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Foreword

We all know what attention is. Attention is so obvious and apparent that up until
recently nobody really took notice of it. According to William James (1890),
attention “is the taking possession by the mind, in clear and vivid form, of one
out of what seem several simultaneously possible objects or trains of thought. It
implies withdrawal from some things in order to deal effectively with others.”
Thus, attention is the first step towards perceiving the world. The late John G.
Taylor fiercely argued that attention and consciousness are inseparable. Conscious
awareness of the environment cannot occur without attention.

Mancas, Ferrera, and Riche have masterfully put together this book of attention
from a multi-disciplinary perspective. To them, like James, attention is the first step
to perception. Attention analyzes the world and creates inner representations of it.
Thus to them, like Taylor, attention is a gate of conscious awareness at the interface
between the inner and outer and it is the key to survival of the organism. Mancas,
Ferrera, and Riche go one step further in detailing how modeling attention can
improve current artificial intelligence and what advantages these attentive systems
will have over others. Aside from being faster and more efficient in terms of memory
storage, attentive AI systems will be able to detect novel patterns in their input
streams of information and react appropriately to potentially dangerous situations.

Undoubtedly, this book is an enthusiastic applause of attention and it will prove
highly valuable as a resource to engineers, computer scientists, and neuroscientists,
as it will allow each community to see what the others do, what is left to do, and
what needs to done.

Foundation for Research & Techn. Hellas Vassilis Cutsuridis
Inst. of Molecular Bio. & Biotechn.,
N. Plastira 100, 70013 Heraklion, Crete, Greece
September 11, 2015
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Chapter 1
Why Do Computers Need Attention?

Matei Mancas, Vincent P. Ferrera, and Nicolas Riche

The focus of this book is to present a multidisciplinary perspective on modelling
of attention. In this introductory chapter, we first address the question of why one
should care about modelling attention, and then we detail the structure of this book
and explain who are the targeted readers.

1.1 Why Care About Attention and Attention Modelling?

1.1.1 First Step in Perception of Living Beings : : :

Any animal [1] from the tiniest insect [2] to humans is perfectly able to “pay
attention”. Attention is the first step of perception: it analyses the outer real world
and turns it into an inner conscious representation. Even during dreams and REM
sleep (Rapid Eye Movements), eye movement activity suggests that attentional
mechanism is at work. But, in this case, it analyses a virtual world coming from
the inner subconscious and turns it into an inner conscious representation. Attention
seems to be not only the first step of perception but also the gate to conscious
awareness.
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Numediart Institute, University of Mons (UMONS), 31, Bd. Dolez, 7000 Mons, Belgium
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2 M. Mancas et al.

1.1.2 : : : From Foetus to Death, Awake and During
Dreams : : :

Attention probably arises during embryonic development in parallel with sensory
systems. The development of attention may correlate with the first REM dreams
beginning around the sixth month of foetal development [3]. This mechanism is one
of the first cognitive processes to be set up, and factors like smoking, drugs, alcohol
or even stress during pregnancy may lead to later attention disorders and even a
higher chance of developing psychopathologies [4, 5]. In cognitive disorders like
in autism or schizophrenia, attentive processes are highly affected, as suggested by
studying eye-tracking traces which can be very different between patients and the
control groups [6, 7]. The attentive process is set up as early as the prenatal period
when it already begins to operate during babies’ dreams. Until death, it occurs in
every single moment of the day when people are awake but also during dreams.
This shows the importance of attention: it cannot be dissociated from perception
and consciousness. Even when a person is sleeping without dreaming and the eyes
are not moving, a person can be awakened by important stimuli. Attention is never
turned off; it can only be reduced to a standby mode (excepting drug-induced states
when consciousness is altered or eliminated as in coma). It is thus safe to say that if
there is conscious life in a body, there is attention.

1.1.3 : : : Attention Is the Gate to Consciousness

As a gateway to conscious awareness at the interface between the external world
and internal experience, attention can be both conscious (attentive) and unconscious
(pre-attentive), and it is the key to survival. Attention is also a sign of limited
computation capabilities. Vision, audition, touch, smell or taste, all provide the brain
with a huge amount of information. Gigabits of rough sensorial data flow every
second into the brain, which overloads the capacity to think and respond coherently.
Attention provides the brain with the capacity of selecting relevant information and
prioritizing tasks. While there are a lot of definitions and views of attention, the
one core idea which justifies attention regardless of the discipline, methodology, or
intuition is “information reduction” [8].

Attention only began to be scientifically studied from the nineteenth century
with the arrival of modern experimental psychology. Some thoughts and concepts
related to attention may be found in Descartes and Malebranche, but no rigorous
and intensive scientific study was done until psychologists developed the tools to
quantify perceptual and motor performance. How did philosophers since antiquity
miss such a key concept as attention for so long? Part of the answer is given by
William James, the father of psychology, in his famous definition of attention:
“Everybody knows what attention is”. Attention is so natural and self-evident, so
linked to life and partly unconscious, so obvious that : : : nobody really noticed it
until recently.
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1.1.4 Attention in Computers Might Be a First Step : : :

However, little by little, a new transversal research field has coalesced around the
concept of “attention”, gathering first psychologists, then neuroscientists and, since
the end of the1990s, engineers and computer scientists. While covering the whole
research on attention would require a series of books, the topic is here narrowed to
focus on attention modelling, a crucial step towards wider artificial intelligence.

Indeed, this key process of attention is currently rarely used within computers.
As with the brain, a computer is a processing unit. As with the brain it has limited
computation capabilities and memory. As with the brain, computers are required
to analyse a surfeit of data. But unlike the brain they do not pay attention. While
a classical computer will be more precise in quantifying the whole input data, an
attentive computer will autonomously focus on the most “interesting” data which
has several advantages:

• It will be faster and more efficient in terms of memory storage due to its ability
to process only part of the input data.

• It will be able to find regularities and irregularities in the input signal and thus be
able to detect and react to unexpected or abnormal events.

• It will be able to optimize data prediction by describing novel patterns, and
depending on the information reduction result (how efficient the information
reduction was), it will be capable of being curious, bored or annoyed. This
curiosity which constantly pushes to the discovery of more and more complex
patterns to better reduce information is a first step towards creativity.

1.1.5 : : : To Real Artificial Intelligence

As in humans attention is the gate to awareness and consciousness; in computers
attention can lead to novel emergent computational paradigms beyond classical
preprogrammed machines. To perform tasks autonomously, machines must be able
to select and prioritize information. While the path towards self-programming com-
puters is still very long, computational attention is developing at an exponentially
increasing pace, letting more and more applications benefit from it.

1.2 Who Should Read This Book and Why?

The first point in this book is that we had a multidisciplinary approach of attention
modelling in a world with little communication between those disciplines. This
is especially the case for engineering and cognitive psychology/neuroscience.
Engineers are at least aware of the fact that attention is studied in psychology and
neuroscience because the first computational model [9] was based on the Koch and
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Ullman architecture [10]. From that point new models emerged, and some of them
are very far from the biological considerations of Koch and Ullman. Despite this
diversity, engineers and computer scientists like the “cognitive” or “biologically
inspired” labels even if they do not really know what a “cognitive model” should
be. Despite this fact, few engineers take the time to read and understand papers on
attention modelling in neuroscience. The other way around, neuroscientists are also
aware about the existence of attention models in the engineering domain but often
do not follow the rapid evolutions in this area. One of the main goals of the book
is to show to each community some insights on what the others do and what they
achieve because we think that having different views on the same issues can help
improve knowledge and progress in both communities.

The second point of the book is that chapters are of a mixed complexity so they
can be interesting both for students and specialists. Following the same idea, there
is also a balance between theory and practical approaches, leading to both deeper
understanding of attention and fast ability to test and improve existing models. This
book intends to be accessible by a wide range of people. Students can easily read
some of the chapters and can progressively go deeper in the topic with others.
Specialists can directly focus on more complex chapters, but they can also benefit
from practical reviews of others.

A third point of this book is an exhaustive application review and future research
avenues that can help the reader to orient his research or application development
efficiently. People from industry or researchers focusing on applications related to
human perception can improve their applications by incorporating attention-related
algorithms. Sometimes we realise that some applications could be improved by
using attention or saliency models, but the literature is very scarce because people
working in this community are not yet aware about what attention models can bring
to them.

If you are a student in engineering but also in neuroscience or even psychology
interested in researching the field of attention modelling, this book is everything you
need to start quickly and efficiently. You can quickly acquire the state of the art in
attention modelling but also see practical and exhaustive reviews.

If you already work in the field as an engineer, you will find a quick introduction
to psychological and biological approaches to attention, and you will be able to go
deeper in the concepts linked to attention modelling and the brain.

If you already work in the field as a neuroscientist, you will find engineering
approaches to exponentially improve attention models and implement them into
real-life applications. Some of the concepts used by engineers are clearly inspired
from biological facts, but other much less. The latter models are also interesting
because if they achieve good results in predicting human gaze, maybe part of the
concepts they use might be found as relevant in the brain.

If you work in industry and focus on perception, images or sound, you might
find here your next innovation. From video surveillance to ads optimisation passing
by compression, robotics and computer graphics, many domains can benefit from
attention models.
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1.3 Book Structure

In this book, a synthesis of what attention is, how it can be measured and modelled
and an overview of current and emerging applications is presented. The structure is
organized around three parts.

The first one focuses on fundamentals and is a comprehensive introduction to
attention modelling. These chapters attempt to answer basic questions one may have
before modelling attention: why model attention in computers, what is attention
or more precisely what are attentions, how to measure attention and where it is
localized in the brain.

The second part deals with attention modelling itself. It begins with practical
guides on signal detection and neurophysiology from the study of a single neuron to
visual performance. Afterwards, attention modelling in engineering and computer
science is introduced. After two chapters on the bottom-up attention models for still
images which are the most common in computer science, another chapter presents
attention modelling for video sequences. The set of four chapters which follow
describe anything which needs to be known about model validation in computer
science to assess how well the attention models can predict human eye fixations: the
datasets which are used as ground truth, the metrics used to compute the similarity
between the ground truth and the saliency models output, the influence of several
parameters on the validation results and the validation itself on a set of state of the
art models for still images and videos.

The third part discusses current developments in attention modelling in computer
science with chapters on 3D saliency, multimodal saliency and the link between
saliency and proto-objects. Finally, this part presents an exhaustive review of
attention modelling applications followed by more in deep chapters on some of the
possible applications in object recognition, video quality and robotics.

Finally, new research directions and foreseeable evolution of the field are
discussed in the conclusion.

1.4 Summary

• Attention is of utmost importance: first step of perception, it is the gate to
consciousness. It is active from before birth until death and during sleep and
waking.

• Attention is so fundamental, and perhaps obvious, that it was not recognized as a
legitimate object of inquiry until relatively recently.

• The study of attention has spread from philosophy and psychology to neuro-
science and computer science.

• Attentive computers can benefit substantially from an implementation of atten-
tive mechanism in their quest for artificial intelligence. This book focuses on the
computational aspects of attention.
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• The multidisciplinary approach presented here targets students and researchers
(from both engineering and neuroscience communities) and developers from
industry who work in applications on perception, video or sound. The latter might
find here their next innovation.
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Chapter 2
What Is Attention?

Matei Mancas

2.1 The Study of Attention: A Transversal Approach

Human attention is a self-evident mental phenomenon that is active during every
single moment of awareness. It was studied first in philosophy, followed by
experimental psychology, cognitive psychology, cognitive neuroscience, and finally
computer science for modelling in humans and machines. These studies emerged
sequentially but they added one on top of the others as the layers of an “attention
onion” (Fig. 2.1).

Due to the highly diverse applications of attention, a precise and general
definition is not easy to find. Moreover, views on attention have evolved over time
and research domains. This chapter is structured into two parts. In the first part,
we briefly survey the long history of related research from philosophy to cognitive
psychology, to which were added cognitive neuroscience and computer science. The
second part of the chapter covers different aspects of attention in an attempt to arrive
at a working definition.

2.2 A Short History of Attention

Attention seems almost absent from the writings until the modern age. How did
most of the philosophers miss such a key concept from the ancient times to the
Enlightenment? Part of the answer is probably that attention is such a self-evident
part of life that very few noticed it until recently.

M. Mancas (�)
Numediart Institute, University of Mons (UMONS), 31, Bd. Dolez, 7000 Mons, Belgium
e-mail: matei.mancas@umons.ac.be
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Fig. 2.1 Attention history and the attention onion, an accumulation of research domains

2.2.1 Conceptual Findings: Attention in Philosophy

Selective attention was briefly treated by Greek philosophers like Aristotle in
relation to the spirit or psyche which is an early link between attention and
awareness. In the fourth century, St. Augustine talked about objects of cognitive
interest which can automatically tug at one’s attention inferring the existence of
involuntary attention. Descartes in the seventeenth century added more on the
distinction between voluntary and involuntary attention. He called the first one
“attention” and the latter “admiration.” The concept of admiration that he linked
to the notion of “wonder” is close to the idea of “surprise” which is used by some
modern computational attention models.

An early and important inquiry into human attention was that of Nicolas
Malebranche, a French Oratorian priest who was also a philosopher and follower
of Descartes. In his “De la Recherche de la Verité” (Concerning the Search after
Truth) published in 1675, Malebranche focused on the role of attention in providing
structure in scene understanding and thought organization. He also saw attention as
the basis of free will, writing that “the occasional cause of the presence of ideas is
attention : : : and it is easy to recognize, that this is the principle of our freedom”
[1]. Thus, from the very beginning attention was seen as linked to volition and
consciousness.

In the eighteenth century, G. W. Leibniz introduced the concept of “appercep-
tion” which refers to the assimilation of new and past experience into a current
view of the world [2]. Leibniz’ intuited an involuntary form of attention (known
today as “bottom up” or “stimulus driven”), which is needed for a perceived event
to become conscious. Here attention is viewed as a reflexive and involuntary gate to
consciousness.

In the nineteenth century, Sir W. Hamilton, a Scottish metaphysician, challenged
the previous view on attention, which consisted in thinking that humans can only
focus on a single stimulus at once. Hamilton noted that when people throw marbles,
the placement of about seven of the marbles could be remembered [3]. This finding
opened the way to the notion of “divided attention.” The limited span of divided
attention led about one century later to the famous paper of G.A. Miller, “The
Magical Number Seven, Plus or Minus Two” in 1956 [4].
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2.2.2 Attention in Experimental Psychology

After the first philosophical investigations, attention entered a scientific phase when
approached by the emergence of experimental psychology in the nineteenth century.
By studying individual differences in the ability of trained astronomers to judge
the transit of a celestial body through a telescope, W. Wundt introduced the study
of consciousness and attention to the field of psychology [5]. He interpreted this
observation error as the time needed to switch voluntarily one’s attention from
one stimulus to another and initiated a series of studies on the speed of mental
processing. This was made possible by new measuring methods proposed by
F. Donders [6]. Here attention comes to be related to reflection and not reflex
alone.

In the second half of the nineteenth century, H. Von Helmholtz, in his “Treatise on
Physiological Optics” [7], noted that despite the illusion of seeing our entire visual
environment at the same spatial resolution, humans need to move their eyes around
the whole visual field “because that is the only way we can see as distinctly as
possible all the individual parts of the field in turn.” Although his experimental work
mainly involved the analysis of the eye movement scanpath (overt attention), he also
noted the existence of a covert attention, which is the ability to focus on different
parts of a scene without moving the eyes. Von Helmholtz focused on the role of
attention as an answer to the question “where” the objects of interest are. Adding to
the concepts of reflex attention and divided attention, the notion of parallel versus
serial processing was born.

In 1890, W. James published his textbook “The Principles of Psychology” [8]
and remarked again that attention is closely related to consciousness and struc-
ture. According to James, attention makes people perceive, conceive, distinguish,
remember, and shortens reaction time. He indeed linked attention to the notion
of data compression and memory. He also developed a taxonomy of attention
that distinguished between “passive” and “voluntary” attention. Contrary to Von
Helmholtz, James was more focused on the fact that attention should answer the
question of “what” are the objects of interest.

2.2.3 Attention in Cognitive Psychology

Between the very beginning of the twentieth century and 1949, the mainstream
approach in psychology was behaviorism, which focused almost exclusively on the
external causes of behavior. During this period, the study of mind was considered as
barely scientific and few important advances were achieved in the field of attention.
Despite this “hole” in the study of attention, important work was done on so-called
interference effects. One of the most famous examples, the “Stroop effect,” was
reported by J. R. Stroop [9], who showed that reaction times are considerably
lengthened when a single stimulus affords two conflicting responses, for example,
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reading a red-printed word such as “GREEN” as opposed to reporting the color of
the ink in which the word was printed. Attention was invoked as a means to resolve
the response conflict.

After the Second World War, a vastly more technological world emerged.
Advances in information theory, statistical decision theory, and, perhaps most
importantly, digital computing gave rise to the information age. Human performance
in complex environments ranging from battlefields to factory floors became a central
concern. The study of attention made a tremendous comeback. To the behaviorist
view, which states that the organism’s behavior is controlled by stimulus–response-
outcome associations, cognitive psychology showed that behavior can be modulated
by attention. The resurgence of attention begun with the work of C. Cherry in 1953
on the “cocktail-party” paradigm [10]. This approach models how people select the
conversation that they are listening to and ignore the rest. This problem was called
“focused attention,” as opposed to “divided attention.”

In the late 1950s, D. Broadbent [11] proposed a “bottleneck” model in which he
described the selective properties of attention. His idea was that attention acts like
a filter (selector) of relevant information based on basic features, such as color or
orientation for images. If the incoming information matches the filter, it can reach
awareness (conscious state); otherwise it will be discarded. At that time, the study
of attention seemed to become very coherent and was called “early selection.”
Nevertheless, after this short positive period, most of the findings summarized by
Broadbent proved to be conflicting.

The first “attack” came from the alternative model of Deutsch and Deutsch
[12] who used some properties of the cocktail-party paradigm to introduce a “late
selection” model, where attentional selection is basically a matter of memory
processing and response selection. The idea is that all information is acquired,
but only that which fits semantic or memory-related objects is selected to reach
awareness. This is an opposite view to Broadbent who professed an early selection
of the features before they reach any further processing.

New models were introduced like the attenuated filter model of A. Treisman [13]
which is a softer version than Broadbent’s bottleneck and which let stimuli with a
response higher than a given threshold through the filter, thus determining the focus
of the selective attention.

Later, in 1980, Treisman and Gelade [14] proposed a new “feature integration”
theory, where attention occurs in two distinct steps. First, a preattentive parallel
effortless step analyzes objects and extracts features from those objects. In a second
step, those features are combined to obtain a hierarchy of focus attention which
pushes information towards awareness.

Despite its importance, the feature integration theory was also highly disputed.
Other theories emerged as M. Posner [15] spotlight supporting a spatial selection
approach or D. Kahneman [16] and his theory of capacity supporting the idea of
mental effort.

In the late 1980s, a plethora of theories on attention flourished, and none of them
was capable of accounting for all previous findings. According to H. Pashler [17],
after several decades of research in cognitive psychology, more questions were
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raised than answers given. As a provocative rejoinder to the famous “Everyone
knows what attention is” proposed by James a century before, Pashler declared that
“No one knows what attention is.”

2.2.4 The Need for New Approaches: After the Late 1980s
“Crisis”

Attention deals with the allocation of cognitive resources to prioritize incoming
information in order to bring them to a conscious state, update the scene model and
memory, and influence behavior. Between consciousness, memory, and behavior,
attention was revealed to be much more complex than initially expected, and some
people even questioned whether attention was a single concept or, rather, that there
are several different forms of attentions. The number of issues and the complexity of
the nature of attention led to an interesting move in splitting attention studies from
one single community into two different communities.

The cognitive neuroscience community has the goal of getting further into the
theoretical and biological nature of attention using simple stimuli. The arrival of
advanced tools such as functional imaging, EEG, MEG, or single-cell recordings in
awake, behaving subjects allows them to make huge steps towards relating neural
recordings with behavioral correlates of attention.

The segment of the computer science community working in the field of attention
has a goal of making the concept work with real data such as images, videos,
audio, or 3D models. From the late 1990s and the first computational models of
visual attention, the cognitive neuroscience and computer science approaches have
developed in parallel, one trying to get more insight on the biological brain and the
other trying to get results which can predict eye movements and other behavior for
real-life stimuli and environments. Even if the computational attention community
led to some models very different from what is known to happen in the brain,
the engineers’ creativity is impressive, and the results on real-life data begin to be
significant and the applications endless.

2.2.5 Attention in Cognitive Neuroscience

Cognitive neuroscience arrived with a whole set of new tools and methods. If
some of them were already used in cognitive psychology (e.g., EEG, eye-tracking
devices), others are new tools providing new insights on brain behavior:

• Psychophysiological methods: scalp recording of EEG (electroencephalography:
measures the large-scale electric activity of the neurons) and MEG (magnetoen-
cephalography: measures the magnetic fields produced by electrical currents in
the brain) which are complementary in terms of sensitivity on different brain
areas of interest.
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• Neuroimaging methods: functional MRI and PET scan images which both
measure the areas in the brain which have intense activity given a task that
the subject executes (visual, audio, etc.). Magnetic resonance spectroscopy can
provide information about specific neurotransmitters.

• Electrophysiological methods: single-cell recordings, which measure the electro-
physiological responses of a single neuron using a microelectrode system. While
this system is much more precise, it is also more invasive.

• Other methods: TMS and TDCS (transcranial magnetic stimulation and tran-
scranial direct current stimulation, which can be used to stimulate a region
of the brain and to measure the activity of specific brain circuits in humans)
and multielectrodes technology which allows the study of the activity of many
neurons simultaneously showing how different neuron populations interact and
collaborate.

Using those techniques two main families of theories have been constructed.
The first and most well-known model is the biased competition model of

Desimone and Duncan on [18]. The central idea is that at any given moment, there
is more information in the environment than can be processed. Relevant information
always competes with irrelevant information to influence behavior. Attention biases
this competition, increasing the influence of behaviorally relevant information and
decreasing the influence of irrelevant information. Desimone explicitly suggests a
physiologically plausible neural basis that mediates this competition for the visual
system. A receptive field of the neuron is a window to the outside world. The neuron
reacts only to stimuli in this window and is insensitive to stimulation in other areas.
The authors assume that the competition between stimuli takes place if more than
one stimulus shares the same receptive field. This approach is very interesting as
each neuron can be seen as a filter by itself and the neurons receptive field can
vary from small and precise (like in the primary visual cortex V1) to large enough
to focus on entire objects (like higher visual areas in the temporal and parietal
lobes). This basic idea suggests different domains of attention (location-based,
feature-based, object-based, attentional bottleneck) in a very natural and elegant
way. Moreover, a link is achieved with memory based on the notion of attentional
templates in working memory which enhance neuronal responses depending on
previously acquired data. This idea is embodied in the selective tuning model of
Tsotsos in 1995 [19].

The second family of models was developed by Laberge in the late 1990s
[20]. It is a structural model based on neuropsychological findings and data from
neuroimaging studies. Laberge conjectures that at least three brain regions are
concurrently involved in the control of attention: frontal areas, especially the
prefrontal cortex and thalamic nuclei, especially the pulvinar and posterior sites,
the posterior parietal cortex, and the interparietal sulcus. Laberge proposes that
these regions are necessary for attention, and all these regions presumably give rise
to attentional control together. While cognitive neuroscience brought a lot of new
methods and information to cognitive psychology, attention is still far from being
fully understood, and a lot of work is undergoing in the field.
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2.2.6 Attention in Computer Science

While cognitive neuroscience focuses on researching the biological nature of
attention, a different angle arose in the 1980s with the improvements in compu-
tational power. Building on the feature integration theory of Treisman and Gelade
[14], C. Koch and S. Ullman [21] proposed that the different visual features that
contribute to attentive selection of a stimulus (color, orientation, movement, etc.) are
combined into one single topographic map, called the “saliency map.” The saliency
map integrates the normalized information from the individual feature maps into
one global measure. Bottom-up saliency is determined by how different a stimulus
is from its surround at several scales. The saliency map provides the probability for
each region in the visual field to be attended. This saliency map concept is close to
that of the “master map” postulated in the feature integration theory by Treisman
and Gelade.

The first computational implementation of Koch and Ullman architecture was
achieved by Laurent Itti in his seminal work [22]. This very first computational
implementation of an attention system takes as an input of any image and outputs
of a saliency map of this image and also the winner-take-all-based mechanism,
simulating the eye fixations during scene analysis. From that point, hundreds of
models developed first for images, then for videos, and some for audio or even 3D
data very recently.

From the initial biologically inspired models, a number of models based on
mathematics, statistics, or information theory arrived on the “saliency market,”
making better and better predictions about human attention. These models are all
based on features extracted from the signal (most of the time low-level features
but not always), such as luminance, color, orientation, texture, motion, objects’
relative position, or even simply neighborhoods or patches from the signal. Once
those features are extracted, all the existing methods are essentially based on the
same principle: looking for “contrasted, rare, surprising, novel, worthy-to-learn,
less compressible, or information maximizing” areas. All those terms are actually
synonyms, and they all amount to searching for some unusual features in a given
context. This context can be local (typically center–surround spatial or temporal
contrasts) and global (whole image or very long temporal history), or it can be a
model of normality (the image average, the image frequency content). Very recently
learning is more and more involved in computing saliency: first it was mainly about
adjusting model coefficients given a precise task; now complex classifiers like deep
neural networks are beginning to be used to both extract the features from the signal
and train the most salient features based on ground truth obtained with eye-tracking
or mouse-tracking data.
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2.3 So : : : What Is Attention?

The transdisciplinary nature of attention naturally leads to a lot of different
definitions. Attention deals with the allocation of cognitive resources to priori-
tize incoming information in order to bring them to a conscious state, update
a scene model, update memory, and influence behavior. But several attention
mechanisms were highlighted especially from Cherry’s cocktail-party phenomenon.
A dichotomy appeared between divided attention and selective attention. From
there, clinical observations led to a model of attention divided into five different
“kinds” appeared. One can also talk about different kinds of attention that rely on
gaze or not or that use only image features vs. memory and emotions : : : While its
purpose seems to be the relation between the outer world and inner consciousness,
memory, and emotions, the clinical manifestation of attention tends to show that
there might be several attentions.

2.3.1 Overt Versus Covert: The Eye

Overt versus covert attention is a distinction that was noted at the very beginning
of psychological studies on attention. Overt attention is manifested by changes in
posture that prepare sensory receptors for expected input. Eye movements, head
movements, external ear (pinna) movements, changes in pupil size, and so forth are
all examples of overt attention. Covert attention does not induce eye movements
or other postural changes: it is the ability to catch (and thus be able to bring
to consciousness) regions of a scene which are not fixated by the eyes. The eye
achieves mainly three types of movements which are dues to the nonuniform
distribution of receptive cells (cones and rods) on the retina. The cones which
provide a high resolution and color are mainly concentrated in the middle of the
retina in a region called “fovea.” This means that in order to acquire a good spatial
resolution of an image, the eye must gaze towards this precise area to align it on the
fovea. This constraint led to mainly three types of eye movements:

1. Fixations: the gaze stays a minimal time period on approximately the same
spatial area. The eye gaze is never still. Even when gazing a specific location,
micro-saccades can be detected. The micro-saccades are very small movements
of the eye during area fixations.

2. Saccades: the eyes have a ballistic movement between two fixations. They
disengage from one fixation and they are very rapidly shifted to the second
fixation. Between the two fixations, no visual data is acquired.

3. Smooth pursuit: a smooth pursuit is like fixation on a moving object. The eye
will follow a moving object to maintain it in the fovea (central part of the retina).
During smooth pursuits, more rapid small corrections can be done to correct
position errors.
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Modelling overt attention attempts to predict human fixation locations and the
dynamical path of the eye (called the eye “scanpath”).

2.3.2 Serial Versus Parallel: The Cognitive Load

While focused, sustained, and selective attention deal with a serial processing
of information, alternating and divided attention deal with parallel processing of
several tasks. These distinctions show that attention can deal with information both
serially and in parallel. While there is a limit to the number of tasks which are
processed in parallel during divided attention (around five tasks), in the case of
preattentive processing, massively parallel computation can be done. Some notions
such as the “gist” [23] seem to be very fast and able to process the entire visual field
to get a first and very rough idea about the context of the environment. The five kinds
of attention follow a hierarchy based on the degree of focus, thus the cognitive load
which is needed to achieve the attentive task. This approach is sometimes called the
clinical model of attention:

1. Focused attention: respond to specific stimuli (focus on a precise task).
2. Sustained attention: maintain a consistent response during longer continuous

activity (stay attentive a long period of time and follow the same topic).
3. Selective attention: selectively maintain the cognitive resource on specific stimuli

(focus only on a given object while ignoring distractors).
4. Alternating attention: switch between multiple tasks (stop reading to watch

something).
5. Divided attention: deal simultaneously with multiple tasks (talking while

driving).

2.3.3 Bottom Up Versus Top Down: Memory and Actions

Another fundamental property of attention needs to be taken into account: attention
is a mix of two components referred to as bottom–up (or exogenous) and top-
down (or endogenous) components. The bottom-up component is reflex-based and is
driven by the acquired signal. Attention is attracted by the novelty of some features
in a given context (spatial local, a contrasted region; spatial global, a red dot, while
all the others are blue; temporal, a slow motion, while before motion was fast). Its
main purpose is to alert in the case of unexpected or rare situations, and it is tightly
related to survival. This first component of attention is the one which is the best
modeled in computer science as the signal features are objective cues which can be
easily extracted in a computational way.

The second component of attention (top-down) deals with individual subjective
feelings. It is related to memory, emotions, and individual goals. This component of
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attention is less easy to model by computers as it is more subjective and it requires
information about internal states, goals, a priori knowledge, or emotions. Top-down
attention can be itself divided into two subcomponents:

1. Goal/action related: Depending on an individual current goal, certain features or
locations are inhibited and others receive more weight. The same individual with
the same prior knowledge responds differently to the same stimuli when the task
in hand is different. This component is also called “volitional.”

2. Memory/emotion related: This process is related to experience and prior knowl-
edge (and the emotions related to them). In this category one can find the scene
context (experience from previously viewed scenes with similar spatial layouts
or similar motion behavior) or object recognition (you see your grandmother
first in the middle of other unknown people). This component of attention is
more “automatic,” it does not need an important cognitive load, and it can come
along with volitional attention. The other way around, the volitional top-down
attention, cannot inhibit the memory-related attention which will still work even
if a goal is present or not. More generally, bottom-up attention cannot be inhibited
if there is a strong and unusual signal acquired. If someone searches for his keys
(volitional top-down), he will not take care about a car passing by. But if he
hears a strange sound (bottom-up) and then recognizes a lion (memory-related
top-down attention), he will stop searching for the keys and run away. Volitional
top-down attention is able to inhibit the other components of attention only if
they are not very intense.

2.3.4 Attention Versus Attentions: A Summary

The study of attention is an accumulation of disciplines ranging from philosophy to
computer science and passing by psychology and neuroscience. Those disciplines
study sometimes different aspects or views of attention, which leads to a situation
where a single and precise definition of attention is simply not feasible.

To sum up the different approaches, attention is about:

• Eye/neck mechanics and outside world information acquisition: the attentional
“embodiment” leads to parallel and serial attention (overt vs. covert attention).

• Allocation of cognitive resources to important incoming information: the atten-
tional “filtering” is the first step towards data structuring (degree of focus and
clinical model of attention).

• Mutual influence on memory and emotions: passing of important information to
a conscious state and get feedback from memory and emotions (bottom-up and
memory-related top-down attention).

• Behavior update: react to novel situations but also manage the goals and actions
(bottom-up and volitional top-down attention).
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Attention plays a crucial role, partly conscious and partly unconscious, from
signal acquisition to action planning going through the main cognitive steps, or
maybe there are simply several attentions and not only one. At this point in time,
this question still has no final answer.

References

1. Greenberg, S. (2008). Things that undermine each other: Occasionalism, freedom, and
attention in Malebranche. In D. Garber & S. Nadler (Eds.), Oxford studies in early modern
philosophy (Vol. 4, pp. 113–140). Oxford: Clarendon.

2. Runes, D. D. (Ed.). (2001). The dictionary of philosophy. New York: Citadel.
3. Hamilton, W. (1859). Lectures on metaphysics and logic (Vol. 1). Boston: Gould and Lincoln.
4. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our

capacity for processing information. Psychological Review, 63(2), 81.
5. Wundt, W. M. (1904). Principles of physiological psychology (Vol. 1). London: Sonnenschein.
6. Goldstein, E. (2014). Cognitive psychology: Connecting mind, research and everyday experi-

ence. Stamford: Cengage Learning.
7. von Helmholtz, H. (2005). Treatise on physiological optics (Vol. 3). Courier Corporation:

Dover Phoenix Editions.
8. James, W. (1913). The principles of psychology (Vol. II). New York: Henry Holt and Co, vi,

708 pp.
9. Jensen, A. R., & Rohwer, W. D. (1966). The Stroop color-word test: A review. Acta

Psychologica, 25, 36–93.
10. Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two

ears. The Journal of the Acoustical Society of America, 25(5), 975–979.
11. Broadbent, D. E. (1957). A mechanical model for human attention and immediate memory.

Psychological Review, 64(3), 205.
12. Deutsch, J. A., & Deutsch, D. (1963). Attention: Some theoretical considerations. Psychologi-

cal Review, 70(1), 80.
13. Treisman, A. M. (1968). Contemporary theory and research in visual perception (pp. 258–

266). New York: Holt, Rinehart and Winston.
14. Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive

Psychology, 12(1), 97–136.
15. Gazzaniga, M. S. (Ed.). (1995). The cognitive neurosciences (pp. 615–624). Cambridge: The

MIT Press, xiv, 1447 pp.
16. Friedenberg, J., & Silverman, G. (2011). Cognitive science: An introduction to the study of

mind. London: Sage.
17. Pashler, H. E., & Sutherland, S. (1998). The psychology of attention (Vol. 15). Cambridge, MA:

MIT Press.
18. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual

Review of Neuroscience, 18(1), 193–222.
19. Tsotsos, J. K., Culhane, S. M., Wai, W. Y. K., Lai, Y., Davis, N., & Nuflo, F. (1995). Modeling

visual attention via selective tuning. Artificial Intelligence, 78(1), 507–545.
20. Laberge. (1999). Networks of attention. In M. S. Gazzaniga (Ed.), The cognitive neurosciences.

Cambridge, MA: MIT Press, 2004.
21. Koch, C., & Ullman, S. (1987). Shifts in selective visual attention: Towards the underlying

neural circuitry. In L. M. Vaina (Ed.), Matters of intelligence (pp. 115–141). Amsterdam:
Springer.



20 M. Mancas

22. Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid
scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11),
1254–1259.

23. Torralba, A., et al. (2006). Contextual guidance of eye movements and attention in real-world
scenes: The role of global features in object search. Psychological Review, 113(4), 766.



Chapter 3
How to Measure Attention?

Matei Mancas and Vincent P. Ferrera

Researchers who are interested in attention generally have one or more of the
following goals: (1) to identify sources of information in the environment that are
selected and prioritized by the observer, (2) to quantify the effect of attention on task
performance, and (3) to identify neural correlates of attention. When considering
methods to measure attention, it is important to distinguish between overt and covert
orienting mechanisms. Overt attention is expressed by movements of the body and
can be measured directly by determining the position and velocity of the relevant
effectors – primarily the eyes, head, and hands. Covert orienting refers to the ability
to direct attention without body movement and is primarily measured by differences
in task performance (e.g., reaction time) that cannot be attributed to changes in the
external stimulus.

In this chapter, we will focus on quantitative techniques that provide fine-
grain spatial and temporal information about attentive responses at a macroscale.
We do not discuss the many psychophysical paradigms that have been used to
infer attention based on the speed and accuracy of observer judgments. Micro-
measurements of single neuron or several neurons using microelectrodes are not
described here. However, in the Chap. 6, the use of microelectrodes to measure
single neuron responses is described.

At a macroscale, the attentive response can be either measured directly in the
brain or indirectly through participants’ behavior. Only one of the techniques that
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are described here is based on participant active feedback: mouse tracking. This is
because the mouse tracking feedback is very close to eye tracking, and this is an
emerging approach of interest for the future: it requires less time and less money
to be conducted and provides more data than classical eye tracking. All the other
methods are direct or indirect and provide objective measures of attention. In a first
part, the indirect methods are described, while direct methods are mainly dealt with
in a second stage.

3.1 Indirect Measures of Attention

3.1.1 Eye Tracking: A Gold Standard for Overt Attention

If “the eyes are windows to the soul”, eye tracking consists of taking a look
to it. Indeed, eye tracking is probably the most widely used tool for measuring
visual attention. Although attention can be directed without moving the eyes, it is
generally the case that humans look where they attend, and vice versa. There is
ample neurophysiological support for this proposition as several structures that are
involved in attention – in prefrontal cortex, parietal cortex, and the midbrain – are
also involved in guiding voluntary eye movements.

Eye trackers are devices that determine the orientation of the eye relative to the
head (eye in head) or to an external frame of reference (eye in space.) If head
position is known, then the orbital position of the eye (eye in head) is sufficient
to determine gaze direction (eye in space.)

Eye-tracking technology has evolved over time. Different technologies are
described in [1]. One of the earliest techniques to be widely used is EOG
(electrooculography). The eye itself generates an electric dipole oriented along the
corneo-retinal axis. This potential can be measured by placing electrodes on the skin
around the eye. From these electrodes, the eye orientation relative to the head can
be reconstructed. To determine the orientation of the eye in space, either the head
must be attached to a fixed system (chin rest or bite bar) or a head tracking system
must be used in addition to the EOG. EOG signals are noisy and confounded by
skin conductance or the activity of facial muscles. Reliable measurements typically
require averaging over trials.

A more precise method was developed in the 1960s [2, 3] using the scleral search
coil. Here, a loop of wire is embedded in an annular contact lens placed around the
cornea. A small electric current is passed through the wire, generating a magnetic
dipole which orientation moves with the eye. The subject sits with their head inside
an oscillating magnetic field generated by a pair of large (roughly 0.6–0.9 ms in
diameter) field coils. Electronics are used to sense the orientation of the scleral
coil and hence the orientation of the eye. This system measures eye orientation
relative to the field coils, which are fixed in space. The head generally needs to be
stabilized to avoid confusing the rotation of the eye with translations due to head
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movement. A separate head coil can be used to record head movement. Binocular
search coil systems allow experimenters to reconstruct vergence angle. Torsional
eye movements can also be recorded. Scleral search coil systems provide continuous
temporal resolution, limited only by front end filtering and the sampling rate of
the recording device use to convert the analog signal to digital samples. Spatial
resolution is typically 0.1ı of visual angle or better, and noise is extremely low.
Contact lens search coils can only be worn for a short time (<30 min) as they cause
an increase in intraocular pressure during the time that they are in contact with the
sclera. This method should be used only under the supervision of a trained clinical
ophthalmologist.

The technique that most of the current commercial and research solutions use
is video-oculography (VOG), based on a video camera to detect the pupil and
corneal reflection. An infrared light source illuminates the eyes. The light is either
reflected (bright pupil) or absorbed (dark pupil) by the pupil, and image processing
software (usually embedded in dedicated hardware) is used to detect the edges of
the pupil either by filling in or fitting an ellipse to the edge of the iris (Fig. 3.1). This
processing also provides an estimate of pupil size. Crosshairs identify the horizontal
and vertical position of the center of the pupil. Some light is also reflected from
the cornea and is called the corneal reflection (CR). The position of the pupil and
corneal reflection is sensitive to head movement. However, the difference (pupil –
CR) discounts the influence of head motion and gives a robust estimate of eye
orientation in space. Nevertheless, for precise measurements, it is more appropriate
to stabilize the head with a chin rest or bite bar.

It must be kept in mind that VOG trackers operate on a two-dimensional image
of the eye. To obtain eye orientation, the appropriate transformation must be done
considering the geometry of the camera relative to the eye and the projection of a
3D sphere onto a 2D image. Alternatively, a look-up table matching eye position

Fig. 3.1 The relative position of the pupil (arrow 2) and the corneal reflection (arrow 1) are used
to compute the gaze direction
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to tracker output can be generated by having subjects fixate on targets at known
positions. A grid of at least nine positions should be used for this calibration. VOG
systems work best when the optics of the camera are aligned with the optical axis of
the eye when the subject is looking straight ahead (primary position). An infrared
or “hot” mirror placed in front of the eye can be used to achieve this alignment. The
infrared mirror is transparent to visible light. This way, the subject can directly view
the visual display or scene through the mirror, while the camera is placed off to the
side.

The temporal resolution of VOG systems is limited by the frame rate of the
camera and the speed of the image processing algorithm that identifies the pupil
and corneal reflection. Commercially available systems range from 30 Hz to over
1000 Hz. Spatial resolution is limited by the resolution of the camera. Typically,
this is enhanced by using telephoto and close-up lenses to magnify the image of the
eye. Many systems provide spatial resolution comparable to search coils (0.1ı of
visual angle or less). Drawbacks of VOG systems include sensitivity to stray light,
which may cause large apparent changes in eye position. These systems can also
be sensitive to eye color and might not work with subjects wearing glasses due to
uncontrolled reflection. Furthermore, these systems are unable to function when the
subject blinks and typically set their output to a default value whenever this happens.

While the fundamental technique is most of the time the same, the embodiment of
the eye tracker can be very different. The main eye-tracking manufacturers propose
the system under different forms [4–6].

Some eye trackers are directly incorporated into the screen (Fig. 3.2) which is
used to present the data. This setup has the advantage of a very short calibration, but
it can only be used with its own screen.

Fig. 3.2 Example of
eye-tracking device included
in a high-resolution screen
(here a Tobii system)
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Fig. 3.3 Binocular eye-tracking system independent from the screen (here a Facelab system)

Fig. 3.4 Eye tracking embedded in wireless (here a SMI system)

Separate cameras need some additional calibration time, but the tests can be done
on any screen and even in real scenes by using a scene camera to which the system
needs to be calibrated (Fig. 3.3).

The eye-tracking glasses (Fig. 3.4) can be used in very ecological setups, even
outside on real-life scenes. An issue of those systems is that it is not easy to
aggregate the data from several viewers as the scene which is viewed is not the
same. The aggregation needs a nontrivial registration of the scenes which might
imply to install markers before the experiment.

Cheap devices (Fig. 3.5) come to market, and quite precise cameras are sold less
than 100 EUR [7] which is a fraction of the price of a professional eye tracker. An
issue with these eye trackers is that they are packaged with minimal software and
it is often difficult to synchronize the stimuli and the related eye movement data.
These eye trackers are mostly used as real-time human-machine interaction devices
in gaming applications. Nevertheless, there are open-source projects which allow
recording of data from low-cost eye trackers like Ogama [8], but mainly on still
images and not moving stimuli.
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Fig. 3.5 Low-cost eye-tracking device here attached to a tablet (here the Eye-tribe system)

Finally, webcam-based software is freely available [9]. They are able to provide
good quality data and to be used remotely with existing webcams [10].

Eye movement behavior has a rich variety of features that are indicative of
attention. In primates, voluntary eye movements consist of saccades (rapid changes
in position with peak velocity >>100ı/s), vergence (changes in the alignment of the
two eyes), and smooth pursuit (slow movements, generally under 100ı/s, that track
small moving targets). Between these movements are periods of fixation, though
microscopic movements (drift, tremor, and microsaccades) may still occur even
when the eye is relatively still. Fixations can be detected using clustering algorithms
[11] or simply by using a double threshold: a time threshold and a spatial threshold
to be sure that the gaze focused a small region. Fixation duration can be a measure
of attention [12]. Fixations can be used to generate scanpaths (Fig. 3.6) or heatmaps
(Fig. 3.7). A heatmap is a low-pass filtered accumulation of scan paths, and it
indicates the average attention attraction of each pixel. Usually for a result to be
significant, there is a need of a minimum of ten participants per stimulus.

During fixations, subjects often make very small eye movements called microsac-
cades [13, 47]. These are saccades with amplitudes of less than 2ı of visual angle.
Spontaneous microsaccades are often correlated with attention [14].

When viewing static scenes at a fixed depth, the most common eye movements
are saccades, which normally occur roughly 2–3 times/s. The onset of a saccade can
be detected to within a few milliseconds using algorithms based on eye velocity or
acceleration. The latency of saccades relative to the sudden appearance of a target
is generally 150–300 ms. Variations in saccade latency may be related to attention
[15]. Attention may alter saccade direction [16], or may result in curved saccade
trajectories [17].



3 How to Measure Attention? 27

Fig. 3.6 Example of eye scan path provided by eye-tracking systems

Fig. 3.7 Example of attention heatmap averaged over the participants
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3.1.2 Mouse Tracking: The Low-Cost Eye Tracking

If eye tracking is the most reliable ground truth in the study of overt visual attention,
it has several drawbacks in addition to the high cost of the professional devices:

• It needs minimal practice for the operator.
• The user head might need to be stabilized.
• The calibration process might be long.
• The infrared light pointing the eyes might induce eye fatigue especially during

long tests.
• The system might work much less well depending on the user eye color or if

she/he wears glasses.

A much simpler way to acquire data about visual attention may be the use of
mouse tracking. The mouse can be precisely followed while an Internet browser is
open by using a client-side language like JavaScript. The mouse precise position on
the screen can be either captured using homemade code or existing libraries like [18,
19]. This technique may appear as not very reliable; however, its accuracy depends
on the context of the experiment.

The first case is the one where the participant is unaware of the fact that the mouse
motion is recorded. In this case, mouse motion is not accurate enough. Indeed, there
is no automatic following of the eye gaze by the hand even if a tendency of the hand
(and consequently the mouse) to follow the gaze is visible. Sometimes, the mouse
is only used to scroll a page, and the eyes are very far from the mouse pointer, for
example.

The second case is the one where the participant is aware of the experiment and
has a task to follow. This can go from a simple “point the mouse where you look”
instruction as in [20] where mouse tracking was used for the first time for saliency
evaluation to more recent approaches as the one of SALICON in [21] where multi-
resolution interactive cursor mimicking the fovea resolution is used to encourage
people to point the mouse curser where they look. Indeed, as the image resolution is
decreased far from the cursor, people tend to point at the locations they are interested
in to have a full-resolution view of those regions.

In this second case where the participant is aware about his mouse motion
tracking, the results of mouse tracking are very close to eye tracking as shown by
Egner and Scheier (Fig. 3.8) on their website [22]. However, small or unconscious
eye movements may be missed.

The main advantages of mouse tracking are low price and the complete trans-
parency for the users (they just move a mouse pointer). The output can be the same
as in eye tracking. It can either be a heatmap (Fig. 3.9), but also scan paths, raw
data, etc.
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Fig. 3.8 Eye-tracking and mouse-tracking correlation (Adapted from Ref. [13])

Fig. 3.9 Left: initial presented image. Right: mouse-tracking heatmap after averaging across
participants

However, mouse tracking has also several drawbacks:

• The first place where the mouse pointer is located is quite important as the
observer may look for the pointer. Should it be located outside the image or in
the center of the image? Ideally, the pointer should initially appear randomly in
the image to avoid introducing a bias of the initial position of the pointer.

• Mouse tracking only highlights areas that are consciously important for the
observer. This is more a theoretical drawback than a practical one as one should
try to predict the overtly interesting regions.

• The pointer hides the image region it overlaps; thus the pointer position is never
on the important areas but very close to them. This drawback may be partially
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eliminated by the low-pass filter step performed after the mean of the whole
observer set. It is also possible to make a transparent pointer as in [21].

Mouse tracking was neglected with few publications since [20] and somehow
considered as a “poor man’s eye tracking.” However, the rise of learning-based
computational models using deep neural networks, which need huge datasets to
provide correct results, has changed the situation. Mouse tracking can be done
online by a virtually unlimited number of participants allowing the generation of
big datasets of mouse tracking data. As eye tracking can only provide datasets with
a limited number of stimuli and users per stimulus, even if they are more precise,
the development of mouse tracking has certain advantages that complement eye
tracking. Moreover, the combined use of eye and hand tracking can also provide
insight into the deployment of attention in natural tasks [22].

3.2 Direct Measures of Attention

3.2.1 EEG: Get the Electric Activity from the Brain

The EEG technique (electroencephalography) uses electrodes placed on the partic-
ipant’s scalp. Those electrodes amplify the electrical potentials originating in the
brain. An issue of this technique is that the skull and scalp attenuate those electrical
signals.

While classical research setups have a high number of electrodes (Fig. 3.10) with
manufacturers like [23, 24], some low-cost commercial systems like Emotiv [25]
are more compact and easier to install and calibrate (Fig. 3.11). While the latter are
easier to use, they are obviously less precise.

EEG studies provided interesting results as the modulation of the gamma band
[26] during selective visual attention. Other papers [27] also provide cues about the
alpha band modification during attentional shifts.

One very important cue about attention which can be measured using EEG is the
P300 event-related potential (ERP).

The work of Näätänen et al. [28] in 1978 on auditory attention provided evidence
that the evoked potential has an enhanced negative response when the subject was
presented with rare stimuli compared to frequent ones. This negative component is
called the mismatch negativity (MMN), and it was observed in several experiments.
The MMN occurs 100–200 ms after the stimulus, a time that is perfectly in the range
of the preattentive attention phase.

Depending on the experiments, different auditory features were isolated: audio
frequency [29], audio intensity [30–32], spatial origin [33], duration [34], and
phonetic changes [35]. All these features were not salient alone, but saliency was
induced by the rarity of each one of these features.

The study of the MMN signal for visual attention has been investigated several
times in conjunction with audio attention [36–38]. But a few experiments were made
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Fig. 3.10 Example of a
research EEG device with a
lot of electrodes (1), screen
for the participant to visualize
stimuli and tasks (2), screen
for the operator to visualize
the signals (3)

Fig. 3.11 A low-cost commercial EEG (here the Emotiv EEG system)

using only visual stimuli. Crottaz-Herbette in her thesis [39] conducted a visual
experiment in the same conditions as for auditory MMN, and she has shown a high
increase of the negativity of the evoked potential when seeing rare stimuli compared
with the evoked potential when seeing frequent stimuli. The visual MMN occurs
from 120 to 200 ms after the stimulus. The 200 ms frontier approximately matches
the 200 ms needed to initiate a first eye movement, thus to engage the “attentive”
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serial attentional mechanism. As for the audio MMN detection, no specific task was
asked to the subject who only had to hear the stimuli; this MMN component is thus
preattentive, unconscious, and automatic. This study and others [40] also suggest
the presence of a MMN response for the somatosensory modality (touch, taste, etc.).
The MMN seems to be a universal component of the brain response reflecting an
unconscious preattentive process. Any unknown stimulus (novel, rare) will be very
salient as measured by P300. Rarity or novelty is a major driver of the attentional
mechanism for visual, auditory, and all the other senses.

3.2.2 Functional Imaging: fMRI

MRI stands for magnetic resonance imaging. The main idea behind this kind
of imaging system is that human body is mainly made of water which is itself
composed of hydrogen atoms that have a single proton. Those protons have a
magnetic moment (spin) which is randomly oriented most of the time. The MRI
device uses a very high magnetic field (B0) to align the magnetic moment of a small
fraction of protons in the patient’s body. Radio frequency (RF) pulses are used to
drive the proton spins into a plane orthogonal to B0. As the spins reorient or “relax”
parallel to the orientation of B0, RF emissions are produced. Those emissions are
captured, and an inverse Fourier transform is used to construct an image where clear
gray levels mean that there are more protons; therefore, more water in the body parts
(like in fat) and a darker gray levels reveal regions with less water (like bones).

MRI was initially an anatomical imaging technique, but it was soon discovered
that the susceptibility artifact created by iron in the blood could be used to measure
blood volume and oxygenation. Since blood volume and oxygenation respond to
the metabolic demands of neural tissue, they can be used as a proxy for neuronal
activity. In that way, when a region in the brain, for example, is activated, then
the blood may have an increased flow. The hemodynamic response has multiple
components that bear a complicated relationship to the metabolic and electrical
activity of the neural tissue. Nevertheless, fMRI imaging is capable of detecting
the areas in the brain which are more or less active and has become a great tool for
neuroscientists to visualize which area in the brain responds during an attention-
related patient exercise (Fig. 3.12).

3.2.3 Functional Imaging: MEG

MEG stands for magnetoencephalography. The idea is simple: while the EEG
detects the electrical field which is heavily distorted when traversing the skull
and skin, MEG detects the magnetic field induced by this electrical activity. The
magnetic field has the advantage of not being influenced by the skin or the skull.
While the idea is simple, in practice the magnetic field is very weak which makes
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Fig. 3.12 Example of fMRI output: red active regions superimposed on an anatomical MRI
sagittal image (Adapted from Ref. [41])

it very difficult to measure. This is why the MEG imaging is relatively new:
the technological advances that allow MEG to be effective are based on SQUID
(superconducting quantum interference devices). The magnetic field of the brain
can induce electricity in a superconducting device which can be precisely measured.
Modern devices have spatial resolutions of 2 mm and temporal resolutions of some
milliseconds. Moreover, MEG images can be superimposed on MRI anatomic
images which help to rapidly localize the main active areas. Finally, participants in
MEG imaging can have an upright seated position (Fig. 3.13) which is more natural
during testing than the horizontal position of fMRI or PET scan.

3.2.4 Functional Imaging: PET Scan

As for fMRI, PET scanning (positron electron tomography) is also a functional
imaging tool, and it can thus produce also a higher signal in case of brain activity.
The main idea of PET scan is that a mildly radioactive substance which is injected
to the patient releases positrons (antielectrons which are particles of the same
properties as an electron but with positive charges). Those positrons will almost
instantaneously meet an electron and have a very exo-energetic reaction (called
annihilation). This annihilation will transform the whole mass of the two particles
into energy and release gamma photons in two opposite directions which will be
detected by the scanner sensors. The substance which is injected will go and fixate
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Fig. 3.13 A participant set
into the MEG device and a
visual experiment (Adapted
from Ref. [42])

Fig. 3.14 Example of output in case of a repetitive visual pattern (flickering). The difference let
us see the areas activated by the stimulus (Adapted from Ref. [43])

on the areas of the brain which are the most active, which means that those areas
will exhibit a high number of annihilations. As for fMRI, the PET scan let the
neuroscientists know which areas of the brain are activated when the patient is
performing an attention task. Figure 3.14 shows an example of the use of PET scan
to see the influence of a flickering visual pattern in the brain.
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3.2.5 Complementary Techniques to Manipulate Brain
Activity: TMS or tDCS

TMS stands for transcranial magnetic stimulation, and it uses electromagnetic
induction to stimulate a precise region of cortex. A current passing through a coil
of wire generates a magnetic field. Rapid variations of this magnetic field induce
a transient electric field which in turn influences the membrane potential of nearby
neurons.

Beginning with 1980s, TMS has been used first for clinical diagnostic and then in
psychiatric therapy. It is now also used in conjunction with other imaging modalities
such as fMRI, PET scans, and even with EEG devices.

Indeed, imaging techniques allow to find the active areas of the brain for a given
task. However, they cannot say which part of those regions and when exactly they
are really necessary to solve the task. By interfering with the normal functioning
of a brain area, TMS, which has a very good spatiotemporal resolution, provides
cues about when and where exactly a brain area is making its critical contribution
to behavior.

Figure 3.15 shows a TMS which influences EEG signals (top-right), fMRI
images (bottom-left), and PET scan (bottom-right).

Fig. 3.15 Top left: a TMS setup. Top right: EEG modification following a TMS. Bottom left: fMRI
images response after the TMS. Bottom right: PET scan response after the TMS (Adapted from
Ref. [44])
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Transcranial direct current stimulation (tDCS) is another method which aims in
providing neurostimulation. The difference with the TMS is that it uses constant
current delivered to the brain area of interest via electrodes on the scalp.

3.2.6 Functional Imaging and Attention

Positron emission tomography (PET) and functional magnetic resonance imaging
(fMRI) have been extensively used to explore the functional neuroanatomy of
cognitive functions. MEG imaging becomes to be used in the field as in [45]. In
[46], a review of 275 PET and fMRI studies of attention type, perception, visual
attention, memory, language, etc. is described. Depending on the setup and task, a
large variety of brain regions seem to be involved in attention and related functions
(language, memory). This findings support again the idea that at the brain level,
there are several attentions and their activity is largely distributed across almost all
the brain. Attention goes from low-level to high-level processing, from reflexes to
memory and emotions, and across all the human senses.

3.3 Summary

• Eye tracking remains a gold standard mainly in engineering and computer
science even if it is used also in psychology.

• Mouse tracking can be more and more used with the need to build very large
stimuli datasets to model attention in computer science.

• In neuroscience, fMRI has the best spatial resolution and EEG/ERP and MEG
the best temporal resolution.

• fMRI has become one of the most used methods in neuroscience.
• The use of TMS or tDCS in conjunction with other imaging techniques provides

precise cues about when and where exactly a brain area is making its critical
contribution to behavior.
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Chapter 4
Where: Human Attention Networks and Their
Dysfunctions After Brain Damage

Tal Seidel Malkinson and Paolo Bartolomeo

4.1 Taxonomies of Human Attention

To behave in a coherent way in a changing environment, we need to select stimuli
appropriate to our goals. On the other hand, because of capacity limitations, we must
be capable of ignoring other, less important objects, which also compete to become
the focus of our subsequent behavior. Neural mechanisms of attention resolve this
competition by integrating the information relative to the agent’s goals and to
the salience of the sensorial stimuli [1]. Thus, attention to external information
can help the agent select locations in space, points in time, or modality-specific
input [2]. Other attention processes select, modulate, and maintain internally
generated information, such as task rules, responses, long-term memory, or working
memory [2].
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Attention and its neural correlates are not unitary phenomena; they can be
better understood as a heterogeneous, if interacting, set of processes. According
to traditional theories, attention is broadly divided into two domains: a selectivity
aspect and an intensity aspect [3]. On the other hand, Parasuraman [4] identified
at least three independent but interacting components of attention: (1) selection,
that is, mechanisms determining more extensive processing of some input rather
than others; (2) vigilance, the capacity of sustaining attention over time; and (3)
control, the ability of planning and coordinating different activities (Table 4.1).
Some authors have distinguished between vigilance and sustained attention as
being two extremes of a continuum within the intensity domain. Thus, vigilance
has been considered “a state of readiness to detect and respond to small changes
occurring at random time intervals in the environment” [7] and is studied primarily
through long, tedious tasks – vigils – requiring individuals to continuously monitor
the environment for rare events, e.g., the detection of an infrequent blip on a radar
screen. On the other hand, sustained attention would intervene when the flow of
information is more rapid, requiring continuous active processing and monitoring
[8]. For example, an interpreter giving an “online” translation of a speech would
be considered to be actively sustaining attention to the words of the speaker. In
our view, both ends of this intensity spectrum require holding current goal or task

Table 4.1 A schematic taxonomy of attention processes and of their anatomical bases

Type of attention Function Anatomy

Spatial selective
attention

Orienting of attention to
spatial locations and to
objects in space

Bilateral DAN (superior parietal lobule,
intraparietal sulcus, and dorsolateral
prefrontal cortex)

Stimulus-driven
attentional capture

Processing of unexpected
events

Right-hemisphere VAN (inferior parietal
lobule, temporoparietal junction, and
ventrolateral prefrontal cortex)

Sustained (vigilant)
attention or tonic
alertness

Rapid responses to
external stimuli
(independent of their
spatial position)

Right-hemisphere VAN, thalamic and
brain stem nuclei (esp. locus coeruleus),
anterior cingulate cortex, anterior insula

Phasic alertness Alertness externally
generated by a warning
signal

Vigilant attention networks C left
prefrontal cortex and thalamus

Arousal General wakefulness and
responsiveness

Diffuse cortical projections from brain
stem nuclei (basal forebrain, locus
coeruleus, medial forebrain bundle,
dorsal raphe nucleus)

Executive control Monitoring and conflict
solving

Dorsal anterior cingulate cortex,
dorsolateral prefrontal cortex, right
ventrolateral anterior cingulate cortex

Note the functional and neural overlap between attentional capture (exogenous attention) and
sustained (vigilant) attention. DAN dorsal attention network, and VAN ventral attention network
[5]. From Bartolomeo [6]. See also Figs. 4.1 and 4.3 for an illustration of the anatomy of these
brain regions.
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Fig. 4.1 (a) An illustration of the midsagittal surface of the brain, depicting the thalamus
(blue), the anterior cingulate cortex (purple), the brain stem (yellow), the locus coeruleus and its
projections (green), the raphe nuclei and their projections (orange), and the basal forebrain and its
projections. (b) An illustration of the lateral view of the brain, depicting the occipital lobe (blue),
the parietal lobe (yellow), the temporal lobe (green), the frontal lobe (purple), and the prefrontal
cortex (magenta) within it

instructions in mind in order to monitor incoming information from the environment
and produce (motor) outputs that satisfy the goal/task demands. In this sense, both
vigilance and sustained attention require processes that are often termed as being
“top-down” in current parlance [9].

In sum, attention must allow an organism to successfully cope with a contin-
uously changing external and internal environment while maintaining its goals.
This flexibility calls for mechanisms that (a) allow for the processing of novel,
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unexpected events that could be either advantageous or dangerous, in order to
respond appropriately with either approaching or avoidance behavior, and (b)
allow for the maintenance of finalized behavior despite distracting events [10]. For
example, attention can be directed at an object in space either in a relatively reflexive
way (e.g., when a honking car attracts the attention of a pedestrian) or in a more
controlled mode (e.g., when the pedestrian monitors the traffic light waiting for the
“go” signal to appear). It is thereby plausible that different attention processes serve
these two partially conflicting goals [11]. A traditional distinction in experimental
psychology refers to more exogenous (or stimulus-dependent, bottom-up) processes
for orienting attention to novel events [12, 13], as opposed to more endogenous
(or strategy-driven, top-down) orienting processes, which would be responsible for
directing the organism’s attention toward relevant targets despite the presence of
distractors in the environment [14].

4.1.1 Spatial Selective Attention

The concept of spatial selective attention refers operationally to the advantage in
speed and accuracy of processing for objects lying in attended regions of space as
compared to objects located in non-attended regions [15].

When several events compete for limited processing capacity and control of
behavior, attention selection may resolve the competition. In their influential
neurocognitive model of selective attention, Desimone and Duncan [16] proposed
that competition is biased toward some stimuli over others by neural attention
processes on the basis of the organisms’ goals and of the sensory properties of the
objects, thereby giving priority to some objects over others.

A subset of these selective attention processes deals with objects in space. In
ecological settings outside the laboratory, agents usually orient toward important
stimuli by turning their gaze, head, and trunk toward the spatial location of the
attended stimulus [17]. This is done in order to align the stimulus with the part
of the sensory surface with highest resolution (e.g., the retinal fovea). This allows
further perceptual processing of the detected stimulus, for example, its classification
as a useful or as a dangerous object. Even very simple artificial organisms display
orienting behavior when their processing resources are insufficient to process the
whole visual scene in parallel [18]. However, attention can also be oriented in space
without eye movements, via so-called “covert” orienting [15].

4.1.2 Cued Detection Tasks

Posner and his co-workers developed a manual response time (RT) paradigm to
study the covert orienting of attention. Subjects are presented with three horizontally
arranged boxes (Fig. 4.2). They fixate the central box and respond by pressing a
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Fig. 4.2 Frontoparietal attention networks in the monkey and in the human brain. SLF superior
longitudinal fasciculus, DAN dorsal attention network (intraparietal sulcus/superior parietal lobule
and frontal eye field/dorsolateral prefrontal cortex), VAN ventral attention network (temporopari-
etal junction, TPJ, and inferior/middle frontal gyri). The DAN is often considered to be bilateral
and symmetric; the VAN is lateralized to the right hemisphere (From Bartolomeo et al. [19])

key to a target (an asterisk) appearing in one of two lateral boxes. The target is
preceded by a cue indicating one of the two lateral boxes. Cues can be either central
(an arrow or another symbol presented in the central box) or peripheral (a brief
brightening of one peripheral box). Valid cues correctly predict the box in which
the target will appear, whereas invalid cues indicate the wrong box. Normal subjects
usually show a cue validity effect consisting in faster RTs and increased accuracy for
valid cue-target trials than for invalid trials (but see the phenomenon of inhibition of
return described below). This suggests that the cue prompts an orienting of attention
toward the cued location, which speeds up the processing of targets appearing in that
region and slows down responses to targets appearing in other locations.

In this paradigm, it is often the case that a large majority (e.g., 80 %) of cues
are valid; in this case, cues are said to be informative of the future position of the
target. Alternatively, cues may be non-informative, when targets can appear with
equal probabilities in the cued or in the uncued location. Peripheral non-informative
cues attract attention automatically or exogenously. This exogenous attention shift
(revealed by a cue validity effect) is typically observed only for short stimulus-onset
asynchronies (SOAs) between cue and target. For SOAs longer than 300 ms, uncued
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targets evoke faster responses than cued targets [20–22]. This phenomenon is
known as inhibition of return (IOR) [23, 24] and is often interpreted as reflecting
a mechanism which promotes the exploration of the visual scene by inhibiting
repeated orientations toward the same locations (but see [21, 25, 26]). Exogenous,
or stimulus-dependent, and endogenous, or strategy-driven, mechanisms of attention
orienting are thus qualitatively different, though highly interactive, processes [11].
An interesting property of exogenous orienting of attention is that it does not
remain focused on the stimulated spatial position, but tends to spread to the whole
perceptual object presented in that region [27, 28].

4.2 Networks of Human Attention

4.2.1 Sustaining Attention in Time

An important component of attention, which does not necessarily involve selection,
is the capacity to rapidly respond to external stimuli, whether or not accompanied
by distractors. This aspect is often referred to as alertness, vigilant or sustained
attention, with a typical time span measured in seconds [29].

The alerting system is believed to produce a general alert state that would be
responsible for spreading attention over a broad area of space and is believed to be
modulated by the locus coeruleus (Fig. 4.1a) [30], a collection of neurons in the
pons (part of the brain stem) that secrete the neurotransmitter norepinephrine and
whose axons project throughout nearly the entire central nervous system. Release of
norepinephrine increases alertness. A higher alert state allows for faster processing
of information, independently of its spatial location [31]. We can voluntarily
maintain our level of alertness over time, a function known as sustained attention,
which involves the right prefrontal cortex (PFC, Fig. 4.1b); [32], the inferior parietal
lobule (IPL), and the subcortical structures [33]. Right frontoparietal systems
(Fig. 4.1b) can be important for modulating alertness, especially when alertness is
to be generated in the absence of suitable external stimuli [29]. Thus, brain networks
important for sustained attention include the PFC and PPC (posterior parietal cortex)
primarily in the right hemisphere [34], with additional contribution from thalamic
and brain stem nuclei [35].

A “salience networks” comprising the dorsal anterior cingulate cortex (dACC;
Fig. 4.1a) in the medial wall of the frontal lobe, the anterior insula, the thalamus,
and the anterior PFC may be important to maintain tonic (sustained) alertness and
facilitate stimulus detection [36]. The ACC might thus constitute an important
interface between the right frontoparietal cortical system and subcortical arousal
mechanisms [29].

In particular, the ACC could assume a key role in the modulation of alertness
depending on task demands [35, 37–39]. Neuroimaging studies (review in [40])
showed that task difficulty was strongly correlated with activation peaks, especially
in the supracallosal part of the ACC. More difficult tasks possibly call for an



4 Where: Human Attention Networks and Their Dysfunctions After Brain Damage 45

increased level of alertness and a higher activation of the brain stem catecholaminer-
gic (i.e., norepinephrine and dopamine) systems. Consistent with these notions, the
ACC is densely connected to the noradrenergic [41] and cholinergic [42] subcortical
systems involved in the regulation of alertness (see also [43]).

The alertness level can also be modulated experimentally by presenting warning
signals that carry information about when, but not where, targets will appear. This
is so-called phasic alertness. In addition to the (mainly right-lateralized) neural
structures involved in sustained attention, phasic alertness is associated with activity
in the left PFC and thalamus [33].

Although sometimes used interchangeably with alertness, arousal should be
referred to general wakefulness and responsiveness and related to slow circadian
rhythms. Of particular importance for arousal are systems projecting to the cortex
from the brain stem [44], the cholinergic basal forebrain, the noradrenergic locus
coeruleus (also implicated in alertness [45]), the dopaminergic medial forebrain
bundle, and the serotoninergic dorsal raphe nucleus [29].

4.2.2 Orienting and Reorienting to Objects in Space

Today, we know a fair amount of detailed information about the anatomy, functions,
dynamics, and pathological dysfunctions of the brain networks that subserve the
orienting of gaze and attention in the human brain. Here, we describe some of the
observations using neurophysiological techniques in the monkey or functional mag-
netic resonance imaging (fMRI) in humans to pinpoint the anatomical structures and
networks which are activated during the performance of attention-related functions.
Important components of these networks include the dorsolateral prefrontal cortex
(PFC) and the posterior parietal cortex (PPC) (Fig. 4.3).

Physiological studies indicate that these two structures show interdependence
of neural activity and thus compose a functional frontoparietal networks. In the
monkey, analogous PPC and PFC areas show coordinated activity when the animal
selects a visual stimulus as a saccade target [46].

Functional MRI studies in healthy human participants (reviewed by [5]) indicate
the existence of multiple frontoparietal networks for spatial attention (Fig. 4.3, right
panel).

A dorsal attention network (DAN), composed of the intraparietal sulcus
(IPS)/superior parietal lobule and the frontal eye field (FEF)/dorsolateral PFC,
shows increased blood oxygenation level-dependent (BOLD) responses during the
orienting period. Functional MRI also demonstrated a ventral attention network
(VAN), which includes the temporoparietal junction (TPJ) and the ventral PFC
(inferior and middle frontal gyri), and shows increased BOLD responses when
participants have to respond to targets presented in unexpected locations.

Thus, the VAN is considered important for detecting unexpected but behaviorally
relevant events. Importantly, the DAN is considered to be bilateral and symmetric,
whereas the VAN is strongly lateralized to the right hemisphere. According to
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Fig. 4.3 (a) Illustration of a typical Posner paradigm (From Ref. [11]). Targets can be preceded
by either peripheral cues (left) or central cues (right). (b) Typical response time results (in
milliseconds) observed when peripheral non-predictive cues precede targets at different SOAs
(stimulus-onset asynchronies, the time intervals between the onset of the cue and the onset of
the target). Reaction times are faster for valid versus invalid trials at short SOAs, but the effect
reverses at SOAs longer than 300 ms, demonstrating an IOR effect. (c) Typical response time
results observed when central predictive cues precede targets at different SOAs. Reaction times
are faster for valid versus invalid trials, and the effect is sustained even at the longest SOA. ISI
(interstimulus interval) is the time interval between the end of the cue and the beginning of the
target (Reproduced from Chica et al. [11]. © 2013, with permission from Elsevier)

Singh-Curry and Husain [9], the VAN is not only dedicated to salience detection
in a stimulus-driven way but is also responsible for maintaining attention on goals
or task demands, which is a top-down process. In support of this proposal, functional
MRI has suggested a role for the inferior frontal junction (parts of Brodmann areas
9, 44, 6) in mediating interactions between bottom-up and top-down attention [47].
Furthermore, TPJ, the caudal node of the VAN, demonstrates increased BOLD
response for behaviorally relevant distractors, but not for nonrelevant but highly
salient ones [48].

