ

Yielding will occur when the differences in stresses on the right side of the equation
exceed the yield stress in uniaxial tension, σy. For a pure shear stress state (as in a
torsion test), the shear stress, σs, is related to the principal stresses by:

r1 ¼ �r3 ¼ rs; r2 ¼ 0; ð12:32Þ

and at yield:

r21 þ r21 þ 4r21 ¼ 6k2; and r1 ¼ k; ð12:33Þ

0

(a) (b) (c)

K

Fig. 12.3 Flow curves drawn from Eq. (12.27) for the cases (a) elastic behavior, n = 1,
(b) perfectly plastic behavior, n = 0, (c) plastic behavior with intermediate value of n
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so k is the yield stress in pure shear. The von Mises criterion predicts that the yield
stress in torsion will be less than that in uniaxial tension by:

k ¼ 1ffiffiffi
3

p ry ¼ 0:577ry: ð12:34Þ

Another criterion used for yielding due to a multiaxial stress state is the Tresca
(or maximum shear stress) criterion, which says that yielding occurs when the
maximum shear stress reaches the value of the shear stress in the uniaxial tension
test:

rmax
s ¼ r1 � r3

2
; ð12:35Þ

where σ1 is the algebraically largest principal stress and σ3 is the algebraically
smallest principal stress. For uniaxial tension, σ1 = σy, σ2 = σ3 = 0, and the shearing
yield stress, σsy, is equal to σy/2, and (12.35) becomes:

rmax
s ¼ r1 � r3

2
¼ ry

2
¼ rsy; ð12:36Þ

so the maximum shear stress criterion is then given by:

r1 � r3 ¼ ry: ð12:37Þ

For a pure shear stress state, σ1 = − σ3 = k, and σ2 = 0; so the maximum shear stress
criterion states that yielding will occur when:

r1 � r3 ¼ 2k ¼ ry; or k ¼ ry
2
: ð12:38Þ

The Tresca yield criterion has been observed to hold fairly well in alloys that
exhibit a yield drop [2]. Alloys that yield by homogeneous plastic flow generally
obey the von Mises criterion or deviate from it only slightly. In fact, in many real
materials, the yield surface is “between” the Tresca and von Mises criteria [2].

12.1.3 Tension Test

The tension test is perhaps the best way to demonstrate the elastic and plastic
behavior of metals. In a tension test, a specimen is subjected to a continually
increasing uniaxial tensile force, while simultaneous observations are made of the
elongation of the specimen. Data are plotted in a stress–strain diagram from
load-elongation measurements, resulting in an engineering stress–engineering strain
curve. The parameters used to describe the stress–strain curve are as follows:
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– Yield strength
– Tensile strength
– Fracture strength
– Uniform strain
– Fracture strain
– Reduction in area

Figure 12.4 illustrates the engineering stress–engineering strain curve and the
parameters used to describe the behavior of the sample. The average longitudinal
stress S is the load P divided by the original area, A0:

S ¼ P
A0

: ð12:39Þ

Stress

Strain

(a)

(b) Stress

Strain

true stress - true strain

work hardening necking

uniform fracture 
strainelongation

ultimate tensile 
stress

fracture stress
0.2% offset yield

true stress - true strain

engineering stress - 

uniform 
elongation

fracture 
strain

work hardening necking

Lüders
strain

engineering strain

engineering stress - 
engineering strain

upper yield point

lower yield point

Fig. 12.4 Engineering stress–engineering strain and true stress–true strain curves resulting from a
uniaxial tensile test and key parameters defining the curves for (a) fcc metals and (b) bcc metals
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The average linear strain, e is the ratio of the change in length, δ to the original
length, L0:

e ¼ d
L0

¼ DL
L0

¼ L� L0
L0

: ð12:40Þ

The engineering stress–engineering strain curve is not a true indication of the
deformation characteristics of a material because it is based entirely on the original
dimensions of the specimen that change continuously during a test.

The true stress, σ, and true strain, ε, are based on the instantaneous values of
cross-sectional area and length and are given by:

r ¼ P
A
¼ S

A0

A
; ð12:41Þ

e ¼
ZLf

L0

dL
L

¼ ln
Lf
L0

¼ lnðeþ 1Þ:
ð12:42Þ

While the true strain and engineering strain are close at small values of strain
(<0.2), they diverge significantly at large values of strain. The relationship between
true and engineering stress is determined by invoking conservation of volume:

A0

A
¼ L

L0
¼ eþ 1; and r ¼ P

A
¼ Sðeþ 1Þ: ð12:43Þ

Up to a certain limiting load, a solid will recover its original dimensions when the
load is removed. The load beyond which the material no longer behaves elastically is
the elastic limit. If the elastic limit is exceeded, the body will retain a permanent set
upon removal of the load. The stress at which plasticity begins is called the yield
stress, σy or YS. Various definitions exist for the yield stress but the commonly
accepted one is the offset yield strength, determined by the stress corresponding to the
intersection of the stress–strain curve and a line parallel to the elastic part of the curve
and offset by a strain of 0.2 %. The yield strength is written as follows:

ry ¼
Pðstrain offset¼0:2%Þ

A0
: ð12:44Þ
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The tensile strength or ultimate tensile strength (UTS) is the maximum load divided
by the original cross-sectional area of the sample:

Su ¼ Pmax

A0
: ð12:45Þ

The true stress at maximum load is the true tensile strength and is given by the
maximum load divided by the sample cross-sectional area at maximum load:

ru ¼ Pmax

Au
; eu ¼ ln

A0

Au
: ð12:46Þ

Eliminating Pmax from Eqs. (12.45) and (12.46) gives:

ru ¼ Su
A0

Au

¼ Su expðeuÞ:
ð12:47Þ

The fracture stress is the stress at the point of failure and is given by:

Sf ¼ Pf

A0
; ef ¼ Lf � L0

L0

rf ¼ Pf

Af
; ef ¼ ln

A0

Af
:

ð12:48Þ

Strain occurs uniformly in the gage section of the sample up to the UTS, which is
when necking or localized deformation begins to occur. The true uniform strain, εu,
is given by the strain at maximum load:

eu ¼ ln
A0

Au
: ð12:49Þ

The true fracture strain, εf is the true strain based on the original area and the area
after fracture, Af:

ef ¼ ln
A0

Af
¼ ln

1
1� RA

; ð12:50Þ

where RA is the reduction in area at fracture:

RA ¼ A0 � Af

A0
: ð12:51Þ
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Finally, the local necking strain, εn, is the strain required to deform the specimen
from the maximum load to fracture:

en ¼ ln
Au

Af
: ð12:52Þ

A final quantity of importance in the tensile test is the onset of plastic instability,
which occurs when the increase in stress due to the decreasing cross-sectional area
becomes greater than the load-carrying ability of the metal. This necking or lo-
calized deformation begins at the point of maximum load and is defined by the
condition that dP = 0:

P ¼ rA

dP ¼ rdAþAdr ¼ 0; and � dA
A

¼ dr
r

ð12:53Þ

and from conservation of volume:

dL
L

¼ � dA
A

¼ de; ð12:54Þ

so that at the point of tensile instability:

r ¼ dr
de

: ð12:55Þ

That is, the point of necking at maximum load is obtained from the true stress–true
strain curve by finding the point on the curve where the rate of strain hardening
equals the stress. Referring back to the flow curve relation given in Eq. (12.27), the
strain hardening exponent is defined by:

n ¼ d ln r
d ln e

¼ e dr
r de

; and
dr
de

¼ n
r
e
: ð12:56Þ

Substituting Eq. (12.55) into Eq. (12.56) gives a simple expression for the true
uniform strain:

eu¼n: ð12:57Þ

That is, the true uniform strain is equal to the strain hardening exponent in the
power law hardening expression, Eq. (12.27).
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12.1.4 Yield Strength

The yield strength represents the onset of plasticity and hence is a key parameter in
determining the mechanical behavior of metals. Yielding can be understood by
examining the behavior of dislocations in a metal under stress. Dislocations formed
by sources such as the Frank–Read source, frequently pile up on slip planes at
barriers such as grain boundaries, precipitates, or sessile dislocations. The leading
dislocation is acted on not only by the applied shear stress, but also by the interaction
with other dislocations on the slip plane, leading to a high stress concentration on the
lead dislocation in the pileup. The pileup of dislocations also exerts a back stress on
dislocations further from the barrier, opposing their motion on the slip plane
(Fig. 12.5). The high stress at the head of the pileup can initiate yielding on the other
side of the barrier (or it may nucleate a crack at the barrier, see Chap. 14).

The number of dislocations in the pileup can be estimated by summing the
x-direction forces between each dislocation in the pileup under the condition of
mechanical equilibrium. The number of dislocations in a pileup of length L under a
shear stress σs on the slip plane [3] is:

n ¼ pð1� vÞLrs
lb

: ð12:58Þ

At large distances from the pileup, the array of n dislocations can be considered to
act like a single dislocation with Burgers vector nb with a force equal to nbσs.
A more complete analysis of the stress at the head of the pileup was made by Stroh
[4] who showed that the tensile stress normal to the line OP in the neighboring
grain is:

r ¼ 3
2

L
r

� �1=2

rs sin h cos h=2: ð12:59Þ

Obstacle

P

0
L

Source

r

1 2

Fig. 12.5 Dislocation pileup
at an obstacle in a solid
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The maximum value of σ occurs at θ = 70.5° and yields:

r ¼ 2ffiffiffi
3

p L
r

� �1=2

rs; ð12:60Þ

and the shear stress acting in the plane OP is given by:

rP ¼ brs
L
r

� �1=2

; ð12:61Þ

and β is a factor dependent on orientation with a value approximately equal to unity.
If the obstacle is a grain boundary, and the distance from the head of the pileup

in grain 1 to the nearest dislocation source in grain 2 in Fig. 12.5 is r, and the length
of the pileup, L, is taken to be equal to the grain diameter, d, then yielding will
occur when the shear stress in the pileup, σs, reaches the shear stress to cause
yielding, σsy or σs = σsy. If σsd is the stress required to nucleate slip in grain 2, then
the shear stress causing yielding can be written as follows:

ðrsy � rsiÞ d
r

� �1=2

¼ rsd; ð12:62Þ

where σsi is the friction stress, or the stress opposing dislocation motion in the slip
plane. Equation (12.62) can be written in terms of the normal stress where σ = Mσs
and M is the Taylor factor defined as the ratio of the axial stress to the resolved
shear stress:

ry ¼ ri þMrsd
r
d

� �1=2

¼ ri þ kyd
�1=2:

ð12:63Þ

Equation (12.63) is the Hall–Petch equation, which describes the grain size
dependence of the yield stress. Note that the yield strength increases with
decreasing grain size. Yield behavior in metals is generally found to follow this
relation for nominal grain sizes (few to hundreds of micrometers), but fails at very
low grain sizes in the nanometer range.

12.2 Irradiation Hardening

Irradiation of a metal causes strengthening by source hardening and friction
hardening. Source hardening is the increase in stress required to start a dislocation
moving on its glide plane. The applied stress required to release a dislocation into
its slip plane is called the unpinning or unlocking stress. Once moving, the
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dislocation can be impeded by natural- or radiation-produced obstacles lying close
to or in the slip plane. The resistance to motion caused by these obstacles is referred
to as friction hardening. Both of these concepts will be discussed and then applied
to describe the hardening resulting from each of the radiation-induced defects listed
earlier. It should be noted, however, that the true distinction between source and
friction hardening is unclear, as lattice hardening produces all the characteristics of
the deformation that has been attributed to source hardening. The loss of distinction
is due to the fact that the distance between defect clusters is less than the source
length that would produce the observed critical shear stress. Therefore, the source
cannot operate without interference from the lattice clusters [5]. Nevertheless, we
will treat them separately in the following sections. Hardening mechanisms will
first be discussed for single crystals containing an obstacle of a single type. The
superposition of hardening from different origins in a single crystal will be treated
next followed by an extension of theory to the polycrystalline solid.

