
Chapter 1
The Radiation Damage Event

The radiation damage event is defined as the transfer of energy from an incident
projectile to the solid and the resulting distribution of target atoms after completion
of the event. The radiation damage event is actually composed of several distinct
processes. These processes and their order of occurrence are as follows:

1. The interaction of an energetic incident particle with a lattice atom.
2. The transfer of kinetic energy to the lattice atom giving birth to a primary

knock-on atom (PKA).
3. The displacement of the atom from its lattice site.
4. The passage of the displaced atom through the lattice and the accompanying

creation of additional knock-on atoms.
5. The production of a displacement cascade (collection of point defects created by

the PKA).
6. The termination of the PKA as an interstitial.

The radiation damage event is concluded when the PKA comes to rest in the lattice
as an interstitial. The result of a radiation damage event is the creation of a col-
lection of point defects (vacancies and interstitials) and clusters of these defects in
the crystal lattice. It is worth noting that this entire chain of events consumes only
about 10−11 s (see Table 1.1). Subsequent events involving the migration of the
point defects and defect clusters and additional clustering or dissolution of the
clusters are classified as radiation damage effects.

What we first need to know in order to understand and quantify radiation
damage is how to describe the interaction between a particle and a solid that
produces displacements, and later on how to quantify this process. The most simple
model is one that approximates the event as colliding hard spheres with displace-
ment occurring when the transferred energy is high enough to knock the struck
atom off its lattice site. In addition to energy transfer by hard sphere collisions, the
moving atom loses energy by interactions with electrons, the Coulomb field of
nearby atoms, the periodicity of the crystalline lattice, etc. The problem is reduced
to the following. If we can describe the energy-dependent flux of the incident
particle and the energy transfer cross sections (probabilities) for collisions between
atoms, then we can quantify the PKA production in a differential energy range and
utilize this to determine the number of displaced atoms.
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In this chapter, we will concentrate on quantifying the energy transferred between
interacting bodies as well as describing the energy transfer cross section. We will
begin with neutron–nucleus reactions since the neutrality of the neutron makes the
interaction particularly straightforward. Following creation of the PKA, subsequent
interactions occur between atoms, and the positive charge of the nucleus and the
negative charge of the electron cloud become important in understanding how atoms
interact. In fact, atom–atom interaction is the low-energy limit of ion–atom inter-
actions that occur in reactor cores and via ion irradiation using accelerators over a
wide energy range and can lead to the last type of interaction: ionization collisions.

1.1 Neutron–Nucleus Interactions

1.1.1 Elastic Scattering

By virtue of their electrical neutrality, elastic collisions between neutrons and nuclei
can be represented as colliding hard spheres. When neutrons pass through a solid,
there is a finite probability that they will collide with a lattice atom, imparting a recoil
energy to the struck atom. This probability is defined by the double differential
scattering cross section (in energy and angle), σs (Ei, Ef, Ω), where Ei and Ef are the
incident and final energies and Ω is the solid angle into which the neutron is scat-
tered. We are often only interested in the scattering probability as a function of Ei and
the scattering angle. The single differential scattering cross section is as follows:

rsðEi;XÞ ¼
Z

rsðEi;Ef ;XÞdEf : ð1:1Þ

The total scattering probability for neutrons of energy Ei is as follows:

rsðEiÞ ¼
Z

rsðEi;XÞdX: ð1:2Þ

Table 1.1 Approximate timescale for the production of defects in irradiated metals (from [1])

Time (s) Event Result

10−18 Energy transfer from the
incident particle

Creation of a primary knock-on atom (PKA)

10−13 Displacement of lattice atoms by
the PKA

Displacement cascade

10−11 Energy dissipation, spontaneous
recombination, and clustering

Stable Frenkel pairs (single interstitial atoms
(SIA) and vacancies) and defect clusters

>10−8 Defect reactions by thermal
migration

SIA and vacancy recombination, clustering,
trapping, defect emission
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In the study of irradiation effects, we are interested in the behavior of the struck
atom. So we are seeking σs (Ei, T); the energy transfer cross section, or the prob-
ability that a neutron of energy Ei elastically scattering against an atom of mass M,
will impart a recoil energy T to the struck atom. But first it is necessary to find T in
terms of the neutron energy and the scattering angle. To do this, let us consider the
dynamics of binary elastic collisions in the center-of-mass and laboratory frames.

Figure 1.1(a) shows the trajectories of a neutron and the target nucleus before
and after scattering, as seen from both the laboratory reference system and the
center-of-mass system. The easiest way to obtain a relationship between the inci-
dent neutron energy, scattering angle, and transferred energy is to analyze the
dynamics of the collision in the center-of-mass (CM) system. When the collision is
viewed in the center-of-mass system, the recoiling particles appear to move away
from each other in opposite directions. Momentum conservation along the axes of
approach and departure yields the following:

tcm� VcM ¼ 0

t0cm� V 0
cM ¼ 0;

ð1:3Þ
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and (b) composite diagram
relating velocities in the two
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and conservation of kinetic energy requires that:

1
2
mt2c þ

1
2
MV2

c ¼ 1
2
mt02c þ 1

2
MV 02

c : ð1:4Þ

Using Eq. (1.3) to eliminate tc and t0c, we get:

1
2
m

M
m

� �2

þ 1
2
M

" #
V2
c ¼ 1

2
m

M
m

� �2

þ 1
2
M

" #
V 02
c : ð1:5Þ

Therefore,

Vc ¼ V 0
c; and hence;

tc ¼ t0c:
ð1:6Þ

Since the target nucleus is at rest in the laboratory system and moving to the left
with speed Vc in the CM system, the CM system itself must be moving to the right
relative to the laboratory system with the same speed, Vc. Thus, if we use VCM to
denote the speed of the CM system relative to the laboratory system, the magni-
tudes of VCM and Vc are the same (but opposite in direction). This can be restated as
follows:

tc ¼ t‘ � VCM ¼ t‘ � Vc; ð1:7Þ

and using Eq. (1.3), we find that:

VCM ¼ m
Mþm

� �
t‘: ð1:8Þ

Recall that we want to relate T, the energy transferred to the struck atom, to ϕ, the
scattering angle in the CM system. Using vector addition, we can relate the recoil
target nucleus velocity in the laboratory system, V 0

‘, to ϕ as shown in Fig. 1.1(b),
which is a composite of the interaction in the laboratory and CM systems as shown
in Fig. 1.1(a). Using the law of cosines:

V 02
‘ ¼ V2

CM þV 02
c � 2VCMV

0
c cos/; ð1:9Þ

and rewriting the velocities in Eq. (1.9) in terms of energy gives:

V 02
‘ ¼ 2T

M
; V2

CM ¼ 2Ei

m
m

mþM

� �2

; and V 02
c ¼ 2m

M2 E
0
m;
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and substituting these expressions into Eq. (1.9) gives:

T ¼ mM

ðmþMÞ2 Ei þ m
M

E0
m � 2

m
mþM

� �
ðEiE

0
mÞ1=2 cos/; ð1:10aÞ

or

T ¼ g1g2Ei þ g1
g2

E0
m � 2g1ðEiE0

mÞ1=2 cos/; ð1:10bÞ

where η1 = m/(m + M) and η2 = M/(m + M).
Since we want to find the energy transferred, T, as a function of initial energy

and scattering angle only, we use the relationship between Ei and E0
m to eliminate

E0
m. From Eqs. (1.7) and (1.8), we know that:

t0c ¼ t‘ � m
mþM

� �
t‘ ¼ t‘

M
mþM

� �
: ð1:11Þ

Writing Eq. (1.11) in terms of energy gives:

E0
m ¼ Ei

M
mþM

� �2

¼ g22Ei: ð1:12Þ

Substituting into Eq. (1.10b) and simplifying gives:

T ¼ c
2
Eið1� cos/Þ; ð1:13Þ

where we define

c ¼ 4mM

ðMþmÞ2 ¼
4A

ð1þAÞ2 ; ð1:14Þ

where 1 = m and A = M. Hence, T depends upon only one unknown, ϕ. Note the
angular dependence of T on ϕ as shown in Fig. 1.2. The energy transferred rises
from 0 at ϕ = 0 to a maximum of cEi at / ¼ p; or Tmax ¼ T̂ ¼ cEi: That is, the
energy transferred is a maximum when the particle backscatters and is a minimum
when it misses the target, resulting in no change in course (ϕ = 0).

Example 1.1. Neutron–nuclear interaction
For a neutron incident on a hydrogen atom, T̂n�H=Ei ¼ 1:0. For a neutron
incident on a uranium atom, T̂n�U=Ei ¼ 0:017. Conversely, comparing the
interaction of an iron atomwith 100 keVXe+ ions or electrons, the value of γ for
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theXe–Fe interaction is 0.83, yielding a T̂ of 83,000 eV.However, the value of γ
for e––Fe interaction is 0.00004, giving a T̂ of only 4 eV,which, aswewill see in
Chap. 2, is not enough to displace an iron atom from its lattice site.

The scattering angles in the laboratory system for the incident particle (θ)
and the struck atom (α) can be written in terms of the scattering angle in the
center-of-mass system (ϕ) using the vector diagram shown in Fig. 1.1(b).
Applying the law of sines to Fig. 1.1(b) for the scattered particle:

t0‘
sinðp� hÞ¼

t0c
sin h

;

where t0c is given by Eqs. (1.6) and (1.7):

t0c ¼ VCM
t‘
VCM

� 1
� �

;

and using Eq. (1.8), we have:

t0c ¼ VCM
M
m
:

Applying the law of cosines to the same triangle gives:

t02‘ ¼ t02c þV2
CM � 2VCMt

0
c cosðp� /Þ;

and combining the last three equations to express θ as a function of ϕ yields:

tan h ¼ ðM=mÞ sin/
1þðM=mÞ cos/ :
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Fig. 1.2 Energy transfer as a
function of center-of-mass
scattering angle
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Applying the law of sines to the vector diagram in Fig. 1.1(b) for the struck
atom gives:

V 0
c

sin a
¼ V 0

‘

sin/
;

and combining this result with Eqs. (1.6) and (1.9) where the energies are
written in terms of velocities gives:

tan a ¼ sin/
1� cos/

:

We are still interested in obtaining the probability that a given T will be imparted
to the recoil atom. This depends on the differential cross section. We define σs (Ei, ϕ)
dΩ as the probability of a collision that scatters the incident particle into a
center-of-mass angle in the range (ϕ, dΩ) where dΩ is an element of solid angle
about the scattering direction ϕ. Since differential probabilities written in trans-
formed variables are equivalent, σs (Ei, ϕ) can be written in terms of CM variables:

rsðEi;/ÞdX ¼ rsðEi; TÞdT: ð1:15Þ

Using Fig. 1.3 to relate dΩ to dϕ, we have by definition:

dX¼ dA=r2; ð1:16Þ

and from Fig. 1.4, we have:

dX ¼ rd/ð2pr sin/Þ
r2

¼ 2p sin/ d/: ð1:17Þ

Substituting Eq. (1.17) into Eq. (1.15) yields:

rsðEi; TÞ dT ¼ rsðEi;/Þ dX ¼ 2prsðEi;/Þ sin/ d/: ð1:18Þ

dφ

Fig. 1.3 Scattering into the
solid angular element dΩ
defined by dA/r2
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Since T ¼ c
2
Eið1� cos/Þ then dT ¼ c

2
Ei sin/ d/, and we have:

rsðEi; TÞ ¼ 4p
cEi

rsðEi;/Þ: ð1:19Þ

Figure 1.5 shows the difference in the differential scattering cross section in units of
area per unit solid angle versus area per unit angle as in Eq. (1.18). Although the
number of atoms scattered through an angle increment dϕ about ϕ = π/2 is greater
than that through an angular increment dϕ about ϕ = 0 or π (Fig. 1.5(a)), the number
intercepting the spherical surface per unit of solid angle is constant over all angles,
ϕ (Fig. 1.5(b)). Hence, dT/dϕ varies in a sinusoidal manner with ϕ, but dT/dΩ is
independent of ϕ.

Using Eqs. (1.2) and (1.18), the total elastic scattering cross section is as follows:

rsðEiÞ ¼
Z

rsðEi;/Þ dX¼ 2p
Z

rsðEi;/Þ sin/ d/:

If we assume that elastic scattering in the CM system is independent of scattering
angle (i.e., scattering is isotropic), Fig. 1.6, then:

rsðEiÞ ¼
Z

rsðEi;/Þ dX¼ 2p rsðEi;/Þ
Z

sin/ d/ ¼ 4prsðEi;/Þ; ð1:20Þ

Fig. 1.4 The solid angle dΩ
subtended at the scattering
angle ϕ by the incremental
angle dϕ
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and

rsðEi; TÞ ¼ rsðEiÞ
cEi

; ð1:21Þ

which is independent of T! That is, σs (Ei, T), the probability that a neutron of
energy Ei, elastically scattering against an atom of mass M, will impart a recoil
energy T to the struck atom does not depend on the recoil energy. Now, the average
recoil energy can be calculated as follows:

T ¼
R T̂
�T TrsðEi; TÞ dTR T̂
�T rsðEi; TÞ dT

¼
�T þ T̂
2

� T̂
2
¼ cEi

2
: ð1:22Þ
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Fig. 1.5 Isotropic differential scattering cross sections in units of (a) area per unit scattering angle
and (b) area per unit solid angle
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Applying Eq. (1.22) to the case of a 1 MeV neutron incident on elements of varying
mass, we have the following:

1MeV n on C: c ¼ 0:28 T ¼ 0:14MeV
1MeV n on Fe: c ¼ 0:069 T ¼ 0:035MeV
1MeV n on U: c ¼ 0:017 T ¼ 0:009MeV

In addition to the elastic scattering just discussed, we can have energy transfer by
inelastic scattering, (n, 2n) reactions and (n, γ) reactions. The first two reactions
become important above neutron energies of about 1.0 and 8.0 MeV, respectively,
while the latter occurs at thermal neutron energies in 235U.

1.1.2 Inelastic Scattering

Inelastic scattering is characterized by a reaction in which the emitted particle is
experimentally the same as the captured particle, but there is a loss of kinetic energy in
the system. The energy is found in the excitation energy of the product nucleus, e.g.,
N14 (p, p′)N14* or C14(n, n′)C14*. The differences in the energies of groups of scattered
particles correspond to the energy separations of excited levels in the product nucleus:

�Q ¼
X
f

KEf �
X
i

KEi ¼
X
f

Mfc
2 �

X
i

Mic
2:

In an inelastic collision, a neutron is absorbed by the nucleus, forming a compound
nucleus, which emits a neutron and a γ-ray. There may be more than one γ emitted
and the nucleus may remain in an excited state during the course of an interaction.
The inelastic scattering cross section can be divided into resolved and unresolved
resonance components [3]. For a given resonance (jth resonance) of the target
nucleus, the scattering cross section will be a function of Qj, the γ decay energy of
the residual nucleus that is always negative. Analogous to Eq. (1.15), we can write
differential equalities σsj (Ei, Qj, T) dT = σsj (Ei, Qj, ϕ) dΩ, so that:

rsjðEi;Qj; TÞ ¼ rsjðEi;Qj;/Þ 2p sin/ d/
dT

: ð1:23Þ

However, the expression for T in Eq. (1.13) is not valid for inelastic collisions
since kinetic energy is not conserved. Instead, we focus on the conservation of total
energy. If the target nucleus M is at rest in the laboratory system and the particle
m has energy Ei, then the energy balance in CM coordinates is as follows:

M
Mþm

Ei þQj ¼ E0
m þE0

M; ð1:24Þ
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where Qj is the reaction energy and E0
m andE0

M are the kinetic energies in CM
coordinates of the exit particle and nucleus, respectively. In order that momentum is
conserved:

mE0
m ¼ME0

M; ð1:25Þ

and combining Eq. (1.24) with Eq. (1.25) (assuming that the masses of the pro-
jectile and target are unchanged after the reaction) yields:

E0
m ¼ M

Mþm
Qj þ M

Mþm
Ei

� �

or

E0
m ¼ g2 Qj þ g2Ei

� �
: ð1:26Þ

Recalling the general expression for T, Eq. (1.10b):

T ¼ g1g2Ei þ g1
g2

E0
m � 2g1ðEiE

0
mÞ1=2 cos/;

and substituting in for E0
m from Eq. (1.26) yields:

TðEi;Qj;/Þ ¼ c
2
Ei � c

2
Ei Ei þQj

Aþ 1
A

� �� �1=2
cos/þ Qj

Aþ 1
: ð1:27Þ

Now, the expression for dT/dϕ becomes:

dTðEi;Qj;/Þ
d/

¼ c
2
Ei 1þ Qj

Ei

Aþ 1
A

� �1=2
sin/: ð1:28Þ

Note that in the case of elastic collisions, Qj = 0 and Eq. (1.27) reduces to
Eq. (1.13).

