
Chapter 6
Effects of Attention in Visual Cortex: Linking
Single Neuron Physiology to Visual Detection
and Discrimination

Vincent P. Ferrera

6.1 Introduction

Studies of neuronal activity in visual cortex have relied heavily on macaque
monkeys as a model system. Macaques, like humans, are old world primates and
range throughout Asia and North Africa. The macaque genus comprises 23 species,
including Macaca mulatta (rhesus monkey), Macaca fascicularis (cynomolgus or
“crab-eating” monkey), and Macaca fuscata (Japanese snow monkey). The most
recent common ancestor of humans and macaques lived roughly 25 million years
ago. Macaques are largely diurnal animals that have trichromatic color vision and
a retina that is anatomically almost identical to humans. In particular, the macaque
retina has a distinct fovea for high-acuity central vision.

Macaques explore their visual environment in much the same way as humans.
They have forward-looking eyes whose monocular visual fields are largely overlap-
ping, providing a large binocular field with excellent stereoscopic depth perception
[1]. Their oculomotor behavior is similar to humans, particularly with regard to
voluntary eye movements. Macaques have vergence eye movements that align the
foveae of the two eyes on targets at a particular distance. They make rapid and
frequent saccades to foveate objects of interest. They can track moving targets with
smooth pursuit, a behavior that appears to be unique to primates (at least among
mammals.)
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Fig. 6.1 Macaque cerebral cortex (lateral view, partially inflated) showing visual cortical areas
V1 (primary), V2, V3, V4, DP (dorsal posterior), 7a, VP (ventral posterior), PIT (posterior
inferotemporal), CIT (central inferotemporal), and AIT (anterior inferotemporal; after [2]). A
microelectrode can be used to record neuronal activity at a precise cortical location (dashed line).
Extracellular action potential waveforms for two simultaneously recorded neurons are shown in the
lower left panel. The visual field locations and sizes of the receptive fields (blue and red squares)
of the neurons are shown in the lower right panel. LVF left visual field, RVF right visual field

In the macaque monkey brain, there are 32 cortical areas that are involved in
vision and visuomotor function [2]. For many of these areas, human homologues
have been identified [3]. Macaques can be trained to perform simple tasks that
involve visual detection, discrimination, and eye movements. The electrical activity
of individual neurons can be recorded by fine metal microelectrodes inserted into the
cerebral cortex while the animal is performing a visual task. Of the 32 visual areas
in macaques, several have been studied extensively in behavioral paradigms that
manipulate selective attention (Fig. 6.1). These studies have examined how attention
affects receptive field properties as well as the sensitivity and reliability of neuronal
responses. The current state of knowledge makes it possible to relate these neuronal
response properties to psychophysical performance using simple computational
models. The goal of the present chapter is to understand how attention alters the
representation of information in visual cortex and thus affects an observer’s ability
to detect weak stimuli and to discriminate between similar stimuli.

Visual neurons are those that receive information directly or indirectly from the
retina. The part of the environment that gives rise to light that falls onto the retina
defines the visual field. Visual neurons typically do not respond to light that arises
from anywhere in the visual field, but are sensitive to only a small region, called
the receptive field. The receptive field for an individual neuron is the part of the
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retina within which changes in illumination cause changes in the electrical activity
(typically, the firing rate) of the cell. If the eyes are not moving, the receptive field
corresponds to a fixed region of visual space. Every cell in the visual system, from
retina photoreceptors to cortical neurons, has a receptive field. The size of receptive
fields generally increases along the visual hierarchy from retina to lateral geniculate
to cortex and also with retina eccentricity (distance from the fovea). If a monkey
is trained to fixate its gaze on a small target presented on a video display, then the
borders of the receptive field can be easily mapped. This may be done by moving
a spot or bar of light through the visual field and outlining the region where the
stimulus causes a change in firing rate of the cell. Firing rate can be monitored
qualitatively by amplifying the action potentials and playing them through an audio
speaker. As long as the monkey is fixating, a particular stimulus other stimuli
presented in the visual field will have a known spatial relationship with respect to
the receptive field of a given neuron. Controlling the retina stimulus in this manner
makes it possible to study the influence of extraretinal factors, such as attention, on
the activity of visual neurons.