12.2.1 Source Hardening

Source hardening is found in irradiated fcc, and both unirradiated and irradiated bcc
metals. In unirradiated bcc metals, source hardening is manifested by the upper and
lower yield points in the stress–strain curves (Fig. 12.4(b)) and is thought to be
caused by the pinning or locking of dislocation lines by impurity atoms. Before a
Frank–Read source can operate under an applied stress, the dislocation line must be
unpinned from the impurities. This requires a larger stress than that to move the
dislocation, causing a drop in the yield stress. Yield then continues at a constant
flow stress (Lüders strain region) until the onset of work hardening which pro-
gresses in the same manner as in fcc metals.

Source hardening is found in irradiated fcc metals in which irradiation-produced
defect clusters in the vicinity of Frank–Read sources raise the stress required to
expand the loops and to permit source multiplication. Once the stress level is
sufficient to release the source, the moving dislocations can destroy the small
clusters and reduce the stress needed to continue the deformation.

In unirradiated fcc metals, the stress required to initiate dislocation motion is the
unpinning stress of the Frank–Read sources in the metal and is given by Eq. (7.32a)
as rFR ¼ lb

l ; where μ is the shear modulus, b is the Burgers vector, and l(=2R) is the
distance between pinning points shown in Fig. 7.25. Note that the stress is inversely
proportional to the distance between pinning points. The gradual onset of yielding
characteristic in fcc metals is generally explained by a distribution of stresses
required to operate the sources. At low applied stress, dislocation sources easiest to
operate (with large separation between pinning points) begin to generate disloca-
tions. As dislocations are generated and move through the lattice, they begin to pile
up and exert a back stress on the dislocation source, ceasing its operation and hence
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the plastic strain. With increasing applied stress, more dislocation sources are
activated and dislocation multiplication increases.

Source hardening requires the dislocation line segment to bow out between the
pinning points, which requires strong pinning. However, release of the dislocation
will occur at lower values of applied stress if the dislocation segment is able to
unlock itself before bowing occurs. That is, applied stresses below that required to
operate a Frank–Read source are able to push the dislocation line segment past the
pinning points. This process could occur, for example, if the pinning points con-
sisted of small dislocation loops or defect clusters. The stress necessary to unlock a
dislocation line segment from a small loop can be estimated using the analysis in [3].

Consider a group of edge character loops arranged in a row, each having Burgers
vector b‘, radius r, and spacing l, and are at a stand-off distance y from the straight
edge dislocation of Burgers vector be, as shown in Fig. 12.6. Referring to the
interaction between edge dislocations presented in Sect. 7.1.7, only the σyy term
exerts a stress on the loop that acts to expand or contract it. The force on the loop
due to the σyy component of stress from the straight edge dislocation is 2πrσyyb‘,
and the work to expand the loop is given as:

dW
dr

¼ 2prryyb‘

W ¼ pr2ryyb‘:
ð12:64Þ

Substituting for the stress, σyy, given by Eq. (7.15), into Eq. (12.64) and differen-
tiating with respect to x gives the force between the loop and the edge segment in
the x-direction:

Fx
x

y

Edge Dislocation

Slip Plane

Faulted Loop

σyy

b

R

be

Fig. 12.6 Hardening by
faulted loops caused by the
interaction of stress fields
between an edge dislocation
moving on its slip plane
located parallel to and
displaced a distance y from
the plane of the loop
(after [3])
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Fx ¼ �@W
@x

¼ � lb‘ber2

1� v
xyð3y2 � x2Þ
ðx2 þ y2Þ3 : ð12:65Þ

Singh et al. [6] noted that the force is a maximum at an angle of about 40° between
the distance vector and the glide plane of the dislocation and the value of the force
can be written as a function of r/y:

Fmax
x � 0:28lb2

ð1� vÞ
r
y

� �2

� 0:4lb2
r
y

� �2

; ð12:66Þ

for v = 1/3 and b‘ = be. Given that F = σsbl, then:

rs ¼ 0:4lb
l

r
y

� �2

: ð12:67Þ

Singh suggests that y = 1.5r is consistent with the observed microstructure, yielding
a relation for the shear stress in terms of the loop spacing as:

rs ¼ 0:18lb
l

: ð12:68Þ

Note that this value of shear stress is considerably less than that to initiate a Frank–

Read source by bowing of the dislocation segment of rFR ¼ lb
l
:

Singh et al. also postulated that the unlocking process occurred by interaction
between an edge segment and a network of loops that are no longer well separated,
but have lost their individuality and act as a network. For this case, the yield stress
can be estimated by the stress necessary to overcome the interaction between
dislocation dipoles. This problem is treated in more detail in Chap. 13, in which the
shear stress is provided in Eq. (13.23) as:

rs ¼ lb
8pð1� vÞy �

0:06lb
y

; ð12:69Þ

for v = 1/3.

12.2.2 Friction Hardening

Friction hardening refers to the stress required to sustain plastic deformation, which
is often termed the flow stress, or friction stress. The forces responsible for resisting
dislocation motion through a crystal lattice arise from the dislocation network and
obstacles such as defect clusters, loops, precipitates, voids. These sources of
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hardening are characterized as either long range or short range. Long-range stresses
are caused by dislocation–dislocation interaction by virtue of their stress fields.
Short-range stresses have their origin in the interaction between the moving dis-
location and the discrete obstacles in the slip plane. The total applied shear stress
necessary to overcome both long-range and short-range forces in order to move the
dislocation is given as:

rF ¼ rLR þ rSR; ð12:70Þ

where σF is the friction stress and the subscripts LR and SR represent long- and
short-range contributions, respectively, and σSR is given by:

rSR ¼ rppt þ rvoid þ rloops; ð12:71Þ

where the terms on the right-hand side of the equality correspond to precipitates,
voids, and loops, respectively.

Long-Range Stresses
Long-range forces arise from the repulsive interaction between a moving dislocation
and components of the dislocation network of the solid. Dislocations on parallel glide
planes exert forces on each other due to their stress fields, which constitute the
long-range stress fields. Referring back to Eq. (7.50) describing the force between
edge dislocations, the maximum force occurs at an angle θ = 0°, which yields a value
of:

Fxð0�Þ ¼ FLR ¼ lb2

2pð1� vÞr : ð12:72Þ

Taking v = 1/3, and the distance between dislocations, r from Eq. (5.85) as
1=

ffiffiffiffiffiffiffiffiffi
pqd;

p
where ρd is the dislocation density gives:

FLR ¼ lb2
ffiffiffiffiffiffiffiffi
pqd

p
4=3p

�
ffiffiffi
p

p
lb2

ffiffiffiffiffi
qd

p
4

� alb2
ffiffiffiffiffi
qd

p
; ð12:73Þ

where α is a constant. The stress needed to overcome this force is σLR = FLR/b,
giving:

rLR ¼ alb
ffiffiffiffiffi
qd

p
: ð12:74Þ

Note that if the long-range stress is equated to the unpinning stress given as the
grain size-dependent term in Eq. (12.63), then the yield strength can be written as:

ry ¼ ri þ aMlbq1=2d : ð12:75Þ
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Equation (12.75) actually represents a different way of obtaining the grain size
dependence of the yield stress, since the dislocation density has been observed to
vary with grain size, d as ρd = 1/d.

Short-Range Stresses

Short-range forces are due to the interaction between a moving dislocation and an
obstacle that lies in its slip plane. Short-range forces arise only when the dislocation
contacts the obstacle. Short-range forces can be classified into athermal and ther-
mally activated interactions. An athermal stress interaction is independent of tem-
perature and results in the dislocation bowing around the obstacle. In thermally
activated processes, the dislocation will overcome the obstacle either by cutting
through, or climbing over it. Both processes require the addition of energy through
an increase in temperature. We will discuss dislocation bowing around the obstacle
and obstacle cutting in this section, and the process of climb will be described in
detail in Chap. 13 on creep.

The friction stress due to a dispersion of barriers depends on the average sep-
aration between the obstacles in the slip plane of the moving dislocation.
Figure 12.7 shows a unit area of a slip plane that is intersected by portions of
spherical objects of diameter d, which are randomly distributed throughout the solid
at a concentration of N cm−3. Any sphere that has its center within the slab of
volume d centered on the slip plane intersects the slip plane. The number of
obstacles in this volume element is Nd, which is also the number of intersections
per unit area on the slip plane. The product of the number of intersections per unit
area, Nd, and the square of the distance between obstacles, l2, is unity, yielding the
distance between obstacles:

l ¼ Ndð Þ�1=2: ð12:76Þ

2r

l

Obstacles, radius r

Unit area of slip plane

Fig. 12.7 Schematic showing
the intersection of spherical
obstacles of radius r and
spacing l with a unit area of
slip plane (after [3])
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Precipitates

When a dislocation encounters an obstacle such as an incoherent precipitate, the
short-range interaction occurs when it physically contacts the obstacle. For strong
obstacles, an applied stress will cause the dislocation to bow out between the
obstacles. Bowing will continue until adjacent segments touch and annihilate each
other. This “pinch-off” process is exactly the same as occurs in a Frank–Read
source. Following pinch-off, the dislocation is free to continue along its glide plane
until it encounters the next obstacle and the process repeats itself. The obstacles are
left with a dislocation loop surrounding them, which presents a stronger obstacle to
the next dislocation that comes along (Fig. 12.8(a)). The short-range stress due to an
array of obstacles of density N and size d is determined as follows. The line tension

of an edge dislocation was given in Eq. (7.22) as C � lb2

4p
ln

R
rc

� �
; where R is

equated to the grain radius and rc is the dislocation core radius and the dislocation

Obstacles

Dislocation loop 
left by a previous 
dislocation Moving dislocation

s

1 2 3 4

Void or bubble
Dislocation line

(a)

(b)

(c)

b

Fig. 12.8 (a) Dislocation
bowing around hard obstacles
such as precipitates.
(b) Dislocation cutting of an
obstacle such as a precipitate.
(c) Dislocation interaction
with voids
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core energy is neglected. From Eq. (7.31), the shear stress is related to the line
tension by σs = Γ/bR. Substituting for Γ from Eq. (7.22) and setting R = l/2 where
l is the obstacle spacing gives:

rs � lb
l

1
2p

ln
l
2rc

� �
: ð12:77Þ

Substituting for l from Eq. (12.76) gives:

rs � alb
ffiffiffiffiffiffi
Nd

p
; ð12:78Þ

where a � 1
2p

ln
l
2rc

� �
. The applied stress at yield, σy, is related to the resolved

shear stress, σs, by the Taylor factor, M such that σy = Mσs, and Eq. (12.77) can be
written in terms of the applied stress as:

ry � aMlb
ffiffiffiffiffiffi
Nd

p
: ð12:79Þ

Stoller and Zinkle [7] have shown that M is actually an upper limit for the ratio of
uniaxial yield strength to resolved shear strength and has the value of 3.06 for both
fcc and bcc lattices. Equation (12.79) is generally written as:

Dry ¼ aMlb
ffiffiffiffiffiffi
Nd

p
; ð12:80Þ

where Δσy represents the increment in the yield strength due to the obstacles of size
d, number density N, and strength α. In fact, the term α represents the strength of the
specific barrier in terms of the Orowan hardening model. A perfectly hard barrier
would have a value of α = 1. Hardening according to Eq. (12.80) is often termed
dispersed barrier hardening after the original formulation of Seeger [8].

