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Foreword

We all know what attention is. Attention is so obvious and apparent that up until
recently nobody really took notice of it. According to William James (1890),
attention “is the taking possession by the mind, in clear and vivid form, of one
out of what seem several simultaneously possible objects or trains of thought. It
implies withdrawal from some things in order to deal effectively with others.”
Thus, attention is the first step towards perceiving the world. The late John G.
Taylor fiercely argued that attention and consciousness are inseparable. Conscious
awareness of the environment cannot occur without attention.

Mancas, Ferrera, and Riche have masterfully put together this book of attention
from a multi-disciplinary perspective. To them, like James, attention is the first step
to perception. Attention analyzes the world and creates inner representations of it.
Thus to them, like Taylor, attention is a gate of conscious awareness at the interface
between the inner and outer and it is the key to survival of the organism. Mancas,
Ferrera, and Riche go one step further in detailing how modeling attention can
improve current artificial intelligence and what advantages these attentive systems
will have over others. Aside from being faster and more efficient in terms of memory
storage, attentive Al systems will be able to detect novel patterns in their input
streams of information and react appropriately to potentially dangerous situations.

Undoubtedly, this book is an enthusiastic applause of attention and it will prove
highly valuable as a resource to engineers, computer scientists, and neuroscientists,
as it will allow each community to see what the others do, what is left to do, and
what needs to done.

Foundation for Research & Techn. Hellas Vassilis Cutsuridis
Inst. of Molecular Bio. & Biotechn.,

N. Plastira 100, 70013 Heraklion, Crete, Greece

September 11, 2015
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Chapter 1
Why Do Computers Need Attention?

Matei Mancas, Vincent P. Ferrera, and Nicolas Riche

The focus of this book is to present a multidisciplinary perspective on modelling
of attention. In this introductory chapter, we first address the question of why one
should care about modelling attention, and then we detail the structure of this book
and explain who are the targeted readers.

1.1 Why Care About Attention and Attention Modelling?

1.1.1 First Step in Perception of Living Beings ...

Any animal [1] from the tiniest insect [2] to humans is perfectly able to “pay
attention”. Attention is the first step of perception: it analyses the outer real world
and turns it into an inner conscious representation. Even during dreams and REM
sleep (Rapid Eye Movements), eye movement activity suggests that attentional
mechanism is at work. But, in this case, it analyses a virtual world coming from
the inner subconscious and turns it into an inner conscious representation. Attention
seems to be not only the first step of perception but also the gate to conscious
awareness.
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1.1.2 ... From Foetus to Death, Awake and During
Dreams ...

Attention probably arises during embryonic development in parallel with sensory
systems. The development of attention may correlate with the first REM dreams
beginning around the sixth month of foetal development [3]. This mechanism is one
of the first cognitive processes to be set up, and factors like smoking, drugs, alcohol
or even stress during pregnancy may lead to later attention disorders and even a
higher chance of developing psychopathologies [4, 5]. In cognitive disorders like
in autism or schizophrenia, attentive processes are highly affected, as suggested by
studying eye-tracking traces which can be very different between patients and the
control groups [6, 7]. The attentive process is set up as early as the prenatal period
when it already begins to operate during babies’ dreams. Until death, it occurs in
every single moment of the day when people are awake but also during dreams.
This shows the importance of attention: it cannot be dissociated from perception
and consciousness. Even when a person is sleeping without dreaming and the eyes
are not moving, a person can be awakened by important stimuli. Attention is never
turned off; it can only be reduced to a standby mode (excepting drug-induced states
when consciousness is altered or eliminated as in coma). It is thus safe to say that if
there is conscious life in a body, there is attention.

1.1.3 ... Attention Is the Gate to Consciousness

As a gateway to conscious awareness at the interface between the external world
and internal experience, attention can be both conscious (attentive) and unconscious
(pre-attentive), and it is the key to survival. Attention is also a sign of limited
computation capabilities. Vision, audition, touch, smell or taste, all provide the brain
with a huge amount of information. Gigabits of rough sensorial data flow every
second into the brain, which overloads the capacity to think and respond coherently.
Attention provides the brain with the capacity of selecting relevant information and
prioritizing tasks. While there are a lot of definitions and views of attention, the
one core idea which justifies attention regardless of the discipline, methodology, or
intuition is “information reduction” [8].

Attention only began to be scientifically studied from the nineteenth century
with the arrival of modern experimental psychology. Some thoughts and concepts
related to attention may be found in Descartes and Malebranche, but no rigorous
and intensive scientific study was done until psychologists developed the tools to
quantify perceptual and motor performance. How did philosophers since antiquity
miss such a key concept as attention for so long? Part of the answer is given by
William James, the father of psychology, in his famous definition of attention:
“Everybody knows what attention is”. Attention is so natural and self-evident, so
linked to life and partly unconscious, so obvious that ... nobody really noticed it
until recently.
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1.1.4 Attention in Computers Might Be a First Step ...

However, little by little, a new transversal research field has coalesced around the
concept of “attention”, gathering first psychologists, then neuroscientists and, since
the end of the1990s, engineers and computer scientists. While covering the whole
research on attention would require a series of books, the topic is here narrowed to
focus on attention modelling, a crucial step towards wider artificial intelligence.

Indeed, this key process of attention is currently rarely used within computers.
As with the brain, a computer is a processing unit. As with the brain it has limited
computation capabilities and memory. As with the brain, computers are required
to analyse a surfeit of data. But unlike the brain they do not pay attention. While
a classical computer will be more precise in quantifying the whole input data, an
attentive computer will autonomously focus on the most “interesting” data which
has several advantages:

» It will be faster and more efficient in terms of memory storage due to its ability
to process only part of the input data.

» It will be able to find regularities and irregularities in the input signal and thus be
able to detect and react to unexpected or abnormal events.

* It will be able to optimize data prediction by describing novel patterns, and
depending on the information reduction result (how efficient the information
reduction was), it will be capable of being curious, bored or annoyed. This
curiosity which constantly pushes to the discovery of more and more complex
patterns to better reduce information is a first step towards creativity.

1.1.5 ... To Real Artificial Intelligence

As in humans attention is the gate to awareness and consciousness; in computers
attention can lead to novel emergent computational paradigms beyond classical
preprogrammed machines. To perform tasks autonomously, machines must be able
to select and prioritize information. While the path towards self-programming com-
puters is still very long, computational attention is developing at an exponentially
increasing pace, letting more and more applications benefit from it.

1.2 'Who Should Read This Book and Why?

The first point in this book is that we had a multidisciplinary approach of attention
modelling in a world with little communication between those disciplines. This
is especially the case for engineering and cognitive psychology/neuroscience.
Engineers are at least aware of the fact that attention is studied in psychology and
neuroscience because the first computational model [9] was based on the Koch and
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Ullman architecture [10]. From that point new models emerged, and some of them
are very far from the biological considerations of Koch and Ullman. Despite this
diversity, engineers and computer scientists like the “cognitive” or “biologically
inspired” labels even if they do not really know what a “cognitive model” should
be. Despite this fact, few engineers take the time to read and understand papers on
attention modelling in neuroscience. The other way around, neuroscientists are also
aware about the existence of attention models in the engineering domain but often
do not follow the rapid evolutions in this area. One of the main goals of the book
is to show to each community some insights on what the others do and what they
achieve because we think that having different views on the same issues can help
improve knowledge and progress in both communities.

The second point of the book is that chapters are of a mixed complexity so they
can be interesting both for students and specialists. Following the same idea, there
is also a balance between theory and practical approaches, leading to both deeper
understanding of attention and fast ability to test and improve existing models. This
book intends to be accessible by a wide range of people. Students can easily read
some of the chapters and can progressively go deeper in the topic with others.
Specialists can directly focus on more complex chapters, but they can also benefit
from practical reviews of others.

A third point of this book is an exhaustive application review and future research
avenues that can help the reader to orient his research or application development
efficiently. People from industry or researchers focusing on applications related to
human perception can improve their applications by incorporating attention-related
algorithms. Sometimes we realise that some applications could be improved by
using attention or saliency models, but the literature is very scarce because people
working in this community are not yet aware about what attention models can bring
to them.

If you are a student in engineering but also in neuroscience or even psychology
interested in researching the field of attention modelling, this book is everything you
need to start quickly and efficiently. You can quickly acquire the state of the art in
attention modelling but also see practical and exhaustive reviews.

If you already work in the field as an engineer, you will find a quick introduction
to psychological and biological approaches to attention, and you will be able to go
deeper in the concepts linked to attention modelling and the brain.

If you already work in the field as a neuroscientist, you will find engineering
approaches to exponentially improve attention models and implement them into
real-life applications. Some of the concepts used by engineers are clearly inspired
from biological facts, but other much less. The latter models are also interesting
because if they achieve good results in predicting human gaze, maybe part of the
concepts they use might be found as relevant in the brain.

If you work in industry and focus on perception, images or sound, you might
find here your next innovation. From video surveillance to ads optimisation passing
by compression, robotics and computer graphics, many domains can benefit from
attention models.
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1.3 Book Structure

In this book, a synthesis of what attention is, how it can be measured and modelled
and an overview of current and emerging applications is presented. The structure is
organized around three parts.

The first one focuses on fundamentals and is a comprehensive introduction to
attention modelling. These chapters attempt to answer basic questions one may have
before modelling attention: why model attention in computers, what is attention
or more precisely what are attentions, how to measure attention and where it is
localized in the brain.

The second part deals with attention modelling itself. It begins with practical
guides on signal detection and neurophysiology from the study of a single neuron to
visual performance. Afterwards, attention modelling in engineering and computer
science is introduced. After two chapters on the bottom-up attention models for still
images which are the most common in computer science, another chapter presents
attention modelling for video sequences. The set of four chapters which follow
describe anything which needs to be known about model validation in computer
science to assess how well the attention models can predict human eye fixations: the
datasets which are used as ground truth, the metrics used to compute the similarity
between the ground truth and the saliency models output, the influence of several
parameters on the validation results and the validation itself on a set of state of the
art models for still images and videos.

The third part discusses current developments in attention modelling in computer
science with chapters on 3D saliency, multimodal saliency and the link between
saliency and proto-objects. Finally, this part presents an exhaustive review of
attention modelling applications followed by more in deep chapters on some of the
possible applications in object recognition, video quality and robotics.

Finally, new research directions and foreseeable evolution of the field are
discussed in the conclusion.

1.4 Summary

» Attention is of utmost importance: first step of perception, it is the gate to
consciousness. It is active from before birth until death and during sleep and
waking.

» Attention is so fundamental, and perhaps obvious, that it was not recognized as a
legitimate object of inquiry until relatively recently.

e The study of attention has spread from philosophy and psychology to neuro-
science and computer science.

» Attentive computers can benefit substantially from an implementation of atten-
tive mechanism in their quest for artificial intelligence. This book focuses on the
computational aspects of attention.
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The multidisciplinary approach presented here targets students and researchers
(from both engineering and neuroscience communities) and developers from
industry who work in applications on perception, video or sound. The latter might
find here their next innovation.
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Chapter 2
What Is Attention?

Matei Mancas

2.1 The Study of Attention: A Transversal Approach

Human attention is a self-evident mental phenomenon that is active during every
single moment of awareness. It was studied first in philosophy, followed by
experimental psychology, cognitive psychology, cognitive neuroscience, and finally
computer science for modelling in humans and machines. These studies emerged
sequentially but they added one on top of the others as the layers of an “attention
onion” (Fig. 2.1).

Due to the highly diverse applications of attention, a precise and general
definition is not easy to find. Moreover, views on attention have evolved over time
and research domains. This chapter is structured into two parts. In the first part,
we briefly survey the long history of related research from philosophy to cognitive
psychology, to which were added cognitive neuroscience and computer science. The
second part of the chapter covers different aspects of attention in an attempt to arrive
at a working definition.

2.2 A Short History of Attention

Attention seems almost absent from the writings until the modern age. How did
most of the philosophers miss such a key concept from the ancient times to the
Enlightenment? Part of the answer is probably that attention is such a self-evident
part of life that very few noticed it until recently.

M. Mancas ()
Numediart Institute, University of Mons (UMONS), 31, Bd. Dolez, 7000 Mons, Belgium
e-mail: matei.mancas@umons.ac.be
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Experimental Psychology
Philosophy

Fig. 2.1 Attention history and the attention onion, an accumulation of research domains

2.2.1 Conceptual Findings: Attention in Philosophy

Selective attention was briefly treated by Greek philosophers like Aristotle in
relation to the spirit or psyche which is an early link between attention and
awareness. In the fourth century, St. Augustine talked about objects of cognitive
interest which can automatically tug at one’s attention inferring the existence of
involuntary attention. Descartes in the seventeenth century added more on the
distinction between voluntary and involuntary attention. He called the first one
“attention” and the latter “admiration.” The concept of admiration that he linked
to the notion of “wonder” is close to the idea of “surprise” which is used by some
modern computational attention models.

An early and important inquiry into human attention was that of Nicolas
Malebranche, a French Oratorian priest who was also a philosopher and follower
of Descartes. In his “De la Recherche de la Verité” (Concerning the Search after
Truth) published in 1675, Malebranche focused on the role of attention in providing
structure in scene understanding and thought organization. He also saw attention as
the basis of free will, writing that “the occasional cause of the presence of ideas is
attention ... and it is easy to recognize, that this is the principle of our freedom”
[1]. Thus, from the very beginning attention was seen as linked to volition and
consciousness.

In the eighteenth century, G. W. Leibniz introduced the concept of “appercep-
tion” which refers to the assimilation of new and past experience into a current
view of the world [2]. Leibniz’ intuited an involuntary form of attention (known
today as “bottom up” or “stimulus driven”), which is needed for a perceived event
to become conscious. Here attention is viewed as a reflexive and involuntary gate to
consciousness.

In the nineteenth century, Sir W. Hamilton, a Scottish metaphysician, challenged
the previous view on attention, which consisted in thinking that humans can only
focus on a single stimulus at once. Hamilton noted that when people throw marbles,
the placement of about seven of the marbles could be remembered [3]. This finding
opened the way to the notion of “divided attention.” The limited span of divided
attention led about one century later to the famous paper of G.A. Miller, “The
Magical Number Seven, Plus or Minus Two” in 1956 [4].
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2.2.2 Attention in Experimental Psychology

After the first philosophical investigations, attention entered a scientific phase when
approached by the emergence of experimental psychology in the nineteenth century.
By studying individual differences in the ability of trained astronomers to judge
the transit of a celestial body through a telescope, W. Wundt introduced the study
of consciousness and attention to the field of psychology [5]. He interpreted this
observation error as the time needed to switch voluntarily one’s attention from
one stimulus to another and initiated a series of studies on the speed of mental
processing. This was made possible by new measuring methods proposed by
F. Donders [6]. Here attention comes to be related to reflection and not reflex
alone.

In the second half of the nineteenth century, H. Von Helmholtz, in his “Treatise on
Physiological Optics” [7], noted that despite the illusion of seeing our entire visual
environment at the same spatial resolution, humans need to move their eyes around
the whole visual field “because that is the only way we can see as distinctly as
possible all the individual parts of the field in turn.” Although his experimental work
mainly involved the analysis of the eye movement scanpath (overt attention), he also
noted the existence of a covert attention, which is the ability to focus on different
parts of a scene without moving the eyes. Von Helmholtz focused on the role of
attention as an answer to the question “where” the objects of interest are. Adding to
the concepts of reflex attention and divided attention, the notion of parallel versus
serial processing was born.

In 1890, W. James published his textbook “The Principles of Psychology” [8]
and remarked again that attention is closely related to consciousness and struc-
ture. According to James, attention makes people perceive, conceive, distinguish,
remember, and shortens reaction time. He indeed linked attention to the notion
of data compression and memory. He also developed a taxonomy of attention
that distinguished between “passive” and “voluntary” attention. Contrary to Von
Helmholtz, James was more focused on the fact that attention should answer the
question of “what” are the objects of interest.

2.2.3 Attention in Cognitive Psychology

Between the very beginning of the twentieth century and 1949, the mainstream
approach in psychology was behaviorism, which focused almost exclusively on the
external causes of behavior. During this period, the study of mind was considered as
barely scientific and few important advances were achieved in the field of attention.
Despite this “hole” in the study of attention, important work was done on so-called
interference effects. One of the most famous examples, the “Stroop effect,” was
reported by J. R. Stroop [9], who showed that reaction times are considerably
lengthened when a single stimulus affords two conflicting responses, for example,
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reading a red-printed word such as “GREEN” as opposed to reporting the color of
the ink in which the word was printed. Attention was invoked as a means to resolve
the response conflict.

After the Second World War, a vastly more technological world emerged.
Advances in information theory, statistical decision theory, and, perhaps most
importantly, digital computing gave rise to the information age. Human performance
in complex environments ranging from battlefields to factory floors became a central
concern. The study of attention made a tremendous comeback. To the behaviorist
view, which states that the organism’s behavior is controlled by stimulus—response-
outcome associations, cognitive psychology showed that behavior can be modulated
by attention. The resurgence of attention begun with the work of C. Cherry in 1953
on the “cocktail-party” paradigm [10]. This approach models how people select the
conversation that they are listening to and ignore the rest. This problem was called
“focused attention,” as opposed to “divided attention.”

In the late 1950s, D. Broadbent [11] proposed a “bottleneck™ model in which he
described the selective properties of attention. His idea was that attention acts like
a filter (selector) of relevant information based on basic features, such as color or
orientation for images. If the incoming information matches the filter, it can reach
awareness (conscious state); otherwise it will be discarded. At that time, the study
of attention seemed to become very coherent and was called “early selection.”
Nevertheless, after this short positive period, most of the findings summarized by
Broadbent proved to be conflicting.

The first “attack” came from the alternative model of Deutsch and Deutsch
[12] who used some properties of the cocktail-party paradigm to introduce a “late
selection” model, where attentional selection is basically a matter of memory
processing and response selection. The idea is that all information is acquired,
but only that which fits semantic or memory-related objects is selected to reach
awareness. This is an opposite view to Broadbent who professed an early selection
of the features before they reach any further processing.

New models were introduced like the attenuated filter model of A. Treisman [13]
which is a softer version than Broadbent’s bottleneck and which let stimuli with a
response higher than a given threshold through the filter, thus determining the focus
of the selective attention.

Later, in 1980, Treisman and Gelade [14] proposed a new “feature integration”
theory, where attention occurs in two distinct steps. First, a preattentive parallel
effortless step analyzes objects and extracts features from those objects. In a second
step, those features are combined to obtain a hierarchy of focus attention which
pushes information towards awareness.

Despite its importance, the feature integration theory was also highly disputed.
Other theories emerged as M. Posner [15] spotlight supporting a spatial selection
approach or D. Kahneman [16] and his theory of capacity supporting the idea of
mental effort.

In the late 1980s, a plethora of theories on attention flourished, and none of them
was capable of accounting for all previous findings. According to H. Pashler [17],
after several decades of research in cognitive psychology, more questions were
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raised than answers given. As a provocative rejoinder to the famous “Everyone
knows what attention is” proposed by James a century before, Pashler declared that
“No one knows what attention is.”

2.2.4 The Need for New Approaches: After the Late 1980s
“Crisis”

Attention deals with the allocation of cognitive resources to prioritize incoming
information in order to bring them to a conscious state, update the scene model and
memory, and influence behavior. Between consciousness, memory, and behavior,
attention was revealed to be much more complex than initially expected, and some
people even questioned whether attention was a single concept or, rather, that there
are several different forms of attentions. The number of issues and the complexity of
the nature of attention led to an interesting move in splitting attention studies from
one single community into two different communities.

The cognitive neuroscience community has the goal of getting further into the
theoretical and biological nature of attention using simple stimuli. The arrival of
advanced tools such as functional imaging, EEG, MEG, or single-cell recordings in
awake, behaving subjects allows them to make huge steps towards relating neural
recordings with behavioral correlates of attention.

The segment of the computer science community working in the field of attention
has a goal of making the concept work with real data such as images, videos,
audio, or 3D models. From the late 1990s and the first computational models of
visual attention, the cognitive neuroscience and computer science approaches have
developed in parallel, one trying to get more insight on the biological brain and the
other trying to get results which can predict eye movements and other behavior for
real-life stimuli and environments. Even if the computational attention community
led to some models very different from what is known to happen in the brain,
the engineers’ creativity is impressive, and the results on real-life data begin to be
significant and the applications endless.

2.2.5 Attention in Cognitive Neuroscience

Cognitive neuroscience arrived with a whole set of new tools and methods. If
some of them were already used in cognitive psychology (e.g., EEG, eye-tracking
devices), others are new tools providing new insights on brain behavior:

» Psychophysiological methods: scalp recording of EEG (electroencephalography:
measures the large-scale electric activity of the neurons) and MEG (magnetoen-
cephalography: measures the magnetic fields produced by electrical currents in
the brain) which are complementary in terms of sensitivity on different brain
areas of interest.
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* Neuroimaging methods: functional MRI and PET scan images which both
measure the areas in the brain which have intense activity given a task that
the subject executes (visual, audio, etc.). Magnetic resonance spectroscopy can
provide information about specific neurotransmitters.

* Electrophysiological methods: single-cell recordings, which measure the electro-
physiological responses of a single neuron using a microelectrode system. While
this system is much more precise, it is also more invasive.

e Other methods: TMS and TDCS (transcranial magnetic stimulation and tran-
scranial direct current stimulation, which can be used to stimulate a region
of the brain and to measure the activity of specific brain circuits in humans)
and multielectrodes technology which allows the study of the activity of many
neurons simultaneously showing how different neuron populations interact and
collaborate.

Using those techniques two main families of theories have been constructed.

The first and most well-known model is the biased competition model of
Desimone and Duncan on [18]. The central idea is that at any given moment, there
is more information in the environment than can be processed. Relevant information
always competes with irrelevant information to influence behavior. Attention biases
this competition, increasing the influence of behaviorally relevant information and
decreasing the influence of irrelevant information. Desimone explicitly suggests a
physiologically plausible neural basis that mediates this competition for the visual
system. A receptive field of the neuron is a window to the outside world. The neuron
reacts only to stimuli in this window and is insensitive to stimulation in other areas.
The authors assume that the competition between stimuli takes place if more than
one stimulus shares the same receptive field. This approach is very interesting as
each neuron can be seen as a filter by itself and the neurons receptive field can
vary from small and precise (like in the primary visual cortex V1) to large enough
to focus on entire objects (like higher visual areas in the temporal and parietal
lobes). This basic idea suggests different domains of attention (location-based,
feature-based, object-based, attentional bottleneck) in a very natural and elegant
way. Moreover, a link is achieved with memory based on the notion of attentional
templates in working memory which enhance neuronal responses depending on
previously acquired data. This idea is embodied in the selective tuning model of
Tsotsos in 1995 [19].

The second family of models was developed by Laberge in the late 1990s
[20]. It is a structural model based on neuropsychological findings and data from
neuroimaging studies. Laberge conjectures that at least three brain regions are
concurrently involved in the control of attention: frontal areas, especially the
prefrontal cortex and thalamic nuclei, especially the pulvinar and posterior sites,
the posterior parietal cortex, and the interparietal sulcus. Laberge proposes that
these regions are necessary for attention, and all these regions presumably give rise
to attentional control together. While cognitive neuroscience brought a lot of new
methods and information to cognitive psychology, attention is still far from being
fully understood, and a lot of work is undergoing in the field.
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2.2.6 Attention in Computer Science

While cognitive neuroscience focuses on researching the biological nature of
attention, a different angle arose in the 1980s with the improvements in compu-
tational power. Building on the feature integration theory of Treisman and Gelade
[14], C. Koch and S. Ullman [21] proposed that the different visual features that
contribute to attentive selection of a stimulus (color, orientation, movement, etc.) are
combined into one single topographic map, called the “saliency map.” The saliency
map integrates the normalized information from the individual feature maps into
one global measure. Bottom-up saliency is determined by how different a stimulus
is from its surround at several scales. The saliency map provides the probability for
each region in the visual field to be attended. This saliency map concept is close to
that of the “master map” postulated in the feature integration theory by Treisman
and Gelade.

The first computational implementation of Koch and Ullman architecture was
achieved by Laurent Itti in his seminal work [22]. This very first computational
implementation of an attention system takes as an input of any image and outputs
of a saliency map of this image and also the winner-take-all-based mechanism,
simulating the eye fixations during scene analysis. From that point, hundreds of
models developed first for images, then for videos, and some for audio or even 3D
data very recently.

From the initial biologically inspired models, a number of models based on
mathematics, statistics, or information theory arrived on the “saliency market,”
making better and better predictions about human attention. These models are all
based on features extracted from the signal (most of the time low-level features
but not always), such as luminance, color, orientation, texture, motion, objects’
relative position, or even simply neighborhoods or patches from the signal. Once
those features are extracted, all the existing methods are essentially based on the
same principle: looking for “contrasted, rare, surprising, novel, worthy-to-learn,
less compressible, or information maximizing” areas. All those terms are actually
synonyms, and they all amount to searching for some unusual features in a given
context. This context can be local (typically center—surround spatial or temporal
contrasts) and global (whole image or very long temporal history), or it can be a
model of normality (the image average, the image frequency content). Very recently
learning is more and more involved in computing saliency: first it was mainly about
adjusting model coefficients given a precise task; now complex classifiers like deep
neural networks are beginning to be used to both extract the features from the signal
and train the most salient features based on ground truth obtained with eye-tracking
or mouse-tracking data.
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2.3 So ... What Is Attention?

The transdisciplinary nature of attention naturally leads to a lot of different
definitions. Attention deals with the allocation of cognitive resources to priori-
tize incoming information in order to bring them to a conscious state, update
a scene model, update memory, and influence behavior. But several attention
mechanisms were highlighted especially from Cherry’s cocktail-party phenomenon.
A dichotomy appeared between divided attention and selective attention. From
there, clinical observations led to a model of attention divided into five different
“kinds” appeared. One can also talk about different kinds of attention that rely on
gaze or not or that use only image features vs. memory and emotions ... While its
purpose seems to be the relation between the outer world and inner consciousness,
memory, and emotions, the clinical manifestation of attention tends to show that
there might be several attentions.

2.3.1 Overt Versus Covert: The Eye

Overt versus covert attention is a distinction that was noted at the very beginning
of psychological studies on attention. Overt attention is manifested by changes in
posture that prepare sensory receptors for expected input. Eye movements, head
movements, external ear (pinna) movements, changes in pupil size, and so forth are
all examples of overt attention. Covert attention does not induce eye movements
or other postural changes: it is the ability to catch (and thus be able to bring
to consciousness) regions of a scene which are not fixated by the eyes. The eye
achieves mainly three types of movements which are dues to the nonuniform
distribution of receptive cells (cones and rods) on the retina. The cones which
provide a high resolution and color are mainly concentrated in the middle of the
retina in a region called “fovea.” This means that in order to acquire a good spatial
resolution of an image, the eye must gaze towards this precise area to align it on the
fovea. This constraint led to mainly three types of eye movements:

1. Fixations: the gaze stays a minimal time period on approximately the same
spatial area. The eye gaze is never still. Even when gazing a specific location,
micro-saccades can be detected. The micro-saccades are very small movements
of the eye during area fixations.

2. Saccades: the eyes have a ballistic movement between two fixations. They
disengage from one fixation and they are very rapidly shifted to the second
fixation. Between the two fixations, no visual data is acquired.

3. Smooth pursuit: a smooth pursuit is like fixation on a moving object. The eye
will follow a moving object to maintain it in the fovea (central part of the retina).
During smooth pursuits, more rapid small corrections can be done to correct
position errors.
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Modelling overt attention attempts to predict human fixation locations and the
dynamical path of the eye (called the eye “scanpath™).

2.3.2 Serial Versus Parallel: The Cognitive Load

While focused, sustained, and selective attention deal with a serial processing
of information, alternating and divided attention deal with parallel processing of
several tasks. These distinctions show that attention can deal with information both
serially and in parallel. While there is a limit to the number of tasks which are
processed in parallel during divided attention (around five tasks), in the case of
preattentive processing, massively parallel computation can be done. Some notions
such as the “gist” [23] seem to be very fast and able to process the entire visual field
to get a first and very rough idea about the context of the environment. The five kinds
of attention follow a hierarchy based on the degree of focus, thus the cognitive load
which is needed to achieve the attentive task. This approach is sometimes called the
clinical model of attention:

1. Focused attention: respond to specific stimuli (focus on a precise task).

2. Sustained attention: maintain a consistent response during longer continuous
activity (stay attentive a long period of time and follow the same topic).

3. Selective attention: selectively maintain the cognitive resource on specific stimuli
(focus only on a given object while ignoring distractors).

4. Alternating attention: switch between multiple tasks (stop reading to watch
something).

5. Divided attention: deal simultaneously with multiple tasks (talking while
driving).

2.3.3 Bottom Up Versus Top Down: Memory and Actions

Another fundamental property of attention needs to be taken into account: attention
is a mix of two components referred to as bottom—up (or exogenous) and top-
down (or endogenous) components. The bottom-up component is reflex-based and is
driven by the acquired signal. Attention is attracted by the novelty of some features
in a given context (spatial local, a contrasted region; spatial global, a red dot, while
all the others are blue; temporal, a slow motion, while before motion was fast). Its
main purpose is to alert in the case of unexpected or rare situations, and it is tightly
related to survival. This first component of attention is the one which is the best
modeled in computer science as the signal features are objective cues which can be
easily extracted in a computational way.

The second component of attention (top-down) deals with individual subjective
feelings. It is related to memory, emotions, and individual goals. This component of
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attention is less easy to model by computers as it is more subjective and it requires
information about internal states, goals, a priori knowledge, or emotions. Top-down
attention can be itself divided into two subcomponents:

1. Goal/action related: Depending on an individual current goal, certain features or
locations are inhibited and others receive more weight. The same individual with
the same prior knowledge responds differently to the same stimuli when the task
in hand is different. This component is also called “volitional.”

2. Memory/emotion related: This process is related to experience and prior knowl-
edge (and the emotions related to them). In this category one can find the scene
context (experience from previously viewed scenes with similar spatial layouts
or similar motion behavior) or object recognition (you see your grandmother
first in the middle of other unknown people). This component of attention is
more “automatic,” it does not need an important cognitive load, and it can come
along with volitional attention. The other way around, the volitional top-down
attention, cannot inhibit the memory-related attention which will still work even
if a goal is present or not. More generally, bottom-up attention cannot be inhibited
if there is a strong and unusual signal acquired. If someone searches for his keys
(volitional top-down), he will not take care about a car passing by. But if he
hears a strange sound (bottom-up) and then recognizes a lion (memory-related
top-down attention), he will stop searching for the keys and run away. Volitional
top-down attention is able to inhibit the other components of attention only if
they are not very intense.

2.3.4 Attention Versus Attentions: A Summary

The study of attention is an accumulation of disciplines ranging from philosophy to
computer science and passing by psychology and neuroscience. Those disciplines
study sometimes different aspects or views of attention, which leads to a situation
where a single and precise definition of attention is simply not feasible.

To sum up the different approaches, attention is about:

* Eye/neck mechanics and outside world information acquisition: the attentional
“embodiment” leads to parallel and serial attention (overt vs. covert attention).

* Allocation of cognitive resources to important incoming information: the atten-
tional “filtering” is the first step towards data structuring (degree of focus and
clinical model of attention).

e Mutual influence on memory and emotions: passing of important information to
a conscious state and get feedback from memory and emotions (bottom-up and
memory-related top-down attention).

» Behavior update: react to novel situations but also manage the goals and actions
(bottom-up and volitional top-down attention).
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Attention plays a crucial role, partly conscious and partly unconscious, from

signal acquisition to action planning going through the main cognitive steps, or
maybe there are simply several attentions and not only one. At this point in time,
this question still has no final answer.
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Chapter 3
How to Measure Attention?

Matei Mancas and Vincent P. Ferrera

Researchers who are interested in attention generally have one or more of the
following goals: (1) to identify sources of information in the environment that are
selected and prioritized by the observer, (2) to quantify the effect of attention on task
performance, and (3) to identify neural correlates of attention. When considering
methods to measure attention, it is important to distinguish between overt and covert
orienting mechanisms. Overt attention is expressed by movements of the body and
can be measured directly by determining the position and velocity of the relevant
effectors — primarily the eyes, head, and hands. Covert orienting refers to the ability
to direct attention without body movement and is primarily measured by differences
in task performance (e.g., reaction time) that cannot be attributed to changes in the
external stimulus.

In this chapter, we will focus on quantitative techniques that provide fine-
grain spatial and temporal information about attentive responses at a macroscale.
We do not discuss the many psychophysical paradigms that have been used to
infer attention based on the speed and accuracy of observer judgments. Micro-
measurements of single neuron or several neurons using microelectrodes are not
described here. However, in the Chap. 6, the use of microelectrodes to measure
single neuron responses is described.

At a macroscale, the attentive response can be either measured directly in the
brain or indirectly through participants’ behavior. Only one of the techniques that
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are described here is based on participant active feedback: mouse tracking. This is
because the mouse tracking feedback is very close to eye tracking, and this is an
emerging approach of interest for the future: it requires less time and less money
to be conducted and provides more data than classical eye tracking. All the other
methods are direct or indirect and provide objective measures of attention. In a first
part, the indirect methods are described, while direct methods are mainly dealt with
in a second stage.

3.1 Indirect Measures of Attention

3.1.1 Eye Tracking: A Gold Standard for Overt Attention

If “the eyes are windows to the soul”, eye tracking consists of taking a look
to it. Indeed, eye tracking is probably the most widely used tool for measuring
visual attention. Although attention can be directed without moving the eyes, it is
generally the case that humans look where they attend, and vice versa. There is
ample neurophysiological support for this proposition as several structures that are
involved in attention — in prefrontal cortex, parietal cortex, and the midbrain — are
also involved in guiding voluntary eye movements.

Eye trackers are devices that determine the orientation of the eye relative to the
head (eye in head) or to an external frame of reference (eye in space.) If head
position is known, then the orbital position of the eye (eye in head) is sufficient
to determine gaze direction (eye in space.)

Eye-tracking technology has evolved over time. Different technologies are
described in [1]. One of the earliest techniques to be widely used is EOG
(electrooculography). The eye itself generates an electric dipole oriented along the
corneo-retinal axis. This potential can be measured by placing electrodes on the skin
around the eye. From these electrodes, the eye orientation relative to the head can
be reconstructed. To determine the orientation of the eye in space, either the head
must be attached to a fixed system (chin rest or bite bar) or a head tracking system
must be used in addition to the EOG. EOG signals are noisy and confounded by
skin conductance or the activity of facial muscles. Reliable measurements typically
require averaging over trials.

A more precise method was developed in the 1960s [2, 3] using the scleral search
coil. Here, a loop of wire is embedded in an annular contact lens placed around the
cornea. A small electric current is passed through the wire, generating a magnetic
dipole which orientation moves with the eye. The subject sits with their head inside
an oscillating magnetic field generated by a pair of large (roughly 0.6-0.9 ms in
diameter) field coils. Electronics are used to sense the orientation of the scleral
coil and hence the orientation of the eye. This system measures eye orientation
relative to the field coils, which are fixed in space. The head generally needs to be
stabilized to avoid confusing the rotation of the eye with translations due to head
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movement. A separate head coil can be used to record head movement. Binocular
search coil systems allow experimenters to reconstruct vergence angle. Torsional
eye movements can also be recorded. Scleral search coil systems provide continuous
temporal resolution, limited only by front end filtering and the sampling rate of
the recording device use to convert the analog signal to digital samples. Spatial
resolution is typically 0.1° of visual angle or better, and noise is extremely low.
Contact lens search coils can only be worn for a short time (<30 min) as they cause
an increase in intraocular pressure during the time that they are in contact with the
sclera. This method should be used only under the supervision of a trained clinical
ophthalmologist.

The technique that most of the current commercial and research solutions use
is video-oculography (VOG), based on a video camera to detect the pupil and
corneal reflection. An infrared light source illuminates the eyes. The light is either
reflected (bright pupil) or absorbed (dark pupil) by the pupil, and image processing
software (usually embedded in dedicated hardware) is used to detect the edges of
the pupil either by filling in or fitting an ellipse to the edge of the iris (Fig. 3.1). This
processing also provides an estimate of pupil size. Crosshairs identify the horizontal
and vertical position of the center of the pupil. Some light is also reflected from
the cornea and is called the corneal reflection (CR). The position of the pupil and
corneal reflection is sensitive to head movement. However, the difference (pupil —
CR) discounts the influence of head motion and gives a robust estimate of eye
orientation in space. Nevertheless, for precise measurements, it is more appropriate
to stabilize the head with a chin rest or bite bar.

It must be kept in mind that VOG trackers operate on a two-dimensional image
of the eye. To obtain eye orientation, the appropriate transformation must be done
considering the geometry of the camera relative to the eye and the projection of a
3D sphere onto a 2D image. Alternatively, a look-up table matching eye position

Fig. 3.1 The relative position of the pupil (arrow 2) and the corneal reflection (arrow 1) are used
to compute the gaze direction
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to tracker output can be generated by having subjects fixate on targets at known
positions. A grid of at least nine positions should be used for this calibration. VOG
systems work best when the optics of the camera are aligned with the optical axis of
the eye when the subject is looking straight ahead (primary position). An infrared
or “hot” mirror placed in front of the eye can be used to achieve this alignment. The
infrared mirror is transparent to visible light. This way, the subject can directly view
the visual display or scene through the mirror, while the camera is placed off to the
side.

The temporal resolution of VOG systems is limited by the frame rate of the
camera and the speed of the image processing algorithm that identifies the pupil
and corneal reflection. Commercially available systems range from 30 Hz to over
1000 Hz. Spatial resolution is limited by the resolution of the camera. Typically,
this is enhanced by using telephoto and close-up lenses to magnify the image of the
eye. Many systems provide spatial resolution comparable to search coils (0.1° of
visual angle or less). Drawbacks of VOG systems include sensitivity to stray light,
which may cause large apparent changes in eye position. These systems can also
be sensitive to eye color and might not work with subjects wearing glasses due to
uncontrolled reflection. Furthermore, these systems are unable to function when the
subject blinks and typically set their output to a default value whenever this happens.

While the fundamental technique is most of the time the same, the embodiment of
the eye tracker can be very different. The main eye-tracking manufacturers propose
the system under different forms [4—6].

Some eye trackers are directly incorporated into the screen (Fig. 3.2) which is
used to present the data. This setup has the advantage of a very short calibration, but
it can only be used with its own screen.

Fig. 3.2 Example of
eye-tracking device included
in a high-resolution screen
(here a Tobii system)
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Fig. 3.3 Binocular eye-tracking system independent from the screen (here a Facelab system)

Fig. 3.4 Eye tracking embedded in wireless (here a SMI system)

Separate cameras need some additional calibration time, but the tests can be done
on any screen and even in real scenes by using a scene camera to which the system
needs to be calibrated (Fig. 3.3).

The eye-tracking glasses (Fig. 3.4) can be used in very ecological setups, even
outside on real-life scenes. An issue of those systems is that it is not easy to
aggregate the data from several viewers as the scene which is viewed is not the
same. The aggregation needs a nontrivial registration of the scenes which might
imply to install markers before the experiment.

Cheap devices (Fig. 3.5) come to market, and quite precise cameras are sold less
than 100 EUR [7] which is a fraction of the price of a professional eye tracker. An
issue with these eye trackers is that they are packaged with minimal software and
it is often difficult to synchronize the stimuli and the related eye movement data.
These eye trackers are mostly used as real-time human-machine interaction devices
in gaming applications. Nevertheless, there are open-source projects which allow
recording of data from low-cost eye trackers like Ogama [8], but mainly on still
images and not moving stimuli.
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Fig. 3.5 Low-cost eye-tracking device here attached to a tablet (here the Eye-tribe system)

Finally, webcam-based software is freely available [9]. They are able to provide
good quality data and to be used remotely with existing webcams [10].

Eye movement behavior has a rich variety of features that are indicative of
attention. In primates, voluntary eye movements consist of saccades (rapid changes
in position with peak velocity >>100°/s), vergence (changes in the alignment of the
two eyes), and smooth pursuit (slow movements, generally under 100°/s, that track
small moving targets). Between these movements are periods of fixation, though
microscopic movements (drift, tremor, and microsaccades) may still occur even
when the eye is relatively still. Fixations can be detected using clustering algorithms
[11] or simply by using a double threshold: a time threshold and a spatial threshold
to be sure that the gaze focused a small region. Fixation duration can be a measure
of attention [12]. Fixations can be used to generate scanpaths (Fig. 3.6) or heatmaps
(Fig. 3.7). A heatmap is a low-pass filtered accumulation of scan paths, and it
indicates the average attention attraction of each pixel. Usually for a result to be
significant, there is a need of a minimum of ten participants per stimulus.

During fixations, subjects often make very small eye movements called microsac-
cades [13, 47]. These are saccades with amplitudes of less than 2° of visual angle.
Spontaneous microsaccades are often correlated with attention [14].

When viewing static scenes at a fixed depth, the most common eye movements
are saccades, which normally occur roughly 2-3 times/s. The onset of a saccade can
be detected to within a few milliseconds using algorithms based on eye velocity or
acceleration. The latency of saccades relative to the sudden appearance of a target
is generally 150-300 ms. Variations in saccade latency may be related to attention
[15]. Attention may alter saccade direction [16], or may result in curved saccade
trajectories [17].
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Fig. 3.7 Example of attention heatmap averaged over the participants
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3.1.2 Mouse Tracking: The Low-Cost Eye Tracking

If eye tracking is the most reliable ground truth in the study of overt visual attention,
it has several drawbacks in addition to the high cost of the professional devices:

* It needs minimal practice for the operator.

* The user head might need to be stabilized.

* The calibration process might be long.

* The infrared light pointing the eyes might induce eye fatigue especially during
long tests.

* The system might work much less well depending on the user eye color or if
she/he wears glasses.

A much simpler way to acquire data about visual attention may be the use of
mouse tracking. The mouse can be precisely followed while an Internet browser is
open by using a client-side language like JavaScript. The mouse precise position on
the screen can be either captured using homemade code or existing libraries like [18,
19]. This technique may appear as not very reliable; however, its accuracy depends
on the context of the experiment.

The first case is the one where the participant is unaware of the fact that the mouse
motion is recorded. In this case, mouse motion is not accurate enough. Indeed, there
is no automatic following of the eye gaze by the hand even if a tendency of the hand
(and consequently the mouse) to follow the gaze is visible. Sometimes, the mouse
is only used to scroll a page, and the eyes are very far from the mouse pointer, for
example.

The second case is the one where the participant is aware of the experiment and
has a task to follow. This can go from a simple “point the mouse where you look”
instruction as in [20] where mouse tracking was used for the first time for saliency
evaluation to more recent approaches as the one of SALICON in [21] where multi-
resolution interactive cursor mimicking the fovea resolution is used to encourage
people to point the mouse curser where they look. Indeed, as the image resolution is
decreased far from the cursor, people tend to point at the locations they are interested
in to have a full-resolution view of those regions.

In this second case where the participant is aware about his mouse motion
tracking, the results of mouse tracking are very close to eye tracking as shown by
Egner and Scheier (Fig. 3.8) on their website [22]. However, small or unconscious
eye movements may be missed.

The main advantages of mouse tracking are low price and the complete trans-
parency for the users (they just move a mouse pointer). The output can be the same
as in eye tracking. It can either be a heatmap (Fig. 3.9), but also scan paths, raw
data, etc.
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Fig. 3.8 Eye-tracking and mouse-tracking correlation (Adapted from Ref. [13])

Fig. 3.9 Left: initial presented image. Right: mouse-tracking heatmap after averaging across
participants

However, mouse tracking has also several drawbacks:

e The first place where the mouse pointer is located is quite important as the
observer may look for the pointer. Should it be located outside the image or in
the center of the image? Ideally, the pointer should initially appear randomly in
the image to avoid introducing a bias of the initial position of the pointer.

* Mouse tracking only highlights areas that are consciously important for the
observer. This is more a theoretical drawback than a practical one as one should
try to predict the overtly interesting regions.