The receptive field of a neuron can be modeled mathematically as a spatial
weighting function, which specifies the neuron’s firing rate as a function of the
retina position of a small spot of light. A visual neuron’s sensitivity to light within
the receptive field is not necessarily uniform, but may have subregions that are
excited or inhibited by light. The spatiotemporal structure of the receptive field
may confer selectivity for orientation and direction of motion. Different parts of
the receptive field may also be sensitive to different wavelengths of light, giving rise
to color selectivity. For current purposes, we will ignore the internal structure of
visual receptive fields and simply model sensitivity within the spatial receptive field
(RF) as a two-dimensional Gaussian:

RF .x; y/ D A C B � exp
h
�

��
x � x0�2 C C � �

y � y0�2� =s2
i

(6.1)

Here, (x0, y0) is the center of the receptive field, s is the spread or size of the RF
(otherwise known as the space constant), B is the overall gain or sensitivity, C
determines the aspect ratio (length/width), and A is a constant that accounts for the
baseline firing of the cell in the absence of a stimulus. Many studies of the effects
of attention on the activity of visual neurons have examined changes in spatial
parameters that correspond to shrinking or expanding of the receptive field. These
are modeled as changes in the space constant, s. Other studies have documented
shifts of the RF center (x0, y0) and changes in overall sensitivity (B) and background
firing (A).

To understand how attention-related changes in receptive field properties affect
stimulus detectability and discriminability, it is necessary to consider the statistics
of neuronal responses, i.e., the variability in neuronal firing when the same stimulus
is presented repeatedly under the same conditions.
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To a first approximation, cortical neurons fire at purely random times. Their firing
can be modeled as a Poisson process where the probability of an action potential
at any given time is determined by a rate parameter, r, and is independent of the
time of occurrence of any other action potentials. The interspike intervals (times
between two successive action potentials) follow a Poisson distribution. The number
of action potentials in a fixed time window (spike count) is also Poisson distributed.
Spike count variability can be quantified by the Fano factor [4], which is the variance
in spike count divided by its mean. For a Poisson process, the Fano factor is always
around 1.0 as the variance scales in direct proportion to the mean spike count.

Poisson firing statistics represent an ideal case that is never achieved in reality. In
particular, a purely Poisson neuron could have infinitely small interspike intervals,
which are biophysically impossible. Real neurons have refractory periods – a short
window of time following a spike during which the cell is unable to fire another
spike (absolute refractory period) or has an elevated threshold for firing (relative
refractory period). Refractory periods are easy to incorporate into simulations
that generate pseudo-Poisson spike trains using random number generators [5].
Refractory periods cause neuronal firing to become more regular (lower variance
in interspike intervals). Any finite refractory period therefore reduces the Fano
factor below 1.0. A number of studies have documented sub-Poisson variability in
macaque visual cortex and in higher, attention-related cortical areas [6–10].

Figure 6.2 shows simulated Poisson-like spike trains generated by an algorithm
that incorporates an absolute refractory period. In the top-left panel are spike trains
where the refractory period is equal to 0 and below that the spike count histogram
and Fano factor versus mean spike count. The right column shows spike trains with
the same average rate, but a longer refractory period, making both the interspike
intervals and spike counts much more regular.

It has been found empirically that attention can reduce neuronal variability
[11], but the reduction is small and not always statistically significant [12]. It
seems intuitive that reduced variability should improve the ability to detect and
discriminate stimuli. One of the goals of the models presented below is to test
whether this is indeed the case.