Dislocation bowing provides the greatest strengthening by obstacles. However,
obstacle cutting can also provide strengthening. Obstacle cutting results in hard-
ening by a variety of mechanisms, summarized by Dieter [1] as follows:

1. Shearing of the particle creates a step of width b on either side of the particle and
the increase in surface area requires additional work be done to shear the
particle.

2. If the particles are ordered structures, such as intermetallic compounds, then the
shearing will also produce a new interface within the particle that will require
extra energy.

3. Hardening also arises from the difference between the elastic moduli of the
matrix and particle, which affects the line tension of the dislocation requiring
additional stress to cut the particle.

4. Strengthening also occurs due to the difference in Peierls stress between the
particle and matrix.
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Figure 12.8(b) shows the result of a dislocation cutting an obstacle. The resulting
obstacle is sheared and the top and bottom halves are displaced along the glide
plane by an amount equal to the magnitude of the Burgers vector of the dislocation.
Successive shearing of the obstacle on the same plane can result in complete
separation of the two parts resulting in two smaller obstacles.

Molecular dynamic (MD) simulation of dislocation–obstacle interaction pro-
vides a means of visualizing complicated microstructural processes as shown in the
following sections. It is important to note, however, that simulations are only as
good as the interatomic potentials that define them and they may be influenced by
other factors such as the size of the simulated volume and the strain rate. Hence,
their value is largely in their qualitative description rather than as a strict quanti-
tative interpretation.

Movies 12.1–12.3 (http://rmsbook2ed.engin.umich.edu/movies/) show molecular
dynamic simulations of the interaction between a dissociated edge dislocation and a
cobalt precipitate in copper as a function of precipitate size at a temperature of 10 K
and under an applied stress of 100 MPa. The precipitate diameter in Movie 12.1 is 1.
5 nm and it is sheared by both partials of the edge dislocation. Movies 12.2 and 12.3
are for 3 and 5 nm diameter precipitates, respectively, and show that while the first
partial shears the precipitate, the trailing partial undergoes Orowan bowing and
pinch-off, leaving a ring around the precipitate as shown in the schematic illustration
in Fig. 12.8(a). Movie 12.4 shows the shearing of a 2-nm copper precipitate. The
first part of the movie shows the behavior of the dislocation line in the shearing
process, and the second part shows the shearing of the precipitate to result in an
offset of the part of the precipitate above the slip plane relative to that below, as
illustrated in Fig. 12.8(b).

For the case where hardening results from the difference in moduli between the
precipitate and the matrix, such as for large vacancy clusters or copper-rich pre-
cipitates in ferritic pressure vessel steels, the Russell and Brown model [9] has been
found to best describe hardening. They showed that the yield stress in shear is a
function of the obstacle spacing in the slip plane, l, and the critical angle at which
the dislocation can cut an obstacle, ϕ:

rsy ¼ 0:8
lb
l
cos

/
2

for /� 100�

rsy ¼ 0:8
lb
l

cos
/
2

� �3=2

for /[ 100�
ð12:81Þ

and when ϕ = 0, the stress is the Orowan stress. They showed that if a dislocation
crosses an interface and has energy E1 per unit length on one side and energy E2 per
unit length on the other, then the equilibrium of the dislocation requires that E1 sin
θ1 = E2 sin θ2, where θ1 and θ2 are the angles between the dislocation and the
normal to the interface. When the energy of the dislocation is lower in the pre-
cipitate than it is in the matrix (E1 < E2), then the angle ϕ has a minimum value

12.2 Irradiation Hardening 691

http://rmsbook2ed.engin.umich.edu/movies/


when the dislocation is about to break away, given by ϕmin = 2sin−1 (E1/E2), and the
strength from Eq. (12.81) is given by:

rsy ¼ 0:8
lb
l

1� E2
1

E2
2

� �1=2
for sin�1 E1

E2
\50�

rsy ¼ 0:8
lb
l

1� E2
1

E2
2

� �3=4
for sin�1 E1

E2
� 50�;

ð12:82Þ

where:

E1

E2
¼

E1
1 log

r
rc

E1
2 log

R
rc

þ
log

R
r

log
R
rc

; ð12:83Þ

and E∞ is the energy per unit length of dislocation in the infinite media, R is an
outer cut-off radius (taken as half the distance to the next obstacle) and rc is the
dislocation core radius. The stresses in Eq. (12.82) depend inversely on the particle
spacing, l, and therefore decrease as the particle radius increases (for constant
volume fraction of precipitate). However, combining Eq. (12.83) with Eq. (12.82)
yields a maximum in the relation between strength and precipitate size. For voids or
for precipitates in pressure vessel steels, the maximum is at about 2rc (*5a) or
*1.5 nm.

Voids

Dislocations can also cut through voids, although the structure of the void is the
same before and after the cut. Precipitates and voids are generally considered to be
hard barriers with α * 1. The only difference between passage of a mobile dis-
location through precipitates and voids is that in the case of voids, the dislocation
segments always meet the void surface at right angles and leave no dislocation ring
after passage through the void (Fig. 12.8(c)). As described by Olander [3], the force
to cut through a void is given by:

F ¼ UV

R
¼ rsbl; ð12:84Þ

where UV is the elastic strain energy in a volume of solid equal to the cavity, R is
the radius of the cavity, and l is the void spacing on the slip plane. From Eq. (7.21),

the elastic energy per unit volume for a screw dislocation is given as W ¼ lb2

8p2r2
.

The elastic energy of the void–dislocation interaction energy can be approximated
by the elastic energy in the volume of the void:
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Uv ¼
ZR

rc

4pr2W dr

¼ 4p
ZR

rc

lb2

8p2
dr

¼ lb2

2p
R� rcð Þ � lb2R

2p
:

ð12:85Þ

Substituting into Eq. (12.84) and solving for σs gives:

rs ¼ 1
2p

lb
l
; ð12:86Þ

which is smaller than the Orowan stress, Eq. (7.32a) by a factor of 1/2π indicating
that cutting of voids requires less energy than bowing around them. Written in the
form of Eq. (12.80) gives:

Dry ¼ aMlb
ffiffiffiffiffiffi
Nd

p
; a � 0:16 ð12:87Þ

A more complete treatment of dislocation–void interaction accounts for image
stresses, dislocation self-interaction, and elastic anisotropy of the crystal. The image
stress must be added to the dislocation stress in order to make the void surfaces
traction free. Dislocation self-interaction refers to the dipole-like attractive forces
between the dislocation branches terminating at a void, which can aid in pulling the
branches together around the void, thus diminishing strengthening effects. Finally,
elastic anisotropy of the crystal containing the void row must be accounted for in
the dislocation stress field calculation. Inclusion of these factors in the calculation
of the stress necessary for a dislocation to cut a void shows that the void is a very
strong obstacle, approaching the Orowan stress value for impenetrable obstacles.
A detailed treatment of these effects is given in [10].

The interaction between dislocations and voids is illustrated in Movies 12.5–
12.7 (http://rmsbook2ed.engin.umich.edu/movies/). Movie 12.5 shows the inter-
action of leading and trailing partials of a dissociated edge dislocation with a 3 nm
void in copper at 0 K. Note that the dislocation lines maintain a right angle with the
void surface throughout the interaction. Movie 12.6 shows the shearing of a 1 nm
void in iron by a dislocation and the resulting stress–strain behavior due to the
dislocation–void interaction. In these three perspectives, the displacement of the top
half of the void relative to the bottom half is evident. Finally, Movie 12.7 shows the
repeated shearing by multiple dislocations of a 2.6 nm He bubble under an applied
shear stress of 100 MPa. Note that the bubble appears to elongate in the direction of
the applied stress, due to the offset of the half above the slip plane relative to that
below, similar to that shown in Fig. 12.8(b).
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Loops

The interaction between a mobile dislocation and a loop was described in
Sect. 12.2.1 where it was shown that the stress in Eq. (12.68) is of the order

rs � 0:2lb
l

and for l given by Eq. (12.76) the stress becomes:

rs ¼ 0:2lb
ffiffiffiffiffiffi
Nd

p
; ð12:88Þ

which is well below the Orowan stress. Written in the form of Eq. (12.80), the yield
strength increment due to loops is given as:

Dry ¼ aMlb
ffiffiffiffiffiffi
Nd

p
; with a � 0:2: ð12:89Þ

The types of interactions between dislocation lines and loops described in this
chapter are illustrated in Movies 12.8–12.12 (http://rmsbook2ed.engin.umich.edu/
movies/). In Movies 12.8 and 12.9, the interaction between the dislocation and the
loop is through the stress fields. Movie 12.8 shows an edge dislocation in copper
(edge on: red spheres are the partials), interacting with a 37 SIA perfect loop (green
spheres) a distance 2 loop diameters from the dislocation. Both have Burgers vector
1/2[110]. Note that as the dislocation moves, the interacting strain fields drag the
loop in the direction of the moving dislocation. Movie 12.9 shows an edge dislo-
cation bypassing a 153 SIA Frank loop at 100 K under an applied stress of 300 MPa
in copper. The blue spheres are atoms in the fcc crystal and the yellow spheres are
atoms in the stacking fault. During the non-intersecting interaction, the Frank loop
rotates to become a mobile perfect loop and glides to annihilation at the free
surface.

Movies 12.10–12.12 illustrate interactions in which the dislocation contacts the
loop. Movie 12.10 shows a dissociated screw dislocation shearing the same Frank
loop under the same conditions as that shown in Movie 12.9. Note that the sheared
loop is absorbed into the screw dislocation core. Movie 12.11 is another example of
a screw dislocation interacting with a perfect loop (same Burgers vector) in which
the loop is absorbed and then re-emitted a distance away from the original
absorption point, and the dislocation cross slips onto a different glide plane. Movie
12.12 shows an edge dislocation interacting with and unfaulting a Frank loop
(5 nm, 331 SIA) in iron at 300 K, resulting in near destruction of the loop.

Another type of faulted defect, the stacking-fault tetrahedron, described in Chap. 7,
also interacts with dislocations and can contribute to hardening. Movie 12.13 shows
the interaction of successive edge dislocations with a 153-vacancy SFT at 100 K under
an applied stress of 100 MPa in copper. The SFT is sheared into a smaller SFT and a
truncated base and subsequent interactions result in absorption of the truncated base
into the dislocation. Movie 12.14 shows the details of the interaction between edge
partials shown in Movie 12.13 but at a slower rate and with a 45-vacancy SFT.
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Movies 12.15–12.17 show the interaction of a screw dislocation with an SFT in
Cu. In Movie 12.15, the 45-vacancy SFT is sheared and in Movie 12.16, the
98-vacancy SFT is absorbed and then re-emitted. Movie 12.17 shows a 78-vacancy
SFT being absorbed and re-emitted as a smaller SFT and a separate truncated base.
A real-time movie of a dislocation–SFT interaction in copper was conducted on a
sample under dynamic loading in the stage of a transmission electron microscope at
room temperature, Movie 12.18. The SFTs were introduced by quenching the
copper specimen in iced brine after a 2 h anneal at 1073 K. The weak-beam
dark-field movie shows a dislocation being pinned by a stacking-fault tetrahedron.
The result of the interaction is the formation of a perfect loop. Finally, Movies
12.19 and 12.20 show the interaction of a screw dislocation in copper with multiple
defects: a 78-vacancy SFT and a perfect loop consisting of 61 interstitials in Movie
12.19 and 91 interstitials in Movie 12.20.