* The pointer hides the image region it overlaps; thus the pointer position is never
on the important areas but very close to them. This drawback may be partially
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eliminated by the low-pass filter step performed after the mean of the whole
observer set. It is also possible to make a transparent pointer as in [21].

Mouse tracking was neglected with few publications since [20] and somehow
considered as a “poor man’s eye tracking.” However, the rise of learning-based
computational models using deep neural networks, which need huge datasets to
provide correct results, has changed the situation. Mouse tracking can be done
online by a virtually unlimited number of participants allowing the generation of
big datasets of mouse tracking data. As eye tracking can only provide datasets with
a limited number of stimuli and users per stimulus, even if they are more precise,
the development of mouse tracking has certain advantages that complement eye
tracking. Moreover, the combined use of eye and hand tracking can also provide
insight into the deployment of attention in natural tasks [22].

3.2 Direct Measures of Attention

3.2.1 EEG: Get the Electric Activity from the Brain

The EEG technique (electroencephalography) uses electrodes placed on the partic-
ipant’s scalp. Those electrodes amplify the electrical potentials originating in the
brain. An issue of this technique is that the skull and scalp attenuate those electrical
signals.

While classical research setups have a high number of electrodes (Fig. 3.10) with
manufacturers like [23, 24], some low-cost commercial systems like Emotiv [25]
are more compact and easier to install and calibrate (Fig. 3.11). While the latter are
easier to use, they are obviously less precise.

EEG studies provided interesting results as the modulation of the gamma band
[26] during selective visual attention. Other papers [27] also provide cues about the
alpha band modification during attentional shifts.

One very important cue about attention which can be measured using EEG is the
P300 event-related potential (ERP).

The work of Néitinen et al. [28] in 1978 on auditory attention provided evidence
that the evoked potential has an enhanced negative response when the subject was
presented with rare stimuli compared to frequent ones. This negative component is
called the mismatch negativity (MMN), and it was observed in several experiments.
The MMN occurs 100-200 ms after the stimulus, a time that is perfectly in the range
of the preattentive attention phase.

Depending on the experiments, different auditory features were isolated: audio
frequency [29], audio intensity [30-32], spatial origin [33], duration [34], and
phonetic changes [35]. All these features were not salient alone, but saliency was
induced by the rarity of each one of these features.

The study of the MMN signal for visual attention has been investigated several
times in conjunction with audio attention [36—38]. But a few experiments were made
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Fig. 3.10 Example of a
research EEG device with a
lot of electrodes (/), screen
for the participant to visualize
stimuli and tasks (2), screen
for the operator to visualize
the signals (3)

EEG
electrodes

Fig. 3.11 A low-cost commercial EEG (here the Emotiv EEG system)

using only visual stimuli. Crottaz-Herbette in her thesis [39] conducted a visual
experiment in the same conditions as for auditory MMN, and she has shown a high
increase of the negativity of the evoked potential when seeing rare stimuli compared
with the evoked potential when seeing frequent stimuli. The visual MMN occurs
from 120 to 200 ms after the stimulus. The 200 ms frontier approximately matches
the 200 ms needed to initiate a first eye movement, thus to engage the “attentive”
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serial attentional mechanism. As for the audio MMN detection, no specific task was
asked to the subject who only had to hear the stimuli; this MMN component is thus
preattentive, unconscious, and automatic. This study and others [40] also suggest
the presence of a MMN response for the somatosensory modality (touch, taste, etc.).
The MMN seems to be a universal component of the brain response reflecting an
unconscious preattentive process. Any unknown stimulus (novel, rare) will be very
salient as measured by P300. Rarity or novelty is a major driver of the attentional
mechanism for visual, auditory, and all the other senses.

3.2.2 Functional Imaging: fMRI

MRI stands for magnetic resonance imaging. The main idea behind this kind
of imaging system is that human body is mainly made of water which is itself
composed of hydrogen atoms that have a single proton. Those protons have a
magnetic moment (spin) which is randomly oriented most of the time. The MRI
device uses a very high magnetic field (BO) to align the magnetic moment of a small
fraction of protons in the patient’s body. Radio frequency (RF) pulses are used to
drive the proton spins into a plane orthogonal to BO. As the spins reorient or “relax”
parallel to the orientation of BO, RF emissions are produced. Those emissions are
captured, and an inverse Fourier transform is used to construct an image where clear
gray levels mean that there are more protons; therefore, more water in the body parts
(like in fat) and a darker gray levels reveal regions with less water (like bones).

MRI was initially an anatomical imaging technique, but it was soon discovered
that the susceptibility artifact created by iron in the blood could be used to measure
blood volume and oxygenation. Since blood volume and oxygenation respond to
the metabolic demands of neural tissue, they can be used as a proxy for neuronal
activity. In that way, when a region in the brain, for example, is activated, then
the blood may have an increased flow. The hemodynamic response has multiple
components that bear a complicated relationship to the metabolic and electrical
activity of the neural tissue. Nevertheless, fMRI imaging is capable of detecting
the areas in the brain which are more or less active and has become a great tool for
neuroscientists to visualize which area in the brain responds during an attention-
related patient exercise (Fig. 3.12).

3.2.3 Functional Imaging: MEG

MEG stands for magnetoencephalography. The idea is simple: while the EEG
detects the electrical field which is heavily distorted when traversing the skull
and skin, MEG detects the magnetic field induced by this electrical activity. The
magnetic field has the advantage of not being influenced by the skin or the skull.
While the idea is simple, in practice the magnetic field is very weak which makes
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Fig. 3.12 Example of fMRI output: red active regions superimposed on an anatomical MRI
sagittal image (Adapted from Ref. [41])

it very difficult to measure. This is why the MEG imaging is relatively new:
the technological advances that allow MEG to be effective are based on SQUID
(superconducting quantum interference devices). The magnetic field of the brain
can induce electricity in a superconducting device which can be precisely measured.
Modern devices have spatial resolutions of 2 mm and temporal resolutions of some
milliseconds. Moreover, MEG images can be superimposed on MRI anatomic
images which help to rapidly localize the main active areas. Finally, participants in
MEG imaging can have an upright seated position (Fig. 3.13) which is more natural
during testing than the horizontal position of fMRI or PET scan.

3.2.4 Functional Imaging: PET Scan

As for fMRI, PET scanning (positron electron tomography) is also a functional
imaging tool, and it can thus produce also a higher signal in case of brain activity.
The main idea of PET scan is that a mildly radioactive substance which is injected
to the patient releases positrons (antielectrons which are particles of the same
properties as an electron but with positive charges). Those positrons will almost
instantaneously meet an electron and have a very exo-energetic reaction (called
annihilation). This annihilation will transform the whole mass of the two particles
into energy and release gamma photons in two opposite directions which will be
detected by the scanner sensors. The substance which is injected will go and fixate
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Fig. 3.13 A participant set i ]
into the MEG device and a
visual experiment (Adapted

from Ref. [42]) T

Visual experiment

Stimulation Control Difference

-

Fig. 3.14 Example of output in case of a repetitive visual pattern (flickering). The difference let
us see the areas activated by the stimulus (Adapted from Ref. [43])

on the areas of the brain which are the most active, which means that those areas
will exhibit a high number of annihilations. As for fMRI, the PET scan let the
neuroscientists know which areas of the brain are activated when the patient is
performing an attention task. Figure 3.14 shows an example of the use of PET scan
to see the influence of a flickering visual pattern in the brain.
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3.2.5 Complementary Techniques to Manipulate Brain
Activity: TMS or tDCS

TMS stands for transcranial magnetic stimulation, and it uses electromagnetic
induction to stimulate a precise region of cortex. A current passing through a coil
of wire generates a magnetic field. Rapid variations of this magnetic field induce
a transient electric field which in turn influences the membrane potential of nearby
neurons.

Beginning with 1980s, TMS has been used first for clinical diagnostic and then in
psychiatric therapy. It is now also used in conjunction with other imaging modalities
such as fMRI, PET scans, and even with EEG devices.

Indeed, imaging techniques allow to find the active areas of the brain for a given
task. However, they cannot say which part of those regions and when exactly they
are really necessary to solve the task. By interfering with the normal functioning
of a brain area, TMS, which has a very good spatiotemporal resolution, provides
cues about when and where exactly a brain area is making its critical contribution
to behavior.

Figure 3.15 shows a TMS which influences EEG signals (top-right), fMRI
images (bottom-left), and PET scan (bottom-right).

p TMS-EEG
:ﬂw fMl \l ".V\L'N

fMRI-guided
™S

Fig. 3.15 Top left: a TMS setup. Top right: EEG modification following a TMS. Bottom left: fMRI
images response after the TMS. Bottom right: PET scan response after the TMS (Adapted from
Ref. [44])
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Transcranial direct current stimulation (tDCS) is another method which aims in
providing neurostimulation. The difference with the TMS is that it uses constant
current delivered to the brain area of interest via electrodes on the scalp.

3.2.6 Functional Imaging and Attention

Positron emission tomography (PET) and functional magnetic resonance imaging
(fMRI) have been extensively used to explore the functional neuroanatomy of
cognitive functions. MEG imaging becomes to be used in the field as in [45]. In
[46], a review of 275 PET and fMRI studies of attention type, perception, visual
attention, memory, language, etc. is described. Depending on the setup and task, a
large variety of brain regions seem to be involved in attention and related functions
(language, memory). This findings support again the idea that at the brain level,
there are several attentions and their activity is largely distributed across almost all
the brain. Attention goes from low-level to high-level processing, from reflexes to
memory and emotions, and across all the human senses.

3.3 Summary

* Eye tracking remains a gold standard mainly in engineering and computer
science even if it is used also in psychology.

* Mouse tracking can be more and more used with the need to build very large
stimuli datasets to model attention in computer science.

* In neuroscience, fMRI has the best spatial resolution and EEG/ERP and MEG
the best temporal resolution.

» fMRI has become one of the most used methods in neuroscience.

* The use of TMS or tDCS in conjunction with other imaging techniques provides
precise cues about when and where exactly a brain area is making its critical
contribution to behavior.
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Chapter 4
Where: Human Attention Networks and Their
Dysfunctions After Brain Damage

Tal Seidel Malkinson and Paolo Bartolomeo

4.1 Taxonomies of Human Attention

To behave in a coherent way in a changing environment, we need to select stimuli
appropriate to our goals. On the other hand, because of capacity limitations, we must
be capable of ignoring other, less important objects, which also compete to become
the focus of our subsequent behavior. Neural mechanisms of attention resolve this
competition by integrating the information relative to the agent’s goals and to
the salience of the sensorial stimuli [1]. Thus, attention to external information
can help the agent select locations in space, points in time, or modality-specific
input [2]. Other attention processes select, modulate, and maintain internally
generated information, such as task rules, responses, long-term memory, or working
memory [2].

T. Seidel Malkinson (<)
Inserm U 1127, Hopital Pitié Salpétriere, ICM building, 47, bd de I’hopital, 75013 PARIS, France

Sorbonne Universités, UPMC Univ Paris 06, F-75013 Paris, France
CNRS, UMR 7225, F-75013 Paris, France

Institut du Cerveau et de la Moelle épiniere, ICM, F-75013 Paris, France
e-mail: tal.seidel @mail.huji.ac.il

P. Bartolomeo
Inserm U 1127, Hopital Pitié Salpétriere, ICM building, 47, bd de I’hopital, 75013 PARIS, France

Sorbonne Universités, UPMC Univ Paris 06, F-75013 Paris, France
CNRS, UMR 7225, F-75013 Paris, France

Institut du Cerveau et de la Moelle épiniere, ICM, F-75013 Paris, France
e-mail: paolo.bartolomeo@gmail.com

© Springer Science+Business Media New York 2016 39
M. Mancas et al. (eds.), From Human Attention to Computational Attention,

Springer Series in Cognitive and Neural Systems 10,

DOI 10.1007/978-1-4939-3435-5_4


mailto:tal.seidel@mail.huji.ac.il
mailto:paolo.bartolomeo@gmail.com

40 T. Seidel Malkinson and P. Bartolomeo

Attention and its neural correlates are not unitary phenomena; they can be
better understood as a heterogeneous, if interacting, set of processes. According
to traditional theories, attention is broadly divided into two domains: a selectivity
aspect and an intensity aspect [3]. On the other hand, Parasuraman [4] identified
at least three independent but interacting components of attention: (1) selection,
that is, mechanisms determining more extensive processing of some input rather
than others; (2) vigilance, the capacity of sustaining attention over time; and (3)
control, the ability of planning and coordinating different activities (Table 4.1).
Some authors have distinguished between vigilance and sustained attention as
being two extremes of a continuum within the intensity domain. Thus, vigilance
has been considered “a state of readiness to detect and respond to small changes
occurring at random time intervals in the environment” [7] and is studied primarily
through long, tedious tasks — vigils — requiring individuals to continuously monitor
the environment for rare events, e.g., the detection of an infrequent blip on a radar
screen. On the other hand, sustained attention would intervene when the flow of
information is more rapid, requiring continuous active processing and monitoring
[8]. For example, an interpreter giving an “online” translation of a speech would
be considered to be actively sustaining attention to the words of the speaker. In
our view, both ends of this intensity spectrum require holding current goal or task

Table 4.1 A schematic taxonomy of attention processes and of their anatomical bases

Type of attention Function Anatomy
Spatial selective Orienting of attention to  Bilateral DAN (superior parietal lobule,
attention spatial locations and to intraparietal sulcus, and dorsolateral
objects in space prefrontal cortex)
Stimulus-driven Processing of unexpected Right-hemisphere VAN (inferior parietal
attentional capture events lobule, temporoparietal junction, and
ventrolateral prefrontal cortex)
Sustained (vigilant) Rapid responses to Right-hemisphere VAN, thalamic and
attention or tonic external stimuli brain stem nuclei (esp. locus coeruleus),
alertness (independent of their anterior cingulate cortex, anterior insula
spatial position)
Phasic alertness Alertness externally Vigilant attention networks + left
generated by a warning prefrontal cortex and thalamus
signal
Arousal General wakefulness and ~ Diffuse cortical projections from brain
responsiveness stem nuclei (basal forebrain, locus

coeruleus, medial forebrain bundle,
dorsal raphe nucleus)
Executive control Monitoring and conflict Dorsal anterior cingulate cortex,
solving dorsolateral prefrontal cortex, right
ventrolateral anterior cingulate cortex

Note the functional and neural overlap between attentional capture (exogenous attention) and
sustained (vigilant) attention. DAN dorsal attention network, and VAN ventral attention network
[5]. From Bartolomeo [6]. See also Figs. 4.1 and 4.3 for an illustration of the anatomy of these
brain regions.
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Fig. 4.1 (a) An illustration of the midsagittal surface of the brain, depicting the thalamus
(blue), the anterior cingulate cortex (purple), the brain stem (yellow), the locus coeruleus and its
projections (green), the raphe nuclei and their projections (orange), and the basal forebrain and its
projections. (b) An illustration of the lateral view of the brain, depicting the occipital lobe (blue),
the parietal lobe (yellow), the temporal lobe (green), the frontal lobe (purple), and the prefrontal
cortex (magenta) within it

instructions in mind in order to monitor incoming information from the environment
and produce (motor) outputs that satisfy the goal/task demands. In this sense, both
vigilance and sustained attention require processes that are often termed as being
“top-down” in current parlance [9].

In sum, attention must allow an organism to successfully cope with a contin-
uously changing external and internal environment while maintaining its goals.
This flexibility calls for mechanisms that (a) allow for the processing of novel,
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unexpected events that could be either advantageous or dangerous, in order to
respond appropriately with either approaching or avoidance behavior, and (b)
allow for the maintenance of finalized behavior despite distracting events [10]. For
example, attention can be directed at an object in space either in a relatively reflexive
way (e.g., when a honking car attracts the attention of a pedestrian) or in a more
controlled mode (e.g., when the pedestrian monitors the traffic light waiting for the
“g0” signal to appear). It is thereby plausible that different attention processes serve
these two partially conflicting goals [11]. A traditional distinction in experimental
psychology refers to more exogenous (or stimulus-dependent, bottom-up) processes
for orienting attention to novel events [12, 13], as opposed to more endogenous
(or strategy-driven, top-down) orienting processes, which would be responsible for
directing the organism’s attention toward relevant targets despite the presence of
distractors in the environment [14].

4.1.1 Spatial Selective Attention

The concept of spatial selective attention refers operationally to the advantage in
speed and accuracy of processing for objects lying in attended regions of space as
compared to objects located in non-attended regions [15].

When several events compete for limited processing capacity and control of
behavior, attention selection may resolve the competition. In their influential
neurocognitive model of selective attention, Desimone and Duncan [16] proposed
that competition is biased toward some stimuli over others by neural attention
processes on the basis of the organisms’ goals and of the sensory properties of the
objects, thereby giving priority to some objects over others.

A subset of these selective attention processes deals with objects in space. In
ecological settings outside the laboratory, agents usually orient toward important
stimuli by turning their gaze, head, and trunk toward the spatial location of the
attended stimulus [17]. This is done in order to align the stimulus with the part
of the sensory surface with highest resolution (e.g., the retinal fovea). This allows
further perceptual processing of the detected stimulus, for example, its classification
as a useful or as a dangerous object. Even very simple artificial organisms display
orienting behavior when their processing resources are insufficient to process the
whole visual scene in parallel [18]. However, attention can also be oriented in space
without eye movements, via so-called “covert” orienting [15].

4.1.2 Cued Detection Tasks

Posner and his co-workers developed a manual response time (RT) paradigm to
study the covert orienting of attention. Subjects are presented with three horizontally
arranged boxes (Fig. 4.2). They fixate the central box and respond by pressing a
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Fig. 4.2 Frontoparietal attention networks in the monkey and in the human brain. SLF superior
longitudinal fasciculus, DAN dorsal attention network (intraparietal sulcus/superior parietal lobule
and frontal eye field/dorsolateral prefrontal cortex), VAN ventral attention network (temporopari-
etal junction, TPJ, and inferior/middle frontal gyri). The DAN is often considered to be bilateral
and symmetric; the VAN is lateralized to the right hemisphere (From Bartolomeo et al. [19])

key to a target (an asterisk) appearing in one of two lateral boxes. The target is
preceded by a cue indicating one of the two lateral boxes. Cues can be either central
(an arrow or another symbol presented in the central box) or peripheral (a brief
brightening of one peripheral box). Valid cues correctly predict the box in which
the target will appear, whereas invalid cues indicate the wrong box. Normal subjects
usually show a cue validity effect consisting in faster RTs and increased accuracy for
valid cue-target trials than for invalid trials (but see the phenomenon of inhibition of
return described below). This suggests that the cue prompts an orienting of attention
toward the cued location, which speeds up the processing of targets appearing in that
region and slows down responses to targets appearing in other locations.

In this paradigm, it is often the case that a large majority (e.g., 80 %) of cues
are valid; in this case, cues are said to be informative of the future position of the
target. Alternatively, cues may be non-informative, when targets can appear with
equal probabilities in the cued or in the uncued location. Peripheral non-informative
cues attract attention automatically or exogenously. This exogenous attention shift
(revealed by a cue validity effect) is typically observed only for short stimulus-onset
asynchronies (SOAs) between cue and target. For SOAs longer than 300 ms, uncued
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targets evoke faster responses than cued targets [20-22]. This phenomenon is
known as inhibition of return (IOR) [23, 24] and is often interpreted as reflecting
a mechanism which promotes the exploration of the visual scene by inhibiting
repeated orientations toward the same locations (but see [21, 25, 26]). Exogenous,
or stimulus-dependent, and endogenous, or strategy-driven, mechanisms of attention
orienting are thus qualitatively different, though highly interactive, processes [11].
An interesting property of exogenous orienting of attention is that it does not
remain focused on the stimulated spatial position, but tends to spread to the whole
perceptual object presented in that region [27, 28].

4.2 Networks of Human Attention

4.2.1 Sustaining Attention in Time

An important component of attention, which does not necessarily involve selection,
is the capacity to rapidly respond to external stimuli, whether or not accompanied
by distractors. This aspect is often referred to as alertness, vigilant or sustained
attention, with a typical time span measured in seconds [29].

The alerting system is believed to produce a general alert state that would be
responsible for spreading attention over a broad area of space and is believed to be
modulated by the locus coeruleus (Fig. 4.1a) [30], a collection of neurons in the
pons (part of the brain stem) that secrete the neurotransmitter norepinephrine and
whose axons project throughout nearly the entire central nervous system. Release of
norepinephrine increases alertness. A higher alert state allows for faster processing
of information, independently of its spatial location [31]. We can voluntarily
maintain our level of alertness over time, a function known as sustained attention,
which involves the right prefrontal cortex (PFC, Fig. 4.1b); [32], the inferior parietal
lobule (IPL), and the subcortical structures [33]. Right frontoparietal systems
(Fig. 4.1b) can be important for modulating alertness, especially when alertness is
to be generated in the absence of suitable external stimuli [29]. Thus, brain networks
important for sustained attention include the PFC and PPC (posterior parietal cortex)
primarily in the right hemisphere [34], with additional contribution from thalamic
and brain stem nuclei [35].

A “salience networks” comprising the dorsal anterior cingulate cortex (dACC;
Fig. 4.1a) in the medial wall of the frontal lobe, the anterior insula, the thalamus,
and the anterior PFC may be important to maintain tonic (sustained) alertness and
facilitate stimulus detection [36]. The ACC might thus constitute an important
interface between the right frontoparietal cortical system and subcortical arousal
mechanisms [29].

In particular, the ACC could assume a key role in the modulation of alertness
depending on task demands [35, 37-39]. Neuroimaging studies (review in [40])
showed that task difficulty was strongly correlated with activation peaks, especially
in the supracallosal part of the ACC. More difficult tasks possibly call for an
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increased level of alertness and a higher activation of the brain stem catecholaminer-
gic (i.e., norepinephrine and dopamine) systems. Consistent with these notions, the
ACC is densely connected to the noradrenergic [41] and cholinergic [42] subcortical
systems involved in the regulation of alertness (see also [43]).

The alertness level can also be modulated experimentally by presenting warning
signals that carry information about when, but not where, targets will appear. This
is so-called phasic alertness. In addition to the (mainly right-lateralized) neural
structures involved in sustained attention, phasic alertness is associated with activity
in the left PFC and thalamus [33].

Although sometimes used interchangeably with alertness, arousal should be
referred to general wakefulness and responsiveness and related to slow circadian
rhythms. Of particular importance for arousal are systems projecting to the cortex
from the brain stem [44], the cholinergic basal forebrain, the noradrenergic locus
coeruleus (also implicated in alertness [45]), the dopaminergic medial forebrain
bundle, and the serotoninergic dorsal raphe nucleus [29].

4.2.2 Orienting and Reorienting to Objects in Space

Today, we know a fair amount of detailed information about the anatomy, functions,
dynamics, and pathological dysfunctions of the brain networks that subserve the
orienting of gaze and attention in the human brain. Here, we describe some of the
observations using neurophysiological techniques in the monkey or functional mag-
netic resonance imaging (fMRI) in humans to pinpoint the anatomical structures and
networks which are activated during the performance of attention-related functions.
Important components of these networks include the dorsolateral prefrontal cortex
(PFC) and the posterior parietal cortex (PPC) (Fig. 4.3).

Physiological studies indicate that these two structures show interdependence
of neural activity and thus compose a functional frontoparietal networks. In the
monkey, analogous PPC and PFC areas show coordinated activity when the animal
selects a visual stimulus as a saccade target [46].

Functional MRI studies in healthy human participants (reviewed by [5]) indicate
the existence of multiple frontoparietal networks for spatial attention (Fig. 4.3, right
panel).

A dorsal attention network (DAN), composed of the intraparietal sulcus
(IPS)/superior parietal lobule and the frontal eye field (FEF)/dorsolateral PFC,
shows increased blood oxygenation level-dependent (BOLD) responses during the
orienting period. Functional MRI also demonstrated a ventral attention network
(VAN), which includes the temporoparietal junction (TPJ) and the ventral PFC
(inferior and middle frontal gyri), and shows increased BOLD responses when
participants have to respond to targets presented in unexpected locations.

Thus, the VAN is considered important for detecting unexpected but behaviorally
relevant events. Importantly, the DAN is considered to be bilateral and symmetric,
whereas the VAN is strongly lateralized to the right hemisphere. According to
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Fig. 4.3 (a) Illustration of a typical Posner paradigm (From Ref. [11]). Targets can be preceded
by either peripheral cues (left) or central cues (right). (b) Typical response time results (in
milliseconds) observed when peripheral non-predictive cues precede targets at different SOAs
(stimulus-onset asynchronies, the time intervals between the onset of the cue and the onset of
the target). Reaction times are faster for valid versus invalid trials at short SOAs, but the effect
reverses at SOAs longer than 300 ms, demonstrating an IOR effect. (¢) Typical response time
results observed when central predictive cues precede targets at different SOAs. Reaction times
are faster for valid versus invalid trials, and the effect is sustained even at the longest SOA. ISI
(interstimulus interval) is the time interval between the end of the cue and the beginning of the
target (Reproduced from Chica et al. [11]. © 2013, with permission from Elsevier)

Singh-Curry and Husain [9], the VAN is not only dedicated to salience detection
in a stimulus-driven way but is also responsible for maintaining attention on goals
or task demands, which is a top-down process. In support of this proposal, functional
MRI has suggested a role for the inferior frontal junction (parts of Brodmann areas
9, 44, 6) in mediating interactions between bottom-up and top-down attention [47].
Furthermore, TPJ, the caudal node of the VAN, demonstrates increased BOLD
response for behaviorally relevant distractors, but not for nonrelevant but highly
salient ones [48].

Importantly, despite some resemblance, human and monkeys differ funda-
mentally in the structure and function of these two networks. A study directly
comparing the brain activity in humans and monkeys during the performance of
the same attention-demanding task found that the VAN is unique to humans and
thus has probably developed after the evolutionary divergence of humans from
monkeys [49]. Moreover, the DAN, which exists in monkeys, exhibits fundamental
differences in its structure and organization between the two species. In humans, it
encompasses more brain areas, and its potentially homologous areas present major
differences in their basic organization, such as in their receptive field distribution.
These results suggest that the human and macaque attention systems have separately
evolved to meet the unique challenges each species faces [49].

Studies using noninvasive brain stimulation with transcranial magnetic stimula-
tion (TMS) have further specified the hemispheric functions and asymmetries of
the attention networks. Double pulses of TMS on the right TPJ interfered with IOR
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when delivered between cue and target [50], thus indicating that not only the DAN,
but also the VAN does play a role during the orienting period [6]. Repetitive TMS
over IPS or TPJ in the right hemisphere lastingly interfered with manual IOR for
ipsilateral right-sided targets [51], thus mimicking the effects of brain lesions [52].
In sharp contrast, repetitive TMS over the homolog regions in the left hemisphere
had no measurable effect on IOR [53]. Thus, there is a clear hemispheric asymmetry
favoring the right hemisphere in the cortical control of IOR, which not only concerns
the VAN, but also the DAN.

Importantly, and not surprisingly given the functional neuroimaging evidence
of frontoparietal attention networks, PFC and PPC are directly and extensively
interconnected by anatomical white matter tracts. In particular, studies in the
monkey brain have identified three distinct frontoparietal long-range branches of
the superior longitudinal fasciculus (SLF) on the basis of cortical terminations
and course [54,55] (see Fig. 4.3, left panel). Recent evidence from advanced in
vivo tractography techniques and postmortem dissections suggests that a similar
architecture exists in the human brain [56] (Fig. 4.3, middle panel). In humans,
the most dorsal branch (SLF I) originates from Brodmann areas (BA) 5 and 7 and
projects to BA 8, 9, and 32. The middle pathway (SLF II) originates in BA 39 and 40
within the inferior parietal lobule (IPL) and reaches prefrontal BA 8 and 9. The most
ventral pathway (SLF III) originates in BA 40 and terminates in BA 44, 45, and 47.
These results are consistent with the functional MRI evidence on attention networks
mentioned above. In particular, the SLF III connects the cortical nodes of the VAN,
whereas the DAN is connected by the human homolog of SLF I. The SLF II connects
the parietal component of the VAN to the prefrontal component of the DAN, thus
allowing direct communication between ventral and dorsal attention networks.

Anatomical evidence is in good agreement with asymmetries of BOLD response
during functional MRI, because the SLF III (connecting the VAN) is anatomically
larger in the right hemisphere than in the left hemisphere, whereas the SLF I
(connecting the DAN) is more symmetrically organized [56]. SLF II also tends to be
right lateralized but with substantial interindividual differences. The lateralization of
SLF II is strongly correlated to behavioral signs of right-hemisphere specialization
for visuospatial attention such as pseudo-neglect on line bisection, i.e., small
leftward deviations of the subjective midline produced by normal individuals
[57-59], and asymmetries in the speed of detection of events presented in the right
or in the left hemifield [56].

4.2.2.1 Attention and Visual Perception

Cortical Streams of Visual Processing

According to an influential model [60], visual information processed in the primary
visual cortex (or striate cortex, see Fig. 4.4 below) follows two major pathways in

the macaque brain. A dorsal cortical visual stream, concerned with visually guided
movements in space [62], but also overlapping in part with the dorsal attention
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Fig. 4.4 The ventral and dorsal cortical visual streams in the macaque monkey. In the original
description [60], the ventral stream is a multisynaptic pathway projecting from the striate cortex
[cytoarchitectonic area (OC)] to area TE in the inferior temporal (IT) cortex, with a further
projection from TE to the ventrolateral prefrontal region FDv. The dorsal pathway was described
as a multisynaptic pathway projecting from the striate cortex to area PG in the inferior parietal
lobule, with a further projection from PG to the dorsolateral prefrontal region FDA. The behavioral
effects of lesions in monkeys suggested that the ventral pathway subserves object vision (“what”),
whereas the dorsal pathway was characterized as supporting spatial vision (“where”) (Reproduced
from Ref. [61]. © 2013, with permission from Elsevier)

systems, reaches the IPL and the dorsolateral PFC. The dorsal stream is often
referred to as the “where” or “how” pathway as it is concerned with where objects
are located and with guidance of movements toward them. A ventral cortical visual
stream, important for perceptual identification, projects from the occipital striate
cortex to the inferior temporal cortex, with a further projection from the inferior
temporal cortex to the ventral prefrontal cortex (Fig. 4.4). The ventral stream is
often referred to as the “what” pathway, as it is involved in identifying objects.

More recently, the concept of the dorsal visual stream has been refined by the
identification of several pathways emerging from the dorsal stream that consist of
projections to the prefrontal and premotor cortices [63] and a further projection
to the medial temporal lobe [64]. Also the ventral visual stream has recently been
subdivided into several components, and the original hypothesis of a serial mode of
processing from V1 to the inferior temporal cortex has now been revised to include
more complex interactions, both feed-forward and feedback [61].

Indeed, the anatomy of long-range white matter tracts in these regions does
suggest that both the dorsal and ventral streams can be further divided into distinct
components. As mentioned before, there are at least three major subdivisions of the
frontoparietal superior longitudinal fasciculus (SLF), both in the monkey [55] and in
the human brain [56]. Concerning the occipitotemporal pathway, several functional
systems are starting to emerge in the monkey [61]. Anatomically, two major systems
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Fig. 4.5 Virtual in vivo dissection of the ILF (in green), the IFOF (in red), and the posterior
segment of the superior longitudinal fasciculus (in yellow) (Reproduced from Thiebaut de Schotten
et al. [56]. © 2012, with permission from Oxford University Press)

have been identified in the human brain. They run along the inferior longitudinal
fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF) [65] (Fig. 4.5).

Attentional Modulations of Visual Perception

Attention influences in important ways not only the perception of near-threshold
visual targets [66], but also the subjective perception of suprathreshold visual
stimuli, for example, by increasing spatial resolution, i.e., the ability to discriminate
between two nearby points in space [67].

Thus, neural activity in the ventral visual pathways is modulated by attentional
processes [68,69]. In particular, attention increases the neuronal responses and alters
the profile and position of the receptive fields of ventral stream neurons near the
attended location [70]. Although attention effects are seen almost all through the
visual cortex, attention modulatory power follows a clear gradient. When moving
up the visual processing hierarchy, the strength of attentional effects dramatically
increases [71]. Attentional modulation in humans can be seen as early in the visual
processing hierarchy as the LGN [72]. Moreover, the attentional modulation of
population receptive fields, i.e., the “attention field,” was recently studied using
single-voxel modeling of fMRI time courses [73]. Attention fields were found to
scale with eccentricity and varied across visual areas. In addition, voxels in multiple
visual areas exhibited suppressive attentional effects such that they had an enhancing
Gaussian center with a suppressive surround. This study suggests that large-
scale brain networks, including frontoparietal attention networks and more ventral
occipitotemporal streams of processing, are involved in conscious visual perception.

4.2.3 Target Salience

Stimuli that stand out from their surroundings are more likely to capture selective
attention. This feature-based attention is influenced both by bottom-up processes,
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which compare the difference between a stimulus and its surroundings over different
visual features like contrast, color, etc., as well as top-down processes, assessing
the behavioral relevance of the stimulus. An influential computational framework
explaining how salience may be computed is based on the concept of saliency maps
[74, 75]. According to this framework, the visual information is first processed by
early visual neurons, which are sensitive to the basic visual features of the stimulus.
Locations, which significantly differ from their neighbors, are then highlighted. All
highlighted locations from all feature maps are combined into a single saliency map
which represents a pure salience signal that is independent of visual features [74].
The resulting sparse representation of the visual environment reflects the system’s
best guess as to the most relevant information [71].

Based on primate neurophysiological studies, two main saliency-related cortical
regions were identified. The neuronal responses in the primate FEF (a part of
DAN in the human brain) were found to be linked both to bottom-up aspects of
stimulus saliency and to top-down contextual factors, suggesting it may be involved
in the generation of saliency maps [5, 71]. Additionally, Bisley and Goldberg [76]
proposed that area LIP acts as a priority map in which objects are represented by
activity proportional to their behavioral priority, combining bottom-up inputs with
an array of top-down signals. These regions seem to be tightly linked to those areas
responsible for the planning and execution of eye movements, which is in agreement
with the frequent need to foveate salient regions of the visual environment for a more
detailed analysis [71].

In humans, target salience is often assessed using simple behavioral tasks like
the oddball paradigm, in which infrequently occurring target stimuli (to which
the subject must respond) are presented among a stream of frequently occurring
nontarget stimuli, to which responses must be withheld [9]. The neurophysiological
signature of the detection of salient events in this paradigm is a positive event-
related response (ERP) centered over the parietal lobe occurring approximately
300-500 ms after target presentation but not after familiar nontargets, known as
the P3 or P300 [9]. Pathological alterations of the P3 were found following lesions
to the TPJ [77] and the prefrontal cortex [78] and in patients with visual neglect
[79]. The cortical regions most consistently activated during target detection in
functional imaging studies are the right-sided IPL, IPS, TPJ, and frontal regions,
with substantial overlap with the VAN [9].

4.3 Visual Neglect

A lot can be learned about the cognitive and neuroanatomical aspects of human
attention from the case of visual neglect.

This common and severely disabling neurological condition typically affects the
left side of the patient’s space and results from right-hemisphere damage, usually
centered on the inferior parietal lobule [80] or on the superior temporal lobe [81].
Neglect patients ignore events occurring on their left, sometimes to the dramatic
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extent of “forgetting” to eat from the left part of their dish or of bumping into
obstacles situated on their left. Patients with left neglect also display a tendency
to look to right-sided details as soon as a visual scene deploys, as if their attention
was “magnetically” attracted by these details [82]. They are usually unaware of
their deficits (anosognosia) and often obstinately deny being hemiplegic. Neglect
is a substantial source of handicap and disability for patients and entails a poor
functional outcome. Unilateral neglect negatively affects patients’ motor recovery
[83] and social rehabilitation. Deficits at different levels of impairment may be
at work in different patients; however, the frequency and severity of attentional
problems in neglect patients have been repeatedly underlined [84]. Patients with
left-brain damage may also show signs of right-sided neglect, albeit more rarely
and usually in a less severe form [85, 86]. For example, using a neglect battery,
Bartolomeo et al. [87] found signs of contralesional neglect in 17 of 30 right-
brain-damaged patients (57 %), but only in two of 30 left-brain-damaged patients
(7 %). Right visual neglect seems to result from extensive left-hemisphere lesions
concomitant with a (partial) right-hemisphere impairment [88]. Hence, right visual
neglect might be more common with neurodegenerative conditions than with focal
brain lesions ([89, 90]; but see [91]).

Neglect patients present an abnormal behavioral pattern that can be readily seen
using the Posner location-cueing paradigm. In general, endogenous orienting is
relatively spared, if slowed, in visual neglect, whereas exogenous orienting appears
heavily biased toward the right side [84]. Specifically, in exogenous attention
orientation, the patients’ RTs are much slower on both the affected and the intact
side [84]. In addition, patients typically show prolonged RTs on invalid trials when
the target is presented on the left, suggesting difficulties to disengage from the
preceding right-sided cue and to transfer their attention [84, 92, 93]. Moreover, even
when targets are presented in the right intact side, the RT pattern in exogenous
orientation is abnormal: left neglect patients seem to show facilitation, instead
of normal IOR, for repeated events occurring on the right, allegedly “normal”
side [94]. A meta-analysis of results obtained in brain-damaged patients with
the Posner paradigm revealed that (1) the disengage deficit is robust following
peripheral cues but not following central cues, (2) the disengage deficit is large
at shorter SOAs and decreases as SOA increases, and (3) the disengage deficit is
larger in patients showing signs of unilateral neglect. The first two characteristics
are typical of the operations of exogenous orienting; the third clearly links the
disengage deficit to unilateral neglect [92]. Thus, the results of this meta-analysis
give strong support to the hypothesis of a bias of exogenous orienting in left
neglect.

Other component deficits of neglect might not necessarily be lateralized or
directional problems. For example, it has been suggested that neglect results not only
from an asymmetry in selective spatial attention but also from impairments in other,
non-lateralized attentional components, such as arousal or vigilance [95]. Such non-
lateralized deficits may be invoked to explain the fact that neglect patients are slower
than normal individuals when responding to visual targets even in the ipsilesional,
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non-neglected space. The normal timing of attentional events also seems to be
disrupted in neglect for centrally presented visual stimuli. When normal individuals
have to identify two visual events appearing one shortly after another in the same
spatial location, the second event goes undetected if presented in a time window
of 100450 ms after the first event (“attentional blink” [96]). Non-lateralized
attentional impairments could account for the hemispheric asymmetry of unilateral
neglect. Right-brain damage slows down RTs more than left-hemisphere lesions
[97], which can be interpreted as an arousal deficit [98]. The preferential occurrence
of a deficit of arousal after right, rather than left, brain damage might be one of
the bases of the predominance in frequency and severity of contralesional neglect
after right, as opposed to left, hemispheric lesions [99, 100]. One could speculate
that a unilateral brain lesion generally delays the processing of information coming
from the contralesional field. An additional, non-lateralized slowing of attentional
operation, resulting from right-brain damage, might further hold back the processing
of left stimuli, to the point of exceeding a deadline after which this information
cannot affect behavior anymore [84].

Thus, an asymmetry of exogenous orienting, with rightward attentional shifts
being easier than leftward shifts, compounded with non-lateralized deficits such as
arousal problems, seems to accommodate the experimental evidence coming from
most cases of left visual neglect [84].

Importantly, the primary regions damaged in neglect include the right ven-
tral attention networks [101]. Moreover, damage to the long-range white matter
pathways connecting parietal and frontal areas within the right hemisphere may
constitute a crucial antecedent of neglect [19, 102, 103]. Thus, neglect would not
result from the dysfunction of a single cortical region but from the disruption of
large networks [19,101]. Only a small number of studies utilized EEG and visually
evoked potential measurements to study the neural basis of neglect, finding slowing
down of activation [104] and abnormal components in late visual processing [105]
reflecting perturbations in the bottom-up processing and feedback connections from
higher visual areas [106]. Several fMRI studies were also conducted, showing
that in these patients a lesioned VAN can induce an imbalance in DAN, with a
relative hyperactivity of left-hemisphere networks [101]. However, many paramount
questions concerning the mechanisms of neglect still remain open. For instance, the
right-hemisphere dominance of spatial neglect is one of the most puzzling aspects
of this syndrome [19, 101]. Another unresolved issue is the fact that many of the
behavioral deficits characterizing neglect are traditionally associated with functions
of the dorsal attention networks, but these may be anatomically spared in strokes
that cause neglect [101].

It is therefore suggested that the pathological neural mechanisms at the base
of neglect are very complex, resulting from disruption of the interaction between
the two attention networks and an ensuing imbalance in their activation. Indeed,
evidence shows that disconnection of the two attention networks is a major cause of
neglect. As mentioned before, the SLF II, whose caudal cortical origin is in part
shared with that of the SLF III in the IPL, connects the parietal component of
the VAN to the prefrontal component of the DAN [56]. Thus, it is plausible that
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damage to the IPL [107], when accompanied by injury to the underlying white
matter [108, 109], can produce severe and persisting signs of neglect because it
can jointly disrupt the functioning of both the VAN (through SLF III disconnection)
and the DAN (through SLF II damage). On the other hand, less extensive lesions,
perhaps sparing a significant part of SLF II, might allow for intrahemispheric
compensation mechanisms relying on the possibility of communication between
VAN and DAN offered by SLF II. In this case, an initial imbalance between
the dorsal frontoparietal networks, with the left-hemisphere DAN being relatively
more active than its right-hemisphere counterpart, might subside after the acute
phase, with consequent recovery from neglect signs [110]. Supporting these ideas,
temporary inactivation of the SLF II fibers connecting the DAN and VAN in the
human right hemisphere impairs the symmetrical distribution of visual attention
[103]. Recently, a longitudinal study using MRI tractography found that the
severity of neglect correlated with fractional anisotropy values (a measure of the
directionality of the diffusion of water molecules inferring the structure of white
matter fibers, such that the larger the fibers, the more directional the diffusion)
in superior longitudinal fasciculus II/IIT for subacute patients and in its caudal
portion for chronic patients [111]. The results confirm a key role of frontoparietal
disconnection in the emergence and chronic persistence of neglect and demonstrate
an implication of caudal interhemispheric disconnection in chronic neglect. Such
disconnections may prevent frontoparietal networks in the left hemisphere from
resolving the activity imbalance with their right-hemisphere counterparts, thus
leading to persistent neglect.

How do these notions map on the hypotheses concerning the organization of the
attention networks in the brain? A plausible model of intra- and interhemispheric
interactions in neglect [112] stipulates that damage to right-hemisphere VAN causes
a functional imbalance between the left and right DANs, with a hyperactivity of the
left dorsal frontoparietal networks, which would provoke an attentional bias toward
right-sided objects and neglect of left-sided items. Consistent with this hypothesis,
suppressive TMS on left frontoparietal networks correlated with an improvement of
patients’ performance on cancelation tests [113]. However, evidence also suggests
that the left, unimpaired hemisphere may be crucial for long-term recovery from
neglect [111, 114]. Thus, the classical hemispheric rivalry hypothesis of neglect,
according to which neglect symptoms result from a hyperactive left hemisphere
[115], appears to be too simplistic to account for all the available data. Also,
Singh-Curry and Husain [9] argued that the VAN is not only dedicated to salience
detection in a stimulus-driven way [5] but is also responsible for maintaining
attention on goals or task demands, which is a top-down process. In support
of this proposal, functional MRI has suggested a role for the inferior frontal
junction (parts of BA 9, 44, 6) in mediating interactions between bottom-up
and top-down attention [47]. Furthermore, TPJ, the caudal node of the VAN,
demonstrates increased BOLD response for behaviorally relevant distractors but not
for nonrelevant but highly salient ones (but see [48, 116]). Thus, deficits in these
nonspatial aspects of attention may lead to an exacerbation of the spatial bias in
neglect patients [117].
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4.4 Conclusion

Attention is necessary for the production of coherent behavior, taking into
account both internal goals and the dynamic external environment.

There are several distinct attention processes, each subserved by different
anatomical brain regions.

Sustained attention in time depends on various cortical regions, like the right
frontoparietal networks, the insula, and the anterior cingulate cortex, and on
subcortical structures such as the thalamus and brain stem nuclei.