A simple model of the response of an individual visual neuron can be obtained
by using Eq. 6.1 to provide the input to a Poisson spike generating process. This is
illustrated in Fig. 6.3 which shows the mean rate according to a one-dimensional
reduction of Eq. 6.1 (Fig. 6.3, top) and the Poisson spike counts (Fig. 6.3, bottom)
generated when a stimulus is present (A D 5, B D 10) or absent (A D 5, B D 0).
Detectability can be computed for each stimulus position as the overlap (area under
ROC) of the stimulus-present and stimulus-absent spike count distributions. Note
that this is not a complete neuronal model as it does not include contrast nonlinear-
ities, adaptation, or other factors that affect firing. Real visual neurons tend to have
sigmoidal contrast response functions, and their contrast sensitivity may be modu-
lated by attention [13, 14]. However, the current model is adequate for testing effects
of changes in sensitivity or variability for briefly presented stimuli of fixed contrast.
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Fig. 6.2 Neuronal firing statistics. (Left) Pure Poisson process. (Right) Poisson with refractory
period. Top row shows 20 spike trains for each model. Middle row shows spike count distributions
for several hundred trials. Bottom row shows Fano factor versus spike count

6.2 Effects of Attention on Neuronal Responses

Moran and Desimone [15] published one of the first studies of the effect of attention
on neurons in macaque visual cortex. They trained monkeys to fixate a small
spot presented in the center of a video display. Eye movements were monitored
so that visual stimuli could be presented at known positions on the retina. While
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Fig. 6.3 Minimal model of a
single neuron. (Top) Mean
firing rate as a function of
position. (Bottom)
Distributions of spike counts
for stimulus-absent and
stimulus-present conditions
as a function of stimulus
position in receptive field
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the monkeys fixated, two stimuli were presented, and the monkeys were rewarded
for responding to one stimulus. The monkeys are presumed to have attended to
rewarded stimulus and to have ignored the other.

Moran and Desimone recorded from neurons in visual area V4 and in the inferior
temporal (IT) cortex. Neural responses were quantified as changes in firing rate
(action potentials per second), while visual stimuli were presented to the animal.
The receptive fields of the neurons were in the peripheral visual field and were
large enough that two stimuli could be presented inside the receptive field and the
monkey could still discriminate them. If both stimuli were in the receptive field
of the neuron, the cell responded well to the attended stimulus, but weakly to the
unattended stimulus. The experimenters could therefore compare the response to the
same stimulus when it was attended or unattended. Generally, the response to the
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Fig. 6.4 Attention task used
by Reynolds et al. [16].
Monkeys were trained to
fixate their gaze at the center
of the display (C) while the
activity of a visual neuron
was recorded. The receptive
field of the neuron is
indicated by the dashed box.
Two stimuli were presented
inside the receptive field, and
the monkey was rewarded for
responding to one or the
other. The attended stimulus
is indicated by the green
circle (this cue was not
presented to the animal)

stimulus was greater when it was attended. If one stimulus was inside the receptive
field and the other was outside, the effect of attention was reduced as compared to
when both were inside the receptive field.

A later study by Reynolds et al. [16] expanded on this result. Reynolds’ study
used the strategy of placing two oriented bar stimuli in the receptive field of a V4
neuron (Fig. 6.4). Neurons in V4 tend to be selective for stimulus orientation. The
orientation of one of the bars was matched to the cell’s preferred orientation and
evoked a strong response. The other stimulus was at a non-preferred orientation. In
the absence of attention, the neuronal response when both stimuli were presented
together was the average of the response to either stimulus alone. When the monkey
was rewarded for attending to one stimulus or the other, the cell behaved as if there
was only one stimulus in the receptive field; if the monkey attended the preferred
stimulus, the response was greater than the average; if he attended the non-preferred
stimulus, the response was less than the average. Thus, attention caused the cells
to shift from a response-averaging mode to a winner-take-all mode. These results
are consistent with a shrinking of the receptive field around the attended stimulus
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[17, 18]. Since Moran and Desimone’s [15] paper, a large number of studies have
demonstrated changes in the receptive field spatial weighting function that are
correlated with attention.