If we now assume that inelastic scattering is isotropic in the CM system, then we
have:

rs jðEi;QjÞ ¼
Z

rs jðEi;Qj;/Þ dX ¼ 4prs jðEi;Qj;/Þ: ð1:29Þ

Substituting Eqs. (1.28) and (1.29) into (1.23) yields:

rs jðEi;Qj; TÞ ¼ rs jðEi;QjÞ

cEi 1þ Qj

Ei

Aþ 1
A

� �1=2
: ð1:30Þ

for inelastic collisions in the resolved resonance region.
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When the compound nucleus is excited to high enough energies, the resonance
levels overlap and are no longer individually distinguishable. The inelastic scat-
tering cross section is treated as a continuum and is described by an evaporation
model [3] with:

ris ðEi;E
0
m; TÞ ¼ ris ðEiÞ f ðEi;E0

mÞ
4

1
Aþ 1

ðEi;E
0
mÞ1=2

; and

ris ðEi; TÞ ¼ ris ðEiÞ
ZE0max
m

0

f ðEi;E0
mÞ

4
1

Aþ 1
ðEi;E

0
mÞ1=2

dE0
m;

ð1:31Þ

where f ðEi;E0
mÞ is a distribution function for the energy E0

m of the scattered neutron
in the CM system that represents the probability that a neutron is evaporated from
the moving compound nucleus, whose value in the CM system is a Maxwellian of
nuclear temperature ED = kT:

f ðEi;E
0
mÞ ¼

E0
m

IðEiÞ e
ð�E0

m=EDÞ; ð1:32Þ

and

IðEiÞ ¼ E2
D 1� 1þ E0max

m

ED

� �
eð�E0max

m =EDÞ
� �

; ð1:33Þ

is a normalization factor such that

ZE0max
m

0

f ðEi;E
0
mÞ dE0

m ¼ 1: ð1:34Þ

The maximum value of E0
m is given by Eq. (1.26) with Q = Q1, the lowest energy

level, and the minimum value of E0
m is zero.

1.1.3 (n, 2n) Reactions

Reactions such as the (n, 2n) reaction are important in radiation effects since they
produce additional neutrons that can either cause damage or transmutation reactions
in components of interest. Following the 2n model, which is based on work by
Odette [4] and Segev [5], a second neutron can only be emitted if the residual
excitation of the nucleus after emission of the first neutron exceeds the binding
energy of a neutron in the mass M nuclide. The recoil energy after emission of the
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first neutron is taken to be the average value (cos ϕ = 0 in Eq. (1.10b)) and is shown
in Fig. 1.7(a) in the laboratory system. We next analyze the second reaction
(emission) in the CM system described in Fig. 1.7(b). We begin by using the law of
cosines to relate V 00

c to ϕ:

V 002
‘ ¼ V 02

‘ þV 002
c � 2V 0

‘V
00
c cos/: ð1:35Þ

From Fig. 1.7(a), we have:

1
2
MV 02

‘ ¼ T ‘ or V 02
‘ ¼ 2T ‘

M
;

and from Fig. 1.7(b), we have:

1
2
ðM � mÞV 002

c ¼ E00
M or V 002

c ¼ 2E00
M

M � m
:

Conservation of momentum requires:

ðM � mÞV 00
c ¼ mt00c ; ð1:36Þ

and squaring gives:

V 002
c ¼ m

M � m

� 	2
t002c ¼ 2m

ðM � mÞE
00
m: ð1:37Þ

Substituting into the law of cosines, Eq. (1.35), gives:

V 002
‘ ¼ 2T ‘

M
þ 2m

ðM � mÞE
00
m � 2

2m

ðM � mÞ2
2
M

E00
mT‘

 !1=2

cos/; ð1:38Þ





m
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21,
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c , MV E 

(a) (b)Fig. 1.7 Vector velocities for
the (n, 2n) reaction in (a) the
laboratory system and (b) the
center-of-mass system
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where T‘ ¼ g1g2Ei þðg1=g2ÞE0
m is the mean recoil energy after the emission of the

first neutron. Writing V 002
‘ in terms of energy gives the recoil energy following the

second emission:

T ¼ 1
2
ðM � mÞV 002

‘

¼ M � m
M

T ‘ þ m
M � m

E00
m � 2

m
M

� 	1=2
ðE00

mT ‘Þ1=2 cos/

¼ A� 1
A

T ‘ þ 1
A� 1

E00
m � 2

1
A

� �1=2

ðT ‘E
00
mÞ1=2 cos/

¼ A
A� 1

g1
g2

E00
m þ A� 1

A
T ‘ � 2

g1
g2

� �1=2

ðT ‘E
00
mÞ1=2 cos/:

ð1:39Þ

The (n, 2n) reaction cross section is a special case of the inelastic scattering cross
section given in Eq. (1.31):

rn;2nðEi;E
0
m;E

00
m; TÞ

¼ rn;2nðEiÞ E0
m

IðEiÞ e
�E0

m=ED
E00
m

IðEi;E0
mÞ

e�E00
m=ED ; and

rn;2nðEi; TÞ

¼
ZEi�U

0

E0
m

IðEiÞ e
�E0

m=ED

ZEi�U�E0
m

0

E00
m

IðEi;E0
mÞ

e�E00
m=EDdE0

mdE
00
m;

ð1:40Þ

where I (Ei) is given in Eq. (1.33) with E0max
m ¼ Ei � U and IðEi;E0

mÞ is given in
Eq. (1.33) with E0max

m replaced by E00max
m ¼ Ei � U � E0

m and for (n, 2n) reactions,
U = 0 [3].

1.1.4 (n, γ) Reactions

Another class of reactions that can affect the extent of radiation damage involves
photon emission. This reaction is important since the energy of the recoiling
nucleus is sufficient to displace an atom. As we will see later, this type of dis-
placement is particularly important in radiation damage in reactor pressure vessels
in which the gamma flux is more comparable to the fast neutron flux than in the
reactor core. Recalling the momentum and energy conservation laws of Eqs. (1.3)
and (1.4) and Fig. 1.1, which for (n, γ) reactions, Ei ∼ 0 (since these reactions occur
with thermal neutrons of energy 0.025 eV), Ef ≡ 0 (since there is no scattered
neutron) and Q is the equivalent of the mass difference between the initial particles
and the compound nucleus. When the compound nucleus (CN) de-excites, it emits a
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γ-ray with this energy. Conservation of momentum says that the nucleus must recoil
with momentum:

ðmþMÞV 0
c ¼

Ec

c
: ð1:41Þ

Note that this is an approximation since we have not subtracted the mass defect
from the compound nucleus. Squaring both sides of Eq. (1.41) and dividing by 2
(m + M) gives:

1
2
ðmþMÞV 02

c ¼ E2
c

2ðmþMÞc2 :

As in the case of elastic scattering, T is given by:

T ¼ ðV2
CM þV 02

c � 2VCMV 0
c cos/Þ

Mþm
2

� �
;

but VCM � V 0
c so to a good estimate:

T ffi mþM
2

� �
V 02
c ¼ E2

c

2ðMþmÞc2 :

We will assume further that this value of T represents the maximum recoil energy.
But since not all of Q will be emitted in a single γ-ray, we approximate the average
recoil energy as half the value of the maximum recoil energy, giving:

T ffi E2
c

4ðMþmÞc2 : ð1:42Þ

The radiative capture cross section is derived from the Breit–Wigner single-level
formula when the target nucleus has zero intrinsic angular momentum and the
compound nucleus has a neutron width Γn, a radiation width Γg, and a total width Γ,
and E0 is the resonance energy and λ is the wavelength [6]:

rn;cðEiÞ ¼ pk2
CnCc

ðEi � E0Þ2 þðC=2Þ2 : ð1:43Þ

Expressing Eq. (1.43) in terms of σ0, the maximum value of the radiative capture
cross section (at E = E0) and taking Γn proportional to 1/λ and to

ffiffiffiffi
E

p
gives:

rn;cðEiÞ ¼ r0

ffiffiffiffiffi
E0

Ei

r
1

½ðEi � E0Þ=ðC=2Þ�2 þ 1

( )
: ð1:44Þ
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Table 1.2 provides a summary of the energy transfer and the energy transfer cross
sections for the various types of reactions covered in Sect. 1.1.

1.2 Interactions Between Ions and Atoms

Ion–atom or atom–atom collisions are governed by interactions between the elec-
tron clouds, the electron cloud and the nucleus, and between the nuclei. These
interactions are described by what are known as interatomic potentials. In order to
develop descriptions of energy transfer cross sections for interactions between
atoms, we need descriptions of the potential function that governs that interaction.
Unfortunately, there exists no single function that describes all interactions, but
rather, the nature of the interaction is a strong function of the atom energies, and
hence the distance of closest approach of the nuclei. The following section provides
a summary of interatomic potentials adapted from Chadderton [7].

Table 1.2 Energy transfer and energy transfer cross sections for various types of neutron–nuclear
collisions

Types of collision Energy transfer and energy transfer cross section Equation in
text

Elastic scattering T ¼ c
2
Eið1� cos/Þ (1.13)

rsðEi;TÞ ¼ rsðEiÞ
cEi

(1.21)

Inelastic scattering
TðEi;Qj;/Þ ¼ c

2
Ei � c

2
Ei Ei þQi

Aþ 1
A

� �� �1=2
cos/þ Qj

Aþ 1

(1.27)

resonance region

rs; jðEi;Qj;TÞ ¼ rs; jðEi;QjÞ

cEi 1þ Qj

Ei

1þA
A

� �1=2

(1.30)

unresolved resonance region

risðEi; TÞ ¼ risðEiÞ
R E0max

m
0

f ðEi;E0
mÞ

4
1

Aþ 1
ðEi;E0

mÞ1=2
dE0

m
(1.31)

(n, 2n)
T ¼ A

A� 1
g1
g2

E00
m þ A� 1

A
T‘ � 2

g1
g2

� �1=2

ðT‘E
00
mÞ1=2 cos/

(1.39)

rn;2nðEi;TÞ ¼
Z Ei�U

0

E0
m

IðEiÞ e
�E0

m=ED

�
Z Ei�U�E0

m

0

E00
m

IðEi;E0
mÞ

e�E00
m=EDdE0

mdE
00
m

(1.40)

(n, γ)
T ffi E2

c

4ðMþmÞc2
(1.42)

rn;cðEiÞ ¼ r0

ffiffiffiffiffi
E0

Ei

r
1

½ðEi � E0Þ=ðC=2Þ�2 þ 1

( )
(1.44)
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1.2.1 Interatomic Potentials

The end product of the neutron–nuclear interaction is the creation of the primary
knock-on atom with some amount of kinetic energy. This atom will, of course, make
subsequent collisions with other atoms in the solid. Knowledge of the forces acting
between two colliding atoms represents the most fundamental aspect of radiation
damage, without which a proper description of the primary event and the ensuing
defect structure is impossible. Our interest lies in the forces between like atoms, unlike
atoms, or ions and atoms. The interaction between atoms is described by potential
functions. Recall that the atoms are (usually) electrically neutral but are composed of
positive and negative components that do not cancel at all points in space. It is well
known that the potential energy between two point charges of the same sign separated
by a distance r is described by the well-known Coulomb equation:

VðrÞ ¼ ke
e2

r
; ð1:45Þ

where ke ¼ 1
4pe0

is the Coulomb constant (8.98755 × 109 Nm2 C−2), ε0 is the

electric constant, ε is the single unit electronic charge, and ε2 = 1.44 eV-nm. When
written in electrostatic units or Gaussian units, the unit charge (esu or statcoulomb)
is defined in such a way that the Coulomb constant, ke, disappears because it has the
value of one and becomes dimensionless, and Eq. (1.45) is often written in
abbreviated form without the Coulomb constant. In the case of atoms, we have a
charged nucleus surrounded by an electron cloud of opposite charge. It is evident
that the potential function describing the interaction between atoms is far more
complicated than that describing neutron–nuclear interaction. Even in the simplest
cases, V(r) has never been determined exactly, but some simple considerations
show that it must be dominated by two distinct contributions over the range of
separation in which we are interested. Perhaps, the simplest of all potential func-
tions is the “hard sphere” approximation. This potential is described as follows:

V rð Þ ¼ 0 for r[ r0
1 for r� r0:

�
ð1:46Þ

This potential function describes an interaction with an infinitely sharp cutoff at the
atomic radius r0. At distances greater than this radius, the interaction vanishes,
while at distances equal to and less than r0, the magnitude is infinity. This
description is analogous to the behavior of billiard balls, and hence, the atoms in
this model are described as acting as such. Clearly, this is not a very realistic
description of atom–atom interaction since we know that the electron shells can
overlap.

Figure 1.8 shows how the interatomic potential actually varies with separation.
At large separation, the principal interaction is supplied by the Coulomb forces,
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while for smaller separations, the central field repulsive force is dominant. A similar
relationship applies to all crystals regardless of the nature of binding. In all cases,
there is a smooth curve with a minimum at the separation distance corresponding to
the nearest neighbor distance in the lattice, re (also referred to as D).

In describing the interaction between atoms, we will use two yardsticks for
points of reference. One is the Bohr radius of the hydrogen atom, a0 = 0.053 nm,
which provides a measure of the position of the atomic shells. The other is re, the
spacing between nearest neighbors in the crystal (typically *0.25 nm). When
r ≪ re, electrons populate the lowest energy levels (closed shells) of the individual
atoms and only the outer valence shells will have empty levels. As two atoms are
brought together, the valence shells begin to overlap and weak attractive forces such
as van der Waals forces may develop. When a0 < r ≤ re, the closed inner shells
begin to overlap. Since the Pauli exclusion principle demands that some electrons
change their levels, and hence move to higher energy levels, the extra energy
supplied in forcing the atoms together constitutes a positive potential energy of
interaction. This is known as closed shell repulsion and the potential that most
accurately describes this region is the Born–Mayer potential:

VðrÞ ¼ A expð�r=BÞ; ð1:47Þ

where A and B are constants determined from the elastic moduli [8]. Although this
function was first used by Born and Mayer to represent core ion repulsion in their
theory of ionic crystals, it is perfectly valid for separations on the order of the

Fig. 1.8 Variation of interatomic potential with separation, R. Attractive forces dominate at large
separations (b) and the central repulsive force dominates at small separations, (a) and at
intermediate distances, there is a smooth transition between the two extremes with a minimum
corresponding to the equilibrium separation distance, re or D
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equilibrium separation, re, and is useful in treatments of threshold or near-threshold
collisions where the impact parameter is of the order re.

When r ≪ a0, Coulomb interaction between the nuclei dominates all other terms
in V(r):

VðrÞ ¼ Z1Z2e2

r
: ð1:48Þ

At slightly larger distances, the nuclear charges are electrostatically “screened” by
the space charge of the innermost electron shells that have entered the internuclear
space. The potential describing this behavior is known as the screened Coulomb
potential [8–12]:

VðrÞ ¼ Z1Z2e2

r

� �
expð�r=aÞ; ð1:49Þ

where a ¼ 9p2

128

� �1=3
a0

ðZ2=3
1 þ Z2=3

2 Þ1=2
� Ca0

ðZ1Z2Þ1=6
is the screening radius and

C = 0.8853. More generally, screening by the electron cloud is described by a
screening function, χ(r), that is defined as the ratio of the actual atomic potential at a
radius r to the Coulomb potential. The function of χ(r) is to moderate the Coulomb
potential to describe the interaction between atoms at all separation distances. For
large distances, χ(r) will tend toward zero, and at very small distances, χ(r) will tend
toward unity. This is one way in which a single interatomic potential function can
be used to describe all collisions.