Spatial selective attention relies on the integrated functioning of frontoparietal
networks, which exhibit a right-hemispheric bias.

Brain damage resulting in an impairment in the coordinated functioning of these
frontoparietal networks may hamper the conscious perception of objects in space
and lead to a significant disability for patients.

Our knowledge of these systems is still too limited to develop a treatment for the
whole range of attentional impairments, but it is expanding at fast pace, offering
hope for the future.
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Chapter 5
Attention and Signal Detection:
A Practical Guide

Vincent P. Ferrera

A faint tap per se is not an interesting sound; it may well escape
being discriminated from the general rumor of the world. But
when it is a signal, as that of a lover on the window-pane, it will
hardly go unperceived.

— William James [1]

5.1 Detection of Weak Signals

The ability to detect weak signals in the environment can have a profound impact on
an organism’s ability to survive and reproduce. This aspect of perception is therefore
likely to have been optimized by natural selection. Part of this optimization may
involve strategies to maximize performance by allocating scarce neural resources.
The ability to allocate limited resources by selecting and prioritizing sensory
information is often what is meant when people talk about selective attention [2].
The notion of a limited capacity filter has been invoked to explain why orienting
attention to a particular location in space or a particular stimulus feature enhances
detection and shortens response times. This view has given rise to imaginative
metaphors such as the “spotlight” [3, 4] or “zoom lens” [5] of attention. An
alternative, albeit less poetic, view considers attention from the standpoint of
a decision-maker trying to make sense of noisy signals arising from multiple
detectors. In this view, what is commonly referred to as “attention” may be a
manifestation of the effect of uncertainty on the behavior of an ideal observer
[6, 7]. While precise definitions are elusive, it is reasonable to say that attention
includes a collection of computational strategies that enhance the detection and
discrimination of weak signals and/or refine the behavioral response to such signals.
These strategies might include increasing the signal-to-noise ratio of individual
neurons, optimizing decision parameters, and identifying subsets of detectors (e.g.,
neurons) that are more reliable.
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Stimulus detectability across the visual scene is one way to quantify percep-
tual salience. Salience maps are important for both human and machine vision
systems as they indicate areas of heightened interest, attention, and action. Signal
detection theory provides various strategies for computing salience maps. Salience
maps computed using principles of signal detection can incorporate the effects of
prior information (i.e., environmental cues or knowledge about target prevalence),
observer bias, and/or economic value.

The conversion of sensory signals into percepts, decisions, and actions occurs
over multiple stages of neural processing. At which level does attention act? Does
attention affect the quality of incoming sensory information? Does it affect decision-
making, response selection, or even later processes? This issue is part of the long-
standing debate over “early” vs. “late” selection of signals [2, 8].

The idea behind early selection is that multiple stimuli compete for attention at
an early stage of sensory processing. Attention biases this competition by enhancing
the representation of behaviorally relevant stimuli [9]. Thus, when attention is
directed toward a particular location or object, it improves the quality of sensory
data acquired at the focus of attention. Improved quality means that the neural
representation has higher fidelity, stronger signal, less noise. Better signal to noise
should enhance the detectability of weak signals.

The “late” selection hypothesis holds that attention acts mainly on higher-order
processes, leaving sensory representations largely intact. For example, attention can
act at the level of response selection by adjusting decision criteria. An observer
may have prior information that creates an expectation that the stimulus will occur
at a particular time or place. This could be due to statistical regularities in the
environment or to the presence of reliable cues, either natural or artificial. If a
stimulus is expected to occur in a given place or at a given time, the observer
may require less sensory evidence to report that it was present. Thus, they may
lower their internal decision threshold or adopt a bias in favor of making a positive
response. The expectation of a stimulus does not necessarily mean that the quality
of the sensory evidence provided by that stimulus is better, but rather that the prior
likelihood of the stimulus biases the observer to report that it is present.

To understand how attention might improve an observer’s performance, it is
useful to introduce the framework of signal detection theory (SDT [10, 11]). SDT
provides a simple set of computations to select responses based on factors such as
signal strength, stimulus probability, and the consequences of different responses.
The underlying model for SDT is that signals in the environment cause changes in
the internal state of an observer. Changes in internal state then guide categorical
responses, such as “yes/no” or “seen/not seen.” The SDT model affords a great
deal of flexibility in mapping stimuli onto responses. Flexibility derives from
the probabilistic relationship between external signals and internal states, and the
criterion-dependent relationship between internal states and responses.

SDT clarifies the distinction between stimulus detectability and response bias.
Detectability is a function of the sensory signal alone. It is the certainty with which
an external event in the environment can be inferred from the internal state of the
observer. Detectability depends only on the difference in the observer’s internal state
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Fig. 5.1 Signal detection model. Noise, n, is added to external signal, s, to produce an internal
state, y, which is compared to criterion, ¢, to determine response, R

Table 5.1 Confusion matrix

) . Stimulus present  Stimulus absent
for signal detection model

Respond “Yes” Hit False alarm
Respond “No”  Miss Correct rejection

when the external stimulus is present as compared to when the stimulus is absent. It
does not depend on the relationship between the observer’s internal state and their
response, which may be biased toward one alternative or the other, independently of
the signal.

Formally, the premise of signal detection theory is that the internal state of an
observer (y) is perturbed by an external signal (s) that is affected by noise (). In
the simplest case of additive noise, y =s+n (Fig. 5.1). The internal state, y, is
then compared to a threshold decision criterion, ¢, to generate a binary response of
“yes/no” or “seen/not seen.” The detectability of the stimulus is entirely determined
by the characteristics of the signal and noise. However, the response can be biased
depending on the level of the decision criterion. A change in criterion might cause
the observer to report that the stimulus is present more or less often even though
there is no real change in stimulus detectability.

In the most basic case, the stimulus takes one of two values (present or absent),
and the response also has two possible values (yes, no). There are thus four possible
outcomes (Table 5.1). Hits and correct rejections are both correct responses. Misses
and false alarms are incorrect.

When the stimulus is present, it gives rise to an internal state drawn from
a probability density function called the signal distribution (S). This distribution
consists of signal 4 noise, as noise is always present. When the stimulus is
absent, the internal state is drawn from the noise distribution (V). Internal state
might correspond to the instantaneous firing rate of a neuron, or the number of
action potentials fired in a specified time interval (spike count). Figure 5.2 (left
panel) shows hypothetical examples of signal (blue bars) and noise (gray bars)
distributions. The dashed vertical lines represent two different criterion values. For
a given criterion value, the hit rate is the proportion of the signal distribution that
is greater than the criterion. Similarly, the false alarm rate is the proportion of the
noise distribution that is greater than the criterion. The miss rate is 1.0, hit rate, and
the correct rejection rate is 1.0, false alarm rate. Observer performance is completely
characterized by the rates of hits and false alarms.

To obtain a criterion-independent estimate of detectability, one can vary the
criterion level through the entire range of states represented in the signal and noise
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Fig. 5.2 (Left) Spike count histograms for stimulus present (blue) or absent (gray) trials. Dashed
vertical lines represent different criterion values. (Middle) ROC curves. “Hits” are the number
of hits divided by hits + misses. “False alarms” is the number of false alarms divided by false
alarms + correct rejections. Blue dots are the ROC derived from the distributions in the left panel.
Red dots are the ROC derived from the distributions in the right panel. Green and magenta dots
are the points of the ROC curves corresponding to the criterion levels shown in the left and right
panels. (Right) Histograms for a case with stronger signal

distributions. For each criterion level, the hit rate can be plotted against the false
alarm rate (Fig. 5.2, middle). The resulting curve is called the “receiver operating
characteristic” or ROC curve. The area under the ROC curve (AROC) is a measure
of stimulus detectability across all criteria. Imagine drawing two random samples:
one from the signal and one from the noise distribution. The area under the ROC
curve is the probability that the sample drawn from the signal distribution is larger.
In psychophysics, the ROC area is equal to the percentage of correct responses for
an ideal observer in a two-interval forced choice experiment.

Based on how the ROC curve is constructed, it follows that changing the decision
criterion, e.g., from the magenta to the green line in Fig. 5.2, only moves one along
the ROC curve. The magenta and green dots superimposed on the blue curve in
Fig. 5.2 (middle) are the hit and false alarm rates corresponding to the criterion
levels in the left panel. Changing the criterion does not change the ROC curve itself.
To do this, there must be a change in the amount of overlap between the signal and
noise distributions. The right panel in Fig. 5.2 shows the distributions for a stronger
signal with the same noise as in the right panel. The corresponding ROC curve is
shown in red in the middle panel. The increased area under the red curve means that
the signal can be more reliably detected.

It should be clear that stimulus detectability depends on the overlap of the
signal and noise distributions, which in turn depends on two factors: the separation
between the means of the signal and noise distributions, and the variances of those
distributions. Attention can therefore improve detectability by increasing the former
and/or reducing the latter. In SDT, these are the only two variables that affect
the internal representation of signal quality. However, attention may also act by
optimizing the decision criteria that determine the observer’s response.
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5.2 Effect of Stimulus Probability

The likelihood that a stimulus will occur during a given observation period is
referred to as its prior probability. In an unbiased experiment, stimulus-present and
stimulus-absent trials should occur in equal proportion, so that the prior probabilities
of signal and noise are both 0.5 and the percent correct that can be achieved by
guessing is 50 %. In most real-world environments, the signal and noise probabilities
are not necessarily equal. Rare or novel signals may attract attention by an oddball
effect. Frequent signals may result in sensory adaptation, thus weakening their
internal representation. Response habituation can also play a role; if a stimulus is
quite rare, then observers may fall into a habit of responding “no.” This habitual
response may cause observers to miss a rare stimulus if they are not vigilant. Some
studies report that prevalence effects can result in miss rates of up to 50 % [12].
Other studies with medical images (chest x-rays) have reported that prevalence
effects are negligible [13].

Observers can take advantage of variations in stimulus probability by adapting
their decision criteria. These adjustments can be made without any explicit knowl-
edge about stimulus probability itself. SDT naturally handles cases where stimulus
probability is different from 0.5. In the unbiased case, the areas of the signal and
noise probability distributions are both equal to 0.5. If there is a preponderance of
signal trials, then the area of the signal distribution will be between 0.5 and 1.0,
while the noise distribution will have area = 1.0 — signal area.

To understand how prior probability affects detectability, it is important to realize
that the hit and false alarm rates are conditional probabilities. Specifically, hit rate
is the probability that the internal state, y, is greater than the criterion, ¢, given that
the stimulus is present: p(y>c | S). Likewise, false alarm rate is conditioned on
the absence of the stimulus, thus p(y>c | N). Because hit rate is conditioned on
the presence of the stimulus, changing the likelihood that the stimulus is present
does not change the hit rate. For a given criterion level, the proportion of the signal
distribution that is greater than the criterion is invariant to scaling of the distribution.
The same goes for the false alarm rate. Hence, stimulus probability has no effect on
the ROC curve and thus no effect on stimulus detectability.

Figure 5.3 illustrates this by showing cases where the signal has a low probability
(left panel) or high probability (right panel). The ROC curves are the same for both
conditions (middle). Another way to think about this is that the ability to detect a
stimulus depends only on the strength and fidelity of its representation in the nervous
system at the time the stimulus is present. It does not depend on the past history of
the stimulus. This surprising feature of ROC curves is advantageous in areas like
medical diagnosis because the probabilities of S and N are generally unknown (and
difficult to measure). Thus, ROC curves are understood to provide a reliable metric
for diagnostic efficacy independent of the relative prevalence of S.

It may seem counterintuitive that detectability is not affected by stimulus prob-
ability. Certainly, prior knowledge about the signal must confer some performance
advantage, and it does. But the advantage derives from the fact that observers are
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Fig. 5.3 (Left) Histogram of spike counts for stimulus-present (signal) and stimulus-absent (noise)
trials with low stimulus probability. (Middle) ROC for (blue dots) and high (red dots) stimulus
probability. (Right) Histograms for high stimulus probability

able to improve performance by altering their decision strategy. If the stimulus
is more likely to appear than not, then there is an advantage to using a more
liberal decision criterion (smaller value of c) for responding “yes.” In this case,
simply closing one’s eyes and guessing that the stimulus is present or saying
that it is always present will yield performance greater than 50 % correct. Signal
detection theory can be used to determine the value of the decision criterion that will
optimize performance (percent correct) for a given signal strength and probability.
Analytically, the optimum criterion is the value of y that satisfies the following
equation:

p (8) *fs(y) = p (N) * fu(y)

where p(S) and p(N) are the signal and noise prior probabilities (signal present
or absent, respectively) and fi(y) and f,(y) are the unweighted signal and noise
probability densities (see [14] for derivation).

Figure 5.4 illustrates simulations where the signal has low (top left) or high (top
right) probability. Performance, in terms of percent correct detection, is plotted
as a function of criterion level in the bottom left for the case of high (red)
or low (blue) signal probability. The dashed vertical line indicates the criterion
level that optimizes performance. The optimum criterion can be computed for any
signal probability (bottom right). These simulations show that, while knowledge
of stimulus probability does not affect detection, performance may nevertheless be
improved by selecting the optimal decision criterion.

One of the chief complaints about SDT is that it seems to assume that the
probability distributions are known with arbitrary precision. In practice, observers
may not know the shapes of these distributions or the prior probabilities of signal
and noise. However, there are simple iterative algorithms for adapting the decision
criterion that produce near-optimal performance and are based only on quantities
available to the observer, for example, their behavioral response and the feedback
they receive (assuming feedback is given). First, note that Table 5.1 can be
rearranged as follows (Table 5.2):
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Fig. 5.4 (Top row) Spike count histogram for low (blue) and high (red) stimulus probabilities.
(Bottom row) Performance as a function of criterion level and optimum criteria for different signal
probabilities

Table 5.2 Confusion matrix

3 . Correct Incorrect
for signal detection model o )
Respond “Yes” Hit False alarm
reordered by response
outcome Respond “No”  Correct rejection  Miss

Hence, an observer can deduce whether the stimulus was present (hit, miss) or
absent (false alarm, correct rejection) based on the conjunction of their response
(yes/no) and the outcome (correct/incorrect). The observer can use this information
to estimate the prior likelihood of the stimulus. Knowing only their response and
the outcome, the observer can optimize their decision criterion based on feedback.

An iterative algorithm for optimizing the decision criterion is the following: (1)
after each “yes” response, the criterion level is incremented in proportion to the
rate of signal-absent trials and, (2) after each “no,” the criterion is decremented in
proportion to the rate of signal-present trials. This can be quantified by the following
updating rules:
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1. If response = “yes,” ¢ (n + 1) = c(n) + k * p(N)
2. If response = “no,” ¢ (n + 1) = c(n) — k x p(S)

The criterion level on trial n is denoted by c(n), k is the learning rate, p(N) is
the probability that the stimulus was absent, and p(S) is the probability of stimulus
present. These probabilities are not known in advance, but are continuously updated
based on feedback. This method is stable and converges to the criterion value
corresponding to an internal state that is equally likely for stimulus-present and
stimulus-absent trials, i.e., p(y | S)=p(y | N). An example of the algorithm’s
performance is shown in Fig. 5.5 (method 1).

If feedback (“correct” or “incorrect”) is given after each trial, then the observer
can deduce whether the outcome is a hit, miss, FA or CR, and thus whether or
not the stimulus was present. Therefore, the information required to implement
this procedure is available to the observer and does not require prior knowledge
of stimulus probability.

There is another algorithm for adapting the decision criterion that uses only
feedback on error trials. Specifically, after each false alarm, the criterion is
incremented a small amount. After each miss, the criterion is decremented by the
same quantity. This process converges on the criterion for which the miss and false
alarm rates are equal, which is close to the optimum criterion for minimizing the
error rate (Fig. 5.5, method 2). It is easy to show that this algorithm is stable: if the
criterion value is too high, then misses outnumber false alarms and the criterion is
decremented until the miss rate equals the false alarm rate; if the criterion is too low,
false alarms outnumber misses resulting in a net increment. Furthermore, as long as
the signal and noise distributions have positive area, there is always a criterion value
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for which misses = false alarms. This can be demonstrated by considering that, as
the criterion goes from —infinity to infinity, the false alarms start at a finite, positive
value and then decrease to zero. At the same time, misses increase from zero to a
finite positive value. Therefore, the miss and false alarm curves must cross. This
procedure is therefore guaranteed to converge and has the additional advantage that
it does not rely on an estimate of stimulus probability. Procedures based only on
correct responses can also be used, but tend to converge at criterion values that are
far from the optimum.

5.3 Effect of Costs and Benefits for Various Qutcomes

SDT has four classes of outcome: hits, misses, false alarms, and correct rejections.
In real-life situations, each outcome has an associated cost or benefit. Misses and
false alarms are both incorrect outcomes, but are not equally costly. If a person
has a medical exam, the cost of a false negative (miss) might be that they will not
receive treatment and their condition may worsen. The cost of a false positive is
that they could receive a treatment that is unnecessary. One of these outcomes may
be catastrophic (e.g., an infection that becomes life threatening), while the other is
relatively benign (taking a superfluous course of antibiotics). Likewise, the benefit
of a hit may be greater or less than a correct rejection.

If one can assign a numerical value to each outcome, then there is a formula for
the expected value (EV) of each trial [14]:

EV =V, *p(h) + Vi *p(m) + Vi *p (fa) + Vor *p (CI')

where V is value, p is probability, and the subscripts denote the various outcomes.
The values of misses and false alarms are typically negative as these outcomes
represent costs. This formula also incorporates effects of prior stimulus probability
as this affects the outcome probabilities.

Figure 5.6 shows an example of the effect of value-weighted outcomes on the
optimal decision criterion. In the left panel are weighted outcomes for hits (green),
correct rejections (blue), misses (black), and false alarms (red). The stimulus
probability is 0.5. The dashed lines represent the balanced case where correct
responses have a value of 1 and errors have a value of —1. The expected payoff
and optimum criterion is shown in black in the right panel.

The heavy lines in the left panel represent a situation where hits have a value
of 1.5, misses —1.5, false alarms —0.7, and correct rejections 0.7. The optimum
criterion in this case (right panel, magenta) shifts to a smaller (more liberal) value.
This results in more hits and fewer misses at the cost of more false alarms and fewer
correct rejections, reflecting the relative value of these outcomes. The optimum
criterion is the value of y that satisfies the following equation:
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Fig. 5.6 Effect of payoffs on optimal decision criteria. (Left) All outcomes have same absolute
value (dashed lined) or different values (solid lines). (Right) Total payoff vs. criterion for equal
outcome value (black) and unequal value (magenta)

(VieVin) * p(S) * ;) = (Ver—Viu) * p(N) * f,(7)

where V (x = h, m, fa, cr) is the value of a hit, miss, false alarm, or correct rejection.
Again, Vy, and Vg, usually have negative values so that when all outcomes have
equal weight (0.5), the terms (V}, — V,,,) and (V,,, — Vj,) can be replaced by 1.0.

The values assigned to different outcome classes may reflect economic value,
such as subjective utility. They may also reflect emotional value (intensity) and
valence (positive or negative). Stimuli that are associated with high outcome values
may automatically attract attention, regardless of whether the outcome is positive or
negative [15].

5.4 Effects of Pooling Over Multiple Detectors

The above considerations apply to the case of a single detector (e.g., a neuron) but
can be readily extended to multiple detectors. In the simplest case, all detectors have
the same inputs, sensitivity, and noise characteristics. All observations therefore
have equal weight. One observation from each of two detectors is the same as
two observations from one detector. However, even this simple case presents an
opportunity to test different rules for pooling across detectors. Furthermore, we can
examine how detectability improves with the number of detectors and observe the
effects of correlations among detector responses. Studies in monkeys have found
that the spike count correlation between nearby visual cortical neurons is roughly
0.1-0.2 [16, 17] and that these correlations are reduced by attention [18, 19].

To analyze the activity in multiple detectors, it is useful to first build an activity
matrix. Each row in this matrix represents an individual detector (neuron), and each
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Table 5.3 Activity matrix Trial 1 Trial2 Trial 3
with each cell [y(i,j)]

representing an average firing Neuron 1 y(LI)  y(1,2)  ¥(1.3)
rate for neuron i on trial j Neuron2 y(2,1) y(22) ¥23)

Neuron3 y(3.1) ¥32) »33)

column is a single observation period (trial). The values in each cell thus represent
the activity of a single detector on a single trial (Table 5.3):

From this activity matrix, we can construct joint ROC functions in several ways.
The simplest method is to treat each cell, y(i,j), as an independent observation. The
result is that the presence of multiple detectors increases the number of observations
at a given time, but otherwise confers no improvement in detectability. In other
words, if all neurons are equal, then adding neurons does not change the joint
ROC curve. It is the same as simply gathering additional observations from a single
neuron.

To gain any advantage from multiple neurons, the responses must be aggregated
in some manner. One method is simply to average observations prior to constructing
the ROC function. One can either average over trials for each neuron or over
neurons within each trial. Both methods reduce the number of effective observations
underlying the ROC, but have the advantage that the variability of those observations
may be substantially reduced. Figure 5.7 shows an example with 12 neurons. In the
left panel are the responses of a representative pair of neurons collected over many
trials (blue dots = stimulus absent, red dots = stimulus present). The trial-to-trial
responses are weakly correlated (Pearson’s correlation coefficient = 0.2). The right
panel shows the ROC function for each of the 12 neurons individually (blue lines)
and for the ensemble (red dots) when activity in each trial is averaged across neurons
before computing the ROC. The average ROC area for each neuron alone is 0.76,
while the joint ROC has area = 0.86. In this example, all neurons have the same
sensitivity, and their contributions are weighted equally. One could alternatively
construct a weighted average such that the contribution of each neuron would be
weighted by its reliability, for example, by dividing by the standard deviation or
variance of the spike count distribution. This would result in a more Bayesian style
of combining responses.

Figure 5.8 (left panel) shows how detectability increases with the number of
neurons. When the response of each neuron is independent of the other neurons,
detectability starts to saturate when there are about 32 neurons in the pool (black
curve). The exact number of neurons at which saturation occurs is not fixed, but
typically depends on the characteristics of the signal and noise, as well as the method
of pooling [20].

The advantage of pooling responses across neurons is reduced when their activity
is correlated. For example, if the degree of correlation for every pair of cells
in the population is r=0.2 (as depicted in Fig. 5.7, left panel), then the area
under the joint ROC is represented by the red curve in Fig. 5.8 (left panel). Here,
the optimum detectability reaches only 85 % of that obtained when there is no
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Fig. 5.8 Impact of neuronal pool size (left panel) and between-neuron response correlations (right
panel) on detectability

correlation between neurons. When the correlation is 0.6 (green curve), there is
almost no advantage of pooling. The same data are replotted as a function of
correlation strength (Fig. 5.8, right panel). The curves for different pool sizes
all come together between r =0.4 and r=0.6, indicating that the strength of
correlation that eliminates the advantage of pooling in this case is about 0.5.

If positive correlations among neurons reduce the benefits of pooling, then
it might be expected that negative correlations would have the opposite effect.
Figure 5.9 shows an example where the pool size is 2 neurons and the trial-to-
trial correlation in firing rate is —0.9. The negative correlation reduces the overlap
of signal and noise distributions. The resulting joint ROC has an area of 0.95. This
can be compared to the case where the correlation is 0 and the joint ROC area is
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Fig. 5.9 Impact of negative correlations on detectability for a pool of 2 neurons. (Right) signal
(red) and noise (blue) distributions. (Left) ROC area as a function of correlation coefficient

0.69. It would therefore seem that negative correlations are capable of producing
huge improvements in detectability. However, there are some important caveats.
Foremost among these is that for a pool size greater than 2, it is impossible for all
the pairwise correlations to be negative. If neurons 1 and 2 are negatively correlated,
and 2 and 3 are also negatively correlated, then 1 and 3 must be positively correlated.
In other words, the correlation matrix must be positive semi-definite. As long as
this constraint is satisfied, a pool of neurons with some negative correlations might
provide significantly better detectability than a pool of independent, uncorrelated
neurons.

For weaker stimuli, the advantages of increasing the size of the neuronal pool are
greater; however, the effects of positively correlated activity are more devastating.
For example, when there is no correlation between neurons, the improvement in
detectability of a weak stimulus may not start to saturate until the pool size reaches
over 1000 neurons. However, even a weak (r=0.1) correlation can eliminate the
advantage of pooling altogether.

Another method for pooling across neurons is to compute the probability of hits
and false alarms for each neuron individually and then sum the probabilities across
neurons. The probabilistically summed hit and false alarm rates can then be used
to compute the joint ROC. The pooled probability of a hit and false alarm is as
follows:

p (hit) = 1.0-[p (miss;) &p (missy) & ... &p (miss,)]

p(fa) = 1.0-[p(cr)) &p(cr)) & ... &p(cry)]

where the subscripts (1 ... n) index the individual neurons and n is the
total number of neurons. The probability of a miss or correct rejection is
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calculated across all trials for each neuron. These calculations are done for
each criterion level to construct the joint ROC curve. Note that because the
firing rates may be correlated across neurons, the probabilities of misses or
correct rejections are not independent. Thus, the right sides of these equations
must be calculated using the formula for the joint probability of dependent
events:

p (a&b&c&d& ...) = p(a) x p (bla) * p (c|a&b) * p (d|a&kb&c) ...

These results suggest that attention can improve signal detection by reducing
correlated activity among neurons or by selecting the responses of neurons whose
activity is maximally uncorrelated (or negatively correlated). However, we have
so far only dealt with the case of detectors with uniform sensitivity. In general,
neurons may have different sensitivities (responsiveness) and baseline firing rates.
Furthermore, the degree of correlated activity between pairs of neurons is likely
to vary across the population, rather than being constant for all pairs as in the
simulations presented here.

The above considerations apply to the case where all neurons in the pool respond
to the signal. In this case, increasing the number of neurons in the pool increases
stimulus detectability, though the marginal improvement may at times be small.
However, it is unusual for all detectors to be sensitive to the stimulus. In general,
a given stimulus will be represented by a small fraction of the relevant population
of neurons, i.e., those whose front-end filtering properties (e.g., spatial and feature
selectivity) are appropriately matched to the stimulus. We can call this the “signal
pool.” The rest of the neurons in the brain (the “noise pool”) contribute nothing to
detection of the stimulus. In fact, their activity is deleterious to performance as it
represents background noise. One of the great problems of attention is how to select
responses from the signal pool while ignoring or suppressing activity in the noise
pool. The problem is compounded by the fact that individual neurons can switch
from one pool to the other at any given time, depending on the stimuli present in the
environment and the organism’s behavioral goals.

5.5 Uncertainty and Cueing Effects

One of the most common behavioral paradigms for studying attention is to provide
observers with prior information (a cue) about a target whose properties are
uncertain [4, 21, 22]. For example, observers might be asked to detect a low contrast
target presented at a location that is randomized from trial-to-trial, thus introducing
spatial uncertainty. At some time before the target appears, a high contrast cue is
presented at a location that is more or less predictive of the target location. Such
cues often improve performance accuracy, but whether these improvements are due
to enhanced stimulus detectability or reduction in decision uncertainty has been
subject to much debate [23-27].
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Figure 5.10 illustrates trial conditions from a task where the stimulus (a vertically
oriented grating patch) can appear at one of two locations (essentially the same task
as used by [21]). The subject’s task is to report the presence of the target. On all
trials, the cue is equally likely to occur at either location. On half the trials, there is
no stimulus (“catch” trials). On the other trials, the stimulus is preceded by a cue
that predicts where the stimulus is likely to appear (i.e., it may or may not be a
“valid” cue). The predictiveness of the cue is referred to as its “validity.” If the cue
is 80 % valid, then the stimulus appears at the cued location on 80 % of the trials
and at the uncued location on 20 % of the trials. If the cue is valid on 80 % of the
signal-present trials and invalid on 20 %, then the signal probability is 0.4 at the
cued location and 0.1 at the uncued location. The cue not only attracts attention but
allows the observer to use a more liberal criterion for responding that the stimulus
is present. This should result in a higher percent correct on cued vs. uncued trials. It
may also lead to shorter reaction times.

Consider the responses of two detectors, one at the cued location and another
at the uncued location. What level of performance can be achieved by combining
responses from the two detectors with equal weight? Each detector experiences a
signal probability of 0.25, because the stimulus is present on half the trials and
its location is randomized. Figure 5.11 (top left) illustrates the theoretical percent
correct (hits 4 correct rejections divided by total trials) for detecting the stimulus as
a function of criterion level for both detectors when the cue validity is 50 % (i.e., the

Valid Cue Invalid Cue
No Stimulus No Stimulus

Fig. 5.10 Spatial cueing task with vertically oriented target
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cue location is uncorrelated with stimulus location). Because the signal probability
at each detector is 0.25, the optimal criterion (vertical dashed lines) is relatively
conservative and is the same for both detectors.

The same calculations are shown for the case where cue validity is 80 %
(Fig. 5.11, top right). Here, the optimal criterion is more liberal for the detector
at the cue location (blue) because the signal probability (0.4) is higher at that
location. The stimulus probability at the uncued location is only 0.1. This leads to
the counterintuitive observation that the uncued detector can actually achieve better
performance than the cued detector. This happens because an observer can use a
very conservative criterion for the uncued detector. In fact, they can say “no” (i.e.,
reject the hypothesis that the stimulus is present at the detector location) on every
trial and be correct 90 % of the time, regardless of the state of the detector.
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0.9 — uncued location | 0.9 — uncued location |
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B 07 | oS 07
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Fig. 5.11 Effects of cueing analyzed by SDT
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It may appear that, in the case of 80 % cue validity, one should be able to achieve
high performance simply by using the response of the better detector. Unfortunately,
each detector only provides partial information (whether or not the stimulus is
present at the detector location). Both detector responses must be combined to
determine the overall response of the observer. Overall performance is calculated
by adding up hits and correct rejections from all detectors and dividing by the total
number of observations (number of trials x number of detectors). Surprisingly, if
one is limited to using the same criterion for both detectors, then valid cues offer
no advantage. The percent correct is the same for both 50 % and 80 % validity
(Fig. 5.11, bottom left), and this is true regardless of criterion. In a sense, this is
understandable as the cues provide information only about likely stimulus location,
whereas the observer’s job is to report stimulus presence.

One way that valid cues can yield an advantage is if the observer is allowed to
choose the optimum criterion independently for each detector. Figure 5.11 (bottom
right) shows performance for the case where the optimum criterion for each detector
is used (green). This is compared to the case of a single criterion that optimizes
performance for both detectors (red). The advantage of valid cues is small. This is
partly due to the fact that the proportion of catch trials is large (50 %). Reducing the
proportion of catch trials increases the performance advantage provided by valid
cues. Whether or not subjects are capable of maintaining multiple decision criteria
at the same time is an open question [28].

Other approaches to understanding cueing effects have been suggested. Cueing
effects can be modeled using Bayesian statistics, which leads to similar conclusions
about the advantages of valid cues [7]. In all of the above, the assumption is that
valid cues affect the decision process but not signal quality. If valid cues enhance
signal strength, then that advantage would add to the advantage one can achieve by
adjusting decision criteria.

5.6 Signal Detection Over Time

Attention can increase the rate of information processing [29]. Hence, models are
needed that account for both improvements in detectability and response time.
However, the preceding discussion applies only to signals that are non-time-varying
in the sense that they remain constant over the duration of a given observation
period or “trial.” The assumption is that, on each trial, the observer draws a single
sample from the distribution of internal states of each detector and a decision is
made based on those samples. These models can predict performance accuracy, but
not the amount of time needed to respond at a given level of accuracy. Adding the
dimension of time allows observers to draw multiple samples from each detector
and to integrate the evidence provided by those samples, before reaching a decision.

In the 1940s, Wald [30], and others, developed the theory of sequential sampling
as a way to calculate the incremental evidence provided by each sample and, thus,
how many samples are needed for a given level of performance. If samples are
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drawn at a steady rate, this number corresponds to response time. Specifically,
Wald developed the sequential probability ratio test (SPRT), which integrates the
incremental information provided by each sample and also specifies a stopping rule,
i.e., the amount of integrated evidence needed to achieve a given level of accuracy,
defined in terms of percentage correct (hits and correct rejections) or incorrect (false
alarms and misses). This test is derived from the Neyman-Pearson lemma which
states that the likelihood ratio test maximizes the probability of detection for a given
probability of false alarms [31].

The problem addressed by the SPRT is how to quantify the information in each
sample so that it can be combined with other samples. The optimal way to do this
is to start with the likelihood that a given sample, y, was drawn from the signal-
present or signal-absent probability densities, i.e., p(y|S) and p(y|N). The next step
is to compute the log of the likelihood ratio: x = log[p(y|S)/p(y|N)]. The quantity, x,
represents the momentary evidence favoring hypothesis H1: signal present vs. HO:
signal absent. The process is iterated by repeatedly drawing samples, calculating the
log of the likelihood ratio, and adding that incremental evidence to the total evidence
accumulated from previous samples:

P()’r+1|5)}
P (i4+1|N) ’

The accumulation of evidence continues until x reaches a threshold value, or
boundary. There are two boundaries: if x first reaches bound A, H1 is accepted
(e.g., observer responds “yes”), and if x reaches bound B, H1 is rejected (response
is “no”). The values of A and B are calculated to yield a predetermined level
of performance accuracy. If alpha is the desired false alarm rate and beta the
desired miss rate, then A = log[(1 — beta)/alpha], and B = log[beta/(1 — alpha)]. The
bounds can also be calculated in terms of the hit and correct rejection rates, as hit
rate = | — beta and correction rejection rate = 1 — alpha.

The SPRT can be thought of as a one-dimensional diffusion-to-bound process
[32, 33], wherein the decision variable, x, takes a random walk that starts at zero and
ends at one of the two bounds. This can be written as dx/d¢ = r + u(0,s), where r is
the mean drift rate and u is the momentary noise represented by a random variable
drawn from some distribution, typically a Gaussian with mean =0 and standard
deviation = s. The random element guarantees that, given enough time, x will hit
one bound or the other even if the drift rate is zero. The diffusion parameters (r, s)
as well as the bounds (A,B) can be fit to experimental data for accuracy and reaction
time [34].

Figure 5.12 shows simulations based on the SPRT where the likelihood density
functions are Gaussians. The outcomes can be classified as hits (blue) and correct
rejections (red), as well as misses and false alarms (not shown). The proportions
of correct and incorrect trials as well as the response time distributions for each
class of outcome are fully determined by the log-likelihood ratio and the boundaries
(Fig. 5.12, below).

The standard SDT notions of detectability and response bias are built into the
SPRT. Detectability depends on the rate of evidence accumulation, drift rate, and the
variance in drift rate or momentary noise. Response bias occurs when the bounds are

Xi+1 = X + log |:
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Fig. 5.12 Simulations of SPRT. (Top) Blue lines represent stimulus-present trials. Red are
stimulus-absent trials. (Bottom) RT distributions for stimulus-present (blue) and stimulus-absent
(red) trials

asymmetric so that the diffusion process starts from a position closer to one bound
than the other. The SPRT effectively has two independent criteria, whereas the static
SDT model has only one. In the SPRT, the outcome classes are more independent.
For example, it is possible to maintain a constant hit rate while varying the false
alarm rate. Thus, the trade-off between hits and false alarms that is characteristic of
the static SDT model does not hold for the SPRT.

If attention increases signal quality by reducing signal to noise, the effect on the
SPRT will be to increase the rate of evidence accumulation [35]. This is equivalent to
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improving stimulus detectability. Others have incorporated salience and economic
value by modulating drift rate [36].

The SPRT also provides a solution to the problem of pooling responses across
multiple detectors. The summation of log-likelihoods applies not only to the
integration of multiple samples from a single detector, but also to the integration
of individual samples from multiple detectors. Given a set of samples from multiple
detectors, one can simply sum the log of the likelihood ratios to obtain an estimate of
the evidence that a stimulus is present. This could be called the parallel probability
ratio test (PPRT). This calculation can be performed at every moment in time.
The conversion from raw samples to log-likelihoods takes into account the signal-
to-noise of each detector and thus provides a common metric for integrating
responses from detectors with different sensitivities, filtering properties, and noise
characteristics.

Computing the SPRT in parallel across the visual scene using a 2D array of
detectors results in a detectability salience map. This is illustrated in Fig. 5.13 with
a 40 x 40 array of detectors. The signal can occur at one of two locations (lower
left or upper right). Detectability (hit rate — false alarm rate) for each detector is
plotted (black indicates detectors with high false alarms, white indicates detectors
with high hit rate). The cueing paradigm described in Fig. 5.10 was implemented
with two different cue validities. Cue validity is implemented by biasing the starting
point of the decision processes at the cued and uncued locations [37]. When the cue
validity is 0.5, the cue provides no information, the signal and noise distributions
have equal area, and detectability is equal at the two locations. When the cue
validity is 0.55, the signal appears at the cued location 55 % of the time and
at the uncued location 45 % of the time. This enhances the detectability at the
cued location and reduces detectability at the uncued location. Figure 5.13 plots
stimulus detectability, but SPRT-computed salience can also be expressed in terms
of response time. If detectability and response time are combined, it is possible
to calculate the information processed by the observer in terms of bits/second

Cue Validity 0.50

Cue Validity 0.55

Fig. 5.13 Salience maps computed using SPRT. Both maps show the detectability of a signal that
can occur at one of two locations. (Left) signal occurs at either location with equal probability.
(Right) signal occurs at cued location (lower left) 55 % of the time and uncued location (upper
right) 45 % of the time. Intensity indicates stimulus detectability
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(e.g., [38]). Furthermore, the SPRT allows the observer to adjust the decision
boundaries at the cued and uncued location, which should also affect the relative
salience.

5.7 Conclusion

Signal detection theory provides a simple yet powerful framework for understanding
how observers respond to weak signals in the environment. The theory makes a
clear distinction between detection and response selection. Attention can improve
signal detection by increasing the gain of sensory responses while reducing noise.
For a fixed level of detectability, attention can further improve performance by
optimizing decision criteria. When there are multiple detectors, attention can
improve detectability by de-correlating responses and by selectively monitoring
detectors that are more sensitive to the stimulus by virtue of their receptive field
location, feature selectivity, or other properties.
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Chapter 6

Effects of Attention in Visual Cortex: Linking
Single Neuron Physiology to Visual Detection
and Discrimination

Vincent P. Ferrera

6.1 Introduction

Studies of neuronal activity in visual cortex have relied heavily on macaque
monkeys as a model system. Macaques, like humans, are old world primates and
range throughout Asia and North Africa. The macaque genus comprises 23 species,
including Macaca mulatta (rhesus monkey), Macaca fascicularis (cynomolgus or
“crab-eating” monkey), and Macaca fuscata (Japanese snow monkey). The most
recent common ancestor of humans and macaques lived roughly 25 million years
ago. Macaques are largely diurnal animals that have trichromatic color vision and
a retina that is anatomically almost identical to humans. In particular, the macaque
retina has a distinct fovea for high-acuity central vision.

Macaques explore their visual environment in much the same way as humans.
They have forward-looking eyes whose monocular visual fields are largely overlap-
ping, providing a large binocular field with excellent stereoscopic depth perception
[1]. Their oculomotor behavior is similar to humans, particularly with regard to
voluntary eye movements. Macaques have vergence eye movements that align the
foveae of the two eyes on targets at a particular distance. They make rapid and
frequent saccades to foveate objects of interest. They can track moving targets with
smooth pursuit, a behavior that appears to be unique to primates (at least among
mammals.)
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Fig. 6.1 Macaque cerebral cortex (lateral view, partially inflated) showing visual cortical areas
VI (primary), V2, V3, V4, DP (dorsal posterior), 7a, VP (ventral posterior), PIT (posterior
inferotemporal), CIT (central inferotemporal), and AIT (anterior inferotemporal; after [2]). A
microelectrode can be used to record neuronal activity at a precise cortical location (dashed line).
Extracellular action potential waveforms for two simultaneously recorded neurons are shown in the
lower left panel. The visual field locations and sizes of the receptive fields (blue and red squares)
of the neurons are shown in the lower right panel. LVF left visual field, RVF right visual field

In the macaque monkey brain, there are 32 cortical areas that are involved in
vision and visuomotor function [2]. For many of these areas, human homologues
have been identified [3]. Macaques can be trained to perform simple tasks that
involve visual detection, discrimination, and eye movements. The electrical activity
of individual neurons can be recorded by fine metal microelectrodes inserted into the
cerebral cortex while the animal is performing a visual task. Of the 32 visual areas
in macaques, several have been studied extensively in behavioral paradigms that
manipulate selective attention (Fig. 6.1). These studies have examined how attention
affects receptive field properties as well as the sensitivity and reliability of neuronal
responses. The current state of knowledge makes it possible to relate these neuronal
response properties to psychophysical performance using simple computational
models. The goal of the present chapter is to understand how attention alters the
representation of information in visual cortex and thus affects an observer’s ability
to detect weak stimuli and to discriminate between similar stimuli.

Visual neurons are those that receive information directly or indirectly from the
retina. The part of the environment that gives rise to light that falls onto the retina
defines the visual field. Visual neurons typically do not respond to light that arises
from anywhere in the visual field, but are sensitive to only a small region, called
the receptive field. The receptive field for an individual neuron is the part of the
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retina within which changes in illumination cause changes in the electrical activity
(typically, the firing rate) of the cell. If the eyes are not moving, the receptive field
corresponds to a fixed region of visual space. Every cell in the visual system, from
retina photoreceptors to cortical neurons, has a receptive field. The size of receptive
fields generally increases along the visual hierarchy from retina to lateral geniculate
to cortex and also with retina eccentricity (distance from the fovea). If a monkey
is trained to fixate its gaze on a small target presented on a video display, then the
borders of the receptive field can be easily mapped. This may be done by moving
a spot or bar of light through the visual field and outlining the region where the
stimulus causes a change in firing rate of the cell. Firing rate can be monitored
qualitatively by amplifying the action potentials and playing them through an audio
speaker. As long as the monkey is fixating, a particular stimulus other stimuli
presented in the visual field will have a known spatial relationship with respect to
the receptive field of a given neuron. Controlling the retina stimulus in this manner
makes it possible to study the influence of extraretinal factors, such as attention, on
the activity of visual neurons.

The receptive field of a neuron can be modeled mathematically as a spatial
weighting function, which specifies the neuron’s firing rate as a function of the
retina position of a small spot of light. A visual neuron’s sensitivity to light within
the receptive field is not necessarily uniform, but may have subregions that are
excited or inhibited by light. The spatiotemporal structure of the receptive field
may confer selectivity for orientation and direction of motion. Different parts of
the receptive field may also be sensitive to different wavelengths of light, giving rise
to color selectivity. For current purposes, we will ignore the internal structure of
visual receptive fields and simply model sensitivity within the spatial receptive field
(RF) as a two-dimensional Gaussian:

RF (x,y) = A + B x exp [— ((x —x/)2 +Cx(y— y/)z) /sz] (6.1)

Here, (x/, y’) is the center of the receptive field, s is the spread or size of the RF
(otherwise known as the space constant), B is the overall gain or sensitivity, C
determines the aspect ratio (length/width), and A is a constant that accounts for the
baseline firing of the cell in the absence of a stimulus. Many studies of the effects
of attention on the activity of visual neurons have examined changes in spatial
parameters that correspond to shrinking or expanding of the receptive field. These
are modeled as changes in the space constant, s. Other studies have documented
shifts of the RF center (x’, y’) and changes in overall sensitivity (B) and background
firing (A).

To understand how attention-related changes in receptive field properties affect
stimulus detectability and discriminability, it is necessary to consider the statistics
of neuronal responses, i.e., the variability in neuronal firing when the same stimulus
is presented repeatedly under the same conditions.
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To a first approximation, cortical neurons fire at purely random times. Their firing
can be modeled as a Poisson process where the probability of an action potential
at any given time is determined by a rate parameter, r, and is independent of the
time of occurrence of any other action potentials. The interspike intervals (times
between two successive action potentials) follow a Poisson distribution. The number
of action potentials in a fixed time window (spike count) is also Poisson distributed.
Spike count variability can be quantified by the Fano factor [4], which is the variance
in spike count divided by its mean. For a Poisson process, the Fano factor is always
around 1.0 as the variance scales in direct proportion to the mean spike count.