Importantly, despite some resemblance, human and monkeys differ funda-
mentally in the structure and function of these two networks. A study directly
comparing the brain activity in humans and monkeys during the performance of
the same attention-demanding task found that the VAN is unique to humans and
thus has probably developed after the evolutionary divergence of humans from
monkeys [49]. Moreover, the DAN, which exists in monkeys, exhibits fundamental
differences in its structure and organization between the two species. In humans, it
encompasses more brain areas, and its potentially homologous areas present major
differences in their basic organization, such as in their receptive field distribution.
These results suggest that the human and macaque attention systems have separately
evolved to meet the unique challenges each species faces [49].

Studies using noninvasive brain stimulation with transcranial magnetic stimula-
tion (TMS) have further specified the hemispheric functions and asymmetries of
the attention networks. Double pulses of TMS on the right TPJ interfered with IOR
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when delivered between cue and target [50], thus indicating that not only the DAN,
but also the VAN does play a role during the orienting period [6]. Repetitive TMS
over IPS or TPJ in the right hemisphere lastingly interfered with manual IOR for
ipsilateral right-sided targets [51], thus mimicking the effects of brain lesions [52].
In sharp contrast, repetitive TMS over the homolog regions in the left hemisphere
had no measurable effect on IOR [53]. Thus, there is a clear hemispheric asymmetry
favoring the right hemisphere in the cortical control of IOR, which not only concerns
the VAN, but also the DAN.

Importantly, and not surprisingly given the functional neuroimaging evidence
of frontoparietal attention networks, PFC and PPC are directly and extensively
interconnected by anatomical white matter tracts. In particular, studies in the
monkey brain have identified three distinct frontoparietal long-range branches of
the superior longitudinal fasciculus (SLF) on the basis of cortical terminations
and course [54, 55] (see Fig. 4.3, left panel). Recent evidence from advanced in
vivo tractography techniques and postmortem dissections suggests that a similar
architecture exists in the human brain [56] (Fig. 4.3, middle panel). In humans,
the most dorsal branch (SLF I) originates from Brodmann areas (BA) 5 and 7 and
projects to BA 8, 9, and 32. The middle pathway (SLF II) originates in BA 39 and 40
within the inferior parietal lobule (IPL) and reaches prefrontal BA 8 and 9. The most
ventral pathway (SLF III) originates in BA 40 and terminates in BA 44, 45, and 47.
These results are consistent with the functional MRI evidence on attention networks
mentioned above. In particular, the SLF III connects the cortical nodes of the VAN,
whereas the DAN is connected by the human homolog of SLF I. The SLF II connects
the parietal component of the VAN to the prefrontal component of the DAN, thus
allowing direct communication between ventral and dorsal attention networks.

Anatomical evidence is in good agreement with asymmetries of BOLD response
during functional MRI, because the SLF III (connecting the VAN) is anatomically
larger in the right hemisphere than in the left hemisphere, whereas the SLF I
(connecting the DAN) is more symmetrically organized [56]. SLF II also tends to be
right lateralized but with substantial interindividual differences. The lateralization of
SLF II is strongly correlated to behavioral signs of right-hemisphere specialization
for visuospatial attention such as pseudo-neglect on line bisection, i.e., small
leftward deviations of the subjective midline produced by normal individuals
[57–59], and asymmetries in the speed of detection of events presented in the right
or in the left hemifield [56].

4.2.2.1 Attention and Visual Perception

Cortical Streams of Visual Processing

According to an influential model [60], visual information processed in the primary
visual cortex (or striate cortex, see Fig. 4.4 below) follows two major pathways in
the macaque brain. A dorsal cortical visual stream, concerned with visually guided
movements in space [62], but also overlapping in part with the dorsal attention
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Fig. 4.4 The ventral and dorsal cortical visual streams in the macaque monkey. In the original
description [60], the ventral stream is a multisynaptic pathway projecting from the striate cortex
[cytoarchitectonic area (OC)] to area TE in the inferior temporal (IT) cortex, with a further
projection from TE to the ventrolateral prefrontal region FDv. The dorsal pathway was described
as a multisynaptic pathway projecting from the striate cortex to area PG in the inferior parietal
lobule, with a further projection from PG to the dorsolateral prefrontal region FD�. The behavioral
effects of lesions in monkeys suggested that the ventral pathway subserves object vision (“what”),
whereas the dorsal pathway was characterized as supporting spatial vision (“where”) (Reproduced
from Ref. [61]. © 2013, with permission from Elsevier)

systems, reaches the IPL and the dorsolateral PFC. The dorsal stream is often
referred to as the “where” or “how” pathway as it is concerned with where objects
are located and with guidance of movements toward them. A ventral cortical visual
stream, important for perceptual identification, projects from the occipital striate
cortex to the inferior temporal cortex, with a further projection from the inferior
temporal cortex to the ventral prefrontal cortex (Fig. 4.4). The ventral stream is
often referred to as the “what” pathway, as it is involved in identifying objects.

More recently, the concept of the dorsal visual stream has been refined by the
identification of several pathways emerging from the dorsal stream that consist of
projections to the prefrontal and premotor cortices [63] and a further projection
to the medial temporal lobe [64]. Also the ventral visual stream has recently been
subdivided into several components, and the original hypothesis of a serial mode of
processing from V1 to the inferior temporal cortex has now been revised to include
more complex interactions, both feed-forward and feedback [61].

Indeed, the anatomy of long-range white matter tracts in these regions does
suggest that both the dorsal and ventral streams can be further divided into distinct
components. As mentioned before, there are at least three major subdivisions of the
frontoparietal superior longitudinal fasciculus (SLF), both in the monkey [55] and in
the human brain [56]. Concerning the occipitotemporal pathway, several functional
systems are starting to emerge in the monkey [61]. Anatomically, two major systems
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Fig. 4.5 Virtual in vivo dissection of the ILF (in green), the IFOF (in red), and the posterior
segment of the superior longitudinal fasciculus (in yellow) (Reproduced from Thiebaut de Schotten
et al. [56]. © 2012, with permission from Oxford University Press)

have been identified in the human brain. They run along the inferior longitudinal
fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF) [65] (Fig. 4.5).

Attentional Modulations of Visual Perception

Attention influences in important ways not only the perception of near-threshold
visual targets [66], but also the subjective perception of suprathreshold visual
stimuli, for example, by increasing spatial resolution, i.e., the ability to discriminate
between two nearby points in space [67].

Thus, neural activity in the ventral visual pathways is modulated by attentional
processes [68,69]. In particular, attention increases the neuronal responses and alters
the profile and position of the receptive fields of ventral stream neurons near the
attended location [70]. Although attention effects are seen almost all through the
visual cortex, attention modulatory power follows a clear gradient. When moving
up the visual processing hierarchy, the strength of attentional effects dramatically
increases [71]. Attentional modulation in humans can be seen as early in the visual
processing hierarchy as the LGN [72]. Moreover, the attentional modulation of
population receptive fields, i.e., the “attention field,” was recently studied using
single-voxel modeling of fMRI time courses [73]. Attention fields were found to
scale with eccentricity and varied across visual areas. In addition, voxels in multiple
visual areas exhibited suppressive attentional effects such that they had an enhancing
Gaussian center with a suppressive surround. This study suggests that large-
scale brain networks, including frontoparietal attention networks and more ventral
occipitotemporal streams of processing, are involved in conscious visual perception.

4.2.3 Target Salience

Stimuli that stand out from their surroundings are more likely to capture selective
attention. This feature-based attention is influenced both by bottom-up processes,
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which compare the difference between a stimulus and its surroundings over different
visual features like contrast, color, etc., as well as top-down processes, assessing
the behavioral relevance of the stimulus. An influential computational framework
explaining how salience may be computed is based on the concept of saliency maps
[74, 75]. According to this framework, the visual information is first processed by
early visual neurons, which are sensitive to the basic visual features of the stimulus.
Locations, which significantly differ from their neighbors, are then highlighted. All
highlighted locations from all feature maps are combined into a single saliency map
which represents a pure salience signal that is independent of visual features [74].
The resulting sparse representation of the visual environment reflects the system’s
best guess as to the most relevant information [71].

Based on primate neurophysiological studies, two main saliency-related cortical
regions were identified. The neuronal responses in the primate FEF (a part of
DAN in the human brain) were found to be linked both to bottom-up aspects of
stimulus saliency and to top-down contextual factors, suggesting it may be involved
in the generation of saliency maps [5, 71]. Additionally, Bisley and Goldberg [76]
proposed that area LIP acts as a priority map in which objects are represented by
activity proportional to their behavioral priority, combining bottom-up inputs with
an array of top-down signals. These regions seem to be tightly linked to those areas
responsible for the planning and execution of eye movements, which is in agreement
with the frequent need to foveate salient regions of the visual environment for a more
detailed analysis [71].

In humans, target salience is often assessed using simple behavioral tasks like
the oddball paradigm, in which infrequently occurring target stimuli (to which
the subject must respond) are presented among a stream of frequently occurring
nontarget stimuli, to which responses must be withheld [9]. The neurophysiological
signature of the detection of salient events in this paradigm is a positive event-
related response (ERP) centered over the parietal lobe occurring approximately
300–500 ms after target presentation but not after familiar nontargets, known as
the P3 or P300 [9]. Pathological alterations of the P3 were found following lesions
to the TPJ [77] and the prefrontal cortex [78] and in patients with visual neglect
[79]. The cortical regions most consistently activated during target detection in
functional imaging studies are the right-sided IPL, IPS, TPJ, and frontal regions,
with substantial overlap with the VAN [9].

4.3 Visual Neglect

A lot can be learned about the cognitive and neuroanatomical aspects of human
attention from the case of visual neglect.

This common and severely disabling neurological condition typically affects the
left side of the patient’s space and results from right-hemisphere damage, usually
centered on the inferior parietal lobule [80] or on the superior temporal lobe [81].
Neglect patients ignore events occurring on their left, sometimes to the dramatic
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extent of “forgetting” to eat from the left part of their dish or of bumping into
obstacles situated on their left. Patients with left neglect also display a tendency
to look to right-sided details as soon as a visual scene deploys, as if their attention
was “magnetically” attracted by these details [82]. They are usually unaware of
their deficits (anosognosia) and often obstinately deny being hemiplegic. Neglect
is a substantial source of handicap and disability for patients and entails a poor
functional outcome. Unilateral neglect negatively affects patients’ motor recovery
[83] and social rehabilitation. Deficits at different levels of impairment may be
at work in different patients; however, the frequency and severity of attentional
problems in neglect patients have been repeatedly underlined [84]. Patients with
left-brain damage may also show signs of right-sided neglect, albeit more rarely
and usually in a less severe form [85, 86]. For example, using a neglect battery,
Bartolomeo et al. [87] found signs of contralesional neglect in 17 of 30 right-
brain-damaged patients (57 %), but only in two of 30 left-brain-damaged patients
(7 %). Right visual neglect seems to result from extensive left-hemisphere lesions
concomitant with a (partial) right-hemisphere impairment [88]. Hence, right visual
neglect might be more common with neurodegenerative conditions than with focal
brain lesions ([89, 90]; but see [91]).

Neglect patients present an abnormal behavioral pattern that can be readily seen
using the Posner location-cueing paradigm. In general, endogenous orienting is
relatively spared, if slowed, in visual neglect, whereas exogenous orienting appears
heavily biased toward the right side [84]. Specifically, in exogenous attention
orientation, the patients’ RTs are much slower on both the affected and the intact
side [84]. In addition, patients typically show prolonged RTs on invalid trials when
the target is presented on the left, suggesting difficulties to disengage from the
preceding right-sided cue and to transfer their attention [84, 92, 93]. Moreover, even
when targets are presented in the right intact side, the RT pattern in exogenous
orientation is abnormal: left neglect patients seem to show facilitation, instead
of normal IOR, for repeated events occurring on the right, allegedly “normal”
side [94]. A meta-analysis of results obtained in brain-damaged patients with
the Posner paradigm revealed that (1) the disengage deficit is robust following
peripheral cues but not following central cues, (2) the disengage deficit is large
at shorter SOAs and decreases as SOA increases, and (3) the disengage deficit is
larger in patients showing signs of unilateral neglect. The first two characteristics
are typical of the operations of exogenous orienting; the third clearly links the
disengage deficit to unilateral neglect [92]. Thus, the results of this meta-analysis
give strong support to the hypothesis of a bias of exogenous orienting in left
neglect.

Other component deficits of neglect might not necessarily be lateralized or
directional problems. For example, it has been suggested that neglect results not only
from an asymmetry in selective spatial attention but also from impairments in other,
non-lateralized attentional components, such as arousal or vigilance [95]. Such non-
lateralized deficits may be invoked to explain the fact that neglect patients are slower
than normal individuals when responding to visual targets even in the ipsilesional,
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non-neglected space. The normal timing of attentional events also seems to be
disrupted in neglect for centrally presented visual stimuli. When normal individuals
have to identify two visual events appearing one shortly after another in the same
spatial location, the second event goes undetected if presented in a time window
of 100–450 ms after the first event (“attentional blink” [96]). Non-lateralized
attentional impairments could account for the hemispheric asymmetry of unilateral
neglect. Right-brain damage slows down RTs more than left-hemisphere lesions
[97], which can be interpreted as an arousal deficit [98]. The preferential occurrence
of a deficit of arousal after right, rather than left, brain damage might be one of
the bases of the predominance in frequency and severity of contralesional neglect
after right, as opposed to left, hemispheric lesions [99, 100]. One could speculate
that a unilateral brain lesion generally delays the processing of information coming
from the contralesional field. An additional, non-lateralized slowing of attentional
operation, resulting from right-brain damage, might further hold back the processing
of left stimuli, to the point of exceeding a deadline after which this information
cannot affect behavior anymore [84].

Thus, an asymmetry of exogenous orienting, with rightward attentional shifts
being easier than leftward shifts, compounded with non-lateralized deficits such as
arousal problems, seems to accommodate the experimental evidence coming from
most cases of left visual neglect [84].

Importantly, the primary regions damaged in neglect include the right ven-
tral attention networks [101]. Moreover, damage to the long-range white matter
pathways connecting parietal and frontal areas within the right hemisphere may
constitute a crucial antecedent of neglect [19, 102, 103]. Thus, neglect would not
result from the dysfunction of a single cortical region but from the disruption of
large networks [19,101]. Only a small number of studies utilized EEG and visually
evoked potential measurements to study the neural basis of neglect, finding slowing
down of activation [104] and abnormal components in late visual processing [105]
reflecting perturbations in the bottom-up processing and feedback connections from
higher visual areas [106]. Several fMRI studies were also conducted, showing
that in these patients a lesioned VAN can induce an imbalance in DAN, with a
relative hyperactivity of left-hemisphere networks [101]. However, many paramount
questions concerning the mechanisms of neglect still remain open. For instance, the
right-hemisphere dominance of spatial neglect is one of the most puzzling aspects
of this syndrome [19, 101]. Another unresolved issue is the fact that many of the
behavioral deficits characterizing neglect are traditionally associated with functions
of the dorsal attention networks, but these may be anatomically spared in strokes
that cause neglect [101].

It is therefore suggested that the pathological neural mechanisms at the base
of neglect are very complex, resulting from disruption of the interaction between
the two attention networks and an ensuing imbalance in their activation. Indeed,
evidence shows that disconnection of the two attention networks is a major cause of
neglect. As mentioned before, the SLF II, whose caudal cortical origin is in part
shared with that of the SLF III in the IPL, connects the parietal component of
the VAN to the prefrontal component of the DAN [56]. Thus, it is plausible that
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damage to the IPL [107], when accompanied by injury to the underlying white
matter [108, 109], can produce severe and persisting signs of neglect because it
can jointly disrupt the functioning of both the VAN (through SLF III disconnection)
and the DAN (through SLF II damage). On the other hand, less extensive lesions,
perhaps sparing a significant part of SLF II, might allow for intrahemispheric
compensation mechanisms relying on the possibility of communication between
VAN and DAN offered by SLF II. In this case, an initial imbalance between
the dorsal frontoparietal networks, with the left-hemisphere DAN being relatively
more active than its right-hemisphere counterpart, might subside after the acute
phase, with consequent recovery from neglect signs [110]. Supporting these ideas,
temporary inactivation of the SLF II fibers connecting the DAN and VAN in the
human right hemisphere impairs the symmetrical distribution of visual attention
[103]. Recently, a longitudinal study using MRI tractography found that the
severity of neglect correlated with fractional anisotropy values (a measure of the
directionality of the diffusion of water molecules inferring the structure of white
matter fibers, such that the larger the fibers, the more directional the diffusion)
in superior longitudinal fasciculus II/III for subacute patients and in its caudal
portion for chronic patients [111]. The results confirm a key role of frontoparietal
disconnection in the emergence and chronic persistence of neglect and demonstrate
an implication of caudal interhemispheric disconnection in chronic neglect. Such
disconnections may prevent frontoparietal networks in the left hemisphere from
resolving the activity imbalance with their right-hemisphere counterparts, thus
leading to persistent neglect.

How do these notions map on the hypotheses concerning the organization of the
attention networks in the brain? A plausible model of intra- and interhemispheric
interactions in neglect [112] stipulates that damage to right-hemisphere VAN causes
a functional imbalance between the left and right DANs, with a hyperactivity of the
left dorsal frontoparietal networks, which would provoke an attentional bias toward
right-sided objects and neglect of left-sided items. Consistent with this hypothesis,
suppressive TMS on left frontoparietal networks correlated with an improvement of
patients’ performance on cancelation tests [113]. However, evidence also suggests
that the left, unimpaired hemisphere may be crucial for long-term recovery from
neglect [111, 114]. Thus, the classical hemispheric rivalry hypothesis of neglect,
according to which neglect symptoms result from a hyperactive left hemisphere
[115], appears to be too simplistic to account for all the available data. Also,
Singh-Curry and Husain [9] argued that the VAN is not only dedicated to salience
detection in a stimulus-driven way [5] but is also responsible for maintaining
attention on goals or task demands, which is a top-down process. In support
of this proposal, functional MRI has suggested a role for the inferior frontal
junction (parts of BA 9, 44, 6) in mediating interactions between bottom-up
and top-down attention [47]. Furthermore, TPJ, the caudal node of the VAN,
demonstrates increased BOLD response for behaviorally relevant distractors but not
for nonrelevant but highly salient ones (but see [48, 116]). Thus, deficits in these
nonspatial aspects of attention may lead to an exacerbation of the spatial bias in
neglect patients [117].
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4.4 Conclusion

• Attention is necessary for the production of coherent behavior, taking into
account both internal goals and the dynamic external environment.

• There are several distinct attention processes, each subserved by different
anatomical brain regions.

• Sustained attention in time depends on various cortical regions, like the right
frontoparietal networks, the insula, and the anterior cingulate cortex, and on
subcortical structures such as the thalamus and brain stem nuclei.

• Spatial selective attention relies on the integrated functioning of frontoparietal
networks, which exhibit a right-hemispheric bias.

• Brain damage resulting in an impairment in the coordinated functioning of these
frontoparietal networks may hamper the conscious perception of objects in space
and lead to a significant disability for patients.

• Our knowledge of these systems is still too limited to develop a treatment for the
whole range of attentional impairments, but it is expanding at fast pace, offering
hope for the future.
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Chapter 5
Attention and Signal Detection:
A Practical Guide

Vincent P. Ferrera

A faint tap per se is not an interesting sound; it may well escape
being discriminated from the general rumor of the world. But
when it is a signal, as that of a lover on the window-pane, it will
hardly go unperceived.

– William James [1]

5.1 Detection of Weak Signals

The ability to detect weak signals in the environment can have a profound impact on
an organism’s ability to survive and reproduce. This aspect of perception is therefore
likely to have been optimized by natural selection. Part of this optimization may
involve strategies to maximize performance by allocating scarce neural resources.
The ability to allocate limited resources by selecting and prioritizing sensory
information is often what is meant when people talk about selective attention [2].
The notion of a limited capacity filter has been invoked to explain why orienting
attention to a particular location in space or a particular stimulus feature enhances
detection and shortens response times. This view has given rise to imaginative
metaphors such as the “spotlight” [3, 4] or “zoom lens” [5] of attention. An
alternative, albeit less poetic, view considers attention from the standpoint of
a decision-maker trying to make sense of noisy signals arising from multiple
detectors. In this view, what is commonly referred to as “attention” may be a
manifestation of the effect of uncertainty on the behavior of an ideal observer
[6, 7]. While precise definitions are elusive, it is reasonable to say that attention
includes a collection of computational strategies that enhance the detection and
discrimination of weak signals and/or refine the behavioral response to such signals.
These strategies might include increasing the signal-to-noise ratio of individual
neurons, optimizing decision parameters, and identifying subsets of detectors (e.g.,
neurons) that are more reliable.
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Stimulus detectability across the visual scene is one way to quantify percep-
tual salience. Salience maps are important for both human and machine vision
systems as they indicate areas of heightened interest, attention, and action. Signal
detection theory provides various strategies for computing salience maps. Salience
maps computed using principles of signal detection can incorporate the effects of
prior information (i.e., environmental cues or knowledge about target prevalence),
observer bias, and/or economic value.

The conversion of sensory signals into percepts, decisions, and actions occurs
over multiple stages of neural processing. At which level does attention act? Does
attention affect the quality of incoming sensory information? Does it affect decision-
making, response selection, or even later processes? This issue is part of the long-
standing debate over “early” vs. “late” selection of signals [2, 8].

The idea behind early selection is that multiple stimuli compete for attention at
an early stage of sensory processing. Attention biases this competition by enhancing
the representation of behaviorally relevant stimuli [9]. Thus, when attention is
directed toward a particular location or object, it improves the quality of sensory
data acquired at the focus of attention. Improved quality means that the neural
representation has higher fidelity, stronger signal, less noise. Better signal to noise
should enhance the detectability of weak signals.

The “late” selection hypothesis holds that attention acts mainly on higher-order
processes, leaving sensory representations largely intact. For example, attention can
act at the level of response selection by adjusting decision criteria. An observer
may have prior information that creates an expectation that the stimulus will occur
at a particular time or place. This could be due to statistical regularities in the
environment or to the presence of reliable cues, either natural or artificial. If a
stimulus is expected to occur in a given place or at a given time, the observer
may require less sensory evidence to report that it was present. Thus, they may
lower their internal decision threshold or adopt a bias in favor of making a positive
response. The expectation of a stimulus does not necessarily mean that the quality
of the sensory evidence provided by that stimulus is better, but rather that the prior
likelihood of the stimulus biases the observer to report that it is present.

To understand how attention might improve an observer’s performance, it is
useful to introduce the framework of signal detection theory (SDT [10, 11]). SDT
provides a simple set of computations to select responses based on factors such as
signal strength, stimulus probability, and the consequences of different responses.
The underlying model for SDT is that signals in the environment cause changes in
the internal state of an observer. Changes in internal state then guide categorical
responses, such as “yes/no” or “seen/not seen.” The SDT model affords a great
deal of flexibility in mapping stimuli onto responses. Flexibility derives from
the probabilistic relationship between external signals and internal states, and the
criterion-dependent relationship between internal states and responses.

SDT clarifies the distinction between stimulus detectability and response bias.
Detectability is a function of the sensory signal alone. It is the certainty with which
an external event in the environment can be inferred from the internal state of the
observer. Detectability depends only on the difference in the observer’s internal state
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Fig. 5.1 Signal detection model. Noise, n, is added to external signal, s, to produce an internal
state, y, which is compared to criterion, c, to determine response, R

Table 5.1 Confusion matrix
for signal detection model

Stimulus present Stimulus absent

Respond “Yes” Hit False alarm

Respond “No” Miss Correct rejection

when the external stimulus is present as compared to when the stimulus is absent. It
does not depend on the relationship between the observer’s internal state and their
response, which may be biased toward one alternative or the other, independently of
the signal.

Formally, the premise of signal detection theory is that the internal state of an
observer (y) is perturbed by an external signal (s) that is affected by noise (n). In
the simplest case of additive noise, y D s C n (Fig. 5.1). The internal state, y, is
then compared to a threshold decision criterion, c, to generate a binary response of
“yes/no” or “seen/not seen.” The detectability of the stimulus is entirely determined
by the characteristics of the signal and noise. However, the response can be biased
depending on the level of the decision criterion. A change in criterion might cause
the observer to report that the stimulus is present more or less often even though
there is no real change in stimulus detectability.

In the most basic case, the stimulus takes one of two values (present or absent),
and the response also has two possible values (yes, no). There are thus four possible
outcomes (Table 5.1). Hits and correct rejections are both correct responses. Misses
and false alarms are incorrect.

When the stimulus is present, it gives rise to an internal state drawn from
a probability density function called the signal distribution (S). This distribution
consists of signal C noise, as noise is always present. When the stimulus is
absent, the internal state is drawn from the noise distribution (N). Internal state
might correspond to the instantaneous firing rate of a neuron, or the number of
action potentials fired in a specified time interval (spike count). Figure 5.2 (left
panel) shows hypothetical examples of signal (blue bars) and noise (gray bars)
distributions. The dashed vertical lines represent two different criterion values. For
a given criterion value, the hit rate is the proportion of the signal distribution that
is greater than the criterion. Similarly, the false alarm rate is the proportion of the
noise distribution that is greater than the criterion. The miss rate is 1.0, hit rate, and
the correct rejection rate is 1.0, false alarm rate. Observer performance is completely
characterized by the rates of hits and false alarms.

To obtain a criterion-independent estimate of detectability, one can vary the
criterion level through the entire range of states represented in the signal and noise
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Fig. 5.2 (Left) Spike count histograms for stimulus present (blue) or absent (gray) trials. Dashed
vertical lines represent different criterion values. (Middle) ROC curves. “Hits” are the number
of hits divided by hits C misses. “False alarms” is the number of false alarms divided by false
alarms C correct rejections. Blue dots are the ROC derived from the distributions in the left panel.
Red dots are the ROC derived from the distributions in the right panel. Green and magenta dots
are the points of the ROC curves corresponding to the criterion levels shown in the left and right
panels. (Right) Histograms for a case with stronger signal

distributions. For each criterion level, the hit rate can be plotted against the false
alarm rate (Fig. 5.2, middle). The resulting curve is called the “receiver operating
characteristic” or ROC curve. The area under the ROC curve (AROC) is a measure
of stimulus detectability across all criteria. Imagine drawing two random samples:
one from the signal and one from the noise distribution. The area under the ROC
curve is the probability that the sample drawn from the signal distribution is larger.
In psychophysics, the ROC area is equal to the percentage of correct responses for
an ideal observer in a two-interval forced choice experiment.

Based on how the ROC curve is constructed, it follows that changing the decision
criterion, e.g., from the magenta to the green line in Fig. 5.2, only moves one along
the ROC curve. The magenta and green dots superimposed on the blue curve in
Fig. 5.2 (middle) are the hit and false alarm rates corresponding to the criterion
levels in the left panel. Changing the criterion does not change the ROC curve itself.
To do this, there must be a change in the amount of overlap between the signal and
noise distributions. The right panel in Fig. 5.2 shows the distributions for a stronger
signal with the same noise as in the right panel. The corresponding ROC curve is
shown in red in the middle panel. The increased area under the red curve means that
the signal can be more reliably detected.

It should be clear that stimulus detectability depends on the overlap of the
signal and noise distributions, which in turn depends on two factors: the separation
between the means of the signal and noise distributions, and the variances of those
distributions. Attention can therefore improve detectability by increasing the former
and/or reducing the latter. In SDT, these are the only two variables that affect
the internal representation of signal quality. However, attention may also act by
optimizing the decision criteria that determine the observer’s response.
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5.2 Effect of Stimulus Probability

The likelihood that a stimulus will occur during a given observation period is
referred to as its prior probability. In an unbiased experiment, stimulus-present and
stimulus-absent trials should occur in equal proportion, so that the prior probabilities
of signal and noise are both 0.5 and the percent correct that can be achieved by
guessing is 50 %. In most real-world environments, the signal and noise probabilities
are not necessarily equal. Rare or novel signals may attract attention by an oddball
effect. Frequent signals may result in sensory adaptation, thus weakening their
internal representation. Response habituation can also play a role; if a stimulus is
quite rare, then observers may fall into a habit of responding “no.” This habitual
response may cause observers to miss a rare stimulus if they are not vigilant. Some
studies report that prevalence effects can result in miss rates of up to 50 % [12].
Other studies with medical images (chest x-rays) have reported that prevalence
effects are negligible [13].

Observers can take advantage of variations in stimulus probability by adapting
their decision criteria. These adjustments can be made without any explicit knowl-
edge about stimulus probability itself. SDT naturally handles cases where stimulus
probability is different from 0.5. In the unbiased case, the areas of the signal and
noise probability distributions are both equal to 0.5. If there is a preponderance of
signal trials, then the area of the signal distribution will be between 0.5 and 1.0,
while the noise distribution will have area D 1.0 � signal area.

To understand how prior probability affects detectability, it is important to realize
that the hit and false alarm rates are conditional probabilities. Specifically, hit rate
is the probability that the internal state, y, is greater than the criterion, c, given that
the stimulus is present: p(y > c j S). Likewise, false alarm rate is conditioned on
the absence of the stimulus, thus p(y > c j N). Because hit rate is conditioned on
the presence of the stimulus, changing the likelihood that the stimulus is present
does not change the hit rate. For a given criterion level, the proportion of the signal
distribution that is greater than the criterion is invariant to scaling of the distribution.
The same goes for the false alarm rate. Hence, stimulus probability has no effect on
the ROC curve and thus no effect on stimulus detectability.

Figure 5.3 illustrates this by showing cases where the signal has a low probability
(left panel) or high probability (right panel). The ROC curves are the same for both
conditions (middle). Another way to think about this is that the ability to detect a
stimulus depends only on the strength and fidelity of its representation in the nervous
system at the time the stimulus is present. It does not depend on the past history of
the stimulus. This surprising feature of ROC curves is advantageous in areas like
medical diagnosis because the probabilities of S and N are generally unknown (and
difficult to measure). Thus, ROC curves are understood to provide a reliable metric
for diagnostic efficacy independent of the relative prevalence of S.

It may seem counterintuitive that detectability is not affected by stimulus prob-
ability. Certainly, prior knowledge about the signal must confer some performance
advantage, and it does. But the advantage derives from the fact that observers are
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Fig. 5.3 (Left) Histogram of spike counts for stimulus-present (signal) and stimulus-absent (noise)
trials with low stimulus probability. (Middle) ROC for (blue dots) and high (red dots) stimulus
probability. (Right) Histograms for high stimulus probability

able to improve performance by altering their decision strategy. If the stimulus
is more likely to appear than not, then there is an advantage to using a more
liberal decision criterion (smaller value of c) for responding “yes.” In this case,
simply closing one’s eyes and guessing that the stimulus is present or saying
that it is always present will yield performance greater than 50 % correct. Signal
detection theory can be used to determine the value of the decision criterion that will
optimize performance (percent correct) for a given signal strength and probability.
Analytically, the optimum criterion is the value of y that satisfies the following
equation:

p .S/ � fs.y/ D p .N/ � fn.y/

where p(S) and p(N) are the signal and noise prior probabilities (signal present
or absent, respectively) and fs(y) and fn(y) are the unweighted signal and noise
probability densities (see [14] for derivation).

Figure 5.4 illustrates simulations where the signal has low (top left) or high (top
right) probability. Performance, in terms of percent correct detection, is plotted
as a function of criterion level in the bottom left for the case of high (red)
or low (blue) signal probability. The dashed vertical line indicates the criterion
level that optimizes performance. The optimum criterion can be computed for any
signal probability (bottom right). These simulations show that, while knowledge
of stimulus probability does not affect detection, performance may nevertheless be
improved by selecting the optimal decision criterion.

One of the chief complaints about SDT is that it seems to assume that the
probability distributions are known with arbitrary precision. In practice, observers
may not know the shapes of these distributions or the prior probabilities of signal
and noise. However, there are simple iterative algorithms for adapting the decision
criterion that produce near-optimal performance and are based only on quantities
available to the observer, for example, their behavioral response and the feedback
they receive (assuming feedback is given). First, note that Table 5.1 can be
rearranged as follows (Table 5.2):
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Fig. 5.4 (Top row) Spike count histogram for low (blue) and high (red) stimulus probabilities.
(Bottom row) Performance as a function of criterion level and optimum criteria for different signal
probabilities

Table 5.2 Confusion matrix
for signal detection model
reordered by response
outcome

Correct Incorrect

Respond “Yes” Hit False alarm

Respond “No” Correct rejection Miss

Hence, an observer can deduce whether the stimulus was present (hit, miss) or
absent (false alarm, correct rejection) based on the conjunction of their response
(yes/no) and the outcome (correct/incorrect). The observer can use this information
to estimate the prior likelihood of the stimulus. Knowing only their response and
the outcome, the observer can optimize their decision criterion based on feedback.

An iterative algorithm for optimizing the decision criterion is the following: (1)
after each “yes” response, the criterion level is incremented in proportion to the
rate of signal-absent trials and, (2) after each “no,” the criterion is decremented in
proportion to the rate of signal-present trials. This can be quantified by the following
updating rules:
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Fig. 5.5 Optimization of decision criterion. (Left) Signal and noise distributions with signal
probability D 0.2. Red and green vertical dashed lines are final criterion values for two adaptive
procedures. Black dashed line is optimal criterion. Red line is the distribution of error trials. (Right)
Adaptive criteria as a function of trial number

1. If response D “yes,” c .n C 1/ D c.n/ C k � p.N/

2. If response D “no,” c .n C 1/ D c.n/ � k � p.S/

The criterion level on trial n is denoted by c(n), k is the learning rate, p(N) is
the probability that the stimulus was absent, and p(S) is the probability of stimulus
present. These probabilities are not known in advance, but are continuously updated
based on feedback. This method is stable and converges to the criterion value
corresponding to an internal state that is equally likely for stimulus-present and
stimulus-absent trials, i.e., p(y j S) D p(y j N). An example of the algorithm’s
performance is shown in Fig. 5.5 (method 1).

If feedback (“correct” or “incorrect”) is given after each trial, then the observer
can deduce whether the outcome is a hit, miss, FA or CR, and thus whether or
not the stimulus was present. Therefore, the information required to implement
this procedure is available to the observer and does not require prior knowledge
of stimulus probability.

There is another algorithm for adapting the decision criterion that uses only
feedback on error trials. Specifically, after each false alarm, the criterion is
incremented a small amount. After each miss, the criterion is decremented by the
same quantity. This process converges on the criterion for which the miss and false
alarm rates are equal, which is close to the optimum criterion for minimizing the
error rate (Fig. 5.5, method 2). It is easy to show that this algorithm is stable: if the
criterion value is too high, then misses outnumber false alarms and the criterion is
decremented until the miss rate equals the false alarm rate; if the criterion is too low,
false alarms outnumber misses resulting in a net increment. Furthermore, as long as
the signal and noise distributions have positive area, there is always a criterion value



5 Attention and Signal Detection: A Practical Guide 71

for which misses D false alarms. This can be demonstrated by considering that, as
the criterion goes from –infinity to infinity, the false alarms start at a finite, positive
value and then decrease to zero. At the same time, misses increase from zero to a
finite positive value. Therefore, the miss and false alarm curves must cross. This
procedure is therefore guaranteed to converge and has the additional advantage that
it does not rely on an estimate of stimulus probability. Procedures based only on
correct responses can also be used, but tend to converge at criterion values that are
far from the optimum.

5.3 Effect of Costs and Benefits for Various Outcomes

SDT has four classes of outcome: hits, misses, false alarms, and correct rejections.
In real-life situations, each outcome has an associated cost or benefit. Misses and
false alarms are both incorrect outcomes, but are not equally costly. If a person
has a medical exam, the cost of a false negative (miss) might be that they will not
receive treatment and their condition may worsen. The cost of a false positive is
that they could receive a treatment that is unnecessary. One of these outcomes may
be catastrophic (e.g., an infection that becomes life threatening), while the other is
relatively benign (taking a superfluous course of antibiotics). Likewise, the benefit
of a hit may be greater or less than a correct rejection.

If one can assign a numerical value to each outcome, then there is a formula for
the expected value (EV) of each trial [14]:

EV D Vh � p.h/ C Vm � p.m/ C Vfa � p .fa/ C Vcr � p .cr/

where V is value, p is probability, and the subscripts denote the various outcomes.
The values of misses and false alarms are typically negative as these outcomes
represent costs. This formula also incorporates effects of prior stimulus probability
as this affects the outcome probabilities.

Figure 5.6 shows an example of the effect of value-weighted outcomes on the
optimal decision criterion. In the left panel are weighted outcomes for hits (green),
correct rejections (blue), misses (black), and false alarms (red). The stimulus
probability is 0.5. The dashed lines represent the balanced case where correct
responses have a value of 1 and errors have a value of �1. The expected payoff
and optimum criterion is shown in black in the right panel.

The heavy lines in the left panel represent a situation where hits have a value
of 1.5, misses �1.5, false alarms �0.7, and correct rejections 0.7. The optimum
criterion in this case (right panel, magenta) shifts to a smaller (more liberal) value.
This results in more hits and fewer misses at the cost of more false alarms and fewer
correct rejections, reflecting the relative value of these outcomes. The optimum
criterion is the value of y that satisfies the following equation:
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Fig. 5.6 Effect of payoffs on optimal decision criteria. (Left) All outcomes have same absolute
value (dashed lined) or different values (solid lines). (Right) Total payoff vs. criterion for equal
outcome value (black) and unequal value (magenta)

.Vh–Vm/ � p.S/ � fs.y/ D �
Vcr–Vfa

� � p.N/ � fn.y/

where Vx(x D h, m, fa, cr) is the value of a hit, miss, false alarm, or correct rejection.
Again, Vm and Vfa usually have negative values so that when all outcomes have
equal weight (0.5), the terms (Vh � Vm) and (Vcr � Vfa) can be replaced by 1.0.

The values assigned to different outcome classes may reflect economic value,
such as subjective utility. They may also reflect emotional value (intensity) and
valence (positive or negative). Stimuli that are associated with high outcome values
may automatically attract attention, regardless of whether the outcome is positive or
negative [15].

5.4 Effects of Pooling Over Multiple Detectors

The above considerations apply to the case of a single detector (e.g., a neuron) but
can be readily extended to multiple detectors. In the simplest case, all detectors have
the same inputs, sensitivity, and noise characteristics. All observations therefore
have equal weight. One observation from each of two detectors is the same as
two observations from one detector. However, even this simple case presents an
opportunity to test different rules for pooling across detectors. Furthermore, we can
examine how detectability improves with the number of detectors and observe the
effects of correlations among detector responses. Studies in monkeys have found
that the spike count correlation between nearby visual cortical neurons is roughly
0.1–0.2 [16, 17] and that these correlations are reduced by attention [18, 19].

To analyze the activity in multiple detectors, it is useful to first build an activity
matrix. Each row in this matrix represents an individual detector (neuron), and each
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Table 5.3 Activity matrix
with each cell [y(i,j)]
representing an average firing
rate for neuron i on trial j

Trial 1 Trial 2 Trial 3 : : :

Neuron 1 y(1,1) y(1,2) y(1,3) : : :

Neuron 2 y(2,1) y(2,2) y(2,3) : : :

Neuron 3 y(3,1) y(3,2) y(3,3) : : :

: : : : : : : : : : : : : : :

column is a single observation period (trial). The values in each cell thus represent
the activity of a single detector on a single trial (Table 5.3):

From this activity matrix, we can construct joint ROC functions in several ways.
The simplest method is to treat each cell, y(i,j), as an independent observation. The
result is that the presence of multiple detectors increases the number of observations
at a given time, but otherwise confers no improvement in detectability. In other
words, if all neurons are equal, then adding neurons does not change the joint
ROC curve. It is the same as simply gathering additional observations from a single
neuron.

To gain any advantage from multiple neurons, the responses must be aggregated
in some manner. One method is simply to average observations prior to constructing
the ROC function. One can either average over trials for each neuron or over
neurons within each trial. Both methods reduce the number of effective observations
underlying the ROC, but have the advantage that the variability of those observations
may be substantially reduced. Figure 5.7 shows an example with 12 neurons. In the
left panel are the responses of a representative pair of neurons collected over many
trials (blue dots D stimulus absent, red dots D stimulus present). The trial-to-trial
responses are weakly correlated (Pearson’s correlation coefficient D 0.2). The right
panel shows the ROC function for each of the 12 neurons individually (blue lines)
and for the ensemble (red dots) when activity in each trial is averaged across neurons
before computing the ROC. The average ROC area for each neuron alone is 0.76,
while the joint ROC has area D 0.86. In this example, all neurons have the same
sensitivity, and their contributions are weighted equally. One could alternatively
construct a weighted average such that the contribution of each neuron would be
weighted by its reliability, for example, by dividing by the standard deviation or
variance of the spike count distribution. This would result in a more Bayesian style
of combining responses.

Figure 5.8 (left panel) shows how detectability increases with the number of
neurons. When the response of each neuron is independent of the other neurons,
detectability starts to saturate when there are about 32 neurons in the pool (black
curve). The exact number of neurons at which saturation occurs is not fixed, but
typically depends on the characteristics of the signal and noise, as well as the method
of pooling [20].

The advantage of pooling responses across neurons is reduced when their activity
is correlated. For example, if the degree of correlation for every pair of cells
in the population is r D 0.2 (as depicted in Fig. 5.7, left panel), then the area
under the joint ROC is represented by the red curve in Fig. 5.8 (left panel). Here,
the optimum detectability reaches only 85 % of that obtained when there is no
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Fig. 5.8 Impact of neuronal pool size (left panel) and between-neuron response correlations (right
panel) on detectability

correlation between neurons. When the correlation is 0.6 (green curve), there is
almost no advantage of pooling. The same data are replotted as a function of
correlation strength (Fig. 5.8, right panel). The curves for different pool sizes
all come together between r D 0.4 and r D 0.6, indicating that the strength of
correlation that eliminates the advantage of pooling in this case is about 0.5.

If positive correlations among neurons reduce the benefits of pooling, then
it might be expected that negative correlations would have the opposite effect.
Figure 5.9 shows an example where the pool size is 2 neurons and the trial-to-
trial correlation in firing rate is �0.9. The negative correlation reduces the overlap
of signal and noise distributions. The resulting joint ROC has an area of 0.95. This
can be compared to the case where the correlation is 0 and the joint ROC area is



5 Attention and Signal Detection: A Practical Guide 75

Fig. 5.9 Impact of negative correlations on detectability for a pool of 2 neurons. (Right) signal
(red) and noise (blue) distributions. (Left) ROC area as a function of correlation coefficient

0.69. It would therefore seem that negative correlations are capable of producing
huge improvements in detectability. However, there are some important caveats.
Foremost among these is that for a pool size greater than 2, it is impossible for all
the pairwise correlations to be negative. If neurons 1 and 2 are negatively correlated,
and 2 and 3 are also negatively correlated, then 1 and 3 must be positively correlated.
In other words, the correlation matrix must be positive semi-definite. As long as
this constraint is satisfied, a pool of neurons with some negative correlations might
provide significantly better detectability than a pool of independent, uncorrelated
neurons.

For weaker stimuli, the advantages of increasing the size of the neuronal pool are
greater; however, the effects of positively correlated activity are more devastating.
For example, when there is no correlation between neurons, the improvement in
detectability of a weak stimulus may not start to saturate until the pool size reaches
over 1000 neurons. However, even a weak (r D 0.1) correlation can eliminate the
advantage of pooling altogether.

Another method for pooling across neurons is to compute the probability of hits
and false alarms for each neuron individually and then sum the probabilities across
neurons. The probabilistically summed hit and false alarm rates can then be used
to compute the joint ROC. The pooled probability of a hit and false alarm is as
follows:

p .hit/ D 1:0– Œp .miss1/ &p .miss2/ & : : : &p .missn/�

p .fa/ D 1:0– Œp .cr1/ &p .cr2/ & : : : &p .crn/�

where the subscripts (1 : : : n) index the individual neurons and n is the
total number of neurons. The probability of a miss or correct rejection is
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calculated across all trials for each neuron. These calculations are done for
each criterion level to construct the joint ROC curve. Note that because the
firing rates may be correlated across neurons, the probabilities of misses or
correct rejections are not independent. Thus, the right sides of these equations
must be calculated using the formula for the joint probability of dependent
events:

p .a&b&c&d& : : : / D p.a/ � p .bja/ � p .cja&b/ � p .dja&b&c/ : : :

These results suggest that attention can improve signal detection by reducing
correlated activity among neurons or by selecting the responses of neurons whose
activity is maximally uncorrelated (or negatively correlated). However, we have
so far only dealt with the case of detectors with uniform sensitivity. In general,
neurons may have different sensitivities (responsiveness) and baseline firing rates.
Furthermore, the degree of correlated activity between pairs of neurons is likely
to vary across the population, rather than being constant for all pairs as in the
simulations presented here.

The above considerations apply to the case where all neurons in the pool respond
to the signal. In this case, increasing the number of neurons in the pool increases
stimulus detectability, though the marginal improvement may at times be small.
However, it is unusual for all detectors to be sensitive to the stimulus. In general,
a given stimulus will be represented by a small fraction of the relevant population
of neurons, i.e., those whose front-end filtering properties (e.g., spatial and feature
selectivity) are appropriately matched to the stimulus. We can call this the “signal
pool.” The rest of the neurons in the brain (the “noise pool”) contribute nothing to
detection of the stimulus. In fact, their activity is deleterious to performance as it
represents background noise. One of the great problems of attention is how to select
responses from the signal pool while ignoring or suppressing activity in the noise
pool. The problem is compounded by the fact that individual neurons can switch
from one pool to the other at any given time, depending on the stimuli present in the
environment and the organism’s behavioral goals.

5.5 Uncertainty and Cueing Effects

One of the most common behavioral paradigms for studying attention is to provide
observers with prior information (a cue) about a target whose properties are
uncertain [4, 21, 22]. For example, observers might be asked to detect a low contrast
target presented at a location that is randomized from trial-to-trial, thus introducing
spatial uncertainty. At some time before the target appears, a high contrast cue is
presented at a location that is more or less predictive of the target location. Such
cues often improve performance accuracy, but whether these improvements are due
to enhanced stimulus detectability or reduction in decision uncertainty has been
subject to much debate [23–27].
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Figure 5.10 illustrates trial conditions from a task where the stimulus (a vertically
oriented grating patch) can appear at one of two locations (essentially the same task
as used by [21]). The subject’s task is to report the presence of the target. On all
trials, the cue is equally likely to occur at either location. On half the trials, there is
no stimulus (“catch” trials). On the other trials, the stimulus is preceded by a cue
that predicts where the stimulus is likely to appear (i.e., it may or may not be a
“valid” cue). The predictiveness of the cue is referred to as its “validity.” If the cue
is 80 % valid, then the stimulus appears at the cued location on 80 % of the trials
and at the uncued location on 20 % of the trials. If the cue is valid on 80 % of the
signal-present trials and invalid on 20 %, then the signal probability is 0.4 at the
cued location and 0.1 at the uncued location. The cue not only attracts attention but
allows the observer to use a more liberal criterion for responding that the stimulus
is present. This should result in a higher percent correct on cued vs. uncued trials. It
may also lead to shorter reaction times.

Consider the responses of two detectors, one at the cued location and another
at the uncued location. What level of performance can be achieved by combining
responses from the two detectors with equal weight? Each detector experiences a
signal probability of 0.25, because the stimulus is present on half the trials and
its location is randomized. Figure 5.11 (top left) illustrates the theoretical percent
correct (hits C correct rejections divided by total trials) for detecting the stimulus as
a function of criterion level for both detectors when the cue validity is 50 % (i.e., the

Fig. 5.10 Spatial cueing task with vertically oriented target
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cue location is uncorrelated with stimulus location). Because the signal probability
at each detector is 0.25, the optimal criterion (vertical dashed lines) is relatively
conservative and is the same for both detectors.

The same calculations are shown for the case where cue validity is 80 %
(Fig. 5.11, top right). Here, the optimal criterion is more liberal for the detector
at the cue location (blue) because the signal probability (0.4) is higher at that
location. The stimulus probability at the uncued location is only 0.1. This leads to
the counterintuitive observation that the uncued detector can actually achieve better
performance than the cued detector. This happens because an observer can use a
very conservative criterion for the uncued detector. In fact, they can say “no” (i.e.,
reject the hypothesis that the stimulus is present at the detector location) on every
trial and be correct 90 % of the time, regardless of the state of the detector.

Fig. 5.11 Effects of cueing analyzed by SDT



5 Attention and Signal Detection: A Practical Guide 79

It may appear that, in the case of 80 % cue validity, one should be able to achieve
high performance simply by using the response of the better detector. Unfortunately,
each detector only provides partial information (whether or not the stimulus is
present at the detector location). Both detector responses must be combined to
determine the overall response of the observer. Overall performance is calculated
by adding up hits and correct rejections from all detectors and dividing by the total
number of observations (number of trials x number of detectors). Surprisingly, if
one is limited to using the same criterion for both detectors, then valid cues offer
no advantage. The percent correct is the same for both 50 % and 80 % validity
(Fig. 5.11, bottom left), and this is true regardless of criterion. In a sense, this is
understandable as the cues provide information only about likely stimulus location,
whereas the observer’s job is to report stimulus presence.

One way that valid cues can yield an advantage is if the observer is allowed to
choose the optimum criterion independently for each detector. Figure 5.11 (bottom
right) shows performance for the case where the optimum criterion for each detector
is used (green). This is compared to the case of a single criterion that optimizes
performance for both detectors (red). The advantage of valid cues is small. This is
partly due to the fact that the proportion of catch trials is large (50 %). Reducing the
proportion of catch trials increases the performance advantage provided by valid
cues. Whether or not subjects are capable of maintaining multiple decision criteria
at the same time is an open question [28].

Other approaches to understanding cueing effects have been suggested. Cueing
effects can be modeled using Bayesian statistics, which leads to similar conclusions
about the advantages of valid cues [7]. In all of the above, the assumption is that
valid cues affect the decision process but not signal quality. If valid cues enhance
signal strength, then that advantage would add to the advantage one can achieve by
adjusting decision criteria.

5.6 Signal Detection Over Time

Attention can increase the rate of information processing [29]. Hence, models are
needed that account for both improvements in detectability and response time.
However, the preceding discussion applies only to signals that are non-time-varying
in the sense that they remain constant over the duration of a given observation
period or “trial.” The assumption is that, on each trial, the observer draws a single
sample from the distribution of internal states of each detector and a decision is
made based on those samples. These models can predict performance accuracy, but
not the amount of time needed to respond at a given level of accuracy. Adding the
dimension of time allows observers to draw multiple samples from each detector
and to integrate the evidence provided by those samples, before reaching a decision.

In the 1940s, Wald [30], and others, developed the theory of sequential sampling
as a way to calculate the incremental evidence provided by each sample and, thus,
how many samples are needed for a given level of performance. If samples are
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drawn at a steady rate, this number corresponds to response time. Specifically,
Wald developed the sequential probability ratio test (SPRT), which integrates the
incremental information provided by each sample and also specifies a stopping rule,
i.e., the amount of integrated evidence needed to achieve a given level of accuracy,
defined in terms of percentage correct (hits and correct rejections) or incorrect (false
alarms and misses). This test is derived from the Neyman-Pearson lemma which
states that the likelihood ratio test maximizes the probability of detection for a given
probability of false alarms [31].

The problem addressed by the SPRT is how to quantify the information in each
sample so that it can be combined with other samples. The optimal way to do this
is to start with the likelihood that a given sample, y, was drawn from the signal-
present or signal-absent probability densities, i.e., p(yjS) and p(yjN). The next step
is to compute the log of the likelihood ratio: x D log[p(yjS)/p(yjN)]. The quantity, x,
represents the momentary evidence favoring hypothesis H1: signal present vs. H0:
signal absent. The process is iterated by repeatedly drawing samples, calculating the
log of the likelihood ratio, and adding that incremental evidence to the total evidence
accumulated from previous samples:

xtC1 D xt C log

�
p .ytC1jS/

p .ytC1jN/

�
:

The accumulation of evidence continues until x reaches a threshold value, or
boundary. There are two boundaries: if x first reaches bound A, H1 is accepted
(e.g., observer responds “yes”), and if x reaches bound B, H1 is rejected (response
is “no”). The values of A and B are calculated to yield a predetermined level
of performance accuracy. If alpha is the desired false alarm rate and beta the
desired miss rate, then A D log[(1 � beta)/alpha], and B D log[beta/(1 � alpha)]. The
bounds can also be calculated in terms of the hit and correct rejection rates, as hit
rate D 1 � beta and correction rejection rate D 1 � alpha.

The SPRT can be thought of as a one-dimensional diffusion-to-bound process
[32, 33], wherein the decision variable, x, takes a random walk that starts at zero and
ends at one of the two bounds. This can be written as dx/dt D r C u(0,s), where r is
the mean drift rate and u is the momentary noise represented by a random variable
drawn from some distribution, typically a Gaussian with mean D 0 and standard
deviation D s. The random element guarantees that, given enough time, x will hit
one bound or the other even if the drift rate is zero. The diffusion parameters (r, s)
as well as the bounds (A,B) can be fit to experimental data for accuracy and reaction
time [34].

Figure 5.12 shows simulations based on the SPRT where the likelihood density
functions are Gaussians. The outcomes can be classified as hits (blue) and correct
rejections (red), as well as misses and false alarms (not shown). The proportions
of correct and incorrect trials as well as the response time distributions for each
class of outcome are fully determined by the log-likelihood ratio and the boundaries
(Fig. 5.12, below).

The standard SDT notions of detectability and response bias are built into the
SPRT. Detectability depends on the rate of evidence accumulation, drift rate, and the
variance in drift rate or momentary noise. Response bias occurs when the bounds are
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Fig. 5.12 Simulations of SPRT. (Top) Blue lines represent stimulus-present trials. Red are
stimulus-absent trials. (Bottom) RT distributions for stimulus-present (blue) and stimulus-absent
(red) trials

asymmetric so that the diffusion process starts from a position closer to one bound
than the other. The SPRT effectively has two independent criteria, whereas the static
SDT model has only one. In the SPRT, the outcome classes are more independent.
For example, it is possible to maintain a constant hit rate while varying the false
alarm rate. Thus, the trade-off between hits and false alarms that is characteristic of
the static SDT model does not hold for the SPRT.

If attention increases signal quality by reducing signal to noise, the effect on the
SPRT will be to increase the rate of evidence accumulation [35]. This is equivalent to
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improving stimulus detectability. Others have incorporated salience and economic
value by modulating drift rate [36].

The SPRT also provides a solution to the problem of pooling responses across
multiple detectors. The summation of log-likelihoods applies not only to the
integration of multiple samples from a single detector, but also to the integration
of individual samples from multiple detectors. Given a set of samples from multiple
detectors, one can simply sum the log of the likelihood ratios to obtain an estimate of
the evidence that a stimulus is present. This could be called the parallel probability
ratio test (PPRT). This calculation can be performed at every moment in time.
The conversion from raw samples to log-likelihoods takes into account the signal-
to-noise of each detector and thus provides a common metric for integrating
responses from detectors with different sensitivities, filtering properties, and noise
characteristics.

Computing the SPRT in parallel across the visual scene using a 2D array of
detectors results in a detectability salience map. This is illustrated in Fig. 5.13 with
a 40 � 40 array of detectors. The signal can occur at one of two locations (lower
left or upper right). Detectability (hit rate – false alarm rate) for each detector is
plotted (black indicates detectors with high false alarms, white indicates detectors
with high hit rate). The cueing paradigm described in Fig. 5.10 was implemented
with two different cue validities. Cue validity is implemented by biasing the starting
point of the decision processes at the cued and uncued locations [37]. When the cue
validity is 0.5, the cue provides no information, the signal and noise distributions
have equal area, and detectability is equal at the two locations. When the cue
validity is 0.55, the signal appears at the cued location 55 % of the time and
at the uncued location 45 % of the time. This enhances the detectability at the
cued location and reduces detectability at the uncued location. Figure 5.13 plots
stimulus detectability, but SPRT-computed salience can also be expressed in terms
of response time. If detectability and response time are combined, it is possible
to calculate the information processed by the observer in terms of bits/second

Fig. 5.13 Salience maps computed using SPRT. Both maps show the detectability of a signal that
can occur at one of two locations. (Left) signal occurs at either location with equal probability.
(Right) signal occurs at cued location (lower left) 55 % of the time and uncued location (upper
right) 45 % of the time. Intensity indicates stimulus detectability
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(e.g., [38]). Furthermore, the SPRT allows the observer to adjust the decision
boundaries at the cued and uncued location, which should also affect the relative
salience.

5.7 Conclusion

Signal detection theory provides a simple yet powerful framework for understanding
how observers respond to weak signals in the environment. The theory makes a
clear distinction between detection and response selection. Attention can improve
signal detection by increasing the gain of sensory responses while reducing noise.
For a fixed level of detectability, attention can further improve performance by
optimizing decision criteria. When there are multiple detectors, attention can
improve detectability by de-correlating responses and by selectively monitoring
detectors that are more sensitive to the stimulus by virtue of their receptive field
location, feature selectivity, or other properties.
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Chapter 6
Effects of Attention in Visual Cortex: Linking
Single Neuron Physiology to Visual Detection
and Discrimination

Vincent P. Ferrera

6.1 Introduction

Studies of neuronal activity in visual cortex have relied heavily on macaque
monkeys as a model system. Macaques, like humans, are old world primates and
range throughout Asia and North Africa. The macaque genus comprises 23 species,
including Macaca mulatta (rhesus monkey), Macaca fascicularis (cynomolgus or
“crab-eating” monkey), and Macaca fuscata (Japanese snow monkey). The most
recent common ancestor of humans and macaques lived roughly 25 million years
ago. Macaques are largely diurnal animals that have trichromatic color vision and
a retina that is anatomically almost identical to humans. In particular, the macaque
retina has a distinct fovea for high-acuity central vision.

Macaques explore their visual environment in much the same way as humans.
They have forward-looking eyes whose monocular visual fields are largely overlap-
ping, providing a large binocular field with excellent stereoscopic depth perception
[1]. Their oculomotor behavior is similar to humans, particularly with regard to
voluntary eye movements. Macaques have vergence eye movements that align the
foveae of the two eyes on targets at a particular distance. They make rapid and
frequent saccades to foveate objects of interest. They can track moving targets with
smooth pursuit, a behavior that appears to be unique to primates (at least among
mammals.)

V.P. Ferrera (�)
Department of Neuroscience, Columbia University, 1051 Riverside Drive, Unit 87, New York,
NY 10032, USA
e-mail: vpf3@cumc.columbia.edu; vincent.ferrera@gmail.com

© Springer Science+Business Media New York 2016
M. Mancas et al. (eds.), From Human Attention to Computational Attention,
Springer Series in Cognitive and Neural Systems 10,
DOI 10.1007/978-1-4939-3435-5_6

87

mailto:vpf3@cumc.columbia.edu
mailto:vincent.ferrera@gmail.com


88 V.P. Ferrera

Fig. 6.1 Macaque cerebral cortex (lateral view, partially inflated) showing visual cortical areas
V1 (primary), V2, V3, V4, DP (dorsal posterior), 7a, VP (ventral posterior), PIT (posterior
inferotemporal), CIT (central inferotemporal), and AIT (anterior inferotemporal; after [2]). A
microelectrode can be used to record neuronal activity at a precise cortical location (dashed line).
Extracellular action potential waveforms for two simultaneously recorded neurons are shown in the
lower left panel. The visual field locations and sizes of the receptive fields (blue and red squares)
of the neurons are shown in the lower right panel. LVF left visual field, RVF right visual field

In the macaque monkey brain, there are 32 cortical areas that are involved in
vision and visuomotor function [2]. For many of these areas, human homologues
have been identified [3]. Macaques can be trained to perform simple tasks that
involve visual detection, discrimination, and eye movements. The electrical activity
of individual neurons can be recorded by fine metal microelectrodes inserted into the
cerebral cortex while the animal is performing a visual task. Of the 32 visual areas
in macaques, several have been studied extensively in behavioral paradigms that
manipulate selective attention (Fig. 6.1). These studies have examined how attention
affects receptive field properties as well as the sensitivity and reliability of neuronal
responses. The current state of knowledge makes it possible to relate these neuronal
response properties to psychophysical performance using simple computational
models. The goal of the present chapter is to understand how attention alters the
representation of information in visual cortex and thus affects an observer’s ability
to detect weak stimuli and to discriminate between similar stimuli.

Visual neurons are those that receive information directly or indirectly from the
retina. The part of the environment that gives rise to light that falls onto the retina
defines the visual field. Visual neurons typically do not respond to light that arises
from anywhere in the visual field, but are sensitive to only a small region, called
the receptive field. The receptive field for an individual neuron is the part of the
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retina within which changes in illumination cause changes in the electrical activity
(typically, the firing rate) of the cell. If the eyes are not moving, the receptive field
corresponds to a fixed region of visual space. Every cell in the visual system, from
retina photoreceptors to cortical neurons, has a receptive field. The size of receptive
fields generally increases along the visual hierarchy from retina to lateral geniculate
to cortex and also with retina eccentricity (distance from the fovea). If a monkey
is trained to fixate its gaze on a small target presented on a video display, then the
borders of the receptive field can be easily mapped. This may be done by moving
a spot or bar of light through the visual field and outlining the region where the
stimulus causes a change in firing rate of the cell. Firing rate can be monitored
qualitatively by amplifying the action potentials and playing them through an audio
speaker. As long as the monkey is fixating, a particular stimulus other stimuli
presented in the visual field will have a known spatial relationship with respect to
the receptive field of a given neuron. Controlling the retina stimulus in this manner
makes it possible to study the influence of extraretinal factors, such as attention, on
the activity of visual neurons.

The receptive field of a neuron can be modeled mathematically as a spatial
weighting function, which specifies the neuron’s firing rate as a function of the
retina position of a small spot of light. A visual neuron’s sensitivity to light within
the receptive field is not necessarily uniform, but may have subregions that are
excited or inhibited by light. The spatiotemporal structure of the receptive field
may confer selectivity for orientation and direction of motion. Different parts of
the receptive field may also be sensitive to different wavelengths of light, giving rise
to color selectivity. For current purposes, we will ignore the internal structure of
visual receptive fields and simply model sensitivity within the spatial receptive field
(RF) as a two-dimensional Gaussian:

RF .x; y/ D A C B � exp
h
�

��
x � x0�2 C C � �

y � y0�2
�

=s2
i

(6.1)

Here, (x0, y0) is the center of the receptive field, s is the spread or size of the RF
(otherwise known as the space constant), B is the overall gain or sensitivity, C
determines the aspect ratio (length/width), and A is a constant that accounts for the
baseline firing of the cell in the absence of a stimulus. Many studies of the effects
of attention on the activity of visual neurons have examined changes in spatial
parameters that correspond to shrinking or expanding of the receptive field. These
are modeled as changes in the space constant, s. Other studies have documented
shifts of the RF center (x0, y0) and changes in overall sensitivity (B) and background
firing (A).

To understand how attention-related changes in receptive field properties affect
stimulus detectability and discriminability, it is necessary to consider the statistics
of neuronal responses, i.e., the variability in neuronal firing when the same stimulus
is presented repeatedly under the same conditions.
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To a first approximation, cortical neurons fire at purely random times. Their firing
can be modeled as a Poisson process where the probability of an action potential
at any given time is determined by a rate parameter, r, and is independent of the
time of occurrence of any other action potentials. The interspike intervals (times
between two successive action potentials) follow a Poisson distribution. The number
of action potentials in a fixed time window (spike count) is also Poisson distributed.
Spike count variability can be quantified by the Fano factor [4], which is the variance
in spike count divided by its mean. For a Poisson process, the Fano factor is always
around 1.0 as the variance scales in direct proportion to the mean spike count.

Poisson firing statistics represent an ideal case that is never achieved in reality. In
particular, a purely Poisson neuron could have infinitely small interspike intervals,
which are biophysically impossible. Real neurons have refractory periods – a short
window of time following a spike during which the cell is unable to fire another
spike (absolute refractory period) or has an elevated threshold for firing (relative
refractory period). Refractory periods are easy to incorporate into simulations
that generate pseudo-Poisson spike trains using random number generators [5].
Refractory periods cause neuronal firing to become more regular (lower variance
in interspike intervals). Any finite refractory period therefore reduces the Fano
factor below 1.0. A number of studies have documented sub-Poisson variability in
macaque visual cortex and in higher, attention-related cortical areas [6–10].

Figure 6.2 shows simulated Poisson-like spike trains generated by an algorithm
that incorporates an absolute refractory period. In the top-left panel are spike trains
where the refractory period is equal to 0 and below that the spike count histogram
and Fano factor versus mean spike count. The right column shows spike trains with
the same average rate, but a longer refractory period, making both the interspike
intervals and spike counts much more regular.

It has been found empirically that attention can reduce neuronal variability
[11], but the reduction is small and not always statistically significant [12]. It
seems intuitive that reduced variability should improve the ability to detect and
discriminate stimuli. One of the goals of the models presented below is to test
whether this is indeed the case.

A simple model of the response of an individual visual neuron can be obtained
by using Eq. 6.1 to provide the input to a Poisson spike generating process. This is
illustrated in Fig. 6.3 which shows the mean rate according to a one-dimensional
reduction of Eq. 6.1 (Fig. 6.3, top) and the Poisson spike counts (Fig. 6.3, bottom)
generated when a stimulus is present (A D 5, B D 10) or absent (A D 5, B D 0).
Detectability can be computed for each stimulus position as the overlap (area under
ROC) of the stimulus-present and stimulus-absent spike count distributions. Note
that this is not a complete neuronal model as it does not include contrast nonlinear-
ities, adaptation, or other factors that affect firing. Real visual neurons tend to have
sigmoidal contrast response functions, and their contrast sensitivity may be modu-
lated by attention [13, 14]. However, the current model is adequate for testing effects
of changes in sensitivity or variability for briefly presented stimuli of fixed contrast.



6 Effects of Attention in Visual Cortex: Linking Single Neuron Physiology. . . 91

0 100 200

5

10

15

20

time (ms)

tr
ia

l

refractory = 0 ms

0 10 20
0

5

10

15

20

25

spike count

tr
ia

ls

0 5 10 15
0

0.5

1

spike count

F
an

o

0 100 200

5

10

15

20

time (ms)

refractory = 10 ms

0 10 20
0

20

40

60

80

spike count

0 5 10
0

0.5

1

spike count

Fig. 6.2 Neuronal firing statistics. (Left) Pure Poisson process. (Right) Poisson with refractory
period. Top row shows 20 spike trains for each model. Middle row shows spike count distributions
for several hundred trials. Bottom row shows Fano factor versus spike count

6.2 Effects of Attention on Neuronal Responses

Moran and Desimone [15] published one of the first studies of the effect of attention
on neurons in macaque visual cortex. They trained monkeys to fixate a small
spot presented in the center of a video display. Eye movements were monitored
so that visual stimuli could be presented at known positions on the retina. While
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Fig. 6.3 Minimal model of a
single neuron. (Top) Mean
firing rate as a function of
position. (Bottom)
Distributions of spike counts
for stimulus-absent and
stimulus-present conditions
as a function of stimulus
position in receptive field
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the monkeys fixated, two stimuli were presented, and the monkeys were rewarded
for responding to one stimulus. The monkeys are presumed to have attended to
rewarded stimulus and to have ignored the other.

Moran and Desimone recorded from neurons in visual area V4 and in the inferior
temporal (IT) cortex. Neural responses were quantified as changes in firing rate
(action potentials per second), while visual stimuli were presented to the animal.
The receptive fields of the neurons were in the peripheral visual field and were
large enough that two stimuli could be presented inside the receptive field and the
monkey could still discriminate them. If both stimuli were in the receptive field
of the neuron, the cell responded well to the attended stimulus, but weakly to the
unattended stimulus. The experimenters could therefore compare the response to the
same stimulus when it was attended or unattended. Generally, the response to the
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Fig. 6.4 Attention task used
by Reynolds et al. [16].
Monkeys were trained to
fixate their gaze at the center
of the display (C) while the
activity of a visual neuron
was recorded. The receptive
field of the neuron is
indicated by the dashed box.
Two stimuli were presented
inside the receptive field, and
the monkey was rewarded for
responding to one or the
other. The attended stimulus
is indicated by the green
circle (this cue was not
presented to the animal)

stimulus was greater when it was attended. If one stimulus was inside the receptive
field and the other was outside, the effect of attention was reduced as compared to
when both were inside the receptive field.

A later study by Reynolds et al. [16] expanded on this result. Reynolds’ study
used the strategy of placing two oriented bar stimuli in the receptive field of a V4
neuron (Fig. 6.4). Neurons in V4 tend to be selective for stimulus orientation. The
orientation of one of the bars was matched to the cell’s preferred orientation and
evoked a strong response. The other stimulus was at a non-preferred orientation. In
the absence of attention, the neuronal response when both stimuli were presented
together was the average of the response to either stimulus alone. When the monkey
was rewarded for attending to one stimulus or the other, the cell behaved as if there
was only one stimulus in the receptive field; if the monkey attended the preferred
stimulus, the response was greater than the average; if he attended the non-preferred
stimulus, the response was less than the average. Thus, attention caused the cells
to shift from a response-averaging mode to a winner-take-all mode. These results
are consistent with a shrinking of the receptive field around the attended stimulus
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[17, 18]. Since Moran and Desimone’s [15] paper, a large number of studies have
demonstrated changes in the receptive field spatial weighting function that are
correlated with attention.

Attention can change the overall gain of visual responses. This was demonstrated
for neurons in visual area V4 by McAdams and Maunsell [12, 19]. This study
examined orientation tuning. Orientation selectivity is reasonably described by
Gaussian-shaped tuning function. McAdams and Maunsell placed an oriented
grating pattern in the receptive field of a V4 neuron (Fig. 6.5). They then recorded
responses to stimuli of various orientations and compared the orientation-tuned
responses when attention was directed toward the stimulus inside the RF or to a
similar stimulus well outside the receptive field. They modeled V4 responses using

Fig. 6.5 Effects of attention
on response of a single
neuron. (Top) Mean rates
when attention is directed
outside the neuron’s receptive
field (red) and inside the RF
(green). (Middle) Effect of
attention on detectability as a
function of stimulus position.
Black dots are difference
attended (green) – unattended
(red). (Bottom) Effect of
attention on stimulus
discriminability
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an equation similar to Eq. 6.1 and concluded that attention mainly affects the overall
gain (B). Importantly, they also measured activity in the absence of a stimulus and
found that attention did not affect the baseline (undriven) firing rate (A).