We have now described two regimes of interaction. At small separations (r < a),
the screened Coulomb term dominates all others, with the screening effect decaying
exponentially with the separation distance. In the region r \	 re, electronic

interaction dominates and is best described by the Born–Mayer potential. At
intermediate separations, there is no satisfactory description of the nature of atomic
interaction. Unfortunately, it is exactly in this region where information is needed to
provide a proper analytical description of radiation damage.

Nevertheless, we may make a first approximation to the total potential by
summing the controlling potentials at large and small separations:

VðrÞ ¼ Z1Z2e2

r

� �
expð�r=aÞþA expð�r=BÞ; ð1:50Þ

where A = 2.58 × 10−5(Z1Z2)
11/4 eV and B = 1.5a0/(Z1Z2)

1/6 are empirical formulae
suggested by Brinkman [11], consistent with observed compressibilities and elastic
moduli in the noble metals Cu, Ag, and Au. Unfortunately, there is little experi-
mental information about the forces between metal atoms, which is our primary
interest. Figure 1.9 shows that the first term dominates for small separation and the
second for large.
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Brinkman suggested a model for the interaction between two identical atoms in
which the nucleus is surrounded by a rigid charge distribution ρε, and it is assumed
that both atoms supply a screened Coulomb field of the same type:

VðrÞ ¼ Z2e2

r
e�r=a 1� r

2a

� 	
: ð1:51Þ

This relation approaches the Coulomb repulsion as r approaches zero and changes
sign at r = 2a, becoming a weak attractive potential with a minimum at
r ¼ að1þ ffiffiffi

3
p Þ. However, this potential predicts a strong interaction energy at large

distances and may not represent the true physical picture for metals. Brinkman
formulated a new potential function:

VðrÞ ¼ AZ1Z2e2 expð�BrÞ
1� expð�ArÞ : ð1:52Þ

Note that for small values of r, the potential closely approximates the Coulomb
repulsive interaction, i.e.,

lim
r!0

V rð Þ ! Z1Z2e2

r
;

and at large separation, the potential equation approximates the exponential
repulsion of the Born–Mayer type:

lim
r!1 VðrÞ ! AZ1Z2e

2 expð�BrÞ:

The constant B is defined as B ¼ Z1=3
eff =Ca0; where Zeff ¼ ðZ1Z2Þ1=2, and C is of

the order 1.0 or 1.5. The constant A depends on the compressibility and bulk
modulus, which depend on the overlap of closed electron shells. An empirical

1

101

102

103

104

105

106

1

V
(r

) 
(e

V
)

Coulomb

screened Coulomb

Born-Mayer

10-3 10-2 10-1

r (nm)

Fig. 1.9 Behavior of various
potential functions over a
range of separation distances
between copper atoms
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expression for A is A ¼ 0:95� 10�6

a0
Z7=6
eff Substituting for A, B, and C (= 1.5) into

Eq. (1.52) gives:

VðrÞ ¼ 1:9� 10�6Z1=2
eff ER

exp �Z1=3
eff r=1:5a0

� 	
1� exp �0:95� 10�6Z7=6

eff r=a0
� 	 ; ð1:53Þ

where ER = ε2/2a0 is the Rydberg energy (13.6 eV).
It should be noted that although the potential is a reasonably reliable function for

all metals whose atomic number exceeds 25 over the range r < 0.7re, it should not
be used near r = re since in the derivation it has been implicitly assumed that all
interatomic distances are close to those of Cu, Ag, and Au. It is therefore not a valid
potential to use in calculating formation and migration energies of point defects.

Two other potentials should be discussed. The first is the Firsov or Thomas–
Fermi two-center potential. This potential function is an improvement over the
screened Coulomb potential by virtue of the fact it takes into account the change in
electron energy connected with the mutual approach of the nuclei. The potential can
be written as follows:

VðrÞ ¼ vðrÞ
r

;

where χ(r) is the screening function. In the case of the screened Coulomb potential:

vðrÞ ¼ vBðrÞ and

vBðrÞ ¼ Z1Z2e
2 expð�r=aÞ; ð1:54Þ

while in the Firsov potential:

vðrÞ ¼ vTFðrÞ ¼ v Z1=2
1 þ Z1=2

2

� 	2=3r
a

� �
; ð1:55Þ

so that we have:

VðrÞ ¼ Z1Z2e2

r
v Z1=2

1 þ Z1=2
2

� 	2=3r
a

� �
; ð1:56Þ

where

v Z1=2
1 þ Z1=2

2

� 	2=3r
a

� �

is a screening function.
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The second potential of interest is the Thomas–Fermi–Dirac two-center potential
(TFD). The Thomas–Fermi–Dirac statistical model of the atom was employed to
calculate a potential from first principles. As a consequence, this potential takes into
account the exchange effects and places a finite boundary, defined by rb, on the
spatial distribution of the electron cloud density ρε. The potential obtained for like
atoms is as follows:

VðrÞ ¼ Z2e2

r
v Z1=3 r

a

� 	
� aZ þK ; ð1:57Þ

where a ffi 3:16� 10�3 e
2

a0
and K is a set of integrals over exact single-center

electron densities. Calculations using this potential have shown that for very small
separations of less than 	 0:3a0; VðrÞ agrees well with other theoretical curves and
with experiment, while in the range *0.3a0 to 3a0, V(r) agrees with other theo-
retical and experiment results better than the screened Coulomb potential or the
Firsov potential [7].

In selecting the appropriate potential for a specific collision problem, the range of
separation can be determined by equating the available kinetic energy to the potential
and hence obtaining the smallest separation. The important interaction terms for the
calculated separation can then be determined. For interactions betweenmetal atoms at
low kinetic energies, 10−1 to 103 eV, the Born–Mayer term alone is sufficient with
constants given in Eq. (1.50). In cases of atom–atom collisions in the collision
cascade, where energies from 103 to 105 eV are involved, an inverse power potential
is extremely convenient. Such a potential can be formulated by fitting a function C/rs

to one of the above potential functions over a limited range of r. For example, one can
fit an inverse square (s = 2) function to the screened Coulomb potential at r = a,
obtaining the same slope, ordinate, and curvature. This function is as follows[13]:

VðrÞ ¼ Z1Z2e2a
r2

e�1: ð1:58Þ

For a limited range of r, this can be used as an approximate potential. Rewriting
using the expression in Eq. (1.49) for a gives:

VðrÞ ¼ 2ER

e
ðZ1Z2Þ5=6 a0

r

� 	2
: ð1:59Þ

A convenient alternative for numerical calculations uses the fact that
2ER

e
ffi 10 eV,

hence:

VðrÞ ¼ 10ðZ1Z2Þ5=6 a0
r

� 	2
eV: ð1:60Þ
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This potential also applies to heavy ion bombardment in the energy range 103 to
105 eV. In the case of light ions at high energy, such as 5 MeV protons, the simple
Coulomb potential is adequate.

Table 1.3 summarizes the various potential functions and their regions of appli-
cability. But how do we go about verifying a potential function? For example, how do
we determine the constants A and B in the Born–Mayer potential for a specific
element? Since the Born–Mayer potential is based on small displacements from
equilibrium (i.e., re), we can obtain these constants from bulk property measurement
of the solid, e.g., compressibility and elastic moduli. If we expand the potential V(r) as

V0 þ dV
dr

� �
0
rþ 1=2

d2V
dr2

� �
0
r2 þ 
 
 
, then the coefficient of

d2V
dr2

� �
0
is the cur-

vature of the energy–distance curve at r = re as shown in Fig. 1.8.
How then do we know that a given potential does or does not properly describe

the interaction in a region of r? We can make this determination by scattering
measurements or by measuring the range of ions in solids. Since V(r) describes the
nature of the interaction, it will also tell us about σs(Ei) that can be determined by
scattering experiments. Also, range measurements give a good indication of how
many interactions must have occurred in order to place the ion in its deposited

Table 1.3 Summary of potential functions

Potential Equation for V(r) = Range of
applicability

Definitions Eq. in
text

Hard
sphere

0 for r[ r0
1 for r� r0

10−1 < T < 103 eV r0 = Atomic radius (1.46)

Born–
Mayer

V(r) = Aexp (–r/B) 10−1 < T < 103 eV
r ≲ re

A, B determined from
elastic moduli

(1.47)

Simple
Coulomb

Z1Z2e2

r

Light ions of high
energy r ≪ a0

(1.48)

Screened
Coulomb

Z1Z2e2

r

� �
expð�r=aÞ Light ions r < a a0 = Bohr radius

a = Screening radius
(1.49)

Brinkman
I

Z2e2

r
eð�r=aÞ 1� r

2a

� 	 r < a a ffi a0=Z1=3 (1.51)

Brinkman
II

AZ1Z2e2 expð�BrÞ
1� expð�ArÞ

Z > 25
r < 0.7re

A ¼ 0:95� 10�6

a0
Z7=6
eff

B ¼ Z1=3
eff =Ca0

C ffi 1:5

(1.52)

Firsov Z1Z2e2

r
v Z1=2

1 þZ1=2
2

� 	2=3r
a

� �
r ≤ a0 χ is screening function (1.56)

TFD
two-center

Z2e2

r
v Z1=3 r

a

� 	
� aZþK

r < rb(3a0) rb = Radius at which the
electron cloud density
vanishes

(1.57)

Inverse
square

2ER

e
ðZ1Z2Þ5=6 a0

r

� 	2 a/2 < r < 5a ER = Rydberg
energy = 13.6 eV

(1.59)
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location. Both of these sets of experiments will provide information on the ade-
quacy of the chosen potential function to accurately describe the interaction
between the atoms in the solid.

With some appreciation for the way in which neutral atoms or atoms and ions
interact, we are now prepared to describe a collision between these species, which is
in some ways very similar to and in other ways very different from neutron–nuclear
collisions. The resulting formalism will provide us with the tools to determine the
energy transferred from the incident atom to the struck atom along with the energy
transfer cross section. The following treatment is adapted from Thompson [13].

1.2.2 Collision Kinematics

The orbits of two colliding atoms are shown in Fig. 1.10 relative to the center of
mass of the masses M1 and M2. Particle locations are most conveniently denoted in
polar coordinates (r1, ψ) and (r2, ψ) for massesM1 andM2, respectively. The impact
parameter is b, ψ is the scattering angle of the struck atom in the laboratory system,
and ϕ is the asymptotic scattering angle when the interparticle spacing approaches
infinity. The impact parameter is defined as the distance between the asymptotic
trajectories of the colliding particles as shown in Fig. 1.10. We are interested in
determining the detailed orbits by expressing ϕ as a function of b. This result will
then be used to determine the scattering cross section.

The radial and transverse velocities of massM1 are _r1 and r1 _w in polar coordinates,

and the resultant velocity is _r21 þ r21 _w
2

� 	1=2
. The velocity components are the same for

massM2with the subscript 2 substituted for 1. Conservation of energy requires that the
total energy of any system remains constant. The energy in the laboratory reference

1
M

2
M

CM

1
r

2r

φ

b

Fig. 1.10 Collision orbits in
the center-of-mass system
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system is just Ei ¼ 1
2
M1t

2
‘ ¼ ET Recall that VCM ¼ M1

M1 þM2
t‘ and that the kinetic

energy of the center of mass itself (in the laboratory system) is as follows:

ECM ¼ 1
2
ðM1 þM2ÞV2

CM ¼ M1

M1 þM2

� �
Ei:

Hence, the energy in the CM system that is available for transformation is the total
kinetic energy less the motion energy of the CM system:

E ¼ ET � ECM ¼ Ei � ECM ¼ Ei
M2

M1 þM2

� �
: ð1:61Þ

In an elastic collision, the sum of the potential and kinetic energies at any point
in the orbit must equal the asymptotic sum of kinetic energies, so:

Ei
M2

M1 þM2

� �
¼ 1

2
M1ð_r21 þ r21 _w

2Þþ 1
2
M2ð_r22 þ r22 _w

2ÞþVðr1 þ r2Þ:
asymptotic sum of kinetic energy at any point potential

energy in orbit energy

ð1:62Þ

Letting r = r1 + r2 be the total separation distance, r1 ¼ M2

M1 þM2
r; r2 ¼ M1

M1 þM2
r,

and the energy balance of Eq. (1.62) simplifies to:

gEi ¼ 1
2
lð_r2 þ r2 _w2ÞþVðrÞ; ð1:63Þ

where g ¼ M2

M1 þM2
and l ¼ M1M2

M1 þM2
is the reduced mass.

The law of conservation of angular momentum demands that the value at any
point in the orbit must equal the asymptotic value. Recall that:

t‘ ¼ t‘ � VCM ¼ t‘
M2

M1 þM2

� �
and V2 ¼ VCM ¼ t‘

M1

M1 þM2

� �
;

so that the asymptotic value of the angular momentum is given by:

M1t1b1 þM2t2b2 ¼ M1M2

M1 þM2

� �
t‘ b1 þ b2ð Þ ¼ lbt‘: ð1:64Þ

The angular momentum at any point is given by:

M1r
2
1
_wþM2r

2
2
_w ¼ M1

M2

M1 þM2
r

� �2

þM2
M1

M1 þM2
r

� �2
" #

_w

¼ lr2 _w;

ð1:65Þ

1.2 Interactions Between Ions and Atoms 27



hence:

lr2 _w ¼ lbt‘: ð1:66Þ

Substituting from Eq. (1.66) into Eq. (1.63) to eliminate _w and solving for _r, we
obtain:

_r ¼ 2
l

� �1=2

gEi 1� b2

r2

� �
� VðrÞ

� �1=2
: ð1:67Þ

The algebra for this step is as follows. Multiplying out the terms of Eq. (1.63) gives:

gEi � 1
2
l _r2 ¼ 1

2
l
t2‘b

2

r2
þVðrÞ;

and rearranging gives:

gEi � 1
2
l
t2‘b

2

r2
¼ 1

2
l _r2 þVðrÞ: ð1:68Þ

Recall that Ei ¼ 1=2M1t2‘ and therefore t2‘ ¼ 2Ei=M1, and we can eliminate t‘ so

that the second term on the left-hand side of Eq. (1.68) becomes � lb2Ei

M1r2
: Since

l ¼ M1M2

M1 þM2
and l=M1 ¼ g; then:

gEi � gEi
b2

r2
¼ l _r2

2
þVðrÞ; and gEi 1� b2

r2

� �
¼ l _r2

2
þVðrÞ;

or

_r ¼ 2
l

� �1=2

gEi 1� b2

r2

� �
� VðrÞ

� �1=2
;

which is the same as in Eq. (1.67). Note that r reaches the distance of closest
approach, ρ, when _r ¼ 0. At this point:

VðqÞ ¼ gEi 1� b2

q2

� �
; ð1:69Þ

and Vmax = ηEi (at b = 0) which represents a “head-on” collision. So if a particle

strikes a target atom of equal mass, then Vmax = 1/2Ei. When r ! 1; VðrÞ !