Effect of Temperature

As described in the preceding section, obstacle strength and density determine the
velocity of dislocations in a polycrystal. If the Gibbs free energy of activation for
cutting or bypassing an obstacle is ΔG(σs), then the mean velocity of a dislocation
segment, �t, is given by [11]:

�t ¼ bbv exp �DG rsð Þ
kT

� �
; ð12:90Þ

where β is a dimensionless parameter, b is the magnitude of the Burgers vector, ν is
the ground frequency of the dislocation, and σs is the shear stress. The term ΔG(σs)
is a function of the internal stress and the distribution of obstacles and for a regular
array of obstacles, it can be expressed as:

DG rsð Þ ¼ DF 1� rs
r0s

� �
; ð12:91Þ

where ΔF is the total free energy (activation energy) required to overcome the
obstacle without aid from an external stress. The term r0s is the stress at which a
dislocation can move through the obstacle with no help from thermal energy, or
essentially, the flow stress at 0 K where ΔG = 0.

Generalizing to a random array of obstacles [11], Eq. (12.91) becomes the
following:

DG rsð Þ ¼ DF 1� rs
r0s

� �p� �q
; ð12:92Þ
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where 0 ≤ p ≤ 1 and 1 ≤ q ≤ 2, and where r0s is given phenomenologically by:

rs
r0s

¼ 1� T
T0

� �p� �q
; ð12:93Þ

where reasonable limiting behavior is found with p = 2/3 and q = 3/2 [12]. Since the
strain rate is proportional to the average dislocation velocity (see Sect. 13.1), the
rate equation for discrete obstacle controlled plasticity is given by:

_e ¼ _e0 exp �DF
kT

1� rs
r0s

� �p� �q	 

; ð12:94Þ

which captures both the stress and the temperature dependence of dislocation
passage through a random array of obstacles.

Hardening due to long-range and short-range obstacles is summarized in
Table 12.1 using Eq. (12.80) to describe short-range obstacles. Note that the values
of α can vary by a significant amount depending on obstacle type. Much work has
been done to determine the value of α experimentally, and column 5 in Table 12.1
gives the generally accepted values for α based on experimental work.

12.2.3 Superposition of Hardening Mechanisms

As discussed in Chaps. 7–9, the microstructure of an irradiated metal can be quite
complicated. At very low dose, it consists of defect clusters and small loops. With
increasing dose, the loop microstructure saturates at a particular number density and

Table 12.1 Strength of various obstacle types causing source and friction hardening in irradiated
metals

Type of
strengthening

Obstacle
classification

Obstacle
type

Stress increment Value of α

Source Loops
rs ¼ 0:18lb

l
isolated loops

rs � 0:06lb
y

loop network

Friction Long range Dislocation
network

rLR ¼ alb
ffiffiffiffiffiffi
qd

p
<0.2

Short range Precipitates
and voids

Dry ¼ aMlb
ffiffiffiffiffiffi
Nd

p
1.0 bowing
0.3–0.5
cutting

Dislocation
loops

0.25–0.5

Black dots < 0.2
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loop size, and as loops unfault and become part of the dislocation line network, the
dislocation density rises. At higher temperatures, voids and bubbles contribute to
the microstructure, and irradiation-induced precipitation can also contribute. Each
of these features presents a different type of obstacle to the moving dislocation. In
order to assess the hardening of a true irradiated microstructure, we must have some
way of accounting for obstacles of different types, sizes, and number densities.
Below, we treat several special cases of various combinations of short-range and
long-range obstacles as originally described by Bement [13].

Long-Range Stresses and Short-Range Obstacles

If long-range internal stresses exist in the lattice, as caused for example by groups
of dislocations of predominantly the same sign of Burgers vector, and if in addition,
dispersed barriers with a short-range interaction and an average distance, lSR smaller
than the average “wavelength” of the long-range stresses, are present, on average
the effective stress available for pushing the dislocation over the short-range
obstacles (σSR) is the difference between the applied stress σa and the stress σLR
necessary for moving the dislocations through the long-range stress field:

ra ¼ rLR þ rSR; lSR\lLR: ð12:95Þ

Thus, the total stress is composed of the stress due to the two types of hardening as
if each acted independently. Such is not the case if two types of short-range
obstacles are present.

Two Types of Short-Range Obstacles

In an irradiated microstructure consisting of two types of short-range obstacles, the
superposition depends sensitively on the strengths and relative concentrations of the
two types of obstacles.

Two Strong Obstacles If both types of obstacles are strong such that dislocations
interact by means of the Orowan mechanism, the moving dislocation cannot dis-
tinguish between them, and the sum of the area densities, N, of the two obstacles in
the glide plane determines the effective obstacle distance:

l ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1 þN2

p ; ð12:96Þ

and
1
l2
¼ 1

l21
þ 1

l22
; ð12:97Þ

giving r2a ¼ r21 þ r22; ð12:98Þ
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where σ1 and σ2 are the critical (short-range) stresses of the obstacles of type 1 or 2
with average distances l1 and l2, respectively, would act separately. This
root-sum-square (RSS) model was shown by Foreman and Makin [14] to apply for
a population of obstacles with similar strengths. However, the behavior of the
dislocation differs depending on the strength of the obstacle. Figure 12.9 shows the
final configuration of a dislocation line just prior to yielding for obstacle strength, α,
of 0.1, 0.5, and 0.8 [15]. If there are types of obstacles in the lattice which can be
surmounted with the help of thermal activation and for which the forces (F1 and F2)
are nearly the same, Eq. (12.98) holds for the same reasons given above.

Two Obstacles with Different Strengths There exist several subcases for combi-
nations of weak and strong particles. Kocks [16] considered the case of many weak
and a few strong obstacles giving the conditions:

F1 	 F2 with l1 	 l2: ð12:99Þ

If a dislocation segment bows out under the applied stress between two strong
obstacles, it cuts through many weak ones in its path. The more it bows out the
larger the angle becomes between neighboring branches of the dislocation at
the weak obstacles and the smaller (at a given stress) the force is with which the
dislocation is pressed against the weak obstacles. Simultaneously, the angle

0.8

0.1

0.5

Fig. 12.9 Result of computer
simulation of the shape of a
dislocation line just prior to
yielding for various fixed
values of a (0.1, 0.5, 0.8)
(after [15])
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between the neighboring branches of the dislocation at the strong obstacles
becomes smaller and the force acting on them increases (Fig. 12.10). The critical
situation is reached when the dislocation can break through weak and strong
obstacles simultaneously.

The applied stress required to push the dislocation through this critical config-
uration is given as:

ra ¼ r1 þ r2: ð12:100Þ

Movie 12.21 (http://rmsbook2ed.engin.umich.edu/movies/) is a real-time movie
of dislocation–defect interaction during the straining of an irradiated copper sample.
The sample was irradiated with 200 keV Kr+ to a dose of about 1012 i/cm2 at room
temperature in the IVEM at Argonne National Laboratory. The defects consist
predominantly of Frank loops with Burgers vector a/3⟨111⟩ and a smaller density
(*10 %) of stacking-fault tetrahedra. As shown, the dislocation moves in a jerky
manner with small segments breaking free from individual pining points and no
observable defect absorption.

If no extreme condition exists as in Eq. (12.99), the thermally activated sur-
mounting of the two types of obstacles must be treated in terms of so-called
dependent processes. For such processes, the waiting time ts (average time during
which a dislocation is pressed against an obstacle of type s until it gets enough
thermal energy to overcome it) enters the theoretical treatment additively, so that
the time a dislocation needs for moving over a given area is proportional to
N1t1 + N2t2. If N1t1 ≫ N2t2, the effective flow stress is determined almost

(a) 0
w

0
s

0
ww >' 0

ss <'(b)

t = 0

t = t1

Fig. 12.10 Movement of a dislocation in an obstacle field consisting of many weak and a few
strong obstacles (a) before application of a stress and (b) after the dislocation has moved past
many of the weak barriers
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exclusively by the obstacles of type 1; type 2 is “transparent” for the dislocation
under the stress necessary to overcome type 1:

ra � r1 for N1t1 
 N2t2; r1 
 r2 ð12:101aÞ

ra � r2 for N1t1 	 N2t2; r1 	 r2: ð12:101bÞ

This means that if type 2 obstacles are added to a constant concentration of type 1
obstacles, Eq. (12.101a) holds for small concentration and Eq. (12.101b) for high
concentrations of type 2 obstacles so that a transition occurs in the effective flow
stress from σ1 to σ2. In extreme cases of very low or very high concentrations of
type 2 obstacles, the stresses that the two types of obstacles would demand sepa-
rately determine the effective flow stress.

In summary, the RSS superposition law, Dryr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i Dryi
� �2q

works well when

obstacles have similar strengths, and the linear sum, or superposition law, Dryl ¼P
i Dryi is better as the strengths become more dissimilar. Odette [16] has shown

that hardening in a microstructure consisting of a wide range of obstacle strength is
best fit by a combination of the root-square-sum and linear sum models, with the
following weighting parameter, S:

Dry � Dryr
� � ¼ S Dryl � Dryr

� � ð12:102Þ

and S can be related to the obstacle strengths by:

S � as � 5aw þ 3:3asaw; ð12:103Þ

such that S = 1 for the linear sum law and S = 0 for the RSS law. According to
Eq. (12.103), S decreases with increasing αw (stronger weak obstacles) and
decreasing αs (weaker strong obstacles). The superposition rules for different
hardening mechanisms are summarized in Table 12.2.

Using Eqs. (12.80) and (12.75), observed trends in the dose and temperature
dependence for ρd and

ffiffiffiffiffiffi
Nd

p
, and the obstacle strengths (αvoids = 1.0) listed in

Table 12.1, Lucas [17] estimated the hardening as a function of dose for three
temperatures, as shown in Fig. 12.11. While these are only predictions, they serve to
illustrate the relative contributions to hardening of the various microstructure fea-
tures. In stainless steels, low-temperature (100 °C) hardening is dominated by black
dot damage and small loops at low doses and the network density at higher doses.
Above about 400 °C, voids and bubbles begin to make a contribution to the hard-
ening. Intermediate to these temperatures, hardening is a maximum (near 300 °C)
due to the combination of black dots, loops, and He bubbles. At lower doses, voids
and loops contribute the majority of hardening, but at higher doses, the dislocation
microstructure and voids become the major source of hardening [18]. These pre-
dictions differ somewhat from LWR data at *300 °C [19] and even up to 400 °C
[20, 21] in that the peak in hardness is not observed. This is likely due to the stability
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of the loop microstructure to high doses at temperatures below 400 °C. At high
temperature (600 °C), hardening is dominated by network dislocations. The con-
tribution from voids can be significant at very high doses.