These few studies provide enough information to simulate the effects of attention
in the model introduced previously. In this model, the receptive field equation
(Eq. 6.1) is used to determine the mean firing rate for a small spot of light presented
at any position in the receptive field. This mean rate is then fed into a function that
generates a pseudo-Poisson spike train for a fixed time interval (1.0 s). This spike
train can be purely Poisson (refractory period D 0), or can have a finite refractory
period, resulting in sub-Poisson variability. For each stimulus, a large number of
spike trains are generated and the total spike count for each train is used as the
measure of neuronal response. One can then use principles of signal detection theory
to determine the ability of one or more simulated neurons to detect or discriminate
visual stimuli, given the trial-to-trial variability in the neuronal responses. Figure 6.5
(top) shows the mean response of a single visual neuron (reduced to one dimension)
as a function of stimulus location. The effect of attention is modeled as an overall
gain factor, G, applied to the stimulus-driven response, so that

RF .x/ D G �
n
A C B � exp

h
�

��
x � x0�2

�
=s2

io
(6.2)

The responses in Fig. 6.5 show the cases where G D 1.0 (red, attention outside
receptive field) and G D 2.0 (green, attention inside RF). In the absence of a
stimulus, the response is simply RF(x) D G*A, where A is the baseline firing rate.

Detectability and discriminability are computed by applying signal detection
theory to the spike count distributions for each stimulus. Detectability is defined as
the area under the ROC curve computed with stimulus-present and stimulus-absent
trials. The effect of attention on detectability is shown in Fig. 6.5 (middle). Even
though attention increases the driven firing rate by twofold, the maximum change in
detection probability is only 0.1. It should be noted that an attentional gain of 2.0 is
unusual. Typically, attention enhances neuronal responses by increasing mean firing
rate from 20 % to 40 %. For many cells, attention actually reduces responses.

In the simulation shown in Fig. 6.5, the baseline firing rate in the unattended
condition was 4 spikes/sec, and the maximum firing rate was 10 spikes/sec. This
value for maximum firing rate is on the low end of the range for cortical neurons.
Values of 30 spikes/sec or greater are more typical for responses to optimal stimuli.
Hence, the low ratio of max firing rate to baseline can be thought of as representing
the response to suboptimal or weak stimuli. Detection probability in the unattended
condition starts to saturate at 1.0 (perfect performance) when the maximum firing
rate is about 3 times the baseline rate. Attention cannot improve performance when
detection rates in the unattended condition are already optimal. Thus, attention
should have the greatest effect on detectability for weak or suboptimal stimuli or
cells that simply have low signal to noise even for optimal stimuli.

Stimulus discriminability is defined as the ROC area computed for pairs of
similar stimuli. In these simulations, the difference between neighboring orien-
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tations was 5ı. For the parameters used in the simulations of Fig. 6.5, attention
had little effect on discriminability for neighboring orientations (open symbols).
However, for cruder discriminations (stimuli separated by 20ı.), discrimination
performance was better overall (Fig. 6.5, bottom, filled symbols) and was more
strongly enhanced by attention. Further simulations showed that as the maximum
firing rate is increased, attention had a greater effect on improving discrimination
performance. For example, at a maximum firing rate of 50 spikes/sec (keeping all
other parameters the same), the best discrimination for neighboring orientations
improved from 74 % correct to 82 %. Hence, while attention improves detection
performance mainly for neurons with low signal to noise, it improves discrimination
for neurons with high signal strength. This suggests that different tasks might reveal
attention effects on different subpopulation of neurons.

The effects of attention on psychophysical performance predicted by the model
are fairly modest. Using realistic parameters, attention improves detection and dis-
crimination rates by a maximum of about 10 %. Such small changes in performance
are far below what is typically reported in the literature. For example, [20] found
that attention could produce up to fourfold improvements in contrast sensitivity. We
will consider two factors that could bridge this gap. The first is the effect of attention
on undriven (stimulus-absent) activity. The second is the effect of attention on spike
count variability.

So far, we have assumed that attention affects firing rates proportionately for
both stimulus-present (driven activity) and stimulus-absent (undriven or baseline
activity) conditions. This point is disputed. Some studies report that attention affects
background firing rates [21], while others [12, 19] reported that attention did not
affect undriven activity. When undriven activity is held constant in the model, so
that attention enhances activity only in the presence of a stimulus, the affects of
attention on detection are greatly increased. Repeating the simulations of Fig. 6.5
with a constant baseline, the improvement in detection probability goes from 0.1
to 0.3. This is a large enough improvement to account for actual psychophysical
performance. Thus, the issue of whether attention affects baseline activity is critical
for understanding improvements in detection performance. However, in the model,
baseline firing rate plays no role in discrimination performance.

Now we can address the issue of attention-related changes in spike count
variability. As noted above, some studies have reported that attention can reduce
trial-to-trial variability in firing activity [11]. Here, we reduce spike count variability
by introducing a refractory period. There is a caveat to this approach: for any two
spike trains with the same underlying rate, the one with the longer refractory period
will have a lower spike count. Thus, it is important to equalize spike count when
assessing the effects of regularity. Figure 6.6 (top) shows Fano factor as a function
of mean spike count for spike trains with no refractory period (red) and with a
refractory period of 10 ms (green). Note that refractoriness causes Fano factor to
decrease with mean spike count, being reduced by about half for the highest firing
rate.
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Fig. 6.6 Effects of attention
modeled as changes in
trial-to-trial spike count
variability. (Top) Fano factor
as a function of mean spike
count for refractory
period D 0 (red) or 10
(green). (Bottom) Detection
rate as a function of mean
spike count. Same convention
as top panel
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The effect of spiking regularity on detection rate is shown in Fig. 6.6 (bottom).
Again, the red dots are for spike trains with zero refractory period; the green are
for a refractory period of 10 ms. The same refractory period was used for both
stimulus-present and stimulus-absent conditions, although there is some evidence
that stimulus onset itself is accompanied by a reduction in spike count variability
[22]. What is evident from Fig. 6.6 is that a reduction in variability improves
detection rates, but only by about 5–10 %. The improvement is greatest when the
signal to noise is relatively weak, such that the maximum firing rate is about twice
the baseline firing. When the maximum firing rate increases beyond this, detection
rates saturate and spike count regularity has no effect. The simulations were carried
out with a baseline of 10 spikes/sec. Changing the baseline firing rate shifts the
curves left and right, but the same principles apply.

While spike count regularity alone results in some enhancement of detectability,
it has a smaller effect on discrimination performance. Figure 6.7 shows simulations
of a neuron whose receptive field is modeled as a one-dimensional Gaussian
function of position, with preferred position at 50ı. The left panel shows Fano
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Fig. 6.7 Effects of spike count variability on discrimination performance. (Left) Fano factor
as a function of stimulus position for unattended (green, refractory period D 0) and attended
(green, refractory period D 1). (Middle) Effects of variability on detection. Gain is attended
response/unattended response. Detection improvement is the difference in detection rate for each
position (attended – unattended) averaged over all positions. Dashed lines are best fit linear
regressions. (Right) Effects of variability on detection. Same conventions as middle panel

factors as a function of stimulus position in the receptive field for no refractory
period (green) or a refractory period of 10 ms (blue). There is a substantial,
stimulus position-dependent decrease in Fano factor. However, the decrease in
variability is accompanied by a proportional decrease in mean spike count due to the
refractoriness of the cell. In other words, the overall response of the cell is scaled,
including the mean spike count and variance. The decrease in variability leads
to an improvement in detectability of a few percent. Detection rate is calculated
by computing the ROC for stimulus-present versus stimulus-absent conditions
and assuming that attention does not affect baseline firing (either average rate
or variability) in the absence of the stimulus. Discriminability is based on the
spike count distributions for neighboring stimuli. Since refractoriness scales both
distributions proportionately, firing regularity only has a small effect on ROC area.
When the attention-related improvement in discrimination performance is plotted as
a function of actual gain (Fig. 6.7, right), the improvement in performance is quite
small (green, refractory period D 0; blue, refractory period D 10 ms).

To summarize, attention can affect the gain of neuronal responses as well as
their reliability. Large changes in response gain lead to only modest improvements
in detection and discrimination rates. If baseline activity is unaffected by the gain
change, then much larger increases in detection rates are achievable, but there is no
effect on discrimination. Improving reliability by incorporating a refractory period
into the spike train generator has a small effect on detection and an even smaller
effect on discrimination. One caveat is that refractoriness always reduces both the
variance and mean of the spike counts. Other methods that reduce variability without
changing mean rate were not explored.
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6.3 Effects of Attention Across Multiple Neurons

When considering the effects of attention across multiple neurons, there is a general
expectation that such effects will be stronger and/or more reliable. This expectation
may be frustrated for several reasons. Having more neurons can improve signal
processing, but it also means that there will be more noise due to random firing
from neurons that are not sensitive to the stimulus. Indeed the problem of selective
attention is not only one of selecting the most relevant stimulus, but, perhaps more
importantly, selecting the most relevant neurons.

To model the effects of attention across multiple neurons, consider an array of
neurons that are identical except for the location of their receptive field centers.
Instead of the scalar attentional gain factor in the single neuron model described
above, attention is modeled as a gain field [G(x), [18]] that ranges over the entire
visual field:

G .x/ D 1:0 C a � exp
�
��

x � x0�2
=s2

�
(6.3)

where a is the attentional enhancement, x is visual field location, x0 is the focus of
attention, and s is the spread of attention. Figure 6.8 shows the effect of attentional
gain enhancement on an array of neurons that have identical tuning width and
sensitivity, but different receptive field centers. Tuning curves for the unattended
case are shown in the left. On the right are tuning curves with a maximum
attentional gain of 2.0. Attention does not enhance the activity of cells whose
preferred locations are remote from the focus of attention. It should be noted that
the attentional gain field not only enhances the response of cells at the focus of
attention, but it also distorts the tuning functions. Such shifting of receptive fields
has been documented in visual areas V4 [23] and MT [18].

In the case of a single neuron, it was found that if attention enhanced both
undriven and stimulus-driven activity, there was little improvement in detection or
discrimination performance. Here, we test what happens if attention does not affect
baseline firing in either the stimulus-absent or stimulus-present conditions. When
we simulate this condition, it turns out that attention has little effect on detection
(Fig. 6.8, middle left) and no effect on discrimination (Fig. 6.8, middle right). This
result holds over a wide range of signal strengths (maximum firing rate re: baseline).
To obtain even a small increase in detectability requires an attention gain of about
4x or greater. Discriminability does not improve for any gain level. There was no
effect of refractoriness on detection or discrimination rates.

The finding that attentional gain has little effect on detection may seem counter-
intuitive. However, it makes perfect sense. There are nine neurons in the simulation,
and, as can be seen in Fig. 6.8, attention only affects 3 of them. For any given
stimulus, most of the cells do not respond at all. Yet, all of the cells must be included
when computing detectability, even if they are unmodulated by attention, or not
even driven by the stimulus. The reason for this is that the stimulus has an equal
probability of occurring at any location and this location is not known in advance.
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Fig. 6.8 (Top) Tuning
functions for an array of
model neurons in the
unattended condition (left)
and with attention focused at
�50ı. (Middle) detection and
discrimination rates. (Bottom)
Detection and discrimination
rates when responses are
pooled across neurons
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Thus, at any given time, most of the cells are simply contributing noise. This not
only dilutes the effect of attention; it can negate the effect altogether.

However, we have yet to consider the issue of pooling activity across neurons.
By this, we mean how signals from different neurons are combined when computing
the joint ROC. None of the multi-neuron simulations discussed above included
any pooling; each response was considered as an independent observation and was
weighted equally in the ROC analysis. One way to pool responses is to compute the
mean spike count across all neurons in the model on each trial. Thus, the data are
reduced from 3 dimensions (neuron � stimulus � trial) to only 2 (stimulus � trial).
This averaging is done before the ROC area is computed. The effect of this kind of
pooling is that the neurons that are sensitive to the stimulus tend to pull up the aver-
age response of the ensemble. On the other hand, when there is no stimulus, averag-
ing across neurons has little effect because they all have the same baseline activity.
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We thus consider a model in which attention has no effect on baseline activity,
but activity on every trial is pooled by averaging across all neurons. The results
are shown in the bottom row of Fig. 6.8. For this model, attention enhances both
detection (Fig. 6.8 bottom left) and discrimination (Fig. 6.8, bottom right). As in
previous simulations, reducing trial-to-trial variability has no effect (compare green
dots, refractory period D 0, to blue, refractory period D 10 ms).

Averaging over all neurons is an extreme form of pooling that is not physiologi-
cally or anatomically plausible. It requires that all of the sensory neurons converge
onto a single decision neuron. However, one can imagine a pooling function that
computes a weighted average of responses over a limited spatial extent so that only
cells with similar receptive field locations are combined. This agrees well with how
the visual cortex is wired and the fact that receptive fields get larger as one traverses
the cortical hierarchy from primary visual cortex (V1) to V2, V3, V4, and IT.

To appreciate how attention affects the representation of information in visual
cortex, we can use some of the aforementioned ideas to construct “neural” images
of simple stimuli. Figure 6.9 shows simulations of a 2D array of model neurons.
The input image consists of two vertically oriented Gabor patterns embedded in
random noise. The green circle (Fig. 6.9, left) indicates the focus of attention, but
was not present in the image used for the simulations. Each model neuron comprised
a Gaussian spatial weighting function that represented the neuron’s receptive field.
Each receptive field was approximately 1/20th the size of the image in linear
dimension. There were approximately 200 � 200 neurons whose RF centers were
distributed to cover the entire image. The response of each neuron was computed
by calculating the inner product of the weighting function and the part of the image
within the receptive field. This number was used as the rate parameter for a Poisson
spike generation function. Each pixel in Fig. 6.9 (middle and right) represents the
resulting spike count for a single neuron. The middle panel of Fig. 6.9 illustrates a
condition where attention increased the gain of the response at the attended location.
The right panel shows a condition where the gain was constant across the image,

Fig. 6.9 Neural images created by computing the responses of a 2D array of model neurons. (Left)
Original stimulus. The green circle indicates the focus of attention and was not present in the image
used for model simulations. (Middle) A 2D array of model neurons. Attention increases the gain of
the response in the attended region. Pixel intensity represents firing rate. (Right) A 2D array with
a constant response gain across location, but increased refractoriness at the attended location
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but the refractoriness of the cells was increased at the attended location. The result
of increasing refractoriness is that there is less variability across cells that have the
same input. The simulations suggest that increasing the gain has a pronounced effect
on salience, whereas reducing variability through refractoriness has little effect.
These neural images can be converted to detectability maps by running multiple
trials with and without the stimulus and computing ROC functions for each neuron.

The simulations in this chapter have explored attentional gain control and
reliability and how these affect detection and discrimination performance. Some
features of the model that turned out to be important are (1) that attention enhances
stimulus-driven responses but not baseline activity and (2) that responses are pooled
over multiple neurons. Pooling of responses across neurons reduces variability
and can have a pronounced effect on performance. One feature that was of
only modest importance was trial-to-trial spike count variability; when variability
is reduced by refractoriness there is little effect on detection or discrimination
performance. Relatively, few empirical studies have investigated effects of attention
on neural detection and discrimination thresholds [12, 13, 24, 25]. Fewer still have
related changes in neural responses to behavioral thresholds [26]. This is an area
that warrants further investigation and can profit from approaches that combine
computational modeling and neurophysiological experimentation.
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Chapter 7
Modeling Attention in Engineering

Matei Mancas

7.1 Attention in Computer Science: Idea and Approaches

There are two main approaches to attention modeling in computer science. The first
one is based on the notion of “saliency,” while the second one is based on the idea of
“visibility.” The number of papers and the amount of work is dramatically different
between these two approaches, and the models based on saliency are by far more
spread than the visibility models in computer science.

The notion of “saliency” implies a competition between “bottom-up” or exoge-
nous and “top-down” or endogenous information. The idea of bottom-up saliency
maps is that the sight or gaze of people will direct to areas which, in some way, stand
out from the background based on novel or rare features. This bottom-up saliency
can be modulated by top-down information based on memory, emotions or, goals.
The eye movements can be computed from the saliency map by using winner-take-
all [10] or more dynamical algorithms [18, 25].

The second approach to attention modeling is based on the notion of “visibility”
which assumes that people look to locations that will lead to successful task
performance. Those models are dynamic and intend to maximize the information
acquired by the eye (the visibility) of eccentric regions compared to the current
eye fixation to solve a given task (which can also be simply free viewing). In this
case, top-down information is naturally included in the notion of task along with
the dynamic bottom-up information maximization. The eye movements are in this
approach directly an output from the model and do not have to be inferred from
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a “saliency map” which is considered as a surface giving the posterior probability
(following each fixation) that the target is at each scene location [7].

7.2 Visibility Models

Compared to other Bayesian frameworks, like the one of [30], visibility models
have one main difference. The saliency map is dynamic even for static images, as
it will change depending on the eye fixations and not only the signal features: of
course, given the resolution drop-off from the fixation point to the periphery, it is
clear that some features are well identified in some eye fixation, while less or even
not visible during other eye fixations. At the contrary of saliency models, visibility
models make explicit the resolution variability of the retina: in that way, an attention
map is “recomputed” at each new fixation, as the feature visibility changes at each
of these fixations.

Najemnik and Geisler [28] found that an ideal observer based on a Bayesian
framework can predict eye search patterns including the number of saccades
needed to find a target, the amount of time needed, as well as the saccade spatial
distribution.

Other authors like [19] proposed a visibility model capable to predict the eye
fixations during the task of reading. Reninger used similar approaches for the task
of shape recognition. Tatler [34] introduces a tendency of the eye gaze to stay in
the middle of the scene to maximize the visibility over the image (which reminds
the centered preference for natural images or centered Gaussian bias illustrated in
Fig. 7.9).

The visibility models are much more used in the case of strong tasks,
and few of them are applied to free viewing which is considered as a week
task [7].

7.3 Saliency Approaches: Bottom-Up Methods

While visibility models are more used in cognitive sciences and with strong
tasks, in computer science, bottom-up approaches use features extracted only
once from the signal independently from the eye fixations, such as luminance,
color, orientation, texture, object relative position, or even simply neighborhoods
or patches from the signal. Once those features are extracted, all the existing
methods are essentially based on the same principle: looking for contrasted, rare,
surprising, novel, worthy to learn, less compressible, maximizing the information
areas. All those definitions are actually synonyms, and they all amount to searching
for some unusual features in a given context which can be spatial or temporal.
In the following, we provide examples of contexts used for different kinds of
signals.
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7.3.1 Still Images

The literature is very active concerning still image saliency models. While some
years ago only some labs in the world were working on this topic, nowadays hun-
dreds of different models are available. Those models have various implementations
and technical approaches even if initially they all derive from the same idea.

It is thus very hard to find a simple taxonomy which classifies all the methods.
Some attempts of taxonomies proposed an opposition between “biologically driven”
and “mathematically based” methods with a third class including “top-down
information.” This approach implies that only some methods can handle top-down
information while all bottom-up methods could use top-down information more or
less naturally. Another difficult point is to judge the biological plausibility which can
be obvious for some methods but much less for the others. Another criterion is the
computational time or the algorithm complexity, but it is very difficult to make this
comparison as all the existing models do not provide cues about their complexity.
Finally, a classification of methods based on center-surround contrast compared to
information theory-based methods does not take into account different approaches
as the spectral residual one, for example. Other taxonomies will also be introduced
in the next chapters as, for example, the dependence on image features. Here, we
show a taxonomy of the saliency methods which is based on the context that those
methods take into account to exhibit signal novelty. In this framework, there are
three classes of methods.

The first one is pixel’s surroundings: here a pixel, a group of pixels, or a patch is
compared with its surroundings at one or several scales.

A second class of methods will use as a context the entire image and compare
pixels or patches of pixels with other pixels or patches from other locations in the
image but not necessarily in the surroundings of the initial patch. Some models even
use more than one image as a context: an entire dataset can be used here.

Finally, the third class will take into account a context which is based on a model
of what the normality should be.

In the following sections, these three classes of models are illustrated.

7.3.1.1 Context: Pixel’s Surroundings

This approach is initially based on a biological motivation. Its origins come from
the work of [17] on attention modeling. The main idea is to compute visual features
at several scales in parallel, to apply center-surround inhibition, combination into
conspicuity maps (one per feature), and finally to fuse them into a single saliency
map. There are a lot of models derived from this approach which mainly use
local center-surround contrast as a local measure of novelty. A good example
of this family of approaches is the Itti’s model (Fig. 7.1) [10] which is the first
implementation of the Koch and Ullman model. It is composed of three main
steps. First, three types of static visual features are selected (colors, intensity, and
orientations) at several scales. The second step is the center-surround inhibition
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Fig. 7.1 Model of [10]. Three stages: center-surround differences, conspicuity maps, inter-feature
fusion into saliency map (Adapted from [10])

which will provide high response in case of high contrast, while it will have low
response in case of low contrast. This step results in a set of feature maps for
each scale. The third step consists in an across-scale combination, followed by
normalization to form “conspicuity” maps which are single multiscale contrast
maps for each feature. Finally, a linear combination is made to achieve inter-feature
fusion. Itti proposed several combination strategies: a simple and efficient one is to
provide higher weights to conspicuity maps which have global peaks much bigger
than their mean. This is an interesting step which integrates global information in
addition to the local multiscale contrast information.

This implementation proved to be the first successful approach of attention com-
putation by providing better predictions of the human gaze than chance or simple
descriptors like entropy. Following this success, most of the computational models
of bottom-up attention use the comparison of a central patch to its surroundings as
a novelty indicator.

7.3.1.2 Context: The Whole Image or a Dataset of Images

In this approach, the context which is used to provide a degree of novelty or
rarity to image patches is not necessarily the surroundings of the patch but can
be other patches in its neighborhood or even anywhere in the image or an image
database. The idea can be divided in two steps. First, local features are computed
in parallel from a given image. The second step measures the likeness of a pixel
or a neighborhood of pixels to other pixels or neighborhoods within the image.
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Fig. 7.2 Model of [32]. Patches at different locations in the image are compared (Adapted from
[32])

Fig. 7.3 Difference between locally contrasted and globally rare features. Left image: an apple
with a defect in red. Second image: [10]. Third image: [24]. Right image: mouse tracking (ground
truth)

This kind of visual saliency is called “self-resemblance.” A good example is shown
in Fig. 7.2. The model has two steps. First, it proposes to use local regression kernels
as features. Second, it proposes to use a nonparametric kernel density estimation for
such features, which results in a saliency map consisting of local “self-resemblance”
measure, indicating likelihood of saliency [32].

Mancas [21] and Riche et al. [31] focus on the entire image. These models
are designed to detect saliency in the areas which are globally rare and locally
contrasted. After a feature extraction step, both local contrast and global rarity
of pixels are taken into account to compute a saliency map. An example of the
difference between locally contrasted and globally rare features is given in Fig. 7.3.
On the left, there is the initial image of an apple with a defect in red; the second
image shows the fixations predicted by [10] where the locally contrasted apple
edges are well detected while its less contrasted but rare defect is not. The third
image shows [24] which detected the apple edges, but also the defect. Finally, the
rightmost is the mouse-tracking result for more than 30 users. Boiman and Irani [4]
look for similar patches and relative positions of these patches in an image database
which provide more cues about what should be normal. The use of a database might
be viewed as an introduction of top-down information.

7.3.1.3 Context: A Model of Normality

This approach is probably less biologically motivated than most of the other
implementations. The context which is used here is a model of what the image
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Fig. 7.4 Achanta et al. [1] use a model of the mean image (Adapted from [1])

should be: if things are not like they should be, this can be surprising, thus attracting
people’s attention. Achanta et al. [1] proposed a very simple attention model
(Fig. 7.4): first, the color space is converted from RGB to Lab; second, the Euclidean
distance is computed between a Gaussian filtered version of the input image and the
average Lab vector of the input image. The mean image used is a kind of model of
the image statistics: pixels which are far from those statistics are more salient. This
model is mainly useful in salient object detection.

Another approach to “normality” can be found in [8], where the authors proposed
a spectral model that is independent of any features. As it is known that natural
images have a 1

f decreasing Fourier log-spectrum, the difference between the
log-spectrum of the image and its smoothed log-spectrum (spectral residual) is
reconstructed into a saliency map. Indeed, a smoothed version of the log-spectrum
is closer to an 1

f decreasing log-spectrum as small variations are removed. This
approach is almost as simple as [1] but much more efficient in predicting eye
fixations.

More details on still image saliency modeling can be found in the Chaps. 8
and 9.

7.3.2 Videos

Part of the static models have been extended to video. As shown in Fig. 7.5, it is
the case of [32] where the time dimension is introduced by replacing square spatial
patches by 3D spatiotemporal cube patches where the third dimension is the time.
Also, Itti’s model was generalized with the addition of motion features and flickering
to the initial spatial set of features containing luminance, color, and orientations.
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Fig. 7.5 Seo and Milanfar [32] generalized to video by introducing the spatiotemporal cubes
(Adapted from [32])

Fig. 7.6 Detection of salient motion compared to the rest of motion. Red motion is salient because
of unexpected speed. Cyan motion is salient because of unexpected direction [26]

Those models mainly show that important motion is well detected. Other models
like [26] have developed a bottom-up saliency map to detect abnormal motion. The
proposed method is based on a multiscale approach using features extracted from
optical flow and global rarity quantification to compute bottom-up saliency maps.
The model exhibits promising results from a few moving objects to dense crowds
with increasing performance (Fig. 7.6). The idea here is to show that motion is most
of the time salient, but within motion, some motion areas are more interesting than
others.

More details on video saliency modeling can be found in Chap. 10.

7.3.3 Extension to 3D

3D saliency modeling is an emerging area of research which was boosted by two
main evolutions.

First is the arrival of affordable RGB-D cameras which provide both classical
RGB images and a depth map describing pixel distance from the camera. In terms
of computational attention, this depth information is very important. For example,
in all models released up to now, movement perpendicular to the plane of the camera
could not be taken into account, while now it is directly available in the depth
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map. Those cameras (e.g., MS Kinect) provide a whole set of new features to the
community through the depth map but also through the available point cloud and its
3D geometric features (surface normals, curvature, compactness, convexity, etc.).

The second event is the arrival of 3D printers which democratized the 3D models
used to print objects. 3D models are more easily available, and libraries like PCL
[2] can handle 3D point clouds, convert formats, and compute features from those
point clouds.

Most of the 3D saliency models are extensions of still image models. Some use
the 3D meshes based on Itti’s approach, others just add the depth as an additional
feature, while recent models are based on the use of point clouds. More details can
be found in the Chap. 17.

As 3D saliency models are mainly extensions of 2D models, depending on the
extended model, the different features can be taken into account locally and/or
globally on the 3D objects.

7.3.4 Audio Signals

There are very few auditory attention models compared to visual attention models.
One of the main issues is that it is not easy to find easy ground truth in the audio
domain (contrary to eye tracking for visual attention). Also, the audio modality
taken alone is much less informative on the scene than the visual modality. However,
we can classify existing models into different categories.

The first one represents the local context for audio signals. As shown in Fig. 7.7,
Kayser et al. [14] compute auditory saliency maps based on Itti’s visual model
(1998). First, the sound wave is converted to a time-frequency representation

Fig. 7.7 Kayser et al. [14] audio saliency model inspired from Itti (Adapted from [14])
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(“intensity image”). Then three auditory features are extracted on different scales
and in parallel (intensity, frequency contrast, and temporal contrast). For each
feature, the maps obtained at different scales are compared using a center-surround
mechanism and normalized. The center-surround maps are fused across scales
achieving saliency maps for individual features. Finally, a linear combination builds
the saliency map which is then reduced to one dimension to be able to fit on the
one-dimensional audio signal.

Another approach to compute auditory saliency map is based on following the
well-established approach of Bayesian Surprise in computer vision [9]. An auditory
surprise is introduced to detect acoustically salient events. First, a short-time Fourier
transform (STFT) is used to calculate the spectrogram. The surprise is computed in
the Bayesian framework. This surprise approach represents the “normality” context
for audio signals.

In the case of audio signal, there is no real “global” context as the time dimension
has no real boundaries as the spatial dimensions have. A global context will be a long
period of time in the past.

Mancas et al. [22] directly use as features the amplitude of the STFT and
quantify their rarity compared to a long audio history. The model detects sudden
and unexpected changes of audio textures and focuses the attention of a surveillance
operator to sound segments of interest in audio streams that are monitored.

7.3.5 Mixing Video and Audio Signals

The superior colliculus (SC) is the brain structure which directly communicates with
the eye motor command in charge of eye orientation. Its originality is to integrate
information coming from different sensory areas but mainly visual and auditory.
The information within the SC (Fig. 7.8) has a retinotopic representation. Visual
information is displayed on the superficial layers and the auditory information on the
deeper layers [15]. Once in the same coordinate system, multisensory information
will be fused in order to take a decision on the eye movement. The main task of the
SC is thus to direct the eyes onto the “important” areas of the surrounding space in
terms of both vision and sounds and mix those two modalities.

Some attempts in mixing visual (still, video, and 3D) to audio signals saliency
showed that the result is much more complex than expected. The final result is NOT
the simple addition of visual and audio saliency taken together and it also depends
on the scene (natural, social, action, etc.) [5, 16].

Basically, the visual modality seems to take the lead of attention unless the audio
event is congruent spatially AND temporally with an image object/action. In this
case, the audio has a great impact on the global attention. Given the retinotopic
representation in the superior colliculus, a correspondence between the audio and
visual location in the same time range is necessary for the fusion to be effective.
This task should also be easier in the future as arrays of microphones which also
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Fig. 7.8 Data fusion within
the superior colliculus
(Adapted from [15])

provide the direction of a sound are available together with the RGB and depth map
on low-cost sensors as the MS Kinect.

More details on mixing audio and visual saliency can be found in the Chap. 16.

7.4 Saliency Models: Including Top-Down Information

Top-down is endogenous information and comes from the inner world (information
from memory, their related emotional level, and also the task-related information).
The separation between bottom-up and top-down information is far from being
clear. Depending on the viewpoint and the definitions, some notions can be
considered as bottom-up or top-down.

One can say that top-down is not involved if the memory/learning is not
involved. In this case, all the hard-wired features which might be low level
(luminance, color, orientation, motion direction), mid-level (object basic properties
as the size, centered Gaussian as a default context), or high level (face detection,
people detection) which involve specific brain areas but do not need memory and
learning are bottom-up. An interesting point is that if bottom-up attention might be
considered as common to a given species attention embodiment (e.g., humans) as it
is hard-wired, it is not fully the case. Indeed, as the cognitive capabilities may vary,
bottom-up information might also vary within the population. A color-blind person,
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for example, will have a different perception even without using any learning or
memory, so a different bottom-up filter on the acquired data.

Top-down involves learning and memory and will deal with specific contexts
(e.g., websites, adds, etc.), object recognition (face recognition, people recognition,
specific animal or object), or a given task coming from inner needs (looking for
the keys, etc.). Top-down information is a specialization of attention which implies
important differences in attention focus between members of a given species (e.g.,
humans) depending on personal life experiences, mood, etc.

It is thus interesting that face detection can be considered as bottom-up (face
feature detection does not necessary need memory and might be located in a specific
brain area, the fusiform gyrus [27]) while face recognition is clearly top-down as it
directly uses memory to remember a specific person.

In practice, three main families of top-down information can be added to bottom-
up attention models.

The first one mainly deals with learned normality in a given context which can
come from the experience from the current signal if it is time varying, or from
previous experience (tests, databases) for still images.

The second approach is about task modeling which can either use object
recognition-related techniques or which can model the usual location of those
objects of interest.

The third one uses learning to extract both bottom-up and top-down information
from eye-tracking results on a dataset of images.

7.4.1 Top-Down as Learned Normality

Concerning still images, the “normal” gaze behavior can be learned from the “mean
observer.” Eye-tracking techniques can be used on several users, and the average of
their gaze on a set of natural images can be computed. This was achieved by several
authors as it can be seen on Fig. 7.9. Bruce and Judd et al. [13] used eye trackers,
while [20] used mouse-tracking techniques to compute this mean observer. In all
cases, it seems clear that, for natural images, the eye gaze is attracted by the center
of the images. This information is not top-down as it is generic enough not to be
learned.

This centered distribution seems logical as natural images are taken using
cameras and the photographer will naturally tend to locate the objects of interest

Fig. 7.9 Three models of the mean observer for natural images on the left. The two right images:
model of the mean observer on a set of advertising and website images
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in the center of the picture. Another point is that the objects in the center of the
visual field are the ones one might interact with; they are then more important than
the others.

This observation for natural images is very different from more specific images
which use a priori knowledge and which are top-down. In [6], the author shows
that the centered distribution mainly follows an horizontal axis for landscapes while
it follows both horizontal and vertical directions for images of interiors. Mancas
[21] showed using mouse tracking that gaze density is very different on a set of
advertisements and on a set of websites as displayed on Fig. 7.9 on the two right
images. This is partly due to a priori knowledge that people have about those images.
For example, when viewing a website, the upper part has high chances to contain
the logo and title, while the left part should contain the menu. During images or
video viewing, the default template is the one of natural images with a high weight
on the center of the image. If supplemental knowledge is known about the image,
the top-down information will modify the mean behavior toward the optimized gaze
density. Those top-down maps can highly influence the bottom-up saliency map, but
this influence is variable. In [21], it appears that top-down information seems more
important in the case of websites than advertisements and natural images. Other
kinds of models can be learned from videos, especially if the camera is still. It is
possible to accumulate motion patterns for each extracted feature which provides
a model of normality. As an example, after a given period of observation, one can
say: here moving objects are generally fast (first feature: speed) and going from left
to right (second feature: direction). If an object, at the same location, is slow and/or
going from right to left, this is surprising given what was previously learned from
the scene; thus attention will be directed to this object. This kind of considerations
can be found in [23]. It is possible to go further and to have different cyclic models
in time. In a metro station, for example, normal people behavior when a train arrives
in the station is different from the one during the waiting period in terms of people
direction, speed, density, etc. In the literature (mainly in video surveillance), the
variations in time of the normality models are learned through HMMs (hidden
Markov models) [11].

For 3D signals, another information is the proximity of objects. For natural
images, centered objects also attract our attention because they might be the ones we
will interact with as they are in the center of the visual filed. In the same way, a close
object is more likely to attract attention as it is more likely to be the first that we will
have to interact with. In real world, the default context is a mix between a centered
Gaussian and proximity value: centered close objects are the most important while
far objects on the sides the less.

7.4.2 Top-Down as a Task

While the previous section dealt with attention attracted by events which lead to
situations which are not consistent with the knowledge acquired about the scene,
here we focus on a second main top-down cue which is a visual task (“Find the



7 Modeling Attention in Engineering 117

keys!”). This task will also have a huge influence on the way the image is attended,
and it will imply object recognition (“recognize the keys”) and object usual location
(“they could be on the floor, but never on the ceiling”).

7.4.2.1 Object Recognition

Object recognition can be achieved through classical methods or using points of
interest (like SIFT, SURF, etc., [3]) which are somehow related to saliency. Some
authors integrated the notion of object recognition into the architecture of their
model like [29]. They extract the same features as for the bottom-up model, from
the object, and learn them. This learning step will provide weight modification for
the fusion of the conspicuity maps which will lead to the detection of the areas
which contain the same feature combination as the learned object. More about object
recongition and slaiency can be found in Chap. 19.

7.4.2.2 Object Location

Another approach is in providing with a higher weight the areas from the image
which have a higher probability to contain the searched object. Several authors as
[30] developed methods to learn objects’ location. Vectors of features are extracted
from the images and their dimension is reduced by using PCA (principal component
analysis). Those vectors are then compared to the ones from a database of images
containing the given object. Figure 7.10 shows the potential people location that
has been extracted from the image. This information, combined with bottom-up
saliency, leads to the selection of a person sitting down on the left part of the image.

7.4.3 Task, Context, and Learning

Recently, learning the salient features becomes more and more popular: the idea
here is not to find the rare regions, but to find an optimal description of those rare

Fig. 7.10 Bottom-up saliency model inhibited by top-down information to select only salient
people (Adapted from [30])
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Fig. 7.11 Deep learning of salient features: at the second layer (mid-level features, top row) and
at the third layer (high-level features, bottom row) (Adapted from [33])

regions which are already known from eye tracking or mouse tracking ground truth.
The learning is based on deep neural networks, sparse coding and pooling based on
large images datasets where the regions of interest are known. The most attended
regions based on eye-tracking results are used to train classifiers which will extract
the main features of these areas.

The use of deep neural networks greatly improved those techniques which are
now able to extract meaningful middle- and high-level features which can describe
the best salient regions [33]. Figure 7.11 shows examples of interesting feature
extraction in the context of the training set which was here the MIT dataset [12]. This
dataset contains general purpose images and free viewing; thus, specific top-down
information is not included. The top row of the figure shows the features after the
second layer. One can see mid-level features like corners or textures which naturally
pop out from learning. More interestingly higher-level features such as text-like
texture, faces, circular objects, and man-made structures are learned in the third
layer. Those features might be considered top-down even if generic face detection,
for example, can also be considered as bottom-up. These features are then mixed
with weights which are again learned from the ground truth into saliency maps.
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An interesting thing with this kind of approach is that it can be tailored to
datasets where specific contexts (like outdoor pictures) or specific tasks (looking
for wild animals) are taken into account. In that case, the initial feature learning
phase could exhibit features which are more related to this context and task and
which integrate both bottom-up and top-down information. However, a drawback of
these methods is that they are too much taylored to the training dataset. Analyzing
advertising images using a model trained to natural images can provide bad results.
The extensive use of deep learning can lead to a loss of genericity of the saliency
model. The future in this direction is probably in a mix of deep learning and more
classical pipelines.

7.5 Modeling Attention in Computer Science

In computer science, there are two families of models: some are based on feature
visibility and others on the concept of saliency maps, the latter approach being the
most prolific.

For saliency-based bottom-up attention, the idea is the same for all the models:
find areas in the image which are the most surprising in a given context. Three main
types of contexts can be found: a local one mainly focusing on contrast, a global
one quantifying the feature rarity, and a normality based which uses normal forms
in image or Fourier space.

Saliency models can be also applied to video, audio, and even 3D signals. When
mixing audio and visual signals, the influence of the audio seems to be taken into
account only if it is congruent with a visual event.

Finally, a set of top-down features which can influence the saliency-based models
are reviewed. While some of them are in fact bottom-up (centered Gaussian, face
detection, etc.), others are real top-down features (context related, object and face
recognition, object location).

In the next chapters, the saliency-based models will be described for still images,
for videos, but also for 3D and multimedia models. A strong validation of still and
video models is also done to see how effective the models are.
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Chapter 8
Bottom-Up Visual Attention for Still Images:
A Global View

Fred Stentiford

8.1 Introduction

Studies in neuroscience [1] are suggesting that human visual attention is enhanced
through a process of competing interactions among neurons representing all of the
stimuli present in the visual field. The competition results in the selection of a few
areas of attention and the suppression of irrelevant material. It means that people and
animals are able to spot outstanding patterns in a scene perhaps no part of which they
have seen before and attention is drawn in general to the anomalous object in the
scene. This makes visual attention a vital element in the survival of all creatures that
have evolved since the Cambrian explosion [2] when vision first appeared on the
Earth.

The ensemble of mechanisms grouped under the term attention swings into
action before we are even conscious of anything strange. Indeed there is a pre-
attentive period often less than 100 ms during which low-level processes rapidly
identify image regions that deserve attention, and it has been the subject of
considerable research. Treisman [3] describes experiments that reveal pre-attentive
behaviour in human vision. She points out a ‘masking effect’ that depends upon
the presence elsewhere of other elements sharing the local distinctive property. A
locally salient feature can be suppressed by more distant structures in the image.
Single distinctive features such as colour or orientation promote immediate saliency,
but if these properties are cojoined, the search for a target is more difficult. Treisman
describes several examples of images that exhibit the pop-out effect, some of which
behave asymmetrically. For example, the time taken to find a circle crossed by an
intersecting line is independent of the number of identical circles in the display,
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whereas the time taken to find a circle among circles with lines increases linearly
with the number of distractors.

It is known that a process of centre-surround suppression takes place in receptive
fields in primate vision V1 [4] that detects local luminance contrast and enhances
the edges that surround objects in the visual field. This mechanism is incorporated
in most models of attention and is usually represented by inner and outer circular
image regions that respond when contrast levels are significantly different (Fig. 8.1).

Computer models of visual attention aim to imitate aspects of the behaviour
of the human visual system. The models identify image regions that attract our
attentioneither directly by our gaze or covertly in our peripheral vision. Points
in these regions are assigned saliency scores according to particular measures
and the results displayed as saliency maps (Fig. 8.2). The appearance of saliency

Fig. 8.1 High contrast
centre-surround image
regions

Fig. 8.2 Image and corresponding saliency maps (a) [5], (b) [6]
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maps depends not only the balance between global and local measurements in the
algorithms but also on the content of the images which may or may not suit the
style of analysis. Many models are strictly bottom-up, that is, they rely totally on
the information contained within the images in question. Others incorporate top-
down methods that allow the statistics of related images to influence the parameters
that determine local saliency values. In the extreme, top-down attention becomes
recognition when attention is solely directed at a particular class of object and
the features characterising those objects are used as a template in the calculation
of the saliency measure. Saliency maps can predict eye fixations, by assigning a
probability to points in an image where most people will look. However, human
gaze behaviour is normally task driven, and therefore saliency maps are agnostic
about the sequencing of eye movements and more complex modelling mechanisms
are necessary [7].

The potential benefits that can arise from a model of attention are manifold
and include applications to visual inspection in manufacturing processes, medical
diagnosis, spotting security breaches, removing redundancy in data, various target-
ing applications and many others. The next section briefly outlines some common
models of attention, highlighting some advantages and weaknesses.

8.2 Categorisation Schemes for Attention Models

Several authors have attempted to classify and categorise attention models against a
set of criteria that separate the methods they employ into groups that highlight the
selected features. Motion is certainly a powerful attentive factor that outweighs and
obscures other features that characterise attention. It has the advantage that it can
be detected easily by measuring local changes rather than any more complex pro-
cessing. Top-down approaches may draw particular attention to specific sequences
in time.

Object-based models dependent on Gestalt factors such as closure and symmetry
can be contrasted with models that rely purely on spatial measurements. This
viewpoint is related to a top-bottom perspective in which objects themselves become
top-down targets for attention. Task definitions can shift human attention in a
dramatic fashion, in the extreme not to even see the object of attention [8]. In
a similar fashion, a task is a top-down influence which when modelled targets
attention towards an object search or an interactive role.

Models that make use of concepts from physiology and neuroscience fall into
a biologically inspired category. These models use mathematical frameworks that
reflect current theories of the human visual system. Successful modelling of human
behaviour could provide better understanding of the actual mechanisms involved.
However, the various mathematical implementations of cognitive models may be
categorised in other ways.

Both decision-theoretic models and Bayesian approaches carry out statistical
analyses to detect regions of interest. The methods rely upon the use of features
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that distinguish foreground from background and can also incorporate top-down
information. These approaches can be described as cognitive as aspects are reflected
in biological cell systems.

It is plausible to assume that a salient object represents a concentration of
information relative to the surrounding background. In this way, information
theoretic models measure the rarity of features present in regions to determine
saliency. Again statistics are used to spot unusual structure, but it is worth noting that
the probabilities of rare features are derived from very few samples and therefore
are statistically less reliable than those derived from features that are common.

Another attempt at characterising saliency transforms images into the frequency
domain, the idea being that saliency is easier to detect in the new space. It is likely
that relevant salient features dependent on spatial frequency distributions will be
emphasised, but other potentially more salient features in the original image will be
suppressed.

Some models employ graphical representations, but this aspect may be the only
factor that is common to the different approaches because quite diverse functionality
is assigned to nodes and edges. However, it can allow solutions to become large and
complex, but does maintain a direct link with structure present in the image.

The categorisation used in this chapter identifies approaches that extract structure
as part of the saliency measure as opposed to relying more on other features that
are selected to characterise saliency. Of course the dividing line is not always
clear as with any categorisation rule, but the use of spatial relationships and low-
level features provides a useful way of distinguishing the various methods. It is
apparent that the categorisation of models of attention is not clear cut because
most methods fall into several categories and this may therefore confuse rather than
inform. However, some categories will be appropriate and helpful in the context of
specific applications.

8.3 Computational Models

Investigations into the physical operation of the visual cortex are very difficult
not just because of the complexity but also the lack of suitable tools that can
monitor in real time the potential interactions of multitudes of individual neurons.
Current multi-electrode techniques can record simultaneously spikes from a few
hundreds of neurons [9], and this number is sure to increase over the next few
years. Nevertheless, we will not be able to predict and model the operation of
neurons unless we know in detail how they operate in normal circumstances both
individually and in concert. Functional magnetic resonance imaging (fMRI) scans
are certainly providing scientists with valuable insights into brain function, but
they are very blunt instruments when it comes to comprehending the precise firing
sequences of neurons. This is presenting a barrier to our understanding of human
vision which can be met in part by making use of computational models that
reflect the outward behaviour of the visual system. It enables theories to be tested
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against behavioural data and perhaps provide justification for the design of new
behavioural experiments. A wide ranging survey of the state of the art in visual
attention modelling can be found in Borji et al. [10].

Bottom-up approaches that rely on preselected features characterising saliency
are now contrasted with methods that place more importance upon structure
detection. Balancing the assumptions associated with the selection of feature
measurements against any unforeseen restrictions they place on potential future
applications is a challenge to be met by this research.

8.3.1 A Priori Feature-Based Methods

Saliency is frequently modelled by combinations of values of image parameters such
as intensity, colour, orientation, size and others. Particular local structures such as
edges, curvature, corners, shape and location are also considered relevant measures
of saliency.

Itti et al. [11] define a system which models visual search in primates (Fig. 8.3).
Features based upon linear filters and centre-surround structures encoding intensity,
orientation and colour are used to construct a saliency map that reflects areas of high
attention (Fig. 8.4). Supervised learning is suggested as a strategy to bias the relative
weights of the features in order to tune the system towards specific target detection

Input image

Linear filtering

intensity

Center-surround differences and normalization

Across-scale combinations and normalization

Linear combinations

Winner-take-all

Attended location

Inhibition
of return

Feature

Conspicuity

Saliency map

maps

(12 maps) (24 maps)(6 maps)

maps

colors orientations

Fig. 8.3 Model architecture from Itti [11]
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Fig. 8.4 Image and corresponding saliency map from Itti et al. [11]

tasks. However, the method of combining information from each of these filters is
difficult and may not function well on certain categories of image. Itti’s work has
provided a basis for performance comparisons reported in many papers on visual
attention. Han et al. [12] extended the Itti model by using a Markov random field.
The computational visual attention mechanisms are integrated with region growing
techniques. Gao et al. [13] use the feature decomposition of Itti et al., and saliency is
determined from the discrimination obtained from the mutual information between
centre and surround.

Tsotsos [14] presents a pyramidal processing attention model as a means of
reducing the complexity arising from a large number of selected features. A winner-
takes-all strategy is imposed on the processing layers in the pyramid so that the
more salient objects are identified by location and features at the top of the pyramid.
Provision is made to offset a boundary effect in the pyramidal structure that lays
emphasis on central items even if they are less significant than peripheral items.
Tsotsos highlights features such as size, luminance, edge contrast and orientation as
possible features for defining saliency in static images, but there is little guidance
on how these might be selected or combined.

Osberger et al. [15] identify perceptually important regions by first segmenting
images into homogeneous regions and then scoring each area using five intuitively
selected measures. These measures are grey-level contrast, size, shape, central
image location and image border location. The approach is heavily dependent upon
the success of the segmentation, and in spite of this, it is not clear that the method is
able to identify important features in faces such as the eyes. Luo et al. [16] also
devise a set of intuitive saliency features and weights and use them to segment
images to depict regions of interest. Some higher-level priors are used such as skin
colour, and selected images are used to normalise feature measurements.

The study by Le Meur et al. [17] lays emphasis on the considerable bias
of observers towards looking at the central parts of images where perhaps the
photographer usually places the subject. Le Meur et al. also take account of visual
masking in their model as it is known that the differential sensitivity of the human
visual system is dependent on the absolute values of parameters such as spatial
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frequency. Gopalakrishnan et al. [18] apply features based on colour and orientation
to characterise salient regions, whereas Valenti et al. [19] employ features based on
the edges of colour regions and their curvature.

Cheng et al. [20] use a distance metric in Lab colour space to measure contrast
between regions and estimate saliency. The number of colours is minimised to
reduce computation. The approach is used to segment salient objects. Achanta [21]
again uses the Lab colour space but blurs the images with a Gaussian kernel and
uses the difference with the original image to identify salient regions that are also
easy to segment.

J. Zhang et al. [22] construct a set of Boolean feature maps using the Lab colour
space. Connected regions touching the image border are ignored. This has the effect
of introducing a centre bias and obtains good results on the MIT benchmark data
[23].

L. Zhang et al. [24] gather statistics from a set of natural scenes to train sets of
features used to estimate saliency. Saliency is indicated if features in a region are
comparatively rare in the background. In a similar fashion, Bruce et al. [25] use
3600 natural images to prepare a set of basis functions and identify saliency using
the likelihood of content within a region on the basis of the surround.

Ritchie et al. [26] derive six feature maps from the image, three maps from
colour measurements and three from orientation measurements. Each feature map
is subjected to Gaussian decomposition into four scales and a rarity map produced.
The maps are then merged, and the method yields saliency maps that compare
favourably with other approaches on the MIT data. The work highlights the effects
that high-level recognition can have on fixation maps.

It might be argued that methods employing the intuitively inferred properties of
images could be to some extent reflecting top-down information into the images
being analysed. In this same sense, an attention mechanism that is driven by a
specific task is also making use of top-down information and previously acquired
experience. Several approaches fall into this category such as Liu et al. [27] who use
an intuitively selected set of features including multiscale contrast, centre-surround
measures and colour distribution to train a classifier to identify salient objects.

Oliva et al. [28] construct contextual features that guide attention towards specific
targets such as people. However, detecting such irregularities as salient necessitates
top-down knowledge of what characterises the images of people. Kavak et al.
[29] utilises a learning-based saliency model and also employs both low-level
features and high-level object-based features. A centre bias is introduced to improve
performance.

Vig et al. [30] employ a training set of salient and non-salient gaze-labelled
regions to construct an ensemble of convolutional network models. The method
obtained good results on the MIT benchmark data. This work was developed by
Kummerer et al. [31] who trained a high-dimensional feature space that had been
previously optimised for object recognition and achieved an improved performance.
Torralba [32] computes local salience using features derived from RGB, six
orientations and four scales at each pixel. This is then modulated with contextual
features trained on specific attentive objects such as people, paintings and mugs.
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The operation is therefore significantly governed by features derived from top-
down guidance. Judd [33] trains a 33-feature support vector machine to obtain a
performance that approaches that of a human. He notes the importance of including
object detectors among the features such as for faces and text, as these figure
strongly in the fixation data. He also incorporates a centre prior, but it should be
noted that during the collection of eye tracking data, all users were asked to fixate
centrally before viewing images, and this requirement will have a powerful influence
on the position of many of the subsequent fixations.

Garcia-Diaz [34] uses a hierarchically whitened feature space, where the norm
of the vector displays the variability and serves as a saliency metric to measure how
far a pixel feature vector deviates from the rest of the data. Some centre bias was
removed from data by randomising the start point for eye tracking.

Many feature-based methods incorporate some form of top-down input either
through supervised learning or a targeted choice of features. Whether features
such as red or colour are higher or lower in the top-down scale is open to debate
depending on the relevance in particular applications. However, the main attraction
of this approach is the freedom to select features that are known to characterise
saliency in general. The difficulty with preselecting features in this manner is that
they cannot always anticipate the properties of a yet-to-be-seen attentive object.

8.3.2 Structural-Based Methods

All attention models make use of low-level measurements, but many seek common-
ality of structure within this data to isolate regions worthy of attention rather than
only rely upon weighted combinations of feature measurements.

Erdem et al. [35] compare regions within a certain distance of each other using
covariance matrices of image features to determine saliency. It is noted that this
approach fails to identify saliency arising from the absence of local structure located
elsewhere in the image. In a similar fashion, Seo et al. [36] measure local patch
similarity using neighbouring feature matrices, but as with Erdem, the saliency of
objects not possessing features present globally is not detected.

Fang et al. [37] divide the image into patches and identify saliency where a patch
differs from those found elsewhere in the image while attaching a greater weight
to patches that are closest. The similarity of patches is based on measurements of
colour, intensity and orientation. In related work, Chen et al. [38] identify salient
regions by detecting local groups of similar pixels but which form only a small
percentage of the image.

Boiman et al. [39] consider higher-level structure and search for patch ensembles
common to a database and the candidate image. Regions that cannot be composed
from ensembles in the database are considered irregular. Patch configurations are
compared according to their descriptors qi and their relative positions with respect
to an origin point C (Fig. 8.5).

Goferman [40] computes the saliency of a pixel by comparing the surrounding
patch with others in the image. A patch is salient if it differs in colour as well as
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Fig. 8.5 Ensembles of
patches [39]

being physically close to others in the image. The saliency is averaged over four
scales and increased in value where pixels are close to others with high saliency to
indicate ‘context’. In addition the saliency map is given a centre bias. The approach
is particularly sensitive to edges. Borji [41] also employs local and global patch
comparisons, but obtains improved performance by combining maps obtained from
RGB and Lab colour channels. Each patch is represented by a set of basis functions
optimised over a training set. Results are evaluated using the shuffled AUC formula
which only uses the locations of fixation points and therefore ignores the effects
of any centre bias in the data. Borji emphasises the potential benefits of top-down
recognition on performance.

Harel et al. [42] propose a graphical model in which nodes correspond to image
locations and the edges represent feature-based measures of dissimilarity between
those nodes. Regions possessing high concentrations of dissimilarity are associated
with saliency.

Stentiford [43] compares local groups of isolated pixels with others in the same
relative position elsewhere in the image to detect unusual structure and hence a
measure of saliency. The pixels are selected randomly, and the process does not
involve the preselection of features or subsequent training.

Hou et al. [6] rely on frequency domain processing in which the difference
between the original log spectrum and a prior averaged spectrum is transformed
back into the spatial domain as the saliency map. Hou et al. [44] continued
the spectrally based approach by first computing the sign of the discrete cosine
transform of the image and constructing a saliency map by taking the inverse
transform and smoothing the result.

Kadir et al. [45] measure the entropy of the local distribution of image intensity
across a number of scales. High entropy indicates high local complexity and hence
high saliency. This may not be the case where the salient structures possess lower
entropy.

Lindenberg [46] provides a framework for detecting salient blob-like objects
without relying on a priori information. He stresses that not all significant image
structures are blobs. His research makes the assumption that structures that are
significant in scale space will also be perceptually significant. Although this may
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Fig. 8.6 Relative importance of features and structure in referenced papers

be true for some blob configurations, it does not apply to all, as, for example,
no provision is made for the attention-suppressing effect of surrounding similar
configurations as demonstrated by Treisman [3].

In summary, Fig. 8.6 displays how the various approaches to the analysis of
saliency described in this chapter make relative use of features and structure. No
method can avoid making use of some low-level measurements, and equally all
approaches take some account of spatial aspects. However, there is a spread between
these two extremes which may be interpreted as showing that authors have yet to
agree on future research directions in this field.

8.4 A Closer Look at Models

8.4.1 Feature Based

The feature-based and structurally based models both have their advantages and
disadvantages, and it is therefore worthwhile examining example models in more
detail in order to highlight differences and any outstanding issues.
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The Itti model [11] uses a biologically plausible architecture and is related to
Treisman’s feature integration theory [3]. Low-level feature measurements of colour
channels, intensities and orientations are extracted from images over a range of
scales. The scales (0–8) start with the original image, and dimensions are decreased
by a power of 2, ending with a ratio of 1:256. Analogously to visual receptive
fields, each measurement is fed through a centre-surround mechanism in which
a combination is used of a finer scale in the centre (c) and a course scale in the
surround (s). Six feature maps for each measurement are produced using scale
combinations (c,s) D f(2,5),(2,6),(3,6),(3,7),(4,7),4,8)g.

An intensity image I is produced from the red (r), green (g) and blue (b)
measurements where I D (r C g C b)/3 and Gaussian pyramids I(�) formed for
each of the scales (� D 0, : : : , 8). Six feature maps are produced from the
intensity values. The rgb channels are first normalised by intensity, and four
other colour channels are defined as follows: R D r � (g C b)/2, G D g � (r C b)/2,
B D b � (r C g)/2 and Y D (r C g)/2 � jr � gj/2 � b, where negative values are set to
zero. Corresponding Gaussian pyramids R(�), G(�), B(�), Y(�) are then created.
Centre-surround features are calculated by summing point differences between
centre and surround interpolating to the finer scale where appropriate.

The colour opponency of red-green and blue-yellow in human vision is modelled
using the same centre-surround mechanism where R(�):G(�) and B(�):Y(�) differ-
ences are used as values in the centre and surround regions. This yields six more
feature maps from each of the two colour opponents. The orientation sensitivity of
receptive fields is represented by orientation Gabor pyramids, each sensitive to the
preferred angles 0,  /4,  /2, 3 /4. This produces a further 24 feature maps that
contrast orientations between centre and surround.

The fusion of the 42 feature maps is difficult because saliency indicated in a
few of the feature maps can be suppressed when they are all combined (Fig. 8.7).
Equally, chance reinforcements between maps can produce spurious indications of

Fig. 8.7 Image and Itti saliency map taken from [37]
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saliency. To overcome some of these problems, feature map values are normalised to
a fixed range, and maps possessing a few strong maxima values are weighted against
those whose local maxima do not differ significantly. The feature maps for each of
intensity, colour and orientation are then summed across scales and combined to
form three intermediate maps which are then averaged to form the final saliency
map.

The principal limitation of a feature-based model is the prior selection of features
that may not detect salient aspects such as in this case corners and other structural
items. The complexity of features can be increased, and this is exemplified in the
next section.

8.4.2 Structure Based

It is apparent that salience arises not just from colour, brightness and local
orientation but also from structural features especially if they have not been seen
before. As an example, the work of Boiman et al. [39] is aimed at detecting
unusual irregularities that cannot be characterised beforehand and which therefore
represent salience. Ensembles of patches (Fig. 8.5) taken from an observed image
are compared with ensembles in a database to determine whether the observed
structure has occurred before or whether it is strange or irregular.

Regions (typically 50 � 50 pixels) of an image are broken into 7 � 7 pixel patches
taken from Gaussian pyramids at multiple scales. A spatial gradient is assigned to
each pixel, producing a normalised 49-vector di for each patch i. The similarity of
vectors (di, dj) is given by

P
�
di; dj

� D ˛ exp
�
��

di � dj
�T

S�1
D

�
di � dj

��

where ˛ is a constant and SD is a constant covariance matrix. Boiman defines the
similarity of the positions liy, ljx of patch pixels relative to origins cy, cx associated
with ensembles y, x, respectively, as

P
�
liy; cy; ljx; cx

� D ˇ exp
�
���

liy � cy
� � �

ljx � cx
��T

S�1
L

��
liy � cy

� � �
ljx � cx

���

where ˇ is a constant and SL is a constant covariance matrix.
A correspondence mdi

y is set up between similar patches in the observed image y
and those in the database x:

mdi
y D max

d
j
x

P
�
di

y; dj
x

�
P

�
dj

x; ljx
�

where P
�
d j

x; l j
x

� D
�

1 d j
x; l j

x 2 x

0 otherwise
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High values of mdi
y identify the locations of patches in the database that are

similar to the ith patch in y.
Patches that are not only similar but also possess the same relative position with

respect to the ensemble origin are identified by mci
y

mci
y D max

l
j
x

P
�
liy; cy; ljx; cx

�
mdi

y

This yields a set of candidate origins ci
x in the database corresponding to each

of the patches in y, and hence the best matching ensemble in x may be determined
from

M D max
cxDci

x

mci
y

A number of heuristics are introduced to reduce the size of an impossibly large
search space. Patch ensembles are grown starting from a single patch, and additional
patches are added if they match a database structure. Secondly, computation is
reduced by considering coarse scales during the initial stages, but if matches are
not found, different processing rules have to be followed using a finer scale. The
method is applied to the problem of detecting suspicious behaviour, and top-down
information from a previously collected database is used to determine saliency. The
results are encouraging, but the examples reported only illustrate the algorithms.
The work has been developed further and has been used to measure self-similarity
[47] and therefore could be used to model bottom-up attention.

Although the approach is intuitively appealing, it is not clear how a database
should be set up best to reflect a particular problem. A large number of examples of
patch ensembles are proposed, but these may not capture all the ‘normal’ situations
which may later be misidentified as irregular. In addition the specific features used
to describe patches may not be able to represent certain structures in a way that
enables them to be matched. Finally, without prior knowledge, the actual selection
of patches to a large extent is random and therefore must introduce irrelevant
information which has to be processed and could degrade performance if it is not
subsequently ignored.

8.4.3 Background Identification

Saliency is difficult to characterise in general because surprise [48] cannot be
predicted! Selecting features such as colour, brightness and orientation to measure
saliency cannot offer a guarantee of success because the chosen features may not
be appropriate for the salient region in question. Boiman and others recognise that
other factors can affect visual attention that include structural relationships.

Human visual attention in a still image is governed by the relationship between
the background and the salient object. Methods therefore are needed that separate
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foreground from background that do not employ a priori information or make any
assumptions regarding properties of saliency. Background regions can be identified
by recognising the self-similarity that they exhibit. This means that salient regions
can be identified by the absence of self-similarity and avoids the need to preselect
features to characterise saliency itself which by its very nature is unpredictable.

Stentiford [49] takes this approach in which pairs of pixels (xi, xj) in region 1 of
an image and pairs of pixels in region 2 (xm, xn) of the image match if brightness,
local gradient orientation and relative orientation lie within certain thresholds where

juxi � uxmj < ı; juxj � uxn j < ı and uxk is the brightness at pixel xk (8.1)

j�i � �mj < "1;
ˇ
ˇ �j � �m

ˇ
ˇ < "1 (8.2)

and � k is the local gradient orientation of pixel xk

and

�
xj � xi

� � .xn � xm/
ˇ
ˇxj � xi

ˇ
ˇ � jxn � xmj � � (8.3)

The inner product in Eq. (8.3) constrains the difference in slopes between the pairs
of points in each region to be less than a certain angle "2 � ˇ

ˇ'ij � 'nm

ˇ
ˇ where

� D cos "2. These conditions for match are scale invariant and partly orientation
invariant o("2). The matching of the pairs of pixels xi and xj and xj and xk has
greater reliability if the pair xk and xi also match as this shows that the properties
of all three points match according to (8.1) and (8.2) and are in the same relative
angular position according to (8.3) in both regions.

The three pixels are represented by nodes in a fully connected graph or clique
(Fig. 8.8) with edges representing their angular relationship. The matching of the
relative orientation of points in (8.3) reflects the structure present in both locations
and is at the same time scale invariant. Greater reliability is obtained through the

xj

xi
xk

xn

xm
xo

Region 1 Region 2

jki jom

jij jjk
jmn jno

Fig. 8.8 Matching cliques of size 3
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Fig. 8.9 Matching cliques
fitting background 5s

associative power of larger maximal cliques that may be traded off against the
precision of the thresholds ı, "1, "2 and thereby obtain more flexible matching. A
maximal clique is obtained when it is not possible to add more matching nodes.

The similarity measure is used to analyse black and white images exhibiting
pop-out effects. Gradient orientations � k are quantised into just four values (0ı, 90ı,
180ı, 270ı), and matching points possess the same value. The threshold for "2 is
set at 20ı. Intensities in (8.1) are not used with black and white images. In practice
the check on the "2 relative orientation threshold is only applied to the four closest
nodes because as distance increases, virtually all nodes satisfy the condition if the
first four do. The images are compared with themselves, and an additional restriction
is placed on matching pixel separations:

ˇ
ˇxi � xj

ˇ
ˇ < R and jxm � xnj < R (8.4)

where R is chosen to limit the size of the regions being compared. Figure 8.9 shows
maximal cliques matching pairs of identical background shapes but not the tilted
shape. For clarity each clique is represented by coloured lines joining only the three
nearest points in each clique. The ‘2’ does not pop out and is matched because the
top and bottom sections of the ‘2’ match the bottom and top, respectively, of the
background ‘5’s.

The identification of background in this approach is strongly structural and does
not make use of any training stages save that of analysing the image itself. More
generally, attention is also dependent on prior knowledge in the sense that a familiar
pattern such as a face will pop out regardless of other structure in the background.
It is worth noting that the approach to measuring saliency by identifying maximal
matching cliques within a single image has been applied to the task of measuring
the similarity of different images. In this case, it was sufficient to match gradient
orientation and relative orientation to obtain face recognition [50].
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8.5 Summary and Conclusions

This chapter has not attempted to produce a comprehensive survey of all research
on computational attention because it is a very large and varied field. Indeed
categorising the various approaches is difficult with many associated drawbacks
in each case. Nevertheless, certain key methods for identifying saliency in images
have been categorised above according to the extent that features and structure have
been employed. There is a concern that preselected features thought to characterise
saliency cannot always measure surprise and therefore any move away from this
approach may be of interest in the future. A purely structural method has been
used to illustrate how identifying background is sufficient to reveal saliency without
characterising it beforehand, although this still may not take account of top-down
influences.

This chapter has exposed several issues:

• Feature-based methods work well but not on images that are not reflected in the
specific features used. This also applies to structural approaches as well.

• Top-down approaches are relevant if salient objects, such as text or faces, are
present.

• Centre bias in eye tracking data is an important factor when assessing the
performance of models of human attention on still images.

Understanding the nature of attention in human vision is fundamental to the
future of computer vision whether it is based on features, structure or higher-level
recognition. A framework that reflects visual behaviour both in recognition and
attention is an exciting target for research in this area and could yield new questions
for human vision itself.
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Chapter 9
Bottom-Up Saliency Models for Still Images:
A Practical Review

Nicolas Riche and Matei Mancas

There is an increasing interest to utilize human visual attention abilities on
computational systems. This is especially the case for computer vision which needs
to select the most relevant parts within a large amount of data. Therefore, modeling
visual attention, particularly the bottom-up part, has been a very active research area
over the past 20 years. Many different models of visual bottom-up attention are now
available online. They take as input natural images and output a saliency map which
gives the probability of each pixels to grab our attention. In this chapter, a state of
the art of saliency-based models has been done. Those models will be used in the
next chapters for explaining the validation of saliency models in computer science.

9.1 Background

The taxonomy proposed in this section is very simple and based on the historical
development of saliency models. It is the most efficient one to present the study
and to validate the saliency models which will be detailed in the next chapters. We
distinguish two big classes of models, corresponding to different types of outputs.

Chronologically, the first algorithm type is mostly inspired from the psychologi-
cal and neurobiological theories. It uses eye tracking data (fixation map) as ground
truth. This is why we call models corresponding to this type eye tracking (ET)-
based models in the present chapter. The purpose of this class of models is to
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Fig. 9.1 The proposed taxonomy. Two saliency model types: ET models which predict the gaze
distribution and SOD models which detect salient object

correlate the saliency map with the gaze distribution and predict the eye fixations
as shown in the second column of Fig. 9.1.

In a second time, due to the requirement of computer vision applications like
seam carving [1], object detection, and segmentation [2], a second class of models
appeared. They are called salient object detection (SOD)-based models because
their purpose is to detect salient objects as displayed in the third column of Fig. 9.1.
They use manual annotations (binary masks which highlight the salient objects) as
ground truth.

9.1.1 Eye Tracking (ET)-Based Models

The models based on eye tracking are all different but a similar structure can be
found. This structure consists in the following three main steps:

• Feature extraction.
• Attentive process for saliency computation.
• Fusion to build a single saliency map.

The first step almost always represents low-level (local orientations, texture,
colors, curvatures, intensity) and mid-level (horizon, faces, objects) feature extrac-
tion from still images. These extractions from the input image can be performed
with single (original image resolution) or multiple (blurs and subsamples) scales to
build feature maps. Then, an attentive process for saliency computation is applied
on each feature map. This attentive process is often a technique from image
processing which attempts to model preattentive theories. It can be local (patch)
or global (entire image) but also applied with single or multiple scales. Some of
the most popular operations are center-surround algorithm [3], rarity mechanism
(self-information) [4], entropy [5], spectral transformation [6], and graph-based
model [7]. Finally, the last step consists of merging all the obtained maps into a
single saliency map. To do this, normalization and linear/nonlinear combination are
computed to represent the saliency of each image pixel.

It is important to notice that this structure only uses the stimuli (RGB or grayscale
input images) to compute the saliency map. More recently, some authors have also
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quantified biases of viewers which are looking at static and dynamic natural scenes.
It was found that, for images, people tend to focus in the center of the image [8].
This is why some models add a centered 2D Gaussian bias to model the gaze pattern.
As explained in [8], five causes can explain that fixations have a high probability to
be in the center of an image: photographer bias, motor bias, viewing strategy, orbital
reserve, and screen center.

A complete overview of eye tracking-based models is available in [9] where
authors present nearly 65 models. In this section, only the ones used to explain
the validation framework proposed in the next chapters are presented. A constraint
is that these models must be available online.

We will focus on those models using descriptive sheets. A descriptive sheet has
six basic elements: the name of the model, the year, the authors, the publications, a
general figure, and a description. The purpose is to summarize and provide readers
with keys to a better understanding of all elements used during the validation
framework.

Moreover, in order to compare eye tracking-based models, four characteristics
have been chosen and added into the descriptive sheets, following the color
convention introduced by the colored keywords describing each characteristic
below, for reader’s convenience.

• The first characteristic divides models based on their approaches. Indeed, some
models have a global approach which is applied to the entire image while others
compute a saliency map with a local approach which is applied to a picture patch.

• The second one classifies models which use as post processing the center bias
of gaze of people in free viewing. To model this bias, some models apply a 2D
centered Gaussian bias to highlight the center of the saliency map.

• Third, based on [9], A. Borji et al. present a categorization of saliency models
comparing their attentive mechanism to obtain saliency map. The eight proposed
categories of methods are cognitive, graphical, spectral, information theory,
pattern classification, Bayesian, decision theory, and other models.

• Finally, the last characteristic shows how the stimuli are used. Some models
take into account all the channels in the color images while others just need the
grayscale.

The 19 eye tracking-based models which are represented by their acronyms in
Fig. 9.2 will be describe in the following of this section and use in the validation
framework.