0 and _r2 ¼ 2
l

� �
gEi; or _r2 ¼ 2Ei=M1; Ei ¼ 1=2M1 _r2 (and _r ¼ t‘ at r ! 1), so

Ei ¼ 1=2M1t2‘ :
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Recall that we are looking for ϕ as a function of b. Going back to Eq. (1.67) and
dividing _r in Eq. (1.67) by _w from Eq. (1.66), we have:

_r
_w
¼ dr

dw
¼ � 2

l

� �1=2

lEi 1� b2

r2

� �
� VðrÞ

� �1=2 r2
t‘b

: ð1:70Þ

The minus sign in front of the quantity to the right of the equality is because for the
first half of the orbit, _r decreases as ψ increases. Bringing the term r2 under the
square root gives:

dr
dw

¼ � 1
t‘b

2
l

� �1=2

lEiðr4 � r2b2Þ � r4VðrÞ� 1=2
: ð1:71Þ

Dividing the terms under the square root by ηEib
2 to bring this term out of the

square root gives:

dr
dw

¼ � 1
t‘b

2
l

� �1=2

ðgEiÞ1=2b r4

b2
1� VðrÞ

gEi

� �
� r2

� �1=2
: ð1:72Þ

Since 1=2M1t2‘ ¼ Ei, then t‘ ¼ ð2Ei=M1Þ1=2, and substituting for t‘ gives:

dr
dw

¼ � 2
l
M1

2Ei
gEi

� �1=2 r4

b2
1� VðrÞ

gEi

� �
� r2

� �1=2

¼ � M1

l
g

� �1=2 r4

b2
1� VðrÞ

gEi

� �
� r2

� �1=2

¼ � r4

b2
1� VðrÞ

gEi

� �
� r2

� �1=2
:

ð1:73Þ

Substituting for x = 1/r gives:

dx
dw

¼ 1
b2

1� VðxÞ
gEi

� �
� x2

� �1=2
: ð1:74Þ

This is the equation of orbit [ψ = f(x)].
The scattering angle ϕ is found by expressing dψ as a function of x and dx and

integrating from the limits on ψ corresponding to x = 0 and 1/ρ. These limits are ϕ/2
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and π/2, respectively, as shown in Fig. 1.10. Performing this integration for the first
half of the orbit yields:

Zp=2
/=2

dw ¼
Z1=q
0

1
b2

1� VðxÞ
gEi

� �
� x2

� ��1=2

dx; ð1:75Þ

and

/ ¼ p� 2
Z1=q
0

1
b2

1� VðxÞ
gEi

� �
� x2

� ��1=2

dx: ð1:76Þ

The quantity ρ in the upper limit of x is the value of r when ψ = π/2 and hence is the
distance of closest approach. Since dx/dψ = 0 when ψ = π/2, ρ is given from
Eq. (1.74) by:

gEi ¼ VðqÞ
1� b2

q2

: ð1:77Þ

Equations (1.76) and (1.77) provide the relation between ϕ and b.
We have yet to determine the cross section for our scattering event. This may be

done as follows. If particles M1 are bombarding target atoms M2, then in Fig. 1.11,
those ions which cross an area 2πbdb enclosed by circles of radii b and b + db will
be scattered into dϕ about ϕ. Since the relation between db and dϕ can be obtained
from Eq. (1.76) by differentiation, the differential cross section is given by:

rsðEi; TÞdT ¼ 2pbdb and rsðEi; TÞ ¼ 2pb
db
d/

d/
dT

: ð1:78Þ

Knowing V(r) enables ϕ to be written in terms of b2 using Eq. (1.76) and then in
terms of T using Eq. (1.13). Differentiating gives 2πbdb as a function of T and dT.

db

bM1

M2

z
bdbπ2

φd

φ

Fig. 1.11 Scattering of ions crossing an area 2πbdb into an angular element dϕ about ϕ
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Then from Eq. (1.78), the differential cross section for collisions having recoils in
dT about T follows. The total cross section for collisions with T anywhere in the
range Ť to γEi is as follows:

rðEiÞ ¼
ZcEi

�T

rsðEi; TÞdT : ð1:79Þ

The process for finding the energy transfer cross section can be summarized as
follows:

1. Select a potential function V(r).
2. Use Eq. (1.76) to obtain b as a function of ϕ, b = f(ϕ).
3. Use Eq. (1.13) to obtain ϕ as a function of T, ϕ = g(T).
4. Use the relations between b and ϕ and between ϕ and T in Eq. (1.78) to obtain

the energy transfer cross section.

The preceding description of the energy transfer cross section emphasizes the
importance of knowing the potential function describing the particular ion–atom or
atom–atom interaction of interest. Without accurate knowledge of the potential
function, further description of the collision process and the ensuing defect structure
become impossible. Unfortunately, explicit evaluation of the integral in Eq. (1.76)
is possible only for simple potential functions. But before looking further at the
various potential functions and their application in determining the energy transfer
cross section, we must first consider the different possible classes of ions and their
corresponding energies.

Classification of Ions
There are three important classes of ions in ion–atom collisions. The first is light
energetic ions with Ei > 1 MeV. The second is highly energetic (Ei ∼ 102 MeV)
heavy ions such as fission fragments (M * 102). The third is lower energy heavy
ions that may be produced by an accelerator or appear as a recoil that results from
an earlier high-energy collision. The energy of these recoils is generally less than
1 MeV.

For each of these interactions, we must decide on the most appropriate potential
function. A convenient guide is ρ/a, the ratio of the distance of closest approach to the
screening radius as a function of the recoil energy, T. A rough graph of ρ/a versus T is
provided in Fig. 1.12 to aid in the selection of the most appropriate potential. The three
curves represent ions of each of the three classes just discussed: (1) 20 MeV protons,
(2) 70 MeV fission fragments, and (3) 50 keV Cu ions. Curve (1) collisions apply to
the regime where ρ ≪ a and the simple Coulomb potential is adequate. Curve
(2) collisions that are head-on will have ρ ≪ a also. But for glancing collisions,
ρ ∼ a and the screened Coulomb potential is most appropriate. Curve (3) represents the
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region where a < ρ≪ 5a and the inverse square potential or Brinkman potential would
apply since both the Born–Mayer and screened Coulomb terms must be accounted for.

Hard Sphere-Type Collisions
The hard sphere potential is appropriate for ion energies below about 50 keV and
for near head-on elastic collisions. Here, ρ * re and atoms will act like hard
spheres. In a head-on collision, b = 0 and from Eq. (1.77), we have:

gEi ¼ VðqÞ: ð1:80Þ

When b is not quite zero, the collision may be pictured as shown in Fig. 1.13 where

we define R1 ¼ q
M2

M1 þM2
and R2 ¼ q

M1

M1 þM2
. If ρ is known, then from the

figure:

b ¼ q cos
/
2
: ð1:81Þ

Now, recalling that:

rsðEi; TÞ dT ¼ 2pb db

rsðEi; TÞ ¼ 2pb
db
d/

d/
dT

;
ð1:82Þ

where
db
d/

¼ 1=2q sin/=2 from b ¼ q cos/=2 (using the absolute value of the

derivative to maintain
db
d/

as a positive value) and
d/
dT

¼ 2
cEi sin/

from T ¼
cEi

2
ð1� cos/Þ:Then rsðEi; TÞ ¼ 2pq cos/=2

q
2
sin/=2

2
cEi sin/

; and

Fig. 1.12 Distance of closest
approach ρ/a, as a function of
T for (1) 20 MeV protons in
Cu, (2) 70 MeV Xe+ ions in
Cu, and (3) 50 keV Cu+

recoils in Cu (from [12])
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rsðEi; TÞ ¼ pq2

cEi
: ð1:83Þ

Recall that for neutron–nuclear interactions, σs(Ei, T) = σs(Ei)/γEi. Using this
relation, we can obtain an idea of the size of the energy transfer cross section for

neutron–nuclear interactions versus atom–atom interactions:
rsðEi; TÞa�a

rsðEi; TÞn�nuclear ¼

pq2

rsðEiÞ 	
pð10�8Þ2
10�24 	 108; and so the energy transfer cross section for atom–atom

interactions is about eight orders of magnitude greater than that for neutron–nuclear
interactions.

The total scattering cross section is as follows:

rsðEiÞ ¼
ZcEi

�T

rsðEi; TÞdT ¼
ZcEi

�T

pq2

cEi
dT ¼ pq2

cEi
½cEi � �T � ¼ pq2: ð1:84Þ

Note that σs(Ei) is independent of Ei (because ρ ≠ f(Ei)) and that σs(Ei, T) ∝ 1/Ei and
is independent of T. We can find σs(Ei, T) explicitly by applying the appropriate
potential function to find a value of ρ (determined by V(r)). Recall from our dis-
cussions in Sect. 1.2.1 that for collisions in which the impact parameter is on the
order of the equilibrium separation of the atoms, the Born–Mayer potential is most
appropriate. This corresponds to energies below about 10 keV. (Note that this
means that we are also backing off from a pure hard sphere model.) Hence, we will
use V(r) = A exp(–r/B), where A and B are defined in Eq. (1.47). Using Eq. (1.80)
gives:

VðqÞ ¼ A expð�q=BÞ ¼ gEi; ð1:85Þ

M2

M1

R1

R2

CM
R1

R2

φ

2φ

2φ

Fig. 1.13 Schematic of
colliding atoms obeying the
hard sphere approximation for
collisions
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or

q ¼ B ln
A
gEi

� �
; ð1:86Þ

and since b = ρ cos ϕ/2 = Bln(A/ηEi)cos ϕ/2, the energy transfer cross section is as
follows:

rsðEi; TÞ ¼ pB2

cEi
ln

A
gEi

� �2
: ð1:87Þ

The total scattering cross section is then the integral of the energy transfer cross
section between the limits Ť and γEi:

rsðEiÞ ¼
ZcEi

�T

pB2 ln
A
gEi

� �2 1
cEi

dT : ð1:88Þ

From this expression, we will be able to calculate the total cross section for dis-
placement scattering events for all allowed T. Note that the total scattering cross
section depends on Ei. Also, for typical values of A, B, and Ť (40 eV), the value of
σs(Ei) for atom–atom interactions is about 108 times that for neutron–nuclear events.

Rutherford Scattering
Let us turn now to a second example in which we will use the pure Coulomb
scattering potential to demonstrate Rutherford scattering. From our classification of
ions according to ion energy and mass, type 1 collisions involve light (m * 1–4)
energetic (E > MeV) ions where ρ ≪ a. Collisions of this sort are adequately
represented by the simple Coulomb potential, which from Eq. (1.48) is as follows:

VðrÞ ¼ Z1Z2e2

r
:

We will assume that Z1 and Z2 represent the nuclear charges and that this collision
occurs at high energies so that electrons are stripped from the nuclei and the only
interaction is between the nuclei.

In our description of the trajectories of the particles in the CM system, we found
that at the point of closest approach, dx/dψ = 0 and from Eq. (1.77):

gEi ¼ VðqÞ
1� b2

q2

:
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Substituting in for V(r) gives:

Z1Z2e2

q
¼ gEi 1� b2

q2

� �
: ð1:89Þ

Defining:

b0 ¼ Z1Z2e2

gEi

� �
; ð1:90Þ

it follows that:

b0
q

¼ 1� b2

q2
; ð1:91Þ

and

q ¼ b0
2

1þ 1þ 4b2

b20

� �1=2
" #

: ð1:92Þ

Hence, the distance of closest approach is a function of the impact parameter b, as
expected. For head-on collisions, b = 0 and the minimum value of ρ depends on Ei:

qðb ¼ 0Þ ¼ q0 ¼ b0 ¼ Z1Z2e2

gEi
: ð1:93Þ

Note that for this type of collision, ρ depends on Ei, in contrast to independence of
Ei in the hard sphere model. Going back to the orbital Eq. (1.75), we will now
evaluate it as a definite integral:

Z/=2
p=2

dw ¼
Z0
1=q

1
b2

� b0
b2

x� x2
� ��1=2

dx: ð1:94Þ

Since ψ = π/2 when r = ρ(x = 1/ρ) and ψ = ϕ/2 when r = ∞ (x = 0), letting

y ¼ xþ b0
2b2

gives:

/=2� p=2 ¼
Zb02b2

1
qþ

b0
2b2

½c2 � y2��1=2dy; ð1:95Þ
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where c2 ¼ 1
b2

þ b20
4b4

� �
: The orbits are then as follows:

/=2� p=2 ¼ sin�1 y
c

h i b0
2b2

1
qþ

b0
2b2

¼ sin�1 b0
2b2c

� sin�1 1
c

1
q
þ b0

2b2

� �
:

ð1:96Þ

Since sin�1 1
c

1
q
þ b0

2b2

� �
¼ sin�1ð1Þ ¼ p=2; then:

sin/=2 ¼ b0
2b2c

: ð1:97Þ

Substituting for c (from above) into Eq. (1.97) yields:

sin2 /=2 ¼ 1

1þ 4b2

b20

: ð1:98Þ

Using trigonometric relations for sin2 ϕ/2, we have:

b ¼ b0
2
cot/=2: ð1:99Þ

We now have a relationship between the impact parameter, b, and the asymptotic
scattering angle, ϕ. Note that b is a function of Ei through b0 (Eq. (1.93)).

We now want an expression for the scattering cross section. Using Eq. (1.82) for
σs(Ei, T), we have:

rsðEi; TÞ dT ¼ rsðEi;/Þ dX ¼ 2pbdb ¼ pb0 cot
/
2
db; ð1:100Þ

and substituting for db from Eq. (1.99) gives:

rsðEi;/Þ ¼ b0
4

� �2 1

sin4ð/=2Þ ; ð1:101Þ

which is the Rutherford inverse fourth power scattering law. The cross section for
recoil is exactly the same as for elastic collisions, Eq. (1.13), and since:

rsðEi; TÞ ¼ rsðEi;/Þ dXdT ;
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we have:

rsðEi; TÞ ¼ pb20
4

cEi

T2 : ð1:102Þ

Note that unlike neutron–nuclear collisions and hard sphere scattering in general,
the Rutherford scattering cross section is a strong function of T. This expression
also shows that the scattering cross section σs (Ei, T)→∞ as T→ 0. But this is just
a reflection of the fact that as ϕ→ 0 and b→∞ and is representative of long-range
Coulomb interactions. In reality, there is a cutoff in b and hence in ϕ due to electron
screening. As we will see later, this cutoff is Ed, the displacement energy. The
average energy transferred is then as follows:

T ¼

R̂T
�T

TrsðEi; TÞ dT

RT̂
�T

rsðEi; TÞ dT
¼

�T ln(T̂=�TÞ
1�

�T

T̂

: ð1:103Þ

For T̂ ¼ cEi and Ť = Ed and since γEi ≫ Ed, then:

T � Ed ln
cEi

Ed

� �
; ð1:104Þ

which is quite small for all energies Ei, reflecting the strong T�2 dependence in
Eq. (1.102).

The integral of Eq. (1.102) over T gives the total cross section for displacement
events by an ion of energy Ei:

rsðEiÞ ¼ p
4
b20T̂

ZT̂
Ed

dT
T2 ¼ pb20

4
T̂
Ed

� 1
� �

; ð1:105Þ

and since at high energies T̂=Ed � 1 then we have for T̂ ¼ cEi:

rsðEiÞ � pb20
4

cEi

Ed
; ð1:106Þ

which is quite large.
A critical question in applying the above results is under what conditions can

Rutherford scattering be applied? The answer is that we must require that during an
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encounter, the major part of scattering occurs in the region where r≪ a But this is a
qualitative measure. What is needed is a means for determining quantitatively,
when Rutherford scattering applies. To address this question, we consider two
cases.

Case 1: Near “head-on” collisions (high T). For near head-on collision,
ρ0 ≪ a or Ei ≫ Ea, where Ea is the value of Ei that would give ρ0 = a assuming a
screened Coulomb potential:

Ea ¼ 2ER

C
ðZ1Z2Þ7=6 M1 þM2

M2e
; ð1:107Þ

which is obtained by rewriting the screened Coulomb potential (Eq. (1.49)) in an
inverse square law form (Eq. (1.59)), with ε2 = 2a0ER and equating at r = a and

setting VðrÞ ¼ gEi ¼ M2

M1 þM2
Ei for a head-on collision.