12.2.4 Hardening in Polycrystals

Up to this point, we have considered hardening only in single crystals and have not
accounted for the effect of grain boundaries in polycrystalline metals. In poly-
crystals [13], the flow stress is increased by the influence of the different grain
orientations and of the grain boundaries. As described by Eq. (12.63), the tensile
yield stress depends on the grain size d according to the Hall–Petch relation given
by σy = σi + kyd

−1/2, where σi is the friction stress and ky is the unpinning stress. The
term ky is based on the premise that a slip band is a stress concentration and that
plastic flow between grains, and therefore, throughout the polycrystalline solid
occurs when the stress concentration due to a dislocation pileup at a boundary is
sufficient to activate a dislocation source in the neighboring grain. In the case of
iron, steel, and molybdenum, the effect of irradiation on the Hall–Petch relationship
is to increase the friction stress σi, with little effect on ky for small grain sizes. For
larger grain sizes, samples undergo a greater increase in yield strength which
reduces ky to almost zero (Fig. 12.12).

Table 12.2 Superposition
rules for hardening

I. Long-range stresses and short-range obstacles
ra ¼ rLR þ rSR
II. Two types of short-range obstacles
A. Both types strong

l ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1 þN2

p

r2a ¼ r21 þ r22
B. Many weak and few strong
F1\F2; with l1\l2
ra ¼ r1 þ r2
C. Thermally activated motion over barrier
ra � r1 for N1t1 
 N2t2; s1 
 s2
ra � r1 for N1t1 	 N2t2; s1 	 s2

III. Wide range of obstacle strength
ry � ryr
� � ¼ S ryl � ryr

� �
S � as � 5aw þ 3:3asaw
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The dislocation density in a solid undergoing plastic deformation increases
linearly with strain, ε according to:

q ¼ q0 þAe; ð12:104Þ

and

A ¼ b=d; ð12:105Þ

where β is a constant and d is the grain diameter. Recall from Eq. (12.75) that the

yield strength is related to the dislocation density by: ry ¼ ri þ lbq1=2d ; and using
Eqs. (12.104) and (12.105) and assuming that q0 	 Ae, the yield strength can be
written as:

ry ¼ ri þ lb
be
d

� �1=2

; ð12:106Þ

which is equivalent to the Hall–Petch equation with:

ky ¼ lb beð Þ1=2: ð12:107Þ

In this work hardening model, β is a measure of work hardenability due to dislo-
cation channeling. As β approaches zero in irradiated material because of loss of
strain hardenability due to dislocation channeling, the term βε/d becomes very small
and ky approaches zero.

Data from a low alloy Fe–Mn–C steel was used to chronicle the development of
radiation hardening using the Hall–Petch parameters, as well as the strength
coefficient K and the strain hardening exponent, n from the power law hardening
equation given in Eq. (12.27). Four stages of radiation hardening of a Fe–Cr–Mn
steel with progressively increasing dose are shown in Fig. 12.13. Stage A occurs for
very low dose (1015–1016 n/cm2) and involves an increase in ky with negligible
increase in stress σi, and no change in n and K. The result is an increase in the upper
yield point and the Lüder’s strain. Stage B occurs around 1018 n/cm2 and represents
an increase in σi but little change in ky. In this stage, both n and K decrease,
resulting in a reduced slope of the stress–strain curve and an increase in the Lüder’s
strain. Stage C appears at fluences of about 3 × 1018 n/cm2 and is characterized by a
continued increase in σi and a decrease in ky. The strain hardening exponent, n,
continues to decrease but K increases slightly, resulting in a small change in the
slope of the stress–strain curve and a small decrease in Lüder’s strain. In stage D, σi
continues to increase and ky falls nearly to zero. Also both n and K decrease,
resulting in a further decrease in the slope of the stress–strain curve and the near
disappearance of Lüder’s strain. Although this description of the effects of irradi-
ation on stress–strain behavior is specific to the iron alloy system, the changes in the
parameters σi and ky are consistent with the current understanding of barrier–
hardening interactions, dislocation channeling, and grain size effects, and highlight
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the changing nature of the fluence dependence of irradiation hardening in poly-
crystals. However, experimentally, ky has been observed to either increase or
decrease [22] suggesting that the grain size effect is not as well-established as
suggested in Fig. 12.12.

12.2.5 Saturation of Irradiation Hardening

According to the dispersed barrier hardening model, Eq. (12.80), the increment in
yield strength, Δσy increases as N1/2. In the absence of mechanisms for the
destruction of obstacles, N is proportional to the total fluence and hence irradiation
hardening should be proportional to (ϕt)1/2:

DrS / /tð Þ1=2: ð12:108Þ

That is, the number of obstacles continues to increase with fluence without bound.
This is clearly counter to observations of the dislocation microstructure evolution at
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Fig. 12.13 Changes in the stress–strain curves for Fe–Cr–Mn steel irradiated at 80–100 °C to
neutron doses of (a) 1016 n/cm2, (b) 1018 n/cm2, (c) 3 × 1018 n/cm2, (d) >5 × 1018 n/cm2 (after [13])
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LWR temperatures, Chap. 7, in which the dislocation loop density and size are
observed to saturate by several dpa. However, at low doses, the hardening described
by Eq. (12.108) is reasonably accurate. Figure 12.14 shows the irradiation hard-
ening in 300 series stainless steels irradiated at about 300 °C and tested at about that
same temperature. Note that the hardening can be fit with a (ϕt)1/2 dependence quite
well through about 5 dpa. However, the model described by Eq. (12.108) will
clearly overestimate the hardening once saturation of the dislocation microstructure
occurs.

In trying to account for saturation of hardening at higher doses, Makin and
Minter [23] postulated that if a displacement cascade occurs in the neighborhood of
an existing zone or cluster, no new zone is formed. This “prohibited” zone has a
volume V. According to this model, as the concentration increases, it becomes
harder to form new zones because of the reduced volume available for new zone
formation. The time rate of change of the density of zones, N, is then given by:

dN
dt

¼ fRs/ 1� VNð Þ; ð12:109Þ

where ζ is the number of zones created per neutron collision (*1), Rs is the
macroscopic scattering cross section, and ϕ is the fast neutron flux. The term in
parenthesis represents the fraction of solid volume available for the creation of new
zones. Integration of Eq. (12.109) gives the following:

N ¼ 1
V

1� exp �fVRs/tð Þ½ �; ð12:110Þ
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and substitution of Eq. (12.110) into Eq. (12.80) yields

Dry ¼ A 1� exp �B/tð Þ½ �1=2: ð12:111Þ

where A ¼ aMlb
d
V

� �1=2

; and B = ζVΣs. Higgy and Hammad [24] found that for

304 SS, 316 SS, and 347 SS above fluences of about 5 × 1019 n/cm2, the irradiation
hardening increment can be described by Eq. (12.111) with B = 2–3 × 10−21 cm2/n.
Odette and Lucas [25] found that this same equation fit the data for hardening in
300 series stainless steels irradiated and tested at about 300 °C, with A ≈ 670 MPa
and B ≈ 0.5 dpa−1 with ϕt in units of dpa or B ≈ 7 × 10−22 cm2/n with ϕt in units of
n/cm2 and assuming that 1 dpa ≈ 7 × 1020 n/cm2. Note that application of
Eq. (12.111) with similar values of A and B produces a good fit to the data in
Fig. 12.14. Bement [26] found that for Zircaloy-2, B = 2.99 × 10−21 cm2/n at 280 °C.

Fluence exponents of less than 0.5 are commonly observed. Eason [27] found in
analyzing a sizable database consisting of several stainless steels that the yield
strength increment at 288 °C followed a fluence dependence of the form:

Dry ¼ a /t

1020

� �b
; ð12:112Þ

where

– for type 304 and 304L stainless steel, a * 2.05 and b = 0.124,
– for type 316 stainless steel a = 0.595 and b = 0.491,
– for type 316L stainless steel a = 0.517 and b = 0.562, and
– for type 347 stainless steel a = 1.627 and b = 0.124.

Williams and Hunter [21] used a modified form of Eq. (12.111):

Dry ¼ A 1� expð�B/tÞ½ �; ð12:113Þ

to fit hardening in an A533-B steel plate using A = 22 ksi (152 MPa) and
B = 2 × 10−19 cm2/n (Fig. 12.15).

Saturation occurs when a balance is reached between the creation and the
destruction of obstacles. Interstitial and vacancy loops are created from defect
clusters. Interstitial loops grow in size as their numbers increase. However, vacancy
loops are generally unstable and shrink due to vacancy emission. Interstitial loops
are removed by unfaulting. So an alternative formulation for the number of
obstacles is to associate a lifetime, τ to these defects, [29] in which case, their
density should develop according to:

dN
dt

¼ fRs/� N
s
; ð12:114Þ
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with a solution of the form:

N ¼ fRs/s 1� exp �t=sð Þ½ �: ð12:115Þ

12.2.6 Comparison of Measured and Predicted Hardening

The dispersed barrier hardening model has been applied to irradiation hardening of
alloys in several systems. The most successful application is in the case of austenitic
stainless steels and for irradiated microstructures that are dominated by loops.
Figure 12.16 shows the correlation between measured and calculated yield strength
for a set of solid solution alloys, which were all derived from a base alloy of
composition Fe–18Cr–12Ni–1Mn, and differ in the single element added to the
alloy. The alloys were irradiated with 3.2 MeV protons at 360 °C to a dose of
5.5 dpa and the microstructure was characterized by TEM. Loop and void size and
density were determined for each alloy. Only the base 316 stainless steel alloy,
316 + Mo, and 316 + Ni/Cr contained voids. The measurements of yield strength in
Fig. 12.16 actually come from microhardness indentations (discussed in
Sect. 12.2.8) and the calculated hardness values are determined from the dispersed
barrier hardening model, Eq. (12.80). In this case, α = 0.25 for loops and α = 0.5 for
voids produced the best fit with the data.

The loop strength of 0.25 is consistent with, although on the low side, of what
has been observed in the literature [3, 13, 17, 31–34]. Values of α for loops as high
as 0.5 have been deduced from strengthening data [35]. The value of α for voids
(0.5) is half that of the theoretical value for Orowan strengthening. However, Ando
et al. [36] have shown that cavity shearing is more likely than Orowan pinning,
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resulting in a value of α = 0.5 rather than 1.0. They concluded that the high value of
α observed in some experiments is likely due to cavity–precipitate association.
Electron microscopy has revealed that bubbles and MC precipitates nucleate and
grow together in austenitic stainless steels [37]. Kelly [38] considered the hardening
to be due to two spheres in contact rather than a single obstacle and derived the
following relation for the bubble–precipitate pair:

Drbubble�ppt ¼ 0:16Mlb
ffiffiffiffiffiffi
Nd

p

1�
ffiffiffi
6

p

3

ffiffiffiffiffiffi
Nd

p ln

ffiffiffiffiffi
6d

p

3b

� �
: ð12:116Þ

Hardening in ferritic steels used in reactor pressure vessels can be very com-
plicated due to the role of solutes such as copper, nickel, and manganese, and the
roles of temperature and irradiation flux. Hardening in RPV steels is controlled by
the evolution of two primary classes of ultra-fine scale features: copper-rich pre-
cipitates (CRP) and matrix features (MF) [39]. The latter class can be subdivided
into unstable matrix features (UMF) and stable matrix features (SMF), such that
MF = UMF + SMF. CRPs form from a supersaturated solid solution as a conse-
quence of radiation-enhanced diffusion. These precipitates are extremely small and
are best described as nanoscale defects and contribute the largest amount to hard-
ening (Fig. 12.17). They are the dominant feature in irradiated RPV steels that have
Cu contents greater than about 1 %. Their size and volume fraction increase with
Cu content above about 1 %, but the number density is relatively insensitive to
copper in the range 0.2–0.4 %. As such, their significance in hardening increases up
to about 0.25–0.35 % Cu [16]. CRPs can also become enhanced in Ni and Mn
depending on the amount of these solutes in the steel.
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SMFs are not completely understood, but likely consist of a range of defect
cluster–solute complexes whose exact natures depend on the metallurgical variables
and irradiation conditions. Phosphides, carbonitrides, manganese-rich phases, large
vacancy clusters, and immobile interstitial loops are all likely candidates for the
SMFs. SMFs account for the residual hardening in low Cu steels. UMFs undergo
recovery during irradiation and likely consist of small vacancy and interstitial
clusters produced directly in displacement cascades.