1998 2006 2007 2008 2009 2010 2011 2012 2013

FSM [3] GBVS [ 7]
CCSA [ 10]
AIM [11]
SDLF [12]

SR [6] SUN [13]
DVA [5]
PFT [ 14]

SDSR [15]
VSLC [ 16]

ESAL [17] SKSE [ 18] AWS [ 19]
SSAFD [20]
ISSM [21]
QDCT [ 22]
RARE [4]

SERC [ 23]

Fig. 9.2 Chronological overview of eye tracking-based models
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The proposed timeline of these models shows that most algorithms have been
released over the past 10 years. For most models, the ones with default parameters
given by authors have been kept while for few other models, some specifications
have to be changed. In these cases, the choices are described in details in the
descriptive sheet.

FSM: Feature-Based Saliency Model (1998)

Characteristics: local | / | cognitive | color
Authors: L. Itti, C. Koch and E. Niebur [3].

Input image

Linear filtering

intensity

Center-surround differences and normalization

Across-scale combinations and normalization

Linear combinations

Feature

Conspicuity

Saliency map

maps

(12 maps) (24 maps)(6 maps)

maps

colors orientations

Fig. 9.3 Overview of the FSM model. From top to bottom: input image, feature extraction, center-
surround differences, linear combinations, and saliency map (Adapted from [3])

Description: This model, which has been the basis of later models, was the first
implementation of the Koch and Ullman attention model [24] and consists in three
steps. First, an input image is subsampled into a Gaussian pyramid, and each
pyramid level is decomposed in three types of static features (colors, intensity,
and orientations). In the second step, center-surround feature maps are constructed
from the static features. The center-surround filters provide high response in case
of high contrast and low response in case of low contrast. In each channel, maps
are summed across scale and normalized to form conspicuity maps which are single
contrast maps for each channel. Finally, a linear combination is computed to build
the saliency map (Fig. 9.3).
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GBVS: Graph-Based Visual Saliency (2006)

Characteristics: local | center | graphical | color
Authors: J. Harel, C. Koch and P. Penora [7].

Fig. 9.4 Schematic representation of the GBVS model: input image, feature extraction, activation,
normalization followed by a linear combination, and saliency map (Inspired by [7])

Description: This model introduced a graph-based method to compute visual
saliency. First, the same feature maps than in the FSM model are extracted. It
leads to three multiscale feature maps: colors, intensity, and orientations. Then,
a fully connected graph is built over all grid locations of each feature map, and
a weight is assigned between nodes. This weight depends on the spatial distance
and the value of the feature map between nodes. Finally, each graph is treated
as Markov chains to build an activation map where nodes which are highly
dissimilar to surrounding nodes will be assigned high values. All activation maps
are merged into the final saliency map. Again here, only locally contrasted features
are integrated over the image; the model is thus mainly based on local context
(Fig. 9.4).
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CCSA: Coherent Computational Saliency Approach (2006)

Characteristics: local | / | cognitive | color
Authors: O. Le Meur, P. Le Callet, D. Barba and D. Thoreau [10].

Fig. 9.5 Overview of the CCSA model. First row, from left to right: input image and the visibility
part into the psychovisual space. Second row, from right to left: the perception part with center-
surround interactions, the perceptual grouping part, and saliency map (Adapted from [10])

Description: This cognitive model is directly based on the current understanding
of the human visual system (HVS) behavior. Three aspects of the vision are pro-
cessed: visibility, perception, and perceptual grouping. The visibility part simulates
the limited sensitivity of our human visual system. Visual data is normalized
and grouped into a psychovisual space. The perception is used to suppress the
redundant visual information by simulating the behavior of cortical cells. Two
mechanisms are involved in this part: achromatic reinforcement by chromatic
context and center-surround suppressive interaction. Perceptual grouping refers to
the human visual ability to group and bind visual features and build a saliency map
(Fig. 9.5).

AIM: Attention Based on Information Maximization (2006)

Characteristics: local | / | information | color
Authors: N. Bruce and J. Tsotsos [11].
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Fig. 9.6 Schematic representation of AIM model. Left: independent feature extraction from input
image and basis functions. Middle: basis coefficients and density estimation. Right: coefficient
distributions, joint likelihood, self-information, and saliency map (Adapted from [25])

Description: This model detects visual Attention based on Information Max-
imization (AIM). Shannon’s self-information measure is used to compute the
saliency. First, a patch Ck (red circle in Fig. 9.6, top left) and its neighborhood
Sk (blue circle) are projected on a large sample of 7 � 7 RGB patches drawn
from natural images (basis functions). The basis coefficients are obtained by
performing an independent component analysis (ICA), and their probability density
functions are estimated to compute the joint likelihood. The saliency value is
inversely proportional to the joint likelihood. The saliency of a local image
region is thus computed as the information conveyed by that region relative to its
surroundings.
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SDLF: Saliency Detection by Using Local Features (2006)

Characteristics: local | / | bayesian | grayscale
Authors: A. Torralba, A. Oliva, M. Castelhano and J. Henderson [12].

Fig. 9.7 Overview of the Torralba’s model. From left to right: input image, two parallel
pathways—one computes local features to build saliency map (top middle), while the other
computes global features to build scene priors (bottom middle) and scene-modulated saliency map
(Adapted from [12])

Description: This method proposes to analyze the image in two parallel pathways.
One pathway computes local features (saliency). The second pathway is a global
approach. It takes into account the contextual modulation and can be seen as the
modeling of the top-down part of visual attention by computing scene priors. This
model uses a Bayesian framework that integrates both image saliency and scene
priors.

The SDLF algorithm considered here is the purely bottom-up saliency map
without the task scene priors obtained by the global pathway. The local pathway
represents each spatial location independently and provides a measure of how
unlikely it is to find a set of local measurements within the image. To do this,
a steerable pyramid which is a linear multiscale and multi-orientation image
decomposition is employed. This local representation is used to compute image
saliency (Fig. 9.7).
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SR: Spectral Residual (2007)

Characteristics: global | / | spectral | grayscale
Authors: X. Hou and L. Zhang [6].

Fig. 9.8 Schematic representation of SR model. First row: input image, log-spectrum (LS) and
smoothed log-spectrum (SLS). Second row: spectral residual and saliency map (Adapted from [6])

Description: The SR model is independent from any feature. In this method, the
first step is to compute the image Fourier spectrum (the amplitude and phase
maps). Then, the log-spectrum of the amplitude map is calculated. A filtering
amplitude map is also computed by multiplying the log-spectrum map with a
local average filter. The spectral residual map is obtained by subtracting these
last two maps. The saliency map is obtained through Fourier transform inversion.
It should be noted that the phase spectrum is preserved during the process. The
idea is that if the image log-spectrum is far from the 1=f of natural images
(image filtered spectrum), there is something abnormal which deserves attention
(Fig. 9.8).

SUN: Saliency Using Natural Image Statistics (2008)

Characteristics: local | / | bayesian | color
Authors: L. Zhang, M. Tong, T. Marks, H. Shan and G. Cottrell [13].
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Fig. 9.9 Overview of the SUN model. From left to right: input images, images with the
eye fixations, and the two methods; third column features are computed with differences of
Gaussians (DoG) and fourth column with independent component analysis (ICA) (Adapted from
[13])

Description: This saliency model using natural statistics (SUN) proposes a
Bayesian framework from which bottom-up saliency emerges naturally as the self-
information of visual features. In this method, notions similar to SDLF (Bayes
formula) and AIM (local self-information) models are found. The Bayesian
framework is composed of three terms: self-information, log-likelihood, and
location prior. The first term (bottom-up) is independent of the target while the
two others (top-down) depend on target.

The saliency map is reduced here to the self-information (bottom-up). Two
methods have been implemented. First, the features are calculated as outputs of
linear filters, such as DoG filters. Second, the features are calculated as the outputs
to filters learned from natural images using ICA. SUN with ICA (Method 2)
used here outperforms SUN with DoG filters (Method 1). These output maps are
computed on a set of 138 images of natural scenes. An estimation of the probability
distribution is obtained over the observed values of each of the features. The self-
information measure is applied on statistics from this database of natural images
(among which the current image is not present). Those images act like typical
“normal” images and difference from the statistics of those images might attract
attention (Fig. 9.9).
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DVA: Dynamic Visual Attention (2008)

Characteristics: local | / | information | color
Authors: X. Hou and L. Zhang [5].

Fig. 9.10 Schematic representation of DVA model: the initial image with a feature distribution
(left) and the corresponding saliency map with the incremental coding length of this feature
distribution (right) (Adapted from [5])

Description: This model, based on the rarity of features, introduced the incremental
coding length (ICL) approach to measure the perspective entropy gain of each
feature. Motivated by the sparse coding strategy discovered in primary visual cortex,
an image patch is first represented as a linear combination of sparse coding basis
functions. The activity ratio of a feature is its average response to image patches.
The activity of the feature ensemble is considered as a probability function. Then,
each feature is evaluated with respect to its incremental coding length (ICL). The
ICL of one feature is defined as the entropy gain of the ensemble during the activity
increment of this feature. In accordance with the general principle of predictive
coding, they redistribute energy to features according to their ICL contribution:
frequently activated features receive less energy than rarer features. Finally, the
saliency of a region is obtained by summing up the activity of all features in that
region (Fig. 9.10).

PFT: Phase Fourier Transform (2008)

Characteristics: global | / | spectral | grayscale
Authors: C. Guo, Q. Ma and L. Zhang [14].
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Fig. 9.11 Example of saliency maps from PFT algorithm on three input images (right) and
reconstruction obtained by the phase spectrum alone on three one-dimensional waveforms (left).
When there are many varying sinusoidal components (pulse), the reconstruction contains the
largest spikes (Adapted from [14])

Description: This method is based on the SR model which uses the spectral residual
of the amplitude spectrum to obtain the saliency map. PFT proposes to use the phase
spectrum instead of the amplitude. The key idea is that the amplitude spectrum
specifies how much of each sinusoidal component is present in an image while
the phase information specifies where each of the sinusoidal components resides
within it. The location with less periodicity or less homogeneity indicates where the
interesting areas are and helps in obtaining the saliency map (Fig. 9.11).

SDSR: Saliency Detection by Self-Resemblance (2009)

Characteristics: local | / | information | grayscale
Authors: H. J. Seo and P. Milanfar [15].

Fig. 9.12 Overview of SDSR saliency detection system. Local regression kernels capture the
underlying local structure of a grayscale image (left), and a self-resemblance measure is obtained
by using a nonparametric kernel density estimation and indicates the likelihood of saliency. A
saliency map is built on this measure (right) (Adapted from [15])
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Description: This bottom-up model proposes a Saliency Detection by Self-
Resemblance (SDSR). The implementation by Seo and Milanfar consists in two
parts. First, they describe local image structure at each pixel by local regression
kernels as features (matrix of local descriptors). The underlying hypothesis is that
eye fixations are driven by local feature contrast and these local descriptors are
robust with image distortions and noisy images. In a second step, they quantify the
likeness of each pixel to its surroundings and use matrix cosine similarity, which
results in a saliency map consisting of local self-resemblance measures. Even if
patches of the image are compared on a wider space than only surround, they are
not compared on the entire image (Fig. 9.12).

VSLC: Visual Saliency Based on Lossy Coding (2009)

Characteristics: local | / | information | color
Authors: Y. Li, Y. Junchi and Z. Yue [16].

Fig. 9.13 Schematic
representation of the VSLC
algorithm: the saliency map
(right) is computed by a local
center-surround mechanism
(left) which approximates the
conditional entropy with the
lossy coding length of
multivariate Gaussian data
(below) (Adapted from [26])

Description: This method computes visual saliency based on lossy coding (VSLC).
This definition of visual saliency is strictly local. The saliency is measured as
the minimum conditional entropy, which represents the uncertainty of the center-
surround local region, when the surrounding area is given and the perceptional
distortion is considered. The conditional entropy is approximated by the lossy
coding length of multivariate Gaussian data. The final saliency map is accumulated
by pixels (Fig. 9.13).
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ESAL: Extended Saliency (2010)

Characteristics: global | / | graphical | color
Authors: T. Avraham and M. Lindenbaum [17].

Fig. 9.14 ESAL algorithm on a color synthetic image. From left to right: the synthetic image, the
tree where each node is colored according to the corresponding candidates, the computed saliency
map based on self-similarities (Adapted from [17])

Description: The ESAL model proposes a static saliency model based on self-
similarities (Fig. 9.14). It is built on three observations:

1. The number of target candidates (salient patches) is usually small. So the model
is region based. The image is divided into segments, which are the candidates
for attention. The initial probability for each candidate gives preference to small
number of expected targets.

2. There is a correlation between visual similarity and target-nontarget labels. So
two visually similar candidates are likely to both be objects of interest or not.
The visual similarity between candidates is measured from their feature space
distance. Each is represented as a vector of features (texture and color). A short
distance between the two vectors indicates that the corresponding candidates are
visually similar and infers the correlations between the corresponding labels.

3. Natural scenes are often composed of clustered structural units. The data is
clustered into a mixture of multivariate Gaussians. The saliency of each candidate
is deduced by marginalization.

The algorithm is essentially a method for estimating the probability that a candidate
is a target.

SKSE: Sparse Sampling-Kernel Density Saliency Estimation
(2011)

Characteristics: local | center | bayesian | color
Authors: R. H. Tavakoli, E. Rahtu and J. Heikkilä [18].
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Fig. 9.15 An example of saliency map obtained using the SKSE method (right) for the input
image (middle). The procedure of applying a window is also illustrated (middle) with a pixel and
its selected surrounding samples in a window (left) (Adapted from [18])

Description: This SKSE method measures saliency with a simple center-surround
mechanism for still images. The proposed algorithm is based on estimating saliency
by local contrast. The distributions of features are estimated using sparse sampling
and kernel density estimation. A general Bayesian framework defines saliency map
and implicitly includes center bias. This method is fast in comparison to other
similar approaches and is able to run in real time (Fig. 9.15).

AWS: Adaptive Whitening Saliency (2012)

Characteristics: global | / | other | color
Authors: A. Garcia-Diaz, V. Leborán, X. Fdez-Vidal and X. Pardo [19].

Fig. 9.16 Schematic representation of AWS mechanism: an early forward whitening applied on
RGB input image (left) and saliency map computed from whitened features (right) (Adapted from
[27])
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Description: This model of bottom-up saliency is based on the variability in local
energy as a measure of saliency. First, the chromatic components are approximated
with a chromatic decomposition and whitening from RGB images. A bank of
log-Gabor filters is then applied on chromatic components. Each representation
is decorrelated by using whitening and a distance is computed to build ori-
ented conspicuity maps. The final saliency map is obtained by summing these
maps. The decorrelation is a global operation which considers the whole image
(Fig. 9.16).

SSAFD: Saliency on Scale-Space Analysis in Frequency
Domain (2012)

Characteristics: global | / | spectral | color
Authors: J. Li, M. Levine, X. An, X. Xu and H. He [20].

Fig. 9.17 Overview of the SSAFD method: the feature matrices are computed to form a
hypercomplex matrix (1). A Fourier transform is performed (2) and a spectrum scale space is
obtained by smoothing the amplitude (3). Finally, the saliency map is built by selecting the best
saliency scale-space maps (4) (Adapted from [20])

Description: This mechanism considers saliency detection as a frequency domain
analysis problem. First, feature maps are extracted from a color image which is
converted into I, red-green, blue-yellow feature maps to form a hypercomplex
matrix. Second, a Fourier transform is applied on this matrix and outputs the
amplitude, the phase, and the eigenaxis spectrum. Third, spectrum scale space is



9 Bottom-Up Saliency Models for Still Images: A Practical Review 157

obtained by smoothing the amplitude spectrum with Gaussian kernels at different
levels. Finally, the saliency map is obtained by selecting the best saliency maps
produced by the spectrum scale space (Fig. 9.17).

ISSM: Image Signature Saliency Model (2012)

Characteristics: global | / | spectral | grayscale
Authors: X. Hou, J. Harel and C. Koch [21].

Fig. 9.18 Schematic representation of the ISSM method: an image signature is computed on each
channel of the input image. The final saliency map is obtained by summing the results of the three
channels (Adapted from [21])

Description: The ISSM method introduces a simple image descriptor referred to as
the image signature. Given an input image, first, three color channels are extracted.
Both RGB or CIE LAB color spaces can be used.

CIE LAB is chosen here as it was designed to closely mimic how human
vision is believed to perceive color. Then image signature is computed on each
channel to suppress background and detect the foreground of an image. To
do that, a discrete cosine transform (DCT) is applied to each channel. Then,
to approximately isolate the foreground, the sign of each DCT component,
equivalent to phase for a Fourier decomposition, is stored and inversely transformed
back into the spatial domain. The amplitude information across the entire
frequency is discarded. A 2D Gaussian is then applied to blur the results, and
the final saliency map is obtained by summing the results of the three channels
(Fig. 9.18).
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QDCT: Quaternion DCT Image Signature Saliency (2012)

Characteristics: global | / | spectral | color
Authors: B. Schauerte and R. Stiefelhagen [22].spectral |

Fig. 9.19 Validation of the QDCT saliency model. First row: original images. Second row:
saliency map obtained, thanks to the QDCT method (Adapted from [28])

Description: This QDCT model extends the previous proposed work on DCT-based
image signatures (ISSM model) which defined the saliency using the inverse DCT of
the signs in the cosine spectrum. In the QDCT model, the scalar definition of image
signatures is transferred to quaternion images. Quaternions are used to represent
and process color images (in CIE LAB color space) in a holistic framework and,
subsequently, the quaternion DCT (QDCT) and signum function are applied to
calculate the visual saliency. The signum function for quaternions can be considered
as the quaternion direction (Fig. 9.19).

RARE: Multiscale Rarity-Based Saliency Algorithm (2012)

Characteristics: global | / | information | color
Authors: N. Riche, M. Mancas, M. Duvinage, M. Mibulumukini, B. Gosselin and
T. Dutoit [4].
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Fig. 9.20 Diagram of our proposed model. First, from the input image, color and orientation
features are extracted in parallel or sequentially. Then, for each feature, a multiscale rarity
mechanism is applied. Finally, two fusions (intra- and inter-channel) are made from the rarity
maps to provide the final saliency map (Adapted from [4])

Description: The RARE mechanism has three main steps. First, the authors extract
low-level color and medium-level orientation features. Afterwards, a multiscale
rarity mechanism is applied. This rarity mechanism is the key of RARE. Indeed, a
feature is not necessary salient alone, but only in a specific context. The mechanism
of multiscale rarity allows to detect both locally contrasted and globally rare
regions in the image. Finally, they fuse rarity maps into a single final saliency map
(Fig. 9.20).
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SERC: Saliency Estimation Using Region Covariances (2013)

Characteristics: local | center | other | color
Authors: E. Erdem and A. Erdem [23].

Fig. 9.21 SERC model proposes to use covariance matrices (middle) of input image patches (left)
as meta-features for saliency estimation (right) (Adapted from [23])

Description: The SERC method investigates a better way than the commonly used
linear combinations to merge maps which produce the master saliency map. The
authors propose to use covariance matrices of simple image features as meta-
features for saliency estimation. As low dimensional representations of image
patches, region covariances provide nonlinear integration of different features
by modeling their correlations. The input image is first decomposed into non-
overlapping regions, and then the saliency of each region is measured by examining
its surrounding regions. The salient regions are those that are highly dissimilar
to their neighboring regions in terms of their covariance (second-order statistics)
representations based on color, orientation, and spatial features. Moreover, to
improve the detection, first-order statistics (mean) can be also used to capture
saliency of an image region with respect to its surroundings (Fig. 9.21).

9.1.2 Salient Object Detection (SOD)-Based Models

Recently, salient object detection(SOD)-based models have attracted a lot of interest
due to the explosion of computer vision applications like seam carving [1], object
detection, or image segmentation [2]. The purpose of the models is to separate the
salient object from the image background [29].

As explained in [30, 31], there is a strong relationship between where people look
in scenes (fixation maps) and what they choose as the most salient object when they
are explicitly asked (binary masks). Therefore, the most salient object is the one that
attracts the highest fraction of fixations.
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This finding justifies to use the notion of visual attention modeling to locate
salient object or region in a scene. However, as seen in next chapters, the databases
chosen for evaluation must have complex images and not just one single object with
a clean background in order not to make solely foreground/background separation.

However, the approaches presented in Sect. 9.1.1 work well in finding fixation
locations but they have not been able to accurately detect where salient objects
should be. Therefore, a second wave of models have emerged by following the
works in [32–34].

As explained in [35], most of these algorithms have two main steps: detect the
most salient objects and segment the accurate boundary of these objects. A complete
overview of salient object detection-based models is available in [35]. In their paper,
the authors present a taxonomy divided into three categories:

1. SOD with intrinsic cues (36 models).
2. SOD with extrinsic cues (20 models).
3. Other algorithms (9 models).

In this section, only the ones used for our study and validation are exposed and
detailed using descriptive sheets. Therefore, a constraint is that these models must
be available online.

In order to compare salient object detection-based models, four characteristics
have been chosen and added into the descriptive sheets, following the color
convention introduced by the colored keywords describing each characteristic
below, for reader’s convenience.

• The first characteristic divides models based on their approaches. As seen in
Sect. 9.1.1, some models have a global approach which is applied to the entire
image while others compute a saliency map with a local approach which is
applied to a picture area. Some models can also use both approaches.

• The second one classifies models which use as prior the superpixel segmenta-
tion. Some models practice a superpixel segmentation to improve the accurate
boundary of the detected salient object.

• Third, models are classified in two categories depending on the input types used
to compute their saliency map: all the pixels or patches which summarize the
information.

• Finally, the last characteristic shows how the stimuli are used. Some models take
into account all the channels in the color images while others use information
from the JPEG bit stream.

The nine salient object detection-based models which are represented by their
acronyms in Fig. 9.22 will be describe in the following of this section and use in the
studies introduced in next chapters.

The proposed timeline of these models shows that most algorithms have been
released over the past 5 years as a second wave in the modeling of visual attention.
Indeed, these models are more recent than eye tracking-based saliency algorithms
and their goal are to detect salient objects.
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2009 2010 2011 2012 2013

FTSD [ 2] SSOI [ 36] SDBM [37] SMSI [38]
SDHAS [39]
SDAIR [40]

SLMC [41]
SIM [42]

SDWT [ 43]

Fig. 9.22 Chronological overview of salient object detection-based models used in the next
chapters

FTSD: Frequency-Tuned Saliency Detection (2009)

Characteristics: global | / | pixels | color
Authors: R. Achanta, S. Hemami, F. Estrada and S. Susstrunk [2].

Fig. 9.23 Schematic representation of the FSTD method: RGB input image (left), CIE LAB color
space of the Gaussian filtered input image (bottom middle), the average CIE LAB of the input
image (top middle), and saliency map (right) (Adapted from [2])

Description: This algorithm is a very simple model based on local color and
luminance feature contrast. First, the input RGB image is transformed to CIE LAB
color space. Second, the CIE LAB image is blurred with a Gaussian kernel to
eliminate noise and texture details from the original CIE LAB image. Finally, the
saliency map is computed by using euclidean distance between the Gaussian-filtered
and the original image. The Gaussian-filtered image eliminates small objects and
provides an idea about how the image appears to the eyes at a first glance. Objects
which are very different from this normal image will attract attention (Fig. 9.23).
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SSOI: Segmenting Salient Objects from Images (2010)

Characteristics: local | / | pixels | color
Authors: E. Rahtu, J. Kannala, M. Salo and J. Heikkilä [36].

Fig. 9.24 Illustration of SSOI saliency map computation: the yellow sliding window applied on
the input image (left) and the saliency map based on local feature contrast (right) (Adapted from
[36])

Description: This model introduces a new salient object segmentation method
based on Bayesian inference. A sliding window is applied on the image. For
each window, a contrast is computed between the distribution of some features
(such as illumination or color spaces) in an inner window and the distribution in
the collar of the window. The proposed saliency measure is formulated using a
statistical framework with these local feature contrasts. At the end, the framework
combined them with a conditional random field (CRF) model which is a proba-
bilistic model for labeling and segmenting data to provide the single saliency map
(Fig. 9.24).

SDBM: Saliency Detection Based on Bayesian Model (2011)

Characteristics: global | superpixels | pixels | color
Authors: Y. Xie and H. Lu [37].
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Fig. 9.25 Illustration of the SDBM method. From left to right: the input image, the detected
salient points, the convex hull based on salient points, the superpixels, and the SDBM saliency
map (Adapted from [37])

Description: This method proposes a new computational saliency detection model
which is implemented with a coarse to fine strategy under the Bayesian framework.
First, the authors extract salient points from the RGB input image to detect the
corner of the salient object. Second, a convex hull is used to enclose the salient
points after eliminating the points near the boundary and gives a coarse location
of the salient region. Based on this rough salient region, they formulate the
saliency computation as a Bayesian inference problem for estimating the posterior
probability at each pixel of the image and obtain the final saliency map. The
prior saliency distribution is based on superpixels and the obtained rough region
(Fig. 9.25).

SMSI: Saliency Map Based on Sampling an Image (2012)

Characteristics: local | / | pixels | color
Authors: T. N. Vikram, M. Tscherepanow and B. Wrede [38].

Fig. 9.26 An illustration of SMSI saliency model. From left to right: RGB input image, CIE LAB
color space feature maps, local saliencies on random windows, conspicuity maps, and saliency
map (Adapted from [38])

Description: This algorithm proposes to compute local saliencies over random
rectangular regions of interest. To do that, an image I is first subjected to a Gaussian
filter in order to remove noise and abrupt onsets. Second, it is converted into the
CIE LAB space and decomposed into channels. Third, N random sub-windows are
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generated over each of the channels. Fourth, a center-surround map is defined for
each channel as the sum of the absolute differences of the pixel intensity values
to the mean intensity value of the random sub-windows. The final saliency map is
computed as the euclidean norm of center-surround values over different channels
(Fig. 9.26).

SDHAS: Saliency Detection on HSV and Amplitude Spectrum
(2012)

Characteristics: local | / | patches | color
Authors: Y. Fang, W. Lin, B Lee, C. Lau, Z. Chen and C. Lin [39].

Fig. 9.27 Schematic representation of the SDHAS algorithm. Top to bottom: input image, patches
from the input image, amplitude spectrum differences from patches and their corresponding
neighbors, salient values for each patch, and saliency map (Adapted from [39])
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Description: This algorithm is a new saliency detection model based on the human
visual sensitivity and the amplitude spectrum of quaternion Fourier transform
(QFT). First, the input image is divided into small patches. The model then
computes the amplitude spectrum of QFT to represent the color, intensity, and
orientation distributions of each image patch. The saliency value of each patch
is obtained by computing the quaternion Fourier transform amplitude spectrum
differences between a patch and its neighbor patches. The weights for these
differences are determined by the human visual sensitivity and the final saliency
map is influenced by the image patch size and the scale (Fig. 9.27).

SDAIR: Saliency Detection for Adaptive Image Retargeting
(2012)

Characteristics: global | / | patches | jpeg bit stream
Authors: Y. Fang, Z. Chen, W. Lin, C. Lin [40].

Fig. 9.28 Validation of the SDAIR saliency detection algorithm. First row: original images.
Second row: the SDAIR saliency model. Last row: the ground truths (Adapted from [40])

Description: This mechanism proposes a novel saliency detection model in the
compressed domain. The authors extract the saliency information for the image
from the JPEG bit stream. The intensity, color, and texture features of the image are
derived and extracted directly from the discrete cosine transform (DCT) coefficients
in the JPEG bit stream. Then the Hausdorff distance is used to calculate the dif-
ference between two vectors of texture feature from two DCT blocks. The saliency
map is obtained by integrating feature maps using a coherent normalization-based
fusion method. Based on this model, an adaptive image retargeting algorithm can
be designed (Fig. 9.28).
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SLMC: Saliency via Low- and Mid-Level Cues (2013)

Characteristics: global | superpixels | pixels | color
Authors: Y. Xie, H. Lu and M. Yang [41].

Fig. 9.29 The SLMC model proposes a Bayesian framework by exploiting low- and mid-level
cues. Left to right: the original image, the Harris points detection and a convex hull applied on
these points, the clustering results, the prior probability map, and finally the saliency map (Adapted
from [41])

Description: This algorithm proposes to detect salient objects within a Bayesian
framework by exploiting low- and mid-level cues. First, a coarse saliency region is
obtained using a convex hull on Harris points. The likelihood probability is then
computed based on the center-surround principle between the inner region and the
outer one. For estimating the posterior probability at each pixel of the image, the
prior distribution is then computed by mid-level cues like superpixels which are
used to analyze the saliency information. A Laplacian sparse subspace clustering
(LSSC) method groups superpixels. Finally, the Bayesian visual saliency map is
computed based on the results of the superpixel clustering and the coarse saliency
region (Fig. 9.29).

SIM: Saliency for Image Manipulation (2013)

Characteristics: local | / | pixels | color
Authors: R. Margolin, L. Zelnik-Manor and A. Tal [42].

Fig. 9.30 Illustration of the SIM algorithm: from left to right: the input image, the multiple
dominant object detection map, the distinctness map and the saliency map (Adapted from [42])

Description: The SIM algorithm proposes an approach for saliency detection based
on four principles: pixel distinctness, pixel reciprocity, object association, and
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multilayer saliency. First, the authors compute the pixel distinctness where a pixel is
considered distinct if its surrounding patch does not appear elsewhere in the image.
Second, assuming that distinctive pixels are salient, a pixel reciprocity effect is
computed. The distinctness map is updated with the reciprocity effect in order to
assume that pixels in the neighborhood of distinctive pixels are more likely to be
salient as well. Third, multiple dominant objects are detected and a method predicts
their locations. Finally, the single saliency map combines patch distinctness with
the object probability map. Due to the observation that a single saliency map is
insufficient, a multilayer saliency map is built by varying degrees of abstraction.
The final saliency map discards to small objects and noisy background (Fig. 9.30).

SDWT: Saliency Detection Based on Wavelet Transform (2013)

Characteristics: both | / | pixels | color
Authors: N. Imamoglu, W. Lin and Y. Fang [43].

Fig. 9.31 Schematic representation of the SDWT model. Top to bottom: RGB input image, feature
map generation, local and global saliency computation, fusion, and saliency map (Adapted from
[43])

Description: This mechanism first converts RGB to CIE LAB color space. Then,
a 2D Gaussian filter is applied to remove noise. Third, a wavelet transform with
increasing frequency bandwidths is employed to create the multiscale feature maps
which can represent different features from edge to texture. After obtaining the
feature maps, the method calculates the global distribution of local features to obtain
both a global saliency map and a local saliency map by fusing the feature maps
at each level without normalization operation. The final saliency map is a linear
combination of these two maps (Fig. 9.31).
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9.2 Conclusion: A Taxonomy of the Algorithms

Saliency models have been presented in this chapter with a simple taxonomy based
on the historical development of methods: nineteen eye tracking-based algorithms
as well as nine salient object detection-based models. This taxonomy has been
constructed to present the studies and the validations of the saliency models which
will be detailed in the next chapters but is not sufficient to classify models according
to their structure.

This is why, in order to compare the saliency models inside each category, some
characteristics have been added into the descriptive sheets. However, as explained in
[44], the diversity of models makes taxonomy and comparison in the field of visual
attention particularly difficult. The purpose of this section is to provide readers with
a global view of each model characteristic.

9.2.1 Comparison of Eye Tracking-Based Models

Table 9.1 summarizes the four characteristics which have been chosen to compare
nineteen eye tracking-based models. It shows which of the four characteristics each
model owns.

In order to provide an idea of pros and cons of each characteristic, some
observations have to be performed. The first characteristic divides models based
on their global or local approach. The local approach has the advantage to properly
detect high contrast while the global one highlights features which are different
but not necessarily highly contrasted. The second characteristic classifies models
according to their use (or not) of the center bias of gaze. This technique is
particularly efficient when there are no particular salient regions or objects (e.g.,
landscapes) into the still images. Third, we use the categorization of Borji et al. [9]
for saliency models which compare the attentive mechanism to obtain saliency map.
This is the most popular taxonomy and some correlations with other features can
be performed. Indeed, most of spectral techniques use the global approach, while
cognitive, Bayesian, and information categories use the local one.

Finally, the last characteristics show if the still images are exploited with
information from color or grayscale channels. Most of psychophysical theories
show the importance of color during the visual attentive process. However, some
techniques such as spectral transformation or orientation extraction cannot make
use of all channels and only exploit the grayscale information.

To complete this analysis, the classical multidimensional scaling (MDS) [45]
technique has been applied. MDS is a technique allowing to reduce the number
of dimensions (N) necessary to convey or display the information contained in a
distance matrix. In this chapter, it is a way to visualize in 2D (N D 2) the similarity
level between the models. A distance matrix first needs to be calculated from the
four characteristics. Table 9.2 shows an example of how we calculate a distance
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Table 9.1 Comparison of nineteen eye tracking-based saliency models on four characteristics

Approach Post processing Mechanism [9] Stimuli

FSM local cognitive color

GBVS local center graphical color

CCSA local cognitive color

AIM local information color

SDLF local bayesian gray

SR global spectral gray

SUN local bayesian color

DVA local information color

PFT global spectral gray

SDSR local information gray

VSLC local information color

ESAL global graphical color

SKSE local center bayesian color

AWS global other color

SSAFD global spectral color

ISSM global spectral gray

QDCT global spectral color

SERC local center other color

RARE global information color

Table 9.2 Example of weight assignments for the calculation of a distance between two saliency
models (AIM and SR) based on the four characteristics

Lo Go PP Co Gr In Ba Sp Ot Co Gr

AIM 1 0 0 0 0 1 0 0 0 1 0

SR 0 1 0 0 0 0 0 1 0 0 1

D 1 1 0 0 0 1 0 1 0 1 1

(D D 6) between two saliency models (AIM and SR). For each model, a weight of
1 is assigned to each characteristic the model owns and 0 otherwise. The distance is
the sum of each weighted characteristic.

A distance matrix can be built by calculating each pairwise distance, and the
MDS algorithm assigns two coordinates for each model so that the between-model
distances are preserved as well as possible.

We can see from Fig. 9.32 a 2D MDS representation based on still image
characteristics. The coordinates of this representation are components that represent
a combination of characteristics. The first coordinate substantially corresponds to
the first feature. Indeed, on one side (left), saliency models with local approach
appear to have distances in the same range relatively to other models. On the other
side (right), saliency models with global approach also seem to have distances
in the same range. The second coordinate substantially corresponds to the last
characteristic. Indeed, on one side (top), saliency models with color stimuli as input
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Fig. 9.32 MDS based on characteristics for nineteen ET models: 1.FSM / 2.GBVS / 3.CCSA /
4.AIM / 5.SDLF / 6.SR / 7.SUN / 8.DVA / 9.PFT / 10.SDSR / 11.VSLC / 12.ESAL / 13.SKSE
/ 14.AWS / 15.SSAFD / 16.ISSM / 17.QDCT / 18.SERC / 19.RARE. The first coordinate
substantially corresponds to the local/global class while the second substantially represents
color/grayscale as input. Two clusters can also be observed: center bias and spectral approach

are very close, while on the other side (bottom), saliency models with grayscale
stimuli as input appear to have distances in the same range. We can also observe
two clusters: one represents models with 2D centered Gaussian bias (models: 2, 13,
and 18), while the other contains models with spectral mechanism (models: 6, 9, 15,
16, and 17).

9.2.2 Comparison of Salient Object Detection-Based Models

Table 9.3 summarizes the four characteristics which have been chosen to compare
the nine salient object detection-based models. It shows which of the four charac-
teristics each model owns.

As in Sect. 9.2.1, in order to give an idea of pros and cons of each chosen
characteristic, some considerations have to be conducted. As in Sect. 9.2.1, the
first characteristic compares the local approach which detects clearly contrast in
images against the global approach which highlights features which are different
but not necessarily highly contrasted. Some models use both complementary
approaches. The second characteristic classifies models which take advantage or not
of the superpixel segmentation which extracts perceptually homogeneous regions.
A drawback of this method is the parameter adjustments which can often provide
over- or under-segmentation of the scene. The third and fourth characteristics show
how the stimuli are exploited. Indeed, respectively, we investigate if the saliency
models use all the pixels of an image or patches to summarize the informations and
if the still images are exploited with color information or directly with the JPEG bit
stream information. The algorithms which use all the color pixel information must
provide a more accurate contour of salient objects.
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To complete this analysis, the same classical multidimensional scaling (MDS)
technique as proposed above has been realized. The distances between models to
compute this MDS are calculated from the four characteristics of Table 9.3. The
purpose is to have a better visualization of the level of similarity between SOD
models.

We can observe from Fig. 9.33 the 2D MDS representation based on still image
characteristics. The coordinates of this representation are components that represent
a combination of characteristics. The first coordinate substantially corresponds
to the first characteristic. Indeed, on one side (left), saliency models with local
approach appear to have distances in the same range, while on the other side
(right), saliency models with global approach seem very close. We can also see
the superpixel SP clusters (models: 3 and 7).

Table 9.3 Comparison of nine salient object detection-based models on four characteristics

Approach Prior Input Stimuli

FTSD global pixels color

SSOI local pixels color

SDBM global superpixels pixels color

SMSI local pixels color

SDHAS local patches color

SDAIR global patches jpeg bit stream

SLMC global superpixels pixels color

SIM local pixels color

SDWT both pixels color
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Fig. 9.33 Multidimensional scaling of nine salient object detection-based models based on
characteristics in 2D: 1. FTSD / 2. SSOI / 3. SDBM / 4. SMSI / 5. SDHAS / 6. SDAIR / 7. SLMC
/ 8. SIM / 9. SDWT. The first coordinate substantially corresponds to the local/global class while
the second substantially represents patch/pixels as input. The SP cluster can also be observed
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9.3 Summary

• Nineteen models for eye tracking have been presented using descriptive sheets
and will be use in the validation framework in the next chapters.

• Nine models for object segmentation have been introduced. They will be used in
the studies in the next chapters.

• In order to compare the models, different characteristics have been chosen and
classified them into some classes.

• A list of static state-of-the-art saliency models which are available online can be
found from the Computational Attention Group of TCTS lab at http://tcts.fpms.
ac.be/attention.
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Chapter 10
Bottom-Up Saliency Models for Videos:
A Practical Review

Nicolas Riche and Matei Mancas

10.1 Background

Research on visual saliency initially focused on still images rather than on video
content. However, in the recent years, an increasing demand of video saliency
appeared for some applications like gaming, editing, video retargeting, smart TV,
robot navigation, surveillance, etc. Therefore, remarkable progress has been made
first in the understanding on eye tracking data with dynamical stimuli and, in a
second time, in the modeling process.

There are fundamental differences between videos and still images. For example,
each video frame is only observed during a fraction of a second, while a still
image can be viewed much longer. Some videos can feature varying camera
motion such as tilting, panning, zooming, etc. For this reason, videos are probably
viewed differently by human observers than still images, and some comprehensive
comparative studies have emerged. In [1], for example, the authors study the
influence of tasks on gaze behavior in static and dynamic scenes. In [2], the gaze on
static and dynamic scene is compared; it also shows that the center bias decreases
with dynamic stimuli.

In terms of modeling, static models have first been extended to video. This is the
case for GBVS, SDSR, NMPT, or SSOI where authors added dynamic features to
their models. Though these existing models are major contributions, video saliency
estimation methods should then differ substantially from image saliency methods.
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Fig. 10.1 Chronological overview of salient models for videos

Indeed, camera motions has a great impact on saliency estimation, and models
need to be specifically designed to manage the temporal aspect. This is the case
for STVSM or SMQVA.

In this section, the video attention models which will be used in the next
chapters for saliency validation are described and discussed. In order to compare
salient models for videos, four characteristics have been chosen and added into
the descriptive sheets, following the color convention introduced by the colored
keywords describing each characteristic below, for reader’s convenience.

• The first characteristic such as for still images divides models based on their
approaches. Some models have a global approach which is applied to the entire
image, while others compute a saliency map with a local approach which is
applied to a picture area.

• The second one classifies models which use or not prior information. As an
improvement, some models practice some top-down factors (TD), a 2D centered
Gaussian bias, a face recognition algorithm, or a segmentation at the end of the
process.

• Third, the kind of features used to compute the saliency map classified the
models. Indeed, some only use static features (colors, texture, etc.), while others
compute dynamical features (motion, flicker, etc.). Some models can use both
features.

• Finally, the last characteristic is similar to the last one for still images and shows
if the stimuli are exploited either with all their channels ( color images) or with
just the grayscale information.

The eight saliency models for videos which are represented by their acronyms in
Fig. 10.1 will be described in the following of this section and used in the validation
framework.

GBVS: Graph-Based Visual Saliency (2006)

Characteristics: local | HL | static | color
Authors: J. Harel, C. Koch, and P. Penora [3].
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Fig. 10.2 Illustration of the GBVS method. On the first row, four frames of a video sequence. On
the second row, the corresponding saliency maps (Inspired by [3])

Description: This model uses an approach similar to the model having the same
name [3] for static scenes to create feature maps at multiple spatial scales and
propose a Graph-Based Visual Saliency model (GBVS). There are again three
main steps (Fig. 10.2), but during the feature extraction step, motion, and flicker
channels can be added to compute the saliency maps of some video sequences.
The algorithm then builds a fully connected graph over all grid locations of each
feature map (intensity, orientation, color such as RGB or Derrington, Krauskopf,
and Lennie (DKL) color space, motion, and flicker). Weights are assigned between
nodes that are inversely proportional to the similarity of feature values and their
spatial distance. A centered Gaussian is used to take advantage of the center bias
and to improve the results.

NMPT: Nick’s Machine Perception Toolbox (2008)

Characteristics: local | / | static | color
Authors: N. Butko, L. Zhang, G. Cottrell, and J. Movellan [4].

Fig. 10.3 The NMPT model computes saliency map using spatiotemporal filters on grayscale
frame (left). The filters and their outputs are shown for the difference of Gaussian filter (second
and third columns) and difference of Boxes approximation (fourth and fifth columns) (Adapted
from [4])



180 N. Riche and M. Mancas

Description: This algorithm proposes a fast approximation to dynamic scenes
of the visual saliency model for still images proposed in [11] and called SUN
(see Fig. 10.3). It introduces spatiotemporal filters and fits a generalized Gaussian
distribution to the estimated distribution for each filter response. Spatiotemporal
filters can be tuned with different settings to use only spatial, use only temporal, and
use color contrast to be efficient and similar to the human visual system (HVS). The
probability distributions of these spatiotemporal features were learned from a set of
videos from natural environments. This model calculates its features and estimates
the bottom-up saliency for each point.

SSOV: Segmenting Salient Objects for Videos (2009)

Characteristics: local | / | static | color
Authors: E. Rahtu, J. Kannala, M. Salo, and J. Heikkilä [5].

Fig. 10.4 Illustration of the SSOV method. From left to right: initial frame, an example of the
sliding window applied to compute the saliency values, and saliency map (Adapted from [12])

Description: In order to adapt SSOI [5] from static scenes to video sequences,
the CIE LAB perceptual color information of each frame is combined with the
magnitude of the optical flow as input features at several scales (see Fig. 10.4).
The optical flow was computed using an available online implementation [13]. The
proposed saliency measure is formulated using a statistical framework and local
feature contrast in motion, illumination, and color information. The final salient
segments were computed using the energy function in the conditional random field
(CRF) segmentation model for videos. The model is multiscale and does not require
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training, but the weight between the color space and motion intensity components
has to be defined manually.

SDSR: Saliency Detection by Self-Resemblance (2009)

Characteristics: local | / | static | grayscale
Authors: H. J. Seo and P. Milanfar [6].

Fig. 10.5 Illustration of the SDSR method. From left to right: the grayscale video, space-time
local steering kernels to compute feature maps from a space-time neighborhood, the self-
resemblance algorithm, and the final space-time saliency map (Adapted from [6])

Description: The SDSR model is an approach similar to the model having the same
name [14]. It uses local regression kernels as features (see Fig. 10.5). Kernel density
estimation that estimates the distribution of the features in a patch is then applied.
In statistics, the kernel density estimation is a nonparametric way to estimate the
probability density function of a random variable. The time dimension is added to
the static model to obtain a 3D local steering kernel to manage the case of video
sequences. This model has the advantage to be robust to noise and other systemic
perturbation.

VICO: VIsual COmpetitive Attention Model (2010)

Characteristics: local | / | static | color
Authors: M. Da Silva, V. Courboulay, A. Prigent, and P. Estraillier [7].
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Fig. 10.6 Illustration of the VICO model. From top to bottom: input image, low level of the FSM
method, preys-predators system, and attention location (Adapted from [7])

Description: This approach proposes a new version of the FSM model [15] for
static scenes (see Fig. 10.6). The second part of FSM classical fusion is replaced
by using preys-predators systems to merge conspicuity maps. The results reveal
that preys-predators systems can help modeling visual attention and allow fast map
generation while improving saliency map accuracy. VICO simulated the scan path
of an observer across the frames of a video. Therefore, to obtain a density map at
each frame, the model needs to be run multiple times (corresponding to the number
of viewers by database) on the same video.

SMVQA: Salient Motion for Video Quality Assessment (2011)

Characteristics: global | / | dynamic | grayscale
Authors: D. Culibrk, M. Mirkovic, V. Zlokolica, M. Pokric, V. Crnojevic, and
D. Kukolj [8].
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Fig. 10.7 Illustration of the SMVQA model. From left to right: initial frame, Gaussian pyramids
derived from the current frame, novelty filters, sum, and saliency map (Adapted from [8])

Description: The SMVQA motion-based salient model has three main steps
(Fig. 10.7): first, it uses a multiscale Gaussian pyramid derived from the current
frame and two background frames as described in [16]. Novelty temporal filters are
then performed on each pyramid level to indicate the extent to which the current
frame differs from the background frames. Finally, the single saliency map is
obtained by summing the score of the pixels from the filter outputs at different
scales, and a modified Z-score test is used to detect the outliers in the frame.
By efficiently managing the temporal information, this model detects cross-scale
motion consistency, outlier, and temporal coherence on each frame and handles also
videos with camera motion.

SMAMS: Saliency Models for Abnormal Motion Selection
(2011)

Characteristics: global | / | dynamic | grayscale
Authors: M. Mancas, N. Riche, J. Leroy, and B. Gosselin [9].

Fig. 10.8 Illustration of the SMAMS model. From left to right: synthetic and real video frames,
optical flow applied on a frame, schematization of the 3D low-pass filtering, and the saliency maps
for the corresponding input video frames (Adapted from [9])

Description: This algorithm proposes a model that detects abnormal motion. The
SMAMS architecture has four main steps: first, motion features are extracted with
an optical flow and output velocity and direction feature maps. Those two features
are then spatiotemporally averaged with a 3D low-pass filter. The spatiotemporal
averages separate each feature map into five bins at two different scales. Third,
a self-information algorithm is computed for each map to highlight rare motion
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as salient. Indeed, the motion which is the most different in terms of speed and
direction will have a higher saliency value as it is considered as abnormal. Finally,
a fusion mechanism merges channels to give a single saliency map. As illustrated
in the Fig. 10.8, some movements can be more salient than others. The model is
effective for complex videos or dense crowds. Nevertheless, the model does not
include any static cues as colors, for example.

STVSM: Spatiotemporal Visual Saliency Model (2013)

Characteristics: local | HL | both | grayscale
Authors: S. Marat, A. Rahman, D. Pellerin, N. Guyader, and D. Houzet [10].

Fig. 10.9 Illustration of the STVSM model. Three pathways are computed from the grayscale
input frame. From left to right: the static, the dynamic, and the face ones. A 2D centered Gaussian is
then applied on each one before merging them to build the final saliency map (Adapted from [10])
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Description: The STVSM model [10] is inspired by the biology of the visual system
and breaks down each frame of a video into three maps: a static saliency map
emphasizes regions that differ from their context in terms of luminance, orientation,
and spatial frequency. A dynamic saliency map emphasizes moving regions with
values proportional to motion amplitude. A face saliency map emphasizes areas
where a face is detected with a value. Finally, a 2D centered Gaussian is applied on
each map and fuses all of them into a single saliency map (see Fig. 10.9).

ST-RARE: Spatiotemporal Multiscale Rarity Mechanism
(2013)

Characteristics: global | / | both | color
Authors: M. Decombas, N. Riche, F. Dufaux, B. Pesquet-Popescu, M. Mancas,
B. Gosselin, and T. Dutoit et al. [17].
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(2) multiscale rarity mechanism, (3) fusion steps, and (4) tracking and temporal filtering (the static
features are on the left, while the dynamic features are on the right) (Adapted from [17])

Description: The ST-RARE model combines spatial and temporal information to
provide the map saliency (see Fig. 10.10). First, six spatial feature maps, three
low level (which are the colors from the first path) and three medium level
(the orientation and texture information coming from the Gabor filters), and two
temporal feature maps: Motion amplitude and direction are extracted from video



186 N. Riche and M. Mancas

frame. Then, a multiscale is used on each feature map, and a fusion algorithm
provides the saliency map. The last step is the temporal tracking framework in order
to improve temporal coherence and robustness.

STRAP: Spatiotemporal Multiscale Rarity Algorithm
with Priors (2013)

Characteristics: global | HL | both | color
Authors: M. Decombas, N. Riche, F. Dufaux, B. Pesquet-Popescu, M. Mancas,
B. Gosselin, and T. Dutoit [17].
Description: STRAP is a new saliency model based on a spatiotemporal rarity
mechanism and integrating prior information. It builds upon ST-RARE and includes
several novel contributions: (1) a temporal motion compensation over a sliding
window. In this way, neighboring frames can be jointly analyzed to increase
temporal robustness; (2) color and frequency-based low-level priors are used
together with the rarity mechanism, and the fusion algorithm is optimized to this
new architecture; (3) high-level priors like a centered Gaussian or face detection are
then combined with the saliency results; and (4) a spatiotemporal segmentation is
finally used to improve the accuracy of the results and better detect the objects of
interest. The method pipeline can be seen on Fig. 10.11.

10.2 Conclusion: A Taxonomy of the Algorithms

Saliency models for videos which will be used in the validations in the next chapters
have been presented with descriptive sheets to provide readers with a global view
of each model. However, as seen for still images in the previous chapter, this is not
sufficient to classify dynamic models according to their structure. This is why some
characteristics have been added into the descriptive sheets. Table 10.1 summarizes
these four characteristics which have been chosen to compare the ten state-of-the-art
saliency models for videos. It shows which of the four characteristics each model
owns.

In order to provide an idea of pros and cons of each characteristic, some
observations have to be conducted. The first characteristic for still images compares
the local approach which detects clearly contrast in images against the global
approach which highlights features which are different but not necessarily highly
contrasted. The second characteristic classifies models which use or not top-down
information. Saliency models can add some modules at the end of the process
considered as top-down factors such as a 2D centered Gaussian, a face detector,
or a segmentation algorithm. The purpose is to better detect the salient areas and
therefore to improve the scores. However, if these modules are inappropriately used,
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Table 10.1 Comparison of
eight saliency models for
videos on seven
characteristics

Approach Prior Feature Stimuli

GBVS local TD static color

NMPT local static color

SSOV local both color

SDSR local static gray

VICO local static color

SMVQA global dynamic gray

SMAMS global dynamic gray

STVSM local TD both gray

ST-RARE global both color

STRAP global TD both color

they will do just the opposite. It is important to correctly weigh the 2D centered
Gaussian, to adjust the parameters of the segmentation algorithm, or to choose a
face detector with a lower false-positive rate.

The third characteristic shows which kinds of features are extracted to compute
the saliency maps. Some models only use static features, while others compute only
dynamical features. Finally, some models can combine both kinds of features. This
last class of models is able to predict salient areas when there is or no motion in
the videos, while models with only static features cannot detect motion, and models
with only dynamic features cannot detect salient areas when there is no motion
in the videos. Finally, the last characteristic shows how the stimuli are exploited:
with color or grayscale informations. Although, most of the psychophysical theories
show the importance of color during the visual attentive process and the color
information is used in many saliency models, its contribution for saliency modeling
in videos was less clear. However, some studies such as [18] show the importance of
color information which helps to better predict fixation distribution in videos than
models which only exploit the grayscale information.

To complete this comparison, the classical multidimensional scaling (MDS) tech-
nique similar to the one exposed in Chap. 9 has been chosen. The distances of this
MDS are computed from the characteristics of Table 10.1. The purpose is to have a
better visualization of the level of similarity between saliency models for videos.

We can see from Fig. 10.12 a 2D MDS model representation based on video
characteristics. The coordinates of this representation are components that represent
a combination of characteristics. The first coordinate substantially corresponds to
the first characteristic. Indeed, on one side (right), saliency models with local
approach appear to have distances in the same range relative to other models.
On the other side (left), saliency models with global approach also seem to have
distances in the same range. The second coordinate substantially corresponds to the
last characteristic. Indeed, on one side (bottom), saliency models with color stimuli
as input are very close, while on the other side (top), saliency models with grayscale
stimuli as input appear to have distances in the same range. These observations
divide the presented models into four categories (from C1 to C4 on Fig. 10.12).
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10.3 Summary

• Ten models for videos are described using descriptive sheets and will be used in
the validation framework in the next chapters.

• Some models like GBVS and SSOV are extensions from 2D, while others are
temporal models.

• In order to compare the models, different characteristics have been chosen and
classified them into several classes.

• A list of dynamic state-of-the-art saliency models which are available online can
be found from the Computational Attention Group of TCTS Lab at http://tcts.
fpms.ac.be/attention.
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16. Crnojević, V., Antić et al., B. (2009). Multiscale background modelling and segmentation. In
International Conference on Digital Signal Processing (DSP) (pp. 1–6). IEEE.

17. Decombas, M., Riche, N., Dufaux, F., Pesquet-Popescu, B., Mancas, M., Gosselin, B., &
Dutoit, T. (2013). Spatio-temporal saliency based on rare model. In International Conference
on Image Processing (ICIP) (pp. 3451–3455). IEEE.

18. Hamel, S., Guyader, N., Pellerin, D., & Houzet, D. (2014). Color information in a model of
saliency. In Proceedings of the European Signal Processing Conference (EUSIPCO) (pp. 226–
230). IEEE.



Chapter 11
Databases for Saliency Model Evaluation

Nicolas Riche

The comparison between saliency algorithms needs two prerequisites: a dataset
of stimuli with a ground-truth on which the algorithms can be compared and a
metric which measures in an objective way how close an algorithm and the ground-
truth are.

This chapter focuses on the stimuli datasets and the ground-truths. In computer
vision, the databases for the modeling of visual attention contain two kinds of
ground-truth: eye movement recording and salient region labeling. The stimuli are
still images or videos.

11.1 Introduction

In this section, an overview of the databases which are available online is
exposed under three categories: 1) still images along with eye tracking data,
2) still images along with salient object detection and 3) videos. It is important
to note that all databases were collected with different experimental settings.
Some studies [1] investigate on how the type of stimulus (e.g., fractal, website,
advertising, and natural images) affects saliency models. On the other hand, there
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are papers [2] which investigate how experiments influence gaze during scene
observation with different viewing tasks (e.g., free viewing where observers
are looking at the images or videos without any task or task-based viewing
where observers are asked to perform a task while looking to the images or
videos like finding people for example). In the proposed saliency assessment
framework, we focus on free-viewing databases on natural images because
we want to test saliency models which modelize the bottom-up part of visual
attention.

The first databases used to validate saliency models had eye-tracking data as
ground truth. A complete overview of these datasets is available in [3]. In this paper,
15 databases on images are given. Hereinafter, a first section will present the most
popular datasets and a second section the ones we will use for the validation in the
next chapters.

Main datasets: In 2006, N. Bruce proposed a database called Toronto [4]. It
contains 120 natural scene images with free-viewing eye movement recordings
from 20 users. Each image has been seen during 4 s. Data consists of a variety of
indoor and outdoor scenes, some with very salient items, others with no particular
regions of interest. In 2006, O. Lemeur created a new database [5] with 27 color
images. Each image was seen by 40 observers for 15 s. In 2007, M. Cerf proposed
a specific database with a lot of faces in images, called FiFA [6]. The purpose was
to demonstrate that faces attract visual attention. The database contains 200 images
viewed by 8 observers during 2 s. The probability to find a fixation on faces within
the first two fixations is over 80 %. In 2009, U. Engelke built a visual attention
database [7] for image quality. Forty-two images (14 images with 3 levels of quality)
have been viewed by 15 observers during 12 s. The purpose was to validate that
salient image regions contribute to objective image quality metrics. In the same
year, T. Judd collected a large database of eye-tracking data [8]. One thousand and
three random images from Flickr creative commons and LabelMe [9] have been
seen by 15 subjects during 3 s. There are approximately 77 % landscape images
and 23 % portrait images. In 2010, S. Ramanathan built a database [10] with 758
images. Each image has been viewed by 25 subjects during 5 s. Face, portrait, nude,
action, affect-variant group, and other concepts were the diverse themes covered in
the dataset. In 2011, T. Judd proposed the MIT low-resolution saliency database
[11]. The purpose was to study how image resolution affects consistency in eye
fixations across observers. To do that, 168 images (21 images with 8 resolutions)
have been seen by 8 subjects during 3 s. The main observation was that the center
bias increases as image resolution is reduced. In 2011, J. Li collected eye tracking of
235 color images viewed by 21 users [12]. This dataset is divided into six categories
about the size of the salient objects.
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Datasets used for validation: We now focus on the databases used in the
validation framework described in the next chapters. A short overview based on
descriptive sheet template is provided for each dataset.

TORONTO Dataset (2006)

Authors: N. Bruce and J. Tsotsos [4]

Fig. 11.1 Illustration of the TORONTO dataset with rows 1–2 (indoor scenes) and row 3 (outdoor
scene) with no particular regions of interest (a) Original images (b) Fixation maps (c) Density
maps (d) Heat maps

Description: This database contains the free viewing of 120 different color images
from eye-tracking experiments. Images were presented in random order for 4 s each
with a white screen between each pair of images. Data consists of a variety of indoor
and outdoor scenes, some with very salient items, others with no particular regions
of interest. It was collected from 20 subjects (Fig. 11.1).
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MIT Dataset (2009)

Authors: T. Judd, K. Ehinger, F. Durand, and A. Torralba [8]

Fig. 11.2 Illustration of the MIT dataset with row 1 (street scenes), row 2 (image with animals
and persons), and row3 (indoor scenes) (a) Original images (b) Fixation maps (c) Density maps
(d) Heat maps

Description: This database contains 1003 random images from Flickr creative
commons and LabelMe [9]. Data was collected from 15 subjects who freely viewed
these images during 3 s separated by 1 s of viewing a gray screen. There are several
categories such as text, faces, and indoor or outdoor scenes for approximately 77 %
landscape images and 23 % portrait images (Fig. 11.2).

KOOTSTRA Dataset (2009)

Authors: G. Kootstra and L. Schomaker [13]
Description: This database has 99 natural images viewed by 31 observers during
5 s. The data consists of five different categories: 19 images of natural symmetrical
objects, 12 images of animals in a natural environment, 12 images of street scenes,
16 images of buildings, and 40 images of natural environments. All these images
were taken from the McGill database [14] (Fig. 11.3).
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Fig. 11.3 Illustration of the KOOTSTRA dataset with row1 (image with animals), row2 (building
scenes), and row3 (symmetrical images such as flowers) (a) Original images (b) Fixation maps (c)
Density maps (d) Heat maps

IMGSAL Dataset (2011)

Authors: J. Li, L. Martin, A. Xiangjing, and H. Hangen [12]
Description: This database contains 235 images with both large and small salient
objects. The images are divided into six categories: 50 images with large salient
objects, 80 with intermediate salient objects, 60 with small salient objects, 15 with
cluttered backgrounds, 15 with repeating distractors, and 15 images with both large
and small salient objects (Fig. 11.4).

11.1.1 Salient Object Detection (SOD)-Based Datasets with
Still Images

The first ground truth used to validate saliency models is eye-tracking data. Since
2007, a second kind of ground truth has appeared. With the development of various
saliency-based applications, salient object detection has emerged. Therefore, a
second ground truth used for model validation is the ability of the models to detect
salient objects in natural scenes. The salient objects in images can be annotated with
two types of masks: bounding boxes (rectangles around the objects) or pixel-wise
(accurate contours of the objects) binary masks.
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Fig. 11.4 Illustration of the IMGSAL dataset with three sizes of salient objects in natural scenes:
large (row1), medium (row2), and small (row3) objects. (a) Original images (b) Fixation maps (c)
Density maps (d) Heat maps

As discussed in [15] and [16], the first attempts to build these kind of databases
faced two main drawbacks: the number of objects and the background. Indeed,
most of these images contain only one object with a simple background. While
one single object is more linked to the foreground/background notion, the concept
of salient object exists when multiple objects are present in a scene. Therefore, new
versions of these databases have been built with more than one object and complex
backgrounds. They often use the same images as the ones that already have eye
tracking data. The most recent and complete databases have thus two ground truth:
the eye-tracking data and the binary masks around salient objects.

An overview of the most widely used datasets is available in [16]. In this paper,
20 databases on images have been listed. Hereinafter, a first section will present the
most used datasets for SOD and a second section the ones that we will use for the
study in the next chapters.

Main datasets: In 2007, the first dataset with a large number of images manually
annotated with bounding boxes has been released and called MSRA [17]. It contains
two parts: the salient objects have been shown by bounding boxes from 3 subjects
on 20,000 images. Among them, 5000 images have been selected and annotated by
9 subjects. In 2009, R. Achanta selected 1000 images among the 5000 ones and
proposed a database [18] which contains binary pixel-wise object masks for each
image. This is one of the most popular datasets, but images have only one salient
object and clean background.
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More recently, some eye-tracking databases have been selected to be annotated
and partially fixed the issue of having only one salient object and clean background.
In 2011, J. Li proposed a new database by providing pixel-wise objects from 19
subjects in addition to eye movement recording on the 235 images of ImgSal
database [12]. This is one of the first databases with both binary masks and human
fixations. The drawback is the limited number of images in the database (235)
compared to MSRA (5000), for example.

In 2013, A. Borji created masks for two other well-known eye-tracking
databases: Toronto-A [15, 19] and MIT-A [15, 19]. While Toronto-A proposes
120 annotated images, MIT-A provides 900 images with masks. These masks were
created by two participants which manually outlined objects, and the most salient
one was selected by the peak of the human fixation map. In the same year, with the
same motivation to solve the issues of [18], Q. Yan extended his Complex Scene
Saliency Dataset (CSSD – 200 images) to a larger dataset (ECSSD) [20] with 1000
images. These images are collected from BSD300 [21], VOC dataset [22], and the
Internet to represent more general situations that natural images fall into. Five users
produce the ground-truth pixel-wise masks. Finally, C. Yang proposed the most
complete database in 2013 called DUT-OMRON [23]. This database is the only
one which has the eye fixations, salient objects bounding box, and the pixel-wise
salient objects segmentation ground truth. 5000 images have been seen by five
subjects during 2 s. Each image has been annotated by five participants which can
draw several rectangles to enclose most salient objects in the image and the authors
provide pixel-wise ground truth for all images. Although this database is a major
contribution, five users are not yet enough to provide an accurate eye-tracking
distribution. Moreover, a lot of images have only one single object.

In 2014, Y. Li proposed a new database called PASCAL-S [24] with both ground
truths. This dataset is built on [25]. It contains 850 natural images viewed by
8 subjects during 2 s. To build the masks, the authors first manually perform a
full segmentation and then ask 12 subjects to label the salient objects by clicking
on them. The final saliency value of each segment is the total number of clicks
it receives, divided by the number of observers. In this kind of ground truth,
grayscale masks can be built based on these ratios. In the same year, J. Xu built
a very complete database called OSIE [26]. Seven hundred images have been
seen by 15 viewers during 3 s and 5551 objects have been segmented with precise
contours. Moreover, this database proposed 12 semantic attributes (emotion, touch,
smell, etc.).

Datasets used in this study: We now focus on the database used in the studies
proposed in the next chapter. A short overview based on a descriptive sheet template
is provided for each dataset.
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IMGSAL Dataset (2011)

Authors: J. Li, L. Martin, A. Xiangjing, and H. Hangen [12]

Fig. 11.5 Illustration of the IMGSAL dataset on the three sizes of objects in natural scenes: large
(row1), medium (row2), and small (row3) objects (a) Original images (b) Mask maps (c) Object
maps

Description: The database, called ImgSal in the previous paragraph, was labeled
by 19 naive subjects. This labeling process is inspired by LabelMe [9] and Hou’s
method [27]. Images were presented one by one in a random manner and each
observer was sat in front of the screen at a distance of six times the image
width. After having viewed the image, the subject labeled the image immediately
(Fig. 11.5).

11.1.2 ET and SOD-Based Datasets with Videos

Saliency video datasets are less well developed. Only two databases exist for
evaluating salient object detection models in video [16], and there are few databases
containing both video and eye-tracking data [3]. In Winkler’s paper, ten databases
on videos with eye tracking are presented [3]. More video datasets are required in
the literature for the coming years, especially with both ground truths. Hereinafter,
a first section will present the most used datasets and a second section the ones we
will use for the validation in the next chapters.

Main datasets: The most widely used is CRCNS-ORIG Itti’s video database
released in 2004 [28–31]. This database contains 50 video clips along with
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eye-tracking data for eight viewers. The video contains complex stimuli like TV
programs, outdoor videos, or video games.

In 2009, J. Li built PKU-RSD (Regional Saliency Dataset) as explained in [32]. A
total number of 431 short videos have been annotated by 23 subjects with bounding
boxes. The videos contain various scenes like surveillance, news, or cartoons.
In 2010, M. Dorr provided a large database with eye movement on natural and
Hollywood movies but also static images [33]. So, this is a dataset with both images
and videos.

In 2011, Y. Wu proposed the second database with salient region ground truth
[34]. It contains 32 video segments collected from the Internet. All the frames have
been annotated with object-bounding boxes. In the same year, P. Mital proposed the
DIEM database [35] which contains 85 videos along with corresponding eye data
collected from 250 participants but who did not necessarily viewed all the videos.

In 2012, S. Mathe complemented two large-scale video datasets: Hollywood-2
[36] and UCF Sports [37] with human eye movements to build a new database called
Actions in the Eye [38]. This is the first video eye tracking with significant size:
92 h of video and each frame viewed by 16 subjects (12 active for task recognition
and 4 passive for free viewing). In the same year, an eye-tracking database, called
Standard Video [39] with 12 standard videos used in image compression and quality
estimation viewed by 15 people, was proposed.

Datasets used for validation: We now focus on the database used in the validation
framework. A short overview based on a descriptive sheet template is provided for
each dataset.

SVS Dataset (2012)

Authors: H. Hadizadeh, M. Enriquez, and I. Bajic [39]

Fig. 11.6 Illustration of the SVS dataset: landscape (row1) and people (row2). (a) Original images
(b) Fixation maps (c) Density maps (d) Heat maps



200 N. Riche

Description: The database is composed of 12 video sequences, 6 of them including
people. It encompasses varying characteristics, including moving camera, cluttered
background, and complex motion. Sequences are stored in YUV format, with 4:2:0
chrominance sampling. The uncompressed format avoids artifacts introduced by
compression that may adversely disturb saliency models. The purpose is to evaluate
where someone looks at when discovering the content for the first time (Fig. 11.6).

Extended SVS Dataset (2015)

As shown in Sect. 11.1.2, only two databases exist for salient object detection and
only on compressed videos. To remedy this situation, based on the uncompressed
videos of [39], the database has been extended here in terms of ground truth. Indeed,
one limitation of the human fixation ground-truth data is that the eye-tracking data
sometimes highlights the border of a salient object which can lead to the assignment
of high saliency scores to not only the object but also to the surrounding background.
To evaluate the precision of the salient object detection, ground-truth data adapted
to an object-based approach is required.

For this purpose, ten manually segmented binary masks are added to the two
already existent to complement the database. Binary masks are estimated for all the
frames, and the whole salient object is segmented even though parts of it might be
more salient in terms of gaze detection. Figure 11.7 illustrates the database with

Fig. 11.7 Extended SVS dataset [39] with interesting object labeling. (a) Original images (b)
Mask maps (c) Object maps
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the original sequences, the binary masks that we provide, and the salient object.
The SVS-extended database is, at author’s best knowledge, the only video dataset
providing both eye-tracking and binary masks along with uncompressed video
sequences.

ASCMN Dataset (2012)

All databases presented in Sect. 11.1.2 contain some videos with different kinds
of motion in the scene (the sequences are extracted mostly from TV programs,
Hollywood movies, standard video databases, or video games).

However, none of them has been designed specifically to contain anomalous
motion which would attract attention in the presence of other motion and enable
testing of dynamic-saliency models. The proposed ASCMN database attempts to
fill this gap. It contains videos obtained from other databases including the Itti’s
CRCNS database, Vasconcelo’s database [40], and a standard complex-background
video surveillance database [41]. These have been extended with Internet crowd
movies and proprietary videos from a crowd database. The database is divided into
five classes of movies as described in Table 11.1.

In addition to videos for which eye-tracking data has previously been published
in existing databases, the classes cover a new type of videos, lacking in the other
databases – videos that contain motion abnormalities and crowd motion. Also, eye-
tracking data for complex-background surveillance videos included in ASCMN has
not previously been published. Sample frames for different classes of videos are
shown in Fig. 11.8.

The ASCMN database, therefore, provides data which covers a wider spectrum
of video types, than the existing databases, and accumulates previously published
videos suitable for dynamic saliency model evaluation. ASCMN database contains
24 videos, together with eye-tracking data from 13 viewers, acquired using a
commercial eye-tracking system [42].

Table 11.1 The five classes of videos contained into the ASCMN database

Video classes Description Videos Nb.

ABNORMAL Some moving blobs have different speed or direc-
tion compared to the main stream: Fig. 11.8 line
1

2, 4, 16, 18, 20

SURVEILLANCE Classical surveillance camera with no special
motion event: Fig. 11.8 line 2

1, 3, 5, 9

CROWD Motion of more or less dense crowds: Fig. 11.8
line 3

8, 10, 12, 14,
21

MOVING Videos taken with a moving camera: Fig. 11.8 line
4

6, 19, 22, 24

NOISE No motion during several seconds followed by
sudden important motion: Fig. 11.8 line 5

7, 11, 13, 15,
17, 23
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Fig. 11.8 The five classes of videos from the ASCMN database. First line represents ABNOR-
MAL motion with bikes and cars which are faster than people, for example. The second line shows
SURVEILLANCE classical motion with nothing really salient in terms of movement. The third
line shows CROWD motion with increasing density from left to right. Line four shows MOVING
camera videos. Line five displays videos with long periods of NOISE (frames 2, 4) and a sudden
appearance of a salient object (frames 1, 3)

This system allows small head movements and is thus less intrusive than other
eye-tracking systems, making the viewer feel more comfortable. The viewers are
PhD students and researchers ranging from 23 to 35 years old, both males and
females. The eye gaze positions are recorded and superimposed on the initial
video for all the viewers, as shown in the second column of Fig. 11.9. This data
is low-pass filtered to obtain a “heat map” which can also be superimposed on
corresponding video frame (Fig. 11.9, right column). This post-processing step is
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Fig. 11.9 First column: original images. Second column: aggregated eye-tracking results (each
yellow cross is the position of the eye gaze of one viewer). The third column shows density
maps. Right column contains smoothed gaze location producing “heat maps” superimposed to
the corresponding frame. (a) Original images (b) Fixation maps (c) Density maps (d) Heat maps

useful in estimating the mean gaze density, eliminating the outliers and providing
higher weight to the focus points common to several users.