Case 2: Glancing collisions (low T). Here, we only consider those collisions in
which b ≤ a, or that result in an energy transfer Ť * Ed for b = a. For a simple
Coulomb collision with b = a, we have from Eqs. (1.98) and (1.13):

T ¼ e2cE2
a

4Ei
; or Ei ¼ e2cE2

a

4T
; ð1:108Þ

and giving this value of Ei the name Eb at T = Ť, we have

Eb ¼ e2cE2
a

4�T
; where �T ¼ Ed; ð1:109Þ

and this equation is valid for all Ei ≫ Eb. Essentially, Eb is the value of Ei that
results in a transfer of energy T ≥ Ed at b = a. Or looking at it another way, values of
Eb < Ei give T ≪ Ť and can be neglected since ρ ≥ a, and these encounters can be
neglected. Table 1.4 provides examples of the values of Ea and Eb for different
particle–target atom combinations and energies. From Table 1.4, since Ea < Eb, we
can use the criterion that Ei must be ≫ Eb as an extreme test of the validity of the
simple Coulomb scattering description.

In summary, if Ei ≫ Ea, the simple Coulomb potential may be used for near
head-on collisions. If Ei ≫ Eb, it can be used for all collisions of interest in radiation
damage. Light charged particles such as protons and alphas with Ei > 1 MeV fall
into this category, while fission fragments are in the regime Ea < Ei < Eb and recoils
have Ei ≤ Ea. These will be discussed next. But first, we present an example of
Rutherford scattering.

38 1 The Radiation Damage Event



Example 1.2. 2 MeV protons on aluminum
For this case,

T̂ ¼ cEi ¼ 4ð27Þ
ð27þ 1Þ2 2MeV ¼ 0:28MeV

�T ¼ 40 eV

T ¼ Ed ln
cEi

Ed

� �
¼ 354 eV

We can also calculate Ea * 200 eV and Eb * 2500 eV. (For comparison,
2 MeV He+ on Al, Ea * 1 keV, and Eb * 16 keV. Also, for 2 MeV H+ on
Au, Ea * 1.6 keV, and Eb * 24 keV; and for 2 MeV He+ on Au,
Ea * 8 keV, and Eb * 42 keV.) Since Ei ≫ Eb, the simple Coulomb law is
valid for this type of collision. Incidentally, σ(Ei) * 4 × 10−22 cm2, and since
the mean free path between collisions is λ = 1/σN and N * 6 × 1022 a/cm3,
then λ * 0.04 cm or about 400 μm, or about 10 times the length of a 2 MeV
proton track in Al. This means that there is, on average, only one Rutherford
scattering collision for every 10 protons incident on Al.

Now, let us investigate the other classes of ion–atom collisions such as heavy
energetic ions, heavy slow ions, and high-energy electrons.

Heavy Energetic Ions
For heavy energetic ions such as fission fragments, Fig. 1.12 shows that an appropriate
potential must account for both screened Coulomb and closed shell repulsion. Let us
look first at the simple Coulomb potential as a rough approximation, knowing that its
use is only justified for recoil energies approaching γEi where ρ ≪ a. Recall that

rsðEiÞ ¼ pb20
4

cEi

Ed
; and b0 / Z1

cEi
; c ¼ 4M1M2

ðM1 þM2Þ2
; g ¼ M2

M1 þM2
; which gives an

increase in the cross section compared to the light ion by a factor of

Table 1.4 Values of Ea and
Eb for various particle–target
atom combinations and
energies (from [13])

Incident particle Target atom Ea (eV) Eb (eV)

C C 2 × 103 8 × 105

Al Al 1 × 104 2 × 107

Cu Cu 7 × 104 1 × 109

Au Au 7 × 105 1 × 1011

Xe U 5 × 105 3 × 1010

D C 1.5 × 102 2 × 103

D Cu 1 × 103 2 × 104

D C 4 × 103 1 × 105
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rs;heavy
rs;light

¼

z21M1

Ei

����
heavy

z21M1

Ei

����
light

� 106

for the same value of Ei and for fission fragments at the peaks of the fission yield of
uranium, Mlight

1 ’ 96 amu,Elight
1 ’ 95MeV andMheavy

1 ’ 137 amu,Eheavy
1 ’ 55MeV.

Comparing to the example of the 2 MeV proton on Al, fission fragments have a
cross section that is larger by a factor of 104! Therefore, the mean free path is 10−4

that of a proton in Al.
Recall that σs(Ei, T) varies as 1/T

2. But this is only true near γEi(ρ≪ a). At lower
energies, screening will reduce the sensitivity to energy. So we must use a better
description of the interaction between energetic, heavy ions, and target atoms.
Brinkman’s expression, Eq. (1.50), includes both terms, and if this is used in the
impulse approximation (see [13]), the result is as follows:

T ¼ M1

M2

A2

Ei
F a;

b
B

� �
� ð1� aÞF 1þ a;

b
B

� �� �2
; ð1:110Þ

where A and B are given in Eq. (1.50) and

F a;
b
B

� �
¼ b

B

Z1
b=a

�e�xdx

ðx2 � b2=a2Þ1=2ð1� e�axÞ2

¼ b
B

X1
n¼0

ðnþ 1ÞK0
b
B
ð1þ naÞ

� �
;

ð1:111Þ

where K0(y) is a Bessel function of the third kind. The term α is the ratio of Born–
Mayer and screened Coulomb terms at r = a, so in general, α < 1. T can be found from
b and Eq. (1.110), and by inversion, b is obtained as a function of T. Differentiation
gives σ = 2πbdb. However, because of the complexity of Eq. (1.110), numerical
solutions are required. Nevertheless, we may calculate dN, the number of recoils in
dT at T produced by the fission fragment in slowing down to rest. This is found by:

dN ¼ nrdx ¼ n
dr
dT

� dE
dx

� ��1

dEdT ; ð1:112Þ

where n is the density of atoms, and

NðTÞdT ¼ n
ZEi

0

r
dT

dE
dX

� ��1

dE dT : ð1:113Þ

40 1 The Radiation Damage Event



Brinkman carried out these calculations for light and heavy fragments from 235U
fission slowing down in uranium. The results are shown in Fig. 1.14. Note that N
(T) decreases more rapidly than T−1, and hence, the majority of displaced atoms are
produced by low-energy recoils. Therefore, high-energy recoils can be neglected
altogether. Another way of looking at this is that the simple Coulomb potential is
only valid in an energy range that does not contribute significantly to
displacements.

Heavy Slow Ions
These ions are classified by the curve labeled “3” as shown in Fig. 1.12. This is a
very important class of collisions as it covers most of the applications of kV ion
implanters and low MV accelerators in the fields of materials science and radiation
damage that includes such topics as ion implantation and heavy ion radiation effects
simulation. The figure shows that collisions must be dealt with over the range
a < ρ < 10a. The formalism used for fission fragments in the previous section
applies to glancing collisions, but for head-on collisions, another approach is
needed. The appropriate potential for a/5 ≤ ρ ≤ 5a is the inverse square approxi-
mation. We use a potential of the form:

VðrÞ ¼ 2ER

e
ðZ1Z2Þ5=6 a0

r

� 	2
;

which is obtained by fitting a screened Coulomb potential to the inverse square
potential and equating at r = a, Eq. (1.59). Substituting this potential function into
the orbital equation (1.76) gives:

10-4

10-3

10-2

10-1

1

101

102

101 102 103 104 105 106

M1 = 96

M1 = 137

T-2

Fig. 1.14 The energy
spectrum of recoils N(T)
dT produced by fission
fragments slowing down to
rest in uranium. Two cases are
shown: M1 = 96,
E1 = 95 MeV; and M1 = 137,
E1 = 55 MeV (from [13])
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/
p
¼ 1� 1þ a2Ea

b2Ei

� ��1=2

: ð1:114Þ

Using Eq. (1.13) to express ϕ in terms of T gives:

T ¼ cEi cos2
p
2

1þ a2Ea

b2Ei

� ��1=2
" #

: ð1:115Þ

Expressing b in terms of T and differentiating gives:

rsðEi; TÞ ¼ 4Eaa2a

cE2
i ð1� 4a2Þ2½xð1� xÞ�1=2

; ð1:116Þ

where x ¼ T
cEi

and pa ¼ cos�1 x1=2:

For small x (low-energy transfer), we have:

rsðEi; TÞ ¼ p2a2Eac1=2

8E1=2
i T3=2

: ð1:117Þ

Note that the energy transfer cross section is dependent on T. The mean recoil
energy is as follows:

T ¼
R cEi
�T TrsðEi; TÞ dTR cEi
�T rsðEi; TÞ dT

¼ ðcEi�TÞ1=2: ð1:118Þ

The total cross section for displacement is as follows:

rsðEiÞ ¼
ZcEi

�T

rsðEi; TÞ dT ¼ p2a2Eac1=2

4ðEi�TÞ1=2
: ð1:119Þ

Relativistic Electrons
Radiation damage from electrons is not so important in reactor core materials, but
more so in the laboratory as they are commonly used in electron microscopes for
radiation damage studies. Due to the low mass of the electron, very high energies
must be attained in order to cause displacements of a lattice atom. These energies
are high enough such that relativistic quantum mechanics must be used to describe
the collision. Even so, the energy transferred is large enough to displace only the
struck atom with no secondary displacements.
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In relativistic form, the momentum of an electron with rest mass m0 and kinetic
energy Ei is as follows:

p2e ¼
Ei

c2
ðEi þ 2m0c

2Þ: ð1:120Þ

Since the struck atom (Z, M) recoils non-relativistically, the recoil expression is that
given in Eq. (1.9):

V 02
‘ ¼ V2

CM þV 02
c � 2VCMV

0
c cos/ ¼ 2V2

CMð1� cos/Þ ¼ 4V2
CM sin2

/
2
;

and conservation of momentum gives:

pe ¼ ðm0 þMÞVCM ffi MVCM:

Replacing the velocity terms with energies in the expression for V 02
‘ yields:

T ¼ 2Ei

Mc2
ðEi þ 2m0c

2Þ sin2 /
2
; ð1:121Þ

or

T̂ ¼ 2Ei

Mc2
ðEi þ 2m0c

2Þ: ð1:122Þ

An approximate expression for the Dirac equation for light ions [13] yields the
differential scattering cross section:

rsðE1;/Þ ¼ 4pa20Z
2E2

R

m2
0c

4

1� b2

b4

� ½1� b2 sin2ð/=2Þþ pab sinð/=2Þð1� sinð/=2ÞÞ�
� cosð/=2Þ csc3ð/=2Þ;

ð1:123Þ

where b ¼ t=c and α = Z2/137. This expression approaches the Rutherford scat-
tering law for small β. Using Eqs. (1.121) and (1.122), the differential scattering
cross section is written in terms of T and T̂ :

rsðEi;TÞ ¼ 4pa20Z
2E2

R

m2
0c

4

1� b2

b4
1� b2

T

T̂
þ p

a
b

T

T̂

� �1=2

� T

T̂

( )" #
T̂
T2 : ð1:124Þ
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The total cross section is found by integrating Eq. (1.124) from �T to T̂ :

rsðEiÞ ¼ 4pa20Z
2E2

R

m2
0c

4

1� b2

b4
T̂
�T
� 1

� �
� b2 log

T̂
�T

þ ab2
T̂
�T

� �1=2

�1� log
T̂
�T
:

ð1:125Þ

For electrons with energies above the damage threshold and T̂=�T slightly greater
than unity:

rsðEiÞ ffi 4pa20Z
2E2

R

m2
0c

4

1� b2

b4

� �2
T̂
�T
� 1

� �
: ð1:126Þ

Figure 1.15 shows that at high enough energies, Ei ≫ m0c
2, and σs(Ei) approaches

an asymptotic value:

rsðEiÞ ! 8pa20Z
2E2

R
�TMc2

¼ r1: ð1:127Þ

It should be emphasized, however, that these cross sections are most accurate for
light elements but seriously underestimate σs(Ei) for heavy elements (Z > 50).
Table 1.5 provides a summary of the energy transfer and the energy transfer cross
sections for the various types of atom–atom interactions discussed in Sect. 1.2.
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Fig. 1.15 Damage cross section for electrons bombarding copper where Ed = 25 eV (from [13])
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1.3 Energy Loss

Up to this point, we have been treating collisions as discrete events. However,
besides collision with or between nuclei, an ion or atom traveling through the lattice
may lose energy by electronic excitation, by ionization, or by Bremsstrahlung (loss
of energy of an electron passing through the Coulomb field of a nucleus by
emission of X-rays). These events may be viewed as more or less continuous
events. What follows is a treatment of energy loss in solids.

1.3.1 Energy Loss Theory

We are interested in finding the differential energy loss of an ion or atom traveling
through a lattice. We begin by defining the energy loss per unit length as −dE/dx (or
NS(E) where N is the target atom number density and S is the stopping power in
units of energy × distance squared) so that the total energy loss can then be
approximated by a sum of these components:

� dE
dx

� �
total

¼ � dE
dx

� �
n
þ � dE

dx

� �
e
þ � dE

dx

� �
r
¼ NSn þNSe þNSr; ð1:128Þ

Table 1.5 Energy transfer and energy transfer cross sections for various types of atom–atom
collisions

Type of collision Energy transfer and energy transfer cross section Equation
in text

Hard sphere type (Born–
Mayer potential)
ρ * re

rsðEi;TÞ ¼ pB2

cEi
ln

A
gEi

� �2 (1.87)

T ¼ cEi=2 (1.13)

Rutherford scattering
(simple Coulomb
potential) ρ ≪ a

rsðEi;TÞ ¼ pb20
4

Eic
T2

(1.102)

T � Ed ln
cEi

Ed

� �
(1.104)

Heavy ion (inverse square)
a/5 ≤ ρ ≤ 5a rsðEi;TÞ ¼ p2a2Eac1=2

8E1=2
i T3=2

(1.117)

T ¼ cEi�T
� �1=2 (1.118)

Relativistic electrons
rsðEi;TÞ ¼ 4pa20Z

2E2
R

m2
0c

4

1� b2

b4

� 1� b2
T

T̂
þ p

a
b

T

T̂

� �1=2

� T

T̂

( )" #
T̂
T2

(1.124)
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where the subscripts are defined as follows:
n = elastic,
e = electronic, and
r = radiation.

For most of the applications in which we will be interested, energy loss by radiation
will be small and will be neglected.

From our discussion in Sect. 1.2.1, it is evident that in order to accurately
describe the slowing down of an ion or atom over the entire energy range from T̂ to
Ť, where T̂ may be in MeV and Ť ∼ 10 eV, several potential functions would need
to be “pieced” together (see Fig. 1.9). This would cause problems because of
discontinuities at the cuts. Moreover, the cutoff points of these functions often differ
depending on M and Z.

However, we can separate or subdivide stopping power according to the type of
interaction and hence the energy regime. In the high-energy regime, ρ ≪ a and
Se ≫ Sn, and these interactions are treated as pure Coulomb collisions. In the
low-energy regime, ρ ≈ a and Sn > Se. This is the region of importance in the
deposition of displacement energy. In either case, we can establish a formalism for
calculating stopping power, −dE/dx = NS(E).

If we know the energy transfer cross section σ(Ei, T) for either Sn or Se, then we
can calculate the average energy transfer:

T ¼
R
TrdTR
rdT

¼ energy lost or transferred;

and the mean free path (mfp) between collisions is k ¼ 1
Nr

: Then, the ratio of these

two quantities is the energy loss per unit length:

dE
dx

¼ NSn ¼ T
k
¼
R T̂
�T TrðEi; TÞ dTR T̂
�T rðEi; TÞ dT


 N
ZT̂
�T

rðEi; TÞ dT

¼ N
ZT̂
�T

TrðEi; TÞ dT:

ð1:129Þ

Another way to look at this is as follows: Consider a projectile incident on an
amorphous target containing an average of N atoms/unit volume (Fig. 1.16). In
traversing the slab of material between x and x + Δx, the projectile will come within
a distance b1 of NΔx2πb1db target particles and transfer an energy T (Ei, b) to each.
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The total energy transferred to all target particles in the slab is obtained by inte-
grating over all possible impact parameters:

DE ¼ NDx
Z1
0

T2pb db:

Assuming ΔE ≪ E and dividing by Δx and taking the limit as Δx → 0, we obtain:

DE
Dx

����
limDx!0

¼ dE
dx

¼ N
Z1
0

T2pb db:

We know that σ (Ei, T) dT = 2πbdb so:

dE
dx

¼ N
ZT̂
�T

TrðEi; TÞ dT ;

which is the same result as from Eq. (1.129). Let us first consider nuclear stopping,
or energy loss from elastic collisions.