The increase in yield strength in RPV steels due to irradiation can be described
by the following [41]:

Dry ¼ Dryp þB
ffiffiffiffiffi
/t

p
; ð12:117Þ

where Δσyp is the contribution from CRPs and B
ffiffiffiffiffi
/t

p
is due to SMFs. The

parameter B in the second term contains the composition dependence of hardening
due to SMFs and will vary between steels. Odette et al. [41] have identified the
composition dependence of B for low Cu steels (<0.1 %) to be:

B ¼ 681Pþ 460Cuþ 10:4Niþ 10:7Mn� 10 ½MPa�: ð12:118Þ

Figure 12.18 shows the very strong dependence of hardening on copper content,
which has a profound impact on RPV steels and welds.

Dose rate affects the yield strength increment through the term Δσyp. Odette [41]
has shown that higher dose rates shift the yield strength to higher fluences
(Fig. 12.19(a)) in the preplateau region. The CRP term can be written as follows:

Drypð/teÞ ¼ Drypm
ffiffiffiffi
X

p
; ð12:119Þ
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where Δσypm is the plateau value of hardening (relatively insensitive to dose rate),
ϕte is an effective fluence defined by ϕte ≈ ϕt(ϕr/ϕ)

1/2, and ϕr is a reference flux.
The term X is given by:

X ¼ 1� exp �ðF/teÞb
h in o

; ð12:120Þ

where F and β are the fitting parameters. The result is that the CRP contribution to
yield strength can be expressed as a function of ϕte (Fig. 12.19(b)) which shows that
the CRP increment can be accounted for by using the effective fluence.

Attempts to apply the dispersed barrier hardening model to predict hardening in
irradiated ferritic-martensitic steels have met with less success as the result is
generally less than the measured value by a significant amount [43, 44].

12.2.7 Radiation Anneal Hardening

An additional hardening mechanism occurs upon annealing of bcc metals following
irradiation and is known as radiation anneal hardening (RAH) [45]. Figure 12.20
shows the yield strength as a function of annealing temperature following irradia-
tion of niobium containing 35 wppm C and 41 wppm O to a fluence of
2 × 1018 n/cm2. Note that hardening begins at a temperature of about 120 °C and
increases to a maximum at about 180 °C before decreasing. However, a second
peak in hardening appears at a temperature of 300 °C before the yield strength
drops due to recovery. These peaks in the hardness are attributed to the oxygen and
carbon impurities in the metal. It is well known that interstitial impurities increase
the yield strength of bcc metals. In the irradiated state, the radiation-produced
defects serve as trapping centers for interstitial impurities. Annealing enables the
migration of the interstitials to defect clusters resulting in the formation of
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Fig. 12.20 Radiation anneal hardening in niobium containing 35 wppm C, 41 wppm O, and
5 wppm N following irradiation to 2 × 1018 n/cm2 and annealing for 2 h. Unirradiated yield
strength is ∼40 MPa (after [46])
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impurity–defect complexes or the strengthening of existing defect clusters, both of
which act as barriers to slip dislocation motion.

In the example shown in Fig. 12.20, the first peak is due to the migration of
oxygen to defect clusters and the second peak is due to the migration of carbon.
Measurements of the change in resistivity with time at temperature can be used to
determine the activation energy for resistivity change, which can then be compared
with the activation energy for diffusion of the impurities to determine their identity.
In niobium, vanadium, and iron alloys, the primary agents responsible for RAH are
oxygen, carbon, and nitrogen.

12.2.8 The Correlation Between Hardness and Yield
Strength

Much data on hardening come from indentation or shear punch measurements of
irradiated samples. Indentation techniques include Vickers microhardness and ball
indentation. The Vickers microhardness technique uses a diamond pyramid-shaped
indenter tip that is pressed against the sample with a predetermined load
(Fig. 12.21(a)). The shape of the indent and the magnitude of the load determine the

d1 d1

136°

(a)

(b)
2  = 136º

45º

5º 3º

Fig. 12.21 Illustration of
(a) the diamond pyramid tip
used in Vickers
microhardness measurement
and the tip impression in the
sample, and (b) flow pattern
during Vickers indentation of
a metal (after [47])
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value of hardness, which is a measure of the resistance of the solid to deformation.
The shear punch test is essentially a blanking operation in which a flat punch is
driven at a constant rate through a TEM-sized disk. The disk is constrained along
both its upper and lower surfaces in a test fixture, which also guides the punch. The
load on the punch is measured as a function of specimen displacement, which is
taken to be equivalent to the crosshead displacement. The yield and maximum loads
are taken from a plot of punch load versus punch displacement. All of these
techniques enjoy advantages over tensile testing in that they are relatively simple
and quick, require much smaller volumes of irradiated materials, and in the case of
microhardness indentation, are compatible with ion irradiation in which the damage
is confined to the surface region. However, as hardening is generally defined as the
increment in the yield strength due to the irradiated microstructure, there is much
interest in relating hardness measurements to yield strength in order to increase its
utility.

As originally described by Tabor [48], the indentations made during hardness
tests are discernible as permanent impressions in the metal, so that the indentation is
primarily a measure of the plastic properties of the metal. While it is true that some
changes in shape and size occur when the indenter is removed, the overriding effect
is the plastic flow of the metal around the indenter tip, implying that the mean
pressure over the indenter is connected to the plastic rather than elastic properties of
the metal. Tabor [48] showed that this is indeed the case for a variety of different
hardness and scratch tests, based on the work of Prandtl [49] and Hencky [50] and
that the hardness measurement can also be used as a measure of the yield stress of
the metal.

During indentation, stress is applied to the metal surface through the indenter
tip. However, since the tip surface is not parallel to the sample surface, the stress
state during indentation is not simply compressive. Instead, the stresses must be
examined in two dimensions (along and perpendicular to the axis of the indenter
tip). Plastic deformation during indentation occurs when the Huber–Mises criterion
is satisfied, which in the two-dimensional case occurs when the maximum shear
stress reaches a critical value, k:

2k ¼ 1:15ry; ð12:121Þ

where σy is the yield stress.
The pyramidal shape of the indenter tip can be treated as a wedge during

indentation. The pattern of plastic flow around the indenter tip during indentation
can be determined using the Prandtl solution [49]. The flow pattern is shown
schematically in Fig. 12.21(b) for a Vickers indentation. The pressure normal to the
surface of the indenter tip P can be calculated as:

P ¼ 2kð1þ p=2Þ: ð12:122Þ
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Equations (12.121) and (12.122) can be combined to yield:

P ¼ 2kð1þ p=2Þ ¼ 1:15ryð1þ p=2Þ ¼ 2:96ry: ð12:123Þ

For a Vickers indenter:

Hv � load
contact area

¼ 0:927P; ð12:124Þ

where 0.927 is the ratio of the area of the base of the pyramid (the projected area) to
the area of the sides of the pyramid (contact area). Combining Eqs. (12.123) and
(12.124) gives the following:

Hv ¼ 0:927P ¼ 0:927� 2:96ry ¼ 2:74ry: ð12:125Þ

Writing this expression in terms of yield strength gives the correlation:

ry ¼ CHv; with ð12:126Þ

C = 0.364 for σy and Hv in units of kg/mm2, and
C = 3.55 for σy in MPa and Hv in kg/mm2

Tabor found the same result experimentally for a variety of metals (aluminum,
copper, and mild steel). More recently, Larsson [51] studied indentation tests both
theoretically and numerically. Specifically, he used finite element analysis to
examine elastic–plastic material behavior under sharp contact situations (nanoin-
denters, Vickers or cone indenters, or even gear contact). Larsson’s finite element
results were in good agreement with the results of Tabor, validating the assertion
that yield stress can, indeed, be determined from Vickers hardness measurements.

Busby et al. [52] reviewed existing correlations and compiled hardness data on
austenitic stainless steels and ferritic steels to empirically determine the correlation
between hardness and yield strength. In general, austenitic stainless steels follow a
relation of the form:

Dry ¼ 3:03DHv; ð12:127Þ

and ferritic steels obey a correlation of the form:

Dry ¼ 3:06DHv: ð12:128Þ

Figure 12.22(a, b) shows these correlations for the two classes of steels. The cor-
relations are extremely close and can be taken to be equivalent given the confidence
interval used. While the dataset is best fit with a linear relation, the authors noted
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that for austenitic stainless steels, there is some indication of a reduction in slope
with increasing values of hardness. A two-slope fit resulted in:

Dry ¼ 3:63DHv DHv\100 kg/mm2

Dry ¼ 2:13DHv þ 155 DHv [ 100 kg/mm2:
ð12:129Þ

The slope of the correlation in the low-load regime is close to Tabor’s theoretical
value of 3.55 with the difference attributed to scatter in the database. The lower
value of the slope at higher loads may reflect the differences between a hardness test
and a tensile test. While the yield stress is measured at approximately 0.2 % strain,
the hardness test involves much higher strains, estimated to be between 8 and 18 %
[48, 51]. Thus, the nature of deformation of the irradiated metal will influence the
correlation between hardness and yield strength at the higher hardness levels.

A correlation coefficient of 3.5 has been shown to fit a wide range of RPV steel
data [53]. It should also be noted that this data is best fit with a simple linear
regression that intersects the ordinate at about 30 MPa at a ΔHv of zero, which
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could be a consequence of the fact that ΔHv values correspond to a flow stress of
several percent plastic strain. At low levels of hardening, σy may increase due to
dislocation cutting of small defects, without a measurable increase in ΔHv. At the
higher levels of hardening reached when defects are harder, the flow stress rises in
proportion to the yield stress.

12.3 Deformation in Irradiated Metals

In addition to undergoing hardening, irradiated metals experience a loss of ductility
and a loss of work hardening. The loss of ductility with dose in austenitic steels
irradiated and tested at *300 °C is shown in Fig. 12.23. Note that ductility drops
from some 20–30 % to values of less than 1 % by *4 dpa. The decrease in work
hardening is evident by the decrease in the difference between σUTS and σy with
increasing irradiation dose as shown in Fig. 12.1(a–d). If the stress–strain behavior
of the metal follows the power law hardening model given in Eq. (12.27), σ = Kεn,
then, as shown in Eq. (12.57), the true uniform elongation εu is equal to n. So to first
order, variations in εu with irradiation follow the changes that occur to the work
hardening behavior described by n. The behavior of εu versus dose for stainless
steel over the temperature range 300–500 °C can be described by the curves in
Fig. 12.24(a). The uniform elongation decreases significantly and approaches a
minimum at a dose that decreases with temperature down to 300 °C. The tem-
perature dependence of the loss of ductility is shown more clearly in Fig. 12.24(b).
As core components in light water reactors are generally at temperatures around
300 °C, the minimum in ductility at that temperature is a major concern.