11.2 Comparisons

In order to compare and have a global view of the six datasets which are described
in this chapter, Table 11.2 shows three features: the stimuli (images or videos), the
number of stimuli proposed in the database, and a special property (extra notes).

Various properties of natural images such as indoor, outdoor, or symmetrical
scenes are proposed for a total of 1457 images. A large variety of videos are also
available from uncompressed to compressed movies, with moving or static cameras,
etc. A total of 36 videos (13,354 frames) are proposed.

In terms of ground truth, all the databases have eye-tracking data. Some of them
have an additional ground truth (binary masks) to complement the validation. Two
features have be chosen to compare the databases as shown in Table 11.3: the
number of observers and the durations (in seconds) when the informations were
available.
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Table 11.2 Stimuli-based
comparison for the six
presented datasets

Name Stimuli Nb stimuli Extra notes

Toronto Images 120 Indoor–outdoor scenes

MIT Images 1003 Natural images

Kootstra Images 99 Symmetrical images

ImgSal Images 235 Size of salient objects

ASCMN Videos 24 Five kinds of motion

SVS Videos 12 Uncompressed videos

Table 11.3 Ground-truth-based comparison for the six presented datasets

Name Observers Durations (s)
Additional ground
truth

Toronto 20 4

MIT 15 3

Kootstra 31 5

ImgSal 21 Binary masks

ASCMN 13 0.067

SVS 15 0.04 Binary masks

The number of observers varies from 13 to 31 subjects and the durations depend
of the kind of stimuli. There are fundamental differences between videos and still
images such as the duration. Indeed, each video frame is only observed a fraction
of a second (depending on the frame rate of the video), while a still image can be
viewed during a longer period of time (from 3 to 5 s). Finally, two databases (one
for still images and one for videos) have additional binary masks to detect salient
objects.

11.3 Conclusions

There are many databases in the literature which provide stimuli and ground-
truth data and which are freely available online. These datasets can be classified
in many ways, including the number of images, number of videos, number of
participants, type of ground truth, or type of stimuli (natural images, portraits,
websites, advertisements, movies, news, cartoons, etc.).

It shows the importance of choosing appropriate characteristics and experimental
settings for a validation framework. The authors need to clarify why they choose
these databases and ground truth. The proposed framework validation intends
to assess bottom-up saliency models. So, only free-viewing databases have been
chosen. Moreover, the assessment will be done on color natural images and various
videos.
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11.4 Summary

• In order to validate saliency models (see next chapters), a database with stimuli
and ground truth is needed.

• The first type of stimuli and ground truth which was used is still images and
eye-tracking data.

• Another ground truth is based on salient objects segmentation. Manual segmen-
tations (bounding-box or pixel-wise segmentations) can be used. While some
datasets exhibit only the big centered object segmentation, others are more
complex and close to the reality.

• Some datasets provide both eye-tracking and object segmentation ground truth.
• In addition to still images, video databases are available mainly with eye-tracking

data. Very few video datasets provide both eye-tracking and object segmentation
ground truth.

• A list of databases which are available online for visual attention can be found
from the Computational Attention Group of TCTS lab at http://tcts.fpms.ac.be/
attention.
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Chapter 12
Metrics for Saliency Model Validation

Nicolas Riche

Different scores have been used in the literature to validate saliency models. While
reviews of databases [1] or saliency models [2, 3] exist, reviews of similarity metrics
are harder to come by. In this chapter, we will explain the standard measures used to
evaluate the salient object detection and eye tracking models. The metrics presented
here will be used in our study and validation in the next chapters. While some
metrics focus on eye scanpath [4], here we will deal with approaches involving
2D maps. As it was described in the previous chapter, there are two ground truths to
validate saliency maps. The first one is based on salient object segmentation (using
bounding boxes or pixel-wise segmentation) and the other one is based on eye-
tracking data. In Sect. 12.1 we present similarity metrics for salient object detection
ground truth while in Sect. 12.2 we focus on metrics for eye-tracking data. We
finally conclude on existing metrics for saliency maps evaluation.

12.1 Literature Review of Metrics for Object Detection

In this section, all metrics that have been used to assess salient object detection
models are presented. Indeed, there are several ways to measure the agreement
between salient object detection models and binary masks (bounding boxes or pixel-
wise masks). Sometimes, metrics do not agree with each other.

However, contrary to the eye tracking-based category, all the salient object detec-
tion benchmarks use very close gold standard location-based metrics. Moreover, in
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Table 12.1 Definitions of four concepts to compute precision-recall and FPR/TPR

Reference results

Predicted results TP: Correct result FP: Unexpected result
FN: Missing result TN: Correct absence of result

85 % of the publications on salient object detection model, the authors use one gold
standard metric (F-score from precision-recall curve) to compare their models to
other state-of-the-art models.

12.1.1 Location-Based Metrics: Focus on Location of Salient
Regions and Binary Masks

For all location-based metrics, we retrieve the concept and terminology from a
confusion matrix: true positives (TPs), true negatives (TNs), false positives (FPs)
and false negatives (FNs) that compare the predicted results (saliency map) with the
reference results (binary mask). Therefore, the saliency maps need to be converted
to a binary map. To do that, several thresholds are defined. Table 12.1 illustrates
their definition.

From this concept, two metrics can be computed. A new one, the F-score,
calculates a score from precision-recall, and the area under the receiver operating
characteristic (AUC), like eye tracking-based metrics, computes a score from
the false- and true-positive rate. All these notions will be described in detail
below.

A third metric called MAE exists in the literature as described in [3]. The purpose
is to consider the true negative (TN) when a pixel is correctly marked as non-
salient.

Finally, recently, we find some variations of F-score which propose a weighted
calculation of precision and recall. The objective is to provide a more reliable
evaluation. In [5], the authors start by identifying three causes of inaccurate
evaluation: interpolation flaw, dependency flaw and equal-importance flaw. By
amending these three assumptions, they propose a new reliable measure available
for images.

F: F-Score from Precision-Recall (2009)

Authors: R. Achanta, S. Hemami, F. Estrada and S. Susstrunk [6].
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Binary Mask

Saliency Map Binary Map

Compute
Precision-Recall

F-measure

Define

Threshold

Fig. 12.1 F-score between saliency map and binary mask

Description: Many authors like [7–10] also used F-score metric to compare saliency
maps and binary masks (Fig. 12.1). Precision is the number of relevant points
compared with the total number of points found (Eq. 12.1 (left)). Recall is the
number of relevant points compared with the total number of important points in
the reference (Eq. 12.1 (right)):

Precision D tp

tp C fp
Recall D tp

tp C fn
(12.1)

A usual way to combine precision and recall is to use the F-score defined as in
Eq. 12.2 where as suggested by several salient object detection benchmarks [6], ˇ2

is set to 0.3 to give more importance to the precision value:

F � score D .1 C ˇ2/ � Precision � Recall

ˇ2 � Precision C Recall
(12.2)

AUC: Area Under the ROC Curve (2011)

Authors: J. Li, L. Martin, A. Xiangjing and H. Hangen [11].
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Binary Mask

Saliency Map Binary Map

Compute FPR-TPR

AUC

Define

Threshold

Fig. 12.2 AUC between saliency map and binary mask

Description: Many authors like [12, 13] also used AUC metric to compare saliency
maps and binary masks (Fig. 12.2). The true-positive rate, also called sensitivity,
measures, as the recall, the proportion of true positive under all the positive reference
results (Eq. 12.3 (left)). The false-positive rate measures the proportion of false
positive under all the negative reference results (Eq. 12.3 (right)):

TPR D tp

tp C fn
FPR D fp

fp C tn
(12.3)

A usual way to combine them is to plot the true-positive rate (TPR) vs. the false-
positive rate (FPR) to form an ROC curve. Then, the area under the ROC can be
computed.

12.2 Literature Review of Metrics for Eye Tracking

In this section, all the similarity metrics that have been used to assess eye tracking
saliency models are presented. Contrary to salient object detection validation, a gold
standard metric doesn’t exist, and a lot of metrics have been proposed to validate eye
tracking saliency models.

Therefore, we propose here a taxonomy to classify them. The classification
is related to the nature of the similarity metric and can be divided into three
categories: value-based metrics which focus on saliency map values at eye gaze
positions, distribution-based metrics which focus on saliency and gaze statistical
distributions and location-based metrics which focus on location of salient regions
at gaze positions.

All these metrics will be described in detail in this section and will be used in
the next chapter to study their similarity. They take two distributions as input: the
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prediction (noted SM for saliency map) and the ground truth (noted FM for fixation
map).

It is important to note that a discrete fixation map is used for location-based and
value-based metrics while a continuous one is used for distribution-based metrics.
The continuous fixation map is deduced by convolving the fixation map with a 2D
Gaussian function. The parameters of this function depend on the database.

12.2.1 Value-Based Metrics: Focus on Saliency Map Values at
Eye Gaze Positions

This first category of metrics compares values or amplitudes of the saliency maps
with the corresponding eye fixation maps.

Three similarity metrics are proposed and described in the following subsections.

NSS: Normalized Scanpath Saliency (2005)

Authors: R. Peters, A. Iyer, L. Itti and C. Koch [14].

Fixation Map Fixation List
X Y

Saliency Map
Values at (X,Y)

NSS: Mean
Score

Fig. 12.3 NSS between saliency and fixation map

Description: The idea is to quantify the saliency map values at the eye fixation
locations and to normalize it with the saliency map variance (Fig. 12.3):

NSS.p/ D SM.p/ � 	SM

�SM
(12.4)

where p is the location of one fixation and SM is the saliency map which is
normalized to have a zero mean and unit standard deviation. Indeed, the NSS score
should be decreased if the saliency map variance is important or if all values are
globally similar (small difference between fixation values and mean) because it
shows that the saliency model will not be very predictive, while it will precisely
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point a direction of interest if the variance is small or if the difference between
fixation values and means is high.

The NSS score is the average of NSS.p/ for all fixations:

NSS D 1

N
�

NX

pD1

NSS.p/ (12.5)

where N is the total number of eye fixations.

PF: Percentage of Fixations into the Salient Region (2006)

Authors: A. Torralba, A. Oliva, M. Castelhano and J. Henderson [15].

Saliency Map
Range: 0,1

Saliency Map
Threshold: 0.8

PF: Fixations into
Binary Saliency Map

FixMap

Fig. 12.4 PF between saliency and fixation map

Description: Its purpose is to measure the percentage of fixations into the salient
region. In a first step, saliency maps are thresholded at T = 0.8 where the saliency is
normalized between 0 and 1. The threshold is set so that the selected image region
occupies a fixed proportion of the image size. In a second step, the percentage of
fixations in this area is computed and called PF (Fig. 12.4).
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P: Percentile (2008)

Authors: R. Peters and L. Itti [16].

Fixation Map Fixation Map

Fixation List
X Y Nb.P ixels<SM(X,Y )

Nb.P ixels

Percentile:
Mean Score

Fig. 12.5 P between saliency and fixation map

Description: The percentile metric is, for each pixel p on the eye fixation map, a
ratio between the number of pixels in the saliency map with values smaller than
the one corresponding to pixel p from the eye fixation map and the total number of
pixels (Eq. 12.6) (Fig. 12.5):

P.p/ D jx 2 X W SM.x/ < SM.p/j
jSMj (12.6)

where X is the set of all pixels of the saliency map SM, p is the location of one eye
fixation and jSMj indicates the total number of pixels. Like in the case of NSS, the
global percentile score is the average of P.p/ for all the eye fixations.

12.2.2 Distribution-Based Metrics: Focus on Saliency and
Gaze Statistical Distributions

In the literature, there are two kinds of distribution-based metrics. Those which com-
pute a similarity between two distributions and those which compute a dissimilarity.
Moreover, some metrics which are not a distance are nonsymmetric. It means that
by first considering the saliency map (SM) as the first input and secondly the fixation
map (FM) as the first input, the results are not the same. This should be taken
into account for the comparison. Two dissimilarity and three similarity metrics are
proposed and described in the following subsections.
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PCC: Pearson’s Correlation Coefficient (2004)

Authors: N. Ouerhani, R. Von Wartburg, H. Hugli and R. Muri [17].

Saliency MapFixation Map Density Map

PCC
Gaussian

convolution

Fig. 12.6 Pearson’s correlation coefficient between saliency and density map

Description: Pearson’s correlation coefficient also named linear correlation coeffi-
cient was first used in [17] as a metric. Other authors also used it such as in [18].
The linear CC output range is between �1 and 1. When the correlation value is close
to �1 or 1, there is almost a perfect linear relationship between the two variables
(Fig. 12.6):

CC D cov.SM; FM/

�SM � �FM
(12.7)

KLD: Kullback-Leibler Divergence (2004)

Authors: U. Rajashekar, L. Cormack and A. Bovik [19].

Fig. 12.7 KLD between
saliency and density map

Saliency Map
Range:

∑
=1 Range:

∑
=1

Density Map

Relative entropy (log)

KL-Divergence

Description: The Kullback-Leibler divergence is a commonly used metric to
estimate an overall dissimilarity between two distributions. Many authors like
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[20] and [18] also used this metric to compare saliency maps with human eye
fixations. The KLD is a measure of the information lost when the saliency map
probability distribution (called SM) is used to approximate the human eye fixation
map probability distribution (called FM) (Fig. 12.7):

KLD D
XX

xD1

FM.x/ � log

	
FM.x/

SM.x/ C 

C 




(12.8)

where X is the number of pixels and 
 is a small constant to avoid log(0) and division
by zero. SM and FM distributions are both normalized as in Eq. 12.9:

SM.x/ D SM.x/
PX

xD1 SM.x/ C 

FM.x/ D FM.x/

PX
xD1 FM.x/ C 


(12.9)

When the two maps are strictly equal, the KLD value is zero.

SCC: Spearman’s Correlation Coefficient (2011)

Authors: A. Toet [21].

Fig. 12.8 Spearman’s
correlation coefficient
between saliency and density
map

Saliency Map Density Map

Spearman’s rank
Correlation Coefficient

Description: Spearman’s rank correlation coefficient metric [21] is defined as
the CC metric (Eq. 12.7) but on ranked variables. This can be understood as
a non-linear correlation. Toets uses this metrics in [21] to evaluate 13 models
(Fig. 12.8).

EMD: Earth Mover’s Distance (2012)

Authors: T. Judd, F. Durand and A. Torralba [22].
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Density Map
Range:

∑
=1

Density Map
Range:

∑
=1Cost: Value * Dist

EMD

Fig. 12.9 EMD between saliency and density map

Description: Earth mover’s distance metric is a measure of the distance between
two probability distributions over a region (Fig. 12.9). Judd [22] used this metric in
her benchmark which is now available online. She uses a fast implementation of
EMD provided by Pele and Werman [23, 24], but without a threshold. It computes
the minimal cost to transform the probability distribution of the saliency maps SM
into one of the human eye fixations FM:

EMD D
0

@min
fij

X

i;j

fijdij

1

A C
ˇ
ˇ
ˇ
ˇ
ˇ̌
X

i

FMi �
X

j

SMj

ˇ
ˇ
ˇ
ˇ
ˇ̌ max

i;j
dij

s:t:fij � 0;
X

j

fij � FMi;
X

i

fij � SMj; (12.10)

and

X

i;j

fij D min

0

@
X

i

FMi �
X

j

SMj

1

A

where each fij represents the amount transported from the ith supply to
the jth demand. dij is the ground distance between bin i and bin j in the
distribution. A larger EMD indicates a larger overall difference between
the two distributions. An EMD of zero indicates that two distributions are
the same.

S: Similarity (2012)

Authors: T. Judd, F. Durand and A. Torralba [22].
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Fig. 12.10 S between
saliency and density map

Saliency Map
Range:

∑
=1 Range:
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Density Map

Pixels-by-pixels
Minimum

Similarity:
Sum score

Description: The similarity metric [22] also uses the normalized probability dis-
tributions of the saliency map SM and human eye fixation map FM (Fig. 12.10).
The similarity is the sum of the minimum values at each point in the distributions.
Mathematically, the similarity between two maps SM and FM is:

S D
XX

xD1

min.SM.x/; FM.x// (12.11)

where
PX

xD1 SM.x/ D PX
xD1 FM.x/ D 1:

A similarity score of one indicates that the distributions are the same. A similarity
score of zero indicates that they do not overlap at all and are completely different.

12.2.3 Location-Based Metrics: Focus on Location of Salient
Regions at Gaze Positions

Location-based metrics are very popular to evaluate saliency maps. They are based
on the notion of area under the receiver operating characteristic curve coming
from the signal detection theory. Four main different implementations are available
dealing with some limitations of the classical approach.
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nAUC: Normalized Area Under the ROC Curve (2011)

Authors: Q. Zhao and C. Koch [25].

AUC-Saliency

Saliency MapFixation Map

Human Map

AUC-Human Normalized AUC:
AUC−Saliency
AUC−Human

Gaussian Convolution

Fig. 12.11 nAUC between saliency and density map

Description: Zhao used a normalized AUC (Fig. 12.11). The idea is that saliency
algorithms perform less well (on average) than the area under the ROC curve coming
from inter-subject variability for each image. Zhao computes an ideal AUC by
measuring how well the human fixations of one subject can be predicted by those of
the other n � 1 subjects, iterating over all n subjects and averaging the result with an
upper limit of one. Finally, the AUC of the saliency map is normalized by this ideal
AUC.

pAUC: Post-Processing for Area Under the ROC Curve (2011)

Authors: J. Li, L. Martin, A. Xiangjing and H. Hangen [11].
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Border Effect

Blur Effect

Center Effect

Post-processing
Saliency Map

Area Under the
ROC Curve

Fixation Map

Fig. 12.12 pAUC between saliency and density map

Description: Li set the border cuts for all models to be of equal size and avoids
in that way to artificially increase the AUC scores for the models which already
do this preprocessing in comparison with those which do not. The border cut
post-processing affecting the fairness during the assessment is thus eliminated
(Fig. 12.12).

hAUC: Hit Rate for Area Under the ROC Curve (2012)

Authors: T. Judd, F. Durand and A. Torralba [22].
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Saliency Map Fixation Map

hAUC: Hit Rate
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Fig. 12.13 hAUC between saliency and density map

Description: Judd proposed another version of AUC to validate saliency models.
First, fixation pixels were counted once and the same number of random pixels is
extracted from the saliency map. For one given threshold, saliency pixels can be
seen as a classifier, with all points above threshold indicated as “fixation” and all
points below threshold as “background”.

For any particular value of the threshold, there is some fraction of the actual
fixation points which are labelled as true positive (TP) and some fraction of points
which were not fixated but labelled as false positive (FP). This operation is repeated
one hundred times. Then the ROC curve can be drawn and the area under the curve
(AUC) computed. An ideal score is one, while random classification provides 0.5
(Fig. 12.13).

sAUC: Shuffled Area Under the ROC Curve (2012)

Authors: A. Borji, D. Sihite and L. Itti [26].
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Shuffled AUC

Fixation Map

Saliency Map Length

Fig. 12.14 sAUC between saliency and fixation map

Description: Borji applied to saliency map validation a suitable AUC metric called
shuffled AUC (Fig. 12.14). In his classical AUC, saliency map values from random
points from the image are addressed to create a binary mask. In the shuffled AUC
metric, saliency values and fixations from another image (instead of random) of the
same dataset are taken into account. In that way, the more or less centred distribution
of the human fixations of the database is taken into account in the AUC computation.
This point is important because the AUROC scores can dramatically increase if a
saliency map is weighted by a centred Gaussian. Indeed, human eye fixations are
rarely near the edges of general test images, and the amateur photographer often
places salient objects in the image centre.

12.3 Discussions and Conclusions

There are a large variety of metrics in the literature which provide a score between
saliency map and ground-truth data which have been processed into a bidimensional
map. These metrics depend on the nature of the ground truth and what authors want
to measure: amplitude, location, distribution or the three.
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It shows the importance of choosing appropriate metrics for a validation frame-
work. The authors need to clarify why they choose these metrics. Moreover, the
framework validation needs a preliminary study to investigate the relevance of the
chosen metric mix.

In this chapter, we focused only on approaches involving two bidimensional
maps. Other metrics exist for comparing two scanpaths, using either distance-based
methods (string edit technique or Mannan’s distance) or vector-based methods.
These metrics are described in [4]. They require taking into account a number of
factors, such as the temporal dimension or the alignment procedure. To overcome
these problems, most of saliency validation frameworks used two bidimensional
maps.

12.4 Summary

• For object-based validation, all the metrics are based on the notion of TP/FP and
TN/FN as F-score and weighted F-score.

• For eye tracking ground truth, there are dozens of metrics (amplitude based,
location based, distribution based).
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Chapter 13
Study of Parameters Affecting Visual Saliency
Assessment

Nicolas Riche

The computational modelling of visual attention has been developed and expanded
considerably during the past 10 years. Many different saliency models are now
available online (for still images and videos). At the same time, many popular
image-video datasets with human gaze data or binary masks have been released
to evaluate saliency models with commonly used evaluation metrics. The new
challenges and future directions for this field are therefore to establish evaluation
protocols and saliency benchmarks.

Although some evaluation studies (such as [1–3] and [4]) and online benchmarks
(like [5] and [6]) have already been proposed and are major contributions, a key
underlying issue is: how can one fairly evaluate all these models? In this chapter, we
investigate this question with an evaluation, divided into four experiments, leading
to the proposition of a new evaluation framework. Each experiment is based on an
important aspect of visual saliency assessment in real-life images and is extended for
videos in the validation framework. There are four questions that we will carefully
consider:

1. What are the differences between eye fixations and manually segmented salient
regions?

2. What is the relation between model performances and the properties (e.g. the
size) of the salient regions into images?

3. What is the effect of saliency map post-processing?
4. Is one metric enough to evaluate a saliency model?

First of all, there are mainly two ground-truth categories to assess a saliency
map: human eye fixations obtained using an eye tracker device and manually
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segmented and labelled salient regions. In our study, we analyse the difference and
the coherence between them. The second aspect of this study is about different
categories of salient regions. Are saliency models equally efficient in predicting
human gaze on three categories of salient regions: large, intermediate and small?
This is an important issue as real-life objects and scenes contain a very wide range
of object sizes. The third experiment is about saliency map post-processings. Which
ones increase the score of a saliency map? Finally, various evaluation measures
exist to compare saliency and ground-truth maps. We study the redundancy of these
metrics and propose, among them, three metrics which should be used to obtain a
complete assessment of saliency model performance.

Statistical analysis is used here to answer each of these four questions.

13.1 Experiment 1: Effects of Ground Truth

13.1.1 Goal

Nowadays, databases are coming with two ground truths: eye fixations and labelled
objects. Some databases have the interest of providing both approaches for the same
set of images. Some saliency models will better model eye fixations while others
focus on object detection and segmentation and are assessed with region-based
labelled objects. The main idea of this first experiment is to assess the coherence
between the region-based and eye fixation-based ground truths.

13.1.2 Method

Database and Ground Truth: The database used here has been published by Jian
Li et al. [7] and provides both region ground truth (human labelled) and eye fixation
ground truth (collected with an eye tracker). In this experiment, we use the whole
database containing 235 colour images.

Models: Twelve state-of-the-art models from a mix of eye tracking-based (80 %)
and object detection-based (20 %) algorithms are used in this experiment. These
models are detailed in the previous chapters and the taxonomy to present them
is proposed by Borji’s review paper [8] and used as a comparison feature in the
previous chapters where models are sorted based on their mechanism to obtain
saliency maps. We use a wide range of recently published saliency models. FSM
model [9] represents the cognitive approach. SUN [10] and SDLF [11] are Bayesian
models. AIM [12], DVA [13] and RARE [1] are into the information theory
category. SR [14], PFT [15], QDCT [16], SSAFD [17] and FTSD [18] use a spectral
analysis approach to compute their saliency map. Finally, AWS [19] which does not
fit into Borji’s taxonomy represents the other models category.
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Metrics: In this study, the pAUC (post-processing for area under the ROC curve
(2011) [7]) metric has been chosen. This metric can be applied to both eye tracking-
based and region-based ground truths and mainly measures the eye fixation or region
locations.

Kendall’s W concordance measure is used for the statistical analysis. Kendall’s
W concordance measure [20] is an effect size measure. It defines how big the
discordance between two distributions is. Indeed, while common significant tests
only assess if there is enough evidence to determine whether the null hypothesis is
likely between two or more groups, they do not provide information about the size
of this effect. The effect size measures by how much the detected effect is significant
in practice; in other words, it defines, in our case, how big the discordance between
the region-based and eye fixation-based ground truths is.

It is defined in Eq. 13.1:

W D 12 � S

m2 � .n2n/
(13.1)

where n is the number of models and m is the number of metrics. So here n D 12 and
m D 2 (pAUC on both ground truths). S, the sum of squared deviations, is defined
as in Eq. 13.2:

S D
nX

iD1

.Ri � NR/2: (13.2)

where Ri is the ranking given to model i. A ranking as used here replaces the mean
score of each model based on one metric by the assignment of labels (first, second,
third, etc.). NR is the mean value of those rankings.

Kendall’s W concordance is a coefficient measuring the degree of agreement
between metrics. The value ranges from 0 (no agreement between model ranks)
to 1 (full agreement, same model ranking). Furthermore, some rules of thumb are
provided to allow the researcher to interpret this measure as depicted in Table 13.1
[20].

However, in our study, the ranking range of 1–12 is small; therefore, higher
thresholds are required to keep on the interpretation. That is why we decided to
be much more selective than in Table 13.1: we interpret Kendall’s coefficient as in

Table 13.1 Interpretation of Kendall’s W coefficient

Kendall’s W Interpretation Confidence in ranks

0:5 Moderate agreement Fair

0:7 Strong agreement High

0:9 Unusually strong agreement Very high

1 Complete agreement Very high



230 N. Riche

Table 13.2 Interpretation of
Kendall’s W coefficient on
mean scores

W Interpretation Rank confidence

0:7 Moderate agreement Fair

0:85 Strong agreement High

0:93 Very strong agreement High

0:98 Unusually strong agreement Very high

with 2 or 3 switched models

0:99 Unusually strong agreement Very high

with 1 or 2 switched models

1 Complete agreement Very high
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Fig. 13.1 Row 1: eye fixation mean score for all the models on the whole database with their
standard deviations. Row 2: labelled region mean score for all the models on the whole database
with their standard deviations. A higher pAUC means that the model is better

Table 13.2. Indeed this interpretation shows that W D 0:98 means that only two or
three models are switched between the rankings.

13.1.3 Results

The mean results of pAUC metric for each model are computed in Fig. 13.1 for the
entire database and both ground truths.

After this first score computation, a ranking-based statistical test is required.
Considering our design, the 95 % confidence interval (CI) Friedman test allows to
respond to the H0 hypothesis: are the rankings of the individual results provided by
the different models coherent between both ground-truth performance evaluations?
As explained above, there is no specific effect size measure in the case of the 95 % CI
Friedman test (only a binary response). Therefore, we use the presented Kendall’s W
concordance measure, which basically fulfils our needs (response between 0 and 1).

As shown in Table 13.3, although differences between eye fixation and region
results are significant (Friedman test), Kendall’s concordance between both ground
truths is very good. This means that there is a difference between both rankings,
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Table 13.3 Concordance based on Friedman test and Kendall’s coefficient between eye fixation
and region results

Friedman test (p-value) Kendall’s concordance W

pAUC �0 0:82

but the size of this difference based on Kendall’s W coefficient is relatively
small. In other words, if models have good results with one ground truth, it
is quite unlikely that these models completely fail with the other ground truths
except due to statistical fluctuation. A saliency model which is good in predicting
human eye fixations will remain good in predicting human-labelled regions and
conversely.

These results depend on the experimental design. In our case, one database, 12
saliency models and one metric have been chosen. However, the same experiment
was conducted in our paper [21] based on another metric (NSS) and leads towards
exactly the same conclusion. These results are not presented in this section to avoid
redundancy of information but to validate the interpretations.

13.2 Experiment 2: Effects of the Size of Salient Objects

13.2.1 Goal

In this experiment, we want to compare the effectiveness of the models on three
different image categories (large, medium and small salient regions). In real-life
images, all kinds of object sizes can be seen and saliency models which are tuned
for a given object size are not suitable. It should be noted that this study is divided
into two parts: First, the experiment is computed on saliency models based on eye
tracking. Second, the same experiment is calculated on saliency models based on
salient object detection.

13.2.2 Method

Database and Ground Truth: The same database as in experiment 1 is used [7]
with both region-based and eye tracking-based ground truths. However, in this
experiment, the whole database is not used. Only the first three categories are
interesting for this study and therefore employed: 50 images with large salient
regions, 80 with intermediate salient regions and 60 with small salient regions.

Models: In the first part of this experiment, nine state-of-the-art models from
experiment 1 have been chosen. These are only eye tracking-based algorithms: FSM
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[9], SUN [10], SDLF [11], AIM [12], DVA [13], RARE [1], SR [14], QDCT [16]
and AWS [19].

In the second part of this experiment, nine salient object detection-based state-
of-the-art models have been chosen: FTSD [18], SSOI [22], SMSI [2], SLMC [23],
SDHAS [24], SDAIR [25], SDBM [26], SIM [27] and SDWT [28].

Metrics: As in the first study, the pAUC (post-processing for area under the ROC
curve (2011) [7]) metric has been chosen for this experiment because it can be
applied to both eye tracking-based and region-based ground truths and mainly
measures the eye fixation or region locations. Kendall’s W concordance measure
is used for the statistical analysis.

13.2.3 Results

13.2.3.1 Models with Eye Tracking

Figure 13.2 shows the results for pAUC intro the three categories for eye tracking-
based algorithms. The mean trend can be computed by a linear regression (black line
on Fig. 13.2). The general trend which can be highlighted is that the small regions
have higher score than medium and large regions. This observation is correct for all
models. We can also pay attention to the SR model which significantly increases (in
terms of score rank) for small regions.

To assess the coherence between categories, the same ranking-based statistical
test is required as in experiment 1; however, in this case, it is applied to the
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Table 13.4 Concordance based on Friedman test and Kendall’s measure for large, medium and
small regions

Friedman test (p-value) Kendall’s concordance W

pAUC-labelled regions 6 � 10�4 0.74
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Fig. 13.3 Labelled region results on salient region detection algorithms on large, medium and
small regions for pAUC

means of each of the three classes (large, medium and small). We use the averages
because the number of images is different by categories. Kendall’s W coefficient
as used in experiment 1 shows us a smaller concordance. As shown in Table 13.4,
the p-value is significant. It means that the ranks between models are statistically
different between the three categories, but the size of this difference in terms of
ranking is relatively small. Indeed, Kendall’s concordance shows a moderate-strong
agreement. In this experiment, the rankings are globally coherent (but less than
between the two ground truths). So, the size of the salient region can have a stronger
impact on our assessment than the chosen ground truth.

13.2.3.2 Models with Object Detection

Figure 13.3 shows the results on pAUC for the three categories for salient object
detection-based algorithms. The mean tendency can be computed by a linear
regression (black line on Fig. 13.3). The general trend which can be highlighted
is the opposite of what we observed on Fig. 13.2. The large region has higher
score than medium and small regions. This observation shows that most of saliency
models are tuned to their ground truth (e.g. SOD-based models with the large binary
masks and ET-based models with the small eye tracking distribution). It is correct
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Table 13.5 Concordance based on Friedman test and Kendall’s coefficient for large, medium and
small regions

Friedman test (p-value) Kendall’s concordance W

pAUC-labelled regions 8 � 10�4 0.81

for almost all models. However, SDWT, for example, is different: its score is better
with large salient regions than small ones, but its ranking is worse than both on
medium regions. On the other hand, models with superpixels, like SDHAS, SDBM
and SLMC, significantly decrease (in terms of score rank) for small regions.

To assess the coherence between categories, the same ranking-based statistical
test is required as in the first part. We also use the average because the number of
images is different depending on the categories. Kendall’s W coefficient shows us
a bigger concordance than in the first part. As shown in Table 13.5, the p-value
is significant. It means that the ranks between models are statistically different
between the three categories but the size of this difference in terms of ranking is
relatively small. Indeed, Kendall’s concordance shows a relatively strong agreement.
In this experiment, the rankings are globally coherent (more than in the first part and
approximately equal to the one between the two ground truths).

As mentioned for experiment 1, these results depend on the experimental design.
In our case, one database, 18 saliency models divided in two groups and one metric
have been chosen. However, the first part of this experiment was conducted again in
our paper [21] based on another metric (NSS) and leads towards exactly the same
conclusion. These results are not computed for SOD models. Indeed, NSS is not a
metric for object labelling.

13.3 Experiment 3: Effects of Post-Processings

13.3.1 Goal

In this experiment, only databases with eye fixations will be used. The purpose is
to investigate which post-processings increase the score of a saliency map. Indeed,
there are three aspects which should be considered: the blurring, the border cut and
the centre effects.

First, we study the blurring which is used to better correlate the noisy human
eye movement data. Indeed, the saliency maps obtained from a model usually score
lower than smoother versions of these maps. However, based on [5], there is an
optimal Gaussian blur level for each model.

Then, we investigate the two other well-known problems for fair comparisons
which are the centre bias and border effect. Centre bias means that a lot of fixations
from natural image databases are located near the image centre because when taking
pictures, the amateur photographer often places salient objects in the image centre.
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The computational saliency models which include a centred Gaussian use the prior
knowledge of working on natural images and increase their score on some metrics
compared with other models without this information. Moreover, Zhang et al. [10]
showed that metric scores are also corrupted by edge effects for the same reason.
If we remove the edges of an image, metric scores usually increase as well. This is
why a specific metric, called sAUC, has been designed to eliminate these undesirable
effects. However, for other metrics (like NSS), these issues need to be taken into
account.

These post-processing factors can dramatically influence some metric scores and
affect the fairness of the validation. The main idea of this third experiment is to
measure the impact of these factors on some saliency models.

13.3.2 Method

Database and Ground Truth: The database used here remains Jian Li’s dataset
[7] but only the eye fixation ground truth (collected with an eye tracker) will be
employed. In this experiment, we use the whole database containing 235 images.

Models: For this experiment, six state-of-the-art models have been chosen. These
are only eye tracking-based algorithms: FSM [9], SUN [10], AIM [12], DVA [13],
RARE [1] and AWS [19].

Metrics: The NSS (normalized scanpath saliency (2005) [29]) metric has been
chosen for this experiment. Kendall’s W concordance measure is used for the
statistical analysis.

13.3.3 Results

Figure 13.4 shows an example of smoothing effect for the six saliency models used
in this experiment. To find this optimal blur width, we use the Y. Li’s toolbox
[30]. Some models such as FSM have already reached the optimal blur, while other
models such as AIM, DVA and SUN increase their score with smoother maps.

For the six saliency models with optimal blur (SM), we first cut the edges (8
pixels at each border) of each saliency map. Second, we multiply the output of
every saliency model by a centred Gaussian to observe their improvement.

Figure 13.5 illustrates how the post-processing factors impact the score of each
model based on the NSS score. The general trend shows that all the scores increase.
However, much depends on the saliency models.

Concerning the border cut, we observe that most of the saliency models such as
AIM, FSM, DVA or RARE haven’t improved their scores significantly. There are
two reasons to this: some methods already remove edges into their mechanism or
some selective models often have low score on the border. At the opposite, SUN
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improves its scores. It means that this model often has high values on its edges and
needs to be more selective.

Concerning the 2D Gaussian centre, we can see that all models improve their
score. These results confirm that many fixations are located near the image centre in
Jian Li’s database [7]. These measures can help quantify the centre bias of databases.

As mentioned above, these results depend on the experimental design. In our
case, one database, six saliency models and one metric have been chosen. However,
other correlated results from literature can be found in [5, 6, 10, 17], etc. They lead
towards the same interpretation.
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13.4 Experiment 4: Effects of Metrics

13.4.1 Goal

Due to the diversity of available metrics for eye fixation prediction assessment,
several benchmarks were proposed. In 2011, Toets proposed in [4] to compare
saliency models based on Spearman’s rank correlation coefficient. In 2012, Borji
built a benchmark [6] where three evaluation scores (PCC, NSS and sAUC) are
used. Finally, Judd [5] proposed a platform using three different metrics: hAUC,
S and EMD. Although these benchmarks are major contributions, none of those
studies deeply discussed the relevance of their similarity metric mix.

The goal of this fourth experiment is twofold. First, it shows which metrics are
close to each other. Second, it intends to reduce the dimensionality of the metrics
we use and see which ones should be applied to do an efficient benchmark. Indeed,
it is important to decide which metrics should be used together because they are
complementary and which ones are useless to compute together because they will
provide redundant information.

13.4.2 Method

Database and Ground Truth: The human eye fixation maps used are those in the
database published by J. Li et al. [7] from experiment 1. This database provides eye
fixation ground truth (collected with an eye tracker) for 235 colour images.

Models: In this experiment, the same twelve state-of-the-art models from experi-
ment 1 have been chosen: FSM [9], SUN [10], SDLF [11], AIM [12], DVA [13],
RARE [1], SR [14], PFT [15], QDCT [16],FTSD [18], SSAFD [17] and AWS [19].

Metrics: The 12 metrics presented in the previous chapter are used in this
experiment. These metrics can be divided into three categories: value-based metrics
which focus on saliency map values at eye gaze positions (NSS, P and PF),
distribution-based metrics which focus on saliency and gaze statistical distributions
(PCC, KLD, SCC, EMD and S) and location-based metrics which focus on location
of salient regions at gaze positions (nAUC, pAUC, hAUC and sAUC). An average
score by metric can thus be computed on the whole database for each model which
leads to 12 different rankings of the 12 models, one for each comparison metric.

In the following, we will use the ranking between models and not their average
score values. This is due to the fact that the output of the metrics can be very different
in terms of range of score value and some of them should be maximized (correlation
measures) while others should be minimized (divergence measures). Therefore, a
direct score value comparison does not make a lot of sense. By contrast, the relative
rank of the different models is a consistent measure common to all metrics and its
range is here between 1 and 12 (respectively, from the best model to the weakest).
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To compare model rank according to the different metrics, Kendall’s W concor-
dance measure [20] is used (as defined in Eq. 13.1 of experiment 1).

Kendall’s W concordance is a coefficient measuring the degree of agreement
between metrics. The value ranges from 0 (no agreement between model ranks)
to 1 (full agreement, same model ranking). Furthermore, some rules of thumb
are provided [20] to allow the researcher to interpret this measure as depicted in
Table 13.2.

13.4.3 Results

13.4.3.1 Analysis of Consistency of Metrics

Intragroup Metrics: The concordance is computed between all metrics into the three
categories: value-based (amplitude), location-based and distribution-based metrics
(Table 13.6).

The concordance shows a moderate-strong agreement for location-based and
distribution-based metrics. This means that these metrics provide some complemen-
tary information: they might provide different results for the same saliency map;
thus, one of those metrics cannot just be ignored without a possible information
loss about model ranking. However, one can see that the concordance between the
amplitude metrics is high, which means that those measures are highly correlated
and can therefore be summarized by a small subset of value-based metrics.

Intergroup Metrics: Contrary to the intragroup study that does not achieve enough
concordance, the intergroup suggests that some metrics are very close as it is shown
in Kendall’s matrix of Fig. 13.6a. NSS, P, PCC and hAUC seem to be very close.
On the opposite side, the KLD metric seems like an outlier in this matrix, and it is
different from most of the other metrics in terms of model ranking.

To provide a better representation of the proximity in terms of model ranking
among metrics, we apply, on Kendall’s coefficient, a classical multidimensional
scaling (MDS) technique which visualizes and explores similarities or dissimilar-
ities in data. The results are displayed in Fig. 13.6b. In this representation, the x-axis
(equivalent to a first eigenvector) is more important than the y-axis (equivalent to a
second eigenvector). From the figure, one can see, for example, that PF and NSS are
closer than PF and sAUC.

Table 13.6 Kendall’s W
coefficient of intragroup
metrics

Group of metrics W

Amplitude 0:9534

Distribution 0:7869

Location 0:8488
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Fig. 13.6 Kendall’s analysis. (a) Kendall’s matrix on the 12 metrics. (b) Kendall’s measure on
group of metrics with classical multidimensional scaling of evaluation measures in 2D: 1. NSS / 2.
P / 3. PF / 4. KLD / 5. EMD / 6. PCC / 7. SCC / 8. S / 9. sAUC / 10. nAUC / 11. hAUC / 12. pAUC

13.4.3.2 Study of the Dimensionality

Based on the representation of Fig. 13.6 and in order to reduce the dimensionality of
metric space, we decide to use a concordance of 98 % as a threshold to fuse metrics
(in terms of rank). By using this threshold, five metrics (NSS, P, PCC, S and hAUC)
can be fused into a single metric called cluster. Indeed, as seen in Fig. 13.6b, the
concordance between these metrics is 98.15 %. It means that only the rank of two or
three couples of models has been inverted on the 12 models between these metrics.
The ranking of cluster is defined as the mean ranking of all the metrics composing
it.

For model validation, this cluster means that one measure from those included in
this set is enough and the computation of the others inside this cluster is useless in
terms of new information about model ranking. In this case, the five metrics can be
summarized well enough by any of them.

To go further, a global metric which acts like the barycentre of all metrics is also
computed as the mean of the ranking of all metrics.

The same study as in the first part of Sect. 13.4.3 is then applied but not on the
same metrics. Indeed, we replace the five redundant metrics by the cluster metric
and we add the global one. Kendall’s matrix and the classical multidimensional
scaling (MDS) technique are displayed in Fig. 13.7. We can observe that the cluster
and global metrics are close. Moreover, along the x-axis (first eigenvector), the three
metrics which cover most of the space are the cluster, sAUC and KLD.

These results depend on the experimental design. In our case, one database
and 12 saliency models have been chosen. However, other saliency benchmarks
exist online such as [5, 6] that use several metrics which lead towards the same
interpretation.



240 N. Riche

Fig. 13.7 Kendall’s analysis. (a) Kendall’s matrix on cluster, global and 7 metrics. (b) Kendall’s
measure on a group of metrics with classical multidimensional scaling of evaluation measures in
2D: 2. PF / 3. KLD / 4. EMD / 5. SCC / 6. sAUC / 7. nAUC / 8. pAUC

13.5 Conclusion

In conclusion, there are many parameters affecting visual saliency assessment. Four
experiments investigate basic questions to fairly evaluate saliency maps with human
gazes or labelled regions.

To build a validation framework, first, a database with ground truth needs
to be chosen. Experiment 1 shows that there are significant differences between
eye fixations and manually segmented salient region results, but the concordance
between the rankings of models is strong. Moreover, the properties of the stimuli
(e.g. in experiment 2, large, medium and small salient regions) are addressed
with different degrees of accuracy by the saliency models. For eye tracking-based
models, small salient regions are better detected than medium and large salient
regions. With object detection, the exact opposite behaviour is observed. Therefore,
the size of the salient region can have a stronger impact on our assessment than the
chosen ground truth.

Consequently, for the validation framework which will be seen in the next
chapter, three databases for still images have been chosen to have a large range
of stimuli with only human eye fixation ground truth. Indeed, the purpose of RARE
is only to find gaze distribution. Moreover, with experiment 1, if RARE is good in
predicting human eye fixations, it will remain good in predicting human-labelled
regions and conversely. Two databases for videos have been chosen with both
ground truths. Indeed, the purpose of STRAP is to find gaze distribution but also
to detect a salient object for application as seam carving.

Some metrics need to be chosen. For salient object detection, the gold standard F-
measure is enough, but experiment 4 shows that one metric is not enough to evaluate
the saliency model ranking on eye fixation data. The minimal set of similarity
metrics which should be used is one of the metrics composing the cluster, sAUC and
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KLD. The use of those three metrics is enough to cover most of the space (along the
first eigenvector) and provide a fair ranking result.

For the validation framework, NSS has been selected to represent the cluster.
This metric will be used with KLD which provides really complementary results
and with sAUC which eliminates the effect of centred Gaussians. As only some
models use centred Gaussians, eliminating this effect provides a fairer comparison.

Finally, state-of-the-art models must be selected. To be coherent, 18 eye tracking-
based models have been used in the validation for still images and a mix of 9 eye
tracking- and salient region detection-based models for videos. In terms of post-
processing, experiment 3 shows that some factors such as centred bias, saliency
map fuzziness and border cut have an important influence on the final result and can
dramatically improve the score, especially for the centred bias. The optimal blur has
been assigned on each model. For other parameters, in the validation framework,
the ones given by authors have been kept. Indeed, with the chosen metric sAUC, the
border cut and the centre Gaussian are not an advantage and a fair comparison can
be done.

13.6 Summary

• Experiment 1 shows that the influence of the ground truth is not crucial: if models
have good results with one ground truth, it is quite unlikely that these models
completely fail with the other ground truths except due to statistical fluctuation.

• Experiment 2 shows that the properties of the stimuli (e.g. large, medium and
small salient regions) are addressed with different degrees of accuracy by the
saliency models. For eye tracking-based models, small salient regions are better
detected than medium and large salient regions. With object detection, the exact
opposite behaviour is observed. So the size of the salient region can have a
stronger impact on our assessment than the chosen ground truth.

• Experiment 3 shows that several parameters such as centred bias, saliency map
fuzziness and border cut have important influence on the final result. It is thus
possible to optimize a model by choosing the best parameters.

• Experiment 4 shows that the minimal set of similarity metrics which should be
used is (a) one of the metrics composing the cluster, (b) sAUC and (c) KLD. The
use of those three metrics is enough to cover most of space and provide a fair
ranking result.
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Chapter 14
Saliency Model Evaluation

Nicolas Riche

In this chapter, the validation framework will be applied on static and dynamic
saliency models. The databases and metrics presented in the previous chapters
will be employed, and the studies on the parameters influence have been taken
into account as seen in the conclusion section. For each model, qualitative and
quantitative results are detailed and explained. An additional comparative statistical
analysis is applied on each quantitative result.

14.1 Validation of Saliency Models on Still Images

14.1.1 Qualitative Assessment for Still Image Models

Some qualitative results on synthetic patterns and selected images from the three
static datasets for the validation framework are presented here. The goal of this
section is to visually show results on one of the state-of-the-art saliency models
called RARE [1] on simple and more complex images.

14.1.1.1 Synthetic Patterns

Psychophysical observations are synthetic stimuli showing a particular object
(the target) among other objects (the distractors). All stimuli presented here have
been widely used by the community [2, 3].
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Nevertheless, RARE does not intend to fully explain human behaviour, and the
dataset shown here is not large enough, and it has no eye-tracking data for an
efficient comparison. The goal is to see if the global rarity and local contrast idea
behind RARE make sense compared to human behaviour which will fixate the pop-
out target. There are two parts in this section. First, eight synthetic patterns are
selected for the specificity of their targets which are linked to RARE features: colour
and orientation. In the second part, the selected targets are more complex. They are
not necessarily directly linked to the features extracted by RARE.

In Fig. 14.1, RARE suitably reproduces pop-out phenomena related to colour and
orientation targets. Indeed, the saliency is high (in red) on the targets. These results
are expected due to the nature of the targets. For the colour/luminance differences,
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Fig. 14.1 Rows 1–2: Stimuli and RARE saliency maps for colour and orientation targets presented
separately. Rows 3–4: Stimuli and related saliency maps for colour and orientation mixed targets.
Globally, RARE works as expected
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they are well detected even if the colour difference is not very important. This is
due to the nature of the proposed model which is based on global rarity. Even if
an object has a low contrast, but there are no other high contrast objects, it will be
well highlighted. Concerning the combination of colour and orientation targets, it is
interesting to see the influence of mixed targets or the heterogeneity of distractors.
Indeed, the more distractors, the less selective the saliency map, even if the pop-
out target is still detected as the maximum of the saliency map. This is again a
consequence of the global rarity part of the algorithm. In Fig. 14.2, RARE points
out all of the selected targets even if the features used here are more complex.
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Fig. 14.2 Rows 1–2: Stimuli and RARE saliency maps for targets with different specificities.
Rows 3–4: Stimuli and related saliency maps for synthetic patterns come from visual search task.
Overall, RARE works slightly worse than in the first part. However, it also points out all targets
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The selection of targets includes (1) luminance, (2) intersection and curvature,
(3) density target and (4) visual search examples where all previous targets can be
present. The saliency maps are noisier than in Fig. 14.1 but replicate the expected
human behaviour. In addition to synthetic patterns, some qualitative results will be
presented on selected images from the three datasets of the validation framework.

14.1.1.2 Toronto Database

Figure 14.3 displays selected images from the Toronto database (column 1). The
eye- tracking results on these images which are superimposed on them (column 2)
are compared to the results obtained from RARE (column 3) and the best state-of-
the-art saliency models’ results (following columns).

We first observe in Fig. 14.3 that three algorithms use a 2D-centred Gaussian as
post-processing for their saliency maps, namely, GBVS, SERC and SKSE. There
are many ways to introduce the 2D-centred Gaussian in a saliency model. Visually,
this is clearly discernible within SERC and SKSE models. Then, we see that some
methods, like AIM and GBVS, are less selective. This is specially the case with
image 3 where the entire building is selected. Finally, RARE and AWS show
similar results. They often find the salient distribution with more or less noise. For
example, with image 1, these methods have some difficulties to find the salient area
(the phone).

14.1.1.3 Kootstra Database

In Fig. 14.4, three images from the Kootstra database (column 1) with their eye-
tracking data (column 2) are compared to RARE (column 3) and the best state-of-
the-art saliency models (following columns).

In general, this database is more challenging than the Toronto database. Indeed,
as shown in Fig. 14.4, there are a variety of challenges. On the first image, the
background is very cluttered with repeating distractors. On the second one, there is

Fig. 14.3 Qualitative comparison of six models’ (including the RARE algorithm) results with the
eye-tracking ground truth (second column) on 3 images (rows) taken from the Toronto database
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Fig. 14.4 Qualitative comparison of six models’ (including the RARE algorithm) results with the
eye-tracking ground truth (second column) on 3 images (rows) taken from the Kootstra database

Fig. 14.5 Qualitative comparison of six models’ (including the RARE algorithm) results with the
eye-tracking ground truth (second column) on 3 images (rows) taken from the MIT database

no particular salient regions, only some buildings. Finally, on the last image, there
is a large object which is displayed in most of image.

Visually, the same observations can be made regarding the algorithms. SERC and
SKSE are still visual results close to a 2D-centred Gaussian. This approach is very
efficient when there are no salient regions as in image 2. The SKSE distribution
changes on the last image displaying a large object, but the salient area is not found.
AIM and GBVS still have difficulties with the selectivity. In Fig. 14.4, this is the case
with image 1 because the background is very complex. Finally, AWS and RARE
find the salient area with more or less noise but still have difficulties with objects
occupying a big part of the image.

14.1.1.4 MIT Database

Three images from the MIT database have been displayed in Fig. 14.5 (column 1).
The eye- tracking results on these images (column 2) are compared to RARE
(column 3) and the best saliency models (following columns).

In this database, the same characteristics can be seen for each model: centred
Gaussian, selectivity and good detection. But it’s interesting to watch more carefully
image 2 where models fail. This is mainly due to the fact that here the bottom-up



250 N. Riche

cues do not match with top-down information (faces, animals). This example also
shows that purely bottom-up models are nowadays good enough to find most
salient region and distribution. This can be improved by providing the top-down
information.

In general, across all the databases, the behaviour of each model can be observed
repeatedly.

14.1.2 Quantitative Validation

14.1.2.1 Experiment 1: Toronto Database

Figure 14.6 displays the RARE mean results along with their standard error
compared to the other 18 saliency model results over the Toronto database. The
graph shows how well saliency maps predict eye fixations under three metrics:
sAUC, NSS and KLD. The models are displayed and sorted by metrics (from left
to right).

RARE gives very competitive results on this dataset compared to the state-of-
the-art models. It is the best performing model concerning the Toronto database
relatively to NSS and KLD metrics and the third best performing one with sAUC
metric. Based on the NSS metric, RARE is the only model which outperforms
models with implicit centre bias (SKSE, GBVS and SERC). Besides, these models’
performances are the worst with respect to the sAUC metric. However, even though
RARE gives more accurate results compared to other models, this outperformance
has not been proven significant. Statistical significance tests are required to verify
this claim.

VSLC SUN ESAL CCSA PFT SR SDLF AIM SDSR QDCT DVA AWS SSAFD FSM ISSM SERC GBVS SKSE RARE
0.5

1

1.5

2

0.8
0.94 1 1 1.04 1.06 1.08 1.13 1.2 1.22 1.25 1.26 1.28 1.3 1.38 1.49 1.51 1.58 1.58

N
S

S
 M

E
T

R
IC

VSLC SERC SKSE GBVS FSM CCSA ESAL SUN DVA SDLF PFT SR SSAFD AIM QDCT ISSM RARE SDSR AWS
0.4

0.5

0.6

0.7

0.8

0.52 0.53
0.59

0.64 0.64 0.65 0.65 0.66 0.66 0.67 0.67 0.68 0.69 0.69 0.69 0.7 0.7 0.7 0.71

sA
U

C
M

E
T

R
IC

VSLC SKSE DVA SUN ESAL SDLF AIM CCSA SR PFT SDSR SSAFD AWS QDCT ISSM FSM SERC GBVS RARE
1

1.5

2

2.5 2.23
2.05 1.95 1.83 1.77 1.74 1.73 1.72 1.68 1.67 1.59 1.58 1.57 1.57 1.55 1.53 1.5 1.47 1.46

MODELS

K
LD

 M
E

T
R

IC

Fig. 14.6 Ranking saliency models over the Toronto database using three metrics: first row, mean
and standard error of each model with sAUC; second row, with NSS; and third row, with KLD. For
sAUC and NSS, higher is better, while for KLD, lower is better
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For the statistical significance testing of mean scores between all models, we
used a 95 % Confidence Interval (CI) Kruskal-Wallis test [4]. Indeed, preliminary to
this statistical analysis, we checked by visual inspection if the metrics normality
distribution assumption was met or not. Although the sAUC distributions of all
models seem very close to the normal distribution, other metrics as KLD are clearly
not normally distributed. We thus decided to use a Kruskal-Wallis statistical test that
does not require normally distributed data.

Figure 14.7 gives a boxplot representation of each model for each metric and the
results of the statistical test. The boxplot represents the data through their quartiles.
The bottom and top of the bow are the first and third quartiles, and the band inside
is the median. The whiskers in this case represent the lowest datum (still within
1.5 interquartile range) of the lower quartile and the highest datum (still within 1.5
interquartile range) of the upper quartile. Some outlier data can be represented with
dots.

Fig. 14.7 Boxplot representation of statistical significance testing of mean scores between all
models on the Toronto database. A 95 % CI Kruskal-Wallis test is used for each metric. The
statistical results are given by the red letters above each model. If two models have the same
red letters, the difference between them is not significant
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Fig. 14.8 Example of statistical results for the FSM method

The statistical results are given by the red letters above each model. For one
metric, if two models have the same red letters, the difference between them is not
significant. For example, in Fig. 14.8 based on sAUC, FSM method has two letters:
c and d. It means that all the models with the same letters (from GBVS to SSAFD)
are not significantly different. On the other hand, saliency models which have not
the same letters are either significantly lower (from VSCL to SKSE) or higher (from
AIM to AWS) than the FSM method.

In more general terms in Fig. 14.7, based on sAUC metric, AWS does not show
a significantly better performance than SDLF (letter h). The best group of models
(letter h) is composed of the top-ten models of Fig. 14.6 (sAUC), including RARE.
Based on NSS metric, RARE does not significantly outperform QDCT (letter h).
This group of models is composed of the top six ones of Fig. 14.6 (NSS). RARE
outperforms significantly PFT but does not show a significantly better performance
than SDSR (letter h) based on the KLD metric. The best group is therefore
composed of the top nine models of Fig. 14.6 (KLD).

As a conclusion, RARE behaves well on this database composed of indoor and
outdoor images. Based on the mean scores, it gives better results than the other
models with respect to NSS and KLD and is always in the best group based on the
statistical analysis.

14.1.2.2 Experiment 2: Kootstra Database

Figure 14.9 displays the RARE mean results along with their standard error
compared to the other 18 saliency model results over the Kootstra database. Three
metrics, sAUC, NSS and KLD, are used to show the saliency map performance. The
models are displayed and sorted by metrics (from left to right).

RARE gives good results on this more challenging dataset compared to the state-
of-the-art models. It is the best performing model in Kootstra on NSS metric and the
second and fifth best performing one with the sAUC and KLD metrics, respectively.
Based on the NSS metric, RARE, AWS and SSAFD outperform models with
implicit centre bias (SKSE, GBVS and SERC). On the other side, these models
have worst performance based on the sAUC metric.
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Fig. 14.9 Ranking saliency models over the Kootstra database using three metrics: first row, mean
and standard error of each model with sAUC; second row, with NSS; and third row, with KLD. For
sAUC and NSS, higher is better, while for KLD, lower is better

The same previously mentioned statistical test is performed in order to test the
significance of the results. The results are shown in the boxplot of Fig. 14.10 where
the red letters represent the results of each statistical test.

Based on sAUC, AWS outperforms significantly DVA but does not show a
significantly better performance than PFT (letter g). RARE is part of this best group
(letter g) composed of nine of the ten first models based on Fig. 14.9 (sAUC). With
respect to NSS, RARE does not significantly outperform PFT (letter c). This best
group is composed of almost all of the models. Only ESAL and SUN do not have
the letter c and therefore are significantly lower than the other models. Based on the
KLD, FSM does not show a significantly better performance than PFT (letter g).
Only SKSE and SERC are significantly lower (letter a). RARE is in the first group
composed of the top-eleven models based on Fig. 14.9 (KLD).

As a conclusion, RARE behaves well on this database composed of complex
images. Based on the mean scores, it outperforms under one metric: NSS. Based
on the statistical test, RARE always is in the best group. However, the first group
always has a large number of models (nine, seventeen, eleven). This shows that all
models don’t perform well on this database.

14.1.2.3 Experiment 3: MIT Database

Figure 14.11 displays the RARE mean results along with their standard error
compared to the other 18 saliency model results over the MIT database. Three
metrics, sAUC, NSS and KLD, are used and sorted the models (from left to right).

RARE gives good results on this dataset with a lot of centre bias and top-down
information (like faces) compared to other models, but it isn’t the best performing
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Fig. 14.10 Boxplot representation of statistical significance testing of mean scores between all
models on the Kootstra database. A 95 % CI Kruskal-Wallis test is used for each metric. The
statistical results are given by the red letters above each model. If two models have the same red
letters, the difference between them is not significant

model on the MIT database. It is ranked third based on sAUC and KLD metrics and
fourth with respect to NSS metric. Based on the NSS metric, all models with implicit
centre bias (SKSE, GBVS and SERC) are the best performing ones. However, these
model performances are the worst based on sAUC metric (Fig. 14.11).

To test the significant differences in the results of the means displayed in
Fig. 14.12, an additional statistical 95 % CI Kruskal-Wallis test is required as
previously mentioned. Figure 14.12 also gives the results of each statistical test by
giving the red letters.

Based on sAUC metric, AWS does not show a significantly better performance
than RARE (letter i). The models from SERC to SKSE are significantly lower
than others models (letters a and b). RARE is in the best group composed of the
top three models of Fig. 14.11 (sAUC). SKSE does not show a significantly better
performance than GBVS (letter i) based on NSS metric. This is the first time that
RARE is not part of the first group (letter i), but it is ranked in a second group
(letter h) with the GBVS model. Indeed, GBVS does not significantly outperform
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Fig. 14.11 Ranking saliency models over the MIT database using three metrics: first row, mean
and standard error of each model with sAUC; second row, with NSS; and third row, with KLD. For
sAUC and NSS, higher is better, while for KLD, lower is better

RARE, while RARE does not significantly outperforms FSM (third group, letter g).
It is a good result because in the first group composed of the top three models based
on Fig. 14.11 (NSS), all the models use implicit centred Gaussian. Based on the
KLD metric, SERC does not show a significantly better performance than GBVS
(letter i). RARE is ranked in the second group (letter h) with GBVS. However,
contrary to the results with the NSS metric, RARE significantly outperforms FSM
(third group, letter g). It is a good result for RARE because in the first group
composed of the top-two models on Fig. 14.11 (KLD), all the models use implicit
centred Gaussian.

As a conclusion, RARE behaves well on this database composed of images with
centre bias and top-down information. Based on the statistical test, RARE is in the
best group with respect to sAUC and among the second best performing based on
NSS and KLD. However, the only models that significantly outperform RARE based
on NSS and KLD are SKSE and SERC. These models use centred Gaussian which
is an advantage on this database. We also observe larger significant differences
between the models in this database (letter i instead of h, g or even c into others
databases). This observation is due to the number of images (1003 images here
instead of 100 images).

14.1.3 Multidimensional Scaling Analysis

To complete this comparison, the classical multidimensional scaling (MDS) tech-
nique has been applied, but this time, the distances of this MDS are computed
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Fig. 14.12 Boxplot representation of statistical significance testing of mean scores between all
models on the MIT database. A 95 % CI Kruskal-Wallis test is used for each metric. The statistical
results are given by the red letters above each model. If two models have the same red letters, the
difference between them is not significant

Table 14.1 Example of score concatenation for the calculation of a distance between two saliency
models (AIM and SR) based on the scores

Toronto database Kootstra

Img 1 Img 2 . . . Img 1

sAUC NSS KLD SAUC NSS KLD

AIM 0:7 1:07 1:7 0:67 1:1 1:63 . . . . . .

SR 0:5 1:05 1:8 0:7 1:2 1:62

D 0:2 0:02 0:1 0:03 0:1 0:01 . . .

from the scores obtained from the different metrics rather than the characteristics.
Table 14.1 shows an example of how we calculate a distance between two saliency
models (AIM and SR). For each model, the scores on different metrics and databases
have been concatenated, and to build the distance matrix, the distances between each
pair of models have been measured. The purpose is to visualize in 2D the similarity
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Fig. 14.13 Multidimensional scaling of nineteen eye- tracking saliency models based on score in
2D: 1. FSM / 2. GBVS / 3. CCSA / 4. AIM / 5. SDLF / 6. SR / 7. SUN / 8. DVA / 9. PFT / 10.
SDSR / 11. VSLC / 12. ESAL / 13. SKSE / 14. AWS / 15. SSAFD / 16. ISSM / 17. QDCT / 18.
SERC / 19. RARE

level between the models based on scores and compare the correspondence between
the model characteristics and the scores.

We can see from Fig. 14.13 that on one side, saliency models with 2D-centred
Gaussian bias (Models: 2,13 and 18) appear to have distances in the same range
relatively to other models. On the other, side saliency models with spectral
mechanism (Models: 6, 9, 15, 16 and 17) also seem to have distances in the same
range.

Compared to the MDS presented in previous chapter, only the two observations
explained above are found. We cannot see the impact of the stimuli characteristic
(greyscale or colour) and of the approaches (local or global). It means that the model
scores cannot be found from the characteristics (unlike the post processing).

14.2 Video Saliency Models Validation

14.2.1 Qualitative Assessment

Some qualitative results on selected frames from the two dynamic datasets for the
validation framework are presented here. The goal of this section is to visually show
results of one of the state-of-the-art video saliency model called STRAP on simple
and more complex frames of videos. As for still images, the models, databases and
metrics used for evaluation are described in the previous chapters.
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14.2.1.1 ASCMN Database

Figure 14.14 shows some qualitative results on the ASCMN database. One can
find on the first line 5 different example frames from each of the five categories
of videos in the dataset (abnormal video, surveillance video, crowd video, video
with a moving camera and videos with high motion contrast). The second line of
the figure shows the eye-tracking density maps as heat maps on the original frames.
The three following lines show results for the three best models, namely, STRAP,
GBVS [5] and STVSM [6].

STRAP works well in all the situations, but it sometimes introduces peripheral
noise. GBVS sometimes misses the main interesting regions in the frames, but when
they are well detected, there is few noise, and the saliency map is well focused on
these regions. STVSM performs well and also provides more focused results on part
of the regions of interest. Overall, the three methods provide quite similar results.

14.2.1.2 SVS Database

On Fig. 14.15, 4 different sequences (Harbour, Tempete, Hall Monitor and Mother
Daughter) have been selected to illustrate the results (columns). The two first
sequences have lots of movements, while the two other sequences have a static

Fig. 14.14 Visual results of the best saliency models on ASCMN database: STRAP, GBVS [5],
STVSM [6] compared with the eye-tracking density maps (row 2) for different original frames
(row 1)
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Fig. 14.15 Visual results of the best saliency models on the SVS database: STRAP, GBVS [5],
STVSM [6] compared with the eye-tracking density maps (row 2), manually segmented masks
(row 3) for different original frames (row 1)

camera with a salient moving object. The original frames can be seen on the first
line, and the density maps, used as reference, are displayed on the second line. The
third line shows the manually segmented masks which represent the second ground
truth. The three following lines show again the best models STRAP, GBVS and
STVSM.

It can be seen that the result for STRAP performs very well for Tempete and Hall
Monitor. On Harbour and Mother Daughter, the salient objects are well identified,
but the results could be more intense. Concerning the manually segmented masks,
STRAP always hits inside, but sometimes the objects are not fully spotted.

GBVS is a very selective model which provides relatively good highlight of a
small part of the salient objects. The most important object can be missed, and this
very spotted approach can be a problem in the manually segmented masks detection
assessment.
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STVSM misses the important regions in videos containing a lot of motion and
also has issues when the face detection algorithm fails. For the manually segmented
masks, this approach seems less efficient.

14.2.2 Quantitative Validation

For quantitative assessment, three different experiments are carried out. First, in
experiment 1, the ASCMN database is used to compare STRAP with the other
models using the eye-tracking ground truth and three metrics. In experiment 2,
STRAP is compared with state-of-the-art techniques based on the videos of the
SVS database using the eye-tracking ground truth and three metrics. Finally, in
experiment 3, STRAP is compared again with the state-of-the-art models on the
SVS database, but this time on the manually segmented masks ground truth using
one adapted metric.

14.2.2.1 Experiment 1: ASCMN Database

In this first experiment, we use the ASCMN database to assess the proposed STRAP
model. Figure 14.16 displays the STRAP mean results along with their standard
error compared to the other nine video saliency models over ASCMN database.
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Fig. 14.16 Ranking saliency models over ASCMN database using three metrics: first row, mean
and standard error of each model with sAUC; second row, with NSS; and third row, with KLD. For
sAUC and NSS, higher is better, while for KLD, lower is better
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The graph shows the performance of saliency maps under three metrics: AUC and
NSS (higher score) and KLD (lower score). It is important to note that sAUC is not
appropriate for the videos. Indeed, the centre bias is less present and appears only
during the first second of a video [7]. Moreover, the sAUC metric is time consuming
and therefore not suited to the videos. This is why we replace sAUC by a classical
implementation of AUC which has been realized by S. Schroedl and is based on [8].
Therefore, we always have one metric for each category (location, distribution and
amplitude).

STRAP gave good results on this specific dataset composed of five different kinds
of movements which can be met in real-life scenarios. Compared with other models,
it is not the best performing model in ASCMN on one metric. Indeed, STRAP is not
specifically tuned to predict eye distribution but performs well compared to specific
models as GBVS, STVSM and ST-RARE. It occupies the fourth rank on AUC and
NSS metric and the fifth one with KLD metric.

However, to know which models outperform others, an additional statistical
significance test is required. The same statistical significance 95 % CI Kruskal-
Wallis test that is used for still images which do not require normally distributed
data is applied. Figure 14.7 gives a boxplot representation of each model for each
metric, and the results of each statistical test are given by the red letters (Fig. 14.17).

A general trend is that video saliency models are more significantly different than
the image ones. This is also due to the fact that there are a lot of frames (implying
more scores) during video. Based on AUC metric, GBVS shows a significantly
better performance than other models (letter h). STRAP and ST-RARE are not
significantly different (letter f) and are in the third group. Moreover, GBVS also
shows a significantly better performance than other models (letter g) based on NSS
metric. STRAP is in the second group as SMAMS or STVSM (letter f). It is more
complicated based on the KLD metric. Indeed, STVSM does not show better result
than STRAP (letter d). However, SMQVA shows better performance (letter e).
STRAP is therefore in the second group of models (letter d) as STVSM, GBVS
or SDSR.

As a conclusion, STRAP behaves well on this database composed of videos with
different kind of motion. Based on the statistical test, STRAP is in the third group
with AUC and the second on NSS and KLD.

14.2.2.2 Experiment 2: SVS Database Using the Eye Fixation Ground
Truth

The videos in this database are very different compared to ASCMN. Indeed, there
are only high-quality videos with very complex scenes with a lot of camera motion
(zoom, tracking) or faces. In this case, the use of the temporal compensation has a
very important role into this database.

Figure 14.18 displays the mean results along with their standard error of STRAP
compared to the other nine video saliency models over eye tracking of SVS
database.
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Fig. 14.17 Boxplot representation of statistical significance testing of mean scores between all
models on ASCMN database. A 95 % CI Kruskal-Wallis test is used for each metric. The statistical
results are given by the red letters above each model. If two models have the same red letters, the
difference between them is not significant
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Fig. 14.18 Ranking saliency models over SVS database using three metrics: first row, mean and
standard error of each model with AUC; second row, with NSS; and third row, with KLD. For AUC
and NSS, higher is better, while for KLD, lower is better

The graph shows the performance of saliency maps under three metrics: AUC
and NSS (higher score) and KLD (lower score). As in Experiment 1, AUC is used
instead of sAUC. STRAP gives very good results on this dataset composed of high-
quality videos with moving camera. Compared with other models, it is the best
performing model in SVS on two metric: NSS and KLD. It ranks number two on
AUC metric.

However, as in Experiment 1, to know which models outperform others, an addi-
tional statistical significance 95 % CI Kruskal-Wallis test is required. Figure 14.19
gives a boxplot representation of each model for each metric, and the results of each
statistical test is given by the red letters.

Based on AUC metric, GBVS shows a significantly better performance than
other models (letter h). STRAP and STVSM are not significantly different (letter g)
and represent the second group. Based on NSS and KLD metrics, STRAP shows
a significantly better performance than all the other models (respectively letter i
and f).

As a conclusion, STRAP behaves very well on this database composed of
complex videos with moving camera. STRAP is the best model with NSS and KLD
based on the statistical test and in the second group based on AUC.