Poisson firing statistics represent an ideal case that is never achieved in reality. In
particular, a purely Poisson neuron could have infinitely small interspike intervals,
which are biophysically impossible. Real neurons have refractory periods — a short
window of time following a spike during which the cell is unable to fire another
spike (absolute refractory period) or has an elevated threshold for firing (relative
refractory period). Refractory periods are easy to incorporate into simulations
that generate pseudo-Poisson spike trains using random number generators [5].
Refractory periods cause neuronal firing to become more regular (lower variance
in interspike intervals). Any finite refractory period therefore reduces the Fano
factor below 1.0. A number of studies have documented sub-Poisson variability in
macaque visual cortex and in higher, attention-related cortical areas [6—10].

Figure 6.2 shows simulated Poisson-like spike trains generated by an algorithm
that incorporates an absolute refractory period. In the top-left panel are spike trains
where the refractory period is equal to 0 and below that the spike count histogram
and Fano factor versus mean spike count. The right column shows spike trains with
the same average rate, but a longer refractory period, making both the interspike
intervals and spike counts much more regular.

It has been found empirically that attention can reduce neuronal variability
[11], but the reduction is small and not always statistically significant [12]. It
seems intuitive that reduced variability should improve the ability to detect and
discriminate stimuli. One of the goals of the models presented below is to test
whether this is indeed the case.

A simple model of the response of an individual visual neuron can be obtained
by using Eq. 6.1 to provide the input to a Poisson spike generating process. This is
illustrated in Fig. 6.3 which shows the mean rate according to a one-dimensional
reduction of Eq. 6.1 (Fig. 6.3, top) and the Poisson spike counts (Fig. 6.3, bottom)
generated when a stimulus is present (A =15, B=10) or absent (A=5, B=0).
Detectability can be computed for each stimulus position as the overlap (area under
ROC) of the stimulus-present and stimulus-absent spike count distributions. Note
that this is not a complete neuronal model as it does not include contrast nonlinear-
ities, adaptation, or other factors that affect firing. Real visual neurons tend to have
sigmoidal contrast response functions, and their contrast sensitivity may be modu-
lated by attention [13, 14]. However, the current model is adequate for testing effects
of changes in sensitivity or variability for briefly presented stimuli of fixed contrast.
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Fig. 6.2 Neuronal firing statistics. (Left) Pure Poisson process. (Right) Poisson with refractory
period. Top row shows 20 spike trains for each model. Middle row shows spike count distributions
for several hundred trials. Bottom row shows Fano factor versus spike count

6.2 Effects of Attention on Neuronal Responses

Moran and Desimone [15] published one of the first studies of the effect of attention
on neurons in macaque visual cortex. They trained monkeys to fixate a small
spot presented in the center of a video display. Eye movements were monitored
so that visual stimuli could be presented at known positions on the retina. While
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the monkeys fixated, two stimuli were presented, and the monkeys were rewarded
for responding to one stimulus. The monkeys are presumed to have attended to
rewarded stimulus and to have ignored the other.

Moran and Desimone recorded from neurons in visual area V4 and in the inferior
temporal (IT) cortex. Neural responses were quantified as changes in firing rate
(action potentials per second), while visual stimuli were presented to the animal.
The receptive fields of the neurons were in the peripheral visual field and were
large enough that two stimuli could be presented inside the receptive field and the
monkey could still discriminate them. If both stimuli were in the receptive field
of the neuron, the cell responded well to the attended stimulus, but weakly to the
unattended stimulus. The experimenters could therefore compare the response to the
same stimulus when it was attended or unattended. Generally, the response to the
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Fig. 6.4 Attention task used Aﬂend Preferred
by Reynolds et al. [16].

Monkeys were trained to
fixate their gaze at the center
of the display (+) while the
activity of a visual neuron
was recorded. The receptive
field of the neuron is
indicated by the dashed box.
Two stimuli were presented
inside the receptive field, and
the monkey was rewarded for
responding to one or the
other. The attended stimulus
is indicated by the green
circle (this cue was not
presented to the animal)

Attend Non-preferred

stimulus was greater when it was attended. If one stimulus was inside the receptive
field and the other was outside, the effect of attention was reduced as compared to
when both were inside the receptive field.

A later study by Reynolds et al. [16] expanded on this result. Reynolds’ study
used the strategy of placing two oriented bar stimuli in the receptive field of a V4
neuron (Fig. 6.4). Neurons in V4 tend to be selective for stimulus orientation. The
orientation of one of the bars was matched to the cell’s preferred orientation and
evoked a strong response. The other stimulus was at a non-preferred orientation. In
the absence of attention, the neuronal response when both stimuli were presented
together was the average of the response to either stimulus alone. When the monkey
was rewarded for attending to one stimulus or the other, the cell behaved as if there
was only one stimulus in the receptive field; if the monkey attended the preferred
stimulus, the response was greater than the average; if he attended the non-preferred
stimulus, the response was less than the average. Thus, attention caused the cells
to shift from a response-averaging mode to a winner-take-all mode. These results
are consistent with a shrinking of the receptive field around the attended stimulus
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[17, 18]. Since Moran and Desimone’s [15] paper, a large number of studies have
demonstrated changes in the receptive field spatial weighting function that are

correlated with attention.

Attention can change the overall gain of visual responses. This was demonstrated
for neurons in visual area V4 by McAdams and Maunsell [12, 19]. This study
examined orientation tuning. Orientation selectivity is reasonably described by
Gaussian-shaped tuning function. McAdams and Maunsell placed an oriented
grating pattern in the receptive field of a V4 neuron (Fig. 6.5). They then recorded
responses to stimuli of various orientations and compared the orientation-tuned
responses when attention was directed toward the stimulus inside the RF or to a
similar stimulus well outside the receptive field. They modeled V4 responses using

Fig. 6.5 Effects of attention
on response of a single
neuron. (Top) Mean rates
when attention is directed
outside the neuron’s receptive
field (red) and inside the RF
(green). (Middle) Effect of
attention on detectability as a
function of stimulus position.
Black dots are difference
attended (green) — unattended
(red). (Bottom) Effect of
attention on stimulus
discriminability
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an equation similar to Eq. 6.1 and concluded that attention mainly affects the overall
gain (B). Importantly, they also measured activity in the absence of a stimulus and
found that attention did not affect the baseline (undriven) firing rate (A).

These few studies provide enough information to simulate the effects of attention
in the model introduced previously. In this model, the receptive field equation
(Eq. 6.1) is used to determine the mean firing rate for a small spot of light presented
at any position in the receptive field. This mean rate is then fed into a function that
generates a pseudo-Poisson spike train for a fixed time interval (1.0 s). This spike
train can be purely Poisson (refractory period = 0), or can have a finite refractory
period, resulting in sub-Poisson variability. For each stimulus, a large number of
spike trains are generated and the total spike count for each train is used as the
measure of neuronal response. One can then use principles of signal detection theory
to determine the ability of one or more simulated neurons to detect or discriminate
visual stimuli, given the trial-to-trial variability in the neuronal responses. Figure 6.5
(top) shows the mean response of a single visual neuron (reduced to one dimension)
as a function of stimulus location. The effect of attention is modeled as an overall
gain factor, G, applied to the stimulus-driven response, so that

RF (x) = G x {A + B x exp [— ((x — x’)z) /sz]} (6.2)

The responses in Fig. 6.5 show the cases where G=1.0 (red, attention outside
receptive field) and G=2.0 (green, attention inside RF). In the absence of a
stimulus, the response is simply RF(x) = G*A, where A is the baseline firing rate.

Detectability and discriminability are computed by applying signal detection
theory to the spike count distributions for each stimulus. Detectability is defined as
the area under the ROC curve computed with stimulus-present and stimulus-absent
trials. The effect of attention on detectability is shown in Fig. 6.5 (middle). Even
though attention increases the driven firing rate by twofold, the maximum change in
detection probability is only 0.1. It should be noted that an attentional gain of 2.0 is
unusual. Typically, attention enhances neuronal responses by increasing mean firing
rate from 20 % to 40 %. For many cells, attention actually reduces responses.

In the simulation shown in Fig. 6.5, the baseline firing rate in the unattended
condition was 4 spikes/sec, and the maximum firing rate was 10 spikes/sec. This
value for maximum firing rate is on the low end of the range for cortical neurons.
Values of 30 spikes/sec or greater are more typical for responses to optimal stimuli.
Hence, the low ratio of max firing rate to baseline can be thought of as representing
the response to suboptimal or weak stimuli. Detection probability in the unattended
condition starts to saturate at 1.0 (perfect performance) when the maximum firing
rate is about 3 times the baseline rate. Attention cannot improve performance when
detection rates in the unattended condition are already optimal. Thus, attention
should have the greatest effect on detectability for weak or suboptimal stimuli or
cells that simply have low signal to noise even for optimal stimuli.

Stimulus discriminability is defined as the ROC area computed for pairs of
similar stimuli. In these simulations, the difference between neighboring orien-
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tations was 5°. For the parameters used in the simulations of Fig. 6.5, attention
had little effect on discriminability for neighboring orientations (open symbols).
However, for cruder discriminations (stimuli separated by 20°.), discrimination
performance was better overall (Fig. 6.5, bottom, filled symbols) and was more
strongly enhanced by attention. Further simulations showed that as the maximum
firing rate is increased, attention had a greater effect on improving discrimination
performance. For example, at a maximum firing rate of 50 spikes/sec (keeping all
other parameters the same), the best discrimination for neighboring orientations
improved from 74 % correct to 82 %. Hence, while attention improves detection
performance mainly for neurons with low signal to noise, it improves discrimination
for neurons with high signal strength. This suggests that different tasks might reveal
attention effects on different subpopulation of neurons.

The effects of attention on psychophysical performance predicted by the model
are fairly modest. Using realistic parameters, attention improves detection and dis-
crimination rates by a maximum of about 10 %. Such small changes in performance
are far below what is typically reported in the literature. For example, [20] found
that attention could produce up to fourfold improvements in contrast sensitivity. We
will consider two factors that could bridge this gap. The first is the effect of attention
on undriven (stimulus-absent) activity. The second is the effect of attention on spike
count variability.

So far, we have assumed that attention affects firing rates proportionately for
both stimulus-present (driven activity) and stimulus-absent (undriven or baseline
activity) conditions. This point is disputed. Some studies report that attention affects
background firing rates [21], while others [12, 19] reported that attention did not
affect undriven activity. When undriven activity is held constant in the model, so
that attention enhances activity only in the presence of a stimulus, the affects of
attention on detection are greatly increased. Repeating the simulations of Fig. 6.5
with a constant baseline, the improvement in detection probability goes from 0.1
to 0.3. This is a large enough improvement to account for actual psychophysical
performance. Thus, the issue of whether attention affects baseline activity is critical
for understanding improvements in detection performance. However, in the model,
baseline firing rate plays no role in discrimination performance.

Now we can address the issue of attention-related changes in spike count
variability. As noted above, some studies have reported that attention can reduce
trial-to-trial variability in firing activity [11]. Here, we reduce spike count variability
by introducing a refractory period. There is a caveat to this approach: for any two
spike trains with the same underlying rate, the one with the longer refractory period
will have a lower spike count. Thus, it is important to equalize spike count when
assessing the effects of regularity. Figure 6.6 (top) shows Fano factor as a function
of mean spike count for spike trains with no refractory period (red) and with a
refractory period of 10 ms (green). Note that refractoriness causes Fano factor to
decrease with mean spike count, being reduced by about half for the highest firing
rate.
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The effect of spiking regularity on detection rate is shown in Fig. 6.6 (bottom).
Again, the red dots are for spike trains with zero refractory period; the green are
for a refractory period of 10 ms. The same refractory period was used for both
stimulus-present and stimulus-absent conditions, although there is some evidence
that stimulus onset itself is accompanied by a reduction in spike count variability
[22]. What is evident from Fig. 6.6 is that a reduction in variability improves
detection rates, but only by about 5-10 %. The improvement is greatest when the
signal to noise is relatively weak, such that the maximum firing rate is about twice
the baseline firing. When the maximum firing rate increases beyond this, detection
rates saturate and spike count regularity has no effect. The simulations were carried
out with a baseline of 10 spikes/sec. Changing the baseline firing rate shifts the
curves left and right, but the same principles apply.

While spike count regularity alone results in some enhancement of detectability,
it has a smaller effect on discrimination performance. Figure 6.7 shows simulations
of a neuron whose receptive field is modeled as a one-dimensional Gaussian
function of position, with preferred position at 50°. The left panel shows Fano
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Fig. 6.7 Effects of spike count variability on discrimination performance. (Left) Fano factor
as a function of stimulus position for unattended (green, refractory period =0) and attended
(green, refractory period = 1). (Middle) Effects of variability on detection. Gain is attended
response/unattended response. Detection improvement is the difference in detection rate for each
position (attended — unattended) averaged over all positions. Dashed lines are best fit linear
regressions. (Right) Effects of variability on detection. Same conventions as middle panel

factors as a function of stimulus position in the receptive field for no refractory
period (green) or a refractory period of 10 ms (blue). There is a substantial,
stimulus position-dependent decrease in Fano factor. However, the decrease in
variability is accompanied by a proportional decrease in mean spike count due to the
refractoriness of the cell. In other words, the overall response of the cell is scaled,
including the mean spike count and variance. The decrease in variability leads
to an improvement in detectability of a few percent. Detection rate is calculated
by computing the ROC for stimulus-present versus stimulus-absent conditions
and assuming that attention does not affect baseline firing (either average rate
or variability) in the absence of the stimulus. Discriminability is based on the
spike count distributions for neighboring stimuli. Since refractoriness scales both
distributions proportionately, firing regularity only has a small effect on ROC area.
When the attention-related improvement in discrimination performance is plotted as
a function of actual gain (Fig. 6.7, right), the improvement in performance is quite
small (green, refractory period = 0; blue, refractory period = 10 ms).

To summarize, attention can affect the gain of neuronal responses as well as
their reliability. Large changes in response gain lead to only modest improvements
in detection and discrimination rates. If baseline activity is unaffected by the gain
change, then much larger increases in detection rates are achievable, but there is no
effect on discrimination. Improving reliability by incorporating a refractory period
into the spike train generator has a small effect on detection and an even smaller
effect on discrimination. One caveat is that refractoriness always reduces both the
variance and mean of the spike counts. Other methods that reduce variability without
changing mean rate were not explored.
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6.3 Effects of Attention Across Multiple Neurons

When considering the effects of attention across multiple neurons, there is a general
expectation that such effects will be stronger and/or more reliable. This expectation
may be frustrated for several reasons. Having more neurons can improve signal
processing, but it also means that there will be more noise due to random firing
from neurons that are not sensitive to the stimulus. Indeed the problem of selective
attention is not only one of selecting the most relevant stimulus, but, perhaps more
importantly, selecting the most relevant neurons.

To model the effects of attention across multiple neurons, consider an array of
neurons that are identical except for the location of their receptive field centers.
Instead of the scalar attentional gain factor in the single neuron model described
above, attention is modeled as a gain field [G(x), [18]] that ranges over the entire
visual field:

G(x) = 1.0+ axexp (—(x - x’)z/sz) (6.3)

where a is the attentional enhancement, x is visual field location, x’ is the focus of
attention, and s is the spread of attention. Figure 6.8 shows the effect of attentional
gain enhancement on an array of neurons that have identical tuning width and
sensitivity, but different receptive field centers. Tuning curves for the unattended
case are shown in the left. On the right are tuning curves with a maximum
attentional gain of 2.0. Attention does not enhance the activity of cells whose
preferred locations are remote from the focus of attention. It should be noted that
the attentional gain field not only enhances the response of cells at the focus of
attention, but it also distorts the tuning functions. Such shifting of receptive fields
has been documented in visual areas V4 [23] and MT [18].

In the case of a single neuron, it was found that if attention enhanced both
undriven and stimulus-driven activity, there was little improvement in detection or
discrimination performance. Here, we test what happens if attention does not affect
baseline firing in either the stimulus-absent or stimulus-present conditions. When
we simulate this condition, it turns out that attention has little effect on detection
(Fig. 6.8, middle left) and no effect on discrimination (Fig. 6.8, middle right). This
result holds over a wide range of signal strengths (maximum firing rate re: baseline).
To obtain even a small increase in detectability requires an attention gain of about
4x or greater. Discriminability does not improve for any gain level. There was no
effect of refractoriness on detection or discrimination rates.

The finding that attentional gain has little effect on detection may seem counter-
intuitive. However, it makes perfect sense. There are nine neurons in the simulation,
and, as can be seen in Fig. 6.8, attention only affects 3 of them. For any given
stimulus, most of the cells do not respond at all. Yet, all of the cells must be included
when computing detectability, even if they are unmodulated by attention, or not
even driven by the stimulus. The reason for this is that the stimulus has an equal
probability of occurring at any location and this location is not known in advance.
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Fig. 6.8 (Top) Tuning

X 15 15
functions for an array of S S
model neurons in the 9 o
unattended condition (left) 9. 10 g. 10
and with attention focused at e o
—50°. (Middle) detection and ® ®
discrimination rates. (Bottom) o 5 o 5
Detection and discrimination :g :E
rates when responses are i -
pooled across neurons 00 0 100 0 00 0 100
position (deg) position (deg)
1re unattended, ref = 0 1
attended, ref =0 @
e attended, ref = 10 =
° O
aé 0.8 5 0.8
% 06 1‘3”?"&% Eos
g M, L % O 3 g o 0.
_________ 3 | G A
0.4 0.4
-200 0 200 -200 0 200
position (deg) position (deg)
1 e 1
- L
Q “© %% o ©
© e 0 ¢ o o
LR B :c'n 508 .
° ° =] %o
S e * e B oo e
o = 000 @ oga®ad $'ur'e
Lo £ o] sddon oA
o° 3 H
_________ 3 L - - - -
0.4 0.4
-200 0 200 -200 0 200
position (deg) position (deg)

Thus, at any given time, most of the cells are simply contributing noise. This not
only dilutes the effect of attention; it can negate the effect altogether.

However, we have yet to consider the issue of pooling activity across neurons.
By this, we mean how signals from different neurons are combined when computing
the joint ROC. None of the multi-neuron simulations discussed above included
any pooling; each response was considered as an independent observation and was
weighted equally in the ROC analysis. One way to pool responses is to compute the
mean spike count across all neurons in the model on each trial. Thus, the data are
reduced from 3 dimensions (neuron x stimulus X trial) to only 2 (stimulus X trial).
This averaging is done before the ROC area is computed. The effect of this kind of
pooling is that the neurons that are sensitive to the stimulus tend to pull up the aver-
age response of the ensemble. On the other hand, when there is no stimulus, averag-
ing across neurons has little effect because they all have the same baseline activity.
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We thus consider a model in which attention has no effect on baseline activity,
but activity on every trial is pooled by averaging across all neurons. The results
are shown in the bottom row of Fig. 6.8. For this model, attention enhances both
detection (Fig. 6.8 bottom left) and discrimination (Fig. 6.8, bottom right). As in
previous simulations, reducing trial-to-trial variability has no effect (compare green
dots, refractory period = 0, to blue, refractory period = 10 ms).

Averaging over all neurons is an extreme form of pooling that is not physiologi-
cally or anatomically plausible. It requires that all of the sensory neurons converge
onto a single decision neuron. However, one can imagine a pooling function that
computes a weighted average of responses over a limited spatial extent so that only
cells with similar receptive field locations are combined. This agrees well with how
the visual cortex is wired and the fact that receptive fields get larger as one traverses
the cortical hierarchy from primary visual cortex (V1) to V2, V3, V4, and IT.

To appreciate how attention affects the representation of information in visual
cortex, we can use some of the aforementioned ideas to construct “neural” images
of simple stimuli. Figure 6.9 shows simulations of a 2D array of model neurons.
The input image consists of two vertically oriented Gabor patterns embedded in
random noise. The green circle (Fig. 6.9, left) indicates the focus of attention, but
was not present in the image used for the simulations. Each model neuron comprised
a Gaussian spatial weighting function that represented the neuron’s receptive field.
Each receptive field was approximately 1/20th the size of the image in linear
dimension. There were approximately 200 x 200 neurons whose RF centers were
distributed to cover the entire image. The response of each neuron was computed
by calculating the inner product of the weighting function and the part of the image
within the receptive field. This number was used as the rate parameter for a Poisson
spike generation function. Each pixel in Fig. 6.9 (middle and right) represents the
resulting spike count for a single neuron. The middle panel of Fig. 6.9 illustrates a
condition where attention increased the gain of the response at the attended location.
The right panel shows a condition where the gain was constant across the image,

Original Image Neural Image based on Rate Neural Image based on Refractoriness

Fig. 6.9 Neural images created by computing the responses of a 2D array of model neurons. (Left)
Original stimulus. The green circle indicates the focus of attention and was not present in the image
used for model simulations. (Middle) A 2D array of model neurons. Attention increases the gain of
the response in the attended region. Pixel intensity represents firing rate. (Right) A 2D array with
a constant response gain across location, but increased refractoriness at the attended location
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but the refractoriness of the cells was increased at the attended location. The result
of increasing refractoriness is that there is less variability across cells that have the
same input. The simulations suggest that increasing the gain has a pronounced effect
on salience, whereas reducing variability through refractoriness has little effect.
These neural images can be converted to detectability maps by running multiple
trials with and without the stimulus and computing ROC functions for each neuron.

The simulations in this chapter have explored attentional gain control and
reliability and how these affect detection and discrimination performance. Some
features of the model that turned out to be important are (1) that attention enhances
stimulus-driven responses but not baseline activity and (2) that responses are pooled
over multiple neurons. Pooling of responses across neurons reduces variability
and can have a pronounced effect on performance. One feature that was of
only modest importance was trial-to-trial spike count variability; when variability
is reduced by refractoriness there is little effect on detection or discrimination
performance. Relatively, few empirical studies have investigated effects of attention
on neural detection and discrimination thresholds [12, 13, 24, 25]. Fewer still have
related changes in neural responses to behavioral thresholds [26]. This is an area
that warrants further investigation and can profit from approaches that combine
computational modeling and neurophysiological experimentation.
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Chapter 7
Modeling Attention in Engineering

Matei Mancas

7.1 Attention in Computer Science: Idea and Approaches

There are two main approaches to attention modeling in computer science. The first
one is based on the notion of “saliency,” while the second one is based on the idea of
“visibility.” The number of papers and the amount of work is dramatically different
between these two approaches, and the models based on saliency are by far more
spread than the visibility models in computer science.

The notion of “saliency” implies a competition between “bottom-up” or exoge-
nous and “top-down” or endogenous information. The idea of bottom-up saliency
maps is that the sight or gaze of people will direct to areas which, in some way, stand
out from the background based on novel or rare features. This bottom-up saliency
can be modulated by top-down information based on memory, emotions or, goals.
The eye movements can be computed from the saliency map by using winner-take-
all [10] or more dynamical algorithms [18, 25].

The second approach to attention modeling is based on the notion of “visibility”
which assumes that people look to locations that will lead to successful task
performance. Those models are dynamic and intend to maximize the information
acquired by the eye (the visibility) of eccentric regions compared to the current
eye fixation to solve a given task (which can also be simply free viewing). In this
case, top-down information is naturally included in the notion of task along with
the dynamic bottom-up information maximization. The eye movements are in this
approach directly an output from the model and do not have to be inferred from
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a “saliency map” which is considered as a surface giving the posterior probability
(following each fixation) that the target is at each scene location [7].

7.2 Visibility Models

Compared to other Bayesian frameworks, like the one of [30], visibility models
have one main difference. The saliency map is dynamic even for static images, as
it will change depending on the eye fixations and not only the signal features: of
course, given the resolution drop-off from the fixation point to the periphery, it is
clear that some features are well identified in some eye fixation, while less or even
not visible during other eye fixations. At the contrary of saliency models, visibility
models make explicit the resolution variability of the retina: in that way, an attention
map is “recomputed” at each new fixation, as the feature visibility changes at each
of these fixations.

Najemnik and Geisler [28] found that an ideal observer based on a Bayesian
framework can predict eye search patterns including the number of saccades
needed to find a target, the amount of time needed, as well as the saccade spatial
distribution.

Other authors like [19] proposed a visibility model capable to predict the eye
fixations during the task of reading. Reninger used similar approaches for the task
of shape recognition. Tatler [34] introduces a tendency of the eye gaze to stay in
the middle of the scene to maximize the visibility over the image (which reminds
the centered preference for natural images or centered Gaussian bias illustrated in
Fig.7.9).

The visibility models are much more used in the case of strong tasks,
and few of them are applied to free viewing which is considered as a week
task [7].

7.3 Saliency Approaches: Bottom-Up Methods

While visibility models are more used in cognitive sciences and with strong
tasks, in computer science, bottom-up approaches use features extracted only
once from the signal independently from the eye fixations, such as luminance,
color, orientation, texture, object relative position, or even simply neighborhoods
or patches from the signal. Once those features are extracted, all the existing
methods are essentially based on the same principle: looking for contrasted, rare,
surprising, novel, worthy to learn, less compressible, maximizing the information
areas. All those definitions are actually synonyms, and they all amount to searching
for some unusual features in a given context which can be spatial or temporal.
In the following, we provide examples of contexts used for different kinds of
signals.
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7.3.1 Still Images

The literature is very active concerning still image saliency models. While some
years ago only some labs in the world were working on this topic, nowadays hun-
dreds of different models are available. Those models have various implementations
and technical approaches even if initially they all derive from the same idea.

It is thus very hard to find a simple taxonomy which classifies all the methods.
Some attempts of taxonomies proposed an opposition between “biologically driven”
and “mathematically based” methods with a third class including “top-down
information.” This approach implies that only some methods can handle top-down
information while all bottom-up methods could use top-down information more or
less naturally. Another difficult point is to judge the biological plausibility which can
be obvious for some methods but much less for the others. Another criterion is the
computational time or the algorithm complexity, but it is very difficult to make this
comparison as all the existing models do not provide cues about their complexity.
Finally, a classification of methods based on center-surround contrast compared to
information theory-based methods does not take into account different approaches
as the spectral residual one, for example. Other taxonomies will also be introduced
in the next chapters as, for example, the dependence on image features. Here, we
show a taxonomy of the saliency methods which is based on the context that those
methods take into account to exhibit signal novelty. In this framework, there are
three classes of methods.

The first one is pixel’s surroundings: here a pixel, a group of pixels, or a patch is
compared with its surroundings at one or several scales.

A second class of methods will use as a context the entire image and compare
pixels or patches of pixels with other pixels or patches from other locations in the
image but not necessarily in the surroundings of the initial patch. Some models even
use more than one image as a context: an entire dataset can be used here.

Finally, the third class will take into account a context which is based on a model
of what the normality should be.

In the following sections, these three classes of models are illustrated.

7.3.1.1 Context: Pixel’s Surroundings

This approach is initially based on a biological motivation. Its origins come from
the work of [17] on attention modeling. The main idea is to compute visual features
at several scales in parallel, to apply center-surround inhibition, combination into
conspicuity maps (one per feature), and finally to fuse them into a single saliency
map. There are a lot of models derived from this approach which mainly use
local center-surround contrast as a local measure of novelty. A good example
of this family of approaches is the Itti’s model (Fig.7.1) [10] which is the first
implementation of the Koch and Ullman model. It is composed of three main
steps. First, three types of static visual features are selected (colors, intensity, and
orientations) at several scales. The second step is the center-surround inhibition
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Fig. 7.1 Model of [10]. Three stages: center-surround differences, conspicuity maps, inter-feature
fusion into saliency map (Adapted from [10])

which will provide high response in case of high contrast, while it will have low
response in case of low contrast. This step results in a set of feature maps for
each scale. The third step consists in an across-scale combination, followed by
normalization to form “conspicuity” maps which are single multiscale contrast
maps for each feature. Finally, a linear combination is made to achieve inter-feature
fusion. Itti proposed several combination strategies: a simple and efficient one is to
provide higher weights to conspicuity maps which have global peaks much bigger
than their mean. This is an interesting step which integrates global information in
addition to the local multiscale contrast information.

This implementation proved to be the first successful approach of attention com-
putation by providing better predictions of the human gaze than chance or simple
descriptors like entropy. Following this success, most of the computational models
of bottom-up attention use the comparison of a central patch to its surroundings as
a novelty indicator.

7.3.1.2 Context: The Whole Image or a Dataset of Images

In this approach, the context which is used to provide a degree of novelty or
rarity to image patches is not necessarily the surroundings of the patch but can
be other patches in its neighborhood or even anywhere in the image or an image
database. The idea can be divided in two steps. First, local features are computed
in parallel from a given image. The second step measures the likeness of a pixel
or a neighborhood of pixels to other pixels or neighborhoods within the image.
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Fig. 7.2 Model of [32]. Patches at different locations in the image are compared (Adapted from
(32])
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Fig. 7.3 Difference between locally contrasted and globally rare features. Left image: an apple
with a defect in red. Second image: [10]. Third image: [24]. Right image: mouse tracking (ground
truth)

This kind of visual saliency is called “self-resemblance.” A good example is shown
in Fig. 7.2. The model has two steps. First, it proposes to use local regression kernels
as features. Second, it proposes to use a nonparametric kernel density estimation for
such features, which results in a saliency map consisting of local “self-resemblance”
measure, indicating likelihood of saliency [32].

Mancas [21] and Riche et al. [31] focus on the entire image. These models
are designed to detect saliency in the areas which are globally rare and locally
contrasted. After a feature extraction step, both local contrast and global rarity
of pixels are taken into account to compute a saliency map. An example of the
difference between locally contrasted and globally rare features is given in Fig. 7.3.
On the left, there is the initial image of an apple with a defect in red; the second
image shows the fixations predicted by [10] where the locally contrasted apple
edges are well detected while its less contrasted but rare defect is not. The third
image shows [24] which detected the apple edges, but also the defect. Finally, the
rightmost is the mouse-tracking result for more than 30 users. Boiman and Irani [4]
look for similar patches and relative positions of these patches in an image database
which provide more cues about what should be normal. The use of a database might
be viewed as an introduction of top-down information.

7.3.1.3 Context: A Model of Normality

This approach is probably less biologically motivated than most of the other
implementations. The context which is used here is a model of what the image
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Fig. 7.4 Achanta et al. [1] use a model of the mean image (Adapted from [1])

should be: if things are not like they should be, this can be surprising, thus attracting
people’s attention. Achanta et al. [1] proposed a very simple attention model
(Fig. 7.4): first, the color space is converted from RGB to Lab; second, the Euclidean
distance is computed between a Gaussian filtered version of the input image and the
average Lab vector of the input image. The mean image used is a kind of model of
the image statistics: pixels which are far from those statistics are more salient. This
model is mainly useful in salient object detection.

Another approach to “normality” can be found in [8], where the authors proposed
a spectral model that is independent of any features. As it is known that natural
images have a } decreasing Fourier log-spectrum, the difference between the
log-spectrum of the image and its smoothed log-spectrum (spectral residual) is
reconstructed into a saliency map. Indeed, a smoothed version of the log-spectrum
is closer to an } decreasing log-spectrum as small variations are removed. This
approach is almost as simple as [1] but much more efficient in predicting eye
fixations.

More details on still image saliency modeling can be found in the Chaps. 8
and 9.

7.3.2 Videos

Part of the static models have been extended to video. As shown in Fig.7.5, it is
the case of [32] where the time dimension is introduced by replacing square spatial
patches by 3D spatiotemporal cube patches where the third dimension is the time.
Also, Itti’s model was generalized with the addition of motion features and flickering
to the initial spatial set of features containing luminance, color, and orientations.
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Fig. 7.5 Seo and Milanfar [32] generalized to video by introducing the spatiotemporal cubes
(Adapted from [32])

Fig. 7.6 Detection of salient motion compared to the rest of motion. Red motion is salient because
of unexpected speed. Cyan motion is salient because of unexpected direction [26]

Those models mainly show that important motion is well detected. Other models
like [26] have developed a bottom-up saliency map to detect abnormal motion. The
proposed method is based on a multiscale approach using features extracted from
optical flow and global rarity quantification to compute bottom-up saliency maps.
The model exhibits promising results from a few moving objects to dense crowds
with increasing performance (Fig. 7.6). The idea here is to show that motion is most
of the time salient, but within motion, some motion areas are more interesting than
others.

More details on video saliency modeling can be found in Chap. 10.

7.3.3 Extension to 3D

3D saliency modeling is an emerging area of research which was boosted by two
main evolutions.

First is the arrival of affordable RGB-D cameras which provide both classical
RGB images and a depth map describing pixel distance from the camera. In terms
of computational attention, this depth information is very important. For example,
in all models released up to now, movement perpendicular to the plane of the camera
could not be taken into account, while now it is directly available in the depth
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map. Those cameras (e.g., MS Kinect) provide a whole set of new features to the
community through the depth map but also through the available point cloud and its
3D geometric features (surface normals, curvature, compactness, convexity, etc.).

The second event is the arrival of 3D printers which democratized the 3D models
used to print objects. 3D models are more easily available, and libraries like PCL
[2] can handle 3D point clouds, convert formats, and compute features from those
point clouds.

Most of the 3D saliency models are extensions of still image models. Some use
the 3D meshes based on Itti’s approach, others just add the depth as an additional
feature, while recent models are based on the use of point clouds. More details can
be found in the Chap. 17.

As 3D saliency models are mainly extensions of 2D models, depending on the
extended model, the different features can be taken into account locally and/or
globally on the 3D objects.

7.3.4 Audio Signals

There are very few auditory attention models compared to visual attention models.
One of the main issues is that it is not easy to find easy ground truth in the audio
domain (contrary to eye tracking for visual attention). Also, the audio modality
taken alone is much less informative on the scene than the visual modality. However,
we can classify existing models into different categories.

The first one represents the local context for audio signals. As shown in Fig. 7.7,
Kayser et al. [14] compute auditory saliency maps based on Itti’s visual model
(1998). First, the sound wave is converted to a time-frequency representation
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Fig. 7.7 Kayser et al. [14] audio saliency model inspired from Itti (Adapted from [14])
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(“intensity image”). Then three auditory features are extracted on different scales
and in parallel (intensity, frequency contrast, and temporal contrast). For each
feature, the maps obtained at different scales are compared using a center-surround
mechanism and normalized. The center-surround maps are fused across scales
achieving saliency maps for individual features. Finally, a linear combination builds
the saliency map which is then reduced to one dimension to be able to fit on the
one-dimensional audio signal.

Another approach to compute auditory saliency map is based on following the
well-established approach of Bayesian Surprise in computer vision [9]. An auditory
surprise is introduced to detect acoustically salient events. First, a short-time Fourier
transform (STFT) is used to calculate the spectrogram. The surprise is computed in
the Bayesian framework. This surprise approach represents the “normality” context
for audio signals.

In the case of audio signal, there is no real “global” context as the time dimension
has no real boundaries as the spatial dimensions have. A global context will be a long
period of time in the past.

Mancas et al. [22] directly use as features the amplitude of the STFT and
quantify their rarity compared to a long audio history. The model detects sudden
and unexpected changes of audio textures and focuses the attention of a surveillance
operator to sound segments of interest in audio streams that are monitored.

7.3.5 Mixing Video and Audio Signals

The superior colliculus (SC) is the brain structure which directly communicates with
the eye motor command in charge of eye orientation. Its originality is to integrate
information coming from different sensory areas but mainly visual and auditory.
The information within the SC (Fig.7.8) has a retinotopic representation. Visual
information is displayed on the superficial layers and the auditory information on the
deeper layers [15]. Once in the same coordinate system, multisensory information
will be fused in order to take a decision on the eye movement. The main task of the
SC is thus to direct the eyes onto the “important” areas of the surrounding space in
terms of both vision and sounds and mix those two modalities.

Some attempts in mixing visual (still, video, and 3D) to audio signals saliency
showed that the result is much more complex than expected. The final result is NOT
the simple addition of visual and audio saliency taken together and it also depends
on the scene (natural, social, action, etc.) [5, 16].

Basically, the visual modality seems to take the lead of attention unless the audio
event is congruent spatially AND temporally with an image object/action. In this
case, the audio has a great impact on the global attention. Given the retinotopic
representation in the superior colliculus, a correspondence between the audio and
visual location in the same time range is necessary for the fusion to be effective.
This task should also be easier in the future as arrays of microphones which also
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Fig. 7.8 Data fusion within Visual map
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provide the direction of a sound are available together with the RGB and depth map
on low-cost sensors as the MS Kinect.
More details on mixing audio and visual saliency can be found in the Chap. 16.

7.4 Saliency Models: Including Top-Down Information

Top-down is endogenous information and comes from the inner world (information
from memory, their related emotional level, and also the task-related information).
The separation between bottom-up and top-down information is far from being
clear. Depending on the viewpoint and the definitions, some notions can be
considered as bottom-up or top-down.

One can say that top-down is not involved if the memory/learning is not
involved. In this case, all the hard-wired features which might be low level
(luminance, color, orientation, motion direction), mid-level (object basic properties
as the size, centered Gaussian as a default context), or high level (face detection,
people detection) which involve specific brain areas but do not need memory and
learning are bottom-up. An interesting point is that if bottom-up attention might be
considered as common to a given species attention embodiment (e.g., humans) as it
is hard-wired, it is not fully the case. Indeed, as the cognitive capabilities may vary,
bottom-up information might also vary within the population. A color-blind person,
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for example, will have a different perception even without using any learning or
memory, so a different bottom-up filter on the acquired data.

Top-down involves learning and memory and will deal with specific contexts
(e.g., websites, adds, etc.), object recognition (face recognition, people recognition,
specific animal or object), or a given task coming from inner needs (looking for
the keys, etc.). Top-down information is a specialization of attention which implies
important differences in attention focus between members of a given species (e.g.,
humans) depending on personal life experiences, mood, etc.

It is thus interesting that face detection can be considered as bottom-up (face
feature detection does not necessary need memory and might be located in a specific
brain area, the fusiform gyrus [27]) while face recognition is clearly top-down as it
directly uses memory to remember a specific person.

In practice, three main families of top-down information can be added to bottom-
up attention models.

The first one mainly deals with learned normality in a given context which can
come from the experience from the current signal if it is time varying, or from
previous experience (tests, databases) for still images.

The second approach is about task modeling which can either use object
recognition-related techniques or which can model the usual location of those
objects of interest.

The third one uses learning to extract both bottom-up and top-down information
from eye-tracking results on a dataset of images.

7.4.1 Top-Down as Learned Normality

Concerning still images, the “normal” gaze behavior can be learned from the “mean
observer.” Eye-tracking techniques can be used on several users, and the average of
their gaze on a set of natural images can be computed. This was achieved by several
authors as it can be seen on Fig. 7.9. Bruce and Judd et al. [13] used eye trackers,
while [20] used mouse-tracking techniques to compute this mean observer. In all
cases, it seems clear that, for natural images, the eye gaze is attracted by the center
of the images. This information is not top-down as it is generic enough not to be
learned.

This centered distribution seems logical as natural images are taken using
cameras and the photographer will naturally tend to locate the objects of interest

Bruce & Tsotsos 2005 Mancas 2007 Judd 2011 Advertisments Web Sites

Fig. 7.9 Three models of the mean observer for natural images on the left. The two right images:
model of the mean observer on a set of advertising and website images
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in the center of the picture. Another point is that the objects in the center of the
visual field are the ones one might interact with; they are then more important than
the others.

This observation for natural images is very different from more specific images
which use a priori knowledge and which are top-down. In [6], the author shows
that the centered distribution mainly follows an horizontal axis for landscapes while
it follows both horizontal and vertical directions for images of interiors. Mancas
[21] showed using mouse tracking that gaze density is very different on a set of
advertisements and on a set of websites as displayed on Fig. 7.9 on the two right
images. This is partly due to a priori knowledge that people have about those images.
For example, when viewing a website, the upper part has high chances to contain
the logo and title, while the left part should contain the menu. During images or
video viewing, the default template is the one of natural images with a high weight
on the center of the image. If supplemental knowledge is known about the image,
the top-down information will modify the mean behavior toward the optimized gaze
density. Those top-down maps can highly influence the bottom-up saliency map, but
this influence is variable. In [21], it appears that top-down information seems more
important in the case of websites than advertisements and natural images. Other
kinds of models can be learned from videos, especially if the camera is still. It is
possible to accumulate motion patterns for each extracted feature which provides
a model of normality. As an example, after a given period of observation, one can
say: here moving objects are generally fast (first feature: speed) and going from left
to right (second feature: direction). If an object, at the same location, is slow and/or
going from right to left, this is surprising given what was previously learned from
the scene; thus attention will be directed to this object. This kind of considerations
can be found in [23]. It is possible to go further and to have different cyclic models
in time. In a metro station, for example, normal people behavior when a train arrives
in the station is different from the one during the waiting period in terms of people
direction, speed, density, etc. In the literature (mainly in video surveillance), the
variations in time of the normality models are learned through HMMs (hidden
Markov models) [11].

For 3D signals, another information is the proximity of objects. For natural
images, centered objects also attract our attention because they might be the ones we
will interact with as they are in the center of the visual filed. In the same way, a close
object is more likely to attract attention as it is more likely to be the first that we will
have to interact with. In real world, the default context is a mix between a centered
Gaussian and proximity value: centered close objects are the most important while
far objects on the sides the less.

7.4.2 Top-Down as a Task

While the previous section dealt with attention attracted by events which lead to
situations which are not consistent with the knowledge acquired about the scene,
here we focus on a second main top-down cue which is a visual task (“Find the
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keys!”). This task will also have a huge influence on the way the image is attended,
and it will imply object recognition (“recognize the keys”) and object usual location
(“they could be on the floor, but never on the ceiling”).

7.4.2.1 Object Recognition

Object recognition can be achieved through classical methods or using points of
interest (like SIFT, SUREF, etc., [3]) which are somehow related to saliency. Some
authors integrated the notion of object recognition into the architecture of their
model like [29]. They extract the same features as for the bottom-up model, from
the object, and learn them. This learning step will provide weight modification for
the fusion of the conspicuity maps which will lead to the detection of the areas
which contain the same feature combination as the learned object. More about object
recongition and slaiency can be found in Chap. 19.

7.4.2.2 Object Location

Another approach is in providing with a higher weight the areas from the image
which have a higher probability to contain the searched object. Several authors as
[30] developed methods to learn objects’ location. Vectors of features are extracted
from the images and their dimension is reduced by using PCA (principal component
analysis). Those vectors are then compared to the ones from a database of images
containing the given object. Figure 7.10 shows the potential people location that
has been extracted from the image. This information, combined with bottom-up
saliency, leads to the selection of a person sitting down on the left part of the image.

7.4.3 Task, Context, and Learning

Recently, learning the salient features becomes more and more popular: the idea
here is not to find the rare regions, but to find an optimal description of those rare

Top-down
(people?)

Bottom-up only

Final Map

Fig. 7.10 Bottom-up saliency model inhibited by top-down information to select only salient
people (Adapted from [30])



118 M. Mancas

4
q
e g

|

It:

K | __...i,-__-, ¥

A -
i;

Fig. 7.11 Deep learning of salient features: at the second layer (mid-level features, top row) and
at the third layer (high-level features, bottom row) (Adapted from [33])

regions which are already known from eye tracking or mouse tracking ground truth.
The learning is based on deep neural networks, sparse coding and pooling based on
large images datasets where the regions of interest are known. The most attended
regions based on eye-tracking results are used to train classifiers which will extract
the main features of these areas.

The use of deep neural networks greatly improved those techniques which are
now able to extract meaningful middle- and high-level features which can describe
the best salient regions [33]. Figure 7.11 shows examples of interesting feature
extraction in the context of the training set which was here the MIT dataset [12]. This
dataset contains general purpose images and free viewing; thus, specific top-down
information is not included. The top row of the figure shows the features after the
second layer. One can see mid-level features like corners or textures which naturally
pop out from learning. More interestingly higher-level features such as text-like
texture, faces, circular objects, and man-made structures are learned in the third
layer. Those features might be considered top-down even if generic face detection,
for example, can also be considered as bottom-up. These features are then mixed
with weights which are again learned from the ground truth into saliency maps.
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An interesting thing with this kind of approach is that it can be tailored to
datasets where specific contexts (like outdoor pictures) or specific tasks (looking
for wild animals) are taken into account. In that case, the initial feature learning
phase could exhibit features which are more related to this context and task and
which integrate both bottom-up and top-down information. However, a drawback of
these methods is that they are too much taylored to the training dataset. Analyzing
advertising images using a model trained to natural images can provide bad results.
The extensive use of deep learning can lead to a loss of genericity of the saliency
model. The future in this direction is probably in a mix of deep learning and more
classical pipelines.