Nuclear Stopping Power

We define � dE
dx

� �
n
or NSn(Ei) as the energy lost to target nuclei when a projectile

of energy Ei traverses a differential thickness dx of a target of unit density. A simple

formulation of � dE
dx

� �
n
can be made if we assume that each target nucleus acts

independently of every other target nucleus in slowing down a projectile. In
essence, we are neglecting any possible interactions between nuclei. This is a fair

xΔ

xx Δ+x

1b

Fig. 1.16 Schematic of an incident projectile of energy E passing within a distance b1 of an
annular ring containing NΔx2πb1db atoms
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approximation for amorphous targets and a good first approximation for crystalline
targets also.

Case 1: High-energy elastic collisions, ρ ≪ a.

Rutherford scattering describes this type of interaction accurately. Recall that for
simple Coulomb scattering, the energy transfer cross section [Eq. (1.102)] is as
follows:

rsðEi; TÞ ¼ pb20
4

cEi

T2 :

Therefore, the stopping power becomes:

dE
dx

����
n
¼ NSnðEiÞ ¼ N

ZcEi

�T

T
pb20
4

cEi

T2 dT

¼ Npb20
4

cEi ln
cEi

�T

� �
;

ð1:130Þ

where T̂ ¼ cEi and Ť is the value of T which yields b = a or �Tb ¼ e2cE2
a

4Ei
:

Substituting for b0 from Eq. (1.93) gives:

dE
dx

����
n
¼ NSnðEiÞ ¼ NpZ2

1Z
2
2 e

4

Ei

M1

M2
ln

cEi

�Tb

� �
: ð1:131Þ

Note that for like atoms, γ = 1 and M1 = M2, so:

NSnðEiÞ ¼ NpZ2
1Z

2
2e

4

Ei
ln

Ei

�Tb

� �
: ð1:132Þ

Substituting for Ea from Eq. (1.107) into the expression for Ťb gives:

�Tb ¼ 4E2
RðZ1Z2Þ2ðZ1Z2Þ2=6

c2Ei
: ð1:133Þ

Using a = a0/(Z1Z2)
1/6 and substituting for (Z1Z2)

1/6 gives:

�Tb ¼ 4E2
Ra

2
0Z

4

c2a2Ei
;
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for Z1 = Z2, and since ε2 = 2a0ER, then Eq. (1.132) becomes:

NSnðEiÞ ¼ 4NpZ4a20E
2
R

Ei
ln

Ei

�Tb

� �

¼ 4NpZ4a20E
2
R

Ei
ln

c2a2E2
i

4a20E
2
RZ

4

� �
:

ð1:134Þ

Case 2: Low-energy elastic collisions, ρ * a.

At intermediate and lower energies, pure Coulomb scattering will not correctly
capture the interaction. Here, we must use a screened Coulomb function to account
for the effects of the electrons in the internuclear space. Bohr showed that the
screened Coulomb potential could be accurately described using an inverse power
potential of the form [14]:

rðE; TÞ ¼ Cm

EmT1þm
; ð1:135Þ

where

Cm ¼ p
2
kma

2 2Z1Z2e2

a

� �2m M1

M2

� �m

; ð1:136Þ

and λm is a fitting variable. Inserting the potential function in Eq. (1.135) into
Eq. (1.129) for the stopping power gives:

SnðEÞ ¼ 1
N

dE
dx

� �
n
¼ Cm

Em

ZT̂
0

T�mdT ¼ CmE�mT1�m

1� m

����
T̂

0
; ð1:137Þ

SnðEÞ ¼ CmE1�2m

1� m
c1�m; ð1:138Þ

where γ has the usual definition, Eq. (1.14). Lindhard et al. [14] introduced a set of
dimensionless or reduced variables for energy, 2, and distance, ρx:

2¼ M2

M1 þM2ð Þ
a

Z1Z2e2
E; ð1:139Þ

qx ¼ N4pa2
M1M2

M1 þM2ð Þ2 x: ð1:140Þ
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They proposed a universal, one-parameter, differential scattering cross section in

reduced notation that approximates the interaction potential VðrÞ ¼ Z1Z2e2

r
/0ðr=aÞ,

where ϕ0 is the Fermi function belonging to a single Thomas–Fermi atom:

r ¼ pa2

2
f ðt1=2Þ
t3=2

; ð1:141Þ

where t is a dimensionless collision parameter defined by:

t ¼22 T

T̂
¼ 1

2
22 ð1� cos/Þ ¼22 sin2 /=2; ð1:142Þ

and t is proportional to the energy transfer, T, and to the energy, Ei, through 22 =T̂ ,
and ϕ is the CM scattering angle. Lindhard et al. [14] treated f(t1/2) to be a simple
scaling function where t was a measure of the depth of penetration into an atom
during a collision and large t represents close approach. The function f(t1/2) is
plotted in Fig. 1.17, and Winterbon et al. [15] developed an analytical expression
for the function:

f ðt1=2Þ ¼ k0t1=6 1þð2k0t2=3Þ2=3
h i�3=2

; ð1:143Þ

r-1 Rutherford 
scattering  
potential 

(f = 0.5t -1/2)r-3 potential
 (f = 1.309t1/6)

r-2 potential )
(

2 /1 t
f

∈

(f = 0.327)

Fig. 1.17 Reduced differential cross section calculated from the Thomas–Fermi potential.
Abscissa is 2¼ t1=2= sin/=2. The thick solid line ranging over 10−3 < 2 < 10 is from Eq. (1.141).
The thin solid lines at left and right and the horizontal line in the middle are calculated using the
power law cross section, Eq. (1.144) (after [15])
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where λ′ = 1.309. A generalization of Eq. (1.143) for power law scattering is as
follows:

f ðt1=2Þ ¼ kmt
1
2�m

; ð1:144Þ

where λ1/3 = 1.309, λ1/2 = 0.327, and λ1 = 0.5. Equation (1.144) approximately
describes scattering from a potential of the form V(r) ∝ r−s = r−1/m, where s is the
power law exponent. At low energies (low 2), there is little penetration in the
collision (t is small) and collisions are described by a power law with V(r) ∝ r−3 and
m = 1/3, yielding a t1/6 dependence. At higher energies, screening effects are
minimal and are described by a V(r) ∝ r−1 potential and m = 1, giving t−1/2

behavior. At intermediate energies, the function (cross section) is slowly varying
and is best described by a power law potential for the form, V(r) ∝ r−2, with m = 1/2
giving no dependence on t, which means that the cross section is independent of 2.
For the case of the inverse square law, m = 1/2 and the stopping power is given by
Eq. (1.138):

SnðEÞ ¼ 4pk1=2aZ1Z2e
2 M1

M1 þM2
: ð1:145Þ

The reduced stopping cross section, Sn(2), is given as follows:

Sð2Þ ¼ d 2
dqx

; ð1:146Þ

and a relation between Sn(E) and Sn(2) is as follows:

d 2
dqx

¼ d 2
dE

dqx
dx

� �
dE
dx

: ð1:147Þ

Taking differentials of 2 with respect to E (Eq. (1.139)), and ρx with respect to
x (Eq. (1.140)) gives:

Snð2Þ ¼ M1 þM2

M1

1
4paZ1Z2e2

SnðEÞ ð1:148Þ

¼ 2
pa2cEi

SnðEÞ: ð1:149Þ

Substituting the expression for Sn(E) from Eq. (1.145) into Eq. (1.148) gives:

Snð2Þ ¼ k1=2 ¼ 0:327: ð1:150Þ
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The stopping power can also be written using the energy transfer cross section in
reduced notation from Eq. (1.141) giving:

SnðEÞ ¼ 1
N

dE
dx

� �
n
¼ pa2

ZT̂
0

T
f ðt1=2Þ
2t3=2

dt ¼ �pa2T̂
22

ZT̂
0

f ðt1=2Þdt1=2: ð1:151Þ

Substituting the stopping power Sn(E) in Eq. (1.151) into Eq. (1.149) for T̂ ¼ cEi

gives:

Snð2Þ ¼ 1
2
Z2
0

f ðt1=2Þdt1=2: ð1:152Þ

Setting y = t1/2 in Eq. (1.144), Eq. (1.152) becomes:

Snð2Þ ¼ km
2
Z2
0

y1�2mdy ¼km
2

y2�2m

2ð1� mÞ
����
2

0
¼ km

2ð1� mÞ 2
1�2m; ð1:153Þ

which is the power law approximation to the reduced nuclear stopping cross sec-
tion. For the case of the inverse square law, m = 1/2 and Sn(2) = λ1/2 = 0.327.

Two approximations for SnðEiÞ for collisions in the intermediate energy regime
are considered. The first is obtained by solving the orbital Eq. (1.76) using the
inverse square potential in Eq. (1.59) [16]:

/
p

¼ 1 � 1

1 þ a2Ea

b2Ei

� �1=2
:

Using Eq. (1.14) to determine T gives:

T ¼ cEi cos2
p
2

1þ a2Ea

b2Ei

� �1=2
" #

: ð1:154Þ

Expressing b2 in terms of T and differentiating, and using the relation between σs(Ei, T)
and b from Eq. (1.78) gives:

rs Ei ;T
� � ¼ 4Ea a2 a

cE2
i 1 � 4a2ð Þ2 x 1 � xð Þð Þ1=2

; ð1:155Þ
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where x ¼ T=Ei; pa ¼ cos �1 ffiffiffi
x

p
, and for small x, Eq. (1.155) has the form:

rs Ei ;T
� � ¼ p2 a2Ea c1=2

8E1=2
i T3=2

: ð1:156Þ

The total cross section and mean recoil energy are calculated from Eq. (1.156)
taking a cutoff to zero at T ¼ cEi:

T ¼ cEi �T
� �1=2

; ð1:157Þ

rs Eið Þ ¼ p2 a2Ea c1=2

4ðEi �TÞ1=2
: ð1:158Þ

The stopping power is determined using:

SnðEiÞ ¼
ZT̂
�T

TrðEi; TÞdT ;

and substituting the energy transfer cross section from Eq. (1.158) yields:

Sn Eið Þ ¼ 1
N

dE
dx

� �
n
¼ p2

4
a2 Eac: ð1:159Þ

Substitution for Ea from Eq. (1.107) gives a value of 0.327 for Sn. This same result
can be obtained using the expression for average energy loss:

dE
dx

¼ T
k

¼ Nrs T ; ð1:160Þ

where k ¼ 1
Nrs

is the mean free path between collisions, and substituting for

σs(Ei) and T from Eqs. (1.157) and (1.158).
The second approximation of Sn Eið Þ can be obtained using the Thomas–Fermi

screening function. We will assume that a series of small-angle scattering events are
responsible for most of the energy loss of a projectile in a target. When this is true,
the energy transferred, T, can be expressed as a function of Ei and b by solving
Eq. (1.76) for ϕ using the Thomas–Fermi screening function, Eq. (1.49), and
expanding the solution on the assumption that f is small. Proceeding, we find:

/ ¼ p� 2
Zx̂
�

1
b2

1� V xð Þ
gEi

� b2x2
� �� ��1=2

dx; ð1:161Þ
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and for V rð Þ ¼ Z1Z2 e2

r
f r=að Þ, where f r=að Þ ¼ a=r, the solution is as follows:

/ ¼ p� b b2 þ Z1Z2 e2 a
ER

� ��1=2

: ð1:162Þ

Solving for b and substituting in the expression:

rs Ei ;/
� �

dX ¼ 2pbdb ;

and using Eq. (1.15) to obtain rs Ei ; Tð Þ d T , we can then find Sn Eið Þ from
Eq. (1.129). The result is as follows:

S0n ¼
p2

e
e2a0Z1Z2

M1

M1 þM2
Z�1=3; ð1:163Þ

which is the standard stopping power and is shown in Fig. 1.18. Note that S0n is
independent of the projectile energy to a first approximation, and substitution of
Eqs. (1.163) and (1.139) into Eq. (1.149) yields a value of 0.327 for S0n. Ranges
estimated from S0n will be reasonably close when small-angle scattering
predominates.

Recall that the key assumption in deriving Eq. (1.163) was that energy loss of a
projectile can be represented as a series of small-angle scattering events, allowing
us to then assume that f remains small. Table 1.6 gives the scattering angles and
energy loss for a 50 keV silicon projectile incident on a silicon target atom. Note
that for q=a 1, this assumption is clearly valid.

The nuclear stopping cross section in reduced notation is determined by using
Eq. (1.149) for Snð2Þ and substituting Eq. (1.129) for Sn(E) giving:

Snð2Þ ¼ 2
pa2UcEi

ZT̂
0

TrsðEi; TÞdT ; ð1:164Þ
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where the universal screening length aU is substituted for the Thomas–Fermi
screening length a, and using the identity:

ZT̂
0

rsðEi; TÞdT ¼
Zbmax

0

2pbdb; ð1:165Þ

yields an expression for the nuclear stopping cross section in reduced notation:

Snð2Þ ¼ 2
a2U

Z1
0

sin2
/
2
db2: ð1:166Þ

Ziegler [18] used the universal screening function, Fig. 1.19:

vU ¼ 0:1818e�3:2x þ 0:5099e�0:9423x þ 0:2802e�0:4028x þ 0:02817e�0:2016;

ð1:167Þ

and the numerical integration of Eq. (1.76) and Eq. (1.166) to calculate a universal
reduced nuclear stopping cross section, the ZBL cross section shown in Fig. 1.20.
An expression for the fit is as follows:

Snð2Þ ¼ 0:5 lnð1þ 1:1383 2Þ
ð2 þ 0:01321 20:21226 þ 0:19593 20:5Þ ; ð1:168Þ

and for practical calculations, the ZBL universal nuclear stopping for an ion with
energy Ei in the laboratory system is as follows:

SnðEiÞ ¼ 8:462� 10�15Z1Z2M1Snð2Þ
ðM1 þM2ÞðZ0:23

1 þ Z0:23
2 Þ

eV 
 cm2

atom
; ð1:169Þ

where the ZBL reduced energy is as follows:

2¼ 32:53M2Ei

Z1Z2ðM1 þM2ÞðZ0:23
1 þ Z0:23

2 Þ : ð1:170Þ

Let us now look at electronic energy loss.

Table 1.6 Scattering angles
and energy loss for a 50 keV
silicon projectile and a silicon
target atom [17]

ρ/a = 10 1 0.1

ϕ (radians) 0.004π 0.26π 0.89π

θ (degrees) 0.36 23.4 80.5

T/E 4 × 10−5 0.16 0.973

T (keV) 0.002 8 49
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Electronic Stopping Power
The theoretical computation of electronic stopping power is a much more compli-
cated problem than the calculation of Sn. For the description of collisions between
ions and electrons, we may use the classical equation (Eq. (1.106)). But here we must
consider that the binary collision is between a heavy moving ion and an electron in a
solid. This approach is valid as long as all electrons participate and the ion velocity
exceeds the velocity of the tightest bound electron. We may define T by:

T̂ ffi ceEi; ð1:171Þ
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Fig. 1.20 Nuclear stopping
power in reduced units from
Eq. (1.168)
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where ce ¼
4meM

ðme þMÞ2, and hence, T̂ is very small. We will also define a lower limit

for ion–electron interactions as the effective mean excitation–ionization level Ī.1 We
also note that wemust use the electron density, which is just Z2 times the atom density:

n ¼ NZ2: ð1:172Þ

Writing an expression for stopping power due to excitation–ionization interactions
that is equivalent to Eq. (1.130) yields:

� dE
dx

� �
e
¼ n

Z2

ZceEi

I

TrsðEi; TÞ dT

¼ n
Z2

pb20
4

ceEi ln
ceEi

I

� �

¼ Np
Z2
1Z2e

4

Ei

M
me

ln
ceEi

I

� �
:

ð1:173Þ

This formula is only approximate. A more exact expression is obtained from a
quantum mechanical treatment based on the Born approximation, which is inter-
preted physically to mean that the perturbation due to the incident particle does not
seriously disturb the electronic motion for large impact parameters. The result of
this analysis is the addition of a factor of 2, which comes from the small-energy
transfer processes where free Coulomb scattering is invalid. The Bethe–Bloch
formula is a good approximation:

� dE
dx

� �
e
¼ 2NpZ2

1Z2e
4

Ei

M
me

ln
ceEi

I

� �
¼ 2pNZ2

1Me4

meEi
B; ð1:174Þ

where B ¼ Z2 ln
ceEi

I

� �
is the stopping number. For relativistic velocities:

B ¼ Z2 ln
ceEi

I

� �
� lnð1� b2Þ � b2

� �
; ð1:175Þ

where b ¼ t=c and c is the speed of light. Note that at high energies, Sn and Se vary
as 1/Ei very nearly, and:

Se
Sn

¼ 2M2

meZ2

ln
ceEi

I

� �

ln
cEi

Ed

� � : ð1:176Þ

1To a first approximation, Ī = kZ2 where k = 11.5 eV.
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Applying Eq. (1.176) to the case of MeV protons, the value is *2000 for
Ī ∼ 11.5Z2 eV, or the electronic stopping power is 2000 times that of the nuclear
stopping power.