Attention can change the overall gain of visual responses. This was demonstrated
for neurons in visual area V4 by McAdams and Maunsell [12, 19]. This study
examined orientation tuning. Orientation selectivity is reasonably described by
Gaussian-shaped tuning function. McAdams and Maunsell placed an oriented
grating pattern in the receptive field of a V4 neuron (Fig. 6.5). They then recorded
responses to stimuli of various orientations and compared the orientation-tuned
responses when attention was directed toward the stimulus inside the RF or to a
similar stimulus well outside the receptive field. They modeled V4 responses using

Fig. 6.5 Effects of attention
on response of a single
neuron. (Top) Mean rates
when attention is directed
outside the neuron’s receptive
field (red) and inside the RF
(green). (Middle) Effect of
attention on detectability as a
function of stimulus position.
Black dots are difference
attended (green) – unattended
(red). (Bottom) Effect of
attention on stimulus
discriminability
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an equation similar to Eq. 6.1 and concluded that attention mainly affects the overall
gain (B). Importantly, they also measured activity in the absence of a stimulus and
found that attention did not affect the baseline (undriven) firing rate (A).

These few studies provide enough information to simulate the effects of attention
in the model introduced previously. In this model, the receptive field equation
(Eq. 6.1) is used to determine the mean firing rate for a small spot of light presented
at any position in the receptive field. This mean rate is then fed into a function that
generates a pseudo-Poisson spike train for a fixed time interval (1.0 s). This spike
train can be purely Poisson (refractory period D 0), or can have a finite refractory
period, resulting in sub-Poisson variability. For each stimulus, a large number of
spike trains are generated and the total spike count for each train is used as the
measure of neuronal response. One can then use principles of signal detection theory
to determine the ability of one or more simulated neurons to detect or discriminate
visual stimuli, given the trial-to-trial variability in the neuronal responses. Figure 6.5
(top) shows the mean response of a single visual neuron (reduced to one dimension)
as a function of stimulus location. The effect of attention is modeled as an overall
gain factor, G, applied to the stimulus-driven response, so that

RF .x/ D G �
n
A C B � exp

h
�

��
x � x0�2� =s2

io
(6.2)

The responses in Fig. 6.5 show the cases where G D 1.0 (red, attention outside
receptive field) and G D 2.0 (green, attention inside RF). In the absence of a
stimulus, the response is simply RF(x) D G*A, where A is the baseline firing rate.

Detectability and discriminability are computed by applying signal detection
theory to the spike count distributions for each stimulus. Detectability is defined as
the area under the ROC curve computed with stimulus-present and stimulus-absent
trials. The effect of attention on detectability is shown in Fig. 6.5 (middle). Even
though attention increases the driven firing rate by twofold, the maximum change in
detection probability is only 0.1. It should be noted that an attentional gain of 2.0 is
unusual. Typically, attention enhances neuronal responses by increasing mean firing
rate from 20 % to 40 %. For many cells, attention actually reduces responses.

In the simulation shown in Fig. 6.5, the baseline firing rate in the unattended
condition was 4 spikes/sec, and the maximum firing rate was 10 spikes/sec. This
value for maximum firing rate is on the low end of the range for cortical neurons.
Values of 30 spikes/sec or greater are more typical for responses to optimal stimuli.
Hence, the low ratio of max firing rate to baseline can be thought of as representing
the response to suboptimal or weak stimuli. Detection probability in the unattended
condition starts to saturate at 1.0 (perfect performance) when the maximum firing
rate is about 3 times the baseline rate. Attention cannot improve performance when
detection rates in the unattended condition are already optimal. Thus, attention
should have the greatest effect on detectability for weak or suboptimal stimuli or
cells that simply have low signal to noise even for optimal stimuli.

Stimulus discriminability is defined as the ROC area computed for pairs of
similar stimuli. In these simulations, the difference between neighboring orien-
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tations was 5ı. For the parameters used in the simulations of Fig. 6.5, attention
had little effect on discriminability for neighboring orientations (open symbols).
However, for cruder discriminations (stimuli separated by 20ı.), discrimination
performance was better overall (Fig. 6.5, bottom, filled symbols) and was more
strongly enhanced by attention. Further simulations showed that as the maximum
firing rate is increased, attention had a greater effect on improving discrimination
performance. For example, at a maximum firing rate of 50 spikes/sec (keeping all
other parameters the same), the best discrimination for neighboring orientations
improved from 74 % correct to 82 %. Hence, while attention improves detection
performance mainly for neurons with low signal to noise, it improves discrimination
for neurons with high signal strength. This suggests that different tasks might reveal
attention effects on different subpopulation of neurons.