7.5 Modeling Attention in Computer Science

In computer science, there are two families of models: some are based on feature
visibility and others on the concept of saliency maps, the latter approach being the
most prolific.

For saliency-based bottom-up attention, the idea is the same for all the models:
find areas in the image which are the most surprising in a given context. Three main
types of contexts can be found: a local one mainly focusing on contrast, a global
one quantifying the feature rarity, and a normality based which uses normal forms
in image or Fourier space.

Saliency models can be also applied to video, audio, and even 3D signals. When
mixing audio and visual signals, the influence of the audio seems to be taken into
account only if it is congruent with a visual event.

Finally, a set of top-down features which can influence the saliency-based models
are reviewed. While some of them are in fact bottom-up (centered Gaussian, face
detection, etc.), others are real top-down features (context related, object and face
recognition, object location).

In the next chapters, the saliency-based models will be described for still images,
for videos, but also for 3D and multimedia models. A strong validation of still and
video models is also done to see how effective the models are.
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Chapter 8
Bottom-Up Visual Attention for Still Images:
A Global View

Fred Stentiford

8.1 Introduction

Studies in neuroscience [1] are suggesting that human visual attention is enhanced
through a process of competing interactions among neurons representing all of the
stimuli present in the visual field. The competition results in the selection of a few
areas of attention and the suppression of irrelevant material. It means that people and
animals are able to spot outstanding patterns in a scene perhaps no part of which they
have seen before and attention is drawn in general to the anomalous object in the
scene. This makes visual attention a vital element in the survival of all creatures that
have evolved since the Cambrian explosion [2] when vision first appeared on the
Earth.

The ensemble of mechanisms grouped under the term attention swings into
action before we are even conscious of anything strange. Indeed there is a pre-
attentive period often less than 100 ms during which low-level processes rapidly
identify image regions that deserve attention, and it has been the subject of
considerable research. Treisman [3] describes experiments that reveal pre-attentive
behaviour in human vision. She points out a ‘masking effect’ that depends upon
the presence elsewhere of other elements sharing the local distinctive property. A
locally salient feature can be suppressed by more distant structures in the image.
Single distinctive features such as colour or orientation promote immediate saliency,
but if these properties are cojoined, the search for a target is more difficult. Treisman
describes several examples of images that exhibit the pop-out effect, some of which
behave asymmetrically. For example, the time taken to find a circle crossed by an
intersecting line is independent of the number of identical circles in the display,
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whereas the time taken to find a circle among circles with lines increases linearly
with the number of distractors.

It is known that a process of centre-surround suppression takes place in receptive
fields in primate vision V1 [4] that detects local luminance contrast and enhances
the edges that surround objects in the visual field. This mechanism is incorporated
in most models of attention and is usually represented by inner and outer circular
image regions that respond when contrast levels are significantly different (Fig. 8.1).

Computer models of visual attention aim to imitate aspects of the behaviour
of the human visual system. The models identify image regions that attract our
attentioneither directly by our gaze or covertly in our peripheral vision. Points
in these regions are assigned saliency scores according to particular measures
and the results displayed as saliency maps (Fig. 8.2). The appearance of saliency

Fig. 8.1 High contrast
centre-surround image
regions

bright centre, dark surround  dark centre, bright surround

Fig. 8.2 Image and corresponding saliency maps (a) [5], (b) [6]
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maps depends not only the balance between global and local measurements in the
algorithms but also on the content of the images which may or may not suit the
style of analysis. Many models are strictly bottom-up, that is, they rely totally on
the information contained within the images in question. Others incorporate top-
down methods that allow the statistics of related images to influence the parameters
that determine local saliency values. In the extreme, top-down attention becomes
recognition when attention is solely directed at a particular class of object and
the features characterising those objects are used as a template in the calculation
of the saliency measure. Saliency maps can predict eye fixations, by assigning a
probability to points in an image where most people will look. However, human
gaze behaviour is normally task driven, and therefore saliency maps are agnostic
about the sequencing of eye movements and more complex modelling mechanisms
are necessary [7].

The potential benefits that can arise from a model of attention are manifold
and include applications to visual inspection in manufacturing processes, medical
diagnosis, spotting security breaches, removing redundancy in data, various target-
ing applications and many others. The next section briefly outlines some common
models of attention, highlighting some advantages and weaknesses.

8.2 Categorisation Schemes for Attention Models

Several authors have attempted to classify and categorise attention models against a
set of criteria that separate the methods they employ into groups that highlight the
selected features. Motion is certainly a powerful attentive factor that outweighs and
obscures other features that characterise attention. It has the advantage that it can
be detected easily by measuring local changes rather than any more complex pro-
cessing. Top-down approaches may draw particular attention to specific sequences
in time.

Object-based models dependent on Gestalt factors such as closure and symmetry
can be contrasted with models that rely purely on spatial measurements. This
viewpoint is related to a top-bottom perspective in which objects themselves become
top-down targets for attention. Task definitions can shift human attention in a
dramatic fashion, in the extreme not to even see the object of attention [8]. In
a similar fashion, a task is a top-down influence which when modelled targets
attention towards an object search or an interactive role.

Models that make use of concepts from physiology and neuroscience fall into
a biologically inspired category. These models use mathematical frameworks that
reflect current theories of the human visual system. Successful modelling of human
behaviour could provide better understanding of the actual mechanisms involved.
However, the various mathematical implementations of cognitive models may be
categorised in other ways.

Both decision-theoretic models and Bayesian approaches carry out statistical
analyses to detect regions of interest. The methods rely upon the use of features
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that distinguish foreground from background and can also incorporate top-down
information. These approaches can be described as cognitive as aspects are reflected
in biological cell systems.

It is plausible to assume that a salient object represents a concentration of
information relative to the surrounding background. In this way, information
theoretic models measure the rarity of features present in regions to determine
saliency. Again statistics are used to spot unusual structure, but it is worth noting that
the probabilities of rare features are derived from very few samples and therefore
are statistically less reliable than those derived from features that are common.

Another attempt at characterising saliency transforms images into the frequency
domain, the idea being that saliency is easier to detect in the new space. It is likely
that relevant salient features dependent on spatial frequency distributions will be
emphasised, but other potentially more salient features in the original image will be
suppressed.

Some models employ graphical representations, but this aspect may be the only
factor that is common to the different approaches because quite diverse functionality
is assigned to nodes and edges. However, it can allow solutions to become large and
complex, but does maintain a direct link with structure present in the image.

The categorisation used in this chapter identifies approaches that extract structure
as part of the saliency measure as opposed to relying more on other features that
are selected to characterise saliency. Of course the dividing line is not always
clear as with any categorisation rule, but the use of spatial relationships and low-
level features provides a useful way of distinguishing the various methods. It is
apparent that the categorisation of models of attention is not clear cut because
most methods fall into several categories and this may therefore confuse rather than
inform. However, some categories will be appropriate and helpful in the context of
specific applications.

8.3 Computational Models

Investigations into the physical operation of the visual cortex are very difficult
not just because of the complexity but also the lack of suitable tools that can
monitor in real time the potential interactions of multitudes of individual neurons.
Current multi-electrode techniques can record simultaneously spikes from a few
hundreds of neurons [9], and this number is sure to increase over the next few
years. Nevertheless, we will not be able to predict and model the operation of
neurons unless we know in detail how they operate in normal circumstances both
individually and in concert. Functional magnetic resonance imaging (fMRI) scans
are certainly providing scientists with valuable insights into brain function, but
they are very blunt instruments when it comes to comprehending the precise firing
sequences of neurons. This is presenting a barrier to our understanding of human
vision which can be met in part by making use of computational models that
reflect the outward behaviour of the visual system. It enables theories to be tested
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against behavioural data and perhaps provide justification for the design of new
behavioural experiments. A wide ranging survey of the state of the art in visual
attention modelling can be found in Borji et al. [10].

Bottom-up approaches that rely on preselected features characterising saliency
are now contrasted with methods that place more importance upon structure
detection. Balancing the assumptions associated with the selection of feature
measurements against any unforeseen restrictions they place on potential future
applications is a challenge to be met by this research.

8.3.1 A Priori Feature-Based Methods

Saliency is frequently modelled by combinations of values of image parameters such
as intensity, colour, orientation, size and others. Particular local structures such as
edges, curvature, corners, shape and location are also considered relevant measures
of saliency.

Itti et al. [11] define a system which models visual search in primates (Fig. 8.3).
Features based upon linear filters and centre-surround structures encoding intensity,
orientation and colour are used to construct a saliency map that reflects areas of high
attention (Fig. 8.4). Supervised learning is suggested as a strategy to bias the relative
weights of the features in order to tune the system towards specific target detection
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Fig. 8.3 Model architecture from Itti [11]
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Fig. 8.4 Image and corresponding saliency map from Itti et al. [11]

tasks. However, the method of combining information from each of these filters is
difficult and may not function well on certain categories of image. Itti’s work has
provided a basis for performance comparisons reported in many papers on visual
attention. Han et al. [12] extended the Itti model by using a Markov random field.
The computational visual attention mechanisms are integrated with region growing
techniques. Gao et al. [13] use the feature decomposition of Itti et al., and saliency is
determined from the discrimination obtained from the mutual information between
centre and surround.

Tsotsos [14] presents a pyramidal processing attention model as a means of
reducing the complexity arising from a large number of selected features. A winner-
takes-all strategy is imposed on the processing layers in the pyramid so that the
more salient objects are identified by location and features at the top of the pyramid.
Provision is made to offset a boundary effect in the pyramidal structure that lays
emphasis on central items even if they are less significant than peripheral items.
Tsotsos highlights features such as size, luminance, edge contrast and orientation as
possible features for defining saliency in static images, but there is little guidance
on how these might be selected or combined.

Osberger et al. [15] identify perceptually important regions by first segmenting
images into homogeneous regions and then scoring each area using five intuitively
selected measures. These measures are grey-level contrast, size, shape, central
image location and image border location. The approach is heavily dependent upon
the success of the segmentation, and in spite of this, it is not clear that the method is
able to identify important features in faces such as the eyes. Luo et al. [16] also
devise a set of intuitive saliency features and weights and use them to segment
images to depict regions of interest. Some higher-level priors are used such as skin
colour, and selected images are used to normalise feature measurements.

The study by Le Meur et al. [17] lays emphasis on the considerable bias
of observers towards looking at the central parts of images where perhaps the
photographer usually places the subject. Le Meur et al. also take account of visual
masking in their model as it is known that the differential sensitivity of the human
visual system is dependent on the absolute values of parameters such as spatial



8 Bottom-Up Visual Attention for Still Images: A Global View 129

frequency. Gopalakrishnan et al. [18] apply features based on colour and orientation
to characterise salient regions, whereas Valenti et al. [19] employ features based on
the edges of colour regions and their curvature.

Cheng et al. [20] use a distance metric in Lab colour space to measure contrast
between regions and estimate saliency. The number of colours is minimised to
reduce computation. The approach is used to segment salient objects. Achanta [21]
again uses the Lab colour space but blurs the images with a Gaussian kernel and
uses the difference with the original image to identify salient regions that are also
easy to segment.

J. Zhang et al. [22] construct a set of Boolean feature maps using the Lab colour
space. Connected regions touching the image border are ignored. This has the effect
of introducing a centre bias and obtains good results on the MIT benchmark data
[23].

L. Zhang et al. [24] gather statistics from a set of natural scenes to train sets of
features used to estimate saliency. Saliency is indicated if features in a region are
comparatively rare in the background. In a similar fashion, Bruce et al. [25] use
3600 natural images to prepare a set of basis functions and identify saliency using
the likelihood of content within a region on the basis of the surround.

Ritchie et al. [26] derive six feature maps from the image, three maps from
colour measurements and three from orientation measurements. Each feature map
is subjected to Gaussian decomposition into four scales and a rarity map produced.
The maps are then merged, and the method yields saliency maps that compare
favourably with other approaches on the MIT data. The work highlights the effects
that high-level recognition can have on fixation maps.

It might be argued that methods employing the intuitively inferred properties of
images could be to some extent reflecting top-down information into the images
being analysed. In this same sense, an attention mechanism that is driven by a
specific task is also making use of top-down information and previously acquired
experience. Several approaches fall into this category such as Liu et al. [27] who use
an intuitively selected set of features including multiscale contrast, centre-surround
measures and colour distribution to train a classifier to identify salient objects.

Oliva et al. [28] construct contextual features that guide attention towards specific
targets such as people. However, detecting such irregularities as salient necessitates
top-down knowledge of what characterises the images of people. Kavak et al.
[29] utilises a learning-based saliency model and also employs both low-level
features and high-level object-based features. A centre bias is introduced to improve
performance.

Vig et al. [30] employ a training set of salient and non-salient gaze-labelled
regions to construct an ensemble of convolutional network models. The method
obtained good results on the MIT benchmark data. This work was developed by
Kummerer et al. [31] who trained a high-dimensional feature space that had been
previously optimised for object recognition and achieved an improved performance.
Torralba [32] computes local salience using features derived from RGB, six
orientations and four scales at each pixel. This is then modulated with contextual
features trained on specific attentive objects such as people, paintings and mugs.
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The operation is therefore significantly governed by features derived from top-
down guidance. Judd [33] trains a 33-feature support vector machine to obtain a
performance that approaches that of a human. He notes the importance of including
object detectors among the features such as for faces and text, as these figure
strongly in the fixation data. He also incorporates a centre prior, but it should be
noted that during the collection of eye tracking data, all users were asked to fixate
centrally before viewing images, and this requirement will have a powerful influence
on the position of many of the subsequent fixations.

Garcia-Diaz [34] uses a hierarchically whitened feature space, where the norm
of the vector displays the variability and serves as a saliency metric to measure how
far a pixel feature vector deviates from the rest of the data. Some centre bias was
removed from data by randomising the start point for eye tracking.

Many feature-based methods incorporate some form of top-down input either
through supervised learning or a targeted choice of features. Whether features
such as red or colour are higher or lower in the top-down scale is open to debate
depending on the relevance in particular applications. However, the main attraction
of this approach is the freedom to select features that are known to characterise
saliency in general. The difficulty with preselecting features in this manner is that
they cannot always anticipate the properties of a yet-to-be-seen attentive object.

8.3.2 Structural-Based Methods

All attention models make use of low-level measurements, but many seek common-
ality of structure within this data to isolate regions worthy of attention rather than
only rely upon weighted combinations of feature measurements.

Erdem et al. [35] compare regions within a certain distance of each other using
covariance matrices of image features to determine saliency. It is noted that this
approach fails to identify saliency arising from the absence of local structure located
elsewhere in the image. In a similar fashion, Seo et al. [36] measure local patch
similarity using neighbouring feature matrices, but as with Erdem, the saliency of
objects not possessing features present globally is not detected.

Fang et al. [37] divide the image into patches and identify saliency where a patch
differs from those found elsewhere in the image while attaching a greater weight
to patches that are closest. The similarity of patches is based on measurements of
colour, intensity and orientation. In related work, Chen et al. [38] identify salient
regions by detecting local groups of similar pixels but which form only a small
percentage of the image.

Boiman et al. [39] consider higher-level structure and search for patch ensembles
common to a database and the candidate image. Regions that cannot be composed
from ensembles in the database are considered irregular. Patch configurations are
compared according to their descriptors ¢’ and their relative positions with respect
to an origin point C (Fig. 8.5).

Goferman [40] computes the saliency of a pixel by comparing the surrounding
patch with others in the image. A patch is salient if it differs in colour as well as
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Fig. 8.5 Ensembles of 2
patches [39] : q

being physically close to others in the image. The saliency is averaged over four
scales and increased in value where pixels are close to others with high saliency to
indicate ‘context’. In addition the saliency map is given a centre bias. The approach
is particularly sensitive to edges. Borji [41] also employs local and global patch
comparisons, but obtains improved performance by combining maps obtained from
RGB and Lab colour channels. Each patch is represented by a set of basis functions
optimised over a training set. Results are evaluated using the shuffled AUC formula
which only uses the locations of fixation points and therefore ignores the effects
of any centre bias in the data. Borji emphasises the potential benefits of top-down
recognition on performance.

Harel et al. [42] propose a graphical model in which nodes correspond to image
locations and the edges represent feature-based measures of dissimilarity between
those nodes. Regions possessing high concentrations of dissimilarity are associated
with saliency.

Stentiford [43] compares local groups of isolated pixels with others in the same
relative position elsewhere in the image to detect unusual structure and hence a
measure of saliency. The pixels are selected randomly, and the process does not
involve the preselection of features or subsequent training.

Hou et al. [6] rely on frequency domain processing in which the difference
between the original log spectrum and a prior averaged spectrum is transformed
back into the spatial domain as the saliency map. Hou et al. [44] continued
the spectrally based approach by first computing the sign of the discrete cosine
transform of the image and constructing a saliency map by taking the inverse
transform and smoothing the result.

Kadir et al. [45] measure the entropy of the local distribution of image intensity
across a number of scales. High entropy indicates high local complexity and hence
high saliency. This may not be the case where the salient structures possess lower
entropy.

Lindenberg [46] provides a framework for detecting salient blob-like objects
without relying on a priori information. He stresses that not all significant image
structures are blobs. His research makes the assumption that structures that are
significant in scale space will also be perceptually significant. Although this may
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Fig. 8.6 Relative importance of features and structure in referenced papers

be true for some blob configurations, it does not apply to all, as, for example,
no provision is made for the attention-suppressing effect of surrounding similar
configurations as demonstrated by Treisman [3].

In summary, Fig. 8.6 displays how the various approaches to the analysis of
saliency described in this chapter make relative use of features and structure. No
method can avoid making use of some low-level measurements, and equally all
approaches take some account of spatial aspects. However, there is a spread between
these two extremes which may be interpreted as showing that authors have yet to
agree on future research directions in this field.

8.4 A Closer Look at Models

8.4.1 Feature Based

The feature-based and structurally based models both have their advantages and
disadvantages, and it is therefore worthwhile examining example models in more
detail in order to highlight differences and any outstanding issues.
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The Itti model [11] uses a biologically plausible architecture and is related to
Treisman’s feature integration theory [3]. Low-level feature measurements of colour
channels, intensities and orientations are extracted from images over a range of
scales. The scales (0-8) start with the original image, and dimensions are decreased
by a power of 2, ending with a ratio of 1:256. Analogously to visual receptive
fields, each measurement is fed through a centre-surround mechanism in which
a combination is used of a finer scale in the centre (c¢) and a course scale in the
surround (s). Six feature maps for each measurement are produced using scale
combinations (c,s) = {(2,5),(2,6),(3,6),(3,7),(4,7),4,8)}.

An intensity image I is produced from the red (7), green (g) and blue (b)
measurements where [ = (r+ g+ b)/3 and Gaussian pyramids /(o) formed for
each of the scales (0 =0, ... , 8). Six feature maps are produced from the
intensity values. The rgb channels are first normalised by intensity, and four
other colour channels are defined as follows: R=r— (g + b)/2, G=g— (r + b)/2,
B=b—(r+g)/2and Y= (r+ g)/2— |r—g|/2 — b, where negative values are set to
zero. Corresponding Gaussian pyramids R(o), G(o), B(c), Y(o) are then created.
Centre-surround features are calculated by summing point differences between
centre and surround interpolating to the finer scale where appropriate.

The colour opponency of red-green and blue-yellow in human vision is modelled
using the same centre-surround mechanism where R(0):G(o ) and B(o):Y(o ) differ-
ences are used as values in the centre and surround regions. This yields six more
feature maps from each of the two colour opponents. The orientation sensitivity of
receptive fields is represented by orientation Gabor pyramids, each sensitive to the
preferred angles 0, /4, /2,3 /4. This produces a further 24 feature maps that
contrast orientations between centre and surround.

The fusion of the 42 feature maps is difficult because saliency indicated in a
few of the feature maps can be suppressed when they are all combined (Fig. 8.7).
Equally, chance reinforcements between maps can produce spurious indications of

Fig. 8.7 Image and Itti saliency map taken from [37]
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saliency. To overcome some of these problems, feature map values are normalised to
a fixed range, and maps possessing a few strong maxima values are weighted against
those whose local maxima do not differ significantly. The feature maps for each of
intensity, colour and orientation are then summed across scales and combined to
form three intermediate maps which are then averaged to form the final saliency
map.

The principal limitation of a feature-based model is the prior selection of features
that may not detect salient aspects such as in this case corners and other structural
items. The complexity of features can be increased, and this is exemplified in the
next section.

8.4.2 Structure Based

It is apparent that salience arises not just from colour, brightness and local
orientation but also from structural features especially if they have not been seen
before. As an example, the work of Boiman et al. [39] is aimed at detecting
unusual irregularities that cannot be characterised beforehand and which therefore
represent salience. Ensembles of patches (Fig. 8.5) taken from an observed image
are compared with ensembles in a database to determine whether the observed
structure has occurred before or whether it is strange or irregular.

Regions (typically 50 x 50 pixels) of an image are broken into 7 x 7 pixel patches
taken from Gaussian pyramids at multiple scales. A spatial gradient is assigned to
each pixel, producing a normalised 49-vector d' for each patch i. The similarity of
vectors (d', &) is given by

P(d.d) =a exp(—(d'—d)"s5' (d - &)

where « is a constant and Sp is a constant covariance matrix. Boiman defines the
similarity of the positions l;., P of patch pixels relative to origins ¢y, ¢, associated
with ensembles y, x, respectively, as

P(lentic) =B ep(—((l—c) = (E—c)) s (- ) - (- <)

where § is a constant and Sy, is a constant covariance matrix.
A correspondence /md| is set up between similar patches in the observed image y
and those in the database x:

md, = m;xp (d). &) P (. 1)
1 d,lex

where P (d, 1)) = 0 otherwise
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High values of mdi, identify the locations of patches in the database that are
similar to the ith patch in y.

Patches that are not only similar but also possess the same relative position with
respect to the ensemble origin are identified by mc;

mc’y = maxP (l’y, ¢y, b, cx) md’y

X

This yields a set of candidate origins ¢’ in the database corresponding to each
of the patches in y, and hence the best matching ensemble in x may be determined
from

M = maxmc,

i y
cy=cl,

A number of heuristics are introduced to reduce the size of an impossibly large
search space. Patch ensembles are grown starting from a single patch, and additional
patches are added if they match a database structure. Secondly, computation is
reduced by considering coarse scales during the initial stages, but if matches are
not found, different processing rules have to be followed using a finer scale. The
method is applied to the problem of detecting suspicious behaviour, and top-down
information from a previously collected database is used to determine saliency. The
results are encouraging, but the examples reported only illustrate the algorithms.
The work has been developed further and has been used to measure self-similarity
[47] and therefore could be used to model bottom-up attention.

Although the approach is intuitively appealing, it is not clear how a database
should be set up best to reflect a particular problem. A large number of examples of
patch ensembles are proposed, but these may not capture all the ‘normal’ situations
which may later be misidentified as irregular. In addition the specific features used
to describe patches may not be able to represent certain structures in a way that
enables them to be matched. Finally, without prior knowledge, the actual selection
of patches to a large extent is random and therefore must introduce irrelevant
information which has to be processed and could degrade performance if it is not
subsequently ignored.

8.4.3 Background Identification

Saliency is difficult to characterise in general because surprise [48] cannot be
predicted! Selecting features such as colour, brightness and orientation to measure
saliency cannot offer a guarantee of success because the chosen features may not
be appropriate for the salient region in question. Boiman and others recognise that
other factors can affect visual attention that include structural relationships.
Human visual attention in a still image is governed by the relationship between
the background and the salient object. Methods therefore are needed that separate
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foreground from background that do not employ a priori information or make any
assumptions regarding properties of saliency. Background regions can be identified
by recognising the self-similarity that they exhibit. This means that salient regions
can be identified by the absence of self-similarity and avoids the need to preselect
features to characterise saliency itself which by its very nature is unpredictable.
Stentiford [49] takes this approach in which pairs of pixels (x;,x;) in region 1 of
an image and pairs of pixels in region 2 (x,,,x,) of the image match if brightness,
local gradient orientation and relative orientation lie within certain thresholds where

| —u™| <8, |u9—u"| <& and u™* isthe brightness at pixel x;  (8.1)

16; — Ol < &1, | 6;—6n] <& (8.2)

and 6 is the local gradient orientation of pixel x

ang 9 TF) S Ca =T (8.3)
|x,~ —xi‘ * |2, — X
The inner product in Eq. (8.3) constrains the difference in slopes between the pairs
of points in each region to be less than a certain angle &, > \(pij - (pnm| where
A = cos &;. These conditions for match are scale invariant and partly orientation
invariant o(g;). The matching of the pairs of pixels x; and x; and x; and x; has
greater reliability if the pair x; and x; also match as this shows that the properties
of all three points match according to (8.1) and (8.2) and are in the same relative
angular position according to (8.3) in both regions.

The three pixels are represented by nodes in a fully connected graph or cligue
(Fig. 8.8) with edges representing their angular relationship. The matching of the
relative orientation of points in (8.3) reflects the structure present in both locations
and is at the same time scale invariant. Greater reliability is obtained through the

Region 1

Fig. 8.8 Matching cliques of size 3
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Fig. 8.9 Matching cliques - —
fitting background 5s Lj :

associative power of larger maximal cliques that may be traded off against the
precision of the thresholds §, &1, g, and thereby obtain more flexible matching. A
maximal clique is obtained when it is not possible to add more matching nodes.

The similarity measure is used to analyse black and white images exhibiting
pop-out effects. Gradient orientations 6. are quantised into just four values (0°, 90°,
180°, 270°), and matching points possess the same value. The threshold for &; is
set at 20°. Intensities in (8.1) are not used with black and white images. In practice
the check on the ¢, relative orientation threshold is only applied to the four closest
nodes because as distance increases, virtually all nodes satisfy the condition if the
first four do. The images are compared with themselves, and an additional restriction
is placed on matching pixel separations:

|xi —xj| <R and |x, —x,| <R (8.4)

where R is chosen to limit the size of the regions being compared. Figure 8.9 shows
maximal cliques matching pairs of identical background shapes but not the tilted
shape. For clarity each clique is represented by coloured lines joining only the three
nearest points in each clique. The ‘2’ does not pop out and is matched because the
top and bottom sections of the ‘2’ match the bottom and top, respectively, of the
background ‘5’s.

The identification of background in this approach is strongly structural and does
not make use of any training stages save that of analysing the image itself. More
generally, attention is also dependent on prior knowledge in the sense that a familiar
pattern such as a face will pop out regardless of other structure in the background.
It is worth noting that the approach to measuring saliency by identifying maximal
matching cliques within a single image has been applied to the task of measuring
the similarity of different images. In this case, it was sufficient to match gradient
orientation and relative orientation to obtain face recognition [50].
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8.5 Summary and Conclusions

This chapter has not attempted to produce a comprehensive survey of all research
on computational attention because it is a very large and varied field. Indeed
categorising the various approaches is difficult with many associated drawbacks
in each case. Nevertheless, certain key methods for identifying saliency in images
have been categorised above according to the extent that features and structure have
been employed. There is a concern that preselected features thought to characterise
saliency cannot always measure surprise and therefore any move away from this
approach may be of interest in the future. A purely structural method has been
used to illustrate how identifying background is sufficient to reveal saliency without
characterising it beforehand, although this still may not take account of top-down
influences.
This chapter has exposed several issues:

* Feature-based methods work well but not on images that are not reflected in the
specific features used. This also applies to structural approaches as well.

* Top-down approaches are relevant if salient objects, such as text or faces, are
present.

* Centre bias in eye tracking data is an important factor when assessing the
performance of models of human attention on still images.

Understanding the nature of attention in human vision is fundamental to the
future of computer vision whether it is based on features, structure or higher-level
recognition. A framework that reflects visual behaviour both in recognition and
attention is an exciting target for research in this area and could yield new questions
for human vision itself.
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Chapter 9
Bottom-Up Saliency Models for Still Images:
A Practical Review

Nicolas Riche and Matei Mancas

There is an increasing interest to utilize human visual attention abilities on
computational systems. This is especially the case for computer vision which needs
to select the most relevant parts within a large amount of data. Therefore, modeling
visual attention, particularly the bottom-up part, has been a very active research area
over the past 20 years. Many different models of visual bottom-up attention are now
available online. They take as input natural images and output a saliency map which
gives the probability of each pixels to grab our attention. In this chapter, a state of
the art of saliency-based models has been done. Those models will be used in the
next chapters for explaining the validation of saliency models in computer science.

9.1 Background

The taxonomy proposed in this section is very simple and based on the historical
development of saliency models. It is the most efficient one to present the study
and to validate the saliency models which will be detailed in the next chapters. We
distinguish two big classes of models, corresponding to different types of outputs.
Chronologically, the first algorithm type is mostly inspired from the psychologi-
cal and neurobiological theories. It uses eye tracking data (fixation map) as ground
truth. This is why we call models corresponding to this type eye tracking (ET)-
based models in the present chapter. The purpose of this class of models is to
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Image Input ET model Output SOD model Output

Fig. 9.1 The proposed taxonomy. Two saliency model types: ET models which predict the gaze
distribution and SOD models which detect salient object

correlate the saliency map with the gaze distribution and predict the eye fixations
as shown in the second column of Fig.9.1.

In a second time, due to the requirement of computer vision applications like
seam carving [1], object detection, and segmentation [2], a second class of models
appeared. They are called salient object detection (SOD)-based models because
their purpose is to detect salient objects as displayed in the third column of Fig.9.1.
They use manual annotations (binary masks which highlight the salient objects) as
ground truth.

9.1.1 Eye Tracking (ET)-Based Models

The models based on eye tracking are all different but a similar structure can be
found. This structure consists in the following three main steps:

* Feature extraction.
» Attentive process for saliency computation.
 Fusion to build a single saliency map.

The first step almost always represents low-level (local orientations, texture,
colors, curvatures, intensity) and mid-level (horizon, faces, objects) feature extrac-
tion from still images. These extractions from the input image can be performed
with single (original image resolution) or multiple (blurs and subsamples) scales to
build feature maps. Then, an attentive process for saliency computation is applied
on each feature map. This attentive process is often a technique from image
processing which attempts to model preattentive theories. It can be local (patch)
or global (entire image) but also applied with single or multiple scales. Some of
the most popular operations are center-surround algorithm [3], rarity mechanism
(self-information) [4], entropy [5], spectral transformation [6], and graph-based
model [7]. Finally, the last step consists of merging all the obtained maps into a
single saliency map. To do this, normalization and linear/nonlinear combination are
computed to represent the saliency of each image pixel.

It is important to notice that this structure only uses the stimuli (RGB or grayscale
input images) to compute the saliency map. More recently, some authors have also
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quantified biases of viewers which are looking at static and dynamic natural scenes.
It was found that, for images, people tend to focus in the center of the image [8].
This is why some models add a centered 2D Gaussian bias to model the gaze pattern.
As explained in [8], five causes can explain that fixations have a high probability to
be in the center of an image: photographer bias, motor bias, viewing strategy, orbital
reserve, and screen center.

A complete overview of eye tracking-based models is available in [9] where
authors present nearly 65 models. In this section, only the ones used to explain
the validation framework proposed in the next chapters are presented. A constraint
is that these models must be available online.

We will focus on those models using descriptive sheets. A descriptive sheet has
six basic elements: the name of the model, the year, the authors, the publications, a
general figure, and a description. The purpose is to summarize and provide readers
with keys to a better understanding of all elements used during the validation
framework.

Moreover, in order to compare eye tracking-based models, four characteristics
have been chosen and added into the descriptive sheets, following the color
convention introduced by the colored keywords describing each characteristic
below, for reader’s convenience.

* The first characteristic divides models based on their approaches. Indeed, some
models have a global approach which is applied to the entire image while others
compute a saliency map with a local approach which is applied to a picture patch.

* The second one classifies models which use as post processing the center bias
of gaze of people in free viewing. To model this bias, some models apply a 2D
centered Gaussian bias to highlight the center of the saliency map.

» Third, based on [9], A. Borji et al. present a categorization of saliency models
comparing their attentive mechanism to obtain saliency map. The eight proposed
categories of methods are cognitive, graphical, spectral, information theory,
pattern classification, Bayesian, decision theory, and other models.

* Finally, the last characteristic shows how the stimuli are used. Some models
take into account all the channels in the color images while others just need the
grayscale.

The 19 eye tracking-based models which are represented by their acronyms in
Fig.9.2 will be describe in the following of this section and use in the validation
framework.

RARE [4]

SDLF [12] QDCT [22]

AIM [11] PFT [ 14] ISSM [21]

CCSA [10] DVA [5] VSLC[16] SSAFD [20]
FSM[3] GBVS[7] SR[6] SUNTJI3] SDSR [I15] ESAL[17] SKSE [18] AWS [19] SERC [23]

~] | | | | | | |
I I I I I I I I
1998 2006 2007 2008 2009 2010 2011 2012 2013

Fig. 9.2 Chronological overview of eye tracking-based models
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The proposed timeline of these models shows that most algorithms have been
released over the past 10 years. For most models, the ones with default parameters
given by authors have been kept while for few other models, some specifications
have to be changed. In these cases, the choices are described in details in the
descriptive sheet.

FSM: Feature-Based Saliency Model (1998)

Characteristics: local | / | cognitive | color
Authors: L. Itti, C. Koch and E. Niebur [3].
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Fig. 9.3 Overview of the FSM model. From top to bottom: input image, feature extraction, center-
surround differences, linear combinations, and saliency map (Adapted from [3])

Description: This model, which has been the basis of later models, was the first
implementation of the Koch and Ullman attention model [24] and consists in three
steps. First, an input image is subsampled into a Gaussian pyramid, and each
pyramid level is decomposed in three types of static features (colors, intensity,
and orientations). In the second step, center-surround feature maps are constructed
from the static features. The center-surround filters provide high response in case
of high contrast and low response in case of low contrast. In each channel, maps
are summed across scale and normalized to form conspicuity maps which are single
contrast maps for each channel. Finally, a linear combination is computed to build
the saliency map (Fig. 9.3).
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GBYVS: Graph-Based Visual Saliency (2006)

Characteristics: local | center | graphical | color
Authors: J. Harel, C. Koch and P. Penora [7].
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Fig. 9.4 Schematic representation of the GBVS model: input image, feature extraction, activation,
normalization followed by a linear combination, and saliency map (Inspired by [7])

Description: This model introduced a graph-based method to compute visual
saliency. First, the same feature maps than in the FSM model are extracted. It
leads to three multiscale feature maps: colors, intensity, and orientations. Then,
a fully connected graph is built over all grid locations of each feature map, and
a weight is assigned between nodes. This weight depends on the spatial distance
and the value of the feature map between nodes. Finally, each graph is treated
as Markov chains to build an activation map where nodes which are highly
dissimilar to surrounding nodes will be assigned high values. All activation maps
are merged into the final saliency map. Again here, only locally contrasted features
are integrated over the image; the model is thus mainly based on local context
(Fig.9.4).
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CCSA: Coherent Computational Saliency Approach (2006)

Characteristics: local | / | cognitive | color
Authors: O. Le Meur, P. Le Callet, D. Barba and D. Thoreau [10].
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Fig. 9.5 Overview of the CCSA model. First row, from left to right: input image and the visibility
part into the psychovisual space. Second row, from right to left: the perception part with center-
surround interactions, the perceptual grouping part, and saliency map (Adapted from [10])

Description: This cognitive model is directly based on the current understanding
of the human visual system (HVS) behavior. Three aspects of the vision are pro-
cessed: visibility, perception, and perceptual grouping. The visibility part simulates
the limited sensitivity of our human visual system. Visual data is normalized
and grouped into a psychovisual space. The perception is used to suppress the
redundant visual information by simulating the behavior of cortical cells. Two
mechanisms are involved in this part: achromatic reinforcement by chromatic
context and center-surround suppressive interaction. Perceptual grouping refers to
the human visual ability to group and bind visual features and build a saliency map
(Fig.9.5).

AIM: Attention Based on Information Maximization (2006)

Characteristics: local | / | information | color
Authors: N. Bruce and J. Tsotsos [11].
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Fig. 9.6 Schematic representation of AIM model. Left: independent feature extraction from input
image and basis functions. Middle: basis coefficients and density estimation. Right: coefficient
distributions, joint likelihood, self-information, and saliency map (Adapted from [25])

Description: This model detects visual Attention based on Information Max-
imization (AIM). Shannon’s self-information measure is used to compute the
saliency. First, a patch C (red circle in Fig.9.6, top left) and its neighborhood
Sy (blue circle) are projected on a large sample of 7 x 7 RGB patches drawn
from natural images (basis functions). The basis coefficients are obtained by
performing an independent component analysis (ICA), and their probability density
functions are estimated to compute the joint likelihood. The saliency value is
inversely proportional to the joint likelihood. The saliency of a local image
region is thus computed as the information conveyed by that region relative to its
surroundings.
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SDLF: Saliency Detection by Using Local Features (2006)

Characteristics: local | / | bayesian | grayscale
Authors: A. Torralba, A. Oliva, M. Castelhano and J. Henderson [12].
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Fig. 9.7 Overview of the Torralba’s model. From left to right: input image, two parallel
pathways—one computes local features to build saliency map (top middle), while the other
computes global features to build scene priors (bottom middle) and scene-modulated saliency map
(Adapted from [12])

Description: This method proposes to analyze the image in two parallel pathways.
One pathway computes local features (saliency). The second pathway is a global
approach. It takes into account the contextual modulation and can be seen as the
modeling of the top-down part of visual attention by computing scene priors. This
model uses a Bayesian framework that integrates both image saliency and scene
priors.

The SDLF algorithm considered here is the purely bottom-up saliency map
without the task scene priors obtained by the global pathway. The local pathway
represents each spatial location independently and provides a measure of how
unlikely it is to find a set of local measurements within the image. To do this,
a steerable pyramid which is a linear multiscale and multi-orientation image
decomposition is employed. This local representation is used to compute image
saliency (Fig.9.7).
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SR: Spectral Residual (2007)

Characteristics: global | / | spectral | grayscale
Authors: X. Hou and L. Zhang [6].
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Fig. 9.8 Schematic representation of SR model. First row: input image, log-spectrum (LS) and
smoothed log-spectrum (SLS). Second row: spectral residual and saliency map (Adapted from [6])

Description: The SR model is independent from any feature. In this method, the
first step is to compute the image Fourier spectrum (the amplitude and phase
maps). Then, the log-spectrum of the amplitude map is calculated. A filtering
amplitude map is also computed by multiplying the log-spectrum map with a
local average filter. The spectral residual map is obtained by subtracting these
last two maps. The saliency map is obtained through Fourier transform inversion.
It should be noted that the phase spectrum is preserved during the process. The
idea is that if the image log-spectrum is far from the 1/f of natural images
(image filtered spectrum), there is something abnormal which deserves attention
(Fig.9.8).

SUN: Saliency Using Natural Image Statistics (2008)

Characteristics: local | / | bayesian | color
Authors: L. Zhang, M. Tong, T. Marks, H. Shan and G. Cottrell [13].
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Fig. 9.9 Overview of the SUN model. From left to right: input images, images with the
eye fixations, and the two methods; third column features are computed with differences of
Gaussians (DoG) and fourth column with independent component analysis (ICA) (Adapted from
(13])

Description: This saliency model using natural statistics (SUN) proposes a
Bayesian framework from which bottom-up saliency emerges naturally as the self-
information of visual features. In this method, notions similar to SDLF (Bayes
formula) and AIM (local self-information) models are found. The Bayesian
framework is composed of three terms: self-information, log-likelihood, and
location prior. The first term (bottom-up) is independent of the target while the
two others (top-down) depend on target.

The saliency map is reduced here to the self-information (bottom-up). Two
methods have been implemented. First, the features are calculated as outputs of
linear filters, such as DoG filters. Second, the features are calculated as the outputs
to filters learned from natural images using ICA. SUN with ICA (Method 2)
used here outperforms SUN with DoG filters (Method 1). These output maps are
computed on a set of 138 images of natural scenes. An estimation of the probability
distribution is obtained over the observed values of each of the features. The self-
information measure is applied on statistics from this database of natural images
(among which the current image is not present). Those images act like typical
“normal” images and difference from the statistics of those images might attract
attention (Fig.9.9).
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DVA: Dynamic Visual Attention (2008)

Characteristics: local | / | information | color
Authors: X. Hou and L. Zhang [5].
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Fig. 9.10 Schematic representation of DVA model: the initial image with a feature distribution
(left) and the corresponding saliency map with the incremental coding length of this feature
distribution (right) (Adapted from [5])

Description: This model, based on the rarity of features, introduced the incremental
coding length (ICL) approach to measure the perspective entropy gain of each
feature. Motivated by the sparse coding strategy discovered in primary visual cortex,
an image patch is first represented as a linear combination of sparse coding basis
functions. The activity ratio of a feature is its average response to image patches.
The activity of the feature ensemble is considered as a probability function. Then,
each feature is evaluated with respect to its incremental coding length (ICL). The
ICL of one feature is defined as the entropy gain of the ensemble during the activity
increment of this feature. In accordance with the general principle of predictive
coding, they redistribute energy to features according to their ICL contribution:
frequently activated features receive less energy than rarer features. Finally, the
saliency of a region is obtained by summing up the activity of all features in that
region (Fig.9.10).

PFT: Phase Fourier Transform (2008)

Characteristics: global | / | spectral | grayscale
Authors: C. Guo, Q. Ma and L. Zhang [14].
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Fig. 9.11 Example of saliency maps from PFT algorithm on three input images (right) and
reconstruction obtained by the phase spectrum alone on three one-dimensional waveforms (leff).
When there are many varying sinusoidal components (pulse), the reconstruction contains the
largest spikes (Adapted from [14])

Description: This method is based on the SR model which uses the spectral residual
of the amplitude spectrum to obtain the saliency map. PFT proposes to use the phase
spectrum instead of the amplitude. The key idea is that the amplitude spectrum
specifies how much of each sinusoidal component is present in an image while
the phase information specifies where each of the sinusoidal components resides
within it. The location with less periodicity or less homogeneity indicates where the
interesting areas are and helps in obtaining the saliency map (Fig.9.11).

SDSR: Saliency Detection by Self-Resemblance (2009)

Characteristics: local | / | information | grayscale
Authors: H. J. Seo and P. Milanfar [15].
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Fig. 9.12 Overview of SDSR saliency detection system. Local regression kernels capture the
underlying local structure of a grayscale image (leff), and a self-resemblance measure is obtained
by using a nonparametric kernel density estimation and indicates the likelihood of saliency. A
saliency map is built on this measure (right) (Adapted from [15])
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Description: This bottom-up model proposes a Saliency Detection by Self-
Resemblance (SDSR). The implementation by Seo and Milanfar consists in two
parts. First, they describe local image structure at each pixel by local regression
kernels as features (matrix of local descriptors). The underlying hypothesis is that
eye fixations are driven by local feature contrast and these local descriptors are
robust with image distortions and noisy images. In a second step, they quantify the
likeness of each pixel to its surroundings and use matrix cosine similarity, which
results in a saliency map consisting of local self-resemblance measures. Even if
patches of the image are compared on a wider space than only surround, they are
not compared on the entire image (Fig.9.12).

VSLC: Visual Saliency Based on Lossy Coding (2009)

Characteristics: local | / | information | color
Authors: Y. Li, Y. Junchi and Z. Yue [16].