At low velocities, electrons in the inner shells contribute less to the stopping
power. Also, the neutralization probability becomes so large that the collision
between the projectiles and the surrounding electrons is almost elastic. The energy
loss becomes proportional to the projectile velocity. Lindhard, Scharff, Schiott
(LSS), and Firsov gave theoretical descriptions for this energy region. The LSS
expression is based on elastic scattering of free target electrons in the static field of a
screened point charge. Firsov’s is based on a simple geometric model of momentum
exchange between the projectile and target atom during interpenetration of electron
clouds. Lindhard and Winther [17] have shown that as long as the ion velocity is
less than the velocity of an electron having an energy equal to the Fermi energy, Ef

of the free electron gas, Se will be proportional to the velocity of the ion or the
one-half power of its energy. Using a potential of the form:

VðrÞ ¼ 2ðZ1Z2Þ1=2e2
r

vTF 1:13 Z2=3
1 þ Z2=3

2

� 	1=2 r
a0

� �
; ð1:177Þ

the Lindhard–Scharff stopping power becomes:

SeðEÞ ¼ � dE
dx

� �
e

1
N

¼ k0E1=2; ð1:178Þ

k0 ¼ 3:83
Z7=6
1 Z2

M1=2
1 Z2=3

1 þ Z2=3
2

� 	3=2 ; ð1:179Þ

where Se(E) is given in units of 10−15 eV cm2/atom and E is in keV. Expressing the
stopping cross section in reduced notation gives:

Seð2Þ ¼ d 2
dq

� �
e
¼ k 21=2; where

k ¼
0:07937Z2=3

1 Z1=2
2 1þ M2

M1

� �3=2

Z2=3
1 Z2=3

2

� 	3=4
M1=2

2

:

ð1:180Þ

The universal nuclear stopping cross section is shown in Fig. 1.18 where a single
curve represents all possible projectile–atom collisions, and the electronic stopping
cross section of Eq. (1.180) results in a family of lines or one for each combination
of projectile and target atom.

An approximate treatment that results in an analytical expression is obtained in
the following analysis. Consider an atom of mass M1, moving with velocity t1,
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which makes a head-on collision with an electron moving in the opposite direction
with velocity te. The relative initial speed of the two particles is as follows:

tr0 ¼ t1 þ te: ð1:181Þ

After collision, the velocity vector changes but not the magnitude:

trf ¼ �ðt1 þ teÞ: ð1:182Þ

The speed of the atom following the collision with the electron is given by:

t1f ¼ VCM þ me

M1 þme

� �
trf

¼ M1t1 � mete
M1 þme

� me

M1 þme

� �
ðt1 þ teÞ

ffi t1 � 2mete
M1

;

ð1:183Þ

where me is neglected compared to M1. The change in the energy of the atom due to
the collision is as follows:

DE ¼ D
1
2
M1t

2
1

� �
ffi M1t1ðt1 � t1fÞ ¼ 2Metet1: ð1:184Þ

The electron velocity after the collision is given as follows:

tef ¼ VCM � m1

M1 þme

� �
trf

¼ M1t1 � mete
M1 þme

þ M1

M1 þme

� �
ðt1 þ teÞ ¼ 2t1 þ te;

ð1:185Þ

or the increase in the electron velocity is as follows:

Dte ¼ tef � te ¼ 2t1: ð1:186Þ

The number of conduction electrons in a metal is approximately equal to the atom
number density N. But only those electrons with velocities lying in the range Dte of
the Fermi velocity υf are able to participate in the slowing down process. Therefore,
the effective density of electrons in the metal is as follows:

ne ffi N
Dte=2
tf

� �
¼ t1

tf

� �
N: ð1:187Þ
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The current of effective electrons impinging on the atom is as follows:

Ie ¼ netr0 ¼ neðt1 þ teÞ ffi nete; ð1:188Þ

and the collision rate of effective electrons with a single atom is σeIe, where σe is the
cross section for interaction of the moving atom with conduction electrons. The
stopping power is then the energy loss rate of a moving atom to effective electrons
divided by the velocity of the atom:

� dE
dx

� �
e
¼ reIeDE

t1
: ð1:189Þ

Substituting Eqs. (1.184), (1.187), and (1.188) into the above expression and
writing υe and υ1 as (2Ef /me)

1/2 and (2E/M1)
1/2, respectively, yield:

� dE
dx

� �
e
¼ 8reN

me

M1

� �1=2

E1=2 ¼ kE1=2; ð1:190Þ

where

k ¼ 8reN
me

M1

� �1=2

; ð1:191Þ

and k = 3.0NZ2/3eV1/2/nm for like atoms, or Se = k′E1/2 where
k′ = 3 × 10−15Z2/3 eV1/2 cm2 for like atoms. Both equations are valid for 0 < E
(keV) < 37Z7/3. For example, for M2 ¼ Si, k0Si 	 0:2� 10�15eV1=2 cm2. Table 1.7
summarizes the nuclear and electronic energy loss rates for the various types of
interactions used in Sect. 1.3.1.

1.3.2 Range Calculations

We have developed expressions for the two major forms of energy loss: (1) colli-
sions of the ion with the target nuclei and (2) interactions of the ion with the
electrons in the solid. We will assume that these two forms of energy loss are
independent of each other. Because of this approximation, we may write the total
energy loss of a single projectile as the sum of the individual contributions:

� dE
dx

� �
T
¼ NST ¼ N SnðEÞþ SeðEÞ½ �: ð1:192Þ

This expression can be integrated to give the total distance R that a projectile of
initial energy Ei will travel before coming to rest:
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R ¼
ZR
0

dx ¼ 1
N

ZEi

0

dE
½SnðEÞþ SeðEÞ�: ð1:193Þ

This distance is called the average total range and is a useful quantity for making
estimates of the average penetration depths of ions in amorphous targets. In general,
the total path length due only to nuclear stopping can be obtained by substituting
the nuclear stopping power from Eq. (1.138) into:

R ¼
ZEi

0

dE
NSnðEÞ

p
2
; ð1:194Þ

to give:

RðEiÞ ¼ 1� m
2m

� �
cm�1

NCm
E2m
i ; ð1:195Þ

and in reduced notation, substituting the stopping power given in Eq. (1.153) into:

qx ¼
Z2
0

d 2
Snð2Þ; ð1:196Þ

Table 1.7 Summary of energy loss rates for various types of interactions

Type of
interaction Nuclear energy loss rate � dE

dx

� �
n

Electronic energy loss rate

� dE
dx

� �
e

High E
Coulomb

4NpZ4a20E
2
R

Ei
ln

a2c2E2
i

4a20E
2
RZ4

� �
(1.134)

Np
Z2
1Z2e

4

Ei

M
me

ln
ceEi

I

� �
(1.173)

Low E General expression:
8:462� 10�15NZ1Z2M1Snð2Þ
ðM1 þM2ÞðZ0:23

1 þ Z0:23
2 Þ

(1.169) k0E1=2
i

k0 ¼ 3:83
Z7=6
1 Z2

M1=2
1 Z2=3

1 þ Z2=3
2

� 	3=2
(1.178)

(1.179)

Inverse square:
p2

4
a2NEac

(1.159) kE1=2
i

(1.190)

Thomas–Fermi screening:

K
NZ1Z2
Z1=3

M1

M1 þM2

where Z1=3 ¼ Z2=3
1 þZ2=3

2

� 	1=2
and

K ¼ p
e

� 	
e2 a0 ¼ 2:8 � 10�15 eV 
 cm2

(1.163)
k ¼ 8reN

me

M1

� �1=2

valid for 0 < E (keV) < 37Z7/3
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to give:

qx ¼
1� m
mkm

22m : ð1:197Þ

An estimate of the total path length for the case of nuclear stopping only with
application of the inverse square potential [see Eq. (1.156)] is as follows:

dE
dx

¼ N
ZcEi

�T

TrsðEi; TÞdT where rsðEi; TÞ ¼ p2a2Eac1=2

8E1=2
i T3=2

¼ p2

4
a2NEac;

ð1:198Þ

so,

x ¼ Rtotal ¼
ZEi

0

dE0

ðdE=dxÞn
¼
ZEi

0

dE0

p2

4
a2NEac

4Ei

p2a2NEac
where Ei �Ea:

ð1:199Þ

The quantity of interest is, however, the projection of the total range on the initial
direction of the particle path (Fig. 1.21). In addition, we want to know the deviation
in the projected range, which arises from the fact that all particles do not suffer the
same sequence of collisions. We then define:
Rp � mean projected range and

DRp � standard deviation of the projected range.

ion

pR

R

Fig. 1.21 Total path length R and projected range Rp for an ion incident on a target

62 1 The Radiation Damage Event



Methods for computing Rp have been developed by Lindhard et al. [16]. In cases
where the energy transfer T is small compared to the total energy of the particle, the
differential equation for Rp has the solution:

Rp ¼
ZEi

0

dE0

b1ðE0Þ exp
ZE0

Ei

a1ðxÞ dx
b1ðxÞ

2
4

3
5; ð1:200Þ

where a1ðEÞ ¼ l
2
N
SnðEÞ
E

;

b1ðEÞ ¼ N SnðEÞþ SeðEÞ � l
2
X2

nðEÞ
E

� �
; ð1:201Þ

and X2
nðEÞ ¼

R1
0 T2

n 2pb db:
The standard deviation is computed by defining the quantities Rc (chord range)

and R⊥ (range perpendicular to the initial direction) so that, from Fig. 1.22, we have
the following relation:

R2
c ¼ R2

p þR2
?; ð1:202Þ

and a related quantity:

R2
r ¼ R2

p �
1
2
R2
?; ð1:203Þ

and for cases where T ≪ E:

R2
r ðEÞ ¼

ZE
0

2RpðE0Þ dE0

b2ðE0Þ exp
ZE0

E

3a2ðxÞ
b2ðxÞ

dx

2
4

3
5; ð1:204Þ

c

p

Fig. 1.22 Schematic of the
definition of range parameters
R, Rp, Rc, R⊥
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and

R2
cðEÞ ¼

ZE
0

2RpðE0Þ dE0

N½SnðE0Þ þ SeðE0Þ� ; ð1:205Þ

and then DRp is found from:

ðDRpÞ2 ¼ 2R2
r ðEÞþR2

cðEÞ
3

� ðRpÞ2; ð1:206Þ

where a2ðEÞ ¼ a1ðEÞ=2; b2ðEÞ ¼ b1ðEÞ �
NlX2

nðEÞ
E

:

The integrals can be evaluated numerically for the Thomas–Fermi potential or
analytically if the approximate values of Sn and Se are used together with the value:

X2
nðEÞ ¼

4M1M2

3ðM1 þM2Þ S
0
nE: ð1:207Þ

In LSS formalism, the average total path length can be calculated from:

qR ¼
Z2
0

d 2
½Snð2Þþ Seð2Þ� ¼

Z2
0

d 2
½Snð2Þþ k 21=2� : ð1:208Þ

This expression must be integrated numerically using different values of k. For a
particular Z1, Z2, and Ei, we calculate 2 and k and then read off the value of ρR from
Fig. 1.23 and convert to R using Eqs. (1.139), (1.140), and ρR = 3.06ε:

RðnmÞ ¼
6EM2ðM1 þM2Þ Z2=3

1 þ Z2=3
2

� 	1=2
qZ1Z2M1

; ð1:209Þ

where E is in keV and ρ is in g/cm3. The most interesting range quantity of interest
is the average projected range, Rp, and this is what is usually measured. At high
energies, Se ≫ Sn and R * Rp. At low energies where Sn * Se, then Rp < R. This
difference gets larger with M2/M1. LSS theory also analyzed this problem.

At low 2 or ρR (and small values of k):

For M2=M1 ¼ 1
2
; R=Rp 	 1:2

M2=M1 ¼ 1; R=Rp 	 1:6

and M2=M1 ¼ 2; R=Rp 	 2:2:
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At high energies (2 large), R/Rp → 1 for all k. Finally as a general approximation
[16]:

R
Rp

ffi 1þB
M2

M1
; ð1:210Þ

where B is a slowly varying function of E and R. In the energy region where nuclear
stopping dominates and M1 > M2, B = 1/3. Increased electronic stopping at higher
energies leads to smaller values of B. When M1 < M2, large-angle scattering
increases the difference between R and Rp. However, for these collisions, electronic
stopping is appreciable and partially offsets the increase in the difference. Therefore,
B = 1/3 is a reasonable approximation for a wide range of conditions, giving:

Rp ffi R
1þðM2=3M1Þ : ð1:211Þ

Range straggling can be calculated using the theory of Lindhard et al. [16]. For the
case where nuclear stopping dominates and M1 > M2, i.e., small-angle scattering:

2:5DRp ffi 1:1Rp
2ðM1M2Þ1=2
M1 þM2

" #
; ð1:212Þ

or

DRp ffi Rp=2:5: ð1:213Þ

For a high-energy ion, the slowing down path is essentially a straight line in the
original direction of motion, since the stopping is electronic with a small amount of
straggle at the end due to nuclear collisions (Fig. 1.24(a)). At lower energies where
Sn and Se are more comparable, the ion path follows a zigzag course with many
large deflections with the distance between collisions decreasing as the energy

∈ ∈

Thomas-Fermi

=0.05k

Thomas-Fermi

0.4

0.20.1

0.1

0.2
0.4

=0.05k

Fig. 1.23 Reduced range–energy plots for various values of the electronic stopping parameter, k
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decreases and the cross section increases (Fig. 1.24(b)). The incident particles are
distributed according to a Gaussian as:

NðxÞ ¼ Npe
�1=2X2

; ð1:214Þ

where X ¼ x� Rp

DRp
and ΔRp is the standard deviation (Fig. 1.25). If the peak con-

centration is Np at Rp, then this will fall to
1

e1=2
Np at distances x = Rp ± ΔRp. If we

view the target perpendicularly through its surface, then the number of implanted
ions per unit area will be Ns, given by:

Ns ¼
Zþ1

�1
NðxÞ dx; ð1:215Þ

or since dx = ΔRpdX and the Gaussian curve is symmetrical, then:

Ns ¼ 2DRpNp

Z1
0

e�1=2X2
dX; ð1:216Þ

which can be written as follows:

Ns ¼ DRpNp

ffiffiffiffiffiffi
2p

p ffiffiffi
2
p

r Z1
0

e�1=2X2
dX

8<
:

9=
;: ð1:217Þ

(a)

(b)

0 1

2

p

1

2 3

p

1 2 32

0 1

Fig. 1.24 Total path length,
projected range, and
perpendicular range for
(a) high-energy ions and
(b) low-energy ions incident
on a target
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The integral inside the bracket is the error function and tends to unity as X → ∞,
so that if Ns is the number of ions/cm2 implanted into the target, we have:

Np ¼ Nsffiffiffiffiffiffi
2p

p
DRp

ffi 0:4Ns

DRp
; ð1:218Þ

so the density of implanted ions is as follows:

NðxÞ ¼ 0:4Ns

DRp
exp �1=2

x� Rp

DRp

� �2
 !