14.2.2.3 Experiment 3: SVS Database Using the Object-Oriented Ground
Truth

Concerning the manually segmented masks validation into the YUV database,
Fig. 14.20 displays the mean results along with their standard error of STRAP
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Fig. 14.19 Boxplot representation of statistical significance testing of mean scores on eye tracking
between all models on SVS database. A 95 % CI Kruskal-Wallis test is used for each metric. The
statistical results are given by the red letters above each model. If two models have the same red
letters, the difference between them is not significant
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Fig. 14.20 Ranking saliency models over SVS database with binary masks using one metric.
Mean and standard error of each model with F-score: higher is better

Fig. 14.21 Boxplot representation of statistical significance testing of mean score on salient object
detection between all models on SVS database. A 95 % CI Kruskal-Wallis test is used. The
statistical results are given by the red letters above each model. If two models have the same
red letters, the difference between them is not significant

compared to the other nine video saliency models over binary masks of SVS
database. The graph shows the performance of saliency maps under one metric:
F-score (higher score is better). Compared with other models, it is the best
performing model in SVS on this metric.

However, to know which models outperform others, an additional statistical
significance 95 % CI Kruskal-Wallis test is required. Figure 14.19 gives a boxplot
representation of each model for the metric and the results of each statistical test are
given by the red letters.

Based on F-score metric, STRAP shows a significantly better performance than
all the other models (letter g) (Fig. 14.21).

As a conclusion, STRAP performances are in line with the state-of-the-art
models for eye fixations, but it definitely outperforms all the other models in case
of object-oriented ground truth. The use of the segmentation module, while also
supporting a little the eye fixation ground truth (see Fig. 14.15, row 2), has a very
important role in object-oriented ground truth (see Fig. 14.15, row 3). The ability to
handle both eye fixations and object prediction is a unique ability of STRAP.
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Fig. 14.22 Multidimensional scaling of ten saliency models for videos based on scores in 2D: 1.
GBVS / 2. NMPT / 3. SSOV / 4. SDSR / 5. VICO / 6. SMVQA / 7. SMAMS / 8. STVSM / 9.
ST-RARE / 10. STRAP

14.2.3 Multidimensional Scaling Analysis

To complete this assessment, as for still images, the classical multidimensional
scaling (MDS) technique similar to the one exposed in Sect. 14.1.3 has been chosen.
To build the distance matrix, the scores on different metrics and databases have
also been concatenated, and distances between each pair of models have been
measured for each model. The purpose is to visualize the similarity level between
the dynamic models based on scores and compare the correspondance between the
model characteristics and the scores obtained.

We can see from Fig. 14.22 that the first coordinate divides models in two
clusters; on one side (right, models: 1, 3, 4, 5 and 8), saliency models with local
approach appear to have distances in the same range relatively to other models. On
the other side (left, models: 6, 7, 9 and 10), saliency models with global approach
also seem to also have distances in the same range. Model 2 acts as an outlier.

Comparing with the MDS presented in the previous chapter, contrary to still
images, most observations explained above are also found with the MDS based
on video characteristics. Besides the fact that the first coordinates correspond to
the approach characteristic, one another interesting observation is that three of the
four clusters (from C1 to C3 on Fig. 14.22) can be observed from the characteristic
graph. It means that for videos, there is a correlation between methods and scores.
However, we do not see the impact of the stimuli characteristic (greyscale or colour).
It shows that the model scores can be correlated with the chosen approach, while the
way to exploit the stimuli (greyscale or colour) is less important.
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14.3 Summary

• Validation of saliency models was made on 3 databases of eye tracking for still
images and two databases of videos.

• Three metrics (sAUC, NSS, KLD) were used for validation as their information
are complementary.

• One dataset for videos with pixel-wise object segmentation was used along with
the F-measure metric.

• Additional statistical tests (Kruskal-Wallis test) showed that the different mod-
els’ results on eye-tracking data are close between different saliency models,
especially for static images.

• Multidimensional scaling of image and video models also shows that a few
groups are enough to explain the different results.
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Chapter 15
Object-Based Attention: Cognitive
and Computational Perspectives

Anna Belardinelli

15.1 Introduction to Object-Based Attention

A much debated and still unresolved issue within the multidisciplinary research on
visual attention concerns the question on the basic units of attention. In recent years
the object-based account of attentional selectivity has gained evidence, in contrast
to the spatial (location) account, yet it seems clear that the two strategies are very
much likely to cooperate or being used for different purposes. Depending on the task
and the situation at hand, indeed, selection can be location, feature, or object based.
In Posner’s cueing paradigm [46], attention is shifted to a location where nothing is
yet present while during visual search target features or objects resembling the target
capture attention. Since the postulation of the dual nature of vision [25, 62], space-
based attention has been thought to pertain more to action (dorsal pathway), while
object-based attention would be rather needed for object recognition and ventral
processing. Again, the two systems have actually to interact for coherent behavior
[30, 64].

In any case, the issue presents far-reaching consequences in diverse fields, since
from the parsing of the perceivable scene into distinctly selectable units, higher-
level concepts, action, and language can be bootstrapped. Even without going too
far in considering complex levels of cognition, it is a daily experience for everyone
that our attentional behavior is often object oriented: we look for something; we
want to grasp or manipulate an object or to navigate an environment while avoiding
obstacles. That is, every goal-oriented action or every perceptual understanding
of a scene at some point has to come to terms with the selection of a discrete
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entity, may it be a completely formed object in a semantic, categorical sense or
a candidate target, defined by a bundle of features of interest gathered in a single
selectable token. This goal-driven perspective is particularly desirable, of course,
also in the case of artificial systems, which need to instantiate the planning of their
actions or select on what to focus their processing resources even before costly
operations of object recognition have taken place. Moreover, compared to saliency
computed on pixel-based feature contrast, human visual attention has proven to be
able to span entire objects. In this respect computational approaches accounting
for salient object selection present the advantage of helping scene understanding
(e.g., by discarding the background and processing only foreground objects) and
of allowing sparse representation and chunking while concurrently fostering timely
action on the environment. Essentially, an object-based representation, even at the
lowest level, is the basis for situated vision [47], a perspective on visual processing
that embraces the different purposes of vision, from recognition to control of action.
In this chapter, we will review some evidence for the capacity of our visual system to
operate on an object basis, consider the implications of such an ability for cognitive
systems, and explore how these concepts have inspired and have been implemented
in artificial systems.

15.1.1 Evidences for Object-Based Processing of Visual
Information

What is an object? This is a long-standing, haunting question for philosophers,
psychologists, roboticists, and cognitive scientists alike. Even though everyone, just
as for the term attention, has a fair understanding of what an object is, the distinctive
properties making an object, determining the objecthood, are far less agreed on.
Attentional units can range from amorphous bundles of colocated, grouped features,
to proto-objects, to distinct, well-formed objects. Basis for each of these concepts
is, nevertheless, the ability to segment the scene and group features that belong
together according to some principle. The most evident and intuitive criteria for such
perceptual grouping, as well known, were stated by the Gestalt movement already
in the first decades of the last century [68]: elements similar for color, orientation,
size, or direction of motion can be easily chunked together. Analogously, symmetry,
parallelism, good continuation, and closure help segmenting unitary objects. The
Gestalt laws provide a way to organize the perceptual input in grouped chunks
and proceed from the primal sketch [39], identifying edges and intensity changes,
upward toward structured entities comprised of surfaces and volumes. Simplified to
the most basic terms, the problem of object segmentation can be reduced to fore-
/background discrimination, yet this is not always univocally possible if no depth
or light cues are present and often top-down biasing is necessary to recognize an
object from ambiguous silhouettes (as in the case of the vase/face figure by Rubin).
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For a more detailed investigation of Gestalt laws of perception, we refer the readers
to texts on visual perception such as [8] or to the review by [66].

Assumed we have a way to extract discrete entities from the continuous
visual input (in Sect. 15.1.2 definition and nature of such entities will be further
scrutinized), what does it mean for selective attention? In which ways is cognition
affected?

Even though for many decades space-based (and feature-based) accounts were
the preferential approach in research on visual attention, object-based effects in
selective attention have long been known to exist. We report here some of the most
compelling studies (for thorough reviews see [55] and, more recently, [12]).

In the seminal work by [17], it was shown how subjects, when presented with two
superimposed objects, could report more accurately two features pertaining to the
same object rather than one feature of each object. This effect was termed the “same-
object advantage.” Stimuli contained, for example, a box crossed by a line, each of
which had two variable dimensions (size and side of aperture for the box, texture and
orientation for the line; see Fig. 15.1). The effect was reproduced in many different
paradigms [18, 64], showing the advantage both in accuracy and in reaction time,
within and between objects, with valid/invalid cues, with superimposed objects or
flanker interference (objects grouped according to Gestalt criteria such as contours,
motion, connectedness, good continuation) [55]. The critical point here is that a
coherent object, with all of its properties and parts, can be attended without further
effort in a single act of selection. The ability to focus on one of two superimposed
stimuli was already demonstrated by [42] in a study where participants were able
to attend to one of two overlaid videos and to ignore events in the other, with both
videos running transparently on top of one another. A similar paradigm was used
to show object effects at neural level in the well-known fMRI study by [44]. In this
case photographs of a face and of a house were shown to subjects, and one of the two
could be moving (oscillating along one axis). The areas sensitive to each of these
elements are well and distinctly localized in our brain, namely, the fusiform face
area for faces, the parahippocampal place area for places, and MT/MST for motion.

Fig. 15.1 Same-object
advantage exemplification
(Adapted from [17]): two
possible stimuli used in the
experiment. Two features of
the line or of the box were
reported more accurately and
promptly than one feature of
either object.
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The authors thus were able to observe which area was most activated according to
the task, i.e., to attend either to the face, to the house, or to the moving item. Results
showed that both the area related to the target and the area pertaining to the second
feature (motion) of the target were more activated than the one related to the object
to be ignored. This phenomenon can be hardly explained just in terms of spatial-
based or feature-based attention and is considered as neural evidence underpinning
the “same-object advantage.”

In general, object-based benefits for within-object saccades, working memory,
and visual search have been demonstrated (see studies reviewed in [12]). Interest-
ingly, even though there are many mutual interactions between segmentation and
attention and the task also plays a role [16], perceptual objects do capture attention
also in a purely bottom-up way. Kimchi and colleagues [34] showed how a target
was more readily found in a visual array if it was placed inside a frame formed by
a closed, symmetrical disposition of elementary objects rather than outside of it,
even though the object-like form was not relevant to the task. When no object was
present, but just the elementary items as distractors, performance was still better
than when the object was present and the target was outside the perceptual object
area.

Further important pieces of evidence of object-based representations come from
studies on brain-lesioned patients, presenting conditions such as neglect, visual
extinction, and simultanagnosia. Neglect is usually characterized by disregard of
the contralesional visual hemifield and would hence be rather considered a space-
based dysfunction, but, even so, it was shown that sometimes patients ignored the
contralesional side of an object stimulus (i.e., the left side of a clock in the case of
a right side lesion) even if this was entirely presented in the ipsilesional hemifield
[15], suggesting the use in this case of an object-centered reference frame.

Visual extinction patients usually fail to detect one stimulus in the contralesional
visual hemifield if this is presented concurrently with one stimulus on the other
side. It would suggest an attention competition problem with the ipsilesional
object winning the race and taking all the attentional resources, hence making
patients unable to disengage from the stimulus in the hemifield relative to the
non-damaged hemisphere. This effect was nevertheless attenuated when the two
presented stimuli were manipulated in such a way that they could be perceptually
grouped together [24].

Finally, simultanagnosia, part of the Balint’s syndrome, causes the inability to
perceive more than one object at a time. This makes scene perception and integration
of single object parts in a larger compound object very difficult. This seems a merely
object-based condition, is not lateralized, appears to be produced by a disrupted
global Gestalt perception [28], and, again, can be alleviated by inducing a stronger
perceptual grouping by connecting objects explicitly [30].

Lesion studies show that object coding is present at neural level, and this can
happen even without focal attention. G. Humphreys [29] suggests the existence of
a dual coding: a within-object representation (elements coded as a single object)
and a between-object representation (elements coded independently). The first is
needed for object recognition, while the second for action control; hence the two
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seem to pertain to different pathways while still existing in parallel. Primate single-
cell studies involving tracing a line crossing a distractor line have also shown that
object-based representations emerge as response enhancement as early as V1 [52].

Finally, assessed that object effects exist and can critically influence our rep-
resentation of the world, which mechanisms can explain these effects? Chen [12]
reports three main interpretations:

• Sensory enhancement: attention spans the entire object and in turn enhances its
neural and perceptual representation, so that each of its features is processed
more effectively with respect to unattended objects.

• Attentional prioritization: the scanning order in visual search is biased toward
inspection of locations in an already selected object (suggesting that object
effects do not emerge when location of the next target is known in advance, which
is controversial).

• Attentional shifting: shifting within an object is less costly than between objects,
since attention can spare the disengagement cost connected with shifting to
another object representation.

15.1.2 Object Files and Proto-objects

Even if the Gestalt principles suggest important criteria to single objects out of
multiple elements or to identify distinct textures, assigning them to different objects
or to objects and background, a more basic question arises when these principles
exploit a combination of features that need to be first linked together and assigned
to the same entity. Moreover, a critical question for this chapter is which part of this
processing is done pre-attentively and which part necessitates attention. From early
sensing to conscious attentive perception, the flow is continuous and hierarchical,
with different functional and neural layers acting on top of one another and bidirec-
tionally interacting with one another. A first important distinction that can be driven
is suggested by A. Clark [14]. At the level of early vision, features are computed
in parallel in a pre-attentive way. In this case features are retinotopically arranged
in maps, hence essentially location based. This representation is termed “feature-
placing” and is very coarse and, importantly, nonconceptual and prelinguistic. The
next layer is termed “proto-objects” (or in the words of [33] object files, “ ‘episodic’
representations of real world objects”), is volatile (as in [49]), and constitutes the
basis for attentional selection and object recognition. These entities can be indexed
and selected for storage into visual working memory [47, 49] and fed into higher-
level layers, such as that of “full-blooded,” well-formed objects, both conceptually
and linguistically determined.

Feature placing shares the idea stated in the Feature Integration Theory (FIT)
[61] that different visual dimensions are computed in separate maps and they are
then integrated in a single master map. An object with a unique property hence
stands out (“pops out”) because is the only one receiving contribution from the
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related feature map. On the other hand, a combination of features needs selective
attention to be assessed across different maps, resulting in a less straightforward
process. Still, an object is not the mere ensemble of its features, and location is not a
feature as other phenomenological properties. The master map (or the saliency map
in many attention models) can identify the co-occurrence of diverse features, but
this is still defined by the overlapping in a precise physical location not by a more
widely extended, yet connected, identifiable entity. The difference is akin to the one
referred by [64] as grouped array versus spatially invariant representation. This leads
to tackling the problem of “feature binding” in all its different aspects. Treisman [60]
taxonomizes the binding problem into seven major categories: property (features),
part (components), range (of different sensor values and cell firing), hierarchical
(shape versus low-level features), conditional (interdepending properties), temporal
(over successive states), and location (“what” to “where”) binding. Most current
models, referring to spatial attention, focus on the first two and combine specific
feature maps by means of the same topographic organization, so that for each
location the number of active, sensed features can be assessed. The binding in
FIT is hence provided by the presence of features at the same location at one
point in time, and attentive fixation glues them together. Hence, location is not a
feature but the property, along with time, that permits the instantiation of object
files. The temporal aspect is also very important in the definition of object units,
since it allows for consideration of the dynamic aspects of perceptual objects. In
the words of Rensink [49], “focused attention is needed to see change.” In his
coherence theory, he suggests a sketch of low-level vision based on three steps:
a transduction stage, concerned with photo-reception at sensor level; a primary
parallel processing stage computing image properties via linear filtering; and a
secondary processing stage extracting proto-objects directly accessible to attention,
which in turn provides coherence to selected objects in the form of a spatiotemporal
unity (see Fig. 15.2).

15.1.3 The Role of Objects in Visual Search, Top-Down
Attention, and Vision for Action

We are very goal-oriented beings, our survival used to depend on the action we
undertook at any time, and the better the action planning, the higher the chances
of getting through the challenges of our environment. This means that most of
the time top-down control shapes our sensory-motor behavior in order to make
informed decisions about the next move and to increase our situation awareness
for responding to external solicitations. Visual search is one of the most classical
experimental paradigms to study task-driven visual attention. Indeed, since the
studies of Yarbus [72] and Buswell [10], it has been shown how substantial the
role of the task can be in controlling the gaze wandering on some complex scene.
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Fig. 15.2 Schematic representation (adapted) of the pre-attentive processing flow in the coherence
theory of [49]. Only discrete proto-objects are accessible to attention processes via a nexus, a
compact structure containing each object properties

Especially in a visual search task, the item to be targeted is more than an
ensemble of features associated to the pixels it is composed of. The whole is
more than just the sum of its features, something which seems supported by very
recent studies. Naber et al. [41] conducted a study to disentangle the question
whether grouped features elicit an object representation or if such a representation
is necessary to bind features together. By showing ambiguous stimuli switching
between a bound versus an unbound perception of the same features, it can be
shown that detection of a probe and discrimination of features were both reported
better when the bound perception was dominant. That objects are extracted pre-
attentively was also shown in [70], where candidate targets in visual search are first
segmented against a more or less cluttered background. That is, objecthood is also
a guiding feature, even if not the one defining the target (as in the abovementioned
case of [34]).

Something which is sometimes neglected is that visual search is not just a task but
a whole visuomotor behavior. The visual system follows a precise strategy to bring
the most promising target candidates within the fovea, with a sequence of saccades
and fixations and possibly head movements. This is so because of the acuity drop in
our peripheral view. In recent years, there has been an increasing number of studies
investigating the role of object-based attention in gaze control. This has, indeed,
proved to be prominent, especially when the subject has some kind of task [19, 26,
43], may it be explicit visual search or memory encoding for later recall. It appears
clear that most fixations land within objects [43], in particular close to its center
of gravity (COG), considered as the Preferred Viewing Location, especially in a
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search task condition (there still can be a small amount of undershooting, depending
on the saccade direction). Einhäuser and colleagues [19] also showed that human
fixations were better predicted by objects rather than by early saliency, even though
objects gathering more salience within their boundaries were picked up for recall
more often.

Apart from visual search, which, as said, involves an oculomotor behavior,
object-based attention has been shown also to play a role in the control of action. In
the context of the premotor theory of attention, indeed, it has been shown that some
neurons discharge both during grasp execution and observation of graspable objects.
Crucially, this happens only if the object is presented in size and shape compatible
with the coded grip [51].

Finally, going back to the dualism space-/object-based attention, two models
were proposed in the 1990s to explain how these perspectives may interact. The
visual attention model (VAM) by [54] is a neurocognitive model reconciling
vision for perception and vision for action in a single framework. Attention
is here suggested to control segmentation, object recognition, and space-based
motor action. “Visual chunks” are locally grouped and segmented as early as
V1 in a stimulus-driven Gestalt manner, while attention processes act via top-
down feedback from higher layers to produce global segmentation units as “object
tokens.” If just one “token” is produced, this can proceed to object recognition
along the ventral pathway; otherwise the competition between multiple objects to
be recognized requires where-based attention control from parietal areas to serially
scan the possible targets.

The CODE Theory of Visual Attention [37] combines a previously proposed
contour detector theory (CODE) [63] with the Theory of Visual Attention [9]. TVA,
indeed, needs to act on objects or perceptual groups to account for within-object
selection depending on feature and category evaluations. The CODE theory clusters
locations by proximity assuming again that at early level (V1) location and identity
are represented together while late processes separate the two (the magnocellular
pathway, in the posterior parietal cortex, represents location, and the parvocellular
pathway, ventral, represents identity). Again perceptual groups are produced acting
on the analog representation of space (bottom-up) by applying top-down processes
yielding a quasi-discrete representation.

In the next sections it will be discussed how such theories and concepts have
been received in computer vision and inspired modeling in technical systems.

15.2 From Biological Inspiration to Modeling and
Applications: Object-Based Attention in Artificial
Systems

Although the modeling of visual attention for artificial systems has come a long
way in the last 30 years, still most approaches are pixelwise, feature, and location
based. The introduction of attentive processing was meant to allow a cognitive



15 Object-Based Attention: Cognitive and Computational Perspectives 279

system (be it a camera or a robot) to rapidly focus on interesting objects and
events, extracted from the wider visual scene. As such, pixel-based approaches
need hence a further step to single out an object or a region for further processing.
Moreover, when considering embodiment, vision is also inherently necessary for
action control, usually exerted on objects. In many approaches, attentive selection
is considered as a preliminary step for object detection and recognition. Indeed,
even if most algorithms and systems for detection and recognition are basically
scale and location invariant, they typically use pictures containing one object to
recognize or, for detection, they often require a limited window to search within
(e.g., [40, 65]). This window is usually slided over the whole picture, as such
implying an exhaustive search. Attention is supposed to mitigate this computational
burden, by directly selecting the regions where the searched object is likely to
be found. In recent years multiple frameworks have been proposed, which try to
move away from the selection of the most salient points toward the selection of
salient objects or regions. The diverse approaches present in the literature can be
basically classified according to when the segmentation operation is performed,
namely, before or after saliency computation. What is of interest introducing these
approaches is to stress again the problem of generically defining an object or
the concept of objecthood, something which still remains quite elusive in vision
science altogether. In most cases, computer vision approaches resort to feature-
based definitions, considering an object as a homogeneous entity with respect
to low-level features or to the criterion used for segmentation. In [2] authors
focus on designing a measure of objectness independent of the object classes.
They consider objects as “standalone things with a well-defined boundary and
center, such as cows, cars, and telephones, as opposed to amorphous background
stuff, such as sky, grass, and road,” hence defined by closed boundaries and
distinct, salient appearance with respect to the surroundings and global uniqueness.
Elsewhere proto-objects or object candidates are formed as extended areas of
saliency activation or segmented blobs with underlying features [45, 67, 69], as
detailed in the next section.

15.3 Late Versus Early Segmentation: Salient Object
Detection and Embodied Models

The question whether objects are computed pre- or post-attentively transfers also
to the way current computational models intend object-based attention. In many
cases, saliency is computed first at pixel level, and then saliency clusters are taken
as proto-objects or regions containing a relevant object. In this case, saliency is
considered causal of attention (at least, in a bottom-up way) or the best correlate of
attention, assuming that object edges and shapes are mostly visually salient. Elazary
and Itti [20] showed how, when applying the basic bottom-up model by [31] to
a dataset of images containing objects spontaneously labeled by users, the most
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salient location fell well above chance in one of the annotated objects. The model
has of course no concept of object, and it is possible that users chose the objects
most easy to annotate, hence those well contrasted. Critically, when comparing
pixel-based saliency to human performance, it has been proven the tendency to
land saccades on the center of gravity (COG) of objects [21, 43]. It has been hence
suggested that saliency has mostly an indirect, correlational relationship with the
fixation distribution [19, 59]. This has initiated a debate, with Borji and colleagues
[7] analyzing again the data of the abovementioned study of Einhäuser et al. [19]. In
this latter study, objects – a map made of manually segmented objects – were shown
to predict human fixations better than early saliency. In [7], the authors used a rich
set of saliency models, with different parameter tuning and performance measures to
show that most of these models indeed outperform the object model. Stoll et al. [56]
picked up the question again considering not just segmented objects as predictors
of human fixations but putting a higher weight on their COG (or PVL, Preferred
Viewing Location). In this case the object model was performing as well as the best
tested saliency model and even better when low-level saliency was manipulated
while keeping the “objecthood” of displayed items intact.

Independently of where one stands in this debate, in many cases where atten-
tion serves as a spotlight (or as an object/background discrimination means) for
more elaborated object detection and recognition techniques, quick, contrast-based
saliency is the best choice. On the other hand, some consider attention, especially in
task-driven settings, to be deployed on previously segmented units, saving saliency
computation on the background and ranking sparse objects instead of the whole
visual array. The image-based representation, dominating in the computational
attention literature, does not take into account more high-level aspects of selection,
connected to the objecthood of the target, whereas the cognitive relevance hypothe-
sis postulates the role of the current task and related semantic and cognitive aspects
in the selection of the saccade target [43].

In a way, late segmentation approaches consider object selection as a by-product
of spatial attention and saliency extraction, while early segmentation approaches
consider objects the only argument of attentive selection, as in Bundesen’s model
[9] or as for Rensink’s proto-objects [49]. To put it in other words, models
of the first type use saliency to perform object segmentation (e.g., [23]), while
models of the second type use segmentation to compute object saliency. In
general, late segmentation approaches are better suited for object detection and
recognition, while early segmentation frameworks, more literally object based,
serve better for visual search and, crucially, action/manipulation purposes in robotic
settings. Both types of methods can be more or less biologically inspired, with the
second ones usually paying more attention to a biologically plausible scan-path
production.
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15.3.1 Late Segmentation Approaches: Salient Object
Detection

A wealth of saliency measures and techniques have been developed to overcome the
issue of salient point location detection and to guide recognition by operating salient
object detection. With the advancement of object detection/recognition techniques,
the critical issue is learning objects during the training phase by presenting correctly
segmented and labeled examples, since most learning is done supervisedly. Even if
only the object of interest is present in the training image, this must be discriminated
from the possibly more or less cluttered background. Pixel-based saliency offers
in this case the advantage of being defined independently of image content, in an
almost agnostic fashion as to the number of objects present, their features, or scale.

Rutishauser et al. [53] and Walther and Koch [67] extended the classic model by
[31] to show how bottom-up saliency can be used to extract regions where salient
objects are and use them to select, learn, and afterward retrieve the same objects.
Proto-objects are formed by selecting the most salient location in the saliency map
and by retrieving via feedback the feature and the scale that contributed the most
to the saliency of the winning location. Segmentation of the proto-object occurs
by selecting the region around the winning location which shares a similar level of
activation. To perform object recognition, nevertheless, selected regions are further
characterized by newly computed, more robust features, such as SIFT [38] or C2
coefficients in the HMAX model [50].

As mentioned above, a richer characterization of what makes a generic object,
at least in computer vision terms, was proposed by Alexe and colleagues [2, 3].
The authors there argue that any object can be discriminated from the background
according to one or more of these properties: a defined closed boundary, a locally
different appearance, and a global uniqueness in the image. On this premise, a
measure of “objectness” is built by considering multiscale saliency (based on
spectral residual [27]) along with color contrast, edge density, and straddleness
(considering superpixels straddling object boundaries). Still, this system is more
a general object detector than an attention model. Instead of a saliency ranking of
each object candidate, the output is a list of windows labeled with the likelihood
that they contain an object.

Recent approaches have focused less on the abstract definition of what makes
an object and more on salient object detection as an image segmentation problem,
separating the (usually) one salient object on the foreground from the rest of the
picture. These models often heavily rely on spectral information as a strong cue for
boundaries or for features able to describe the global nature of objects as opposed
to local contrast. In [36] the binary segmentation problem is solved by learning in a
supervised fashion the optimal combination of local and global features describing
an object. Images annotated by users are used to learn a conditional random field
where the probability of a binary mask on the salient object in a given image depends
conditionally on a combination of salient features – multiscale contrast (local),
center-surround histograms (regional), and color spatial distribution (global) – and
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a pairwise feature, modeling the relationship between adjacent pixels. Achanta
et al. [1], recognizing that classically defined saliency often fails in spreading over
whole objects and consistently enhances border parts, use just color and luminance
as features, since these are usually uniform within objects, at low frequencies.
Saliency is computed as a center-surround operation where the surround is the whole
averaged image (i.e., the DC component, as if the image was filtered by a Gaussian
with infinite variance) and the center is a blurred version of the original image,
filtered with a Gaussian with small variance, so to eliminate noise and textures but
to keep object edges. That is, by optimally tuning the ratio between these variances,
object extraction boils down to a difference-of-Gaussian operation, like a pass-band
filter tuned to the bandwidth covering most salient objects.

Many other models have been proposed in this line of research, also trying to
combine more “object-oriented features” (e.g., [11, 13, 32, 71]), and have been
benchmarked in [6], but some limitations (such as biased datasets) have been
pointed out in [5]. These techniques distance themselves from pure modeling of
attention, since, to some extent, they mostly provide sophisticated image processing
for object discovery. This nonetheless is paramount in many computer vision appli-
cations, specifically nowadays that object-based image classification is becoming
imperative for many web-based services.

15.3.2 Early Segmentation Approaches

As the debate on objects grew in the human and primate attention community,
computational models began also to strive for designing attention systems evaluating
salience at a (proto-)object level. Such an approach would indeed present the
advantage of delivering more accurately formed, discrete units to yield to higher-
level cognition instead of amorphous locations. Moreover, in the case of complex
scenes containing multiple objects, feature competition can be computed both
within and between objects. One major caveat of this view is the critical reliance
on a first segmentation stage, delivering object candidates, which hence are the
more meaningful the more effective the scene parsing. The segmentation step
depends also on the chosen features (and also on scale factors) and again rises
the question of feature-homogeneous areas being objects or rather parts of objects,
which, nevertheless, has not been completely solved and is not exclusively in the
scope of technical systems.

One of the first models addressing object-based attention for computer vision
was proposed by Sun and Fisher [57]. Their system for covert attention starts
with a foveated version of the examined picture, computes feature multi-resolution
pyramids as usual (color, intensity, orientation), and assumes that some perceptual
grouping is computed on each layer by a given segmentation algorithm (which in
the specific case was manual segmentation according to multiple Gestalt principles).
A grouping, in the authors’ view, is the basic unit of saliency computation and
can represent altogether an object, a group of objects or features or a region,
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hierarchically arranged. Grouping saliency at any scale layer stems then from a
combination of spatial, object, and feature saliency which also competes with
the saliency of the surrounding. Competition (via winner take all) then proceeds
from coarsest to finest level, also modulated by top-down biasing, in so achieving
hierarchical selectivity. In a following work [58], the concept of grouping was
replaced by “visual objects” (automatically segmented), and the model was able
to produce overt shifts, hence adding one more competition for shifts within
(attentional shifts, covert) and outside the current fixation region (gaze shifts, overt).
A temporary inhibition of return mechanism prevents both type of shifts from
staying on the last attended object.

The first proto-object-based embodied model was proposed in [45]. Vision for
action was here a declared goal, since the model was meant to help a humanoid
robot in both looking for objects in the scene (hence producing a scan path in a real
scene) and in learning object appearance (blob components) by visually exploring
the objects after grasping. Here, too, the image is first transformed to a foveated
version via log-polar transformation. The following steps entail feature extraction
by computing color contrast maps in a center-surround way (by means of difference
of Gaussians applied to opponent color channels) and proto-object formation (by
edge extraction and segmentation via watershed transform). This last operation
delivers proto-objects in the form of closed areas of uniform color or uniform color
gradient. Bottom-up and top-down saliencies are finally computed at object-level,
proportionally to feature differences between the object and the surroundings or
the target object, respectively. A sketch representation of their model is shown in
Fig. 15.3. Inhibition of return was implemented basing on spatial position (in head-
centered coordinates) and color, hence both spatial and object based.

A further approach based on earlier segmentation, but defined as region-based,
was presented in [4]. This model builds on the consideration that pixel-based
approaches cannot deliver shape or size information, while these object-level fea-
tures are essential for top-down modulation, particularly in visual search. The color
map is thus segmented in homogeneous regions which are further characterized
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Fig. 15.3 The object-based model of Orabona et al. (adapted from [45])
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in terms of color contrast, symmetry, size contrast, orientation, and eccentricity,
all of which concur to determine the saliency of the region. These features are
moreover not extracted just for the sake of saliency computation but can be handed
to subsequent object-based processing.

An object-based model of attention aimed at scan-path generation in a visual
search scenario has been put forward by Wischnewski and colleagues [69]. The
model focuses on the selection of the landing item for the next saccade when
looking for a target and relies on the Theory of Visual Attention (TVA) [9], which is
intrinsically object based. TVA weight equation, indeed, according to which priority
of each segmented object in the scene is computed, takes as argument entire objects
(or proto-objects) whose feature similarity and pertinence with the target features are
evaluated. In the proposed model feature extraction and proto-object segmentation
are performed separately for static and dynamic features, imitating ventral and
dorsal processing in the primate brain. After a fusion step, merging overlapping
static and dynamic units, each proto-object is defined by its local features (mean
color, orientation, intensity, motion direction, and motion energy) and its geometric
features (size, shape, global orientation), computed after proto-object formation.
The final attention priority map ranks candidate objects by assigning a weight,
depending on its features and vicinity to the current point of fixation (see Fig. 15.4).
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In the scope of object discovery, similarly to [2], two approaches in between
late and early segmentation have been proposed by [22] and [35]. In the first
case, superpixel-based segmentation is performed in parallel to pixel-based saliency
computation, basing on color and intensity channels. Afterward, segments collecting
saliency above a certain adaptive threshold and spatially connected are merged
together in an object hypothesis. This approach has been shown to work on cluttered
images, besides salient object image databases. Leroy and colleagues [35], instead,
first produce a multiscale segmentation by using decompositions with different
numbers of superpixels on just color channels. These superpixels are then rated
on the base of their rarity, according to the self-information of the superpixel color.
Finally the saliency maps obtained in this way are merged, allowing both small and
larger regions to emerge.

In general early segmentation approaches do not just parse the scene and rank
extracted entities but deliver compact descriptions of these to be suitably processed
by object recognition or action control modules. They lend themselves more easily
to top-down biasing and visual search, higher-level abstraction, and implementation
in embodied settings.

15.4 Summary and Perspectives

In this chapter it has been shown how attention can act by selecting discrete,
extended units instead of or along with locations in space. Evidences have been
collected at behavioral and neural level, demonstrating object effects as well as
(proto-)object representations already at early levels in the visual system. Tech-
nical systems have started using attention to efficiently manage visual processing
resources. To move toward high-level cognitive processes that can represent and
interact with full-fledged objects, perceptually and possibly semantically coherent
units need to be selected and characterized at a low and intermediate level. Depend-
ing on the specific application, different models have been proposed, basically
considering saliency weighting either the cause or one effect of object segmentation.
Even when not considering biologically inspired attention modeling, the need for a
more abstract level going beyond the features of single pixels is demonstrated by the
increasing use of superpixels [48], a segmentation technique tiling images in atomic
regions, producing a more efficient representation both on a computational and a
perceptual level.

The considerations above suggest that object-oriented approaches are a key to
reduce the cognitive/computational load and to produce sparse and manageable
representations upon which biological or artificial systems can concentrate their
high-level reasoning capabilities.

As a final remark, most current models are feedforward with segmentation and
selection coming before object recognition, while future improvement directions
could envision feedback from upper levels iteratively top-down influencing and
refining the segmentation and selection stages. The main issue in these systems
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is indeed how to attend to a meaningful object before this is fully recognized and,
often, by relying just on low-level, “quick-and-dirty” bottom-up information.
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Chapter 16
Multimodal Saliency Models for Videos

Antoine Coutrot and Nathalie Guyader

16.1 Introduction

Over the past hundred years, attention – the focus on one aspect of the environment
while ignoring others – has been one of the most studied topics within cognitive
sciences and neurosciences. Researches aim at determining which part of signals
perceived through different senses (e.g., sight, hearing, taste, smell, and touch)
captures attention. The term of salient is used to characterize the part of the signal
that attracts attention. Two types of attention can be distinguished: overt and covert
attention. Overt attention is followed by eye movements, whereas covert attention
concerns the displacement of attention without moving the eyes. In this field of
research, most studies have been dedicated to overt visual attention.

Over the past 30 years, numerous computational saliency models have been
proposed to model overt visual attention (see [1] for a review). Visual saliency
mainly depends on two factors. The first one refers to bottom-up processes and
is mostly driven by stimulus visual features [2, 3]; the latter refers to top-down
processes and is driven by observer-related cues, such as task [4–6]. Most saliency
models, also called visual attention models, simulate bottom-up processes to predict
salient locations in visual scenes. These regions are supposed to attract attention and,
hence, observers’ gaze.
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The earliest saliency models were developed for static scenes using only static
visual features such as luminance contrast, spatial frequencies, and orientations.
They rapidly evolved to be adapted to dynamic scenes, adding motion amplitude
as an additional feature [2, 7–9]. More recently, face detection has been also added
to classical low-level feature extraction for scenes with faces [10, 11]. However,
another feature, although ubiquitous in dynamic natural scenes, has been left aside:
sound. Indeed, while clues for the existence of audiovisual interactions in attention
are numerous, only few studies investigate the influence of sound on visual attention.
Hence, when using eye-tracking and dynamic stimuli, authors rarely mention
soundtracks or explicitly remove them, making participants look at videos without
any sound, which is far from natural situations.

The goal of this chapter is to give an overview of visual saliency models and how
they have been improved to take into account more features. We further discuss
studies measuring the influence of sound on eye movements. Finally, we detail an
audiovisual saliency model for the particular case of conversation scenes.

16.2 Visual Saliency Models

Since 1980, numerous visual attention models have been proposed [7–9, 12]. In a
recent paper, Borji [1] proposes a classification of 65 models according to several
types: cognitive models, Bayesian models, decision theoretic models, information
theoretic models, graphical models, spectral analysis models, pattern classification
models, and others.

In this chapter, we focus on cognitive models, i.e., models inspired by the biology
of the human visual system. These models are based on the feature integration
theory (FIT) proposed by Treisman and Gelade [3]. The FIT states that low-level
visual features (edges, intensity, color, etc.) are extracted from the visual scene and
combined into a master map to guide visual attention. The first conceptual model of
this theory was proposed by Koch and Ullman [2] who introduced the definition
of saliency map. This first model was interested in modeling neural processes.
It decomposes a visual stimulus into several feature maps dedicated to specific
visual features such as orientation, spatial frequencies, or intensity, see Fig. 16.1.
Saliency models have then been generalized to dynamic scenes by adding in the
decomposition a motion feature map [7–9]. In each map, the spatial locations that
locally differ from their surroundings are emphasized (conspicuity maps). Then,
the different feature maps are combined into a master saliency map that points out
the spatial locations (regions) the most likely to attract the visual attention, and the
gaze of observers. In fact, a close link between visual attention and eye movements
is well established. The premotor theory of spatial attention stipulates that visual
attention and oculomotor system share the same neural substrate [14]. This theory
has been strengthened by neurophysiological experiments showing that intracranial
subthreshold stimulation of some oculomotor brain areas results in enhanced visual
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Fig. 16.1 Schematic diagram of the model proposed in Ref. [13]. Static visual features are
computed at eight spatial scales, followed by center-surround differences to compute local spatial
contrast in each feature. After competition for salience within each feature map, the latter are
combined into a single “conspicuity map” for each feature type. The three conspicuity maps then
are summed into the unique master saliency map. A winner-takes-all (WTA) mechanism spots the
most salient location, an inhibition-of-return transiently inhibits it and directs attention to the next
most salient location (Extracted from Ref. [13])

sensitivity at the corresponding retinotopic location [15]. Although some other
studies suggest a greater separation of the two processes [16], the existence of a high
correlation between eye movements and visual attention meets general consensus.
This link between attention and eye movement allows authors to evaluate their
visual attention models by comparing the predicted salient regions with the locations
actually looked at by observers during an eye-tracking experiment.

Eye-tracking experiments are not only used to validate computational saliency
models but also to better understand which factor or visual feature drives attention.
For instance, many eye-tracking studies reported that observers tend to gaze more
often at the center of the image than at the edges [17]. Several propositions have
been made to explain this bias. Some are stimuli-related, like the photographer
bias (one often places regions of interest at the center of the picture); others are
inherent to the oculomotor system (motor bias) or to the observers’ viewing strategy
[18]. To take this tendency into account, several authors incorporate “center bias”
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as a feature in their models. Most saliency model simply models this bias with a
two-dimensional Gaussian ([11, 19, 20]). However, recent studies show that taking
into account more sophisticated oculomotor biases (such as saccade amplitude or
saccade orientation) considerably improve the performance of the models [21].

All the aforementioned models are efficient to predict the most gazed at locations
in various scenes. Yet these “classical” models cannot be generalized to many
experimental contexts, since the social nature of visual perception is not taken
into account [22]. Typical examples where they dramatically fail are visual scenes
involving faces [23]. Despite their leading role in attention allocation, faces have
rarely been considered in visual attention modeling. However, since the beginning
of eye tracking, they have been known to attract gaze and capture visual attention
more than any other visual feature [6, 24]. When present in a scene, faces invariably
draw gaze, even if observers are explicitly asked to look at a competing object
[25, 26]. Many studies have established that face perception is holistic [27–29]
and pre-attentive [30, 31]. For all these reasons, more recently, visual saliency
models combining face detection with classical low-level feature extraction have
been developed and have significantly outperformed the classical ones [10, 11]
especially for scenes with faces and people. In their paper, Rahman and colleagues
decompose a scene into three maps dedicated to three different types of features. The
static pathway extracts the texture information based on luminance. The dynamic
pathway extracts information about object’s motion against background. The face
pathway extracts information about the presence and location of faces in the frames.
Their model also integrates the center bias as a suitable modulation on the static
and dynamic feature maps. This bias is not added on the face map because faces
attract gaze independently of their location on a scene. Adding the center bias
improves the model efficiency to predict eye movement. But above all, adding the
face pathway greatly improves the model efficiency, making the full model (center
bias modulation and face pathway) the most efficient model (Fig. 16.2).

16.3 Audiovisual Saliency Models

Hence, even if eye-tracking and modeling studies lead to a better understanding
of which visual feature drive attention and eye movements, few studies have
measured the influence of sound on eye movements. Yet hearing and sight constantly
interact to perceive the surrounding world. Audiovisual illusions are certainly the
most popular audiovisual interactions, like the McGurk effect, where mismatched
acoustic and visual stimuli result in a perceptual shift: auditory /ba/ and visual
/ga/ are audiovisually perceived as /da/ [32]. Another well-known audiovisual
interaction is the help given by “lip reading” to understanding speech, even more
when speech is produced in poor acoustical conditions or in a foreign language
[33–35].
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Fig. 16.2 Schematic diagram of the model proposed in Ref. [11]. Static, dynamic, and face
features are computed in parallel pathways, each of them producing a saliency map: Ms, Md, and
Mf. The maps are then fused together either before or after applying the center model to take into
account the influence of the center bias. Mscdcf is the final saliency model that combines all the
three features with center bias (Extracted from Ref. [11])

Besides these perceptual phenomena, some studies measured the influences
of competing visual and auditory stimuli on gaze shifts. Authors showed that
speed and accuracy of eye movements in detection tasks were more efficient for
congruent audiovisual stimulus compared to a mere visual or auditory unimodal
stimulus [36–38]. Quigley et al. [39] presented static natural images and spatially
localized (left, right, up, down) simple sounds. They compared eye movements of
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observers when viewing visual-only, auditory-only, or audiovisual stimuli. Results
indicated that eye movements were spatially biased toward the regions of the scene
corresponding to the sound sources.

However, spatial localization is not necessary to observe the influence of sound
on visual attention. A study [40] showed that a nonspatial auditory signal improved
spatial visual search. The correct mean reaction time was up to 4 s shorter
(depending on the number of distractors) when a nonspatial beep was synchronized
with the visual target change. After controlling alternative explanations of the so-
called “pip and pop” phenomenon (an auditory “pip” makes the visual target pop
out), authors proposed that the temporal information of the auditory signal directly
interacted with the synchronous visual event. As a result, the visual target became
more salient within its environment.

In a previous study, we investigated the effect of nonspatial auditory sounds (a
monophonic soundtrack) on eye movements recoded while exploring video clips.
We observed that during video exploration, gaze was impacted by the related
soundtrack, even without spatial auditory information [41]. With the soundtrack, eye
positions of participants were less dispersed and tended to go more away from the
screen center, with larger saccades compared to a visual-only condition. Moreover,
the observed locations significantly differed between the two conditions. These
results indicate that the related soundtrack of a video impacts on its exploration.
Hence, saliency models should take into account the sound information to be more
efficient in predicting eye movements.

To go further, we tested whether this effect of sound on eye movements was
stronger just after salient auditory events [42]. To automatically spot salient auditory
events in the soundtrack, we used two audio saliency models: the discrete energy
separation algorithm (DESA) and the energy model. If visual saliency models
compute saliency maps in two spatial dimensions, these audio saliency models
compute saliency curves with only one temporal dimension. Both audio saliency
models provide a saliency time curve that was thresholded to extract the most salient
events. We examined eye movement parameters just after these events rather than
over all the video frames. We did not find any increased effect of sound after salient
auditory events.

Altogether, our results indicate that if nonspatial auditory information does
impact on eye movements, the exact auditory features capturing observers’ attention
remain unclear. In these first studies, the visual and auditory contents of videos
were very diverse. However, previous studies showed that different types of sounds
interact differently with visual information when viewing videos [43, 44].

Hence, using an eye-tracking experiment, we investigated whether the con-
gruency between the visual and audio contents influenced eye movements of
observers viewing videos [45, 20]. Observers watched videos belonging to four
visual categories presenting different visual saliency distributions: landscapes, one
moving object, several moving objects, and conversations. Videos were seen with
their original soundtrack, with the soundtrack from another video belonging to
the same visual category, or with the soundtrack from another video belonging



16 Multimodal Saliency Models for Videos 297

to a different visual category. Videos and eye-tracking data are available online.1

Recorded eye movements showed that sound has an impact on the several moving
object category and even more on the conversation category. Unrelated soundtracks
increased the variability between the locations gazed at by different observers. The
effect was not constant across viewing time but appeared after 1 s of exploration.
It seems logical that the auditory conditions impact on conversation and several
moving objects rather than on one moving object and landscape categories, since
the auditory information they convey is more rich and informative. We did not find
any difference between unrelated soundtracks (from the same or different visual
category). We hypothesized that unrelated soundtracks are not temporally correlated
enough with the visual information to be bound to the visual information, preventing
any further integration. In that case, observers might just filter out the unbound
auditory information and focus on the sole visual stream.

Another research team has developed audiovisual saliency models in the context
of video summarization [46–49]. For that purpose, they characterize each frame
using three saliency curves. The first curve was obtained using a classical visual
saliency model and by taking the average over the different features to produce
one value per frame. The second curve averaged three auditory features: mean
Teager energy, mean instant amplitude, and mean instant frequency. The last curve
corresponded to textual saliency information. These three curves were further
linearly combined to provide a master saliency curve. The local maxima of this
curve corresponded to the frames latter chosen for the video summary. Note that
their aim was to extract the most salient frames in a video and not to extract or
predict the most salient locations in a frame.

Multimodal saliency models have also been proposed to control the overt
attention of humanoid robots [50, 51]. Just as humans, robots have limited pro-
cessing capabilities. To be able to interact with their environment in real time,
multimodal saliency models have been integrated into their perception unit. In [50],
the robot iCUB computes a traditional visual saliency map (based on intensity, color,
motion) and an auditory spatial saliency map (based on binaural differences). These
two maps are then combined into an audiovisual saliency map that controls the
movements of the robot’s eyes and neck. Since then, more sophisticated features
such as face, emotion, expression, or speech recognition have been added to make
robots even more “social” [52].

16.4 The Particular Case of Scenes of Conversations

Thus, what we hear has an impact on what we see. This is particularly true for
speech and faces, which are known to strongly interact, as evidenced by the huge
literature on audiovisual speech integration [35, 53, 54]. To investigate audiovisual
integration, most of these studies presented talking faces to observers and measured

1http://antoinecoutrot.magix.net/public/databases.html

http://antoinecoutrot.magix.net/public/databases.html
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how visual or auditory modifications impacted on their eye movements or speech
comprehension [55, 56, 57]. They identified the eyes and the mouth as two strong
gaze attractors during audiovisual speech processing and showed that the degree
to which gaze is directed toward the mouth depends on the difficulty of the
speech identification task. Yet results emanating from experimental setups using
isolated close-ups of faces might not be generally applied to the real world, where
everything is continuously moving and embedded in a complex social and dynamic
context. To address this issue, Võ et al. [58] eye-tracked participants watching
videos of a pedestrian engaged in an interview. They showed that observers’ gaze
is dynamically directed to the eyes, the nose, or the mouth of the interviewee,
according to depicted events (speech onsets, eye contact with the camera, quick
movement of the head). The authors also found that removing the speech signal
decreased the number of fixations on the pedestrian’s face in favor of the scene
background.

Nevertheless, in daily life, conversations are often made of several speakers
embedded in a complex scene (objects, background), not only listening to what
is being said but interacting dynamically. Thus, Foulsham and colleagues eye-
tracked observers viewing video clips of people taking part in a decision-making
task [59]. They showed that gazes followed the speech turn-taking, especially when
the speaker had high social status. These results indicate that during dynamic face
viewing, our visual system operates in a functional, information-seeking fashion.
A few very recent papers quantified how the turn-taking affects the gaze of a
noninvolved viewer of natural conversations [60, 61]. These studies presented
conversations to participants with the related speech soundtracks or without any
sound. They both showed that sound changed the timing of looks. With the related
speech soundtracks, speakers were fixated more often and more quickly after they
took the floor, leading to a greater attentional synchrony. All the previously reviewed
studies reported behavioral and eye movement analyses, but did not quantify the
relative contributions of faces (mute or talking) and of classical visual features
to guide eye movements. Birmingham and Kingstone [23] showed static social
scenes to observers and compared their eye positions to the corresponding low-
level saliency maps (within the meaning of Itti and Koch [13]). The authors showed
that saliency did not predict fixations better than chance and noticed that classical
low-level saliency models do not account for the bias of observers to look at the
eyes within static social scenes. However, this study did not use dynamic scenes for
which motion is known to be highly predictive of fixations, much more than static
visual features [62].

More recently, we analyzed how auditory conditions influence the eye movement
parameters of participants viewing videos of conversations [20]. We compared the
eye movements of participants watching movies either with the original speech
soundtrack, with an unrelated speech soundtrack, with the noise of moving objects
(abrupt onsets, e.g., falling cutlery), or with landscape continuous sound (slowly
changing components, e.g., wind blowing). To analyze how auditory information
modulates the relative predictive power of different visual features (faces, low-level
static and dynamic visual saliencies, and center bias), the expectation-maximization
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algorithm (EM) was used. The EM algorithm is a statistical method widely
used in statistics and machine learning that has been recently applied to visual
attention modeling [19, 63, 64]. This method is a mixture model approach that uses
participants’ eye positions to estimate the relative contribution of different potential
gaze-guiding features. We quantified the impact of sound on classical (saccade
amplitudes, fixation durations, dispersion between eye positions) and less classical
(distance between scan paths) eye movement parameters. Through experimental and
statistical modeling results, we showed that regardless of the auditory condition,
participants look more at faces, and especially at talking faces. However, with the
original soundtrack, observers look even more at the speakers, following the speech
turn-taking more closely.

These experimental results were incorporated in an audiovisual saliency model.
Based on the saliency model proposed by Marat and colleagues [11], the proposed
model decomposes an input video frame into several saliency maps: a center bias, a
static saliency, a dynamic saliency, and a face/body map. Then a master saliency
map was obtained through a weighted sum of the maps. Using two different
statistical methods, the weights were obtained either using the EM algorithm
[20] or the least absolute shrinkage and selection operator algorithm [65]. The
Lasso is a regularized version of the least square method. Its major advantage
is the sparsity imposed by the penalization constant, while the EM deals with
all the parameters given as inputs and runs the risk of overfitting. A MATLAB
implementation of the Lasso algorithm for saliency modeling is available online.2

Since we previously found that speakers are more likely to attract gaze than other
conversation partners, the model assigns to face and body maps different weights
according to their talking-or-not status. Thanks to a speaker diarization algorithm,
able to temporally distinguish talking conversation partners from silent ones, we
proposed an audiovisual saliency model that increases the saliency of the speakers
compared to the addressees (Fig. 16.3).

The speaker diarization algorithm used did not require training; it was based
on two assumptions: (1) each speech turn-taking was separated by a silence and
(2) speakers move more than other conversation partners [66, 67]. The speaker
diarization algorithm relies on three stages. First, a voice activity detector extracts
and appends the speech segments from the soundtrack, discarding silent segment.
Second, an audio speaker clustering algorithm decides whether two successive
speech segments were assigned to the same conversation partners or not. Each
speech segment was described using the first 26 Mel frequency cepstral coefficients
(MFCCs) on 10 ms intervals. A fixed size analysis window of 200 ms was centered
on each sample s of the speech signal. We tested the hypothesis that a change
occurred at sample s using the Bayesian information criterion (BIC) that compared
two models: one that considers that the speech segment was pronounced by a single
person and the second that considers that a turn-taking occurred. A difference in

2http://antoinecoutrot.magix.net/public/code.html

http://antoinecoutrot.magix.net/public/code.html
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Fig. 16.3 Block diagram of our audiovisual saliency model. Center bias, static and dynamic
saliency, speakers, and addresses (faces or bodies) maps are weighted with the ßLasso-estimated
weights and merged into the audiovisual master saliency map (Extracted from Ref. [65])

the BIC value was computed for each sample, and a local maximum was extracted
from each speech segment. The higher it was, the more likely a speaker transition
occurred.

This step does not only consider the audio signal but also the visual signal. For
each frame, we used the dynamic feature map, and for each speaker, we summed
the pixels of the dynamic feature map contained in their corresponding face or
body mask. Thus, we had the frame-by-frame evolution of the “activity” of each
conversation partner. Then, we standardized these values and compared their mean
over each speech sequence. For each conversation partner, the higher the modulus
of the difference between two successive speech segments was, the more likely this
person began or stopped moving. Finally, we standardized and added the audio and
visual “transition probabilities” for each speech segment. If this combination was
higher than an empirical threshold, the speech segments were said to be delivered by
different speakers. Else, the speech segments were merged. Finally, to attribute each
speech cluster to the right speaker, we used the same dynamic low-level saliency
maps as described above. We summed the pixel values contained in each mask
to get the activity of the corresponding conversation partner. We then averaged
these activities over each speech cluster. The corresponding speech sequence was
attributed to the most “active” conversation partner. Note that the face of speakers
was more salient than their body.
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16.5 Summary and Perspectives

This chapter gives an overview of how visual saliency models have been improved
to take into account more features and better predict the locations that should attract
eye fixations. We particularly focused on the few models that attempted to use audio
information. We saw that in the absence of auditory spatial information (mono-
phonic soundtrack), using audio and visual information to create two-dimensional
saliency maps that emphasize salient locations within a scene is challenging. In
the particular case of conversational videos, we showed that combining audio and
visual information is efficient to automatically spot the speaker and, hence, reinforce
its saliency compared to the attendees. Giving higher saliency value to the speakers
greatly improves model’s performances.

However, modeling audiovisual saliency for more general natural scenes remains
an open problem. It may be important to adopt a relevant and biologically plausible
metric for auditory saliency. One could, for instance, consider audio saliency models
closer to the ones proposed for visual saliency. Kayser and colleagues [68] have
proposed an audio saliency model to create a saliency map for auditory information.
This model is similar to that proposed in visual attention by Itti and colleagues
[13]. Yet, contrary to visual saliency model that may be validated by comparing
the regions predicted as salient with actual eye positions, models of audio saliency
are much more difficult to validate. In their research, Kaiser and colleagues tested
their model by reproducing human judgments and by predicting the detectability of
salient sounds embedded in noisy backgrounds.

Another key challenge concerns the fusion of auditory with visual saliency
to create audiovisual saliency for dynamic scenes with various contents. The
main difficulty would be to spatially match auditory and visual salient event in a
complex dynamic scene. If the audio signal is at least stereophonic, 2D sound-
source localization techniques could be applied [69]. Else, if the soundtrack is
monophonic, multimodal signal processing techniques such as canonical correlation
analysis, mutual information, or blind source separation could be harnessed and
effectively applied to solve this issue. Another way to tackle this so-called cross-
modal binding problem [70] would be to take advantage of the Bayesian framework.
This paradigm allows to computationally model the effect of prior context on
audiovisual integration. Here, context would mean the prior correlation between
auditory and visual events: if these were less correlated in the past, it would make
them less likely to bind in the future.

References

1. Borji, A., & Itti, L. (2013). State-of-the-art in visual attention modeling. IEEE Transactions on
Patterns Analysis and Machine Intelligence, 35(1), 185–207.

2. Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying
neural circuitry. Human Neurobiology, 4, 219–227.



302 A. Coutrot and N. Guyader

3. Treisman, A. M., & Gelade, G. (1980). A feature integration theory of attention. Cognitive
Psychology, 12, 97–136.

4. Castelhano, M. S., Mack, M. L., & Henderson, J. M. (2009). Viewing task influences eye
movement control during active scene perception. Journal of Vision, 9(3), 1–15.

5. Henderson, J. M., & Hollingworth, A. (1999). Eye movements during scene viewing: An
overview. In G. Underwood (Ed.), Eye guidance in reading and scene perception (No. 12,
pp. 269–290). Oxford: Elsevier Science.

6. Yarbus, A. L. (1967). Eye movements and vision. New York: Plenum.
7. Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid

scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11),
1254–1259.

8. Le Meur, O., Callet, P. L., Barba, D., & Thoreau, D. (2006). A coherent computational approach
to model bottom-up visual attention. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(5), 802–817.

9. Marat, S., Ho-Phuoc, T., Granjon, L., Guyader, N., Pellerin, D., & Guérin-Dugué, A. (2009).
Modelling spatio-temporal saliency to predict gaze direction for short videos. International
Journal of Computer Vision, 82(3), 231–243.

10. Cerf, M., Harel, J., Einhäuser, W., & Koch, C. (2008). Predicting human gaze using low-level
saliency combined with face detection. Advances in Neural Information Processing Systems,
20, 241–248.

11. Marat, S., Rahman, A., Pellerin, D., Guyader, N., & Houzet, D. (2013). Improving visual
saliency by adding ‘face feature map’ and ‘center bias’. Cognitive Computation, 5(1), 63–75.

12. Tsotsos, J. K., Culhane, S. M., Yan Kei Wai, W., Lai, Y., Davis, N., & Nuflo, F. (1995).
Modeling visual attention via selective tuning. Artificial Intelligence, 78, 507–545.

13. Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of
visual attention. Vision Research, 40, 1489–1506.

14. Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C. (1987). Reorienting attention across
the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention.
Neuropsychologia, 25(1, Part 1), 31–40.

15. Belopolsky, A. V., & Theeuwes, J. (2009). When are attention and saccade preparation
dissociated? Psychological Science, 20(11), 1340–1347.

16. Klein, R. M. (1980). Does oculomotor readiness mediate cognitive control of visual attention?
In R. S. Nickerson (Ed.), Attention and performance viii (pp. 259–276). Hillsdale: Lawrence
Erlbaum.

17. Tatler, B. W. (2007). The central fixation bias in scene viewing: Selecting an optimal viewing
position independently of motor biases and image feature distributions. Journal of Vision,
7(14), 1–17.

18. Tseng, P. H., Carmi, R., Cameron, I. G. M., Munoz, D. P., & Itti, L. (2009). Quantifying center
bias of observers in free viewing of dynamic natural scenes. Journal of Vision, 9(7), 4, pp.
1–16.

19. Gautier, J., & Le Meur, O. (2012). A time-dependent saliency model combining center and
depth biases for 2D and 3D viewing conditions. Cognitive Computation, 4, 1–16.

20. Coutrot, A., & Guyader, N. (2014). How saliency, faces and sound influence gaze in dynamic
social scenes. Journal of Vision, 14(8), 1–17.

21. Le Meur, O., & Liu, Z. (2015). Saccadic model of eye movements for free-viewing condition.
Vision Research. doi:10.1016/j.visres.2014.12.026.

22. Tatler, B. W., Hayhoe, M. M., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural
vision: Reinterpreting salience. Journal of Vision, 11(5), 5, pp. 1–23.

23. Birmingham, E., & Kingstone, A. (2009). Saliency does not account for fixations to eyes within
social scenes. Vision Research, 49, 2992–3000.

24. Buswell, G. T. (1935). How people look at pictures: A study of the psychology of perception in
art. Chicago: University of Chicago Press.

25. Bindemann, M., Burton, A. M., Hooge, I. T. C., Jenkins, R., & de Haan, E. H. F. (2005). Faces
retain attention. Psychonomic Bulletin and Review, 12(6), 1048–1053.

http://dx.doi.org/10.1016/j.visres.2014.12.026


16 Multimodal Saliency Models for Videos 303

26. Theeuwes, J., & Van der Stigchel, S. (2006). Faces capture attention: Evidence from inhibition
of return. Visual Cognition, 13(6), 657–665.

27. Boremanse, A., Norcia, A., & Rossion, B. (2013). An objective signature for visual binding of
face parts in the human brain. Journal of Vision, 13(11), 6, pp. 1–18.

28. Farah, M. J., Wilson, K. D., Drain, M., & Tanaka, J. N. (1998). What is “special” about face
perception? Psychological Review, 105(3), 482–498.

29. Hershler, O., & Hochstein, S. (2005). At first sight: A high-level pop out effect for faces. Vision
Research, 45, 1707–1724.

30. Bindemann, M., Burton, A. M., Langton, S. R. H., Schweinberger, S. R., & Doherty, M. J.
(2007). The control of attention to faces. Journal of Vision, 7(10), 15, pp. 1–8.

31. Crouzet, S. M., Kirchner, H., & Thorpe, S. J. (2010). Fast saccades toward faces: Face detection
in just 100 ms. Journal of Vision, 10(4), 16, pp. 1–17.

32. McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264, 746–748.
33. Gailey, L. (1987). Psychological parameters of lip-reading skill in hearing by eye: The

psychology of lip-reading. Hillsdale: R. Dodd and B. Campbell.
34. Jeffers, J., & Barley, M. (1971). Speechreading (lipreading). Springfield: Charles C. Thomas.
35. Summerfield, Q. (1987). Some preliminaries to a comprehensive account of audio-visual

speech perception. Hillsdale: B. Dodd and R. Campbell.
36. Arndt, P. A., & Colonius, H. (2003). Two stages in crossmodal saccadic integration: Evidence

from a visual-auditory focused attention task. Experimental Brain Research, 150, 417–426.
37. Corneil, B. D., VanWanrooij, M., Munoz, D. P., & Van Opstal, A. J. (2002). Auditory-visual

interactions subserving goal-directed saccades in a complex scene. Journal of Neurophysiol-
ogy, 88, 438–454.

38. McDonald, J. J., Teder-Sälejärvi, W. A., & Hillyard, S. A. (2000). Involuntary orienting to
sound improves visual perception. Nature, 407, 906–908.

39. Quigley, C., Onat, S., Harding, S., Cooke, M., & König, P. (2008). Audio-visual integration
during overt visual attention. Journal of Eye Movement Research, 1(2), 1–17.

40. Van der Burg, E., Olivers, C. N. L., Bronkhorst, A. W., & Theeuwes, J. (2008). Pip and
pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental
Psychology: Human Perception and Performance, 34(5), 1053–1065.

41. Coutrot, A., Guyader, N., Ionescu, G., & Caplier, A. (2012). Influence of soundtrack on eye
movements during video exploration. Journal of Eye Movement Research, 5(4), 1–10.

42. Coutrot, A., Guyader, N., Ionescu, G., & Caplier, A. (2014). Video viewing: Do auditory salient
events capture visual attention? Annals of Telecommunications, 69(1), 89–97.

43. Song, G., Pellerin, D., & Granjon, L. (2013). Different types of sounds influence gaze
differently in videos. Journal of Eye Movement Research, 6(4), 1–13.

44. Vroomen, J., & Stekelenburg, J. J. (2011). Perception of intersensory synchrony in audiovisual
speech: Not that special. Cognition, 118(1), 75–83.

45. Coutrot, A., & Guyader, N. (2013). Toward the introduction of auditory information in dynamic
visual attention models. In IEEE International Workshop on Image Analysis for Multimedia
Interactive Services (WIAMIS), Paris, pp. 1–4.

46. Evangelopoulos, G., Zlatintsi, A., Skoumas, G., Rapantzikos, K., Potamianos, A., & Maragos,
P. (2009). Video event detection and summarization using audio, visual and text saliency. In
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Taipei,
pp. 3553–3556.

47. Evangelopoulos, G., Zlatintsi, A., Potamianos, A., Maragos, P., Rapantzikos, K., Skoumas,
G., & Avrithis, Y. (2013). Multimodal saliency and fusion for movie summarization based on
aural, visual, and textual attention. IEEE Transactions on Multimedia, 15(7), 1553–1568.

48. Rapantzikos, K., Evangelopoulos, G., Maragos, P., & Avrithis, Y. (2007). An audio-visual
saliency model for movie summarization. In IEEE international workshop on multimedia
signal processing (MMSP) (pp. 320–323). New York: Springer.

49. Zlatintsi, A., Maragos, P., Potamianos, A., & Evangelopoulos, G. (2012). A saliency-based
approach to audio event detection and summarization. In European Signal Processing Confer-
ence (EUSIPCO 2012), Bucharest, pp. 1294–1298.



304 A. Coutrot and N. Guyader

50. Ruesch, J., Lopes, M., Bernardino, A., Hörnstein, J., Santos-Victor, J., & Pfeifer, R. (2008).
Multimodal saliency-based bottom-up attention, a framework for the humanoid robot iCub (pp.
962–967). Paper presented at the IEEE International Conference on Robotics and Automation,
Pasadena.

51. Schauerte, B., Kühn, B., Kroschel, K., & Stiefelhagen, R. (2011). Multimodal saliency-based
attention for object-based scene analysis (pp. 1173–1179). Paper presented at the International
Conference on Intelligent Robots and Systems (IROS), IEEE/RSJ, San Francisco.

52. Zaraki, A., Mazzei, D., Giuliani, M., & De Rossi, D. (2014). Designing and evaluating a social
gaze-control system for a humanoid robot. IEEE Transactions on Human-Machine Systems,
44(2), 157–168.

53. Bailly, G., Perrier, P., & Vatikiotis-Bateson, E. (2012). Audiovisual speech processing.
Cambridge, UK: Cambridge University Press.

54. Schwartz, J.-L., Robert-Ribes, J., & Escudier, P. (1998). Ten years after Summerfield: A
taxonomy of models of audiovisual fusion in speech perception. In R. Campbell, B. Dodd,
& D. K. Burnham (Eds.), Hearing by eye II: Advances in the psychology of speechreading and
auditory-visual speech (pp. 85–108). Hove, UK: Psychology Press.

55. Bailly, G., Raidt, S., & Elisei, F. (2010). Gaze, conversational agents, and face-to-face
communication. Speech Communication, 52, 598–612.

56. Lansing, C. R., & McConkie, G. W. (2003). Word identification and eye fixation locations
in visual and visual-plus-auditory presentations of spoken sentences. Perception & Psy-
chophysics, 65(4), 536–552.

57. Vatikiotis-Bateson, E., Eigsti, I.-M., Yano, S., & Munhall, K. G. (1998). Eye movement of
perceivers during audiovisualspeech perception. Perception & Psychophysics, 60(6), 926–940.

58. Võ, M. L. H., Smith, T. J., Mital, P. K., & Henderson, J. M. (2012). Do the eyes really have it?
Dynamic allocation of attention when viewing moving faces. Journal of Vision, 12(13):3, 1–14

59. Foulsham, T., Cheng, J. T., Tracy, J. L., Henrich, J., & Kingstone, A. (2010). Gaze allocation
in a dynamic situation: Effects of social status and speaking. Cognition, 117(3), 319–331.

60. Foulsham, T., & Sanderson, L. A. (2013). Look who’s talking? Sound changes gaze behaviour
in a dynamic social scene. Visual Cognition, 21(7), 922–944.

61. Hirvenkari, L., Ruusuvori, J., Saarinen, V. M., Kivioja, M., Peräkylä, A., & Hari, R. (2013).
Influence of turn-taking in a two-person conversation on the gaze of a viewer. PLoS One, 8(8),
1–6.

62. Mital, P. K., Smith, T. J., Hill, R. L., & Henderson, J. M. (2010). Clustering of gaze during
dynamic scene viewing is predicted by motion. Cognitive Computation, 3(1), 5–24.

63. Ho-Phuoc, T., Guyader, N., & Guérin-Dugué, A. (2010). A functional and statistical bottom-up
saliency model to reveal the relative contributions of low-level visual guiding factors. Cognitive
Computation, 2(4), 344–359.

64. Vincent, B. T., Baddeley, R. J., Correani, A., Troscianko, T., & Leonards, U. (2009). Do we
look at lights? Using mixture modelling to distinguish between low- and high-level factors in
natural image viewing. Visual Cognition, 17(6–7), 856–879.

65. Coutrot, A., & Guyader, N. (2015). An efficient audiovisual saliency model to predict eye
positions when looking at conversations. Paper presented at the European Conference on Signal
Processing (EUSIPCO), Nice.

66. Gebre, B G., Wittenburg, P., & Heskes, T. (2013). The gesturer is the speaker. In IEEE
International Conference on Acoustics, Speech, and Signal Processing, (ICASSP), Vancouver,
BC, pp. 3751–3755.

67. McNeill, D. (1985). So you think gestures are nonverbal? Psychological Review, 92(3), 350–
371.

68. Kayser, C., Petkov, C. I., Lippert, M., & Logothetis, N. K. (2005). Mechanisms for allocating
auditory attention: An auditory saliency map. Current Biology, 15(21), 1943–1947.

69. Deleforge, A., & Horaud, R. (2012). 2D sound-source localization on the binaural manifold.
Paper presented at the IEEE Workshop on Machine Learning for Signal Processing (MLSP),
Satander.

70. Spence, C. (2011). Crossmodal correspondences: A tutorial review. Attention, Perception, &
Psychophysics, 73(4), 971–995.



Chapter 17
Toward 3D Visual Saliency Modeling

Leroy Julien and Nicolas Riche

17.1 Understanding 3D Saliency

For visual attention, depth perception is just as fundamental as the perception of
texture or movement. Human vision is an extremely complex process which is
intrinsically linked to the perception of depth. Indeed, we do not bear the same
interest in objects if they are near or far, structured or disorganized, big or small,
etc. Although these features can be extracted from an image, raw access to depth
information greatly simplifies and increases the accuracy we can achieve using
these characteristics. It is therefore essential to integrate this depth information if
we want to be able to accurately model human visual attention. If the literature is
very rich on computational models, they are in the vast majority dedicated to 2D
image analysis. Concerning the 3D saliency, it is unfortunately meager. Even earlier
than the appearance of well-known 2D saliency models, like Itti’s model [1], authors
have studied the subject of 3D and began to propose integrating 3D information
into their models. This subject will remain underprivileged until the last 5 years.
Indeed, a new enthusiasm has taken hold of the scientific community which takes
advantages of the recent advances in 3D data acquisition. Three factors are likely to
be considered:
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1. The availability of 3D content visualization systems became increasingly demo-
cratic. 3DTV and 3D cinema have become essential in the media landscape.
Indeed, research shows many new features between 3D and attentive behavior,
such as cognitive overload-induced vision of 3D content. Understanding and
modeling the careful visual process make sense when we want to improve the
technical acquisition and visualization with 3D systems to enable the user to
make the most of 3D media.