Fig. 9.13 Schematic
representation of the VSLC
algorithm: the saliency map
(right) is computed by a local
center-surround mechanism
(left) which approximates the
conditional entropy with the
lossy coding length of
multivariate Gaussian data
(below) (Adapted from [26])
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Description: This method computes visual saliency based on lossy coding (VSLC).
This definition of visual saliency is strictly local. The saliency is measured as
the minimum conditional entropy, which represents the uncertainty of the center-
surround local region, when the surrounding area is given and the perceptional
distortion is considered. The conditional entropy is approximated by the lossy
coding length of multivariate Gaussian data. The final saliency map is accumulated
by pixels (Fig.9.13).
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ESAL: Extended Saliency (2010)

Characteristics: global | / | graphical | color
Authors: T. Avraham and M. Lindenbaum [17].
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Fig. 9.14 ESAL algorithm on a color synthetic image. From left to right: the synthetic image, the
tree where each node is colored according to the corresponding candidates, the computed saliency
map based on self-similarities (Adapted from [17])

Description: The ESAL model proposes a static saliency model based on self-
similarities (Fig. 9.14). It is built on three observations:

1. The number of target candidates (salient patches) is usually small. So the model
is region based. The image is divided into segments, which are the candidates
for attention. The initial probability for each candidate gives preference to small
number of expected targets.

2. There is a correlation between visual similarity and target-nontarget labels. So
two visually similar candidates are likely to both be objects of interest or not.
The visual similarity between candidates is measured from their feature space
distance. Each is represented as a vector of features (texture and color). A short
distance between the two vectors indicates that the corresponding candidates are
visually similar and infers the correlations between the corresponding labels.

3. Natural scenes are often composed of clustered structural units. The data is
clustered into a mixture of multivariate Gaussians. The saliency of each candidate
is deduced by marginalization.

The algorithm is essentially a method for estimating the probability that a candidate
is a target.

SKSE: Sparse Sampling-Kernel Density Saliency Estimation
(2011)

Characteristics: local | center | bayesian | color
Authors: R. H. Tavakoli, E. Rahtu and J. Heikkila [18].
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Fig. 9.15 An example of saliency map obtained using the SKSE method (right) for the input
image (middle). The procedure of applying a window is also illustrated (middle) with a pixel and
its selected surrounding samples in a window (left) (Adapted from [18])

Description: This SKSE method measures saliency with a simple center-surround
mechanism for still images. The proposed algorithm is based on estimating saliency
by local contrast. The distributions of features are estimated using sparse sampling
and kernel density estimation. A general Bayesian framework defines saliency map
and implicitly includes center bias. This method is fast in comparison to other
similar approaches and is able to run in real time (Fig.9.15).

AWS: Adaptive Whitening Saliency (2012)

Characteristics: global | / | other | color
Authors: A. Garcia-Diaz, V. Leboran, X. Fdez-Vidal and X. Pardo [19].
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Fig. 9.16 Schematic representation of AWS mechanism: an early forward whitening applied on
RGB input image (left) and saliency map computed from whitened features (right) (Adapted from
(271
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Description: This model of bottom-up saliency is based on the variability in local
energy as a measure of saliency. First, the chromatic components are approximated
with a chromatic decomposition and whitening from RGB images. A bank of
log-Gabor filters is then applied on chromatic components. Each representation
is decorrelated by using whitening and a distance is computed to build ori-
ented conspicuity maps. The final saliency map is obtained by summing these
maps. The decorrelation is a global operation which considers the whole image
(Fig.9.16).

SSAFD: Saliency on Scale-Space Analysis in Frequency
Domain (2012)

Characteristics: global | / | spectral | color
Authors: J. Li, M. Levine, X. An, X. Xu and H. He [20].
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Fig. 9.17 Overview of the SSAFD method: the feature matrices are computed to form a
hypercomplex matrix (1). A Fourier transform is performed (2) and a spectrum scale space is
obtained by smoothing the amplitude (3). Finally, the saliency map is built by selecting the best
saliency scale-space maps (4) (Adapted from [20])

Description: This mechanism considers saliency detection as a frequency domain
analysis problem. First, feature maps are extracted from a color image which is
converted into I, red-green, blue-yellow feature maps to form a hypercomplex
matrix. Second, a Fourier transform is applied on this matrix and outputs the
amplitude, the phase, and the eigenaxis spectrum. Third, spectrum scale space is
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obtained by smoothing the amplitude spectrum with Gaussian kernels at different
levels. Finally, the saliency map is obtained by selecting the best saliency maps
produced by the spectrum scale space (Fig.9.17).

ISSM: Image Signature Saliency Model (2012)

Characteristics: global | / | spectral | grayscale
Authors: X. Hou, J. Harel and C. Koch [21].
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Fig. 9.18 Schematic representation of the ISSM method: an image signature is computed on each
channel of the input image. The final saliency map is obtained by summing the results of the three
channels (Adapted from [21])

Description: The ISSM method introduces a simple image descriptor referred to as
the image signature. Given an input image, first, three color channels are extracted.
Both RGB or CIE LAB color spaces can be used.

CIE LAB is chosen here as it was designed to closely mimic how human
vision is believed to perceive color. Then image signature is computed on each
channel to suppress background and detect the foreground of an image. To
do that, a discrete cosine transform (DCT) is applied to each channel. Then,
to approximately isolate the foreground, the sign of each DCT component,
equivalent to phase for a Fourier decomposition, is stored and inversely transformed
back into the spatial domain. The amplitude information across the entire
frequency is discarded. A 2D Gaussian is then applied to blur the results, and
the final saliency map is obtained by summing the results of the three channels
(Fig.9.18).
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QDCT: Quaternion DCT Image Signature Saliency (2012)

Characteristics: global | / | spectral | color
Authors: B. Schauerte and R. Stiefelhagen [22].spectral |

Fig. 9.19 Validation of the QDCT saliency model. First row: original images. Second row:
saliency map obtained, thanks to the QDCT method (Adapted from [28])

Description: This QDCT model extends the previous proposed work on DCT-based
image signatures (ISSM model) which defined the saliency using the inverse DCT of
the signs in the cosine spectrum. In the QDCT model, the scalar definition of image
signatures is transferred to quaternion images. Quaternions are used to represent
and process color images (in CIE LAB color space) in a holistic framework and,
subsequently, the quaternion DCT (QDCT) and signum function are applied to
calculate the visual saliency. The signum function for quaternions can be considered
as the quaternion direction (Fig. 9.19).

RARE: Multiscale Rarity-Based Saliency Algorithm (2012)

Characteristics: global | / | information | color
Authors: N. Riche, M. Mancas, M. Duvinage, M. Mibulumukini, B. Gosselin and
T. Dutoit [4].
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Fig. 9.20 Diagram of our proposed model. First, from the input image, color and orientation
features are extracted in parallel or sequentially. Then, for each feature, a multiscale rarity
mechanism is applied. Finally, two fusions (intra- and inter-channel) are made from the rarity
maps to provide the final saliency map (Adapted from [4])

Description: The RARE mechanism has three main steps. First, the authors extract
low-level color and medium-level orientation features. Afterwards, a multiscale
rarity mechanism is applied. This rarity mechanism is the key of RARE. Indeed, a
feature is not necessary salient alone, but only in a specific context. The mechanism
of multiscale rarity allows to detect both locally contrasted and globally rare
regions in the image. Finally, they fuse rarity maps into a single final saliency map
(Fig. 9.20).
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SERC: Saliency Estimation Using Region Covariances (2013)

Characteristics: local | center | other | color
Authors: E. Erdem and A. Erdem [23].
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Fig. 9.21 SERC model proposes to use covariance matrices (middle) of input image patches (left)
as meta-features for saliency estimation (right) (Adapted from [23])

Description: The SERC method investigates a better way than the commonly used
linear combinations to merge maps which produce the master saliency map. The
authors propose to use covariance matrices of simple image features as meta-
features for saliency estimation. As low dimensional representations of image
patches, region covariances provide nonlinear integration of different features
by modeling their correlations. The input image is first decomposed into non-
overlapping regions, and then the saliency of each region is measured by examining
its surrounding regions. The salient regions are those that are highly dissimilar
to their neighboring regions in terms of their covariance (second-order statistics)
representations based on color, orientation, and spatial features. Moreover, to
improve the detection, first-order statistics (mean) can be also used to capture
saliency of an image region with respect to its surroundings (Fig.9.21).

9.1.2 Salient Object Detection (SOD)-Based Models

Recently, salient object detection(SOD)-based models have attracted a lot of interest
due to the explosion of computer vision applications like seam carving [1], object
detection, or image segmentation [2]. The purpose of the models is to separate the
salient object from the image background [29].

As explained in [30, 31], there is a strong relationship between where people look
in scenes (fixation maps) and what they choose as the most salient object when they
are explicitly asked (binary masks). Therefore, the most salient object is the one that
attracts the highest fraction of fixations.
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This finding justifies to use the notion of visual attention modeling to locate
salient object or region in a scene. However, as seen in next chapters, the databases
chosen for evaluation must have complex images and not just one single object with
a clean background in order not to make solely foreground/background separation.

However, the approaches presented in Sect.9.1.1 work well in finding fixation
locations but they have not been able to accurately detect where salient objects
should be. Therefore, a second wave of models have emerged by following the
works in [32-34].

As explained in [35], most of these algorithms have two main steps: detect the
most salient objects and segment the accurate boundary of these objects. A complete
overview of salient object detection-based models is available in [35]. In their paper,
the authors present a taxonomy divided into three categories:

1. SOD with intrinsic cues (36 models).
2. SOD with extrinsic cues (20 models).
3. Other algorithms (9 models).

In this section, only the ones used for our study and validation are exposed and
detailed using descriptive sheets. Therefore, a constraint is that these models must
be available online.

In order to compare salient object detection-based models, four characteristics
have been chosen and added into the descriptive sheets, following the color
convention introduced by the colored keywords describing each characteristic
below, for reader’s convenience.

e The first characteristic divides models based on their approaches. As seen in
Sect.9.1.1, some models have a global approach which is applied to the entire
image while others compute a saliency map with a local approach which is
applied to a picture area. Some models can also use both approaches.

* The second one classifies models which use as prior the superpixel segmenta-
tion. Some models practice a superpixel segmentation to improve the accurate
boundary of the detected salient object.

* Third, models are classified in two categories depending on the input types used
to compute their saliency map: all the pixels or patches which summarize the
information.

* Finally, the last characteristic shows how the stimuli are used. Some models take
into account all the channels in the color images while others use information
from the JPEG bit stream.

The nine salient object detection-based models which are represented by their
acronyms in Fig. 9.22 will be describe in the following of this section and use in the
studies introduced in next chapters.

The proposed timeline of these models shows that most algorithms have been
released over the past 5 years as a second wave in the modeling of visual attention.
Indeed, these models are more recent than eye tracking-based saliency algorithms
and their goal are to detect salient objects.
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SDAIR [40]  SDWT [43]
SDHAS [39]  SIM [42]
FTSD [2] SSOI[36]  SDBM[37]  SMSI[38]  SLMC [4]]

| | | | !
2009 2010 2011 2012 2013

Fig. 9.22 Chronological overview of salient object detection-based models used in the next
chapters

FTSD: Frequency-Tuned Saliency Detection (2009)

Characteristics: global | / | pixels | color
Authors: R. Achanta, S. Hemami, F. Estrada and S. Susstrunk [2].

Average

Gaussian blur

Fig. 9.23 Schematic representation of the FSTD method: RGB input image (left), CIE LAB color
space of the Gaussian filtered input image (bottom middle), the average CIE LAB of the input
image (top middle), and saliency map (right) (Adapted from [2])

Description: This algorithm is a very simple model based on local color and
luminance feature contrast. First, the input RGB image is transformed to CIE LAB
color space. Second, the CIE LAB image is blurred with a Gaussian kernel to
eliminate noise and texture details from the original CIE LAB image. Finally, the
saliency map is computed by using euclidean distance between the Gaussian-filtered
and the original image. The Gaussian-filtered image eliminates small objects and
provides an idea about how the image appears to the eyes at a first glance. Objects
which are very different from this normal image will attract attention (Fig. 9.23).
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SSOI: Segmenting Salient Objects from Images (2010)

Characteristics: local | / | pixels | color
Authors: E. Rahtu, J. Kannala, M. Salo and J. Heikkil& [36].

Initial Image —» Saliency map

Fig. 9.24 Illustration of SSOI saliency map computation: the yellow sliding window applied on
the input image (left) and the saliency map based on local feature contrast (right) (Adapted from
[36D)

Description: This model introduces a new salient object segmentation method
based on Bayesian inference. A sliding window is applied on the image. For
each window, a contrast is computed between the distribution of some features
(such as illumination or color spaces) in an inner window and the distribution in
the collar of the window. The proposed saliency measure is formulated using a
statistical framework with these local feature contrasts. At the end, the framework
combined them with a conditional random field (CRF) model which is a proba-
bilistic model for labeling and segmenting data to provide the single saliency map
(Fig.9.24).

SDBM: Saliency Detection Based on Bayesian Model (2011)

Characteristics: global | superpixels | pixels | color
Authors: Y. Xie and H. Lu [37].
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Fig. 9.25 Tllustration of the SDBM method. From left to right: the input image, the detected
salient points, the convex hull based on salient points, the superpixels, and the SDBM saliency
map (Adapted from [37])

Description: This method proposes a new computational saliency detection model
which is implemented with a coarse to fine strategy under the Bayesian framework.
First, the authors extract salient points from the RGB input image to detect the
corner of the salient object. Second, a convex hull is used to enclose the salient
points after eliminating the points near the boundary and gives a coarse location
of the salient region. Based on this rough salient region, they formulate the
saliency computation as a Bayesian inference problem for estimating the posterior
probability at each pixel of the image and obtain the final saliency map. The
prior saliency distribution is based on superpixels and the obtained rough region
(Fig.9.25).

SMSI: Saliency Map Based on Sampling an Image (2012)

Characteristics: local | / | pixels | color
Authors: T. N. Vikram, M. Tscherepanow and B. Wrede [38].
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Input Image Channel : a” |
\ﬁ ¥ — B
Channel : b*
18] gt PR, ) Carespordag !
SN N L Loow Sutency Maps | | i
Lab color space Random ROIls Local Saliencies/ROI Conspicuity maps

Fig. 9.26 An illustration of SMSI saliency model. From left to right: RGB input image, CIE LAB
color space feature maps, local saliencies on random windows, conspicuity maps, and saliency
map (Adapted from [38])

Description: This algorithm proposes to compute local saliencies over random
rectangular regions of interest. To do that, an image I is first subjected to a Gaussian
filter in order to remove noise and abrupt onsets. Second, it is converted into the
CIE LAB space and decomposed into channels. Third, N random sub-windows are
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generated over each of the channels. Fourth, a center-surround map is defined for
each channel as the sum of the absolute differences of the pixel intensity values
to the mean intensity value of the random sub-windows. The final saliency map is
computed as the euclidean norm of center-surround values over different channels
(Fig.9.20).

SDHAS: Saliency Detection on HSV and Amplitude Spectrum
(2012)

Characteristics: local | / | patches | color
Authors: Y. Fang, W. Lin, B Lee, C. Lau, Z. Chen and C. Lin [39].

Input Image

Amplitude Spectrum
Differences between
Patches and Their

Corresponding Welghts

D(1, 2)al2 D(1, 3}&]3 .. D(n, n-1)an,n-1

G| ¢

The Salient Value

for Each Patch from ‘ Sk Sk St Sk |

1

Different Scales

Saliency Map

Fig. 9.27 Schematic representation of the SDHAS algorithm. Top to bottom: input image, patches
from the input image, amplitude spectrum differences from patches and their corresponding
neighbors, salient values for each patch, and saliency map (Adapted from [39])
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Description: This algorithm is a new saliency detection model based on the human
visual sensitivity and the amplitude spectrum of quaternion Fourier transform
(QFT). First, the input image is divided into small patches. The model then
computes the amplitude spectrum of QFT to represent the color, intensity, and
orientation distributions of each image patch. The saliency value of each patch
is obtained by computing the quaternion Fourier transform amplitude spectrum
differences between a patch and its neighbor patches. The weights for these
differences are determined by the human visual sensitivity and the final saliency
map is influenced by the image patch size and the scale (Fig. 9.27).

SDAIR: Saliency Detection for Adaptive Image Retargeting
(2012)

Characteristics: global | / | patches | jpeg bit stream
Authors: Y. Fang, Z. Chen, W. Lin, C. Lin [40].

Fig. 9.28 Validation of the SDAIR saliency detection algorithm. First row: original images.
Second row: the SDAIR saliency model. Last row: the ground truths (Adapted from [40])

Description: This mechanism proposes a novel saliency detection model in the
compressed domain. The authors extract the saliency information for the image
from the JPEG bit stream. The intensity, color, and texture features of the image are
derived and extracted directly from the discrete cosine transform (DCT) coefficients
in the JPEG bit stream. Then the Hausdorff distance is used to calculate the dif-
ference between two vectors of texture feature from two DCT blocks. The saliency
map is obtained by integrating feature maps using a coherent normalization-based
fusion method. Based on this model, an adaptive image retargeting algorithm can
be designed (Fig. 9.28).
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SLMC: Saliency via Low- and Mid-Level Cues (2013)

Characteristics: global | superpixels | pixels | color
Authors: Y. Xie, H. Lu and M. Yang [41].

Fig. 9.29 The SLMC model proposes a Bayesian framework by exploiting low- and mid-level
cues. Left to right: the original image, the Harris points detection and a convex hull applied on
these points, the clustering results, the prior probability map, and finally the saliency map (Adapted
from [41])

Description: This algorithm proposes to detect salient objects within a Bayesian
framework by exploiting low- and mid-level cues. First, a coarse saliency region is
obtained using a convex hull on Harris points. The likelihood probability is then
computed based on the center-surround principle between the inner region and the
outer one. For estimating the posterior probability at each pixel of the image, the
prior distribution is then computed by mid-level cues like superpixels which are
used to analyze the saliency information. A Laplacian sparse subspace clustering
(LSSC) method groups superpixels. Finally, the Bayesian visual saliency map is
computed based on the results of the superpixel clustering and the coarse saliency
region (Fig.9.29).

SIM: Saliency for Image Manipulation (2013)

Characteristics: local | / | pixels | color
Authors: R. Margolin, L. Zelnik-Manor and A. Tal [42].

Fig. 9.30 Illustration of the SIM algorithm: from left to right: the input image, the multiple
dominant object detection map, the distinctness map and the saliency map (Adapted from [42])

Description: The SIM algorithm proposes an approach for saliency detection based
on four principles: pixel distinctness, pixel reciprocity, object association, and
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multilayer saliency. First, the authors compute the pixel distinctness where a pixel is
considered distinct if its surrounding patch does not appear elsewhere in the image.
Second, assuming that distinctive pixels are salient, a pixel reciprocity effect is
computed. The distinctness map is updated with the reciprocity effect in order to
assume that pixels in the neighborhood of distinctive pixels are more likely to be
salient as well. Third, multiple dominant objects are detected and a method predicts
their locations. Finally, the single saliency map combines patch distinctness with
the object probability map. Due to the observation that a single saliency map is
insufficient, a multilayer saliency map is built by varying degrees of abstraction.
The final saliency map discards to small objects and noisy background (Fig. 9.30).

SDWT: Saliency Detection Based on Wavelet Transform (2013)

Characteristics: both | / | pixels | color
Authors: N. Imamoglu, W. Lin and Y. Fang [43].

rgb image
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L
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Fig. 9.31 Schematic representation of the SDWT model. Top to bottom: RGB input image, feature
map generation, local and global saliency computation, fusion, and saliency map (Adapted from
[43D)

Description: This mechanism first converts RGB to CIE LAB color space. Then,
a 2D Gaussian filter is applied to remove noise. Third, a wavelet transform with
increasing frequency bandwidths is employed to create the multiscale feature maps
which can represent different features from edge to texture. After obtaining the
feature maps, the method calculates the global distribution of local features to obtain
both a global saliency map and a local saliency map by fusing the feature maps
at each level without normalization operation. The final saliency map is a linear
combination of these two maps (Fig.9.31).
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9.2 Conclusion: A Taxonomy of the Algorithms

Saliency models have been presented in this chapter with a simple taxonomy based
on the historical development of methods: nineteen eye tracking-based algorithms
as well as nine salient object detection-based models. This taxonomy has been
constructed to present the studies and the validations of the saliency models which
will be detailed in the next chapters but is not sufficient to classify models according
to their structure.

This is why, in order to compare the saliency models inside each category, some
characteristics have been added into the descriptive sheets. However, as explained in
[44], the diversity of models makes taxonomy and comparison in the field of visual
attention particularly difficult. The purpose of this section is to provide readers with
a global view of each model characteristic.

9.2.1 Comparison of Eye Tracking-Based Models

Table 9.1 summarizes the four characteristics which have been chosen to compare
nineteen eye tracking-based models. It shows which of the four characteristics each
model owns.

In order to provide an idea of pros and cons of each characteristic, some
observations have to be performed. The first characteristic divides models based
on their global or local approach. The local approach has the advantage to properly
detect high contrast while the global one highlights features which are different
but not necessarily highly contrasted. The second characteristic classifies models
according to their use (or not) of the center bias of gaze. This technique is
particularly efficient when there are no particular salient regions or objects (e.g.,
landscapes) into the still images. Third, we use the categorization of Borji et al. [9]
for saliency models which compare the attentive mechanism to obtain saliency map.
This is the most popular taxonomy and some correlations with other features can
be performed. Indeed, most of spectral techniques use the global approach, while
cognitive, Bayesian, and information categories use the local one.

Finally, the last characteristics show if the still images are exploited with
information from color or grayscale channels. Most of psychophysical theories
show the importance of color during the visual attentive process. However, some
techniques such as spectral transformation or orientation extraction cannot make
use of all channels and only exploit the grayscale information.

To complete this analysis, the classical multidimensional scaling (MDS) [45]
technique has been applied. MDS is a technique allowing to reduce the number
of dimensions (N) necessary to convey or display the information contained in a
distance matrix. In this chapter, it is a way to visualize in 2D (N = 2) the similarity
level between the models. A distance matrix first needs to be calculated from the
four characteristics. Table 9.2 shows an example of how we calculate a distance
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Table 9.1 Comparison of nineteen eye tracking-based saliency models on four characteristics

Approach Post processing Mechanism [9] Stimuli

FSM local cognitive color
GBVS local center graphical color
CCSA local cognitive color
AIM local information color
SDLF local bayesian gray

SR global spectral gray

SUN local bayesian color
DVA local information color
PFT global spectral gray

SDSR local information gray

VSLC local information color
ESAL global graphical color
SKSE local center bayesian color
AWS global other color
SSAFD global spectral color
ISSM global spectral gray

QDCT global spectral color
SERC local center other color
RARE global information color

Table 9.2 Example of weight assignments for the calculation of a distance between two saliency
models (AIM and SR) based on the four characteristics

Lo Go PP Co Gr In Ba Sp Ot Co Gr

AIM 0 0 0 0 0 0 0 0
SR 0 0 0 0 0 0 0 0
D 0 0 0 0 0

(D = 6) between two saliency models (AIM and SR). For each model, a weight of
1 is assigned to each characteristic the model owns and 0 otherwise. The distance is
the sum of each weighted characteristic.

A distance matrix can be built by calculating each pairwise distance, and the
MDS algorithm assigns two coordinates for each model so that the between-model
distances are preserved as well as possible.

We can see from Fig.9.32 a 2D MDS representation based on still image
characteristics. The coordinates of this representation are components that represent
a combination of characteristics. The first coordinate substantially corresponds to
the first feature. Indeed, on one side (left), saliency models with local approach
appear to have distances in the same range relatively to other models. On the other
side (right), saliency models with global approach also seem to have distances
in the same range. The second coordinate substantially corresponds to the last
characteristic. Indeed, on one side (top), saliency models with color stimuli as input
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Fig. 9.32 MDS based on characteristics for nineteen ET models: 1.FSM / 2.GBVS / 3.CCSA /
4.AIM / 5.SDLF / 6.SR / 7.SUN / 8.DVA / 9.PFT / 10.SDSR / 11.VSLC / 12.ESAL / 13.SKSE
/ 14.AWS / 15.SSAFD / 16.ISSM / 17.QDCT / 18.SERC / 19.RARE. The first coordinate
substantially corresponds to the local/global class while the second substantially represents
color/grayscale as input. Two clusters can also be observed: center bias and spectral approach

are very close, while on the other side (bottom), saliency models with grayscale
stimuli as input appear to have distances in the same range. We can also observe
two clusters: one represents models with 2D centered Gaussian bias (models: 2, 13,
and 18), while the other contains models with spectral mechanism (models: 6, 9, 15,
16, and 17).

9.2.2 Comparison of Salient Object Detection-Based Models

Table 9.3 summarizes the four characteristics which have been chosen to compare
the nine salient object detection-based models. It shows which of the four charac-
teristics each model owns.

As in Sect.9.2.1, in order to give an idea of pros and cons of each chosen
characteristic, some considerations have to be conducted. As in Sect.9.2.1, the
first characteristic compares the local approach which detects clearly contrast in
images against the global approach which highlights features which are different
but not necessarily highly contrasted. Some models use both complementary
approaches. The second characteristic classifies models which take advantage or not
of the superpixel segmentation which extracts perceptually homogeneous regions.
A drawback of this method is the parameter adjustments which can often provide
over- or under-segmentation of the scene. The third and fourth characteristics show
how the stimuli are exploited. Indeed, respectively, we investigate if the saliency
models use all the pixels of an image or patches to summarize the informations and
if the still images are exploited with color information or directly with the JPEG bit
stream information. The algorithms which use all the color pixel information must
provide a more accurate contour of salient objects.
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To complete this analysis, the same classical multidimensional scaling (MDS)
technique as proposed above has been realized. The distances between models to
compute this MDS are calculated from the four characteristics of Table 9.3. The
purpose is to have a better visualization of the level of similarity between SOD
models.

We can observe from Fig. 9.33 the 2D MDS representation based on still image
characteristics. The coordinates of this representation are components that represent
a combination of characteristics. The first coordinate substantially corresponds
to the first characteristic. Indeed, on one side (left), saliency models with local
approach appear to have distances in the same range, while on the other side
(right), saliency models with global approach seem very close. We can also see
the superpixel SP clusters (models: 3 and 7).

Table 9.3 Comparison of nine salient object detection-based models on four characteristics

Approach Prior Input Stimuli

FTSD global pixels color
SSOI local pixels color
SDBM global superpixels pixels color
SMSI local pixels color
SDHAS local patches color
SDAIR global patches jpeg bit stream
SLMC global superpixels pixels color
SIM local pixels color
SDWT both pixels color
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Fig. 9.33 Multidimensional scaling of nine salient object detection-based models based on
characteristics in 2D: 1. FTSD /2. SSOI/ 3. SDBM / 4. SMSI/ 5. SDHAS / 6. SDAIR /7. SLMC
/8. SIM /9. SDWT. The first coordinate substantially corresponds to the local/global class while
the second substantially represents patch/pixels as input. The SP cluster can also be observed
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9.3 Summary

Nineteen models for eye tracking have been presented using descriptive sheets
and will be use in the validation framework in the next chapters.

Nine models for object segmentation have been introduced. They will be used in
the studies in the next chapters.

In order to compare the models, different characteristics have been chosen and
classified them into some classes.

A list of static state-of-the-art saliency models which are available online can be
found from the Computational Attention Group of TCTS lab at http://tcts.fpms.
ac.be/attention.
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Chapter 10
Bottom-Up Saliency Models for Videos:
A Practical Review

Nicolas Riche and Matei Mancas

10.1 Background

Research on visual saliency initially focused on still images rather than on video
content. However, in the recent years, an increasing demand of video saliency
appeared for some applications like gaming, editing, video retargeting, smart TV,
robot navigation, surveillance, etc. Therefore, remarkable progress has been made
first in the understanding on eye tracking data with dynamical stimuli and, in a
second time, in the modeling process.

There are fundamental differences between videos and still images. For example,
each video frame is only observed during a fraction of a second, while a still
image can be viewed much longer. Some videos can feature varying camera
motion such as tilting, panning, zooming, etc. For this reason, videos are probably
viewed differently by human observers than still images, and some comprehensive
comparative studies have emerged. In [1], for example, the authors study the
influence of tasks on gaze behavior in static and dynamic scenes. In [2], the gaze on
static and dynamic scene is compared; it also shows that the center bias decreases
with dynamic stimuli.

In terms of modeling, static models have first been extended to video. This is the
case for GBVS, SDSR, NMPT, or SSOI where authors added dynamic features to
their models. Though these existing models are major contributions, video saliency
estimation methods should then differ substantially from image saliency methods.
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Fig. 10.1 Chronological overview of salient models for videos

Indeed, camera motions has a great impact on saliency estimation, and models
need to be specifically designed to manage the temporal aspect. This is the case
for STVSM or SMQVA.

In this section, the video attention models which will be used in the next
chapters for saliency validation are described and discussed. In order to compare
salient models for videos, four characteristics have been chosen and added into
the descriptive sheets, following the color convention introduced by the colored
keywords describing each characteristic below, for reader’s convenience.

» The first characteristic such as for still images divides models based on their
approaches. Some models have a global approach which is applied to the entire
image, while others compute a saliency map with a local approach which is
applied to a picture area.

* The second one classifies models which use or not prior information. As an
improvement, some models practice some top-down factors (TD), a 2D centered
Gaussian bias, a face recognition algorithm, or a segmentation at the end of the
process.

e Third, the kind of features used to compute the saliency map classified the
models. Indeed, some only use static features (colors, texture, etc.), while others
compute dynamical features (motion, flicker, etc.). Some models can use both
features.

 Finally, the last characteristic is similar to the last one for still images and shows
if the stimuli are exploited either with all their channels ( color images) or with
just the grayscale information.

The eight saliency models for videos which are represented by their acronyms in
Fig. 10.1 will be described in the following of this section and used in the validation
framework.

GBVS: Graph-Based Visual Saliency (2006)

Characteristics: local | HL | static | color
Authors: J. Harel, C. Koch, and P. Penora [3].
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Fig. 10.2 Tllustration of the GBVS method. On the first row, four frames of a video sequence. On
the second row, the corresponding saliency maps (Inspired by [3])

Description: This model uses an approach similar to the model having the same
name [3] for static scenes to create feature maps at multiple spatial scales and
propose a Graph-Based Visual Saliency model (GBVS). There are again three
main steps (Fig. 10.2), but during the feature extraction step, motion, and flicker
channels can be added to compute the saliency maps of some video sequences.
The algorithm then builds a fully connected graph over all grid locations of each
feature map (intensity, orientation, color such as RGB or Derrington, Krauskopf,
and Lennie (DKL) color space, motion, and flicker). Weights are assigned between
nodes that are inversely proportional to the similarity of feature values and their
spatial distance. A centered Gaussian is used to take advantage of the center bias
and to improve the results.

NMPT: Nick’s Machine Perception Toolbox (2008)

Characteristics: local |/ | static | color
Authors: N. Butko, L. Zhang, G. Cottrell, and J. Movellan [4].

DoG DoB

Initial Frame Absolute filter responses Saliency Map

Fig. 10.3 The NMPT model computes saliency map using spatiotemporal filters on grayscale
frame (left). The filters and their outputs are shown for the difference of Gaussian filter (second
and third columns) and difference of Boxes approximation (fourth and fifth columns) (Adapted
from [4])
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Description: This algorithm proposes a fast approximation to dynamic scenes
of the visual saliency model for still images proposed in [11] and called SUN
(see Fig. 10.3). It introduces spatiotemporal filters and fits a generalized Gaussian
distribution to the estimated distribution for each filter response. Spatiotemporal
filters can be tuned with different settings to use only spatial, use only temporal, and
use color contrast to be efficient and similar to the human visual system (HVS). The
probability distributions of these spatiotemporal features were learned from a set of
videos from natural environments. This model calculates its features and estimates
the bottom-up saliency for each point.

SSOV: Segmenting Salient Objects for Videos (2009)

Characteristics: local |/ | static | color
Authors: E. Rahtu, J. Kannala, M. Salo, and J. Heikkila [5].
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Fig. 10.4 Illustration of the SSOV method. From left to right: initial frame, an example of the
sliding window applied to compute the saliency values, and saliency map (Adapted from [12])

Description: In order to adapt SSOI [5] from static scenes to video sequences,
the CIE LAB perceptual color information of each frame is combined with the
magnitude of the optical flow as input features at several scales (see Fig. 10.4).
The optical flow was computed using an available online implementation [13]. The
proposed saliency measure is formulated using a statistical framework and local
feature contrast in motion, illumination, and color information. The final salient
segments were computed using the energy function in the conditional random field
(CRF) segmentation model for videos. The model is multiscale and does not require
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training, but the weight between the color space and motion intensity components
has to be defined manually.

SDSR: Saliency Detection by Self-Resemblance (2009)

Characteristics: local |/ | static | grayscale
Authors: H. J. Seo and P. Milanfar [6].

Initial Frame Local Steering Kernels Self-ressemblance Saliency Maps

Fig. 10.5 Tllustration of the SDSR method. From left to right: the grayscale video, space-time
local steering kernels to compute feature maps from a space-time neighborhood, the self-
resemblance algorithm, and the final space-time saliency map (Adapted from [6])

Description: The SDSR model is an approach similar to the model having the same
name [14]. It uses local regression kernels as features (see Fig. 10.5). Kernel density
estimation that estimates the distribution of the features in a patch is then applied.
In statistics, the kernel density estimation is a nonparametric way to estimate the
probability density function of a random variable. The time dimension is added to
the static model to obtain a 3D local steering kernel to manage the case of video
sequences. This model has the advantage to be robust to noise and other systemic
perturbation.

VICO: VIsual COmpetitive Attention Model (2010)

Characteristics: local | / | static | color
Authors: M. Da Silva, V. Courboulay, A. Prigent, and P. Estraillier [7].
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Fig. 10.6 Illustration of the VICO model. From top to bottom: input image, low level of the FSM
method, preys-predators system, and attention location (Adapted from [7])

Description: This approach proposes a new version of the FSM model [15] for
static scenes (see Fig. 10.6). The second part of FSM classical fusion is replaced
by using preys-predators systems to merge conspicuity maps. The results reveal
that preys-predators systems can help modeling visual attention and allow fast map
generation while improving saliency map accuracy. VICO simulated the scan path
of an observer across the frames of a video. Therefore, to obtain a density map at
each frame, the model needs to be run multiple times (corresponding to the number
of viewers by database) on the same video.

SMVQA: Salient Motion for Video Quality Assessment (2011)

Characteristics: global | / | dynamic | grayscale
Authors: D. Culibrk, M. Mirkovic, V. Zlokolica, M. Pokric, V. Crnojevic, and
D. Kukolj [8].
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Fig. 10.7 Tllustration of the SMVQA model. From left to right: initial frame, Gaussian pyramids
derived from the current frame, novelty filters, sum, and saliency map (Adapted from [8])

Description: The SMVQA motion-based salient model has three main steps
(Fig. 10.7): first, it uses a multiscale Gaussian pyramid derived from the current
frame and two background frames as described in [16]. Novelty temporal filters are
then performed on each pyramid level to indicate the extent to which the current
frame differs from the background frames. Finally, the single saliency map is
obtained by summing the score of the pixels from the filter outputs at different
scales, and a modified Z-score test is used to detect the outliers in the frame.
By efficiently managing the temporal information, this model detects cross-scale
motion consistency, outlier, and temporal coherence on each frame and handles also
videos with camera motion.

SMAMS: Saliency Models for Abnormal Motion Selection
(2011)

Characteristics: global |/ | dynamic | grayscale
Authors: M. Mancas, N. Riche, J. Leroy, and B. Gosselin [9].

Fig. 10.8 Illustration of the SMAMS model. From left to right: synthetic and real video frames,
optical flow applied on a frame, schematization of the 3D low-pass filtering, and the saliency maps
for the corresponding input video frames (Adapted from [9])

Description: This algorithm proposes a model that detects abnormal motion. The
SMAMS architecture has four main steps: first, motion features are extracted with
an optical flow and output velocity and direction feature maps. Those two features
are then spatiotemporally averaged with a 3D low-pass filter. The spatiotemporal
averages separate each feature map into five bins at two different scales. Third,
a self-information algorithm is computed for each map to highlight rare motion
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as salient. Indeed, the motion which is the most different in terms of speed and
direction will have a higher saliency value as it is considered as abnormal. Finally,
a fusion mechanism merges channels to give a single saliency map. As illustrated
in the Fig. 10.8, some movements can be more salient than others. The model is
effective for complex videos or dense crowds. Nevertheless, the model does not
include any static cues as colors, for example.

STVSM: Spatiotemporal Visual Saliency Model (2013)

Characteristics: local | HL | both | grayscale
Authors: S. Marat, A. Rahman, D. Pellerin, N. Guyader, and D. Houzet [10].

Initial Frame

Static Pathway Dynamic Pathway Face Pathway

*

Dominant motion
compensation

Retinamodel

- -

Cortical-likefilters

- - -

Interactions ' Motion estimation Face detector
Normalizations Temporal filtering
Center model
Fusion

Saliency Map

Fig. 10.9 Illustration of the STVSM model. Three pathways are computed from the grayscale
input frame. From left to right: the static, the dynamic, and the face ones. A 2D centered Gaussian is
then applied on each one before merging them to build the final saliency map (Adapted from [10])
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Description: The STVSM model [10] is inspired by the biology of the visual system
and breaks down each frame of a video into three maps: a static saliency map
emphasizes regions that differ from their context in terms of luminance, orientation,
and spatial frequency. A dynamic saliency map emphasizes moving regions with
values proportional to motion amplitude. A face saliency map emphasizes areas
where a face is detected with a value. Finally, a 2D centered Gaussian is applied on
each map and fuses all of them into a single saliency map (see Fig. 10.9).

ST-RARE: Spatiotemporal Multiscale Rarity Mechanism
(2013)

Characteristics: global |/ | both | color
Authors: M. Decombas, N. Riche, F. Dufaux, B. Pesquet-Popescu, M. Mancas,
B. Gosselin, and T. Dutoit et al. [17].
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Fig. 10.10 Overview of the ST-RARE saliency model. From top to bottom: (1) feature extraction,
(2) multiscale rarity mechanism, (3) fusion steps, and (4) tracking and temporal filtering (the static
features are on the left, while the dynamic features are on the right) (Adapted from [17])

Description: The ST-RARE model combines spatial and temporal information to
provide the map saliency (see Fig. 10.10). First, six spatial feature maps, three
low level (which are the colors from the first path) and three medium level
(the orientation and texture information coming from the Gabor filters), and two
temporal feature maps: Motion amplitude and direction are extracted from video
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frame. Then, a multiscale is used on each feature map, and a fusion algorithm
provides the saliency map. The last step is the temporal tracking framework in order
to improve temporal coherence and robustness.

STRAP: Spatiotemporal Multiscale Rarity Algorithm
with Priors (2013)

Characteristics: global | HL | both | color

Authors: M. Decombas, N. Riche, F. Dufaux, B. Pesquet-Popescu, M. Mancas,
B. Gosselin, and T. Dutoit [17].

Description: STRAP is a new saliency model based on a spatiotemporal rarity
mechanism and integrating prior information. It builds upon ST-RARE and includes
several novel contributions: (1) a temporal motion compensation over a sliding
window. In this way, neighboring frames can be jointly analyzed to increase
temporal robustness; (2) color and frequency-based low-level priors are used
together with the rarity mechanism, and the fusion algorithm is optimized to this
new architecture; (3) high-level priors like a centered Gaussian or face detection are
then combined with the saliency results; and (4) a spatiotemporal segmentation is
finally used to improve the accuracy of the results and better detect the objects of
interest. The method pipeline can be seen on Fig. 10.11.

10.2 Conclusion: A Taxonomy of the Algorithms

Saliency models for videos which will be used in the validations in the next chapters
have been presented with descriptive sheets to provide readers with a global view
of each model. However, as seen for still images in the previous chapter, this is not
sufficient to classify dynamic models according to their structure. This is why some
characteristics have been added into the descriptive sheets. Table 10.1 summarizes
these four characteristics which have been chosen to compare the ten state-of-the-art
saliency models for videos. It shows which of the four characteristics each model
owns.

In order to provide an idea of pros and cons of each characteristic, some
observations have to be conducted. The first characteristic for still images compares
the local approach which detects clearly contrast in images against the global
approach which highlights features which are different but not necessarily highly
contrasted. The second characteristic classifies models which use or not top-down
information. Saliency models can add some modules at the end of the process
considered as top-down factors such as a 2D centered Gaussian, a face detector,
or a segmentation algorithm. The purpose is to better detect the salient areas and
therefore to improve the scores. However, if these modules are inappropriately used,



10 Bottom-Up Saliency Models for Videos: A Practical Review 187

Input sequence Sliding window
|

t+1 t+2

Temporal Images from the sliding windows List of vectors
compensation ‘1’
| Temporal Compensation
v
Feature . -
tracti Gabor filter Combined Global Motion
extraction Image Subtraction
Voo
\4 ‘Amplitude Direction ]
Luminance, |
| Texture Colors |
Temporal features
Spatial features
Rarity v vV Vv
mechanism Low level priors Rarity mechanism
and low-level information map " ; P ;
. arity spatial mapy Rarity temporal maps
ow level priors map.
priors Low level v Vv
| Fusion
Tracking v, Saliency (t-1) Saliency (t)
Tracking
\1' Saliency, ., v

Saliencyfina (t) = ¥ Saliencyyracking + (1 — ¥) Saliency(t)

High-level priors A
High-level priors map Multiplication |
v
Segmentation . )
Segmentation map él Mean by regions |
Output

Final saliency map

Fig. 10.11 Overview of the STRAP saliency model. From top to bottom: (1) temporal compensa-
tion, (2) feature extraction, (3) multiscale rarity mechanism and priors, (4) tracking, (5) high-level
priors, and (6) segmentation (Adapted from [17])
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Table 10.1 Comparison of

: ; Approach Prior Feature Stimuli
eight saliency models for

videos on seven GBVS local TD static color
characteristics NMPT local static color
SSov local both color
SDSR local static gray
VICO local static color
SMVQA  global dynamic gray
SMAMS  global dynamic gray
STVSM local TD both gray
ST-RARE global both color
STRAP global TD both color

they will do just the opposite. It is important to correctly weigh the 2D centered
Gaussian, to adjust the parameters of the segmentation algorithm, or to choose a
face detector with a lower false-positive rate.

The third characteristic shows which kinds of features are extracted to compute
the saliency maps. Some models only use static features, while others compute only
dynamical features. Finally, some models can combine both kinds of features. This
last class of models is able to predict salient areas when there is or no motion in
the videos, while models with only static features cannot detect motion, and models
with only dynamic features cannot detect salient areas when there is no motion
in the videos. Finally, the last characteristic shows how the stimuli are exploited:
with color or grayscale informations. Although, most of the psychophysical theories
show the importance of color during the visual attentive process and the color
information is used in many saliency models, its contribution for saliency modeling
in videos was less clear. However, some studies such as [18] show the importance of
color information which helps to better predict fixation distribution in videos than
models which only exploit the grayscale information.

To complete this comparison, the classical multidimensional scaling (MDS) tech-
nique similar to the one exposed in Chap.9 has been chosen. The distances of this
MDS are computed from the characteristics of Table 10.1. The purpose is to have a
better visualization of the level of similarity between saliency models for videos.

We can see from Fig. 10.12 a 2D MDS model representation based on video
characteristics. The coordinates of this representation are components that represent
a combination of characteristics. The first coordinate substantially corresponds to
the first characteristic. Indeed, on one side (right), saliency models with local
approach appear to have distances in the same range relative to other models.
On the other side (left), saliency models with global approach also seem to have
distances in the same range. The second coordinate substantially corresponds to the
last characteristic. Indeed, on one side (bottom), saliency models with color stimuli
as input are very close, while on the other side (top), saliency models with grayscale
stimuli as input appear to have distances in the same range. These observations
divide the presented models into four categories (from C1 to C4 on Fig. 10.12).