The loss of uniform ductility and work hardening are due to the same cause: the
interaction between dislocations and the irradiated microstructure. Up to this point,
we have only discussed how irradiation can lead to hardening by pinning of
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dislocations by obstacles. However, dislocation–loop interaction can result in un-
faulting of the loop and incorporation into the dislocation network. In fcc metals,
unfaulting of a Frank loop can occur by several mechanisms. In one such mech-
anism [54], a mobile dislocation with Burgers vector a=2 �101½ � (shown as DB in
Fig. 12.25(a)) intersects a small Frank loop with Burgers vector a=3 �111½ � (Dδ in
Fig. 12.25(a)) to form a Shockley partial on the loop plane with Burgers vector
a=6 �1�21½ � (δB in Fig. 12.25(a)). The interaction of the Shockley partial with the
faulted loop generates a helical segment on the original dislocation with Burgers
vector DB = Dδ + δB, and eliminates the loop.

A second type of reaction occurs when a glissile, perfect dislocation, a=2 �1�12½ �
interacts with a sessile a/3[111] Frank loop creating an a=6 �1�12½ � dislocation
according to a=2 �1�10½ � þ a=3 111½ � ¼ a=6 �1�12½ � 55½ �: The Shockley partial created by
the interaction can sweep across the Frank loop, removing the stacking fault and
reacting with the opposite side of the Frank loop according to a=6 �1�12½ � þ a=3 �1�1�1½ � ¼
a=2 �1�10½ �: Figure 12.25(b) shows the process by which the Frank loop lying in the
plane of the figure interacts with a perfect dislocation moving on some other plane.
The Frank loop is annihilated and the only remnant is a coil in the a=2 �1�10½ �
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dislocation approximately on the Frank loop {111} plane. The result is that the
unfaulting product of a perfect dislocation–Frank loop interaction immediately
becomes part of the perfect dislocation network.

A third mechanism [56] involves intersection of a mobile dislocation with a loop
in which the loop glides on itself and becomes part of the glide dislocation as shown
in Fig. 12.25(c). Finally, unfaulting can be triggered by the formation of a Shockley
partial loop inside a Frank loop [57]. Reaction between the Shockley partial loop of
the type a=6 11�2½ � and the Frank loop proceeds according to: a=6 11�2½ � þ a=3 111½ � ¼
a=2 110½ � and is shown in Fig. 12.25(d).

In bcc metals, faulted loops are rarely observed because of the high
stacking-fault energy that causes unfaulting at very small loop sizes. The Frank loop
is of the form a/2[110], and the stacking fault can be removed by two possible

DB
B C

A

A

(a)

(b)

[011]a
2

(c)

[211]a
6

[111]a
3

[110]a
2 [110]a

2
[110]a

2

[112]a
6 [112]a

6 [110]a
2

[110]a
2[111]a

3[111]a
3

(d)

Fig. 12.25 Loop unfaulting
mechanisms proposed by
(a) Strudel and Washburn
[54]. (b) Gelles [55].
(c) Foreman and Sharp [56],
and (d) Tanigawa [57]

718 12 Irradiation Hardening and Deformation



unfaulting reactions [58]: a=2 110½ � þ a=2 00�1½ � ! a=2 11�1½ �, or a=2 110½ � þ
a=2 �110½ � ! a=2 010½ �, with the result being a perfect loop in either case. The result
of each of these unfaulting reactions is the removal of the dislocation loop from the
microstructure and the growth of the dislocation network density.

12.3.1 Localized Deformation

Multiple shearing can eliminate defect clusters and coherent precipitates in the
dislocation glide plane. So in fact, passage of an initial group of dislocations down a
particular slip plane can result in the clearing of the obstacles in that slip plane so
that subsequent dislocations can pass relatively unimpeded. First observed in the
1960s in bcc metals [59, 60], this process is referred to as dislocation channeling,
which occurs in fcc, bcc, and hcp crystal lattices. As a result of channeling, work
hardening in channels drops to nearly zero along with the macroscopic uniform
strain, as the deformation becomes highly localized within the channels. Byun et al.
[61] have pointed out that channel deformation occurs in unirradiated metals at high
stress, and that the common feature between channel deformation in irradiated and
unirradiated metals is the high stress.

Dislocation channels are characterized by width, spacing, and the amount of
strain in the channel. Figure 12.26 shows TEM images of dislocation channels in
Fe–18Cr–12Ni irradiated to 5.5 dpa at 360 °C with 3 MeV protons and strained to
7 % at 288 °C. Note in Fig. 12.26(b) the contrast difference between the channel
and the matrix, indicating that the channel has been cleared of most of the obstacles.
Channel width is generally on the order of 0.1 μm and channels are typically spaced
1–3 μm apart. Channels propagate across grains, initiating and terminating at grain
boundaries. In a tensile sample, the channels of surface grains produce a step on the
surface. Figure 12.27 shows an SEM image of the surface of irradiated stainless

Fig. 12.26 Transmission electron micrographs of dislocation channels in Fe–18Cr–12Ni
irradiated to 5.5 dpa at 360 °C with 3 MeV protons and strained to 7 % at 288 °C (courtesy of
Z Jiao, University of Michigan)
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steel samples strained to 7 %, from which the magnitude of the surface step can be
characterized using Atomic-force microscopy (AFM). Figure 12.28 shows how the
intersection of a channel with the surface produces a step of height, h due to
the passage of dislocations down the channel. For a step height, h, and a width, w,
the channel strain, γ, is simply:

c ¼ h=w: ð12:130Þ

Fig. 12.27 Scanning electron micrograph of dislocation channels intersecting the surface of
austenitic stainless steels irradiated to 5.5 dpa with 3.2 MeV protons at 360 °C followed by
straining at 3 × 10−7 s−1 to 7 % plastic strain in 288 °C argon (courtesy of Z Jiao, University of
Michigan)
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Fig. 12.28 Intersection of dislocation channels with a surface creating a step on the surface.
Primed quantities are apparent values of height, h′, width, w′, and spacing, s′, that are measured
directly and must be converted to true height, h, true width, w, and spacing, s, to determine the
strain in the channel (after [62])
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However, measurement of the channels on the surface will provide apparent values
of height, h′, width, w′, and spacing, s′, that must be converted to true values using
[62]:

w ¼ w0 sinðdÞ � h0 cosðdÞ
h ¼ h0= cosðaÞ; ð12:131Þ

where δ is the angle between dislocation slip plane and the sample surface and α is
the angle between the dislocation slip direction and the surface normal.

The number of dislocations in a channel, n, can be related to the step height by
n = h/b, where b is the Burgers vector. Was et al. [62] have shown that straining
316L stainless steel to about 7 % applied strain following irradiation to 5.5 dpa at
360 °C resulted in an average channel strain of close to 100 % caused by the
passage of over 1000 dislocations down the channels. The great majority (>90 %)
of total strain in the solid occurs in the channels, meaning that irradiated materials
act like a multilayered solid (such as a metal-ceramic multilayered material) in
which all strain occurs in the softer layer. Observations and model calculations
indicate that many fewer dislocations (a few to 50) remain in the channels [62, 63].
Two possible reasons for the low number of residual dislocations in the channels
are slip transfer to neighboring grains in cases where the slip planes are closely
aligned between grains, or reaction of the dislocation with the grain boundary.
When a dislocation channel intersects a grain boundary, dislocations in the channel
either transfer to an adjoining grain or pile up at the grain boundary. When a
dislocation transfers, it leaves a residual dislocation in the grain boundary. The
reaction of dislocations involving grain boundaries can be expressed as:
br = b1 − b2, where br is the Burgers vector of the residual dislocation left behind in
the grain boundary, and b1 and b2 are the Burgers vectors of dislocations in grains 1
and 2, respectively. The number of residual dislocations in a grain boundary is
likely proportional to the channel height or channel strain as the portion of dislo-
cations piled up at a grain boundary is relatively small.

An example of dislocation interaction with precipitates is shown in Fig. 12.29.
This is an APT image of a dislocation channel in a field of radiation-induced

Fig. 12.29 Atom map of Si in a dislocation channel in a 304 SS alloy containing 1 % Si after
irradiation to 5 dpa at 360 °C and straining to 6 % at 288 °C (after [64])
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Ni-/Si-rich precipitates in a high-purity 304 stainless steel alloy containing *1 at.%
Si irradiated to 5 dpa at 360 °C with 2 MeV protons, and followed by straining to
6 % at 288 °C [64]. The image shows an atom map of Si. Precipitates are identified
by regions with Si concentration ≥5 at.% and appear as dark clusters, while Si
atoms appear as small purple dots. Quantitative chemical analysis, represented by
the density of dots, indicate that the concentration of Si in the channel is greater
than that in the bulk and much greater than that between precipitates. These
observations indicate that the passage of dislocations induced dissolution of the
precipitates in the channel, providing a path of lower resistance for subsequent
dislocations.

A second example shows that dislocation cutting of voids does not result in their
removal [65]. Figure 12.30 shows two images of a dislocation channel in a
high-purity Fe–18Cr–12Ni alloy irradiated with 2 MeV protons to 5 dpa at 360 °C
and strained to 7 % at 288 °C. Note in the left-hand image that the dislocation
channel appears to be relatively free of dislocation loops, discernable from the
reduction in contrast in the channel verses that outside the channel. The same region
imaged in a slightly underfocused condition shows that voids are still present in the
channel, and at a density that is similar to that outside the channel. These obser-
vations indicate that voids can survive in channels when deformation occurs at
temperature.

In addition to channeling caused by gliding dislocations, deformation twinning
is also observed to occur. Deformation twinning or mechanical twinning is a
localized deformation mechanism caused by partial dislocations. In fcc metals with
low stacking-fault energy (SFE), deformation twins are formed by the glide of
Shockley partial dislocations of the same sign on successive {111} planes. In these
twins, the shear strain is 70.7 % and the defects are cleared by glide of the partial

Fig. 12.30 TEM image of a dislocation channel in an Fe–18Cr–12Ni alloy irradiated to 5 dpa at
360 °C and strained to 7 % at 288 °C showing (a) the cleared channel, and (b) voids in the channel
visible in the underfocused condition (after [65])
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dislocations [66]. The Shockley partials are formed from dissociation of the ordi-
nary dislocation with Burgers vector 1/2 ⟨110⟩ into leading and trailing partial
dislocations with Burgers vector of the type 1/6 ⟨112⟩. The separation of the partials
or the width of the stacking fault, d, is given by:

d � lb2

4pcSFE
; ð12:132Þ

where γSFE is the stacking-fault energy. In low stacking-fault energy metals, the
separation of partials is large. Was et al. [62] have observed the formation of twins
at the intersection of dislocation channels with grain boundaries where the stress
and strain is the greatest. Whether by channeling or twinning, localized deformation
increases strongly with dose. Twinning is also favored at low temperatures.

12.3.2 Deformation Mechanism Maps

As described in Chap. 7, plastic deformation is characterized by the shear stress,
strain or strain rate, and temperature. Frost and Ashby [67] classified deformation
mechanisms into five groups:

1. Flow above the ideal shear strength
2. Low-temperature plasticity by dislocation glide
3. Low-temperature plasticity by twinning
4. Power law creep by dislocation glide or climb and glide
5. Diffusional creep

Each of these mechanisms can be subdivided into additional mechanisms. When
stress and temperature are the independent variables, then the response of the metal
is the strain rate and strain. Alternatively, the temperature and strain rate could be
selected as the independent variables and the stress constitutes the response of the
metal.