The effects of attention on psychophysical performance predicted by the model
are fairly modest. Using realistic parameters, attention improves detection and dis-
crimination rates by a maximum of about 10 %. Such small changes in performance
are far below what is typically reported in the literature. For example, [20] found
that attention could produce up to fourfold improvements in contrast sensitivity. We
will consider two factors that could bridge this gap. The first is the effect of attention
on undriven (stimulus-absent) activity. The second is the effect of attention on spike
count variability.

So far, we have assumed that attention affects firing rates proportionately for
both stimulus-present (driven activity) and stimulus-absent (undriven or baseline
activity) conditions. This point is disputed. Some studies report that attention affects
background firing rates [21], while others [12, 19] reported that attention did not
affect undriven activity. When undriven activity is held constant in the model, so
that attention enhances activity only in the presence of a stimulus, the affects of
attention on detection are greatly increased. Repeating the simulations of Fig. 6.5
with a constant baseline, the improvement in detection probability goes from 0.1
to 0.3. This is a large enough improvement to account for actual psychophysical
performance. Thus, the issue of whether attention affects baseline activity is critical
for understanding improvements in detection performance. However, in the model,
baseline firing rate plays no role in discrimination performance.

Now we can address the issue of attention-related changes in spike count
variability. As noted above, some studies have reported that attention can reduce
trial-to-trial variability in firing activity [11]. Here, we reduce spike count variability
by introducing a refractory period. There is a caveat to this approach: for any two
spike trains with the same underlying rate, the one with the longer refractory period
will have a lower spike count. Thus, it is important to equalize spike count when
assessing the effects of regularity. Figure 6.6 (top) shows Fano factor as a function
of mean spike count for spike trains with no refractory period (red) and with a
refractory period of 10 ms (green). Note that refractoriness causes Fano factor to
decrease with mean spike count, being reduced by about half for the highest firing
rate.
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Fig. 6.6 Effects of attention
modeled as changes in
trial-to-trial spike count
variability. (Top) Fano factor
as a function of mean spike
count for refractory
period D 0 (red) or 10
(green). (Bottom) Detection
rate as a function of mean
spike count. Same convention
as top panel
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The effect of spiking regularity on detection rate is shown in Fig. 6.6 (bottom).
Again, the red dots are for spike trains with zero refractory period; the green are
for a refractory period of 10 ms. The same refractory period was used for both
stimulus-present and stimulus-absent conditions, although there is some evidence
that stimulus onset itself is accompanied by a reduction in spike count variability
[22]. What is evident from Fig. 6.6 is that a reduction in variability improves
detection rates, but only by about 5–10 %. The improvement is greatest when the
signal to noise is relatively weak, such that the maximum firing rate is about twice
the baseline firing. When the maximum firing rate increases beyond this, detection
rates saturate and spike count regularity has no effect. The simulations were carried
out with a baseline of 10 spikes/sec. Changing the baseline firing rate shifts the
curves left and right, but the same principles apply.

While spike count regularity alone results in some enhancement of detectability,
it has a smaller effect on discrimination performance. Figure 6.7 shows simulations
of a neuron whose receptive field is modeled as a one-dimensional Gaussian
function of position, with preferred position at 50ı. The left panel shows Fano
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Fig. 6.7 Effects of spike count variability on discrimination performance. (Left) Fano factor
as a function of stimulus position for unattended (green, refractory period D 0) and attended
(green, refractory period D 1). (Middle) Effects of variability on detection. Gain is attended
response/unattended response. Detection improvement is the difference in detection rate for each
position (attended – unattended) averaged over all positions. Dashed lines are best fit linear
regressions. (Right) Effects of variability on detection. Same conventions as middle panel

factors as a function of stimulus position in the receptive field for no refractory
period (green) or a refractory period of 10 ms (blue). There is a substantial,
stimulus position-dependent decrease in Fano factor. However, the decrease in
variability is accompanied by a proportional decrease in mean spike count due to the
refractoriness of the cell. In other words, the overall response of the cell is scaled,
including the mean spike count and variance. The decrease in variability leads
to an improvement in detectability of a few percent. Detection rate is calculated
by computing the ROC for stimulus-present versus stimulus-absent conditions
and assuming that attention does not affect baseline firing (either average rate
or variability) in the absence of the stimulus. Discriminability is based on the
spike count distributions for neighboring stimuli. Since refractoriness scales both
distributions proportionately, firing regularity only has a small effect on ROC area.
When the attention-related improvement in discrimination performance is plotted as
a function of actual gain (Fig. 6.7, right), the improvement in performance is quite
small (green, refractory period D 0; blue, refractory period D 10 ms).