: ð1:219Þ

As an example, if we implant 5 × 1015 ions/cm2 of 40 keV B into Si, then
Rp ∼ 160 nm, ΔRp * 54 nm, and Np ∼ 4 × 1020 atoms/cm2. Note that from the
properties of the Gaussian, the concentration will fall by one decade at
x ≃ Rp ± 2ΔRp and by 2 decades at x ≃ Rp ± 3ΔRp.

Using the LSS treatment to describe electronic and nuclear stopping, Littmark
and Ziegler have solved for the ranges of atoms with atomic number between 1 and
92 in all elements [18]. For each atom serving as the target, the mean ion depth,
longitudinal straggling, and transverse straggling are compiled in graphs for pro-
jectiles with 1 ≤ Z ≤ 92 and over a wide energy range. The following example is
taken from this handbook.

Example 1.3. MeV He implantation into Si
Zeigler [18] plots and tabulates the range parameters for a wide range of ions
and target atoms. For 2 MeV He incident on a Si target, the range and
straggling are 7.32 μm and 0.215 μm, respectively. If we assume a dose of
1015 He ions/cm2, then applying Eq. (1.218) gives a peak concentration of
*1.86 × 1019 He atoms/cm3 at a depth of 7.32 μm, which is approximately

p

p

p

Fig. 1.25 Parameters of the
Gaussian distribution applied
to an ion implantation profile
showing the projected range,
Rp, the straggling or standard
deviation, DRp, and the
maximum concentration, Np

of the implanted ion
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620 appm. Equation (1.219) gives the distribution of deposited He atoms as
follows:

NðxÞ ¼ 1:86� 1019 exp �1=2
x� 7:32
0:215

� �2
 !

He/cm3;

where x is in units of μm.

In addition to a tabulation of range data, Ziegler has developed a Monte
Carlo-based computer program for calculating the transport of ions in matter [20].
The program is available on the Web at http://www.srim.org, and the reader is
encouraged to try some examples using the SRIM simulation software. This pro-
gram is downloadable at no cost to the user (subject to the terms of use posted on
the site) and may be executed on your personal computer. The following example
uses data taken from the SRIM program.

Example 1.4. Implantation of Al into Ni
A similar example can be worked for lower energy implantation of a heavier
element such as Al, into a nickel target. In this case, we use the output of the
SRIM program. Selecting 200 keV Al in Ni results in a projected range of
*135 nm with a longitudinal straggling of 44 nm. Substitution into
Eq. (1.216) yields a peak concentration of 9.1 × 1019 Al/cm3 for a dose of
1015 Al+/cm2. The SRIM software also yields a quantity that allows the user
to determine concentration. The unit of concentration in the ion range plot is
[atoms/cm3/atoms cm2], and the range of the implanted ion distribution on
this plot has a maximum of *8 × 104 atoms/cm3/atoms cm2. Multiplying this
value by the dose of 1015 Al+/cm2 gives *8 × 1019 Al/cm3 which is close to
the analytical solution.

Chapter Review
The chapter began with a description of neutron–nuclear collisions, utilizing the
absence of charge on the neutron to describe the interaction using a hard sphere
approximation. Expressions for the energy transfer in elastic and inelastic scattering
collisions were developed, and (n, 2n) and (n, γ) reactions were analyzed as well to
determine the energy transferred. Table 1.2 summarizes the energy transfer and
energy transfer cross sections for these types of reactions. The description of pro-
jectile–target interaction was broadened to include ion–atom and atom–atom col-
lisions which are relevant for two important cases: ion irradiation or implantation
and the interaction between atoms in a lattice after the initial collision with a
neutron in reactor materials. Interatomic potentials form the basis for describing the
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interaction between atoms and also for determining the energy transfer cross sec-
tion. Table 1.3 summarizes the important potentials used to describe these
interactions.

Collision kinematics was then used to develop a description of the orbit of
colliding atoms and hence the transferred energy and the energy transfer cross
section. Because there is not one single interatomic potential that describes the
interaction over the entire distance (energy) range, the energy transfer and energy
transfer cross sections are analyzed in various energy ranges and for various classes
of interactions. Rutherford scattering is used to describe light energetic ions, and
slow heavy ions, energetic heavy ions, and relativistic electrons are all treated
separately. Table 1.5 summarizes the energy transfer and energy transfer cross
section for various atom–atom collisions.

Energy loss theory is developed in order to determine the energy loss of ener-
getic atoms/ions to the solid by elastic/nuclear collisions and by collisions with the
electrons of the target. Collisions are analyzed in terms of their energy range for
both nuclear stopping and electronic stopping. Table 1.7 summarizes the stopping
powers for various types of interactions. Finally, the stopping powers are used to
develop expressions for the range and projected range of ions in solids so that their
penetration depth and concentration distribution can be determined.

Nomenclature

a Screening radius
a0 Bohr radius of the hydrogen atom
aU Universal screening length
A Atomic mass, or Pre-exponential constant in Born–Mayer relation,

Eq. (1.47)
b Impact parameter
B Constant in exponent in Born–Mayer relation, Eq. (1.47)
C Constant in screened Coulomb potential, Eq. (1.49) = 0.8853
c Speed of light
D Nearest neighbor spacing between atoms
Ea Value of Ei that yields ρ0 = a
Eb Value of Ei that gives T ≥ Ed at b = a
Ed Displacement energy
ED Maxwellian nuclear temperature = kT
Ef Final energy
Eγ Gamma ray energy
Ei Incoming particle energy
E f
v;i

Vacancy and interstitial formation energy

Em
v;i Vacancy and interstitial migration energy

E0
m Kinetic energy of incoming particle in CM system

E00
m Energy of neutron after (n, 2n) reaction

E0
M Kinetic energy of target particle in CM system

E00
M Energy of CM after (n, 2n) reaction
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ER Rydberg energy
ET Total energy
Ī Excitation–ionization level
ke Coulomb constant
m Mass of incoming particle
M Mass of target
N Atom number density
Np Peak implanted ion concentration
Ns Implanted ion density in ions/unit area
pe Momentum of electron
Q Excitation energy of nucleus
re Nearest neighbor spacing between atoms
_r Radial velocity in polar coordinates
R Range of ion
Reff Recombination radius
Rp Projected range
ΔRp Standard deviation of projected range
s Power law exponent
Se Electronic stopping power
Sn Nuclear stopping power
t Time, or Dimensionless collision parameter, Eq. (1.142)
T Energy transferred in collision
Ť Minimum energy transferred
T̂ Maximum energy transferred

T Average energy transferred
T‘ Energy transferred to target atom after (n, 2n) reaction
V(r) Potential energy
tc Velocity of incoming particle in CM system
Vc Velocity of target particle in CM system
t0c Velocity of incoming particle in CM system after collision
V 0
c Velocity of target atom in CM system after collision

t00c Velocity of neutron in CM system after (n, 2n) reaction
V 00
c Velocity of target atom in CM system after (n, 2n) reaction

VCM Velocity of CM in laboratory system
t‘ Velocity of incoming particle in laboratory system
t0‘ Velocity of incoming particle in laboratory system after collision
V 0
‘ Velocity of target atom in laboratory system after collision

V 00
‘ Velocity of target atom in laboratory system after (n, 2n) reaction

Z Atomic number
β t=c
χ(r) Screening function
χU Universal screening function
ε Unit electronic charge
ε0 Electric constant
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2 Dimensionless, reduced energy parameter, Eq. (1.139)
ϕ Asymptotic scattering angle at infinity separation
ϕ Scattering angle in CM system
_w Angular velocity in polar coordinates
ψ Scattering angle of struck atom in laboratory system
λ Mean free path between collisions
λm see Eq. (1.144)
λ′ 1.309, Eq. (1.143)
μ Reduced mass, Eq. (1.63)
v(T) Displacement function
θ Scattering angle in laboratory system
ρ Distance between atom centers in a collision
ρe Electron cloud density
ρ0 Distance of closest approach, value of r when ψ = π/2
ρr Dimensionless, reduced distance parameter, Eq. (1.140)
σ (Ei) Total atomic collision cross section
σ (Ei, T) Differential energy transfer cross section
σ (Ei, ϕ) Differential angular collision cross section
σ (Ei, Eϕ, Ω) Double differential collision cross section
σ (Ei, Qj, ϕ) Differential angular cross section for inelastic collisions
σ (Ei, Qj, T) Differential energy transfer cross section for inelastic collisions
Ω Solid angle into which incoming particle is scattered
dΩ Differential solid angular element
ξe Z1=6

1

Problems

1:1 A 0.5 MeV neutron strikes a target atom with mass A, which is initially at rest.
Calculate the velocity and energy of both particles in the laboratory reference
frame after a head-on collision for A = 27 (Al) and A = 207.2 (Pb).

1:2 A detector of 100 % efficiency (i.e., every particle entering the detector is
registered) and area of 1 cm2 is placed at a distance r from a target (taken to be
of zero dimension, i.e., a point). The target is bombarded with neutrons.
Assuming that only elastic scattering occurs, scattering is azimuthally sym-
metric, and the scattering cross section is isotropic:

(a) What is the ratio of the number of particles detected by the detector at
positions 1 and 2 shown in the figure?

(b) What is the ratio of the number of particles scattered through an angular
increment of 10° about θ1 = 5° and θ2 = 85°?

(c) Repeat parts (a) and (b) assuming that instead of being isotropic, the
differential scattering cross section varies as σs(Ei, θ) = cos θ.
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d = Increment of scattering angle
d = Increment of solid angle about 

= Scattering angle in the lab system

1:3 A Ti plate is bombarded with 1014 neutrons per cm2 per second at perpen-
dicular incidence. The entire plate is hit by the beam.

(a) Calculate the number of particles scattered per second at

(i) 85° ≤ θ = 86° and
(ii) 5° ≤ θ = 6°.
The plate size is 1 cm2 by 0.6 mm thick. Scattering is isotropic with a
total scattering cross section of 2.87 barns (1 barn = 10−24 cm2).

(b) The same target is bombarded with particles such that the differential
angular scattering cross section is proportional to θ2. Calculate the ratio
of the atomic flux in interval (i) above to that in interval (ii). In both
cases, perform full integration of the differential cross section.

(c) Approximate the integrals in (b) by assuming the differential angular
scattering cross section to be constant in each integration interval and
equal to the value at the interval’s center.

1:4 Derive the kinematic factor K, defined as K = Ef /Ei, where Ei is the projectile
energy before the collision and Ef is the projectile energy after the collision.

1:5 The following formula relates the scattering angles θ and ϕ in the laboratory
and center-of-mass frames, respectively:

tan h ¼ ðM=mÞ sin/=½1þðM=mÞ cos/�

where m and M are the masses of the projectile and target, respectively.
Discuss this expression for the following three cases: m = M, m ≫ M, and
m ≪ M.

1:6 Derive Eq. (1.24) in the text.
1:7 Derive Eq. (1.39) in the text.
1:8 For two colliding particles write expressions for:
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(a) ET, the total energy of a system of n particles;
(b) ECM, the energy of the center of mass (determined by VCM and the total

mass of the system); and
(c) E, the total energy in the CM system.

Show that E = ET − ECM [Eq. (1.61)]

1:9 Derive a relation between b and ϕ from Eq. (1.76) for the hard sphere
potential:

VHSðrÞ ¼ 0 r[ r0
¼ 1 r� r0

Make sure your answer is correct for b > r0.
1:10 As a means of describing atom–atom interaction at intermediate separation,

i.e., between Coulombic repulsion and closed shell repulsion, an inverse
power potential is often employed of the form

VðrÞ = constant/rn:

For example, one can fit an inverse square (n = 2) function to the screened
Coulomb potential at r = a obtaining the same slope, ordinate, and curvature.
This function is as follows:

VðrÞ¼ z1z2e
2a=ðr2 exp½1�Þ:

Formulate the cross sections σs(Ei, T) and σs(Ei, ϕ) for atom–atom interac-
tions obeying the inverse square potential function.

1:11 Compare your result in Problem 1.10 to that obtained using a Born–Mayer
potential and a simple Coulomb potential. Comment on the similarities and
differences.

1:12 Calculate the average energy transfer from a 100 keV Ni atom colliding with
another Ni atom, using:

(a) The hard sphere potential and
(b) The inverse square potential.

1:13 Explain, in physical terms, why the scattering cross section resulting from
Coulombic repulsion depends on the transferred energy, T, while that for
neutron–nuclear interaction does not.

1:14 Assuming a pure Coulomb potential, determine the distance of closest
approach for a 100 keV boron atom on silicon for an impact parameter,
b = 1 nm. What is the significance of your answer?

1:15 1 MeV Al+ ions are accelerated toward a pure Ni target. The ions are directed
normal to the sample surface.
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(a) Calculate the total path length and provide an estimate for the mean
projected range of the ions.

(b) For a dose of 1016 ions/cm2, estimate the maximum Al concentration
and the FWHM of the Al distribution. Use SeðEÞ ¼ k0E1=2, where k′ = 2
× 10−16 eV1/2 cm2.

1:16 A 10 MeV Si ion penetrates a Si crystal.

(a) Calculate its energy as a function of distance traveled and its penetration
depth. Assume that electronic stopping dominates.

(b) Write an expression for the depth distribution of implanted Si ions and
give the straggling.

1:17 Calculate the energy threshold above which the Rutherford scattering cross
section can be used for: (i) near head-on collisions and (ii) all collisions of
He++ and H+ in Si and Pd.

1:18 2 MeV He++ ions are backscattered (θ = 180°) off of a 25-nm-thick gold foil.
Determine the highest and lowest energy values of the backscattered ions as
measured in a detector placed at 180° with respect to the incoming beam.
Use k = 0.14 × 10−15 eV1/2 cm2.
Determine the stopping power by interpolation or extrapolation based on the
following values of 1/N(dE/dx) (in eV/(1015 atoms/cm2)):

1:19 Assume the stopping power can be described by the following function:

S ¼ CþKE1=2 where C and K are constants:

(a) Derive an equation for the particle range as a function of energy.
(b) Does the range increase or decrease as:

(i) Energy increases;
(ii) K increases; and
(iii) C increases.

1:20 Which increases the high-energy electronic stopping power the most,
increased charge, energy, or mass of the projectile ion?

1:21 A 2 MeV proton travels through lead.

(a) Assuming elastic collisions, calculate the maximum energy that can be
transferred from the proton to the lead.

Energy (MeV): 1.6 2.0

Au 122.3 115.5

Al 47.5 44.25

74 1 The Radiation Damage Event



(b) What energy would a Pb ion need to have the same maximum energy
transfer in a Pb–Pb collision as the proton–Pb collision in part (a)?

1:22 An Fe particle is fired at a block of natural uranium. To get the Fe as close to
the uranium particle as possible, would you be better off using a higher
charge state of Fe or a lighter isotope? Assume Coulomb potentials can be
used.

1:23 A thin film containing F19 is bombarded with 1.85 MeV protons. The fol-
lowing reaction takes place:

F19 þ p ! O16 þ a:

The reaction has a Q value of 8.13 MeV. After interaction, an alpha particle
is seen to emerge at a right angle to the incident proton beam. What are the
energies of the alpha particle and the oxygen atom? What is the maximum
energy each of these particles could transfer to a stationary Fe atom?

1:24 A helium atom at 1 MeV is sent into iron. Assuming the electronic stopping
cross section is a constant (88 × 10−5 eV cm2), what is the energy of the
helium atom after it travels 500 nm? If the He atom collides with an Fe atom
after traveling 500 nm, what is the maximum energy transferred? Assume an
atomic density of 8.5 × 1022 atoms/cm3 for Fe. Was an assumption of
constant stopping power valid?
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