If strain rate is selected as the dependent variable, a convenient method of
relating the strain rate of a metal to the independent variables of shear stress and
temperature is the deformation mechanism map. A deformation mechanism map is
a representation of the mechanism of deformation in stress-temperature space where
shear stress, σs, is represented by the normalized stress, σs/μ, where μ is the shear
modulus, and temperature is represented by the homologous temperature, T/Tm,
where Tm is the melting temperature. The map provides a relationship between the
two independent variables σs and T and the dependent variable, _e. An example of
such a map for 316 stainless steel is given in Fig. 12.31(a), in which the normalized
stress is plotted on the ordinate and the homologous temperature is plotted on the
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abscissa. The various deformation mechanisms are denoted by labeled regions in
the map, and the strain rate response of the metal to the stress/temperature com-
binations is given by contours of equistrain rate. Essentially, the strain rate contours
provide the constitutive law in the form of a single equation:

_e ¼ f ðrs; TÞ: ð12:133Þ

Figure 12.31(a) shows that above the ideal shear strength, plastic collapse occurs
and the strain rate approaches infinity:

_e ¼ 1 for rs � al

_e ¼ 0 for rs\al;
ð12:134Þ
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Fig. 12.31 Deformation
mechanism map for 316
stainless steel with a grain
size of 50 μm and deformed at
a strain rate of 10−8 s−1 for
(a) unirradiated condition,
and (b) irradiated to 1 dpa at
10−6 dpa/s (after [68])
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where α depends on the crystal structure and instability criterion but is generally
between 0.05 and 0.1. Below the ideal shear strength, flow can occur by glide of
dislocations that is generally limited by obstacles. Ashby gives the strain rate in the
discrete obstacle controlled plasticity regime as:

_e ¼ _e0 exp � Q
kT

1� rs
r0s

� �� �
; ð12:135Þ

where Q is the activation energy required to overcome the obstacle without aid from
external stress, and r0s is the athermal component of the flow stress. At
low-temperature and high normalized stress, twinning is observed to occur. Byun
et al. [63] have characterized the deformation in terms of the stress and strain, and
have determined that the twinning stress σt in polycrystalline metals could be
defined by the critical stress for infinite separation of partials:

rt ¼ 6:14
cSFE
b

; ð12:136Þ

where b is the Burgers vector of the partial dislocation. The strain rate equation for
twinning [67] is given as:

_e ¼ _et exp � Qt

kT
1� rs

rt

� �� �
; ð12:137Þ

where Qt is the activation free energy to nucleate a twin without the aid of external
stress, σt is the stress required to nucleate twinning in the absence of thermal
activation, and _et is a constant. The balance of the deformation map refers to creep
mechanisms and these are discussed in detail in Chap. 13.

The effect of irradiation at a strain rate of 10−8 s−1 is shown in Fig. 12.31(b). Due
to irradiation hardening at temperatures below about 0.5T/Tm, the stress for dislo-
cation glide is increased, reducing the dislocation glide regime. Above this tem-
perature, irradiation-enhanced softening can occur, causing a reduction in the stress
for dislocation glide and an expansion of the glide regime at high temperature. At
low temperatures and high stresses, twinning can occur.

Byun and Hashimoto [69], and Farrell et al. [70] have constructed deformation
mode maps for irradiated alloys that describe the mode of deformation as a function
of applied strain. The stress-based map is shown in Fig. 12.32(a) and the
strain-based map is shown in Fig. 12.32(b) for 316 austenitic stainless steel. In the
stress-based map, higher dose leads to an increase in yield strength and an increase
in the elastic deformation regime.
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Nomenclature

A Area of slip plane or dislocation loop or cross-sectional area of a tensile
sample after straining

A0 Original cross-sectional area in a tensile sample
b Burgers vector
d Grain size or obstacle diameter or separation distance of partial dislocations
e Elastic strain
E Elastic modulus
F Force
h Dislocation channel height
Hv Vickers hardness
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Fig. 12.32 (a) Stress-based
deformation mode map for
316 stainless steel in true
stress-dose space (PIS plastic
instability stress) (after [69]).
(b) Strain-based deformation
mode map for 316 stainless
steel neutron irradiated at
65–100 °C and tested at room
temperature (TE total
elongation, UE uniform
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K Bulk modulus or constant in power law hardening equation
k Square root of second invariant of the stress deviator used for the von Mises

yield criterion
ky Unpinning stress
L0 Original length of a tensile sample
L Deformed length of tensile sample. Also length of dislocation pileup on a

slip plane
l Distance between obstacles on the slip plane
m Schmidt factor
M Taylor factor
N Number density of obstacles on a slip plane
n Number of dislocations in a pileup
p Hydrostatic pressure
P Load
r Distance from obstacle to Frank–Read source
rd Dislocation core radius
R Radius of an obstacle
S Engineering stress, or weighting parameter from Eq. (12.103)
t Time
T Temperature
u Elastic strain energy density
U Elastic strain energy
UV Elastic strain energy of volume of a void
V Volume
w Dislocation channel width
W Work
α Obstacle hardness
β Compressibility, work hardenability
ϕ Neutron flux
Φ Neutron fluence
ϕte Effective neutron fluence
Δ Volume strain
δ Increment of distance
ε, εij Strain and components of strain
γ Dislocation channel strain
γSFE Stacking-fault energy
Γ Dislocation line tension
λ Lamé coefficient
μ Shear modulus
v Poisson’s ratio
ρd Dislocation density
σ Tensile stress
σi Friction stress
σm Mean stress
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σs Shear stress
r0s Athermal component of flow stress
σy Yield stress
σyp CRP contribution to yield stress
σypm Yield strength plateau
τ Defect lifetime
ζ Number of damage zones created per neutron collision

Subscripts

d Dislocation
f Fracture
i, j or x, y, z Stress and strain components
loop Loops
LR Long range
n Necking
ppt Precipitates
s Shear or strong
SR Short range
u Uniform
void Voids
V Void
w Weak
y Yield
yr Root-sum-square
yl Linear sum

Superscripts

n Strain hardening exponent

Acronyms

AFM Atomic-force microscope
APT Atom probe tomography
CRP Copper-rich precipitates
MF Matrix features
RA Reduction in area
RAH Radiation anneal hardening
RPV Reactor pressure vessel
RSS Root-sum-square
SEM Scanning electron microscopy
SFE Stacking-fault energy
SMF Stable matrix features
TEM Transmission electron microscope
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UMF Unstable matrix features
UTS Ultimatetensile strength
YS Yield strength

Problems

12:1 The irradiated microstructure will determine the extent of hardening in an
alloy. Your goal is to limit the radiation hardening in a metal. Assume that all
hardening comes from voids and that no transmutation gas is present. For a
fixed number of vacancies trapped in cavities, would you prefer a large
density of small voids or a small density of large voids? Explain your
reasoning.

12:2 If an alloy swells by an increase in the radii of voids at constant density, by
how much does a doubling of the swelling harden the alloy? For this sce-
nario, is the swelling or the hardening from voids more of a concern?

12:3 Electron microscopic examination of a 316 stainless steel specimen that has
been irradiated at 400 °C in a fast neutron fluence of 1 × 1022 n/cm2

(E > 0.1 MeV) reveals voids with an average diameter of 40 nm and a
number density of 2.2 × 1015 cm−3. In addition, faulted loops of a diameter
16 nm are present at a number density of 1.8 × 1015 cm−3. The incremental
increase in the shear stress caused by a barrier can be expressed as:

Ds ¼ alb=l l ¼ 80GPa; b ¼ 2:5� 10�10 m
� �

Assuming that both types of defects act as hard barriers (α = 1 for voids,
α = 1/2 for faulted loops) and are distributed in regular, square arrays:

(a) Calculate the change in the critical resolved shear stress (Δτ) due to
irradiation.

(b) What is the interparticle spacing of the square arrays?
(c) Which causes greater hardening, voids, or loops?

12:4 For 316 stainless steel irradiated at 400 °C to a fast neutron fluence of
1 × 1022 n/cm2 (E > 0.1 MeV), determine the dislocation loop size and
density required to produce the same hardening as the void population given
in Problem 12.3.

12:5 A pressure vessel steel is irradiated at 300 °C to a fluence of 1020 n/cm2. We
wish to determine the change in NDT due to such an irradiation. NDT is
defined by the condition that σf = σy or σyky = 4μγd−1/2. The effect of
irradiation on source hardening can be determined as follows:

d ryky
� � ¼ rydky þ kydry ¼ 0;

since the term 4μγd−1/2 is essentially constant during irradiation.
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The changes in ky and σy due to the variables T and ϕt (where ϕt is manifest
by radiation hardening or an increase in the friction stress σi) are given as:

dky ¼ @ky
@T

dT þ @ky
@ri

dri

dry ¼ @ry
@T

dT þ @ry
@ri

dri:

Combining these expressions and neglecting the effect of radiation on source
hardening (∂ky/∂σi = 0 and ∂σy/∂σi = 1), we obtain an increase in transition
temperature dTD;

dTD
dri

¼ � ry
ky

@ky
@T

þ @ry
@T

� ��1

:

To find the increase in transition temperature dTD as a function of fluence, we
need the dependence of friction stress σi on ϕt. This will give us:

dTD ¼ dTD
dri

dri
d /tð Þ d /tð Þ:

Using Makin’s theory for hardening by depleted zones,

ri ¼ r0i 1� exp �aVRs/tð Þ½ �1=2

and that

r0i ¼ 6:64GPa

a ¼ 1

Rs ¼ 0:26 cm�1

and a cluster size of 6 nm, calculate the increase in transition temperature dTD
after a fluence increment of 1020 n/cm2, given that dTD/dσi * 0.3 °C/MPa.

12:6 The work hardening region of the stress–strain curve can be represented by
the relation σ = kεn, where n is the work hardening coefficient. By increasing
the yield stress more than the ultimate tensile stress, irradiation effectively
reduces the work hardening coefficient. Using the criterion for plastic
instability, dσ/dε = σ, calculate the reduction in uniform elongation due to an
irradiation that decreases n by an amount Δn.

12:7 A specimen of Ni–1Al is irradiated at 550 °C with 3.5 MeV nickel ions to a
dose of 9 dpa. The resulting structure contains a void distribution consisting
of 3 × 1014 voids/cm3 at an average diameter of 50 nm.
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(a) What is the required stress for a dislocation to cut through an array of
these barriers and what fraction is this of the full Orowan stress?

(b) Assuming a constant total void volume, what is the stress if void growth
causes the average void size to double?

Use the elastic constants for pure nickel and assume a grain size of 10 μm.
12:8 Consider a dislocation line in a solid containing N bubbles of radius R per

cubic centimeter. A shear stress, τxy, is applied to the solid, which causes the
dislocation to glide along its slip plane. Under what conditions will the
bubbles be swept along by the dislocation rather than be bypassed by it?

12:9 You have 3 tensile samples of 316 stainless steel. Two were irradiated in a
reactor to 1021 n/cm2 at 300 °C and one was left unirradiated. The three
samples are tested in a tensile test in the laboratory in the following manner:
One irradiated sample is tested at room temperature, another at 300 °C, and
the unirradiated sample is tested at 300 °C, all at the same strain rate. On a
single graph, draw the engineering stress–engineering strain curves that
would result, labeling the points σy, σUTS, σf, εu, εf. Provide a brief expla-
nation justifying the relative positions of the curves.

12:10 Draw the engineering stress–engineering strain curves that would result
from a tensile test in the laboratory on the samples in Problem 12.9 fol-
lowing irradiation to 1021 n/cm2 at 300 °C and 700 °C. Label the points
σy, σUTS, σf, εu, εf.
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