2. The availability of accurate and inexpensive depth sensors influenced the field
of 3D image analysis and subsequently the 3D saliency. Previously, getting
a disparity or depth map demanded extensive work, such as calibration or
conversion of data for analysis with often expensive and poorly performing
sensors. Currently, new sensors, such as Microsoft Kinect or Asus Xtion, make
easy the use of depth information.

3. The modeling of human attention requires a validation step of algorithmic
performances. In 3D, this step has long been difficult to perform by the lack
of large databases that can be used. Nevertheless, as we said in the previous
point, these new sensors have simplified the steps of acquiring and annotating
3D images for designing these databases dedicated to saliency. Coupled with
monitoring systems as efficient binocular eye tracking system, it becomes easier
to analyze the specific processes involved in 3D saliency but also to compare and
validate the proposed models.

17.2 Why 3D Features for Attention?

The 2D feature extraction from videos can identify the relevant information within
the (X,Y) plane. However, they show their limits when the information occurs on the
Z (depth)-axis. As shown in Fig. 17.1, this is the case for motion feature extraction.
Indeed, the relevant motion is poorly captured with 2D motion features as the main
movement is along the Z-axis.

The (X,Y) motion is properly captured: the snow falling vertically (Y-axis) above
the skier is detected (yellow vertical lines) and the snow moved by the skier on his
right on the X-axis (blue horizontal lines). But the motion of the skier himself is not
well described: the image shows several lines of different colors (X,Y directions)
on the skier, while in reality he is coming toward the camera (Z-axis). This example
shows that detection of the motion on the Z-axis would assign the skier with his
real displacement. A better feature extraction will also enhance the attention model
performance.

The availability of low-cost 3D sensors with active infrared illumination (as the
Microsoft Kinect described in [2]) is an opportunity to easily extract scene depth
(Z) information along with classical videos providing (X,Y) information.
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Fig. 17.1 A frame with a skier coming toward the camera (depth – Z-axis velocity): 2D motion
features (optical flow for X and Y velocity)

17.3 When Using 3D Features

In Fig. 17.2 from SMAMS’s model [3], the speed and direction saliency maps by
using an RGB final saliency map are represented.

A red dominant means that the speed feature is the most interesting. A cyan
dominant means that direction is the most important. A white blob (which is a mix
of red and cyan) means that both speed and directions may attract attention. Here we
used only 2D motion features on complex real scenes. In the first two images from
the first row, there is a close scene with a frontal view. The other scenes contain
wider and wider views with mostly top views.

On the second row, first and second images, we can see that people running
toward the others are detected (1), and the person who is faster and with a different
direction (2) is also highlighted. On the first row, third and fourth images, the two
people walking against the main central flow (1) are well visible. It is also the case
with some people having perpendicular directions (3). Finally, in the second row,
third and fourth images, one person carried by the crowd (1) and a thrown object (2)
are also well detected with a higher speed compared with the other moving objects.
Nevertheless, the results are very poor for the first row, first and second image in
Fig. 17.2. While the rapidly falling snow (Y-axis motion) is well detected (1) and
the snow pushed by the skier (X-axis motion) on his right (2) is also detected, the
skier himself (3) is not detected at all! The skier is the only moving object on the
Z-axis; thus, it is very salient, but as only 2D features are extracted, he is not well
detected. This scene comparison in 2D shows that the more the scene is wide and
the camera has a top view, the less important the Z-axis motion is. Indeed, a top
view will map most of the motion on the (X,Y) plane, and very small people doing
gestures on Z (e.g., jumping) are almost not detectable in those configurations. An
interesting conclusion is that while in video surveillance-like situations (wide field
of view, almost top view) the knowledge of Z is important, for ambient intelligence
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Fig. 17.2 First and third column: annotated frames. Second and fourth column: color saliency
maps from SMAMS’s model. A red dominant means that the speed feature is the most interesting.
A cyan dominant means that direction is the important feature

and robot-like situations (smaller field of view, frontal view), the knowledge of the
Z-axis is crucial. This is convenient, as the Kinect sensor horopter is between 25 cm
and 6 m.

17.4 Chapter Organization

Saliency can use any input features. 3D saliency is based on the new 3D sensor
output. This output is twofold: (1) the automatic recognition of people silhouette
and skeleton which can provide high-level features about people behavior and (2)
the 3D data output (RGB and depth maps or 3D point cloud) providing low-level
3D features.

This chapter first presents a model using high-level information about people. In
a second part, several models using RGB/depth data or point cloud, more generic
on low-level features, will be presented.

17.5 3D Saliency Model Based on High-Level Features

In this section, the design of a new intelligent system capable of selecting the most
outstanding user from a group of people in a scene will be discussed. This ability to
select a user to interact with is very important in natural interfaces and in emergency-
related applications where several people can ask to communicate simultaneously.
The proposed algorithm has three main steps: first, features are extracted from
Kinect’s sensor. In a second step, a contrast-based approach is applied, and, finally,
those contrast-based feature maps are combined to focus the system attention on a
specific user without complex rules.
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17.5.1 Feature Extraction

The first step is to extract features from the observed people. For that purpose,
we use the Kinect sensor for its ability to extract smooth depth maps in complex
illumination conditions. Libraries as OpenNI (e.g., used in [4]) are available to
detect human silhouettes and extract anatomical features from skeleton tracking.

Four features are extracted from the upper body part only as the legs are much
less stable in our implementation. One of the four features is dynamic, namely, the
motion index. It is computed as the mean variation of the same skeleton points
between two frames in 3D (on X, Y, and Z). The barycenter point variation is
extracted from the others (Eq. 17.2) in order to keep only the body relative motion
which will describe an excitement degree or movement transition of the body
without any assumption on the whole body speed:

Dmk D .
X

sk

jkb � kskj/t � .
X

sk

jkb � kskj/t�1 (17.1)

where k D x; y; z. The skeleton points are noted sk and the barycenter b.

MI D
p

Dmx2 C Dmy2 C Dmz2 (17.2)

A second feature extracted from the upper body part is a static feature, namely,
the asymmetry index. This feature is only computed on the X-axis by differencing
the distances between the barycenter point and the right shoulder, elbow, and hand
points with the left ones (Eq. 17.3). This index provides information about the
symmetry of the upper body:

AI D
P

sk jXb � Xskr j � P
sk jXb � Xskl j

nsk
(17.3)

where nsk is the number of skeleton points.
The third extracted feature is the contraction index. This index is the ratio

between the maximal distance between skeleton points on X-axis and the maximal
distance on the Y-axis (Eq. 17.4). This index tells us if the person is more or less
contracted:

CI D jmax.X/ � min.X/j
jmax.Y/ � max.Y/j (17.4)

The fourth and final feature is the player height. That one is simply computed
by measuring the player barycenter Y coordinate.

After normalization, those four features provide a quite complete description
about the level of excitement and the upper body configuration of each player.



310 L. Julien and N. Riche

17.5.2 Contrast-Based Mechanism

As stated in [5], a feature does not attract attention by itself: bright and dark,
locally contrasted areas or not, and red or blue can equally attract human attention
depending on their context. In the same way, motion can be as interesting as the
lack of motion depending on the context. The main cue, which involves bottom-up
attention, is the contrast and rarity of a feature in a given context.

The approach here follows the one in [6]. In our case, as the group of players can
be small, the rarity computation is not relevant. Therefore, we only use the global
contrast. Thus, the first step in this section is to calculate for the ith feature ( fi;k) a
contrast between the different users k:

Ci;k D
NX

jD1

jfi;k � fi;jj
N � 1

(17.5)

where N is the number of users. Once all the contrasts for a given feature
Ci;k between each user and the others have been computed, they are ordered in
ascending order Ci;k;o with o D Œ1 W N� from the maximum (o = 1) to the
minimum (o = N). The difference between the two highest values is compared to a
threshold T which decides if the contrast is large enough to be taken into account as
in Eq. 17.6:

(
˛ D 0 if jCi;k;1 � Ci;k;2j < T

˛ > 0 if jCi;k;1 � Ci;k;2j � T
(17.6)

17.5.3 Fusion

Only the features being the largest and passing this threshold T are merged with
different weights (Eq. 17.7):

Ck D
HX

iD1

Ci;k � Wi � ˛

H
(17.7)

where H is the number of features and ˛ is given in Eq. 17.6.
The weights Wi are initially set to be the same for all the four features which are

used here. Then, the number of times a feature is contrasted enough for a given user
( ˛ > 0), a counter is increased. The feature weight will be inversely proportional
to its counter: if a feature i is often contrasted, its weight will be lower and lower,
while a feature which is rarely contrasted enough will see its weight increased. This
mechanism ensures a higher weight to novel behavior, while too repetitive behavior
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will be penalized. As an example, someone who will sit down for the first time
(different height feature compared to the others), the height will have the maximum
weight. If this person thinks that a different height is enough to attract the system
attention, he will try again, but the more he tries again, the more the height feature
weight will decrease as this behavior is no longer surprising. This approach allows
the system to learn how much a feature is novel and provides higher weights to the
most novel ones.

The contrast Ck represents the bottom-up saliency for each user k. Saliency
will be higher for the people exhibiting the most contrasted features within a
given frame. The process of bottom-up attention is summarized on Fig. 17.3 on
a three-player scenario example. Each of the three players has its four features
computed (in red for the asymmetry index, yellow for the contraction index,
violet for the motion index, and green for the height). The contrast computation
and threshold (Eqs. 17.5 and 17.6) are displayed in the second column. Finally,
the contrasted feature combination (Eq. 17.7) is explained in the third and fourth
columns.

Fig. 17.3 Example of bottom-up saliency computation for three players. For each of the four
behavioral features, a contrast is computed between the players. A threshold will eliminate features
which are not contrasted enough between players (here the fourth feature in green is eliminated).
The player having more contrasted features with higher weights will be selected as the most salient
(here the third player)
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17.6 3D Saliency Models Based On Low-Level Features

Several algorithms taking into account 3D information were already set up.
However, this concept of 3D should be taken with caution. Under the aspect of
integration of spatial information into a model of human attention, the concept of
3D is often used vaguely and should be refined. Indeed, it will be possible to find in
the literature models that deal with 3D saliency, but they will be difficult to compare.
Take on one side [7], the precursor model on the use of a fused depth map with a
saliency map from a 2D analysis and on the other side [8], who proposed a saliency
model on 3D meshes. These could be presented both as 3D saliency models, each
using 3D information into their algorithm. However, the inherent nature of the data
imposes a differentiation. The 3D data processed differs greatly; a mesh can hardly
be equated with an organized disparity map. It will be necessary to distinguish
between methods using depth information and methods using all the available 3D
information. Disambiguation of 3D in saliency can be submitted via the concept
of 3D imaging, 3D data, and their representation. When discussing a 3D image,
the most common technique to reproduce the illusion of depth to an observer is
stereoscopy. Stereoscopy brings together all the techniques used to reproduce a
perception of depth from two planar images. Based on the acquisition of two slightly
offset images similar to human eyes, it is possible to generate a disparity map. From
this disparity by using epipolar geometry, we can estimate a depth map. Indeed, the
disparity and depth are inversely related. As the distance from the cameras increases,
the disparity decreases. It is then possible to allocate to each pixel of the image a
depth information. We then obtain a depth map where 3D information is represented
by the triple (i,j,d), where i,j are coordinates in the image plane and d is the depth of
the pixel. This is typically what RGBD sensors will get; often a depth map is also
calibrated with a 2D color image. Let us now take a 3D model generated by any 3D
modeling software. The 3D image or volume will consist of a set of vertex spatially
represented by Cartesian coordinates.

We will do the following distinctions between different classes of saliency
models:

1. The ones that we will call “2.5D.” These methods are based on the use of spatial
information using disparity or depth map. These methods take as input depth
image or stereoscopic images. All these models have a step in which to calculate
the final saliency map; 2D visual features and 2D saliency maps are estimated.

2. The 3D methods. These methods are based on all available spatial information
and geometry. These methods are heavily based on 3D geometry to extract salient
information. These methods apply to 3D reconstructed objects and scenes or 3D
modeled scenes. The result is a 3D saliency map.

This chapter discusses 3D salience as a whole. We begin with a review of the
methods related to the modeling of salience in 3D. For this review, we will make a
distinction between types of models presented based on their input data on which
the algorithm is applied. Indeed, it is necessary to make the separation between the
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methods using depth information and methods using pure 3D structures. After this
review, we will discuss this classification, which can be too simplistic, and present
other classification possibilities better able to take into account all the intricacies
related to 3D salience. Finally, we will present a new model of salience in 3D
with two particularities to process large amounts of 3D data regardless of their type
(mesh, cloud point, or RGBD data) and integrate color texture information. Indeed,
as the review will show, models capable of handling information on structures such
as mesh or large point clouds systematically droping the color information process
large amounts of 3D data regardless of their type: meshes, point clouds, or RGBD
data.

17.7 3D Saliency: A Review

In this section, we will follow the proposed classification and present the most
representative models of these categories. The first category of algorithms focuses
on the integration of depth usually as a disparity map in their saliency model.

17.7.1 2.5D Models or Depth-Based Saliency

17.7.1.1 Depth and Disparity-Based Models

Maki et al. [7] is one of the first models incorporating a stereo disparity map as a
pre-attentive characteristic which will be added to the information flow and motion
detection. A depth target mask, which corresponds to the depth conspicuity map in
the saliency-based model of attention, is computed. This research, however, is aimed
at the integration of a saliency mechanism as an element of selection of a moving
part, and no validation of the algorithm performance with a human reference has
been performed.

Ouerhani and Hugli [9] propose an extension of the well-known Itti model based
on the analysis in center-surround and extend with the introduction of a depth map.
Their analyses also involved other features related to depth as the use of gradient or
curvature but reject their use because of noise on the data.

Jost et al. [10] is to our knowledge one of the first researches on the impact
that depth information can have on attention and especially with an objective
comparison with the computational counterpart. The authors demonstrate through
two simple experiments the potential impact of the use of depth. First, they show
with random-dot stereograms (RDS), so pure disparity maps, that depth perception
influences our attention. They draw conclusions as the objects with the greatest
disparity attract first fixations. The generalization of this conclusion is that elements
with a large disparity are more easily perceived, attract the earlier fixations, and
so are more salient. Second, they validate their observation with an objective
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comparison of human attention map, acquired with an eye-tracker, a saliency map.
Their conclusion is that the introduction of the depth drastically increases the
measured performance. Although the experimental context can be discussed, given
the metrics and the small size of the database operated, this study was drawing
the basic conclusions on the idea and the impact of the integration of depth in a
saliency mechanism. The depth is an important characteristic capable of optimizing
the similarity of saliency algorithms with human attention.

In [11], the authors offer a very similar approach to previous authors and
realize an interesting comparison of the performance of their model through several
validations. Their model is thus divided on the basis of its features: grayscale, color,
and depth. The analysis is interesting because they show not only the interest of
color-based features but also the impact of depth on the results while discussing
performance according to the nature of the analyzed scene.

In [12], the authors study the possibilities of using laser data for attention
mechanisms. They propose a model (BILAS) based on that of Koch & Ullman but
including here as input depth and reflectance images from a laser sensor.

In [13], the authors are interested in the use of attention mechanism exploiting
3D features to assist in the segmentation step preceding robotic tasks such as grasp
and object manipulation. For this, they study several 3D features as a surface height,
orientation, and relative area occluded edges and merge them with 2D information
(color, orientation, etc.) through a probabilistic approach.

In [14], the authors focus on the exploitation of the depth map as support for
extracting information related to motion. As they point out, very few models operate
depths of the data, and to our knowledge they will be the first to integrate depth
data from the stream of depth camera to constrain their model. Their premise is the
limitation of movement of characterization possibilities in an RGB image; if one
can easily define this movement in an XY plane, it becomes complex along a depth
axis. A better feature extraction thus becomes trivial with the depth of information
and will improve the performance of their attention model.

In [15], the authors suggest to study the differences of visual attention behavior
when the depth is involved. For this, the authors propose a first substantial database
containing 600 fixation measures obtained on pairs of 2D and 3D images. These data
come from a Kinect camera. The authors want to measure differences in fixation
between 2D and 3D images and the impact that the introduction of depth data
can have on well-known 2D saliency model performance. The authors exhibit a
set of priors related to the depth that are consistent with the attention process.
Depth cues modulate visual saliency to a greater extent at farther depth ranges.
Furthermore, humans fixate preferentially at closer depth ranges. A few interesting
objects account for majority of the fixations, and this behavior is consistent across
both 2D and 3D. They also found that the relationship between depth and saliency is
nonlinear and characteristic for low and high depth-of-field scenes. The additional
depth information led to an increased difference of fixation distribution between
2D and 3D version, especially when there are multiple salient stimuli located in
different depth planes. Using their framework and approach on various models of 2D
saliencies, the authors obtained a significant increase in the algorithm performance.
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In [16], the authors focus on the extension of a model based on the contrast
saliency, allowing it to integrate the depth through a disparity map from a set of
stereo images. The authors also show increased performance of their model by
introducing the disparity data. They also offer a large database of 1,000 stereoscopic
images to validate their method.

In [17], the authors deal with saliency for 3D stereoscopic images. An interesting
point of their approach is the comparison of the integration possibilities of depth
either as a weighting element or through the establishment of a depth saliency map.
The last method seems to give better results. The authors propose a detailed analysis
of several 3D saliency models and define a classification of the models based on hox
depth information that is integrated. Finally, they propose an adaptable framework
for the existing 2D saliency model. The depth saliency map and 2D saliency map
from a generic 2D saliency model are merged to provide the final saliency map.
Extensive validation is provided for the various models.

In [18], the authors are interested in the role of depth in situations of competing
saliencies due to appearance, depth-induced blur, and center bias. They propose a
new saliency model by integrating first depth contrast, then many other features like
color histogram, contour compactness, dimensionality, etc. They create a feature
vector of 82 elements that are fused by a learning algorithm (SVM). Their approach
shows that 3D saliency outperforms the other 2D saliency models.

In [19], the authors propose a new model of saliency based on the depth. They
propose not to use the depth measurements as another channel of an image but by
explicitly constructing 3D layout and shape features from depth measurements. The
main idea is that humans use coplanarity to guide their assessment of saliency. Their
method is based on fitting planes to the 3D points of the depth image, allowing
to associate each pixel with the dominant plane that contains it. Therefore, they
penalize points which lie on different depth planes and compute a dissimilarity
measure between patches (locally adjacent pixels) to create a saliency map. The
authors demonstrate the application of their algorithm on the segmentation of
objects on RGBD data. To validate their approach, the authors have made a new
dataset for depth-based saliency, including pixel-level ground truth segmentation of
salient objects.

In [20], the authors are interested in a particular element related to attention and
for which they will introduce a new feature map called the “depth-of-field map.”
The idea is that the depth-of-field map functions work similarly to the depth-of-
field effect of human vision by enhancing the saliency of the regions near the point
of gaze in the direction of depth and reducing the gaze movements between regions
widely separated from each other. Their model is based on that of Itti and Ozeki
which they are adding their own constraint based on depth of field.

In [21], the authors had two major contributions: their primary objective is to
offer a wide enough RGBD database to be a real benchmark for 3D saliency;
secondly, they proposed a model of saliency based on the depth that does not treat
as an independent feature as in many models but simultaneously takes account of
depth and appearance information from multiple layers. They based their approach
on low-level feature contrast, mid-level region grouping, and high-level prior
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enhancement. Thanks to their large database, they carry out a quantitative analysis
of their method against other well-known 2D augmented to 3D saliency models.

17.7.1.2 Stereoscopic-Based Models

In [22], the authors propose a saliency model in the context of the stereovision. Their
model is based on a biological approach and highlights the problems of binocular
vision that have a direct impact on the attention as the concepts of binocular rivalry.
Their model is based on an existing model, the selective tuning model, which
extends naturally as they demonstrate to the binocular vision.

In [23], the authors are interested in stereoscopic vision and involvement that it
can have on the design of a saliency model, based on a biological modeling of the
human attentive process. Indeed, if we consider the binocular nature, the source
of stimuli is double and redundant. This issue is entitled the Attentional Stereo
Correspondence Problem (ASCP). The authors propose a model of attention based
on the depth that tends to consider this issue, proposing a model close to a model
with relevant psychophysical characteristic of attention in depth.

17.7.2 3D Structure-Based Models

17.7.2.1 Mesh-Based Saliency

In [8], the authors introduce for the first time the concept of mesh saliency as
a measure of importance for regions of a mesh structure. Their mesh saliency is
defined in a scale-dependent manner using a center-surround operator on Gaussian-
weighted mean curvatures. The model is based on the assumption that for a 3D
mesh, geometry is the largest contributor to saliency. Their method estimates the
saliency in terms of mean curvature with a mechanism of center-surround.

In [24], the authors propose a new method for extracting salient critical points
of a mesh combining saliency mesh with Morse theory. Their method is based on
a center-surround mechanism but also Gaussian-weighted average of the scalar of
vertices. It offers an extension of the previous model using, as a weighting element,
a bilateral filter rather than an absolute difference in weighted Gaussian.

In [25], the authors propose a variation of the model based on the difference
of Gaussian for the extraction of salient points for the purpose of correspondence
between various views of an object. Their method is based on measuring the
displacement of vertices with respect to their original position after the various
filters.

In [26], the authors propose a 3D object retrieval method based on the extraction
of salient points in 3D. Their method of extracting salient points is based on
classification by an SVM of the low characteristic histogram for each vertex of
the model. The characteristic used is the absolute value of the curvature filtered by
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a Gaussian. With this classification, each vertex is defined as salient or not with a
confidence score. For a 2D projection, the method generates a two-dimensional map
of salient points that will be used to perform the signature recovery object.

In [27], the authors have an approach based on the definition of an information
channel between a set of views and polygons of an object. It is this mutual
information channel expressed by the Jensen-Shannon divergence [28] which allows
them to firstly define a measure of similarity between views and secondly to extract
the saliency of the 3D object. The idea is to express the way in which the polygons
are perceived as a function of a set of viewpoints. For this, they express the saliency
of a polygon as the average variation in the difference of Jensen-Shannon between
this polygon and its neighbors. Based on these characteristics, the salient points
are extracted with a classifier that detects points that have a combination of high
curvature and low entropy values.

In [29], the authors propose an extension of their previously proposed method
where they use now for the characterization of surfaces the absolute values of
Gaussian curvature and Besl-Jain surface curvature characterization as the low-level
surface properties.

In [30],the authors propose a new method for the detection of regions of interest
on surfaces. Their method is local and global. It also takes into account the distance
to the foci of attention. They use this method to determine the best possible view
for a 3D object. Their method is based on a local approach and is based on the
calculation of a descriptor on each vertex. Besides this local approach, the method
integrates two characteristics that are the extremity detection and definition of patch
association to represent the fact that regions of interest are the look that attracts more
specific points.

In [31],the authors propose a rarity model on two levels: local and global. Indeed,
they make the observation that all the models presented before them were based only
on a local analysis of mesh, but a human observer also had a global vision. They
thus introduce global saliency calculated on the mesh. The local part is based on the
calculation of a heightmap to encode local structure. The global rarity is achieved
using the same characteristic but where the comparison to a vertex is no longer local
but global. To reduce the necessary calculation time, the authors use clustering to
group the vertices with similar properties.

17.7.2.2 Point Cloud-Based Saliency

In [32], the authors propose one of the first models of saliency that apply specifically
to point clouds. A major interest of this approach is the extraction of geometric
features for each point of the cloud based on its neighborhood. The final saliency
map is the composition of two intermediate maps: the first one is obtained based on
what the authors call the local surface property (LSP) based in particular on normal
surfaces or curvature. A second map is generated based on the distance of the points
in the camera. Both maps are then linearly combined to produce the final saliency
map.
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In [33], the authors propose a 3D object detection framework based on the
saliency. Although the system is intended to extract in the 3D environment salient
objects, the employed attention mechanism is only based on 2D color image from
an RGBD sensor. The interesting contribution is the idea of inhibition of return
mechanisms (IOR) that inhibit the currently attended region in 3D.

In [34], the authors propose for the first time a saliency model specifically
designed to handle large unorganized point clouds. The proposed method is based on
the concept of global “distinctiveness.” Their method employs the use of a descriptor
for each point of the cloud. The authors define the simplified point feature histogram
(SPFH), variation of fast feature point histogram (FPFH). A dissimilarity measure
based on chi-square will be used to estimate the saliency.

17.7.3 Discussion

The classification of different methods solely based on their input data is a bit
simplistic. Indeed, a system based on an RGBD sensor, although providing a depth
map, may very well be converted into 3D point cloud by knowing the intrinsic
properties of the sensor. Models designed for point cloud can be adapted to depth
map processing and vice versa. For models based on meshes, data can be converted
into a point cloud based on tessellation, opening the possibility to use a method for
point cloud. There is thus a possibility of conversion and interoperability between
methods.

An interesting models classification was proposed by [17] based on how the
spatial information is integrated. Three categories are made on integrating the spatial
aspect:

1. Depth-weighting models. This type of models (e.g., [7, 35]) does not contain any
depth map-based feature-extraction processes. Apart from detecting the salient
areas by using 2D visual features, these models share a same step in which depth
information is used as the weighting factor of the 2D saliency. The saliency of
each location (e.g., pixel, target, or depth plane) in the scene is directly related to
its depth. Both 2D scene and depth map are taken as input.

2. Depth saliency models. The models (e.g., [13] and [9]) in this category take depth
saliency as additional information. This type of models relies on the existence of
“depth saliency maps.” Depth features are first extracted from the depth map to
create additional feature maps, which are then used to generate the depth saliency
maps. These depth saliency maps are finally combined with 2D saliency maps
(e.g., from 2D visual attention models using color, orientation, or intensity) by
using a saliency map pooling strategy to obtain a final 3D saliency map. This
type of model also takes the 2D scene and the depth map as input.

3. Stereovision models. Instead of directly using a depth map, this type of models
(e.g., [22]) takes into account the mechanisms of the stereoscopic perception
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in the HVS. Bruce and Tsotsos extend the 2D models that use a visual
pyramid processing architecture [36] by adding neuronal units for modeling the
stereovision. Images from both views are taken as input, from which 2D visual
features can be considered. In addition, the model takes into account the conflicts
between two eyes resulting from occlusions or large disparities.

The classification proposed here by [17] was proposed on a set of 2.5D model;
but it could be extended to all models which extract geometrical characteristics from
the input data. The 3D features are indeed not only limited to the depth map; richer
features can be extracted from 3D data such as mesh.

The idea of depth saliency and depth weighting is interesting because of the
abstract data type on which we work. The concept of depth saliency can be extended
and be generalized to the extraction of salient geometric features related to spatial
structure regardless of the data. We can therefore speak of spatial saliency. The
depth weighting also introduced another idea for classification. Weighting by the
depth map is fundamentally linked to the sensor and its field of vision. It therefore
depends on the viewpoint. Inversely, if we apply this idea to methods on mesh, the
methods are not viewpoint dependent.

This distinction between models linked or not with a point of view is fundamen-
tal. In particular, it raises issues related to the validation and the link with the human
visual system. Could we still consider a saliency model, an algorithm running on
a mesh processing 3D volumes independently from the viewpoint? Such a system
operates basically beyond human visual capabilities.

The classification we propose is to make the following distinctions:

1. 2.5D saliency that processes 3D data but is dependent on the viewpoint
2. 3D saliency that processes 3D structure as a whole and is not dependent of the

viewpoint

This separation makes abstraction of the data type being processed while taking into
account the nature of the data dependency or not to a point of view.

17.8 SuperRare3D: A New Model of Point Cloud 3D Saliency
Based on Supervoxel Rarity

We propose a novel object-oriented algorithm of bottom-up attention dedicated to
analyze colored point clouds. This model builds on the one proposed in [36]. One
contribution is the use of a rarity-based approach not based on superpixels as in [36]
but on supervoxels. Supervoxels consist of an over-segmentation of a point cloud in
regions with comparable sizes and characteristics (in terms of color and other 3D
features). More details on supervoxels and the method used here are provided in the
next sections. Our approach has four major interests:
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1. Supervoxels let us reduce the amount of processing and allow our method to
work on organized or unorganized clouds. Thus, it can analyze point clouds or
even fused point clouds coming from various sensors.

2. Supervoxels allow us to have an object-oriented approach in the 3D space.
3. Supervoxel multilevel decomposition allows us to maintain detection perfor-

mance regardless of the size of the salient objects present in the data.
4. This approach provides a bottom-up 3D saliency map which is viewer inde-

pendent. It is then possible to add viewer-dependent top-down information as
a viewer-dependent centered Gaussian and depth information. In our paper, we
only use the centered Gaussian that all the other models also use to remain fair
in our comparison.

Our method only uses one feature of the point cloud: the color. Other features
like supervoxel orientation or other specific 3D features will be taken into account
in future work. As the color feature is the only one we use, this approach is
subject to the influence of the choice of the color representation. To provide a
first solution to this influence, we propose to fuse the saliency maps computed
on several color spaces. Our algorithm can be divided into three major stages: (1)
supervoxel decomposition, (2) supervoxel rarity-based saliency mechanism, and (3)
fusion. We present in the following subsections the three main steps of our algorithm
(Fig. 17.4).

17.8.1 Supervoxel Cloud Segmentation

The superpixels are the result of over-segmentation of an image into regions
of pixels having similar perceptual properties. This is a step commonly used in
computer vision as a preprocessing stage to reduce the amount of information to be
processed while still minimizing the loss of information.

We build our system, on the same idea by using supervoxels instead of processing
at the point level. We use the voxel cloud connectivity segmentation method (VCCS)
[38] that extracts supervoxels from an organized or unorganized point cloud. The
supervoxels can replace the structure of the voxel-based original point cloud by
a set of atomic regions that capture the local redundancy of information. They
provide a convenient way to summarize the point cloud and thus greatly reduce
the complexity of the following analysis process. But if there is a major difference
between the size of supervoxels and the size of the salient object to be detected, this
one can be merged with a nearby supervoxel and its information is lost Fig. 17.5. To
avoid this situation, the rarity mechanism is applied to different levels of supervoxel
decomposition so that at some level of detail the salient object is well captured.
At this point the pathway of the algorithm is split between the different levels of
supervoxel decomposition. This separation is made to capture all the information of
salient objects by adjusting the size of supervoxels. Indeed, like shown in Fig. 17.5,
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Fig. 17.4 Our method is divided in three major steps: (1) multiscale supervoxel decomposition,
(2) color rarity applied on multiple color spaces, and (3) inter-level and inter-feature fusion. A
top-down centered Gaussian can be used to simulate the human centric preference [37]
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Fig. 17.5 (a) Example of table point cloud with a box and cups, (b) supervoxel segmentation
using VCCS with a seed size of 0.5 m, (c) supervoxel segmentation using VCCS with a seed size
of 0.25 m. The size of the supervoxels is essential to extract the information of all the objects. If
the seed is too large, like in (b), we see the object being absorbed in an adjacent supervoxel, losing
the information for the rarity mechanism

if a supervoxel is too large, it may not stick properly to an object and it is seen
disappearing into an adjacent supervoxel. To remedy this, the algorithm works on
several levels in parallel that will then be merged into a final saliency map, to
maintain both the information of large objects and smaller ones, while refining the
segmentation of salient regions.

17.8.2 Rarity-Based Saliency

The rarity mechanism consists, for each supervoxel vector, to compute the cross-
scale occurrence probability of each of the N supervoxels. At each color component
i, a rarity value is obtained by the self-information of the occurrence probabilities
of the supervoxel as shown in Eq. (17.8). Pi is the occurrence probability of
each supervoxel Svi value in respect with the empirical probability distribution
represented by the histogram within the ith color channel:

Rarity.Svi/i D �log.Pi=N/ (17.8)

Then, the self-information is used to represent the attention score for the
supervoxel region. This mechanism provides higher scores for rare regions. The
rarity value falls between 0 (all the supervoxels are the same) and 1 (one supervoxel
is different from all the others).

17.8.2.1 Intra- and Inter-supervoxel Level Fusion

The rarity maps obtained from the rarity mechanism on each color channel (in this
case, we select six color space representations: HSV, HLS, YUV, RGB, Lab, Luv)
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are first intra-color combined. In our example, we empirically select a two-level
decomposition using supervoxel seed of 0.05 m and 0.02 m for balance between
accuracy and computation time. A fusion between same color rarity maps is
achieved at each decomposition level by using the fusion method proposed in Itti
et al. [40]. The idea is to provide a higher weight to the map which has important
peaks compared to its mean (Eq. 17.9):

S D
NX

iD1

ECi � mapi (17.9)

where ECi is the efficiency coefficient for each channel and is computed as in
Eq. 17.10:

ECi D .maxi � meani/
2 (17.10)

These coefficients let us sort the different maps (mapi) based on each map
efficiency coefficient ECi. Each map is then multiplied by a fixed weight defined
as i D 1 : : : K where K is the number of maps to mix (here K D 3) and i the rank of
the sorted maps as shown in the first line of Eq. 17.11. T is an empirical threshold
defined in [41]:

8i 2 Œ1; K�

(
saliencyi D 0 if ECi

ECK
< T

saliencyi D i
K � mapi if ECi

ECK
� T

(17.11)

At the end of this first fusion process, the model provides one saliency map per
color space representation. The second fusion step, an inter-color feature fusion
between each map coming from the different color space representation, is achieved
using the same method as the one explained for the inter-decomposition level fusion
(Eq. 17.9).

17.8.3 Color Space Influence

Our method estimates saliency using the rarity only on color feature. The accuracy
of this feature is very important and our method is strongly influenced by the choice
of the color space representation. If we observe independently saliency maps for
the different color modes, we can see that the performance is highly dependent on
the color space, ranging from excellent to poor, but in all cases at least one map
provides good performance. For this reason, we have chosen to apply the rarity on
several color spaces and merge the different rarity maps.
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17.8.4 Final Saliency Map

Finally, in this case, we work with an organized point cloud; we apply a Gaussian-
centered filter to represent the central preference that people exhibit in images [37].
In the case of object avoidance, this centered human preference makes also sense in
the context of robotics as one wants to correct the path of a robot to avoid collisions
with objects in front of it.

17.9 Validation

17.9.1 Database

The database that we used to validate our method was published by [19]. It has
80 shots obtained using a Microsoft Kinect sensor mounted on a Willow Garage
PR2 robot. The database consists of RGB images, depth maps, and point clouds
associated with pixel-level ground truth segmentation masks. The 80 scenes are very
complex both in terms of number and shape of objects, colors, and illumination but
also in terms of depth differences. Indeed, there are a lot of objects which have little
depth difference with those objects.

17.9.2 Metric

Several measures like the area under the ROC curve (AUROC) and the precision-
recall curve have been suggested to evaluate the accuracy of salient object detection
maps. However, as shown in [42], these most commonly used measures do not
always provide a reliable evaluation. The authors start by identifying three causes
of inaccurate evaluation: (1) interpolation flaw, (2) dependency flaw, and (3) equal-
importance flaw. By amending these three assumptions, they propose a new reliable
measure called Fw

ˇ � measure and defined in Eq. 17.12:

Fw
ˇ D .1 C ˇ2/

Precisionw � Recallw

ˇ2 � Precisionw C Recallw
(17.12)

with

Precisionw D TPw

TPw C FPw

Recallw D TPw

TPw C FNw
:

where TP = true positives, FP = false positives, FN = false negatives.
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The weight w has been chosen to resolve the flaws. This metric provides
better evaluation than previous measures. We will use this new method to validate
SuperRare3D on the database in order to be as fair and precise as possible.

17.9.3 Method

We made the validation of our SuperRare3D model (called SR3D) in two steps.
First, we computed a 2D saliency map as a view of the 3D saliency map (2D
projection). We compared SR3D to five other depth-extended (2.5D) models. The
weighted F-measure is used to compare SR3D with 2.5D saliency methods given
a pre-segmented ground truth. Models of visual attention can be split in two main
categories based on their purpose. The first category of models aims to predict the
human eye gaze distribution. The second category focuses on finding interesting
objects. Our model fits in the second category and intends to segment complex
scenes into an object hierarchy based on the objects of interest. Some of them are
extended to use depth feature maps (called further in this paper 2.5D models). Those
models are the ones also used to asses our method in this section.

In [9], the authors aim at an extension of the visual attention model with
the integration of depth in the computational model built around conspicuity and
saliency maps. This model is an extension of center-surround 2D saliency with depth
proposed by [1]. In [19], the method constructs 3D layout and shape features from
depth measurement that they integrate with image-based saliency. This method is
an extension of center-surround 2D saliency with depth proposed by [43].

17.9.4 Results

Our full-3D model (SR3D) provides a 3D viewpoint-independent saliency map of
any kind of organized or unorganized point cloud. Figure 17.6 shows two examples
of results for two different types of point clouds. The first column shows the
results from a single Kinect point cloud. The second column, an example of result
on a point cloud obtained using a co-calibrated laser scanner, is displayed. First
row shows the input colored point clouds and second row the full-3D bottom-up
viewpoint-independent saliency maps. This figure shows two crucial advantages of
the proposed model over any existing 2D or 2.5D saliency model: (1) the ability
to work on any kind of structured or unstructured point cloud and (2) the ability
to provide viewpoint-free 3D saliency maps which might be adapted to any given
viewpoint (Figs. 17.7 and 17.8).

Figure 17.9 shows the results of the validation. Concerning the comparison with
the 2.5D models, SR3D outperforms all the other models. However, like shown on
figure, this performance difference is not statistically significant.
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Fig. 17.6 Examples of results obtained with our method on three different point clouds: (left)
a Kinect cloud (organized, 307,200 points, three levels of decomposition with 92, 32, and 13
supervoxels); (right) a point cloud recorded using a Riegl VZ-400 and a co-calibrated Canon
1000D camera with 10 megapixels [39] (unorganized, 5,976,977 points, one level of decomposition
with 271 supervoxels)
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Fig. 17.8 Quantitative comparison of our model with five state-of-the-art 2.5 saliency models
from the database [19]. SR3D outperforms with the other models

Fig. 17.9 If our model outperforms the others, however, it is not significantly above

17.10 Summary

3D is a fundamental element of the human vision system, and it is as much for visual
attention mechanisms. If the study and integration of 3D features in the design of
computational models of attention began early, it is only in recent years they have
really grown. 3D attention can by applied on high-level features as extracted from
human silhouettes or it can also be applied on low-level features as depth maps or 3D
features. This 3D information plays an essential role in a 3D attention mechanism
whatsoever in both on bottom-up and top-down. For bottom-up, the use of spatial
information not only weight conventional salience map for giving importance to
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the regions according to their proximity but also by extracting 3D features, could
improve significantly the performance of a saliency model. For the top-down, 3D
data offer many opportunities to extract information on the environment, the scene,
or the objects, leading to a more detailed or semantic analysis of the environment
to constrain the saliency. In this chapter, we made a review of multiple methods
of “3D saliency.” Indeed, it is necessary to distinguish between models based on
their dependence on a point of view; this is what prompted us to redefine our vision
of saliency models by classifying them according to the notions of 2.5D and 3D.
Given this classification, we have proposed a new model of salience based on rarity,
effective in both categories, capable of handling large amounts of 3D data while
taking into account the color information. Surprisingly few models are interested in
full 3D that integrates this color information. Our model is efficient. 3D saliency is
an early field but now reemerges, thanks to the appearance of numerous 3D sensors.
This area is rich and complex and still offers many challenges in modeling human
attention.
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Chapter 18
Applications of Saliency Models

Matei Mancas and Olivier Le Meur

18.1 Attention Modeling: A Very Wide Spectrum
of Applications

In engineering, the automatically computed output of a saliency model is called a
saliency map. Saliency maps can be computed on still images (Chap. 9), videos
(Chap. 10), audio signal (Chap. 16), and even 3D data (Chap. 17). Those maps
provide for each pixel in an image or video frame each voxel on a 3D model or at
a given time position in an audio file the probability to be attended by human gaze.
They include bottom-up information using low-level features directly extracted from
the signal or they can also include top-down information related to memory or
emotions.

The applications of saliency maps are numerous and they can occur in many
domains. For some applications, like in advertising or interface optimization, the
saliency maps and their analysis are the final goal, while for others (compression,
object recognition, etc.) saliency maps are not a goal per se, but they act like
informational filters to improve the efficiency of other techniques.

While an exhaustive list of saliency map applications would be difficult to
provide and to structure, we propose in this chapter a taxonomy composed of
three categories. Different application domains can be split within those three
categories (Fig. 18.1).
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Category Applications

Abnormality detection Video/Audio Surveillance (Event detection, Crowd
monitoring), Machine vision (defect detection), Medical
imaging (pathology detection), …

Normality detection Texture finding, Compression (2D, video, 3D), Re-targetting,
Summarization, Computer Graphics (image mosaicking,
adaptive rendering), …

Abnormality processing Robotics and CBIR (Image registration and scene
reconstruction, Object retrieval, Extraction of object-of-
interest), Communication optimization (human-machine
interfaces, advertisement, web sites, 3D views optimization,
Memorability), …

Fig. 18.1 A three-class taxonomy for saliency applications

Basically, attention maps provide cues about the surprising parts of a signal.
A first category of applications directly takes advantage of the detection of
those surprising, thus abnormal, areas in the signal. We will call this class of
applications “abnormality detection.” Surveillance and event detection are examples
of application domains in this category.

A second category will focus more on the opposite of the first one: as the attention
maps provide us with an idea about the surprising parts of the signal, one can
deduce where is the normal (homogeneous, repetitive, usual, etc.) signal. We will
call this category “normality modeling.” The main application domains are in signal
compression or retargeting.

Finally, the third application category is related to the surprising parts of the
signal but will go further than a simple detection. This application family will be
called “abnormality processing,” and it will need to compare and further process
the most salient regions. Domains such as robotics, object retrieval, or interface
optimization can be found in this category.

In the rest of the chapter we will follow this taxonomy which has the advantage to
group dozens of applications into only three categories (Fig. 18.1). The review of the
applications of attention modeling has the ambition to be as exhaustive as possible
by listing all the known applications. Nevertheless, if examples and references are
provided for each application, those references are not necessarily exhaustive.

In each of the three categories, some applications will be listed and others further
detailed. Moreover, some of other chapters such as Chaps. 16, 17, 19, 20, or 21 are
dedicated to specific saliency map applications.

18.2 Applications Based on Abnormality Detection

In this section the main focus is on the first category of applications within
our taxonomy: the applications which use the detection of the areas having the
higher saliency scores. Those areas correspond with events, defects, pathologies, or
social-related interactions in real-life applications.
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18.2.1 Video Surveillance

Video surveillance encompasses a sheer number of applications which can benefit
from attention modeling. Here we provide some non-exhaustive examples of the use
of attention in this context.

An interesting European research project, called “SeaRise,” focused on saliency
and video surveillance in real-life situation. The main purpose of the project is to
develop a trinocular active cognitive vision system called “Smart-Eyes” which first
detects abnormal motion using saliency models and then focuses on the detected
area for tracking and categorization of salient events [1]. Saliency models were
developed to take into account spatial but also motion information [2]. Additional
long-term information was used to distinguish usual paths or motion from abnormal
motion (Fig. 18.2).

Other authors took into account the concept of “usual motion” either by using
accumulation of motion features in given regions which provide a “normality” of
the motion in those regions [3] or using more complex systems as hidden Markov
models (HMMs) to predict future normal motion [4]. Crowd monitoring is an
important topic in surveillance as it is very difficult to detect quickly and in an
automatic way a suspect behavior. Some approaches rely on motion rarity [5] or
motion textures [6] while [7] working on human gaze modeling on crowd videos.
A benchmark of several models on a dataset which also includes crowd videos is
available in [8].

Fig. 18.2 An example of the use of long-term information. While the regions A and B on top
contain a high amount of motion and are very salient when only short-term information is taken into
account, when “usual” paths are taken into account, the region C becomes much more interesting
(Adapted from [2])
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Fig. 18.3 Top left: a frame from a normal motion dataset. Bottom left: a test frame containing
similar motion. Top right: a frame with motion different from the dataset. Bottom right: suspicious
motion detection and localization (Adapted from [9])

While abnormal motion has been mostly used for crowd scenes, some authors
like in [9] provide models which work on any general scene containing motion
(Fig. 18.3). An issue with this model is that it is very computationally expensive as
it takes into account not only video patches but also the relative position of those
patches. In addition video datasets are needed to learn normal motion before being
able to detect any suspect behavior.

18.2.1.1 A Discussion

Attention in video surveillance is a prolific domain with lots of recent references.
The search for abnormal events is one of the most important “quests” in the domain.
While saliency is currently not a mainstream idea in video surveillance, there are
good chances for it to become an important axis of research in the domain in the
next years.

18.2.2 Audio Surveillance

Audio surveillance is a domain which is much less investigated compared to
video surveillance. Nevertheless, microphones could also be added to surveillance



18 Applications of Saliency Models 335

1

0

0 5

5

10

15

20

25

0.5

0

1

10

50

50 100 150 200 250 300 350 400 450 500 550

100 150 200 250 300 350 400 450 500 550

15

time (s)

20 25

-1

Fig. 18.4 Top: audio signal with reference segmentation. Middle: a space-time representation of
the signal (cochleogram). Bottom: attention peak detection (Adapted from [10])

cameras. While a human operator still can watch several screens in the same time
to monitor data from the cameras, it is almost impossible for him to listen to several
audio sources simultaneously. In this latter case, automatic methods for audio event
detection are crucial.

For instance, some saliency models were used [10, 11] to spot unusual sounds
in classical contextual sounds like a gunshot in the middle of a metro station
audio ambiance (see Fig. 18.4). The idea is to automatically select the camera
corresponding with the microphone where the unusual audio event is detected. A
normalized environment adaptive audio attention model based on space and audio
clues was also proposed in [12].

18.2.2.1 A Discussion

Compared to video surveillance, audio surveillance is a smaller investigation field
by itself. Moreover, there are very few audio models existing. The use of both audio
and video saliency is only achieved in the fields of robotics or social interactions
(see the Chaps. 16 and 21). Nevertheless, attention models have a real interest in the
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domain. While this application should stay rather limited in a short-term perspective,
there is a lot of potential at a long-term perspective.

18.2.3 Machine Vision: Defect Detection

Machine vision is the application of computer vision to industry and manufacturing.
One of the applications of machine vision is the automatic inspection of manufac-
tured goods. Machine vision systems perform precise tasks such as counting objects
on a conveyor, reading serial numbers, and searching for surface defects. These
systems are preferred for repetitive high-speed tasks, and they are sometimes used to
complement human’s work which provides a finer perception over a short period of
time and which is much more flexible in classification and adaptation to new defects.

In [13], machine vision was applied first to automatic fruit grading. Automatic
quality inspection of fresh fruits by machine vision is a challenge not only due to
their largely varying physical appearances but also because of the need to decrease
the cost, time, and error of inspection introduced by human experts. Figure 18.5
shows the results using a global rarity-based model. As the apple is the main object
of the scene, local contrast is not needed and the use of global rarity alone is the
best approach once a preprocessing step which eliminates the apple contours and
background is achieved. The results in the middle are promising, but some regions
that are neither contour nor defective have also high attention scores. These “false
positives” are mainly due to illumination artifacts or to the presence of stem or calyx
regions which are quite similar to defects.

An “atlas” is used to provide the algorithm with images containing healthy
apples. If uneven illumination and shadows often occur on healthy apple images,

Fig. 18.5 Left: initial apple images. Middle: global rarity-based saliency maps after preprocessing.
Right: global rarity saliency maps using an “atlas” or dataset of healthy apples (Adapted from [13])
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they will be also found in the atlas; thus, even if these artifacts are rare within the
initial image, they will be less rare if the entire atlas is taken into account. On the
contrary, the defective skin will be even more rare as it never occurs within the
atlas, but only on the test image. The results of the use of healthy apple examples
are visible in the right column of Fig. 18.5. The defects become in this case more
visible and noise due to illumination is eliminated.

In [9], in addition to video surveillance, their model can also apply to static
images using or not an additional atlas. Figure 18.6 shows the results of defect

Fig. 18.6 Left column: initial
images containing defects.
Right column: defected
located using examples of
images with no defects
(Adapted from [9])
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detection using small atlases (sometimes only one image with no defect is enough
to be able to find the defect afterward).

Saliency models are applied for defect detection on a wide variety of applications
such as the semiconductor manufacturing and electronic production [14], metallic
surfaces [15] or wafer defects [16], etc.

18.2.3.1 A Discussion

Defect detection and saliency modeling is a niche application field which is rapidly
developing with recent references. As the image-based saliency models become
reliable, these fields of application should grow in the next years.

18.2.4 Medical Imaging: Pathology Detection

Pathologies, such as tumors, might be considered also as defects with respect to the
healthy tissues which are considered as normal. In [11], head and neck tumors are
taken into account. The two main features characterizing those tumors are that (1)
they are located close to the throat and (2) they induce an asymmetry in the neck
tissues relative to the throat.

The first feature is taken into account by computing the log-polar image of
the computed tomography scanner (CT scan) slices (Fig. 18.7b). The logarithmic
approach gives much more importance to the areas which are located around the
center point, which is here the throat.

The second feature is taken into account by computing for each gray level
(reduced to only 16 in the paper) the ratio between the pixels on the right side and
left side of the image. This provides, for each image, 16 coefficients of symmetry
which are close to 0 if the gray level is symmetric or close to 1 or �1 if there is
an asymmetry toward one or the other side. In Fig. 18.7c each column represents
the symmetry coefficients for one slice: there are 16 values on the Y-axis, while the
X-axis represents the number of slices in the CT scan volume.

A rarity-based attention approach is applied on each line to provide the result
in Fig. 18.7d. Indeed if a gray-level symmetry is rare (unusual) in the context
of the other slices of the CT scan volume, this means that the gray level is
abnormally asymmetric for the given slice. Abnormal asymmetries are thus detected
in Fig. 18.7d. This result, once projected on the X-axis, shows pics for the slices
having a high probability of containing tumors (Fig. 18.7e).

As in previous sections, the use of a set of additional healthy slices called “atlas”
can increase the efficiency of the algorithm, and it can provide a level of normality.
An atlas is used in Fig. 18.7f at the left of the vertical line. This atlas provides a
reference for a threshold of the final result (Fig. 18.7h). The approach in [11] is able
to detect the slices in a CT scan which might contain tumors.
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Fig. 18.7 (a) Initial CT SCAN slice example with annotated tumor and body parts. (b) Log-polar
representation of image (a) centered on the throat. (c) 16 gray-level symmetry coefficients (Y-
axis) for all the slices into the 3D CT scan volume (X-axis). (d) Rarity-based attention computed
on each line (a gray-level symmetry coefficient is rare if it is different from the coefficients of the
same gray level in the other slices of the 3D CT scan volume). Clear coefficients are the ones which
are unusually asymmetric. (e) Vertical projection of (d) which shows pics of abnormality for some
slices which might contain tumors. (f) The same as (c) but using also an atlas with healthy CT
scan slices (left of the vertical line). (g) Rarity-based attention computed on (f). (h) Slices possibly
containing tumors after thresholding based on the maximum attention level in the atlas where no
tumors are present (Adapted from [11])

Many other papers introduce saliency models as promising approaches in
improving existing medical imaging techniques. In [17] a rarity-based approach
is also used on magnetic resonance imaging (MRI) images. In [18], they use
saliency to improve medical image registration. In [19] bright lesion detection and
classification in color retinal images are based on saliency models. Several saliency
models are tested on different image modalities in [20].

18.2.4.1 A Discussion

While some years ago the interaction between attention models and medical imag-
ing was sparse, more and more publications make use of saliency models. With the
improvement of saliency models for still images and with the arrival of 3D models of
attention, there is a real development potential in the medical domain at middle term.
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18.2.5 Expressive Gestures and Social Abilities
Based on Saliency

Gestures are an important part of nonverbal communication. They are extensively
used in robotics but also in the study of the expressiveness and communication or
in human-computer interactions (HCI). Although there are few references in the
domain, some papers used saliency models to investigate the role of gestures. In
[21] and [22] close gestures are analyzed using dynamic saliency models to show
how changes in gestures are more interesting than repetitive gestures. In [23] it is
shown that the important moments in gestures which are detected by an attention
model are close to what several users provided as manual annotation.

The computation of saliency which is common to several points of view and
several images or videos can be used to exhibit the common interesting objects for
several people/agents or robots [24]. Human gaze is also a very important social cue
which will instinctively push others to gaze in the same direction. This joint attention
and saliency modeling can be used together for robot-to-robot communication like
in [25]. Moreover, saliency models can help in refining the estimation of a viewer
gaze (Fig. 18.8) by proposing a set of salient areas close to the estimated gaze point
[26, 27].

In robotics, several references also use saliency models to introduce the notion
of gestures like in [28, 29]. The use of saliency models in human-robot interaction
is evaluated in [30], and pointing gestures are related to saliency measures in [31].
Research on how to manage the point of focus of a robot using important objects and
habituation is described in [32]. A set of interesting projects using attention models
in robotics are also described in [33].

For avatar synthesis, a more natural behavior can be inferred by using attention
models [34] which will direct the avatar attention on events which are of interest for
humans. Other references can be found in this domain like [35] or [36].

Fig. 18.8 Left image: experimental setup. Middle image: several possibilities from the face
direction system and the important objects detected using a saliency models. Right image: closest
salient object to the face direction gaze is selected (Adapted from [27])
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18.2.5.1 A Discussion

Social signal processing in human-machine or human-human interaction is a
growing research field. For the moment, the efforts of integrating saliency models
are sparse and quite rare due to the fact that the community is not yet aware of
what some models can bring and also to the fact that audiovisual and video models
are not yet mature enough to act in very complex and dynamic scenes containing a
lot of top-down information such as the social scenes. With the fact that attention
is a filter which brings real-world signals toward conscience and awareness, social
interaction extensively uses signals which aim to attract others’ attention. Gesture
saliency modeling, multimodal saliency, and co-saliency or joint attention are all
very important points which should bring a lot to the field in the next years.

18.2.6 Attention-Based Computer Graphics

In computer graphics, saliency maps can help in rendering with less details the
areas with lower saliency and with more details the areas which are more salient
(Fig. 18.9). The idea is close to the one of compression but applied to rendering in
computer graphics [37]. Other attention-based rendering techniques can be found in
[38]. In addition to rendering, other computer graphics techniques as the meshes for
3D models can also be taken into account by saliency models like in [39].

Tone mapping can also take advantage from saliency models. Tone mapping is
a technique for mapping a set of colors to another to approximate the appearance
of high-dynamic-range (HDR) images in image which has a more limited dynamic
range. In [40] they use visual attention for tone mapping on HDR images. In [41],
the authors showed that tone mapping has a real influence on human perception
which can be a disadvantage (e.g., in the case of compression) or an advantage (in
the case of artistic or computer graphic applications).

Fig. 18.9 Left: initial full rendering (see shadows and lights in the back). Middle: saliency map.
Right: attention-based rendering (Adapted from [37])
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Fig. 18.10 Left column: initial images. Right column: attention-based artistic effect application
(Adapted from [42])

In [42] several artistic effects are applied based on a saliency model. The
authors show that the use of saliency maps helps the main objects to remain less
altered and more visible (Fig. 18.10). Other references as [43] can be found in
this domain which provides automatically interesting perceptually aware artistic
effects.

Other papers related to attentive art deal with saliency-based aesthetics: [44],
[45]. The saliency models take as input the segmented image and an order of
importance of each segment. This input helps the algorithm to adapt the parameters
of color, orientation and sharpness to change the image in order to stick to the
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proposed regions order. Those new images are considered as more aesthetic. In [46]
the authors compute the image aesthetics based on saliency models.

18.2.6.1 A Discussion

The use of saliency models for artistic purposes or for computer graphics is a new
axis of research, and one can find a lot of new references in this domain. This
direction of research will probably grow especially in 3D rendering.

18.2.7 Attention-Based Quality Metric

Assessing the quality of an image or video sequence is a complex process, involving
the visual perception as well as the visual attention. It is actually wrong to think
that all areas of the picture or video sequence are accurately inspected during a
quality assessment task. People preferentially and unconsciously focus on regions
of interest. For these types of regions, our sensitivity to distortions might be
significantly increased compared to non-salient regions. Even though we are aware
of this, very few IQM (image quality metric) or VQM (video quality metric)
approaches take this property into account. Therefore, it seems natural to use
saliency maps to give more importance to distortion occurring on the salient part.

18.2.7.1 Saliency-Based Quality Metrics

For most of saliency-based metrics [47–51], the use of saliency map consists in
modifying the pooling strategy. Quality metrics are composed of several stages.
The last one is called the pooling which aims at computing the final quality score
from a 2D distortion (or error) map. The degree of saliency of a given pixel can be
used as a weight, giving more or less importance to the error occurring on this pixel
location.

The difference between these methods concerns the way the weights are defined.
As presented in Ninassi et al. [48], different methods to compute the weights can be
used:

w0.x; y; t/ D 1

w1.x; y; t/ D SMn.x; y; t/
w2.x; y; t/ D 1 C SMn.x; y; t/
w3.x; y; t/ D SM.x; y; t/
w4.x; y; t/ D 1 C SM.x; y; t/
w5.x; y; t/ D SMb.x; y; t/
w6.x; y; t/ D 1 C SMb.x; y; t/

(18.1)
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where SM.x; y; t/ is the unnormalized human saliency map, SMn.x; y; t/ is the human
saliency map normalized in the range Œ0; 1�, and SMb.x; y; t/ is a binarized human
saliency map. The weighting function w0 is the baseline quality metrics in which
the pooling is not modified. The functions w1, w3, and w5 give more importance
to the salient areas than the others. Indeed, the offset value of 1 in the weighting
functions w2, w4, and w6 allows us to take into account distortions appearing also
on the non-salient areas.

The use of saliency map in the pooling stage provides contrasted results. In [48],
the use of saliency map does not improve the performance of the quality metric. On
the other hand, Akamine and Farias [51] showed that the performance of very simple
metrics (PSNR and MSE) has been improved by the use of saliency information.
However, for the SSIM metric [52], the saliency does not allow to improve the
metric performance. In addition, they showed that the performance improvement
depends both on the saliency model used to generate the saliency map and on the
distortion type (white noise, JPEG distortions). More details on video quality and
saliency can be found in Chap. 20.

18.2.7.2 Quality in Stereoscopic 3D Images

The conflicting vergence and accommodation cues are widely accepted to be a main
cause of visual discomfort in stereoscopic viewing [53]. In addition, fast salient
object motion has also been proposed as a cause for viewing discomfort [54]. In
both cases, the use of efficient saliency maps is very useful in improving the viewing
comfort.

Attention models have been first used to assess the viewing discomfort as in
[55–57]. In this case, saliency maps are compared with the disparity (depth) maps
to provide objective metrics for discomfort. A second use of saliency models is
in the enhancement of the viewer comfort as in [58, 59] where the blurring of the
image is done according to the saliency of the areas.

18.2.7.3 A Discussion

Many authors working in this field consider that visual attention is important for
assessing the visual quality of images. However, there are still a number of open
issues as demonstrated by [48, 51]. New strategies to incorporate visual attention
into quality metrics as well as a better understanding of the interactions between
saliency and distortion need to be addressed.

The development of the research in 3D stereoscopic viewing comfort opens a
new research avenue to saliency models in the near future.
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18.3 Applications Based on Normality Detection

In this section we focus on the second category of applications from our taxonomy:
applications using the prior knowledge of the locations having the lowest saliency
scores. Those areas correspond with repeating and less informative regions; thus,
they can be easily compressed or cropped, for example (Fig. 18.11).

18.3.1 Attention-Based Texture

In [60], the authors show that saliency models, which are based on the global
information of the image, can be related directly to the homogeneity of the texture.
The more the image is complex and unique, the less the saliency is high. The natural
tendency of saliency models to only focus on important signal while discarding the
usual and repetitive one is very useful in the case of image texture. Indeed, low
saliency is a synonym of highly homogeneous textures or colors. More recently,
other authors proposed to use an attention model as a regularity metric for textures
[61, 62].

Fig. 18.11 First line from left to right: initial image, the most salient eliminated, the medium
salient regions eliminated, and only the less salient regions remain-the texture is more and
more homogeneous. Second line: four examples of images. Third line: medium salient regions
eliminated-texture regions detected (Adapted from [60])
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18.3.1.1 A Discussion

Very few papers deal with saliency models and texture regularity, even if this is a
promising research field. Recent publications should make the texture segmentation
community more aware about the potential of saliency models in texture segmenta-
tion and feature extraction. One of the applications of texture regularity detection is
in image compression which will be further discussed in the following section.

18.3.2 Attention-Based Compression

Video compression is the process of converting a signal into a format that takes up
less storage space or transmission bandwidth. It can thus be considered as a coding
scheme that reduces bits of information representing the original signal (audio,
images, videos).

Since the late 1990s techniques based on attention have been introduced in the
field of image and video coding [63, 64]. Attention can be used to select the less
interesting areas in images or videos and compress them or to transmit the most
salient parts first during the data transfer from a server to a client.

The classical compression methods tend to distribute the coding resources evenly
in an image. On the contrary, attention-based methods encode visually salient
regions with high priority while treating less interesting regions with low priority
(Fig. 18.12). The aim of these methods is to achieve compression without significant
degradation of perceived quality.

Although there is currently no unified taxonomy, we have divided the methods
into indirect and direct methods, the latter being the most commonly studied.

A first family of compression methods can be called “interactive.” Early
approaches relied on eye-tracking devices to monitor human attention focus [64].

With such devices which are able to follow the focus of the observer, encoding
continuously and efficiently the images is natural. Indeed, observers usually do not
even notice any degradation of the frames they watch. However, these techniques are
neither practical (because of the use of the eye-tracking device) nor general (because
they are restricted to a single viewer).

Fig. 18.12 Distortions introduced by general compression methods (three first images on the
left) compared to saliency-based compression (three last images on the right), at three different
compression levels (Adapted from [65])
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Attempts to automatize this approach by using attention-based methods are very
complex as top-down information is very important, and if clear salient objects are
not present in a frame, people gaze can be very different. Even in the case where
progresses in attention modeling are achieved, it is not possible to have a reliable
model of human gaze in case where there is no specific salient object in the frame
and where the viewers’ gaze has naturally a very high dispersion.

18.3.2.1 Indirect Approaches

Indirect compression consists of modifying the source image to be coded while
keeping the same coding scheme. Such methods are thus generally driven by a
saliency map-based methods.

In [66], a saliency map for each frame of a video sequence is computed and
a smoothing filter is applied to all non-salient regions. Smoothing leads to higher
spatial correlation, a better prediction efficiency of the encoder, and therefore a
reduced bit rate of the encoded video.

Another method combines both top-down and bottom-up information, using a
wavelet decomposition for multiscale analysis [67]. Bit rate gains ranging from 15 %
to 64 % for MPEG-1 videos and from 10.4 % to 28.3 % for MPEG-4 are reported.

An indirect approach based on their attention model is proposed by [68]. An
anisotropic prefiltering of the images or frames is achieved keeping highly salient
regions with a good resolution while low-pass filtering the regions with less
important details (Fig. 18.13).

In [69], the depth based on the level of blur of the regions in an image is also
taken into account: closer areas should be thus less compressed than objects which
might be located far from the camera.

The main advantage of indirect approaches is that they are easy to set up because
the coding scheme remains the same. The intelligence of the algorithm is applied as
a preprocessing step, while standard coding algorithms are used afterward. This
fact also let people to easily quantify the gain in terms of compression as the
main compression algorithm can be used directly on the image or on the saliency
preprocessed image. However, one possible problem is that the degradation of
less salient zones can become strong. Selective blurring can lead to artifacts and
distortions in low-saliency regions [70].

Fig. 18.13 Two pairs of images (original and anisotropic filtered) (Adapted from [68])
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18.3.2.2 Direct Approaches

Recent works on modeling visual attention (Le Meur, Itti, Parkhurst, Chauvin, etc.)
paved the way to efficient compression applications that modify the heart of the
coding scheme to enhance the perceived quality. In this case some modifications
to the saliency map are generally necessary to dedicate it directly to coding. The
saliency maps will not only be used in the preprocessing step but also in the entire
compression algorithm.

An extension of [66] uses a similar neurobiological model of visual attention
to generate a saliency map [70]. The most salient locations are used to generate
a so-called guidance map. The latter is used to guide the bit allocation through
quantization parameter (QP) tuning by constrained global optimization. Considering
its efficiency at achieving compression while preserving visual quality and the
general nature of the algorithm, the authors suggest that it might be integrated in
general-purpose video codecs. Future work in this direction should include a study
of possible artifacts in the low-bit rate regions of the compressed video, which
may themselves become salient and attract human attention. Another possible issue
pointed out in [70] is that the attention model does not always predict accurately
where people look at. For example, high-speed motion increases saliency, but
regions with lower motion can attract more attention (e.g., a person running on the
sidewalk, while cars are going faster).

Other approaches with lower computational complexity have been investigated,
and in particular two methods using the spectrum of the images: the spectral residual
[71] and the phase spectrum of quaternion Fourier transform [72]. The goal of both
approaches is to suppress spectral elements corresponding to frequently occurring
features.

The phase spectrum of quaternion Fourier transform (PQFT) is an extension of
the phase spectrum of Fourier transform (PFT) to quaternions incorporating inter-
frame motion. The latter method derives from the property of the Fourier transform
that the phase information specifies the location each of the sinusoidal components
resides within the image. Thus, the locations with less periodicity or less homo-
geneity in an image create the so-called proto-objects in the reconstruction of the
image’s phase spectrum, which indicates where the object candidates are located. A
multi-resolution wavelet foveation filter suppressing coefficients corresponding to
the background is then applied.

These Fourier-based approaches have two main drawbacks linked to the proper-
ties of the Fourier transform. First, if an object occupied most of the image, only its
boundaries will be detected, unless resampling is used (at the expense of a blurring
of the boundaries). Second, an image with a smooth object in front of a textured
background will lead to the background being detected (saliency reversal).

Using the bit allocation model of [70], a scheme for attention video compression
has been suggested by [73]. This method is based on learning feature integration
algorithm, with a relevance vector machine architecture, incorporating visual
saliency propagation (using motion vectors), to save computational time. This
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architecture is based on thresholding of mutual information between successive
frames for flagging frames requiring recomputation of saliency.

Recently, attention-based image compression patents like [74] has been accepted,
which also show that compression algorithms are more and more efficient in real-life
applications and become close to reach the market.

18.3.2.3 A Discussion

For images and videos, the expectations from the saliency models were very high.
In the first step not all these expectations were met. As the saliency models are not
perfect and the classical compression already includes some cognitive elements, the
compression factor given the information quality decrease is not optimal. Current
saliency-based compression algorithms are mainly suitable for applications where
the too high compression of some areas (which creates artifacts catching human
attention) is not an issue like in video surveillance. Indeed, in video surveillance
the perceived quality of background regions is not important if the foreground is
not degraded. However, current work shows an enhancement of the techniques from
which some become close to market as recent patents like [74] demonstrate.

Future developments in the direction of 3D compression seem very interesting,
and new research avenues should be shortly opened in that direction. Indeed, a
simple MS Kinect One device records RGB, depth, and infrared images at almost
two gigabytes per second. Devices able to provide 3D images or point clouds all
need efficient ways of compression to cope with the huge amount of data they
deliver.

18.3.3 Attention-Based Retargeting

Compression aims in reducing the amount of data in a signal. A usual approach
consists in modifying the coding rate, but other approaches can also reduce the
amount of data in the signal by cropping or resizing the signal. An obvious idea
which drastically compresses an image is of course to decrease its size. This size
decrease can be brutal (zoom on a region and the rest of the image is discarded) or
softer (the resolution of the context of the region of interest is decreased but not fully
discarded). The first approach will of course be more efficient from a compression
point of view, but it will fully discard the context of the regions of interest which
can be disturbing.

The direct image cropping will be called here “perceptual zoom,” while the
second approach which still keeps some context information around the region
of interest will be called “anisotropic resolution.” Both approaches provide image
retargeting. Retargeting is the process of resizing images while minimizing visual
distortion and keeping at best the salient content.
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Fig. 18.14 Examples of images along with rectangles providing different attention-based auto-
matic zooms. After a saliency map [76] is computed and low-pass filtered, several threshold values
are used to extract the bounding boxes of the more interesting areas. Depending on this threshold,
the zoom is more or less precise/important

18.3.3.1 Spatiotemporal Visual Data Repurposing: Perceptual Zoom

Human beings are naturally able to perceive interesting areas of an image. Zooming
in images should therefore focus on such regions of interest.

Image manipulation programs provide tools to manually draw these rectangles
of interest, but the process can be automated with the help of attention algorithms.
Interestingly, such techniques can also be used for real-time spatiotemporal image
broadcast [75].

Figure 18.14 shows several perceptual zooms depending on a parameter which
will threshold the smoothed saliency map from [76].

The authors in [77] use Itti algorithm to compute the saliency map [78] that serves
as a basis to automatically delineate a rectangular cropping window. A fast greedy
algorithm was developed to optimize the window that has to encompass most of the
saliency while remaining sufficiently small.

The self-adaptive image cropping for small displays [79] is based on an Itti and
Koch bottom-up attention algorithm but also on top-down considerations as face
detection, skin color, etc. According to a given threshold, the region is either kept or
eliminated.

In [80], the authors start by segmenting the image into several regions, for which
saliency is calculated to provide a global saliency map. The regions are classified
according to their attractiveness, which allows to present image regions on small-
size screens and to browse in big-size images.

A completely automatic solution to create thumbnails according to the saliency
distribution or the cover rate is presented by [81]. The size of the thumbnail can
be fixed and centered on the saliency map global maximum or adapted to certain
parameters such as the saliency distribution. The gaze fixation predicted by a
winner-take-all algorithm can thus be used, and the search for the thumbnail location
ends when a given percentage of the total image saliency is reached.

An algorithm proposed in [82] starts by adaptively partitioning the input image
into a number of strips according to the combined saliency map, which contains
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both gradient information and visual saliency to measure significant regions and is
also used to guide the sampling process when scaling image strips.

A video retargeting method based on a spatiotemporal saliency model is
described in [83]. Based on a spatiotemporal saliency map, a salient object detection
method is used to locate salient object regions in the video. Finally, cropping and
uniform scaling operations are performed on the basis of salient object regions to
generate the retargeted video.

A hybrid framework of video retargeting with a domain-enhanced spatiotemporal
grid optimization can be found in [84]. First, they combine visual attention with
higher-level features. Second, they build a semantic importance map representing
the spatial importance and temporal continuity, which is incorporated with a 3D
rectilinear grid scale plate to map frames to a target display, thereby keeping the
aspect ratio of semantically salient objects as well as the perceptual coherency.

The methods of intelligent perceptual zooming based on saliency algorithms
become more and more interesting with the advances in saliency map computation
in terms of both real-time and spatiotemporal cue integration. Even big companies
as Google [85] become more and more involved in developing applications based
on perceptual zooms. The idea is to generalize the perceptual zoom for images and
videos and keep the temporal coherence of the zoomed image even in case of objects
of interest which might brutally appear in the image far from the previous zoom
area.