To summarize, attention can affect the gain of neuronal responses as well as
their reliability. Large changes in response gain lead to only modest improvements
in detection and discrimination rates. If baseline activity is unaffected by the gain
change, then much larger increases in detection rates are achievable, but there is no
effect on discrimination. Improving reliability by incorporating a refractory period
into the spike train generator has a small effect on detection and an even smaller
effect on discrimination. One caveat is that refractoriness always reduces both the
variance and mean of the spike counts. Other methods that reduce variability without
changing mean rate were not explored.
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6.3 Effects of Attention Across Multiple Neurons

When considering the effects of attention across multiple neurons, there is a general
expectation that such effects will be stronger and/or more reliable. This expectation
may be frustrated for several reasons. Having more neurons can improve signal
processing, but it also means that there will be more noise due to random firing
from neurons that are not sensitive to the stimulus. Indeed the problem of selective
attention is not only one of selecting the most relevant stimulus, but, perhaps more
importantly, selecting the most relevant neurons.

To model the effects of attention across multiple neurons, consider an array of
neurons that are identical except for the location of their receptive field centers.
Instead of the scalar attentional gain factor in the single neuron model described
above, attention is modeled as a gain field [G(x), [18]] that ranges over the entire
visual field:

G .x/ D 1:0 C a � exp
�
��

x � x0�2=s2
�

(6.3)

where a is the attentional enhancement, x is visual field location, x0 is the focus of
attention, and s is the spread of attention. Figure 6.8 shows the effect of attentional
gain enhancement on an array of neurons that have identical tuning width and
sensitivity, but different receptive field centers. Tuning curves for the unattended
case are shown in the left. On the right are tuning curves with a maximum
attentional gain of 2.0. Attention does not enhance the activity of cells whose
preferred locations are remote from the focus of attention. It should be noted that
the attentional gain field not only enhances the response of cells at the focus of
attention, but it also distorts the tuning functions. Such shifting of receptive fields
has been documented in visual areas V4 [23] and MT [18].

In the case of a single neuron, it was found that if attention enhanced both
undriven and stimulus-driven activity, there was little improvement in detection or
discrimination performance. Here, we test what happens if attention does not affect
baseline firing in either the stimulus-absent or stimulus-present conditions. When
we simulate this condition, it turns out that attention has little effect on detection
(Fig. 6.8, middle left) and no effect on discrimination (Fig. 6.8, middle right). This
result holds over a wide range of signal strengths (maximum firing rate re: baseline).
To obtain even a small increase in detectability requires an attention gain of about
4x or greater. Discriminability does not improve for any gain level. There was no
effect of refractoriness on detection or discrimination rates.

The finding that attentional gain has little effect on detection may seem counter-
intuitive. However, it makes perfect sense. There are nine neurons in the simulation,
and, as can be seen in Fig. 6.8, attention only affects 3 of them. For any given
stimulus, most of the cells do not respond at all. Yet, all of the cells must be included
when computing detectability, even if they are unmodulated by attention, or not
even driven by the stimulus. The reason for this is that the stimulus has an equal
probability of occurring at any location and this location is not known in advance.
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Fig. 6.8 (Top) Tuning
functions for an array of
model neurons in the
unattended condition (left)
and with attention focused at
�50ı. (Middle) detection and
discrimination rates. (Bottom)
Detection and discrimination
rates when responses are
pooled across neurons
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Thus, at any given time, most of the cells are simply contributing noise. This not
only dilutes the effect of attention; it can negate the effect altogether.