10 Bottom-Up Saliency Models for Videos: A Practical Review 189

Global \ Local 4

00 05 1.0

Coordinate 2

-1.0

-15

-1.5 -1.0 -0.5 0.0 0.5 1.0
Coordinate 1

Fig. 10.12 Multidimensional scaling of ten saliency models for videos based on characteristics
in 2D: (1) GBVS, (2) NMPT, (3) SSOV, (4) SDSR, (5) VICO, (6) SMVQA, (7) SMAMS, (8)
STVSM, (9) ST-RARE, and (10) STRAP. The first coordinate substantially corresponds to the
local/global class, while the second substantially represents color/grayscale as input

10.3 Summary

* Ten models for videos are described using descriptive sheets and will be used in
the validation framework in the next chapters.

¢ Some models like GBVS and SSOV are extensions from 2D, while others are
temporal models.

* In order to compare the models, different characteristics have been chosen and
classified them into several classes.

* A list of dynamic state-of-the-art saliency models which are available online can
be found from the Computational Attention Group of TCTS Lab at http://tcts.
fpms.ac.be/attention.
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Chapter 11
Databases for Saliency Model Evaluation

Nicolas Riche

The comparison between saliency algorithms needs two prerequisites: a dataset
of stimuli with a ground-truth on which the algorithms can be compared and a
metric which measures in an objective way how close an algorithm and the ground-
truth are.

This chapter focuses on the stimuli datasets and the ground-truths. In computer
vision, the databases for the modeling of visual attention contain two kinds of
ground-truth: eye movement recording and salient region labeling. The stimuli are
still images or videos.

11.1 Introduction

In this section, an overview of the databases which are available online is
exposed under three categories: 1) still images along with eye tracking data,
2) still images along with salient object detection and 3) videos. It is important
to note that all databases were collected with different experimental settings.
Some studies [1] investigate on how the type of stimulus (e.g., fractal, website,
advertising, and natural images) affects saliency models. On the other hand, there
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are papers [2] which investigate how experiments influence gaze during scene
observation with different viewing tasks (e.g., free viewing where observers
are looking at the images or videos without any task or task-based viewing
where observers are asked to perform a task while looking to the images or
videos like finding people for example). In the proposed saliency assessment
framework, we focus on free-viewing databases on natural images because
we want to test saliency models which modelize the bottom-up part of visual
attention.

The first databases used to validate saliency models had eye-tracking data as
ground truth. A complete overview of these datasets is available in [3]. In this paper,
15 databases on images are given. Hereinafter, a first section will present the most
popular datasets and a second section the ones we will use for the validation in the
next chapters.

Main datasets: In 2006, N. Bruce proposed a database called Toronto [4]. It
contains 120 natural scene images with free-viewing eye movement recordings
from 20 users. Each image has been seen during 4 s. Data consists of a variety of
indoor and outdoor scenes, some with very salient items, others with no particular
regions of interest. In 2006, O. Lemeur created a new database [5] with 27 color
images. Each image was seen by 40 observers for 15s. In 2007, M. Cerf proposed
a specific database with a lot of faces in images, called FiFA [6]. The purpose was
to demonstrate that faces attract visual attention. The database contains 200 images
viewed by 8 observers during 2 s. The probability to find a fixation on faces within
the first two fixations is over 80 %. In 2009, U. Engelke built a visual attention
database [7] for image quality. Forty-two images (14 images with 3 levels of quality)
have been viewed by 15 observers during 12s. The purpose was to validate that
salient image regions contribute to objective image quality metrics. In the same
year, T. Judd collected a large database of eye-tracking data [8]. One thousand and
three random images from Flickr creative commons and LabelMe [9] have been
seen by 15 subjects during 3s. There are approximately 77 % landscape images
and 23 % portrait images. In 2010, S. Ramanathan built a database [10] with 758
images. Each image has been viewed by 25 subjects during 5 s. Face, portrait, nude,
action, affect-variant group, and other concepts were the diverse themes covered in
the dataset. In 2011, T. Judd proposed the MIT low-resolution saliency database
[11]. The purpose was to study how image resolution affects consistency in eye
fixations across observers. To do that, 168 images (21 images with 8 resolutions)
have been seen by 8 subjects during 3 s. The main observation was that the center
bias increases as image resolution is reduced. In 2011, J. Li collected eye tracking of
235 color images viewed by 21 users [12]. This dataset is divided into six categories
about the size of the salient objects.
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Datasets used for validation: We now focus on the databases used in the
validation framework described in the next chapters. A short overview based on
descriptive sheet template is provided for each dataset.

TORONTO Dataset (2006)

Authors: N. Bruce and J. Tsotsos [4]

c d

Fig. 11.1 Tllustration of the TORONTO dataset with rows 1-2 (indoor scenes) and row 3 (outdoor
scene) with no particular regions of interest (a) Original images (b) Fixation maps (c¢) Density
maps (d) Heat maps

Description: This database contains the free viewing of 120 different color images
from eye-tracking experiments. Images were presented in random order for 4 s each
with a white screen between each pair of images. Data consists of a variety of indoor
and outdoor scenes, some with very salient items, others with no particular regions
of interest. It was collected from 20 subjects (Fig. 11.1).
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MIT Dataset (2009)

Authors: T. Judd, K. Ehinger, F. Durand, and A. Torralba [8]

Fig. 11.2 Tllustration of the MIT dataset with row 1 (street scenes), row 2 (image with animals
and persons), and row3 (indoor scenes) (a) Original images (b) Fixation maps (c¢) Density maps
(d) Heat maps

Description: This database contains 1003 random images from Flickr creative
commons and LabelMe [9]. Data was collected from 15 subjects who freely viewed
these images during 3 s separated by 1 s of viewing a gray screen. There are several
categories such as text, faces, and indoor or outdoor scenes for approximately 77 %
landscape images and 23 % portrait images (Fig. 11.2).

KOOTSTRA Dataset (2009)

Authors: G. Kootstra and L. Schomaker [13]

Description: This database has 99 natural images viewed by 31 observers during
5s. The data consists of five different categories: 19 images of natural symmetrical
objects, 12 images of animals in a natural environment, 12 images of street scenes,
16 images of buildings, and 40 images of natural environments. All these images
were taken from the McGill database [14] (Fig. 11.3).
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Fig. 11.3 Tllustration of the KOOTSTRA dataset with row1 (image with animals), row2 (building
scenes), and row3 (symmetrical images such as flowers) (a) Original images (b) Fixation maps (c)
Density maps (d) Heat maps

IMGSAL Dataset (2011)

Authors: J. Li, L. Martin, A. Xiangjing, and H. Hangen [12]

Description: This database contains 235 images with both large and small salient
objects. The images are divided into six categories: 50 images with large salient
objects, 80 with intermediate salient objects, 60 with small salient objects, 15 with
cluttered backgrounds, 15 with repeating distractors, and 15 images with both large
and small salient objects (Fig. 11.4).

11.1.1 Salient Object Detection (SOD)-Based Datasets with
Still Images

The first ground truth used to validate saliency models is eye-tracking data. Since
2007, a second kind of ground truth has appeared. With the development of various
saliency-based applications, salient object detection has emerged. Therefore, a
second ground truth used for model validation is the ability of the models to detect
salient objects in natural scenes. The salient objects in images can be annotated with
two types of masks: bounding boxes (rectangles around the objects) or pixel-wise
(accurate contours of the objects) binary masks.
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Fig. 11.4 Tllustration of the IMGSAL dataset with three sizes of salient objects in natural scenes:
large (row1), medium (row2), and small (row3) objects. (a) Original images (b) Fixation maps (c)
Density maps (d) Heat maps

As discussed in [15] and [16], the first attempts to build these kind of databases
faced two main drawbacks: the number of objects and the background. Indeed,
most of these images contain only one object with a simple background. While
one single object is more linked to the foreground/background notion, the concept
of salient object exists when multiple objects are present in a scene. Therefore, new
versions of these databases have been built with more than one object and complex
backgrounds. They often use the same images as the ones that already have eye
tracking data. The most recent and complete databases have thus two ground truth:
the eye-tracking data and the binary masks around salient objects.

An overview of the most widely used datasets is available in [16]. In this paper,
20 databases on images have been listed. Hereinafter, a first section will present the
most used datasets for SOD and a second section the ones that we will use for the
study in the next chapters.

Main datasets: In 2007, the first dataset with a large number of images manually
annotated with bounding boxes has been released and called MSRA [17]. It contains
two parts: the salient objects have been shown by bounding boxes from 3 subjects
on 20,000 images. Among them, 5000 images have been selected and annotated by
9 subjects. In 2009, R. Achanta selected 1000 images among the 5000 ones and
proposed a database [18] which contains binary pixel-wise object masks for each
image. This is one of the most popular datasets, but images have only one salient
object and clean background.
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More recently, some eye-tracking databases have been selected to be annotated
and partially fixed the issue of having only one salient object and clean background.
In 2011, J. Li proposed a new database by providing pixel-wise objects from 19
subjects in addition to eye movement recording on the 235 images of ImgSal
database [12]. This is one of the first databases with both binary masks and human
fixations. The drawback is the limited number of images in the database (235)
compared to MSRA (5000), for example.

In 2013, A. Borji created masks for two other well-known eye-tracking
databases: Toronto-A [15, 19] and MIT-A [15, 19]. While Toronto-A proposes
120 annotated images, MIT-A provides 900 images with masks. These masks were
created by two participants which manually outlined objects, and the most salient
one was selected by the peak of the human fixation map. In the same year, with the
same motivation to solve the issues of [18], Q. Yan extended his Complex Scene
Saliency Dataset (CSSD — 200 images) to a larger dataset (ECSSD) [20] with 1000
images. These images are collected from BSD300 [21], VOC dataset [22], and the
Internet to represent more general situations that natural images fall into. Five users
produce the ground-truth pixel-wise masks. Finally, C. Yang proposed the most
complete database in 2013 called DUT-OMRON [23]. This database is the only
one which has the eye fixations, salient objects bounding box, and the pixel-wise
salient objects segmentation ground truth. 5000 images have been seen by five
subjects during 2 s. Each image has been annotated by five participants which can
draw several rectangles to enclose most salient objects in the image and the authors
provide pixel-wise ground truth for all images. Although this database is a major
contribution, five users are not yet enough to provide an accurate eye-tracking
distribution. Moreover, a lot of images have only one single object.

In 2014, Y. Li proposed a new database called PASCAL-S [24] with both ground
truths. This dataset is built on [25]. It contains 850 natural images viewed by
8 subjects during 2s. To build the masks, the authors first manually perform a
full segmentation and then ask 12 subjects to label the salient objects by clicking
on them. The final saliency value of each segment is the total number of clicks
it receives, divided by the number of observers. In this kind of ground truth,
grayscale masks can be built based on these ratios. In the same year, J. Xu built
a very complete database called OSIE [26]. Seven hundred images have been
seen by 15 viewers during 3 s and 5551 objects have been segmented with precise
contours. Moreover, this database proposed 12 semantic attributes (emotion, touch,
smell, etc.).

Datasets used in this study: We now focus on the database used in the studies
proposed in the next chapter. A short overview based on a descriptive sheet template
is provided for each dataset.
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IMGSAL Dataset (2011)

Authors: J. Li, L. Martin, A. Xiangjing, and H. Hangen [12]

Fig. 11.5 Illustration of the IMGSAL dataset on the three sizes of objects in natural scenes: large
(row1), medium (row2), and small (row3) objects (a) Original images (b) Mask maps (c) Object
maps

Description: The database, called ImgSal in the previous paragraph, was labeled
by 19 naive subjects. This labeling process is inspired by LabelMe [9] and Hou’s
method [27]. Images were presented one by one in a random manner and each
observer was sat in front of the screen at a distance of six times the image
width. After having viewed the image, the subject labeled the image immediately
(Fig. 11.5).

11.1.2 ET and SOD-Based Datasets with Videos

Saliency video datasets are less well developed. Only two databases exist for
evaluating salient object detection models in video [16], and there are few databases
containing both video and eye-tracking data [3]. In Winkler’s paper, ten databases
on videos with eye tracking are presented [3]. More video datasets are required in
the literature for the coming years, especially with both ground truths. Hereinafter,
a first section will present the most used datasets and a second section the ones we
will use for the validation in the next chapters.

Main datasets: The most widely used is CRCNS-ORIG Itti’s video database
released in 2004 [28-31]. This database contains 50 video clips along with
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eye-tracking data for eight viewers. The video contains complex stimuli like TV
programs, outdoor videos, or video games.

In 2009, J. Li built PKU-RSD (Regional Saliency Dataset) as explained in [32]. A
total number of 431 short videos have been annotated by 23 subjects with bounding
boxes. The videos contain various scenes like surveillance, news, or cartoons.
In 2010, M. Dorr provided a large database with eye movement on natural and
Hollywood movies but also static images [33]. So, this is a dataset with both images
and videos.

In 2011, Y. Wu proposed the second database with salient region ground truth
[34]. It contains 32 video segments collected from the Internet. All the frames have
been annotated with object-bounding boxes. In the same year, P. Mital proposed the
DIEM database [35] which contains 85 videos along with corresponding eye data
collected from 250 participants but who did not necessarily viewed all the videos.

In 2012, S. Mathe complemented two large-scale video datasets: Hollywood-2
[36] and UCF Sports [37] with human eye movements to build a new database called
Actions in the Eye [38]. This is the first video eye tracking with significant size:
92 h of video and each frame viewed by 16 subjects (12 active for task recognition
and 4 passive for free viewing). In the same year, an eye-tracking database, called
Standard Video [39] with 12 standard videos used in image compression and quality
estimation viewed by 15 people, was proposed.

Datasets used for validation: We now focus on the database used in the validation
framework. A short overview based on a descriptive sheet template is provided for
each dataset.

SVS Dataset (2012)

Authors: H. Hadizadeh, M. Enriquez, and 1. Bajic [39]

c

Fig. 11.6 Illustration of the SVS dataset: landscape (row1) and people (row2). (a) Original images
(b) Fixation maps (c¢) Density maps (d) Heat maps
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Description: The database is composed of 12 video sequences, 6 of them including
people. It encompasses varying characteristics, including moving camera, cluttered
background, and complex motion. Sequences are stored in YUV format, with 4:2:0
chrominance sampling. The uncompressed format avoids artifacts introduced by
compression that may adversely disturb saliency models. The purpose is to evaluate
where someone looks at when discovering the content for the first time (Fig. 11.6).

Extended SVS Dataset (2015)

As shown in Sect. 11.1.2, only two databases exist for salient object detection and
only on compressed videos. To remedy this situation, based on the uncompressed
videos of [39], the database has been extended here in terms of ground truth. Indeed,
one limitation of the human fixation ground-truth data is that the eye-tracking data
sometimes highlights the border of a salient object which can lead to the assignment
of high saliency scores to not only the object but also to the surrounding background.
To evaluate the precision of the salient object detection, ground-truth data adapted
to an object-based approach is required.

For this purpose, ten manually segmented binary masks are added to the two
already existent to complement the database. Binary masks are estimated for all the
frames, and the whole salient object is segmented even though parts of it might be
more salient in terms of gaze detection. Figure 11.7 illustrates the database with

Fig. 11.7 Extended SVS dataset [39] with interesting object labeling. (a) Original images (b)
Mask maps (c¢) Object maps
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the original sequences, the binary masks that we provide, and the salient object.
The SVS-extended database is, at author’s best knowledge, the only video dataset
providing both eye-tracking and binary masks along with uncompressed video
sequences.

ASCMN Dataset (2012)

All databases presented in Sect. 11.1.2 contain some videos with different kinds
of motion in the scene (the sequences are extracted mostly from TV programs,
Hollywood movies, standard video databases, or video games).

However, none of them has been designed specifically to contain anomalous
motion which would attract attention in the presence of other motion and enable
testing of dynamic-saliency models. The proposed ASCMN database attempts to
fill this gap. It contains videos obtained from other databases including the Itti’s
CRCNS database, Vasconcelo’s database [40], and a standard complex-background
video surveillance database [41]. These have been extended with Internet crowd
movies and proprietary videos from a crowd database. The database is divided into
five classes of movies as described in Table 11.1.

In addition to videos for which eye-tracking data has previously been published
in existing databases, the classes cover a new type of videos, lacking in the other
databases — videos that contain motion abnormalities and crowd motion. Also, eye-
tracking data for complex-background surveillance videos included in ASCMN has
not previously been published. Sample frames for different classes of videos are
shown in Fig. 11.8.

The ASCMN database, therefore, provides data which covers a wider spectrum
of video types, than the existing databases, and accumulates previously published
videos suitable for dynamic saliency model evaluation. ASCMN database contains
24 videos, together with eye-tracking data from 13 viewers, acquired using a
commercial eye-tracking system [42].

Table 11.1 The five classes of videos contained into the ASCMN database

Video classes Description Videos Nb.

ABNORMAL Some moving blobs have different speed or direc- 2, 4, 16, 18, 20
tion compared to the main stream: Fig. 11.8 line
1

SURVEILLANCE Classical surveillance camera with no special 1,3,5,9
motion event: Fig. 11.8 line 2

CROWD Motion of more or less dense crowds: Fig.11.8 8, 10, 12, 14,
line 3 21

MOVING Videos taken with a moving camera: Fig. 11.8line 6, 19, 22, 24
4

NOISE No motion during several seconds followed by 7, 11, 13, 15,

sudden important motion: Fig. 11.8 line 5 17,23
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Fig. 11.8 The five classes of videos from the ASCMN database. First line represents ABNOR-
MAL motion with bikes and cars which are faster than people, for example. The second line shows
SURVEILLANCE classical motion with nothing really salient in terms of movement. The third
line shows CROWD motion with increasing density from left to right. Line four shows MOVING
camera videos. Line five displays videos with long periods of NOISE (frames 2, 4) and a sudden
appearance of a salient object (frames 1, 3)

This system allows small head movements and is thus less intrusive than other
eye-tracking systems, making the viewer feel more comfortable. The viewers are
PhD students and researchers ranging from 23 to 35 years old, both males and
females. The eye gaze positions are recorded and superimposed on the initial
video for all the viewers, as shown in the second column of Fig. 11.9. This data
is low-pass filtered to obtain a “heat map” which can also be superimposed on
corresponding video frame (Fig. 11.9, right column). This post-processing step is



11 Databases for Saliency Model Evaluation 203

Fig. 11.9 First column: original images. Second column: aggregated eye-tracking results (each
yellow cross is the position of the eye gaze of one viewer). The third column shows density
maps. Right column contains smoothed gaze location producing “heat maps” superimposed to
the corresponding frame. (a) Original images (b) Fixation maps (c¢) Density maps (d) Heat maps

useful in estimating the mean gaze density, eliminating the outliers and providing
higher weight to the focus points common to several users.

11.2 Comparisons

In order to compare and have a global view of the six datasets which are described
in this chapter, Table 11.2 shows three features: the stimuli (images or videos), the
number of stimuli proposed in the database, and a special property (extra notes).

Various properties of natural images such as indoor, outdoor, or symmetrical
scenes are proposed for a total of 1457 images. A large variety of videos are also
available from uncompressed to compressed movies, with moving or static cameras,
etc. A total of 36 videos (13,354 frames) are proposed.

In terms of ground truth, all the databases have eye-tracking data. Some of them
have an additional ground truth (binary masks) to complement the validation. Two
features have be chosen to compare the databases as shown in Table 11.3: the
number of observers and the durations (in seconds) when the informations were
available.
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Table 11.2 Stimuli-based

) - Name Stimuli Nb stimuli Extra notes

comparison for the six

presented datasets Toronto  Images 120 Indoor—outdoor scenes
MIT Images 1003 Natural images
Kootstra  Images 99 Symmetrical images
ImgSal Images 235 Size of salient objects
ASCMN Videos 24 Five kinds of motion
SVS Videos 12 Uncompressed videos

Table 11.3 Ground-truth-based comparison for the six presented datasets

Additional  ground

Name Observers Durations (s) truth

Toronto 20 4

MIT 15 3

Kootstra 31 5

ImgSal 21 Binary masks
ASCMN 13 0.067

SVS 15 0.04 Binary masks

The number of observers varies from 13 to 31 subjects and the durations depend
of the kind of stimuli. There are fundamental differences between videos and still
images such as the duration. Indeed, each video frame is only observed a fraction
of a second (depending on the frame rate of the video), while a still image can be
viewed during a longer period of time (from 3 to 5s). Finally, two databases (one
for still images and one for videos) have additional binary masks to detect salient
objects.

11.3 Conclusions

There are many databases in the literature which provide stimuli and ground-
truth data and which are freely available online. These datasets can be classified
in many ways, including the number of images, number of videos, number of
participants, type of ground truth, or type of stimuli (natural images, portraits,
websites, advertisements, movies, news, cartoons, etc.).

It shows the importance of choosing appropriate characteristics and experimental
settings for a validation framework. The authors need to clarify why they choose
these databases and ground truth. The proposed framework validation intends
to assess bottom-up saliency models. So, only free-viewing databases have been
chosen. Moreover, the assessment will be done on color natural images and various
videos.
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11.4 Summary

In order to validate saliency models (see next chapters), a database with stimuli
and ground truth is needed.

The first type of stimuli and ground truth which was used is still images and
eye-tracking data.

Another ground truth is based on salient objects segmentation. Manual segmen-
tations (bounding-box or pixel-wise segmentations) can be used. While some
datasets exhibit only the big centered object segmentation, others are more
complex and close to the reality.

Some datasets provide both eye-tracking and object segmentation ground truth.
In addition to still images, video databases are available mainly with eye-tracking
data. Very few video datasets provide both eye-tracking and object segmentation
ground truth.

A list of databases which are available online for visual attention can be found
from the Computational Attention Group of TCTS lab at http://tcts.fpms.ac.be/
attention.
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Chapter 12
Metrics for Saliency Model Validation

Nicolas Riche

Different scores have been used in the literature to validate saliency models. While
reviews of databases [1] or saliency models [2, 3] exist, reviews of similarity metrics
are harder to come by. In this chapter, we will explain the standard measures used to
evaluate the salient object detection and eye tracking models. The metrics presented
here will be used in our study and validation in the next chapters. While some
metrics focus on eye scanpath [4], here we will deal with approaches involving
2D maps. As it was described in the previous chapter, there are two ground truths to
validate saliency maps. The first one is based on salient object segmentation (using
bounding boxes or pixel-wise segmentation) and the other one is based on eye-
tracking data. In Sect. 12.1 we present similarity metrics for salient object detection
ground truth while in Sect. 12.2 we focus on metrics for eye-tracking data. We
finally conclude on existing metrics for saliency maps evaluation.

12.1 Literature Review of Metrics for Object Detection

In this section, all metrics that have been used to assess salient object detection
models are presented. Indeed, there are several ways to measure the agreement
between salient object detection models and binary masks (bounding boxes or pixel-
wise masks). Sometimes, metrics do not agree with each other.

However, contrary to the eye tracking-based category, all the salient object detec-
tion benchmarks use very close gold standard location-based metrics. Moreover, in
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Table 12.1 Definitions of four concepts to compute precision-recall and FPR/TPR

Reference results
Predicted results TP: Correct result FP: Unexpected result
FN: Missing result TN: Correct absence of result

85 % of the publications on salient object detection model, the authors use one gold
standard metric (F-score from precision-recall curve) to compare their models to
other state-of-the-art models.

12.1.1 Location-Based Metrics: Focus on Location of Salient
Regions and Binary Masks

For all location-based metrics, we retrieve the concept and terminology from a
confusion matrix: true positives (TPs), true negatives (TNs), false positives (FPs)
and false negatives (FNs) that compare the predicted results (saliency map) with the
reference results (binary mask). Therefore, the saliency maps need to be converted
to a binary map. To do that, several thresholds are defined. Table 12.1 illustrates
their definition.

From this concept, two metrics can be computed. A new one, the F-score,
calculates a score from precision-recall, and the area under the receiver operating
characteristic (AUC), like eye tracking-based metrics, computes a score from
the false- and true-positive rate. All these notions will be described in detail
below.

A third metric called MAE exists in the literature as described in [3]. The purpose
is to consider the true negative (TN) when a pixel is correctly marked as non-
salient.

Finally, recently, we find some variations of F-score which propose a weighted
calculation of precision and recall. The objective is to provide a more reliable
evaluation. In [5], the authors start by identifying three causes of inaccurate
evaluation: interpolation flaw, dependency flaw and equal-importance flaw. By
amending these three assumptions, they propose a new reliable measure available
for images.

F: F-Score from Precision-Recall (2009)

Authors: R. Achanta, S. Hemami, F. Estrada and S. Susstrunk [6].
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Fig. 12.1 F-score between saliency map and binary mask

Description: Many authors like [7-10] also used F-score metric to compare saliency
maps and binary masks (Fig.12.1). Precision is the number of relevant points
compared with the total number of points found (Eq.12.1 (left)). Recall is the
number of relevant points compared with the total number of important points in
the reference (Eq. 12.1 (right)):

7 t
P Recall = P
ip+Jp ip+jfn

Precision = (12.1)

A usual way to combine precision and recall is to use the F-score defined as in
Eq. 12.2 where as suggested by several salient object detection benchmarks [6], 82
is set to 0.3 to give more importance to the precision value:

(1 4 B?) * Precision * Recall

F —score = ..
B? * Precision + Recall

(12.2)

AUC: Area Under the ROC Curve (2011)

Authors: J. Li, L. Martin, A. Xiangjing and H. Hangen [11].
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Fig. 12.2 AUC between saliency map and binary mask

Description: Many authors like [12, 13] also used AUC metric to compare saliency
maps and binary masks (Fig. 12.2). The true-positive rate, also called sensitivity,
measures, as the recall, the proportion of true positive under all the positive reference
results (Eq.12.3 (left)). The false-positive rate measures the proportion of false
positive under all the negative reference results (Eq. 12.3 (right)):

1,
P FPR o

TPR = =
tp + fn fo+1m

(12.3)

A usual way to combine them is to plot the true-positive rate (TPR) vs. the false-
positive rate (FPR) to form an ROC curve. Then, the area under the ROC can be
computed.

12.2 Literature Review of Metrics for Eye Tracking

In this section, all the similarity metrics that have been used to assess eye tracking
saliency models are presented. Contrary to salient object detection validation, a gold
standard metric doesn’t exist, and a lot of metrics have been proposed to validate eye
tracking saliency models.

Therefore, we propose here a taxonomy to classify them. The classification
is related to the nature of the similarity metric and can be divided into three
categories: value-based metrics which focus on saliency map values at eye gaze
positions, distribution-based metrics which focus on saliency and gaze statistical
distributions and location-based metrics which focus on location of salient regions
at gaze positions.

All these metrics will be described in detail in this section and will be used in
the next chapter to study their similarity. They take two distributions as input: the
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prediction (noted SM for saliency map) and the ground truth (noted FM for fixation
map).

It is important to note that a discrete fixation map is used for location-based and
value-based metrics while a continuous one is used for distribution-based metrics.
The continuous fixation map is deduced by convolving the fixation map with a 2D
Gaussian function. The parameters of this function depend on the database.

12.2.1 Value-Based Metrics: Focus on Saliency Map Values at
Eye Gaze Positions

This first category of metrics compares values or amplitudes of the saliency maps
with the corresponding eye fixation maps.
Three similarity metrics are proposed and described in the following subsections.

NSS: Normalized Scanpath Saliency (2005)

Authors: R. Peters, A. Iyer, L. Itti and C. Koch [14].

~\

Fixation Map

— - ( Saliency Map
Fixation List Values at (X.Y)
X 1Y
|| NSS: Mean
Score

Fig. 12.3 NSS between saliency and fixation map

Description: The idea is to quantify the saliency map values at the eye fixation
locations and to normalize it with the saliency map variance (Fig. 12.3):

NsS(p) = SMP) = tsu (12.4)

Osm

where p is the location of one fixation and SM is the saliency map which is
normalized to have a zero mean and unit standard deviation. Indeed, the NSS score
should be decreased if the saliency map variance is important or if all values are
globally similar (small difference between fixation values and mean) because it
shows that the saliency model will not be very predictive, while it will precisely
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point a direction of interest if the variance is small or if the difference between
fixation values and means is high.
The NSS score is the average of NSS(p) for all fixations:

N
1
NSS = § NSS 12.5
N*p=1 () (12.5)

where N is the total number of eye fixations.

PF: Percentage of Fixations into the Salient Region (2006)

Authors: A. Torralba, A. Oliva, M. Castelhano and J. Henderson [15].

Saliency Map
Range: 0,1 FixMap

Saliency Map
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PF: Fixations into
Binary Saliency Map

\ J

Fig. 12.4 PF between saliency and fixation map

Description: Its purpose is to measure the percentage of fixations into the salient
region. In a first step, saliency maps are thresholded at 7' = 0.8 where the saliency is
normalized between 0 and 1. The threshold is set so that the selected image region
occupies a fixed proportion of the image size. In a second step, the percentage of
fixations in this area is computed and called PF (Fig. 12.4).



P: Percentile (2008)

Authors: R. Peters and L. Itti [16].
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Fig. 12.5 P between saliency and fixation map

Description: The percentile metric is, for each pixel p on the eye fixation map, a
ratio between the number of pixels in the saliency map with values smaller than
the one corresponding to pixel p from the eye fixation map and the total number of
pixels (Eq. 12.6) (Fig. 12.5):

_ e X:SM@) < sM(p)|

P(p) ISM|

(12.6)

where X is the set of all pixels of the saliency map SM, p is the location of one eye
fixation and |SM| indicates the total number of pixels. Like in the case of NSS, the
global percentile score is the average of P(p) for all the eye fixations.

12.2.2 Distribution-Based Metrics: Focus on Saliency and
Gaze Statistical Distributions

In the literature, there are two kinds of distribution-based metrics. Those which com-
pute a similarity between two distributions and those which compute a dissimilarity.
Moreover, some metrics which are not a distance are nonsymmetric. It means that
by first considering the saliency map (SM) as the first input and secondly the fixation
map (FM) as the first input, the results are not the same. This should be taken
into account for the comparison. Two dissimilarity and three similarity metrics are
proposed and described in the following subsections.
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PCC: Pearson’s Correlation Coefficient (2004)

Authors: N. Ouerhani, R. Von Wartburg, H. Hugli and R. Muri [17].
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-

Fig. 12.6 Pearson’s correlation coefficient between saliency and density map

Density Map Saliency Map \

Description: Pearson’s correlation coefficient also named linear correlation coeffi-
cient was first used in [17] as a metric. Other authors also used it such as in [18].
The linear CC output range is between —1 and 1. When the correlation value is close
to —1 or 1, there is almost a perfect linear relationship between the two variables
(Fig. 12.6):

cov(SM, FM)
CcC = (12.7)
Osm * OFM

KLD: Kullback-Leibler Divergence (2004)

Authors: U. Rajashekar, L. Cormack and A. Bovik [19].

Fig. 12.7 KLD between ( ; N\ 3 )
saliency and density map Saliency Map Density Map
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Description: The Kullback-Leibler divergence is a commonly used metric to
estimate an overall dissimilarity between two distributions. Many authors like
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[20] and [18] also used this metric to compare saliency maps with human eye
fixations. The KLD is a measure of the information lost when the saliency map
probability distribution (called SM) is used to approximate the human eye fixation
map probability distribution (called FM) (Fig. 12.7):

X
KLD =) " FM(x) * log ( (12.8)

x=1

FM(x)
SM() +¢ 6)

where X is the number of pixels and € is a small constant to avoid log(0) and division
by zero. SM and FM distributions are both normalized as in Eq. 12.9:

SM FM
SMx) = (x) M) = (x) (12.9)
X SM(x) + € S FM(x) + €
When the two maps are strictly equal, the KLLD value is zero.
SCC: Spearman’s Correlation Coefficient (2011)
Authors: A. Toet [21].
Fig. 12.8 Spearman’s - ]
correlation coefficient Saliency Map Density Map
between saliency and density
map

Spearman’s rank
Correlation Coefficient

Description: Spearman’s rank correlation coefficient metric [21] is defined as
the CC metric (Eq.12.7) but on ranked variables. This can be understood as
a non-linear correlation. Toets uses this metrics in [21] to evaluate 13 models
(Fig. 12.8).

EMD: Earth Mover’s Distance (2012)

Authors: T. Judd, F. Durand and A. Torralba [22].
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Fig. 12.9 EMD between saliency and density map

Description: Earth mover’s distance metric is a measure of the distance between
two probability distributions over a region (Fig. 12.9). Judd [22] used this metric in
her benchmark which is now available online. She uses a fast implementation of
EMD provided by Pele and Werman [23, 24], but without a threshold. It computes
the minimal cost to transform the probability distribution of the saliency maps SM
into one of the human eye fixations FM:

EMD = m1an/U ZFM ZSM maxdlj

ij

stfy=0.Y fi <FMi. Y fi < SM, (12.10)
J i

and

> fy=min [ Y FM;— )" sM;
ij i J

where each f; represents the amount transported from the i; supply to
the j; demand. d; is the ground distance between bin i and bin j in the
distribution. A larger EMD indicates a larger overall difference between
the two distributions. An EMD of zero indicates that two distributions are
the same.

S: Similarity (2012)

Authors: T. Judd, F. Durand and A. Torralba [22].
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Fig. 12.10 S between ( - N\ [ - - )
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Description: The similarity metric [22] also uses the normalized probability dis-
tributions of the saliency map SM and human eye fixation map FM (Fig. 12.10).
The similarity is the sum of the minimum values at each point in the distributions.
Mathematically, the similarity between two maps SM and FM is:

X
S = Zmin(SM(x),FM(x)) (12.11)

x=1

where Y% SM(x) = Y FM(x) = 1.
A similarity score of one indicates that the distributions are the same. A similarity
score of zero indicates that they do not overlap at all and are completely different.

12.2.3 Location-Based Metrics: Focus on Location of Salient
Regions at Gaze Positions

Location-based metrics are very popular to evaluate saliency maps. They are based
on the notion of area under the receiver operating characteristic curve coming
from the signal detection theory. Four main different implementations are available
dealing with some limitations of the classical approach.
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nAUC: Normalized Area Under the ROC Curve (2011)

Authors: Q. Zhao and C. Koch [25].
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Fig. 12.11 nAUC between saliency and density map

Description: Zhao used a normalized AUC (Fig. 12.11). The idea is that saliency
algorithms perform less well (on average) than the area under the ROC curve coming
from inter-subject variability for each image. Zhao computes an ideal AUC by
measuring how well the human fixations of one subject can be predicted by those of
the other n — 1 subjects, iterating over all n subjects and averaging the result with an
upper limit of one. Finally, the AUC of the saliency map is normalized by this ideal
AUC.

pAUC: Post-Processing for Area Under the ROC Curve (2011)

Authors: J. Li, L. Martin, A. Xiangjing and H. Hangen [11].
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Fig. 12.12 pAUC between saliency and density map

Description: Li set the border cuts for all models to be of equal size and avoids
in that way to artificially increase the AUC scores for the models which already
do this preprocessing in comparison with those which do not. The border cut
post-processing affecting the fairness during the assessment is thus eliminated
(Fig. 12.12).

hAUC: Hit Rate for Area Under the ROC Curve (2012)

Authors: T. Judd, F. Durand and A. Torralba [22].
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Fig. 12.13 hAUC between saliency and density map

Description: Judd proposed another version of AUC to validate saliency models.
First, fixation pixels were counted once and the same number of random pixels is
extracted from the saliency map. For one given threshold, saliency pixels can be
seen as a classifier, with all points above threshold indicated as “fixation” and all
points below threshold as “background”.

For any particular value of the threshold, there is some fraction of the actual
fixation points which are labelled as true positive (TP) and some fraction of points
which were not fixated but labelled as false positive (FP). This operation is repeated
one hundred times. Then the ROC curve can be drawn and the area under the curve
(AUC) computed. An ideal score is one, while random classification provides 0.5
(Fig. 12.13).

SAUC: Shuffled Area Under the ROC Curve (2012)

Authors: A. Borji, D. Sihite and L. Itti [26].
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Fig. 12.14 sAUC between saliency and fixation map

Description: Borji applied to saliency map validation a suitable AUC metric called
shuffled AUC (Fig. 12.14). In his classical AUC, saliency map values from random
points from the image are addressed to create a binary mask. In the shuffled AUC
metric, saliency values and fixations from another image (instead of random) of the
same dataset are taken into account. In that way, the more or less centred distribution
of the human fixations of the database is taken into account in the AUC computation.
This point is important because the AUROC scores can dramatically increase if a
saliency map is weighted by a centred Gaussian. Indeed, human eye fixations are
rarely near the edges of general test images, and the amateur photographer often
places salient objects in the image centre.

12.3 Discussions and Conclusions

There are a large variety of metrics in the literature which provide a score between
saliency map and ground-truth data which have been processed into a bidimensional
map. These metrics depend on the nature of the ground truth and what authors want
to measure: amplitude, location, distribution or the three.
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It shows the importance of choosing appropriate metrics for a validation frame-
work. The authors need to clarify why they choose these metrics. Moreover, the
framework validation needs a preliminary study to investigate the relevance of the
chosen metric mix.

In this chapter, we focused only on approaches involving two bidimensional
maps. Other metrics exist for comparing two scanpaths, using either distance-based
methods (string edit technique or Mannan’s distance) or vector-based methods.
These metrics are described in [4]. They require taking into account a number of
factors, such as the temporal dimension or the alignment procedure. To overcome
these problems, most of saliency validation frameworks used two bidimensional
maps.

12.4 Summary

» For object-based validation, all the metrics are based on the notion of TP/FP and
TN/EN as F-score and weighted F-score.

* For eye tracking ground truth, there are dozens of metrics (amplitude based,
location based, distribution based).
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Chapter 13
Study of Parameters Affecting Visual Saliency
Assessment

Nicolas Riche

The computational modelling of visual attention has been developed and expanded
considerably during the past 10 years. Many different saliency models are now
available online (for still images and videos). At the same time, many popular
image-video datasets with human gaze data or binary masks have been released
to evaluate saliency models with commonly used evaluation metrics. The new
challenges and future directions for this field are therefore to establish evaluation
protocols and saliency benchmarks.

Although some evaluation studies (such as [1-3] and [4]) and online benchmarks
(like [5] and [6]) have already been proposed and are major contributions, a key
underlying issue is: how can one fairly evaluate all these models? In this chapter, we
investigate this question with an evaluation, divided into four experiments, leading
to the proposition of a new evaluation framework. Each experiment is based on an
important aspect of visual saliency assessment in real-life images and is extended for
videos in the validation framework. There are four questions that we will carefully
consider:

1. What are the differences between eye fixations and manually segmented salient
regions?
2. What is the relation between model performances and the properties (e.g. the
size) of the salient regions into images?
. What is the effect of saliency map post-processing?
4. Is one metric enough to evaluate a saliency model?

(O8]

First of all, there are mainly two ground-truth categories to assess a saliency
map: human eye fixations obtained using an eye tracker device and manually
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segmented and labelled salient regions. In our study, we analyse the difference and
the coherence between them. The second aspect of this study is about different
categories of salient regions. Are saliency models equally efficient in predicting
human gaze on three categories of salient regions: large, intermediate and small?
This is an important issue as real-life objects and scenes contain a very wide range
of object sizes. The third experiment is about saliency map post-processings. Which
ones increase the score of a saliency map? Finally, various evaluation measures
exist to compare saliency and ground-truth maps. We study the redundancy of these
metrics and propose, among them, three metrics which should be used to obtain a
complete assessment of saliency model performance.
Statistical analysis is used here to answer each of these four questions.

13.1 Experiment 1: Effects of Ground Truth

13.1.1 Goal

Nowadays, databases are coming with two ground truths: eye fixations and labelled
objects. Some databases have the interest of providing both approaches for the same
set of images. Some saliency models will better model eye fixations while others
focus on object detection and segmentation and are assessed with region-based
labelled objects. The main idea of this first experiment is to assess the coherence
between the region-based and eye fixation-based ground truths.

13.1.2 Method

Database and Ground Truth: The database used here has been published by Jian
Li et al. [7] and provides both region ground truth (human labelled) and eye fixation
ground truth (collected with an eye tracker). In this experiment, we use the whole
database containing 235 colour images.

Models: Twelve state-of-the-art models from a mix of eye tracking-based (80 %)
and object detection-based (20 %) algorithms are used in this experiment. These
models are detailed in the previous chapters and the taxonomy to present them
is proposed by Borji’s review paper [8] and used as a comparison feature in the
previous chapters where models are sorted based on their mechanism to obtain
saliency maps. We use a wide range of recently published saliency models. FSM
model [9] represents the cognitive approach. SUN [10] and SDLF [11] are Bayesian
models. AIM [12], DVA [13] and RARE [1] are into the information theory
category. SR [14], PFT [15], QDCT [16], SSAFD [17] and FTSD [18] use a spectral
analysis approach to compute their saliency map. Finally, AWS [19] which does not
fit into Borji’s taxonomy represents the other models category.
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Metrics: In this study, the pAUC (post-processing for area under the ROC curve
(2011) [7]) metric has been chosen. This metric can be applied to both eye tracking-
based and region-based ground truths and mainly measures the eye fixation or region
locations.

Kendall’s W concordance measure is used for the statistical analysis. Kendall’s
W concordance measure [20] is an effect size measure. It defines how big the
discordance between two distributions is. Indeed, while common significant tests
only assess if there is enough evidence to determine whether the null hypothesis is
likely between two or more groups, they do not provide information about the size
of this effect. The effect size measures by how much the detected effect is significant
in practice; in other words, it defines, in our case, how big the discordance between
the region-based and eye fixation-based ground truths is.

It is defined in Eq. 13.1:

wo 12xS .
— m? % (n2n) '

where 7 is the number of models and m is the number of metrics. So here n = 12 and
m = 2 (pAUC on both ground truths). S, the sum of squared deviations, is defined
asin Eq. 13.2:

S=Y (R —R™ (13.2)

i=1

where R; is the ranking given to model i. A ranking as used here replaces the mean
score of each model based on one metric by the assignment of labels (first, second,
third, etc.). R is the mean value of those rankings.

Kendall’s W concordance is a coefficient measuring the degree of agreement
between metrics. The value ranges from 0 (no agreement between model ranks)
to 1 (full agreement, same model ranking). Furthermore, some rules of thumb are
provided to allow the researcher to interpret this measure as depicted in Table 13.1
[20].

However, in our study, the ranking range of 1-12 is small; therefore, higher
thresholds are required to keep on the interpretation. That is why we decided to
be much more selective than in Table 13.1: we interpret Kendall’s coefficient as in

Table 13.1 Interpretation of Kendall’s W coefficient

Kendall’s W Interpretation Confidence in ranks
0.5 Moderate agreement Fair

0.7 Strong agreement High

0.9 Unusually strong agreement Very high

1 Complete agreement Very high
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Table 13.2 Interprt?tation of W Interpretation Rank confidence
Kendall’s W coefficient on 0.7 Mod Fai
mean scores . oderate agreement air

0.85 Strong agreement High

0.93  Very strong agreement High

0.98  Unusually strong agreement ~ Very high
with 2 or 3 switched models

0.99 Unusually strong agreement ~ Very high
with 1 or 2 switched models

1 Complete agreement Very high
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Fig. 13.1 Row 1: eye fixation mean score for all the models on the whole database with their
standard deviations. Row 2: labelled region mean score for all the models on the whole database
with their standard deviations. A higher pAUC means that the model is better

Table 13.2. Indeed this interpretation shows that W = 0.98 means that only two or
three models are switched between the rankings.

13.1.3 Results

The mean results of pAUC metric for each model are computed in Fig. 13.1 for the
entire database and both ground truths.

After this first score computation, a ranking-based statistical test is required.
Considering our design, the 95 % confidence interval (CI) Friedman test allows to
respond to the Hy hypothesis: are the rankings of the individual results provided by
the different models coherent between both ground-truth performance evaluations?
As explained above, there is no specific effect size measure in the case of the 95 % CI
Friedman test (only a binary response). Therefore, we use the presented Kendall’s W
concordance measure, which basically fulfils our needs (response between 0 and 1).

As shown in Table 13.3, although differences between eye fixation and region
results are significant (Friedman test), Kendall’s concordance between both ground
truths is very good. This means that there is a difference between both rankings,
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Table 13.3 Concordance based on Friedman test and Kendall’s coefficient between eye fixation
and region results

Friedman test (p-value) Kendall’s concordance W
pAUC ~0 0.82

but the size of this difference based on Kendall’s W coefficient is relatively
small. In other words, if models have good results with one ground truth, it
is quite unlikely that these models completely fail with the other ground truths
except due to statistical fluctuation. A saliency model which is good in predicting
human eye fixations will remain good in predicting human-labelled regions and
conversely.