However, we have yet to consider the issue of pooling activity across neurons.
By this, we mean how signals from different neurons are combined when computing
the joint ROC. None of the multi-neuron simulations discussed above included
any pooling; each response was considered as an independent observation and was
weighted equally in the ROC analysis. One way to pool responses is to compute the
mean spike count across all neurons in the model on each trial. Thus, the data are
reduced from 3 dimensions (neuron � stimulus � trial) to only 2 (stimulus � trial).
This averaging is done before the ROC area is computed. The effect of this kind of
pooling is that the neurons that are sensitive to the stimulus tend to pull up the aver-
age response of the ensemble. On the other hand, when there is no stimulus, averag-
ing across neurons has little effect because they all have the same baseline activity.
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We thus consider a model in which attention has no effect on baseline activity,
but activity on every trial is pooled by averaging across all neurons. The results
are shown in the bottom row of Fig. 6.8. For this model, attention enhances both
detection (Fig. 6.8 bottom left) and discrimination (Fig. 6.8, bottom right). As in
previous simulations, reducing trial-to-trial variability has no effect (compare green
dots, refractory period D 0, to blue, refractory period D 10 ms).

Averaging over all neurons is an extreme form of pooling that is not physiologi-
cally or anatomically plausible. It requires that all of the sensory neurons converge
onto a single decision neuron. However, one can imagine a pooling function that
computes a weighted average of responses over a limited spatial extent so that only
cells with similar receptive field locations are combined. This agrees well with how
the visual cortex is wired and the fact that receptive fields get larger as one traverses
the cortical hierarchy from primary visual cortex (V1) to V2, V3, V4, and IT.

To appreciate how attention affects the representation of information in visual
cortex, we can use some of the aforementioned ideas to construct “neural” images
of simple stimuli. Figure 6.9 shows simulations of a 2D array of model neurons.
The input image consists of two vertically oriented Gabor patterns embedded in
random noise. The green circle (Fig. 6.9, left) indicates the focus of attention, but
was not present in the image used for the simulations. Each model neuron comprised
a Gaussian spatial weighting function that represented the neuron’s receptive field.
Each receptive field was approximately 1/20th the size of the image in linear
dimension. There were approximately 200 � 200 neurons whose RF centers were
distributed to cover the entire image. The response of each neuron was computed
by calculating the inner product of the weighting function and the part of the image
within the receptive field. This number was used as the rate parameter for a Poisson
spike generation function. Each pixel in Fig. 6.9 (middle and right) represents the
resulting spike count for a single neuron. The middle panel of Fig. 6.9 illustrates a
condition where attention increased the gain of the response at the attended location.
The right panel shows a condition where the gain was constant across the image,

Fig. 6.9 Neural images created by computing the responses of a 2D array of model neurons. (Left)
Original stimulus. The green circle indicates the focus of attention and was not present in the image
used for model simulations. (Middle) A 2D array of model neurons. Attention increases the gain of
the response in the attended region. Pixel intensity represents firing rate. (Right) A 2D array with
a constant response gain across location, but increased refractoriness at the attended location
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but the refractoriness of the cells was increased at the attended location. The result
of increasing refractoriness is that there is less variability across cells that have the
same input. The simulations suggest that increasing the gain has a pronounced effect
on salience, whereas reducing variability through refractoriness has little effect.
These neural images can be converted to detectability maps by running multiple
trials with and without the stimulus and computing ROC functions for each neuron.

The simulations in this chapter have explored attentional gain control and
reliability and how these affect detection and discrimination performance. Some
features of the model that turned out to be important are (1) that attention enhances
stimulus-driven responses but not baseline activity and (2) that responses are pooled
over multiple neurons. Pooling of responses across neurons reduces variability
and can have a pronounced effect on performance. One feature that was of
only modest importance was trial-to-trial spike count variability; when variability
is reduced by refractoriness there is little effect on detection or discrimination
performance. Relatively, few empirical studies have investigated effects of attention
on neural detection and discrimination thresholds [12, 13, 24, 25]. Fewer still have
related changes in neural responses to behavioral thresholds [26]. This is an area
that warrants further investigation and can profit from approaches that combine
computational modeling and neurophysiological experimentation.
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