These results depend on the experimental design. In our case, one database, 12
saliency models and one metric have been chosen. However, the same experiment
was conducted in our paper [21] based on another metric (NSS) and leads towards
exactly the same conclusion. These results are not presented in this section to avoid
redundancy of information but to validate the interpretations.

13.2 Experiment 2: Effects of the Size of Salient Objects

13.2.1 Goal

In this experiment, we want to compare the effectiveness of the models on three
different image categories (large, medium and small salient regions). In real-life
images, all kinds of object sizes can be seen and saliency models which are tuned
for a given object size are not suitable. It should be noted that this study is divided
into two parts: First, the experiment is computed on saliency models based on eye
tracking. Second, the same experiment is calculated on saliency models based on
salient object detection.

13.2.2 Method

Database and Ground Truth: The same database as in experiment 1 is used [7]
with both region-based and eye tracking-based ground truths. However, in this
experiment, the whole database is not used. Only the first three categories are
interesting for this study and therefore employed: 50 images with large salient
regions, 80 with intermediate salient regions and 60 with small salient regions.

Models: In the first part of this experiment, nine state-of-the-art models from
experiment 1 have been chosen. These are only eye tracking-based algorithms: FSM
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[9], SUN [10], SDLF [11], AIM [12], DVA [13], RARE [1], SR [14], QDCT [16]
and AWS [19].

In the second part of this experiment, nine salient object detection-based state-
of-the-art models have been chosen: FTSD [18], SSOI [22], SMSI [2], SLMC [23],
SDHAS [24], SDAIR [25], SDBM [26], SIM [27] and SDWT [28].

Metrics: As in the first study, the pAUC (post-processing for area under the ROC
curve (2011) [7]) metric has been chosen for this experiment because it can be
applied to both eye tracking-based and region-based ground truths and mainly
measures the eye fixation or region locations. Kendall’s W concordance measure
is used for the statistical analysis.

13.2.3 Results
13.2.3.1 Models with Eye Tracking

Figure 13.2 shows the results for pAUC intro the three categories for eye tracking-
based algorithms. The mean trend can be computed by a linear regression (black line
on Fig. 13.2). The general trend which can be highlighted is that the small regions
have higher score than medium and large regions. This observation is correct for all
models. We can also pay attention to the SR model which significantly increases (in
terms of score rank) for small regions.

To assess the coherence between categories, the same ranking-based statistical
test is required as in experiment 1; however, in this case, it is applied to the

Results on region ground truth
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Fig. 13.2 Labelled region results on eye tracking-based algorithms on large, medium and small
regions for pAUC
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Table 13.4 Concordance based on Friedman test and Kendall’s measure for large, medium and
small regions

Friedman test (p-value) Kendall’s concordance W
pAUC-labelled regions 6% 1074 0.74

Results on region ground truth
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Fig. 13.3 Labelled region results on salient region detection algorithms on large, medium and
small regions for pAUC

means of each of the three classes (large, medium and small). We use the averages
because the number of images is different by categories. Kendall’s W coefficient
as used in experiment 1 shows us a smaller concordance. As shown in Table 13.4,
the p-value is significant. It means that the ranks between models are statistically
different between the three categories, but the size of this difference in terms of
ranking is relatively small. Indeed, Kendall’s concordance shows a moderate-strong
agreement. In this experiment, the rankings are globally coherent (but less than
between the two ground truths). So, the size of the salient region can have a stronger
impact on our assessment than the chosen ground truth.

13.2.3.2 Models with Object Detection

Figure 13.3 shows the results on pAUC for the three categories for salient object
detection-based algorithms. The mean tendency can be computed by a linear
regression (black line on Fig. 13.3). The general trend which can be highlighted
is the opposite of what we observed on Fig. 13.2. The large region has higher
score than medium and small regions. This observation shows that most of saliency
models are tuned to their ground truth (e.g. SOD-based models with the large binary
masks and ET-based models with the small eye tracking distribution). It is correct
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Table 13.5 Concordance based on Friedman test and Kendall’s coefficient for large, medium and
small regions

Friedman test (p-value) Kendall’s concordance W
pAUC-labelled regions 8% 1074 0.81

for almost all models. However, SDWT, for example, is different: its score is better
with large salient regions than small ones, but its ranking is worse than both on
medium regions. On the other hand, models with superpixels, like SDHAS, SDBM
and SLMC, significantly decrease (in terms of score rank) for small regions.

To assess the coherence between categories, the same ranking-based statistical
test is required as in the first part. We also use the average because the number of
images is different depending on the categories. Kendall’s W coefficient shows us
a bigger concordance than in the first part. As shown in Table 13.5, the p-value
is significant. It means that the ranks between models are statistically different
between the three categories but the size of this difference in terms of ranking is
relatively small. Indeed, Kendall’s concordance shows a relatively strong agreement.
In this experiment, the rankings are globally coherent (more than in the first part and
approximately equal to the one between the two ground truths).

As mentioned for experiment 1, these results depend on the experimental design.
In our case, one database, 18 saliency models divided in two groups and one metric
have been chosen. However, the first part of this experiment was conducted again in
our paper [21] based on another metric (NSS) and leads towards exactly the same
conclusion. These results are not computed for SOD models. Indeed, NSS is not a
metric for object labelling.

13.3 Experiment 3: Effects of Post-Processings

13.3.1 Goal

In this experiment, only databases with eye fixations will be used. The purpose is
to investigate which post-processings increase the score of a saliency map. Indeed,
there are three aspects which should be considered: the blurring, the border cut and
the centre effects.

First, we study the blurring which is used to better correlate the noisy human
eye movement data. Indeed, the saliency maps obtained from a model usually score
lower than smoother versions of these maps. However, based on [5], there is an
optimal Gaussian blur level for each model.

Then, we investigate the two other well-known problems for fair comparisons
which are the centre bias and border effect. Centre bias means that a lot of fixations
from natural image databases are located near the image centre because when taking
pictures, the amateur photographer often places salient objects in the image centre.
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The computational saliency models which include a centred Gaussian use the prior
knowledge of working on natural images and increase their score on some metrics
compared with other models without this information. Moreover, Zhang et al. [10]
showed that metric scores are also corrupted by edge effects for the same reason.
If we remove the edges of an image, metric scores usually increase as well. This is
why a specific metric, called sAUC, has been designed to eliminate these undesirable
effects. However, for other metrics (like NSS), these issues need to be taken into
account.

These post-processing factors can dramatically influence some metric scores and
affect the fairness of the validation. The main idea of this third experiment is to
measure the impact of these factors on some saliency models.

13.3.2 Method

Database and Ground Truth: The database used here remains Jian Li’s dataset
[7] but only the eye fixation ground truth (collected with an eye tracker) will be
employed. In this experiment, we use the whole database containing 235 images.

Models: For this experiment, six state-of-the-art models have been chosen. These
are only eye tracking-based algorithms: FSM [9], SUN [10], AIM [12], DVA [13],
RARE [1] and AWS [19].

Metrics: The NSS (normalized scanpath saliency (2005) [29]) metric has been
chosen for this experiment. Kendall’s W concordance measure is used for the
statistical analysis.

13.3.3 Results

Figure 13.4 shows an example of smoothing effect for the six saliency models used
in this experiment. To find this optimal blur width, we use the Y. Li’s toolbox
[30]. Some models such as FSM have already reached the optimal blur, while other
models such as AIM, DVA and SUN increase their score with smoother maps.

For the six saliency models with optimal blur (SM), we first cut the edges (8
pixels at each border) of each saliency map. Second, we multiply the output of
every saliency model by a centred Gaussian to observe their improvement.

Figure 13.5 illustrates how the post-processing factors impact the score of each
model based on the NSS score. The general trend shows that all the scores increase.
However, much depends on the saliency models.

Concerning the border cut, we observe that most of the saliency models such as
AIM, FSM, DVA or RARE haven’t improved their scores significantly. There are
two reasons to this: some methods already remove edges into their mechanism or
some selective models often have low score on the border. At the opposite, SUN
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Fig. 13.5 Study of three post-processing factors: blurring, edge and centre effects. A higher NSS
means that the model is better

improves its scores. It means that this model often has high values on its edges and
needs to be more selective.

Concerning the 2D Gaussian centre, we can see that all models improve their
score. These results confirm that many fixations are located near the image centre in
Jian Li’s database [7]. These measures can help quantify the centre bias of databases.

As mentioned above, these results depend on the experimental design. In our
case, one database, six saliency models and one metric have been chosen. However,
other correlated results from literature can be found in [5, 6, 10, 17], etc. They lead
towards the same interpretation.
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13.4 Experiment 4: Effects of Metrics

13.4.1 Goal

Due to the diversity of available metrics for eye fixation prediction assessment,
several benchmarks were proposed. In 2011, Toets proposed in [4] to compare
saliency models based on Spearman’s rank correlation coefficient. In 2012, Borji
built a benchmark [6] where three evaluation scores (PCC, NSS and sAUC) are
used. Finally, Judd [5] proposed a platform using three different metrics: hAUC,
S and EMD. Although these benchmarks are major contributions, none of those
studies deeply discussed the relevance of their similarity metric mix.

The goal of this fourth experiment is twofold. First, it shows which metrics are
close to each other. Second, it intends to reduce the dimensionality of the metrics
we use and see which ones should be applied to do an efficient benchmark. Indeed,
it is important to decide which metrics should be used together because they are
complementary and which ones are useless to compute together because they will
provide redundant information.

13.4.2 Method

Database and Ground Truth: The human eye fixation maps used are those in the
database published by J. Li et al. [7] from experiment 1. This database provides eye
fixation ground truth (collected with an eye tracker) for 235 colour images.

Models: In this experiment, the same twelve state-of-the-art models from experi-
ment 1 have been chosen: FSM [9], SUN [10], SDLF [11], AIM [12], DVA [13],
RARE [1], SR [14], PFT [15], QDCT [16],FTSD [18], SSAFD [17] and AWS [19].

Metrics: The 12 metrics presented in the previous chapter are used in this
experiment. These metrics can be divided into three categories: value-based metrics
which focus on saliency map values at eye gaze positions (NSS, P and PF),
distribution-based metrics which focus on saliency and gaze statistical distributions
(PCC, KLD, SCC, EMD and S) and location-based metrics which focus on location
of salient regions at gaze positions (nAUC, pAUC, hAUC and sAUC). An average
score by metric can thus be computed on the whole database for each model which
leads to 12 different rankings of the 12 models, one for each comparison metric.

In the following, we will use the ranking between models and not their average
score values. This is due to the fact that the output of the metrics can be very different
in terms of range of score value and some of them should be maximized (correlation
measures) while others should be minimized (divergence measures). Therefore, a
direct score value comparison does not make a lot of sense. By contrast, the relative
rank of the different models is a consistent measure common to all metrics and its
range is here between 1 and 12 (respectively, from the best model to the weakest).
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To compare model rank according to the different metrics, Kendall’s W concor-
dance measure [20] is used (as defined in Eq. 13.1 of experiment 1).

Kendall’s W concordance is a coefficient measuring the degree of agreement
between metrics. The value ranges from 0 (no agreement between model ranks)
to 1 (full agreement, same model ranking). Furthermore, some rules of thumb
are provided [20] to allow the researcher to interpret this measure as depicted in
Table 13.2.

13.4.3 Results
13.4.3.1 Analysis of Consistency of Metrics

Intragroup Metrics: The concordance is computed between all metrics into the three
categories: value-based (amplitude), location-based and distribution-based metrics
(Table 13.6).

The concordance shows a moderate-strong agreement for location-based and
distribution-based metrics. This means that these metrics provide some complemen-
tary information: they might provide different results for the same saliency map;
thus, one of those metrics cannot just be ignored without a possible information
loss about model ranking. However, one can see that the concordance between the
amplitude metrics is high, which means that those measures are highly correlated
and can therefore be summarized by a small subset of value-based metrics.

Intergroup Metrics: Contrary to the intragroup study that does not achieve enough
concordance, the intergroup suggests that some metrics are very close as it is shown
in Kendall’s matrix of Fig. 13.6a. NSS, P, PCC and hAUC seem to be very close.
On the opposite side, the KLD metric seems like an outlier in this matrix, and it is
different from most of the other metrics in terms of model ranking.

To provide a better representation of the proximity in terms of model ranking
among metrics, we apply, on Kendall’s coefficient, a classical multidimensional
scaling (MDS) technique which visualizes and explores similarities or dissimilar-
ities in data. The results are displayed in Fig. 13.6b. In this representation, the x-axis
(equivalent to a first eigenvector) is more important than the y-axis (equivalent to a
second eigenvector). From the figure, one can see, for example, that PF and NSS are
closer than PF and sAUC.

Table 13.6 Kendall’s W
coefficient of intragroup
metrics

Group of metrics W

Amplitude 0.9534
Distribution 0.7869
Location 0.8488
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Fig. 13.6 Kendall’s analysis. (a) Kendall’s matrix on the 12 metrics. (b) Kendall’s measure on
group of metrics with classical multidimensional scaling of evaluation measures in 2D: 1. NSS /2.
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13.4.3.2 Study of the Dimensionality

Based on the representation of Fig. 13.6 and in order to reduce the dimensionality of
metric space, we decide to use a concordance of 98 % as a threshold to fuse metrics
(in terms of rank). By using this threshold, five metrics (NSS, P, PCC, S and hAUC)
can be fused into a single metric called cluster. Indeed, as seen in Fig. 13.6b, the
concordance between these metrics is 98.15 %. It means that only the rank of two or
three couples of models has been inverted on the 12 models between these metrics.
The ranking of cluster is defined as the mean ranking of all the metrics composing
1t.

For model validation, this cluster means that one measure from those included in
this set is enough and the computation of the others inside this cluster is useless in
terms of new information about model ranking. In this case, the five metrics can be
summarized well enough by any of them.

To go further, a global metric which acts like the barycentre of all metrics is also
computed as the mean of the ranking of all metrics.

The same study as in the first part of Sect. 13.4.3 is then applied but not on the
same metrics. Indeed, we replace the five redundant metrics by the cluster metric
and we add the global one. Kendall’s matrix and the classical multidimensional
scaling (MDS) technique are displayed in Fig. 13.7. We can observe that the cluster
and global metrics are close. Moreover, along the x-axis (first eigenvector), the three
metrics which cover most of the space are the cluster, SAUC and KLD.

These results depend on the experimental design. In our case, one database
and 12 saliency models have been chosen. However, other saliency benchmarks
exist online such as [5, 6] that use several metrics which lead towards the same
interpretation.
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13.5 Conclusion

In conclusion, there are many parameters affecting visual saliency assessment. Four
experiments investigate basic questions to fairly evaluate saliency maps with human
gazes or labelled regions.

To build a validation framework, first, a database with ground truth needs
to be chosen. Experiment 1 shows that there are significant differences between
eye fixations and manually segmented salient region results, but the concordance
between the rankings of models is strong. Moreover, the properties of the stimuli
(e.g. in experiment 2, large, medium and small salient regions) are addressed
with different degrees of accuracy by the saliency models. For eye tracking-based
models, small salient regions are better detected than medium and large salient
regions. With object detection, the exact opposite behaviour is observed. Therefore,
the size of the salient region can have a stronger impact on our assessment than the
chosen ground truth.

Consequently, for the validation framework which will be seen in the next
chapter, three databases for still images have been chosen to have a large range
of stimuli with only human eye fixation ground truth. Indeed, the purpose of RARE
is only to find gaze distribution. Moreover, with experiment 1, if RARE is good in
predicting human eye fixations, it will remain good in predicting human-labelled
regions and conversely. Two databases for videos have been chosen with both
ground truths. Indeed, the purpose of STRAP is to find gaze distribution but also
to detect a salient object for application as seam carving.

Some metrics need to be chosen. For salient object detection, the gold standard F-
measure is enough, but experiment 4 shows that one metric is not enough to evaluate
the saliency model ranking on eye fixation data. The minimal set of similarity
metrics which should be used is one of the metrics composing the cluster, SAUC and
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KLD. The use of those three metrics is enough to cover most of the space (along the
first eigenvector) and provide a fair ranking result.

For the validation framework, NSS has been selected to represent the cluster.
This metric will be used with KLD which provides really complementary results
and with sAUC which eliminates the effect of centred Gaussians. As only some
models use centred Gaussians, eliminating this effect provides a fairer comparison.

Finally, state-of-the-art models must be selected. To be coherent, 18 eye tracking-
based models have been used in the validation for still images and a mix of 9 eye
tracking- and salient region detection-based models for videos. In terms of post-
processing, experiment 3 shows that some factors such as centred bias, saliency
map fuzziness and border cut have an important influence on the final result and can
dramatically improve the score, especially for the centred bias. The optimal blur has
been assigned on each model. For other parameters, in the validation framework,
the ones given by authors have been kept. Indeed, with the chosen metric SAUC, the
border cut and the centre Gaussian are not an advantage and a fair comparison can
be done.

13.6 Summary

* Experiment 1 shows that the influence of the ground truth is not crucial: if models
have good results with one ground truth, it is quite unlikely that these models
completely fail with the other ground truths except due to statistical fluctuation.

* Experiment 2 shows that the properties of the stimuli (e.g. large, medium and
small salient regions) are addressed with different degrees of accuracy by the
saliency models. For eye tracking-based models, small salient regions are better
detected than medium and large salient regions. With object detection, the exact
opposite behaviour is observed. So the size of the salient region can have a
stronger impact on our assessment than the chosen ground truth.

» Experiment 3 shows that several parameters such as centred bias, saliency map
fuzziness and border cut have important influence on the final result. It is thus
possible to optimize a model by choosing the best parameters.

* Experiment 4 shows that the minimal set of similarity metrics which should be
used is (a) one of the metrics composing the cluster, (b) SAUC and (c¢) KLD. The
use of those three metrics is enough to cover most of space and provide a fair
ranking result.
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Chapter 14
Saliency Model Evaluation

Nicolas Riche

In this chapter, the validation framework will be applied on static and dynamic
saliency models. The databases and metrics presented in the previous chapters
will be employed, and the studies on the parameters influence have been taken
into account as seen in the conclusion section. For each model, qualitative and
quantitative results are detailed and explained. An additional comparative statistical
analysis is applied on each quantitative result.

14.1 Validation of Saliency Models on Still Images

14.1.1 Qualitative Assessment for Still Image Models

Some qualitative results on synthetic patterns and selected images from the three
static datasets for the validation framework are presented here. The goal of this
section is to visually show results on one of the state-of-the-art saliency models
called RARE [1] on simple and more complex images.

14.1.1.1 Synthetic Patterns

Psychophysical observations are synthetic stimuli showing a particular object
(the target) among other objects (the distractors). All stimuli presented here have
been widely used by the community [2, 3].
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Nevertheless, RARE does not intend to fully explain human behaviour, and the
dataset shown here is not large enough, and it has no eye-tracking data for an
efficient comparison. The goal is to see if the global rarity and local contrast idea
behind RARE make sense compared to human behaviour which will fixate the pop-
out target. There are two parts in this section. First, eight synthetic patterns are
selected for the specificity of their targets which are linked to RARE features: colour
and orientation. In the second part, the selected targets are more complex. They are
not necessarily directly linked to the features extracted by RARE.

In Fig. 14.1, RARE suitably reproduces pop-out phenomena related to colour and
orientation targets. Indeed, the saliency is high (in red) on the targets. These results
are expected due to the nature of the targets. For the colour/luminance differences,
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Fig. 14.1 Rows 1-2: Stimuli and RARE saliency maps for colour and orientation targets presented
separately. Rows 3—4: Stimuli and related saliency maps for colour and orientation mixed targets.
Globally, RARE works as expected
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they are well detected even if the colour difference is not very important. This is
due to the nature of the proposed model which is based on global rarity. Even if
an object has a low contrast, but there are no other high contrast objects, it will be
well highlighted. Concerning the combination of colour and orientation targets, it is
interesting to see the influence of mixed targets or the heterogeneity of distractors.
Indeed, the more distractors, the less selective the saliency map, even if the pop-
out target is still detected as the maximum of the saliency map. This is again a
consequence of the global rarity part of the algorithm. In Fig. 14.2, RARE points
out all of the selected targets even if the features used here are more complex.
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Fig. 14.2 Rows 1-2: Stimuli and RARE saliency maps for targets with different specificities.
Rows 3—4: Stimuli and related saliency maps for synthetic patterns come from visual search task.
Overall, RARE works slightly worse than in the first part. However, it also points out all targets
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The selection of targets includes (1) luminance, (2) intersection and curvature,
(3) density target and (4) visual search examples where all previous targets can be
present. The saliency maps are noisier than in Fig. 14.1 but replicate the expected
human behaviour. In addition to synthetic patterns, some qualitative results will be
presented on selected images from the three datasets of the validation framework.

14.1.1.2 Toronto Database

Figure 14.3 displays selected images from the Toronto database (column 1). The
eye- tracking results on these images which are superimposed on them (column 2)
are compared to the results obtained from RARE (column 3) and the best state-of-
the-art saliency models’ results (following columns).

We first observe in Fig. 14.3 that three algorithms use a 2D-centred Gaussian as
post-processing for their saliency maps, namely, GBVS, SERC and SKSE. There
are many ways to introduce the 2D-centred Gaussian in a saliency model. Visually,
this is clearly discernible within SERC and SKSE models. Then, we see that some
methods, like AIM and GBVS, are less selective. This is specially the case with
image 3 where the entire building is selected. Finally, RARE and AWS show
similar results. They often find the salient distribution with more or less noise. For
example, with image 1, these methods have some difficulties to find the salient area
(the phone).

14.1.1.3 Kootstra Database

In Fig. 14.4, three images from the Kootstra database (column 1) with their eye-
tracking data (column 2) are compared to RARE (column 3) and the best state-of-
the-art saliency models (following columns).

In general, this database is more challenging than the Toronto database. Indeed,
as shown in Fig. 14.4, there are a variety of challenges. On the first image, the
background is very cluttered with repeating distractors. On the second one, there is

Images Density Maps RARE AWS GBVS SKSE SERC AlM

Fig. 14.3 Qualitative comparison of six models’ (including the RARE algorithm) results with the
eye-tracking ground truth (second column) on 3 images (rows) taken from the Toronto database
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Fig. 14.4 Qualitative comparison of six models’ (including the RARE algorithm) results with the
eye-tracking ground truth (second column) on 3 images (rows) taken from the Kootstra database

Images Density Maps RARE AWS GBVS SKSE SERC AlM

Fig. 14.5 Qualitative comparison of six models’ (including the RARE algorithm) results with the
eye-tracking ground truth (second column) on 3 images (rows) taken from the MIT database

no particular salient regions, only some buildings. Finally, on the last image, there
is a large object which is displayed in most of image.

Visually, the same observations can be made regarding the algorithms. SERC and
SKSE are still visual results close to a 2D-centred Gaussian. This approach is very
efficient when there are no salient regions as in image 2. The SKSE distribution
changes on the last image displaying a large object, but the salient area is not found.
AIM and GBVS still have difficulties with the selectivity. In Fig. 14.4, this is the case
with image 1 because the background is very complex. Finally, AWS and RARE
find the salient area with more or less noise but still have difficulties with objects
occupying a big part of the image.

14.1.1.4 MIT Database

Three images from the MIT database have been displayed in Fig. 14.5 (column 1).
The eye- tracking results on these images (column 2) are compared to RARE
(column 3) and the best saliency models (following columns).

In this database, the same characteristics can be seen for each model: centred
Gaussian, selectivity and good detection. But it’s interesting to watch more carefully
image 2 where models fail. This is mainly due to the fact that here the bottom-up
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cues do not match with top-down information (faces, animals). This example also
shows that purely bottom-up models are nowadays good enough to find most
salient region and distribution. This can be improved by providing the top-down
information.

In general, across all the databases, the behaviour of each model can be observed
repeatedly.

14.1.2 Quantitative Validation
14.1.2.1 Experiment 1: Toronto Database

Figure 14.6 displays the RARE mean results along with their standard error
compared to the other 18 saliency model results over the Toronto database. The
graph shows how well saliency maps predict eye fixations under three metrics:
sAUC, NSS and KLD. The models are displayed and sorted by metrics (from left
to right).

RARE gives very competitive results on this dataset compared to the state-of-
the-art models. It is the best performing model concerning the Toronto database
relatively to NSS and KLD metrics and the third best performing one with sAUC
metric. Based on the NSS metric, RARE is the only model which outperforms
models with implicit centre bias (SKSE, GBVS and SERC). Besides, these models’
performances are the worst with respect to the SAUC metric. However, even though
RARE gives more accurate results compared to other models, this outperformance
has not been proven significant. Statistical significance tests are required to verify
this claim.
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Fig. 14.6 Ranking saliency models over the Toronto database using three metrics: first row, mean
and standard error of each model with sSAUC; second row, with NSS; and third row, with KLD. For
sAUC and NSS, higher is better, while for KLD, lower is better
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For the statistical significance testing of mean scores between all models, we
used a 95 % Confidence Interval (CI) Kruskal-Wallis test [4]. Indeed, preliminary to
this statistical analysis, we checked by visual inspection if the metrics normality
distribution assumption was met or not. Although the sAUC distributions of all
models seem very close to the normal distribution, other metrics as KLD are clearly
not normally distributed. We thus decided to use a Kruskal-Wallis statistical test that
does not require normally distributed data.

Figure 14.7 gives a boxplot representation of each model for each metric and the
results of the statistical test. The boxplot represents the data through their quartiles.
The bottom and top of the bow are the first and third quartiles, and the band inside
is the median. The whiskers in this case represent the lowest datum (still within
1.5 interquartile range) of the lower quartile and the highest datum (still within 1.5
interquartile range) of the upper quartile. Some outlier data can be represented with
dots.
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Fig. 14.7 Boxplot representation of statistical significance testing of mean scores between all
models on the Toronto database. A 95 % CI Kruskal-Wallis test is used for each metric. The
statistical results are given by the red letters above each model. If two models have the same
red letters, the difference between them is not significant
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Fig. 14.8 Example of statistical results for the FSM method

The statistical results are given by the red letters above each model. For one
metric, if two models have the same red letters, the difference between them is not
significant. For example, in Fig. 14.8 based on sAUC, FSM method has two letters:
¢ and d. It means that all the models with the same letters (from GBVS to SSAFD)
are not significantly different. On the other hand, saliency models which have not
the same letters are either significantly lower (from VSCL to SKSE) or higher (from
AIM to AWS) than the FSM method.

In more general terms in Fig. 14.7, based on sAUC metric, AWS does not show
a significantly better performance than SDLF (letter h). The best group of models
(letter h) is composed of the top-ten models of Fig. 14.6 (sAUC), including RARE.
Based on NSS metric, RARE does not significantly outperform QDCT (letter h).
This group of models is composed of the top six ones of Fig. 14.6 (NSS). RARE
outperforms significantly PFT but does not show a significantly better performance
than SDSR (letter h) based on the KLD metric. The best group is therefore
composed of the top nine models of Fig. 14.6 (KLD).

As a conclusion, RARE behaves well on this database composed of indoor and
outdoor images. Based on the mean scores, it gives better results than the other
models with respect to NSS and KLD and is always in the best group based on the
statistical analysis.

14.1.2.2 Experiment 2: Kootstra Database

Figure 14.9 displays the RARE mean results along with their standard error
compared to the other 18 saliency model results over the Kootstra database. Three
metrics, SAUC, NSS and KLD, are used to show the saliency map performance. The
models are displayed and sorted by metrics (from left to right).

RARE gives good results on this more challenging dataset compared to the state-
of-the-art models. It is the best performing model in Kootstra on NSS metric and the
second and fifth best performing one with the SAUC and KLD metrics, respectively.
Based on the NSS metric, RARE, AWS and SSAFD outperform models with
implicit centre bias (SKSE, GBVS and SERC). On the other side, these models
have worst performance based on the SAUC metric.
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Fig. 14.9 Ranking saliency models over the Kootstra database using three metrics: first row, mean
and standard error of each model with SAUC; second row, with NSS; and third row, with KLD. For
sAUC and NSS, higher is better, while for KLD, lower is better

The same previously mentioned statistical test is performed in order to test the
significance of the results. The results are shown in the boxplot of Fig. 14.10 where
the red letters represent the results of each statistical test.

Based on sAUC, AWS outperforms significantly DVA but does not show a
significantly better performance than PFT (letter g). RARE is part of this best group
(letter g) composed of nine of the ten first models based on Fig. 14.9 (sAUC). With
respect to NSS, RARE does not significantly outperform PFT (letter c). This best
group is composed of almost all of the models. Only ESAL and SUN do not have
the letter ¢ and therefore are significantly lower than the other models. Based on the
KLD, FSM does not show a significantly better performance than PFT (letter g).
Only SKSE and SERC are significantly lower (letter a). RARE is in the first group
composed of the top-eleven models based on Fig. 14.9 (KLD).

As a conclusion, RARE behaves well on this database composed of complex
images. Based on the mean scores, it outperforms under one metric: NSS. Based
on the statistical test, RARE always is in the best group. However, the first group
always has a large number of models (nine, seventeen, eleven). This shows that all
models don’t perform well on this database.

14.1.2.3 Experiment 3: MIT Database

Figure 14.11 displays the RARE mean results along with their standard error
compared to the other 18 saliency model results over the MIT database. Three
metrics, SAUC, NSS and KLD, are used and sorted the models (from left to right).
RARE gives good results on this dataset with a lot of centre bias and top-down
information (like faces) compared to other models, but it isn’t the best performing
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Fig. 14.10 Boxplot representation of statistical significance testing of mean scores between all
models on the Kootstra database. A 95 % CI Kruskal-Wallis test is used for each metric. The
statistical results are given by the red letters above each model. If two models have the same red
letters, the difference between them is not significant

model on the MIT database. It is ranked third based on sSAUC and KLD metrics and
fourth with respect to NSS metric. Based on the NSS metric, all models with implicit
centre bias (SKSE, GBVS and SERC) are the best performing ones. However, these
model performances are the worst based on SAUC metric (Fig. 14.11).

To test the significant differences in the results of the means displayed in
Fig.14.12, an additional statistical 95 % CI Kruskal-Wallis test is required as
previously mentioned. Figure 14.12 also gives the results of each statistical test by
giving the red letters.

Based on sAUC metric, AWS does not show a significantly better performance
than RARE (letter i). The models from SERC to SKSE are significantly lower
than others models (letters a and b). RARE is in the best group composed of the
top three models of Fig. 14.11 (sAUC). SKSE does not show a significantly better
performance than GBVS (letter i) based on NSS metric. This is the first time that
RARE is not part of the first group (letter i), but it is ranked in a second group
(letter h) with the GBVS model. Indeed, GBVS does not significantly outperform
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Fig. 14.11 Ranking saliency models over the MIT database using three metrics: first row, mean
and standard error of each model with sSAUC; second row, with NSS; and third row, with KLD. For
sAUC and NSS, higher is better, while for KLD, lower is better

RARE, while RARE does not significantly outperforms FSM (third group, letter g).
It is a good result because in the first group composed of the top three models based
on Fig. 14.11 (NSS), all the models use implicit centred Gaussian. Based on the
KLD metric, SERC does not show a significantly better performance than GBVS
(letter 1). RARE is ranked in the second group (letter h) with GBVS. However,
contrary to the results with the NSS metric, RARE significantly outperforms FSM
(third group, letter g). It is a good result for RARE because in the first group
composed of the top-two models on Fig. 14.11 (KLD), all the models use implicit
centred Gaussian.

As a conclusion, RARE behaves well on this database composed of images with
centre bias and top-down information. Based on the statistical test, RARE is in the
best group with respect to sSAUC and among the second best performing based on
NSS and KLD. However, the only models that significantly outperform RARE based
on NSS and KLD are SKSE and SERC. These models use centred Gaussian which
is an advantage on this database. We also observe larger significant differences
between the models in this database (letter i instead of h, g or even c into others
databases). This observation is due to the number of images (1003 images here
instead of 100 images).

14.1.3 Multidimensional Scaling Analysis

To complete this comparison, the classical multidimensional scaling (MDS) tech-
nique has been applied, but this time, the distances of this MDS are computed
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Fig. 14.12 Boxplot representation of statistical significance testing of mean scores between all
models on the MIT database. A 95 % CI Kruskal-Wallis test is used for each metric. The statistical
results are given by the red letters above each model. If two models have the same red letters, the
difference between them is not significant

Table 14.1 Example of score concatenation for the calculation of a distance between two saliency
models (AIM and SR) based on the scores

Toronto database Kootstra
Img 1 Img 2 Img 1
sAUC NSS KLD SAUC NSS KLD

AIM 0.7 1.07 1.7 0.67 1.1 1.63

SR 0.5 1.05 1.8 0.7 1.2 1.62

D 0.2 0.02 0.1 0.03 0.1 0.01

from the scores obtained from the different metrics rather than the characteristics.
Table 14.1 shows an example of how we calculate a distance between two saliency
models (AIM and SR). For each model, the scores on different metrics and databases
have been concatenated, and to build the distance matrix, the distances between each
pair of models have been measured. The purpose is to visualize in 2D the similarity
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Fig. 14.13 Multidimensional scaling of nineteen eye- tracking saliency models based on score in
2D: 1. FSM /2. GBVS /3. CCSA /4. AIM /5. SDLF /6. SR /7. SUN /8. DVA /9. PFT / 10.
SDSR /11. VSLC / 12. ESAL / 13. SKSE / 14. AWS / 15. SSAFD / 16. ISSM / 17. QDCT / 18.
SERC/ 19. RARE

level between the models based on scores and compare the correspondence between
the model characteristics and the scores.

We can see from Fig. 14.13 that on one side, saliency models with 2D-centred
Gaussian bias (Models: 2,13 and 18) appear to have distances in the same range
relatively to other models. On the other, side saliency models with spectral
mechanism (Models: 6, 9, 15, 16 and 17) also seem to have distances in the same
range.

Compared to the MDS presented in previous chapter, only the two observations
explained above are found. We cannot see the impact of the stimuli characteristic
(greyscale or colour) and of the approaches (local or global). It means that the model
scores cannot be found from the characteristics (unlike the post processing).

14.2 Video Saliency Models Validation

14.2.1 Qualitative Assessment

Some qualitative results on selected frames from the two dynamic datasets for the
validation framework are presented here. The goal of this section is to visually show
results of one of the state-of-the-art video saliency model called STRAP on simple
and more complex frames of videos. As for still images, the models, databases and
metrics used for evaluation are described in the previous chapters.
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14.2.1.1 ASCMN Database

Figure 14.14 shows some qualitative results on the ASCMN database. One can
find on the first line 5 different example frames from each of the five categories
of videos in the dataset (abnormal video, surveillance video, crowd video, video
with a moving camera and videos with high motion contrast). The second line of
the figure shows the eye-tracking density maps as heat maps on the original frames.
The three following lines show results for the three best models, namely, STRAP,
GBVS [5] and STVSM [6].

STRAP works well in all the situations, but it sometimes introduces peripheral
noise. GBVS sometimes misses the main interesting regions in the frames, but when
they are well detected, there is few noise, and the saliency map is well focused on
these regions. STVSM performs well and also provides more focused results on part
of the regions of interest. Overall, the three methods provide quite similar results.

14.2.1.2 SVS Database

On Fig. 14.15, 4 different sequences (Harbour, Tempete, Hall Monitor and Mother
Daughter) have been selected to illustrate the results (columns). The two first
sequences have lots of movements, while the two other sequences have a static

Original frames

Density maps

STRAP

GBVS

STVSM

Fig. 14.14 Visual results of the best saliency models on ASCMN database: STRAP, GBVS [5],
STVSM [6] compared with the eye-tracking density maps (row 2) for different original frames
(row 1)
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GBVS

STVSM

Fig. 14.15 Visual results of the best saliency models on the SVS database: STRAP, GBVS [5],
STVSM [6] compared with the eye-tracking density maps (row 2), manually segmented masks
(row 3) for different original frames (row 1)

camera with a salient moving object. The original frames can be seen on the first
line, and the density maps, used as reference, are displayed on the second line. The
third line shows the manually segmented masks which represent the second ground
truth. The three following lines show again the best models STRAP, GBVS and
STVSM.

It can be seen that the result for STRAP performs very well for Tempete and Hall
Monitor. On Harbour and Mother Daughter, the salient objects are well identified,
but the results could be more intense. Concerning the manually segmented masks,
STRAP always hits inside, but sometimes the objects are not fully spotted.

GBVS is a very selective model which provides relatively good highlight of a
small part of the salient objects. The most important object can be missed, and this
very spotted approach can be a problem in the manually segmented masks detection
assessment.
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STVSM misses the important regions in videos containing a lot of motion and
also has issues when the face detection algorithm fails. For the manually segmented
masks, this approach seems less efficient.

14.2.2 Quantitative Validation

For quantitative assessment, three different experiments are carried out. First, in
experiment 1, the ASCMN database is used to compare STRAP with the other
models using the eye-tracking ground truth and three metrics. In experiment 2,
STRAP is compared with state-of-the-art techniques based on the videos of the
SVS database using the eye-tracking ground truth and three metrics. Finally, in
experiment 3, STRAP is compared again with the state-of-the-art models on the
SVS database, but this time on the manually segmented masks ground truth using
one adapted metric.

14.2.2.1 Experiment 1: ASCMN Database

In this first experiment, we use the ASCMN database to assess the proposed STRAP
model. Figure 14.16 displays the STRAP mean results along with their standard
error compared to the other nine video saliency models over ASCMN database.

AUC METRIC

Ssov SMAMS ST-RARE  STVSM

NSS METRIC

SMVQA SMAMS ST-RARE  STVSM GBVS

FHR
5
FHE -

o
£ 2 159 158 158 157 157 156
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=
a = &L i I T T
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SMAMS SSov NMPT VICO ST-RARE  STRAP SDSR GBVS SMVQA STVSM

MODELS

Fig. 14.16 Ranking saliency models over ASCMN database using three metrics: first row, mean
and standard error of each model with sSAUC; second row, with NSS; and third row, with KLD. For
sAUC and NSS, higher is better, while for KLD, lower is better
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The graph shows the performance of saliency maps under three metrics: AUC and
NSS (higher score) and KLD (lower score). It is important to note that SAUC is not
appropriate for the videos. Indeed, the centre bias is less present and appears only
during the first second of a video [7]. Moreover, the SAUC metric is time consuming
and therefore not suited to the videos. This is why we replace sAUC by a classical
implementation of AUC which has been realized by S. Schroedl and is based on [8].
Therefore, we always have one metric for each category (location, distribution and
amplitude).

STRAP gave good results on this specific dataset composed of five different kinds
of movements which can be met in real-life scenarios. Compared with other models,
it is not the best performing model in ASCMN on one metric. Indeed, STRAP is not
specifically tuned to predict eye distribution but performs well compared to specific
models as GBVS, STVSM and ST-RARE. It occupies the fourth rank on AUC and
NSS metric and the fifth one with KLD metric.

However, to know which models outperform others, an additional statistical
significance test is required. The same statistical significance 95 % CI Kruskal-
Wallis test that is used for still images which do not require normally distributed
data is applied. Figure 14.7 gives a boxplot representation of each model for each
metric, and the results of each statistical test are given by the red letters (Fig. 14.17).

A general trend is that video saliency models are more significantly different than
the image ones. This is also due to the fact that there are a lot of frames (implying
more scores) during video. Based on AUC metric, GBVS shows a significantly
better performance than other models (letter h). STRAP and ST-RARE are not
significantly different (letter f) and are in the third group. Moreover, GBVS also
shows a significantly better performance than other models (letter g) based on NSS
metric. STRAP is in the second group as SMAMS or STVSM (letter f). It is more
complicated based on the KLD metric. Indeed, STVSM does not show better result
than STRAP (letter d). However, SMQVA shows better performance (letter e).
STRAP is therefore in the second group of models (letter d) as STVSM, GBVS
or SDSR.

As a conclusion, STRAP behaves well on this database composed of videos with
different kind of motion. Based on the statistical test, STRAP is in the third group
with AUC and the second on NSS and KLD.

14.2.2.2 Experiment 2: SVS Database Using the Eye Fixation Ground
Truth

The videos in this database are very different compared to ASCMN. Indeed, there
are only high-quality videos with very complex scenes with a lot of camera motion
(zoom, tracking) or faces. In this case, the use of the temporal compensation has a
very important role into this database.

Figure 14.18 displays the mean results along with their standard error of STRAP
compared to the other nine video saliency models over eye tracking of SVS
database.
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Fig. 14.17 Boxplot representation of statistical significance testing of mean scores between all
models on ASCMN database. A 95 % CI Kruskal-Wallis test is used for each metric. The statistical
results are given by the red letters above each model. If two models have the same red letters, the
difference between them is not significant
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Fig. 14.18 Ranking saliency models over SVS database using three metrics: first row, mean and
standard error of each model with AUC; second row, with NSS; and third row, with KLD. For AUC
and NSS, higher is better, while for KLD, lower is better

The graph shows the performance of saliency maps under three metrics: AUC
and NSS (higher score) and KLD (lower score). As in Experiment 1, AUC is used
instead of sSAUC. STRAP gives very good results on this dataset composed of high-
quality videos with moving camera. Compared with other models, it is the best
performing model in SVS on two metric: NSS and KLD. It ranks number two on
AUC metric.

However, as in Experiment 1, to know which models outperform others, an addi-
tional statistical significance 95 % CI Kruskal-Wallis test is required. Figure 14.19
gives a boxplot representation of each model for each metric, and the results of each
statistical test is given by the red letters.

Based on AUC metric, GBVS shows a significantly better performance than
other models (letter h). STRAP and STVSM are not significantly different (letter g)
and represent the second group. Based on NSS and KLD metrics, STRAP shows
a significantly better performance than all the other models (respectively letter i
and f).

As a conclusion, STRAP behaves very well on this database composed of
complex videos with moving camera. STRAP is the best model with NSS and KLD
based on the statistical test and in the second group based on AUC.

14.2.2.3 Experiment 3: SVS Database Using the Object-Oriented Ground
Truth

Concerning the manually segmented masks validation into the YUV database,
Fig. 14.20 displays the mean results along with their standard error of STRAP
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Fig. 14.19 Boxplot representation of statistical significance testing of mean scores on eye tracking
between all models on SVS database. A 95 % CI Kruskal-Wallis test is used for each metric. The
statistical results are given by the red letters above each model. If two models have the same red
letters, the difference between them is not significant
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Fig. 14.20 Ranking saliency models over SVS database with binary masks using one metric.
Mean and standard error of each model with F-score: higher is better

a b c [ c d e el f g
o |
@ | —
(=] — —_— e _:_
@ | 5 = :
e = | ] |
-Score H
% — '
N : '
1
==
s | i e 1 i s i i B el R
T T T T T T T T T T
VICO SMvaa STVSM SDSR SsOV NMPT GBVS ST-RARE SMAMS STRAP
Models

Fig. 14.21 Boxplot representation of statistical significance testing of mean score on salient object
detection between all models on SVS database. A 95% CI Kruskal-Wallis test is used. The
statistical results are given by the red letters above each model. If two models have the same
red letters, the difference between them is not significant

compared to the other nine video saliency models over binary masks of SVS
database. The graph shows the performance of saliency maps under one metric:
F-score (higher score is better). Compared with other models, it is the best
performing model in SVS on this metric.

However, to know which models outperform others, an additional statistical
significance 95 % CI Kruskal-Wallis test is required. Figure 14.19 gives a boxplot
representation of each model for the metric and the results of each statistical test are
given by the red letters.

Based on F-score metric, STRAP shows a significantly better performance than
all the other models (letter g) (Fig. 14.21).

As a conclusion, STRAP performances are in line with the state-of-the-art
models for eye fixations, but it definitely outperforms all the other models in case
of object-oriented ground truth. The use of the segmentation module, while also
supporting a little the eye fixation ground truth (see Fig. 14.15, row 2), has a very
important role in object-oriented ground truth (see Fig. 14.15, row 3). The ability to
handle bot