18.3.3.2 Spatiotemporal Resolution Decrease for Uninteresting Regions:
Anisotropic Resolution

Perceptual zoom does not always preserve the image structure. For example,
Fig. 18.14 shows that the smallest zoom on the left image only comprises part of the
castle, which is likely to attract attention. In this case the zoom loses the structure
and context of the original image. To keep the image structure when retargeting, two
methods are described in this section: warping and seam carving. These methods
may cause nonlinear visual distortions on several regions of the image [86], but
they provide enough contextual information to let the viewer understand the main
structures. When adapted to videos, those techniques are also easier to stabilize as
the context is more present than for the perceptual zoom.

Warping

Warping is an operation that maps a position in a source image to a position in
a target image by a spatial transformation. This transformation could be a simple
scaling transformation [87].

Nonhomogeneous content-driven video retargeting [88] proposes a real-time
retargeting algorithm for videos. Spatial saliency, face detection, and motion
detection are computed to provide a saliency matrix. An optimized mapping is
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computed with a sparse linear system of equations which takes into account some
constraints such as importance modeling, boundary substitutions, and spatial and
time continuity.

A retargeting method based on global energy optimization is detailed in [89].
Some content-aware methods only preserve high-energy pixels, which only achieve
local optimization. They calculate an energy map which depends on the static
saliency and face detection. The optimal new size of each pixel is computed by
linear programming.

The same group proposes a retargeting approach that combines a uniform sam-
pling and a structure-aware image representation [90]. The image is decomposed
with a curve-edge grid, which is determined by using a carving graph such that each
image pixel corresponds to a vertex in the graph. A weight is assigned to each vertex
connection (only vertical direction) which depends on an energy map using saliency
region and face detection. The paths with high-connection weight sums in the graph
are selected, and the target image is generated by uniformly sampling the pixels
within the grids.

A warping method which uses the grid mesh of quads to retarget the images
(Fig. 18.15) is defined in [91]. The method determines an optimal scaling factor
for regions with high content importance as well as for regions with homogeneous
content which will be distorted. A significance map is computed based on the
product of the gradient and the saliency measure which characterizes the visual
attractiveness of each pixel. The regions are deformed according to the significance
map. A global optimizing process is used repetitively to minimize the quad
deformation and grid bending.

Another approach is a patch-based retargeting scheme [92] with an extended
significance measurement to preserve shapes of both visually salient objects and
structure lines while minimizing visual distortions. In the proposed scheme, a simi-
larity transformation constraint is used to force visually salient contents to undergo
as-rigid-as-possible deformation, while an optimization process is performed to
smoothly propagate distortions. These processes enable to yield more pleasing
content-aware warping and retargeting.

Fig. 18.15 The original image (left) is deformed by a grid mesh structure to be fit in the required
size (right). The scaling and stretching depend on the gradient and saliency map (Adapted from
http://graphics.csie.ncku.edu.tw/Image_Resizing/)

http://graphics.csie.ncku.edu.tw/Image_Resizing/
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Fig. 18.16 The original images (A and B) and for each one seam removal (vertical seams for A and
horizontal seams for B) using gradient (top row) and using a saliency map (bottom row) (Adapted
from http://cilabs.kaist.ac.kr)

Seam Carving

Seam carving [93] allows to retarget the image, thanks to an energy function which
defines the pixels’ importance. The most classical energy function is the gradient
map, but other functions can be used such as entropy, histograms of oriented
gradients, or saliency maps [94]. Low-energy pixels are connected together to make
a seam path. The seam paths cross vertically and horizontally the image and are
removed. Dynamic programming is used to calculate the optimal seams. The image
is readjusted by shifting pixels to compensate the disappeared seams. The process
is repeated as often as required to reach the expected sizes.

Figure 18.16 shows an example of seam carving: the original images (A and B)
are reduced either by discarding vertical or horizontal seams. On the top row, the
classical gradient is used as the energy map, while saliency maps of [95] are used
for the bottom row. Depending on the energy map, shapes as well as aspect ratio
distortions can cause anisotropic stretching [75]. Even if saliency maps most of the
time work better than a simple gradient, they are not perfect, and the results can be
very different depending on the method used.

For spatiotemporal images, [96] propose to remove 2D seam manifolds from 3D
space-time volumes by replacing a dynamic programming method with graph cut
optimization to find the optimal seams. A forward energy criterion is presented
which improves the visual quality of the retargeted images. Indeed, the seam-
carving method removes the seams with the least amount of energy and might
introduce energy into the images due to previously nonadjacent neighbors becoming
neighbors. The optimal seam is the one which introduces a minimum amount of
energy.

A saliency-based spatiotemporal seam-carving approach with much better spa-
tiotemporal continuity than [96] is proposed by [97]. The spatial saliency maps are
computed on each frame, but they are averaged over and history of frames in order to
smooth the maps from a temporal point of view. Moreover, the seams are temporally
discontinuous providing only the appearance of a continuous seam which helps in
keeping both spatial and temporal coherence.

http://cilabs.kaist.ac.kr
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Fig. 18.17 Left: original images. Middle: saliency maps. Right: retargeted images (Adapted from
[98])

In [98], the authors describe a saliency map which takes more into account the
context and proposes to apply it to seam carving. The idea leads to good results as
shown in Fig. 18.17.

In [99] the authors used attention algorithms for video retargeting based on seam
carving. An efficient spatiotemporal grouping is done to determine the temporal
rate of reduction depending on the content, to suppress groups of isolated seams, to
identify spatiotemporal groups of seams, and to approximate by constant segments
the number of seams for each group while keeping the total sum of seams constant.
Problems of geometric distortion, anachronism, and length of summary have been
also addressed.

Interestingly, recent papers as [100] propose to mix seam-carving and warping
techniques. Firstly, based on the importance partition with the saliency map, they
apply a weighted seam-carving approach to make the seams distributed dispersedly
in the important regions. Then they propose content-aware image distance (CAID)
to assess the deformation caused by removing seams. The weighted seam carving
will stop with a fixed threshold to guarantee little visual image quality degradation.
Finally, the grid-based warping is utilized to achieve the final size with a global
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optimization model, since warping tends to avoid discontinuity artifacts of an
important region and typically make the distortion distribution of unimportant
region more coherently.

18.3.3.3 Attention-Based Summarization

Summarization of images or videos is a term which is similar to retargeting. It might
be based on cropping (closer to the first retargeting family) [101]. It might also be
closer to the second family based on carving as in [102]. The main purpose is to
provide a relevant summary of a video or an image.

In [103] the authors used video summarization to provide a mash-up of several
videos into a unique pleasant video containing the important sequences of all the
concatenated videos. This approach shows the possible extension of the notion
of summarization from a single image or video document to a whole archive
of documents. This application has common points with Sect. 18.2.6 and image
mosaics. In [104] the authors proposed to make an intelligent collage based on
saliency maps (Fig. 18.18). This approach also led to a patent [105] on this topic.

18.3.3.4 A Discussion

While the use of saliency maps for classical compression does not bring the expected
improvements when using the nowadays state-of-the-art models, the retargeting
methods (perceptual zooms, warping, or seam carving) can benefit a lot from
saliency methods. Automatic attention computation is based on the use of context
(contrast, rarity, surprise in a given spatial and/or temporal context). These models
can highly improve retargeting methods and preserve objects of interest while

Fig. 18.18 Left: images to be summarized. Right: final attention-based collage (Adapted from
[104])
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also keeping the minimum of context information. Industrial applications begin to
rise with the enhancement of the saliency models both in terms of accuracy and
computational efficiency.

18.3.4 Watermarking and Security

Watermarking consists of hiding data in an image with a minimal visual altering of
this image.

An idea is to hide data in the most interesting areas of the image which are
computed based on a saliency model [106] to get more robust watermarks. Indeed,
the high frequencies of the watermark are less easy to notice if hidden within other
high-frequency areas which is generally the case for salient regions.

Another idea is, on the opposite, to hide data in the less salient regions as those
regions have a lower probability to be noticed [107]. This assumption is true if the
background is cluttered (grass, trees, complex buildings, etc.) as watermarks are
easier to hide in high-frequency areas. The saliency-based watermarking is capable
of hiding lower injected-watermark energy onto more sensitive regions and higher
energy onto the less perceptually significant regions in the image [108]. The use of
saliency models helps to get better visual quality of the watermarked image and an
improved robustness of the watermark.

18.3.4.1 A Discussion

Watermarking only uses the saliency model as a filter to select the areas where
information should be inserted. They could be inserted depending on the image
entropy in the most salient or less salient areas.

18.3.5 Attention-Based Advertising Insertion

In [109] one can find an interesting description of attention-based advertising
insertion. The first approach is called linear advertising, while the second is called
nonlinear.

Linear advertising will insert content-related ad clips into less intrusive temporal
positions. In [110], the authors propose a two-step approach. The first step aims
in selecting an ad which is related to the current content. In the paper this was
done using text mining. The second-step goal is to find the moment which has low
spatiotemporal saliency to insert the ad in a less intrusive way. Figure 18.19 shows
the main scheme of the system.
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Fig. 18.19 Linear ad insertion at the less salient moments (Adapted from [110])

Another approach is the nonlinear one [111]. In this case, there are also two steps.
The first consists in finding the right location in the frame where the ad should
be inserted. This step uses the saliency map to locate an area close to the most
interesting one. The second step will produce color harmonization of the ad to be
less intrusive when projected onto the frame. Finally, the harmonized ad is projected
close to the most interesting area. This will lead to a very noticeable ad (close to
salient regions), while the color harmonization reduces its intrusiveness.

18.3.5.1 A Discussion

The way an ad is shown to viewers is of utmost importance in the way they perceive
and remember the message. The linear and nonlinear approaches might find their
way in the audiovisual production and broadcasting if the attention models become
more efficient and the systems can really be real time.

18.4 Applications Based on Abnormality Processing

The third category of our attention-based application taxonomy concerns abnormal-
ity processing. Some applications go further than the use of the simple detection of
the areas of interest. They use comparisons between the areas, relative positioning,
and other operations on the saliency maps. Application domains such as robotics or
advertisement highly benefit from this category of applications.
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18.4.1 Attention-Based Robotics, Object Recognition,
and Registration

Robotics is a very large domain of application with various needs. As robotics aims
at mimicking human reactions, the field aggregates several techniques of which
some can be used in other domains as robotics. We describe here rapidly three
research axes where robots can take advantage from saliency models: (1) image
registration and landmark extraction, (2) object recognition, and (3) robot action
guidance. We only provide a rapid view about those research actions here as they
are explained more in detail in “Chap. 21.”

18.4.1.1 Image Registration and Landmarks

An important need of a robot is to know where it is located. For this aim, the robot
can use the data from its sensors to find landmarks (salient feature extraction) and
register images taken at different times (salient feature comparison) to build a model
of the scene. The general process of real-time building of a view of the scene is
called simultaneous localization and mapping (SLAM). The use of RGB cameras
using or not the depth information is called visual SLAM. Saliency models can help
a lot in the extraction of more stable landmarks from images which can be more
robustly compared [112]. A detailed review of attentive SLAM can be found in
“Chap. 21.”

Saliency maps are also used in other domains as for medical image registration
[18], lunar images, and crater impact detection [113] or on 3D object registration
[114].

All those techniques imply first the computation of saliency maps, but the results
are not used directly: they need to be further processed (like extraction of regions of
interest and their comparison).

18.4.1.2 Object Recognition

Another important need of robots after they establish the scene is to recognize the
objects which are present in this scene and which might be interesting to interact
with. To recognize objects two steps are needed. First of all, the robot needs to
detect the object in a scene. For this goal saliency models can help a lot as they can
provide information about proto-objects [115] or area objectness [116]. For more
details on proto-object and object detection, see Chap. 15.

Once objects are detected, they need to be recognized. In this area the main
approach is to (1) extract features (SIFT, SURF, or any others) from the object,
(2) filter the features based on a saliency map, and (3) perform the recognition
based on a classifier (such as a SVM or others). Papers like [117] or [118] apply
this technique which let a computer drastically decrease the number of needed key
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points to perform the object recognition. Further details can be found in Chap. 19
which is focusing on this approach.

Another approach was used in [119] or [120]. Here the features which are mostly
present in the searched object and not present in the surroundings are learned, and
this learning phase provides a new set of weights for bottom-up attention models.
In this way, the features which are the most discriminant in the searched object will
get the higher response in the final saliency map. The bottom-up model is in that
way tuned by top-down information on the discriminant features learned from the
searched object.

A third approach can be found in [121] where relative position of salient points
(called cliques) is used for image recognition. More details on this approach can be
found in the Chap. 8.

18.4.1.3 Action Guidance

Once robots know where they are (attentive visual SLAM) and they also recognize
objects around them (attentive object recognition), they need to decide what to do
next. One of the decisions they need to make is to know where to look next, and
this decision is obviously taken based on visual attention. Several robots implement
multimodal attention like the iCub robot in Fig. 18.20. They combine visual and
audio saliency in an ego-sphere, and this is used to point the gaze on the next
location. More details about robots and gaze can be found in Chap. 21 and an
interesting survey on attention for interactive robots can be found in [122].

Fig. 18.20 iCUB robot head. The robot implements a multimodal saliency system (Adapted from
[123])
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The social interactions also include gestures as the pointing gestures which are
important top-down factors. The use of gesture direction is used in [29, 124] to
detect the object of utmost interest and to learn to the system where to look.

Robots are embodied agents, but other agents like virtual agents can implement
attention models [34]. In [125] an attentive system based on high-level features
(people skeleton extracted using an RGB-D camera) is described. More details on
this approach can be found in “Chap. 17.”

18.4.1.4 A Discussion

Robotics, especially humanoid robotics, is a very complete field of research. Even if
we restrain the domain to electrical engineering and computer science, there is still
an impressive list of topics necessary to build a convincing robot. Here we focused
on the use of attention models in robots and related fields which give us the three
main axes of research. The advances in those topics are huge, but still it is difficult
to have a realistic social robot capable of naturally interacting and adapting to novel
unusual situations. This is one of the big challenges to which attention modeling
might bring a solution in the future years.

18.4.2 Attention-Based Marketing and Communication
Optimization

Marketing optimization can be applied to a large amount of practical cases such
as Web sites, advertisement, product placement in supermarkets, signages, 2D and
3D object placement in galleries, etc. All these application cases can benefit from
attention maps themselves but also from regions of interest comparison and further
analysis of the attention maps. Moreover, attention only tells if people will notice the
important message in an ad, but not if they remember it. Thus, the “memorability”
of an image is an important topic where attention models can help.

This section is structured in three subsections: we investigate the use of saliency
maps in (1) Web sites and ad optimization, (2) image memorability, and (3) 3D
object best viewpoint calculation.

18.4.2.1 Attention-Based Web Sites and Advertisement Optimization

Among the different applications of automatic saliency computation, the marketing
and communication optimization is probably one of the closest to market. As it
is possible to predict an image attention map, which is a map of the probability
that people attend each pixel of the image, it is possible to predict where people
are likely to look on a marketing material like an advertisement or a Web site.



18 Applications of Saliency Models 361

Attracting customer attention is the first step of the process of attracting people
interest, inducing desire and need for the product, and finally pushing the client to
action as described in the AIDA pyramid [126].

It is important to stress the fact that attention alone is not enough to push a
potential client to action, but at least it is a key step toward this goal.

There are already two main techniques which are able to provide information
about people attention on marketing material. The first one uses eye-tracking studies
on marketing material like in [127]. This approach is very accurate as the precise
gaze location of the users on a Web site/advertisement is measured. The drawbacks
of this approach are in the time needed to conduct the study, the price, and the fact
that only finished or almost finished documents can be tested. Another drawback
is that long fixations do not mean that this area is necessarily very salient: it might
only mean that it is difficult to understand, and people spend a lot of time in trying
to figure out what this area is about.

Figure 18.21 shows an example of a heat map computed from the average eye-
tracking data from several users on a Web site page.

Fig. 18.21 Eye tracking on a Web site: gaze heat map overlay on the initial image from Miratech
(Extracted from [127])
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Fig. 18.22 Mouse tracking on a Web site: a gaze heat map overlay on the initial image from PicNet
(Extracted from [128])

Another technique uses mouse tracking and is also used on marketing material
like in [128] or [129]. There are two ways of using mouse tracking: either with
no special indication like in [128] or by telling people to locate their mouse where
they look [130]. The second version is precise but only used for research purposes
and provides a quite good approximation of the user gaze [131] (more than 80 % of
the eye tracking). In the case of [128], the accuracy is much lower. The advantage
of mouse-tracking techniques is that they are cheaper than eye tracking, and more
users are available via Web sites, while eye tracking needs the user to be physically
present in front of an eye-tracking device. The study time varies but could be a little
shorter than by using eye tracking.

Figure 18.22 shows an example of a heat map computed from the average mouse-
tracking data from several users on a Web site page.

If no special indication is provided like in [128], the result is less accurate than
eye tracking which is due to the fact that the mouse pointer never exactly focuses
on the object of interest at least for visibility reasons. Also the mouse motion does
not always follow the eye motion. However, the mass effect of the number of users
which can be much higher than in the case of eye tracking can partly compensate
this issue.

Finally, the predictive method which is the main focus here uses automatic
saliency maps. This approach is much faster than eye-tracking tests (seconds versus
days) and also much cheaper (around ten times cheaper). The prices are in the same
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Fig. 18.23 Attention on a Web site: a gaze heat map overlay on the initial image from EyeQuant

range as the ones of mouse tracking. The results are less good than eye tracking,
and they are equivalent to mouse tracking following proprietary studies such as
[132]. The predictive methods can be achieved in real time and used at any time
in the creative process: while humans (both using eye and mouse tracking) will be
disturbed by unfinished documents, an automatic algorithm will not. This means
that eye tracking or mouse tracking can mainly be achieved once the document is
almost finalized (which might be too late for important changes), while the use of
automatic algorithms can be used in real time and provides several feedback loops
during the creative process. Another advantage of the predictive method is that it is
image based only and it is possible to screen any kind of Web site or advertisement
including the ones of concurrent companies.

Figure 18.23 shows an example of a heat map automatically computed on a Web
site page using the automatic saliency maps from EyeQuant [133].

As the approach of saliency and marketing is one of the closest to the market,
several companies based on the use of saliency in marketing were set up.

Feng-GUI [134] is an Israeli company mainly focusing on Web pages and adver-
tising optimization even if the algorithm is also capable to analyze video sequences.
Among the bottom-up features they use, one can find color, orientation, density and
contrast, intensity, size, and weight and intersections. The top-down features are
face detection, text detection, and skin detection. They also use context information
about the type of the document (natural image, Web site, billboard, advertisement)
which probably corresponds to different probability densities depending on the
kind of document as in [130]. The main targeted applications are Web pages and
advertising optimization even if the algorithm is also capable to analyze video
sequences.
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AttentionWizard [135] is a US company mainly focusing on Web pages. There
are few hints on the used algorithm, but it uses bottom-up features like color
differences, contrast, density, brightness and intensity, edges and intersections,
length and width, curves, and line orientations. Top-down features include face
detection, skin color, and text (especially big text) detection.

3M VAS [136] is the only big international player in this field. Very few details
are given on the used algorithm, but it is also capable to provide video saliency.
The main difference with the other competitors is in the customer segments with a
much wider range of possible applications. They provide attention maps for Web
page optimization but also advertisement with static images or videos, packaging,
or in-store merchandising.

EyeQuant [133] is a German company specialized in Web site optimization.
Their algorithm uses extensive eye-tracking tests to train the algorithm and make
it closer to real eye tracking for a given task. They also can modify the saliency
map if the viewer is involved or not in a task or if he simply goes through the
page by modifying their algorithm weights. Finally, they provide a cue on “visual
clarity” which seems to be related to a study on the image entropy. Other newcomers
as Ittention (http://www.ittention.com) are coming on this market which shows a
growing interest in the topic.

All those companies claim around 90 % accuracy for the first 3/5 viewing seconds
[132]. They base their claim on different comparisons between their algorithm and
several existing databases using several ROC metrics. They always compare the
results with the maximum ROC score obtained by the human users. Nevertheless,
for real-life images and for given tasks and emotion-based communication, this
accuracy dramatically drops but still remains usable.

In addition to those four companies, another approach of using saliency models
is proposed by a US company called EyePredict [137]. The main idea is to test a
maximum of a combination of product catalog and propose the configuration which
best optimizes a given product visibility.

18.4.2.2 Predicting Memorability of Pictures

The study of image memorability in computer science is a recent topic [138–141].
From those first attempts, it appears that it is possible to predict the degree of
an image’s memorability quite well. In this section, we present the concept of
memorability of pictures and the computational models predicting the extent to
which a picture is memorable.

Humans have an amazing visual memory. Only a few seconds is enough to
memorize an image [142]. However, not all images are equally memorable. Some
are very easy to memorize and to recall, whereas the memorization task appears to
be much more difficult for other pictures. Isola et al. [138] was the first paper to
build a large dataset of pictures associated to their own memorability score. The
score varies between 0 and 1. 0 indicates that the picture is not memorable at all,
while 1 indicates the highest score of memorability. The memorability has been

http://www.ittention.com
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quantified by performing a visual memory game. Six hundred sixty-five participants
were involved in the test to score the memorability of 2222 images. This dataset is
freely available on the author’s Web site.

From this large amount of data, authors in [138] investigated the contributions
of different factors and envisioned the first computational model for predicting the
memorability scores.

An interesting step which followed was the use of the temporal context in
memorability: indeed when seeing a lot of desert images, if a single image of forest
appears, that one will be very memorable [141].

Memorability and Saliency Models

As mentioned earlier, Isola et al. [138] were the first to propose a computation
model for predicting the memorability score of an image. Authors used a mixture
of several low-level features which have been automatically extracted. A support
vector regression classifier was used to infer the relationship between those features
and the memorability. The best result was achieved by mixing together GIST [143],
SIFT [144], HOG [145], SSIM [146], and pixel histograms (PH).

In [140], the authors proposed to go one step further by considering saliency-
based features, namely, the saliency coverage and the visibility of structure.
The saliency coverage which describes the spatial computational saliency density
distribution could be approximated by the mean of the normalized saliency maps
(computed by the RARE model [147]). A low coverage would indicate that there
is at least one salient region in the image. A high coverage may indicate that
there is nothing in the scene visually important as most of the pixels are attended.
The second feature related to the visibility of structure is obtained by applying
a low-pass filter several times on images with kernels of increasing sizes like in
Gaussian pyramids (see [140] for more details). By using saliency-based features,
the performance in term of linear correlation increases by 2 % while reducing the
number of features required to perform the learning (86 % less features).

In the same year, the work in [138] was extended by [148] who proposed an
attention-driven spatial pooling strategy. Instead of considering all the features
(SIFT, HOG, etc.) with an equal contribution, the idea is to emphasize features
of salient areas. This saliency-based pooling strategy improves the memorability
prediction. Two levels of saliency were used: a bottom-up saliency and an object-
level saliency. A linear correlation coefficient of 0.47 was obtained.

In [141], the context of the displayed images is studied and the influence of
the viewing context is shown. Figure 18.24 shows the difference of memorability
score function of the scene categories when images of those categories are shown
surrounded of other images from the same category (in blue) or of different
categories (in red). The memorability score dramatically increases when an image
is shown surrounded of images from other scene categories.
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Fig. 18.24 Memorability vs. scene categories. In blue, the images are shown in the middle of
images of the same category. In Red, the images are shown in the context of other scene categories
(Adapted from [141])

18.4.2.3 Best Viewpoint

With more and more 3D objects which are created, manipulated, sold, or even
printed, 3D saliency is a very promising future research direction. The main idea
is to compute the saliency score of each view of a 3D model: the best viewpoint
is the one where the total object saliency is maximized [149]. Mesh saliency was
introduced based on adapting to the mesh structure concepts for 2D saliency [39].
The notion of viewpoint and mesh simplification is also related through the use of
mesh saliency [150].

As the 3D approach for the best viewpoint is quite novel, it is not obvious to
validate if the best viewpoint proposed by the algorithm is the one which people
would select. The authors in [151] proposed a Web-based solution for viewpoint
validation based on votes. Those votes are projected to a 3D heat map which is used
to choose the best viewpoint (Fig. 18.25).

While the best viewpoint application can be used for computer graphics or even
3D mesh compression, marketing is one of the targets of this research topic: more
and more 3D objects are shown even on the Internet, and the question of how to
display them in an optimal way is very interesting in marketing.
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Fig. 18.25 Viewpoint evaluation: a Web-based evaluation can be done on a lot of viewers who
vote for their best view. A 3D heat map of their votes can be projected on a sphere around the
object, and the maximum of this heat map represents the best view (Adapted from [151])

18.4.2.4 A Discussion

The marketing optimization application of the automatic saliency algorithms has
a promising future with already existing companies making money from the idea
alone.

However, even if the results are very promising, there is room for a lot of
improvement. More and more top-down information must be added to classical
bottom-up attention to make the result fit with more precise user categories.

An issue which might be stressed is the banner blindness [152] which consists
in ignoring the areas where the presence of an advertising is detected. Even if those
advertisements are ignored, they are actually seen [153], and if one of them is of
interest for the user, he will for sure attend to it.

In addition, features linked to image memorability (see Sect. 18.4.2.2) will also
be taken into account. Indeed, in [154] features related to memorability seem to
provide better visibility to advertisements like higher gray-level contrast or a smaller
number of salient components, with all components close to the center of the
creative and the major component consistent with the rule of third.

Finally, as more and more objects can be represented in 3D to be better visualized
or even directly sold as 3D models for 3D printing, for example, the use of saliency
on those models is a new research avenue. The automatic computation of the best
viewpoint can provide interesting insights for 3D object visualization.

18.4.3 Attention-Based Focus or Symmetry

Saliency maps provide areas of interests or key points. By comparing those key
points and their relative position, higher-level characteristics of the image can be
found. For example, in [155] the author shows how a symmetry axis can be found
using a saliency model (Fig. 18.26). Using again the comparison between patches
in the image, it is also possible to find the vanishing points [156]. Using again the
same approach, the autofocus of camera can be controlled [157].
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Fig. 18.26 Comparison between different regions of the image and object symmetry detection
(Adapted from [155])

18.4.3.1 A Discussion

This work led to numerous applications. Several patents like [158] or [159]
show that the technology becomes mature enough to be integrated in consumer
electronics.

18.5 Conclusion

During the last two decades, significant progresses have been made in the area
of visual attention. Although that the picture is much clearer, there are still a
number of hurdles to overcome. For instance, the eye-tracking datasets used for
evaluating the performance of computational models are more or less corrupted
by biases. Among them, the central bias, which is the tendency of observers to
look near the screen center, is probably the most important [160]. The central bias,
which is extremely difficult to cancel or to remove, is a fundamental flaw which
can significantly undermine conclusions of some studies and models’ performance.
Also other evaluation frameworks like the ones using segmented objects and even
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application-driven validation [161] will improve validation of the saliency models
for real-life applications.

Regarding the applications, we decided to build a taxonomy made of three big
categories:

• Abnormality detection: use the most salient areas’ detection.
• Normality detection: use the less salient areas’ detection.
• Abnormality processing: compare and further process the most salient areas.

These categories let us simplify and classify a very long list of applications
which can benefit from attention models. We are just at the early stages of the
use of saliency maps into computer vision applications. Nevertheless, the number
of already existing applications shows a promising avenue for saliency models in
improving existing applications and for the creation of new applications. Indeed,
several factors are nowadays turning saliency computation from labs to industry:

• The models’ accuracy drastically increased in two decades both concerning
bottom-up saliency and top-down information and learning. The results of the
recent models are way better than the first results in 1998.

• The models working both on videos and images are more and more numerous
and provide more and more realistic results. New models including audio signals
and 3D data are released and are expected to provide convincing results in the
near future.

• The combined enhancement of computing hardware and algorithm optimization
led to real-time or almost real-time good-quality saliency computation.

While some industry already began to use attention maps (marketing), others
(TV, multimedia) come now to the use of such algorithms. Video surveillance and
video summarization will also come into the game of using saliency maps shortly.
This move from labs to industry will further encourage research on the topic toward
understanding human attention, memory, and human motivation. New models both
using bottom-up and more and more top-down information will appear. Moreover,
more validation techniques, mainly application-driven, should be available in the
next years to convince industry to use more attention modeling in their applications.
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Chapter 19
Attentive Content-Based Image Retrieval

Dounia Awad, Vincent Courboulay, and Arnaud Revel

19.1 Introduction

Imagine you are a few years in the future and you have just received your brand-
new “autonomous robot” car. This car is able to recognize the road signs and
detect passengers, pedestrians, and other cars on the road. At every moment, this
car has to deal with a large amount of visual data. How can it manage so many
information?

Typically, the kind of image the computer embedded into the car has to deal with
is similar to the one given in Fig. 19.1a. For instance, let us consider this image
as a classical VGA image (640 wide and 480 high) coded in RGB (24 bits per
pixel). If we only consider the informational aspect of the problem, the number
of different images that can be generated with this format is .640 � 480/224 �
10100000000. . . which is obviously unmanageable! Consequently, it is necessary to
reduce the complexity of the image by detecting regularities and structures into the
image.

By detecting the edges of the objects, the data to store is reduced to a few values
(a boolean edge/no-edge value per pixel). Nevertheless, an important part of the
properties (localization, shape) of the objects in the image is kept (see Fig. 19.1b).

In image processing, many methods have been proposed. Among them, some
take inspiration from human visual system, and many studies have been done to
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Fig. 19.1 (a) Example image adapted from autoGoer.com. (b) Edge detection on the previous
image

Fig. 19.2 (a) Pop-up effect and (b) classical saliency model

explain this “visual selection” mechanism. According to Walther [1], our capacity to
identify and understand of our environment, known as “human perception,” consists
of two parts:

– Attention which selects information based on the saliency1 in the image itself
(bottom-up) and on prior knowledge about the scenes (top-down) [2, 3]

– Object recognition which permits to infer the presence of an object or members
of an object category in this image

Considering the first part, it was found in neurobiology [4] that the visual system
is able to perform parallel processing of the image coming from the retina to detect
given features such as the edges, colors, textures, etc. In psychology [5], it has also
been shown that such feature maps would be involved in a “pop-up” phenomenon
that would be a part of the attentional system: a red rectangle lost in the middle of
many green rectangles is detected almost instantaneously (see Fig. 19.2a).

1According to the Collins dictionary, the saliency is the quality of being prominent, conspicuous,
or striking.



19 Attentive Content-Based Image Retrieval 381

Fig. 19.3 Detection of objects in an image

Following Itti’s [3] pioneer work, several computational models have been pro-
posed to perform “attentional” selection (see Fig. 19.2b). Applied to an image such
as our example, they can detect regions of interest which consist of “interesting”
subparts of the image (ideally, objects in the image – see Fig. 19.3).

Once detected, these subparts of the image must be recognized. In fact, it is quite
a difficult problem and many methods try to tackle it [6]. Among them, some are
based on the idea that an image can easily be recognized if an image of the same kind
has already been recognized. The principle is then to provide an image database in
which every image is stored together with a given label corresponding to the object
it contains. To recognize the subpart of the image, it is necessary to compare this
subpart with all the images in the database (see Fig. 19.4): this kind of technique is
thus known as content-based image retrieval (CBIR).

In this chapter, we propose to merge the two processes into a single one: the first
part consists of an attentional system which selects the interesting information in the
image. The second part is a CBIR-like system that intends to recognize the elements
in the image. The idea is to investigate what saliency models can bring to the CBIR
community.

19.1.1 CBIR State of the Art

The domain of “content-based image retrieval (CBIR)” is considered as one of the
most challenging domains in computer vision, and it has been an active and fast-
advancing research area over the last years. Most retrieval methods are based on
extracting points of interest using interest point detectors [7] as Harris and Harris-
Laplace (see Fig. 19.5) and described it by multidimensional feature vectors using
SIFT descriptors [8]. The set of these feature vectors is known as bag of features [9].
Although these approaches have demonstrated a high efficiency, some weakness
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Fig. 19.4 Overall schema of a generic CBIR algorithm

Fig. 19.5 Example of interest points detected by Harris algorithm and its variants

may be mentioned [10]. The first limitation is represented in the interest point
detectors. Most of these detectors are based on geometric forms as corners, blobs, or
junctions and consider that the interest of the image is correlated with the presence
of such features.

Furthermore, some studies [11] have demonstrated that these detectors were not
designed to detect the most pertinent regions for object recognition. Moreover,
although SIFT shows a high efficiency, scalability remains an important problem
due to the large number of features generated for each image [12]: many of them
are outliers [13].

An alternative way for extracting regions of interest is derived from visual
attention domain. This domain had been investigated intensely in the last years and
many models had been proposed (see Table 19.1) [6]. In this chapter, we focus
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Table 19.1 A taxonomy of visual attention models (Adapted from [6] )

Class Year Models Description
Cognitive
models

1985 Koch and
Ullman [14]

Their algorithm was inspired by Feature integra-
tion models. An important contribution of the
work is the WTA network

1998 Itti et al. [15] Its model is considered as a derivation of Koch
and Ullman algorithm. this model serves a basis
for many research group. Itti introduced the
image pyramids for the feature computations

2004 Le Meur et al.
[16]

Approach for bottom-up saliency based on the
structure of the human visual system. Contrast
sensitivity function, perceptual decomposition,
visual masking, center surround interaction are
some of the feature implemented in his model

2005 Fintrop [17] In their model, they separate the intensity fea-
ture computation into on-off and off-on compu-
tation instead of combining them in a single map

Bayesian
models

2003 Torralba [18]
and Oliva et al.
[19]

They proposed a Bayesian framework for visual
search tasks. Bottom-up saliency is derived
from their formulation as 1=p.f jfG/ where fG

represents a global feature that summarizes the
probability density of the target object in the
scene

2005 Itti and Baldi
[20]

They defined surprising stimuli as those which
significantly change beliefs of an observer. This
is modeled in a bayesian framework by com-
puting the KL divergence between posterior and
prior beliefs

Decision
theoretic models

2004 Gao and
Vasconcelos
[21]

They argued that for recognition, salient fea-
tures are those that best distinguish a class of
interest from all other visual classes. They then
defined top-down attention as classification with
minimal expected error

2007 Gu et al. [22] An activation map was first computed by
extracting primary visual features and detecting
meaningful objects from the scene. A retinal
filter is used after to generate the region of
interest

Information
theoretic models

2005 Bruce and
Tsotsos [23]

They proposed the AIM model (Attention
based on Information Maximization) which
uses Shannon’s self-information measure for
calculating saliency of image regions. Saliency
of a local image region is the information that
region conveys relative to its surrounding

(continued)
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Table 19.1 (continued)

Class Year Models Description
Graphical
models

2002 Salah et al. [24] They proposed an approach for attention based
on Observable Markov Model (OMM). Regions
visited by a fovea treated as states of OMM. An
inhibition of return allows the fovea to focus on
the other position in the image

2005 Rao et al. [25] They built a model based on assumptions that
the goal of the visual system is to know what
is where and that visual processing happens
sequentially. In this model, attention emerges
as the inference in a Bayesian graphical model
which implements interaction between ventral
and dorsal areas

2007 Liu et al. [26] They proposed a set of novel features and
adopted a Conditional Random Field to com-
bine these feature for salient object detection on
their regional saliency dataset

Spectral
analysis models

2007 Hou and Zhang
[27]

Their model based on the idea that similarities
imply redundancies that propose that statistical
singularities in the spectrum may be responsi-
ble for anomalous regions in the image, where
proto-objects become conspicuous

Pattern
classification
models

2007 Petters and Itti
[28]

They trained a simple regression classifier to
capture the task-dependent association between
a given scene and preferred location to gaze at
while human subjects were playing video games

2009 Kienzle et al.
[29]

They built non-parametric bottom-up
approaches for learning attention directly
from human eye tracking data

Other
models

2002 Ramstrom and
Christensen [30]

They introduced a saliency measure using mul-
tiple cues based on game theory concepts. Fea-
ture maps are integrated using a scale pyramid
where the nodes are subject to trading on a mar-
ket and the outcome of the trading represents the
saliency

on bottom-up visual attention models [15, 31]. The objective of these models is to
extract the regions that attract our interest without any prior knowledge about the
scene or image. These regions are called salient and they are selected according to
some discriminative features such as color, orientation, and intensity. To check how
much these regions are salient, the evaluation consists of comparing the saliency
map generated by visual attention models with a heatmap processed from eye-
tracking experiments [31, 32]. These experiments consist of displaying an image
a few seconds in order to capture enough eye fixations to build a statistical heatmap.
According to Perreira Da Silva [33], this evaluation is complex and suffers from
known biases, such as the semantic bias. Indeed, one can gaze to meaningful regions
which are not necessarily salient.
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Fig. 19.6 Attention and
CBIR self-improvement
relationship

Improvement

Comparison

CBIR
Visual

attention

Recently, many works have been proposed to combine these domains, given
what we called “attentive content-based image retrieval (Attentive C.B.I.R).” This
idea was introduced earlier in [34], who indicated that object recognition in
human perception consists of two steps: “attentional process selects the region
of interest and complex object recognition process restricted to these regions.”
Based on this definition, Walther [1] proposed an algorithm for image match-
ing: his algorithm detects SIFT keypoints inside the attentional regions. These
regions determine a search area, whereas the matching is on SIFT keypoints.
This approach was successful since they used very complex objects and those
which do not change a viewpoint. Others as Frintrop and Jenselft [35] applied
directly SIFT descriptors to the attention regions. They applied their approach
on robot localization. Although this approach achieved an improvement in the
detection rate for indoor environment, it fails in the outdoor environment and open
areas. In this chapter, we will focus on the usefulness of attentive CBIR toward
both communities: CBIR and visual attention. We hypothesize that attention can
improve object recognition systems in query run time and information quality
(Fig. 19.6) since these models generate salient regions on large scales, considering
the context information. This property of attentional models generates fewer salient
points regardless interest point detector. These detectors extract regions of interest
on small scales, resulting several hundreds or thousands of points. This idea
was presented previously by Frintrop [36] who indicated that the task of object
recognition becomes easier if an attentional mechanism first cued the processing
on regions of potential interest because of two reasons. First, it reduces the search
space and results in lower computational complexity. Second, most recognition
and classification methods work best if the object occupies a dominant portion of
the image.

This chapter will be organized as follows. In Sect. 19.2, we will present a
brief overview of our attentive CBIR system and the related algorithms used in
this system. more detail about the system and experiment will be presented in
Sect. 19.3.
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19.2 System Architecture and Results

19.2.1 Bottom-Up Attention Model

In this section, we will present the bottom-up attentional systems that model human
selective attention. These models aim to determine the most relevant parts within the
large amount of visual data. Their basis is originally adapted from psychological
theories like “feature integration theory” [5, 37] and “guided search model” [38]
where they stated which visual features are important and how they are combined to
direct human attention over pop-out and conjunction search task. Three features
have been used based on these theories in computational models of attention:
intensity (or intensity contrast, or luminance contrast), color, and orientation. The
first complete implementation and verification of an attention model was proposed
by Itti et al. [15] and was applied to synthetic as well as natural scenes. Its main
idea was to compute features and to fuse their saliencies in a representation which
is usually called saliency map. This algorithm is considered one of the famous
central representation models that encode attention in a 2D topographic map. This
map serves as reference for allocating attention though various mechanisms (winner
takes all, inhibition of return, etc.).

Perreira Da Silva et al. [31] proposed a new hybrid model (called PVAS) based
on the classical algorithm proposed by Itti [15], in which the first part of architecture
relies on the extraction of three conspicuity maps (color, intensity, orientation) based
on low-level characteristic computation.

Perreira Da Silva et al. [39] propose to substitute the second part of Itti’s model
by an optimal competitive approach: a prey/predator system (Fig. 19.7). We applied
the same optimal parameter used by Perreira Da Silva [39] in our evaluation method.
The output of this algorithm is a saliency map S.I; t/ computed by a temporal
average of the focalization computed through a sliding temporal window. Hence,
Perreira Da Silva and Itti models were chosen to test our evaluation method based
on attentive CBIR system. In the following, we will present the CBIR approach used
in our attentive CBIR system.

19.2.2 Object Recognition

As mentioned in Sect. 19.1, content-based image retrieval has seen considerable
progress over the past years. Many challenges have been proposed to test the
efficiency and robustness of the recognition methods. One of the most popular chal-
lenges is the Visual Object Classes Challenge [40]. VOC was proposed for the first
time in 2005 with one objective: recognizing objects from a number of visual object
classes in realistic scenes [9]. Since then, it has been organized every year and inte-
grates new constraints in order to provide a standardized database to the researchers.

In 2005, 12 algorithms have been proposed to compete for winning the challenge;
it is interesting to mention that all algorithms were based on local feature detection.
We propose a taxonomy in Table 19.2. Finally, INRIA-Zhang appeared to be
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Fig. 19.7 Architecture of the PVAS computational model of attention

Table 19.2 Taxonomy of methods proposed in VOC2005 (Adapted from [9])

Category Description

Distribution of local
image feature

Images are represented by probability distributions over the set of
descriptors, basing on two methods. Bags of words [41] in which
an image is represented by a histogram over a dictionary recording
the presence of each word. An alternative way is based on kernel
as Bhattacharyya kernel [42]. Finally, the model is learned using
classification methods as SVM

Recognition of
individual local
feature

In this approach, interest point detectors are used to focus the attention
on a small number of local patches. Then each patch in each image
is associated with a binary label. Vectors are built by grouping these
labels. A parametric model of the probability that the patch belongs to
a class is built. Finally the output is the posterior class probability for a
patch feature vector

Recognition based on
segmented regions

This method combines the features extracted from the image and
the regions obtained by an image segmentation algorithm. The self-
organizing maps (SOM) [43] are defined on the different feature spaces
that were used to classify the descriptors resulting from the segmented
regions and the whole image

Classifications by
detection

It extracts patches in an image using interest point detectors. A code
book is built using a clustering method. A new object class is detected
using a matching method. Then a hypothesis on accept and refusal is
defined
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Fig. 19.8 Architecture of Zhang algorithm

the most efficient method. We decide to take it as the reference algorithm for
object recognition. The algorithm shown in Fig. 19.8 consists of extracting an
invariant image representation and classifying this data with nonlinear support
vector machines (SVM) with an �2 kernel.

19.2.3 Results

To validate our hypothesis, we implemented our approach and evaluated it on the
VOC 2005 database. The VOC challenge proposed two image subsets, the subset S1

with selected images and another subset S2 with Google image randomly selected.
Thus, our approach can be performed independently during learning and for the test
process. We evaluate the binary classification using receiver operating characteristic
(ROC) curve [44]. With this curve, it is easy to observe the trade-off between
two measures: proportion of false positives plotted on the x-axis and true positives
plotted on the y-axis.

In Fig. 19.9, some ROC curves are shown. These curves present the results of
our evaluation method, for two computational attention models: Itti and Perreira
Da Silva. The idea, here, is to develop two attentive CBIR models and to test their
efficiency:

– P/P+Zhang: this system represents the combination of Perreira Da Silva models
with Zhang nominal algorithm.

– Itti+ Zhang: this system represents the combination of Itti models with Zhang’s
nominal implementation.

Finally, three curves were drawn, representing our implementation of Zhang
algorithm and two attentive CBIR models.

Furthermore, we tested also the usefulness of attentive CBIR toward object
recognition domain. Our test consists on using Perreira Da Silva system as a mask to
select among all the SIFT keypoints only those which are the most salient. Results
are shown in Fig. 19.10 representing, respectively, our implementation of Zhang
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Fig. 19.9 ROC curve with and without our filter approach for two different classes

algorithm without filtering and with several filtering. For reason of clarity, we don’t
present the tests we did exhaustively. We selected only:

– the “best” curve: the maximum reduction of keypoints we had while having
approximately the same performance

– the “worst” curve: the maximum loss of performance we had before filtering all
the keypoints

It is also interesting to mention that comparing the two visual attention systems
showed that percentage of keypoint reduction was higher for Itti+Zhang than
PP+Zhang. This can explain why the performance for Itti system was worse than
for Perreira system.
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19.3 More on the System Architecture and Results

19.3.1 Bottom-Up Attention Model

As mentioned in Sect. 19.2.1, we chose to test our hypothesis on two visual attention
models which share the same image-extracted low-level features. The first model is
Itti et al.’s basic model [15]. This model was proposed in 1998 and served as basis for
later models and standard benchmark for comparison. The second attention model
is Perreira Da Silva model [39], a new real-time computational model which allows
modeling the temporal evolution of visual focus of attention and its validation. The
first part of this model is inspired from Itti classical model in which three conspicuity
maps, representing the three main human perceptual channels, are extracted. In
the second part, Perreira proposed a competitive system prey/predator with the
following features:

– The system is comprised of three types of preys and one type of predators.
– These three types of preys represent the spatial distribution of curiosity generated

by our three conspicuity maps( intensity, color, orientation).
– The predator represents the interest generated by the consumption of curiosity

(preys) associated with different conspicuity maps.
– The global maximum of the predator’s maps (interest) represents the focus of

attention at time t.
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Perreira Da Silva et al. [39] show that despite the nondeterministic behavior
of prey/predator equations, the system exhibits interesting properties of stability,
reproducibility, and reactiveness while allowing a fast and efficient exploration of
the scene.

19.3.2 Object Recognition

As mentioned in Sect. 19.2.2, we chose Zhang algorithm as reference for our
development. This algorithm can be divided in three parts:

1. Sparse image representation: this part extracts a set of SIFT keypoints KZhang.I/
from an image I.x; y/ which was provided as input. It consists of two steps:

– Interest point detectors: Zhang uses two complementary local region detectors
to extract interesting image structures: Harris-Laplace detector [45], dedicated
to corner-like region, and Laplacian detector [46], dedicated to blob-like
regions. These two detectors have been designed to be scale invariant.

– Local descriptor: To compute appearance-based descriptor on the extracted
patches, Zhang used the SIFT descriptor [8]. It computes descriptors less
sensitive to scale variations and invariant to illumination changes.

2. Bag-of-features representation: Zhang builds a visual vocabulary by clustering
the descriptors from the training set. Each image is represented as a histogram of
visual words drawn from the vocabulary. He randomly selects a set of descriptors
for each class extracted from the training set, and he clusters these features using
k-means to create 1000-element vocabulary. Finally, each feature in an image is
assigned to the closest word, and a histogram that measures the frequency of each
word in an image is built for each image.

3. Classification: Zhang uses a nonlinear SVM in which the decision function has
the following form:

g.x/ D
X

˛iyik.xi; x/ � b (19.1)

with k.xi; x/ the kernel function value for the training sample xi and the test
sample x. ˛i is the learned weighted coefficient for the training sample xi and
b is the learned threshold. Finally, to compute the efficiency of the algorithm,
SVM score has been considered as a confidence measure for a class.

19.3.3 Proposed Architecture

As mentioned before, attentive CBIR is a combination of attentional systems and
CBIR algorithms. We chose Zhang algorithm as the reference of our development.
Analyzing the different steps of the algorithms, it can be noticed that the first step
consists in using the interest point detectors. According to [12], not all of those



392 D. Awad et al.

(3)
Classification with non-linear SVMS

(2)

Bag of features representation
(1)

Sparse Image representation

Interest point 

detectors:

Harris-Laplace

Laplacian

Local 

Descriptors: 

SIFT

Visual words 

construction:    

k-means 

Histogram 

creation

SVM
+

Chi –Square kernel
Input:

Saliency map Mask
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points are useful to categorize the image. On the contrary, we assume the idea
that nonrelevant “noisy” information can also be detected. Thus, the idea is that
attentional system can be used to select among all the keypoints only those which are
the most salient. Given the selection of salient keypoints, the rest of Zhang algorithm
could stay unchanged for a CBIR application (see Fig. 19.11). In the following, we
will refer to Perreira Da Silva system to explain our approach. The same concept
can be applied to other computational attention systems.

Practically speaking, the process we propose consists in providing both Zhang
and Perreira Da Silva systems the same image I.x; y/. After step 2 of Zhang’s
framework, a first set of KZhang.I/ of keypoints is obtained. In parallel, for the same
image I.x; y/, Perreira Da Silva’s system provides a saliency map Smap.I; t/ which
evolves with time. In order to emphasize the visual regions the systems mainly
focuses on, Smap.I; t/ is integrated along the time axis to get what is usually known

as a “heatmap.” Formally, the heatmap can be defined as H.I/ D R T
0 Smap.I; t/:dt,

with T the integration window.
To take advantage of the saliency map within the context of Zhang’s framework,

the idea is to generate a mask M.H.I/; �/ that is used as a filter of the SIFT keypoint
set, with the minimum level of saliency considered in the image. Formally, the
generated mask could be defined as:

M.H.I/; �/ D
�

1 if H.xh; yh/ > �

0 otherwise
(19.2)

The filtering process by itself consists of selecting the subset KFiltered.I/ of
keypoints in KZhang.I/ for which the mask M.H.I/; �/ is on:

KFiltered.I.x; y// D˚
Keyj 2 KZhang.I.xh; yh// j M.H.I/; �/ D 1

� (19.3)
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This subset KFiltered.I/ serves as input for the next parts of Zhang algorithm for object
recognition. In the following, we will verify if the attentive CBIR can produce a
meaningful enhancement in both communities presented in Sects. 19.2.1 and 19.2.2.

19.3.4 More Results

As mentioned in Sect. 19.2.3, experiments have been done to test the utility of
attentive CBIR for two communities: visual attention and object recognition. It
consists of using the same concept of our approach mentioned in Sect. 19.3.3, where
the saliency map was used as mask to detect the most relevant keypoints. Thus,
any computational attention system that generates a saliency map can be used in
our attentive CBIR methods. In our test, we compare our approach with Zhang’s
nominal implementation on VOC 2005 database. In this context, we chose Perreira
Da Silva as our reference for attentional filter. As the number of keypoints depends
on the images, we have chosen to adapt the parameter to the ratio  between the
number of remaining keypoints Card.KFiltered.I// and the number of keypoints in
the image Card.kZhang.I//.

 was varied f10 %; 20 %; 30 %; 40 %g. We were not able to vary  over 40 %,
since with the minimum value � D 0 (the whole heatmap is considered), 60 % of
the keypoints were already filtered.

The filtering of the keypoints can be performed independently during learning
and for the test process. Therefore,  vary on both the learning set (L) and
the training set (T ): our idea was to determine whether more or less keypoints
during training or test may affect the effectiveness of our approach. We performed
quantitative evaluation of ROC curves by computing the area under curve (AUC)
and the equal error rate (EER) following the procedure defined for the challenge
in Tables 19.3, 19.4, 19.5, and 19.6. Each table presents the results for each class
with, respectively, Zhang’s original score as reported in the challenge summary,
our implementation of Zhang’s algorithm without filtering, and several couples of
.L; Si/ keypoint filtering.

Table 19.3 AUC/EER values for persons class

AUC/EER S1

Zhang Reimpl. of Zhang 40 %, 40 % 40 %, 10 %

0:97= 0:93= 0:92= 0:79=

0:91 0:87 0:86 0:77

S2

Zhang Reimpl. of Zhang 10 %, 30 % 40 %, 10 %

0:813= 0:67= 0:69= 0:58=

0:728 0:56 0:62 0:47
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Table 19.4 AUC/EER values for cars class

AUC/EER S1

Zhang Reimpl. of Zhang 30 %, 40 % 30 %, 10 %

0:98= 0:95= 0:94= 0:83=

0:93 0:90 0:87 0:79

S2

Zhang Reimpl. of Zhang 30 %, 20 % 10 %, 40 %

0:802= 0:73= 0:76= 0:61=

0:720 0:73 0:76 0:44

Table 19.5 AUC/EER values for bikes class

AUC/EER S1

Zhang Reimpl. of Zhang 30 %, 40 % 40 %, 10 %

0:98= 0:94= 0:93= 0:72=

0:93 0:90 0:86 0:64

S2

Zhang Reimpl. of Zhang 10 %, 30 % 40 %, 10 %

0:813= 0:67= 0:69= 0:58=

0:728 0:56 0:69 0:44

Table 19.6 AUC/EER values for motorbikes class

AUC/EER Zhang Reimpl. of Zhang 40 %, 40 % 40 %, 10 %

0:99= 0:98= 0:98= 0:89=

0:96 0:94 0:93 0:83

Table 19.7 Evaluation of computational cost

Reimpl. of Zhang 40 % 30 % 20 % 10 %

SIFT descriptor 1:52 s 0:6 s 0:36 s 0:27 s 0:15 s

Histogram construction 1:96 s 0:74 s 0:51 s 0:42 s 0:20 s

Observing the results for S1 shows that reducing about 60 % the number of
keypoints does not affect the performance sensibly. For S2, we obtained a loss in
performance for motorbike class. This can be explained that 50 % of the images in
S2;M contained two objects defined as classes (motorbike and persons). In addition
to that, applying the saliency map on these images had reduced 70 % of points of
interest. This loss can be shown in AUC (0.80 as the result of re-implementation of
Zhang; 0.40 for the best result we got for (30 %, 10 %)).

The evaluation of the running time of INRIA-Zhang is illustrated in Table 19.7.
This table reports the average running time obtained by dividing the total running
time of each stage by the number of images. All components of our system are
implemented in C++ and run on a computer with a 3.06 GHz Intel Core 2 Duo CPU
and 4G of RAM. Analyzing the result demonstrated that when we apply our filtering
approach using 40 % of the total interest points have given us about 60 % time gain.
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19.4 Summary and Conclusion

We show that attentive CBIR can improve the query run time and information
quality in object recognition. Therefore, we propose our approach for selecting
the most relevant SIFT keypoints according to human perception, using Perreira
Da Silva saliency-based region detection system. Testing this approach on VOC
2005 demonstrated that we can maintain approximately the same performance
by selecting only 40 % of SIFT keypoints. Based on this result, we propose this
approach as a first step to solve problems related to the management of memory and
query run time for recognition systems based on SIFT detectors.

Furthermore, our approach can be used as a new kind of evaluation framework for
visual attention models [47]. This framework aims to evaluate the ability of visual
attention systems to maintain the performance of a CBIR approach. As shown in
Fig. 19.12, it is complicated to compare the different systems as their behaviors vary
according to the percentage of keypoint reduction. Moreover, some of the state-of-
the-art models shown here have different dynamics function of � , some of them not
being able to cover the entire 0 % to 100 % keypoint reduction range. In [47], we
show that the use of an eye-tracking ground truth or a CBIR-based ground truth can
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Fig. 19.12 Percentage (� ) of keypoint reduction for several attention models: graph-based visual
saliency (GBVS) [48], saliency detection by self-resemblance (SDSR) [49], prey/predator visual
attention system (PVAS) [31], nonparametric low-level saliency model (NLSM) [50], and rarity-
based saliency detection [51] on VOC 2007. Compared with PVAS that we use here
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provide different ranking between the attention models. In other words an attention
model which is efficient in predicting eye gaze using a traditional ground truth is
not necessarily efficient in improving object recognition. The use of a CBIR-based
framework as the one proposed in this chapter is thus very interesting for people
who want to choose the best saliency model given their CBIR application.
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Chapter 20
Saliency and Attention for Video Quality
Assessment

Dubravko Culibrk

20.1 Introduction

Recent years have witnessed an explosion of visual and multimedia applications
across the globe. Digital television and other home entertainment applications;
multimedia sharing platforms such as YouTube, Flickr, and Panoramio; social
networking applications such as Facebook; mobile multimedia applications; per-
sonal multimedia collections; immersive multimedia and virtual reality applications;
video tele-conferencing; gaming; and educational multimedia presentations are all
examples of multimedia applications that have become an integral part of our lives.

Our increased ability to transmit large amounts of data, through both land and
wireless networks, has led to rising increase in the quality of experience that people
get and expect from multimedia applications and services. Since the consumers of
the multimedia content are ultimately humans, it is vital to be able to efficiently
measure and detect the quality of the final product delivered to the users for
large amounts of multimedia data. The problem is made more complex by the
increasing share of multimedia generated by users, as opposed to the professional
media-producing companies. At the time of writing, 300 h of video are uploaded
to YouTube (the leading Internet video site) every minute. In fact the amount of
video uploaded to YouTube in a month surpasses all the content produced by three
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major US networks in 60 years [42]. The Cisco Visual networking index [2] predicts
that in 2019, the gigabyte equivalent of all movies ever made will cross Global IP
networks every 2 min and that video will account for 80 % of all IP traffic. Global
mobile IP traffic will comprise 14 % of total IP traffic in 2019, a sharp rise from
4 % in 2014. User-generated content and mobile applications impose new level of
complexity when quality assessment (QA) is concerned, since access to the original
(pristine) media content, which most mature methodologies require as a reference
[27], is not available in these scenarios.

While aspects of the human visual system (HVS) have been modeled to arrive at
an estimate of the perceived level of coding artifacts in video sequences, attention
and saliency in videos have only recently begun to be considered as a way to
enhance video quality assessment (VQA) [8, 21, 27]. Bottom-up attention can be
modeled computationally [12] and has been successfully used in a number of
applications such as content-based image retrieval [25], scene classification [28],
and vision-based localization [29]. Lately, researchers have started looking into
using computational models of (motion) attention to enhance the performance of
video coding algorithms [22], address the problem of video skimming [23, 24], and
improve VQA [7, 21, 36].

When VQA is concerned, the motivation for taking attention into account lies in
the fact that the HVS sensitivity to motion and texture differs significantly between
areas of the stimuli focused upon (attended to) and those in peripheral vision [30].
This leads to different sensitivity to coding artifacts in the two regions of the visual
field, which has rarely been taken into account in the QA algorithm design.

The rest of this chapter is organized as follows: Sect. 20.2 deals with subjective
tests that need to be carry out to establish the quality as perceived by the users.
Section 20.3 describes the mechanism through which coding affects the quality.
Section 20.4 gives an overview of video quality assessment. Section 20.5 focuses
on saliency-based VQA. Finally, Sect. 20.6 holds the concluding remarks.

20.2 Measuring Subjective (Perceptual) Quality

As the consumers of multimedia content are humans, a measure of quality related to
viewers’ quality of experience (QoE) is needed to establish “ground truth” for any
quality assessment methodology.

A subjective quality measure typically used is the mean opinion score (MOS),
which is obtained by averaging scores from a number of human observers. The
correct procedure for conducting such experiments is described in ITU-R BT.500-
10 recommendations[15].

These recommendations encompass a number of different procedures designed
for different scenarios. If the reference (pristine) material is available, one might
opt for Double Stimulus Impairment Scale (DSIS) method. The assessor is first
presented with an unimpaired, reference sequence and then with the same sequence
impaired. He is then asked to vote on the second sequence, keeping in mind the
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first. Voting is done on a 1 to 5 scale, 1 being the lowest score, where perceived
impairments are very annoying, and 5 being the highest, where impairments cannot
be perceived. Series of sequences with random levels of impairments are presented,
and for control purposes, reference sequences are also included in the assessment
set, but assessors are not informed about this. The final MOS value for a sequence
is the average score over all assessors for that sequence.

If there is no information about the original video, Absolute Category Rating
(ACR) can be used. In this method, test clips are presented to assessors one at
a time and rated independently on a discrete 9-level scale, ranging from “Bad”
to “Excellent.” Naturally, the ratings for each test clip are then averaged over all
subjects to obtain a mean opinion score (MOS). It should be noted that the variance
of the opinion scores is much higher when ACR is used [6] and the procedure
accommodates for this effect by including two sessions. Subjects grade the same
sequence twice, but at different points in time (once per session). Thus, intra-subject
reliability as well as intersubject variability could be measured. This allows for
unreliable observers to be eliminated from the final MOS scores, using a paired
t-test.

When it comes to the video material usually used, both to measure MOS and
evaluate VQA approaches, a golden standard is the Video Quality Experts Group
(VQEG) FRTV Phase 1 database [35]. This data set contains standard definition
sequences and is primarily intended for purposes of testing the quality of video
codecs. Most authors use VQEG videos, either exclusively or as part of a larger
corpora of video sequences to evaluate the effect of different impairments on the
perceived quality. An extensive and fairly recent list of VQ resources and databases
is provided by Winkler [39]. A number of those databases contain eye-tracking data,
which is of particular interest to the saliency and attention VQA researchers.

20.3 Coding Artifacts and Their Relation to Perceptual
Quality

The perceived quality depends on the video codec, bit rates required, and the content
of video material. User-oriented video quality assessment research is aimed at
providing means to monitor the perceptual quality of the service.

Overall degradation in the quality of the sequence is due to the encoder/decoder
implementations as part of the transport stream at various bit rates and is a
compound effect of different coding artifacts and/or packet losses that occur during
transmission. Figure 20.1 shows the effect of coding on details taken from the
frames of two VQEG test sequences, for MPEG-2 coder and two bit rates (0.5
and 2 Mbps).

Three types of artifacts are typically considered pertinent to DCT block (e.g.,
JPEG, MPEG, H.264) coded data: blocking, ringing, and blurring. Blocking
appears in all block-based compression techniques due to the coarse quantization
of frequency components [37, 38]. It can be observed as surface discontinuity
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Fig. 20.1 Details of sample frames taken from two VQEG sequences degraded through MPEG-2
coding. (a) Sample frame detail (original). (b) Sample frame detail (original). (c) Detail coded at
2 MB/s. (d) Detail coded at 2 MB/s. (e) Detail coded at 0.5 MB/s. (f) Detail coded at 0.5 MB/s

(edge) at block boundaries. These edges are perceived as abnormal high-frequency
components in the spectrum. Ringing is observed as periodic pseudo edges around
the original edges [18]. It is due to the improper truncation of the high frequency
components. This artifact is also known as the Gibbs phenomenon or Gibbs effect.
In the worst case, the edges can be shifted far away from the original edge locations
and observed as false edge. Blurring, which appears as edge smoothness or texture
blur, is due to the loss of high-frequency components when compared with the
original image. Blurring causes the received image to be smoother than the original
one [9].
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20.4 Video Quality Assessment

Three classes of approaches to image and video quality assessment exist:

– Full reference
– Reduced reference
– No-reference approaches

The distinction is made based on the level of information about the original
sequence that is used by the QA methodology. Full-reference approaches require
access to the original multimedia content that has not been degraded through coding.
As such, they are suitable for use in the classical multimedia production scenario,
where the content provider (i.e., a television network) has the access to the pristine
signal and the technical capability to store/process it. Thus, the QA methodology
is primarily used to optimize the QoE of viewers through the tuning of coding
algorithms at the production stage. Seshadrinathan and Bovik provide a very recent
survey [27] of full-reference QA approaches. The focus has been placed on such
methodologies, as they are most mature and have been commercialized to the
greatest extent.

Full-reference quality assessment is a fairly easier problem than the other
two classes and has indeed been the focus of most researchers up to this point.
Unfortunately, the methodology is quite unsuitable for application in the case of
large amounts of user-generated content, since the not-coded versions of images and
videos are not available with the widely used production technology (i.e., cameras
and camcorders). In addition, if one envisions a scenario where the QA needs
to be done on mobile platforms, then there is no question of being able to send
uncompressed images and videos to the mobile device and use it as a reference.

Reduced-reference approaches find themselves between the full-reference and
no-reference approaches and attempt to use lower-bandwidth information about the
original sequence/image. Again, one needs to have access to the pristine content
to extract the reference information, and this will be less and less likely in the
multimedia landscape of the future.

20.5 Saliency-Based VQA

Saliency-based VQA approaches typically share the same basic structure, illustrated
in Fig. 20.2.

Different models and features are used to compute a saliency map for each frame
of the sequence. In parallel, conventional quality metrics (designed to measure the
degradation in quality due to different coding artifacts) are computed for each frame.
The saliency map is then used to weigh the importance of different parts of the
sequence/frame in terms of quality and provide a better measure of quality than
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Fig. 20.2 Structure of saliency-based VQA approaches

one that could be estimated without the saliency model. MOS estimates for single
frames are then aggregated to arrive at a single estimate per sequence.

Where the approaches differ is in the approach to saliency computation, the
quality metrics employed, and the way the information from the quality metrics
and the saliency map is fused to arrive at a MOS estimate.

20.5.1 Measuring the Effect of Coding Artifacts on Quality

The origins of research into the influence of coding artifacts on perceptual quality
lie in the still-image quality (IQ) domain. Most metrics used in various VQA
approaches are derived from IQ metrics.

Even when the reference (not degraded) visual content is available, objective
measures of signal degradation such as Peak Signal-to-Noise Ratio (PSNR) are
poorly correlated to MOS [43], leading to significant research effort aimed at the
design of measures which will allow computers to determine MOS effectively.
The measures typically focus on specific coding artifacts and attempt to take into
account the effect of the content of the images (video frames). Thus, when perceived
blockiness is concerned, most measures are based on the notion that the block-edge-
related effects can be masked by high spatial activity in the image itself and that the
blockiness cannot be observed in very bright and very dark regions.

While it is not feasible to enumerate all published approaches to the measuring of
the different coding effects, several methodologies stand out in terms of their impact
on the community and/or are of interest for the discussion in the following sections.
For a recent review of the approaches to image and video quality assessment, which
attempt to make use of different models of attention deployment, please refer to
Engelke et al. [8].

Wang et al. [37] proposed a no-reference approach to quality assessment in
JPEG-coded images. Their final measure is derived as a nonlinear combination of a
blockiness, local activity, and a so-called zero-crossing measure. The combination
is supposed to provide information regarding both blockiness and blurring (via the
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two latter measures) in JPEG-coded images. Their approach is usually compared
against, when no-reference MOS estimation is concerned.

More recently, Babu et al. [34] proposed a blockiness measure for use in VQA,
which takes effects along each edge of the block into account separately. They report
their measure surpassing the Wang et al. approach in terms of MOS prediction
accuracy.

In a recent paper [5], a neural-network approach to MOS estimation was used to
evaluate a number of measures (18 in total) of image and video quality in terms of
their predictive value, when VQA is concerned. The evaluated measures included
still-image quality features designed to describe spatial image activity and contrast
[10, 19], ringing effects [18], noise, and blur [17]. Wang et al. proposed measures of
quality and Babu et al. blockiness measure. Additional measures were introduced to
account for the temporal dynamics of the sequence. Two motion intensity measures
were used: (i) global motion intensity, calculated from the global motion field, and
(ii) object motion intensity, calculated by subtracting the global motion from the
MPEG motion vectors [38].

Feature selection was performed based on training a simple multilayer perceptron
(MLP) estimator with each measure as input, separately. The measures were ranked
according to their performance and a subset of 5 measures was selected as input
for the final estimator, which was an MLP with 7 nodes in the hidden layer. Since
the prediction was done on a single frame basis, median filtering was used to
arrive at a single estimate for the whole sequence. The approach achieved better
results than any measure considered separately. Feature selection indicated that
measures proposed by Wang et al. and Babu et al. contributed most to quality
estimation.

20.5.2 Saliency, Motion, and Attention

When faced with visual stimuli, the human vision system (HVS) does not process
the whole scene in parallel. Part of the visual information sensed by the eyes is
discarded in a systematic manner to attend to objects of interest. The most important
function of selective visual attention is to direct our gaze rapidly towards objects
of interest in our visual environment [13, 26]. The objects that are not of interest
are still processed, but with reduced spatial resolution and motion sensitivity [30].
Critical fusion frequency, on the other hand, is higher in the peripheral vision,
making the HVS more sensitive to sudden changes in illumination in the not-
attended region [1].

It is not possible for the HVS to process an image entirely in parallel. Instead,
our brain has the ability to prioritize the order; the potentially most important points
are attended to when presented within a new scene. The result is that much of the
visual information our eyes sense is discarded. Despite, we are able to quickly gain
remarkable insight into a scene.
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This type of attention is referred to as attention for perception: the selection
of a subset of sensory information for further processing by another part of the
information processing system [25, 32].

Current research considers attention deployment as a two-component mechanism
[3, 13]. Subjects selectively direct attention to objects in a scene using both bottom-
up, image-based saliency cues and top-down, task-dependent cues, an idea that dates
back to the nineteenth-century work of William James [16].

Bottom-up processing is driven by the stimulus presented [32]. Some stimuli
are intrinsically conspicuous or salient (outliers) in a given context. For example,
a red dinner jacket among black tuxedos at a somber state affair, a flickering light
in an otherwise static scene, or a street sign against gray pavement automatically
and involuntarily attracts attention. Saliency is independent of the nature of the
particular task, operates very rapidly, and is primarily determined in a bottom-up
manner. If a stimulus is sufficiently salient, it will pop out of a visual scene. This
suggests that saliency is computed in a pre-attentive manner across the entire visual
field, most probably in terms of hierarchical center-surround mechanisms. As for
the moving stimuli, they are perceived to be moving only if they are undergoing
motion different from their wider surround [26]. The speed of saliency-based form
of attention is on the order of 25 to 50 ms per item [13]. The second form of attention
is a more deliberate affair and depends on the task at hand, memories, and even past
experience [32]. Such intentional deployment of attention has a price, because the
amount of time that it takes (200 ms or more) rivals that needed to move the eyes.
Thus, certain features in the visual world automatically attract attention and are
experienced as “visually salient.” Directing attention to other locations or objects
requires voluntary “effort.” Both mechanisms can operate in parallel.

Significant progress has been made in terms of computational models of bottom-
up visual attention [11, 20, 31, 33]. While bottom-up factors that influence attention
are well understood [41], the integration of top-down knowledge into these models
remains an open problem. Because of this, the fact that bottom-up components of a
scene influence our attention before top-down knowledge does [3] and that they can
hardly be overridden by top-down goals, applications of visual attention commonly
rely on bottom-up models [24, 25, 28, 29].

Full-fledged biologically inspired computational models of attention are pri-
marily designed for still images and are too computationally intensive for real-
world video processing applications such as video quality assessment [21] and
video skimming [24]. In the case of VQA, this is especially true if a large
number of features are calculated based on the output of the visual attention
model.

Nevertheless, the complex saliency model of Itti et al. has recently been
employed to improve the prediction of packet loss effects [21]. In addition to
weighing their conventional quality measures with the computed saliency map, the
authors observed that the changes in the saliency map can help when determining
perceptual quality. Therefore, they proposed the use of mean squared error between
the saliency map computed for the reference frame and the impaired frame
and temporal variance of saliency map as features for quality estimation. Using
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generalized linear models as VQ estimators, they concluded that the results are
improved significantly when using saliency-based features (the error improved by
9–15 %, depending on the number of features used).

Ma et al. [24] made an early attempt to design an attention model that integrates
motion cues and achieves the performance required in real-time video applications.
Ma et al. distinguish motion and static attention parts of their model, since they
rely on previously calculated motion vector field to discern the regions of the frame
salient due to motion. They propose measures based on motion intensity, spatial and
temporal coherence to detect points salient due to motion, and contrast to determine
static saliency. It should be noted that the spatial coherency of motion seems to
have no bearing on saliency at the lowest levels of attention [26]. Ölveczky et al.
[26] report that the driving force of the attention at this level is the difference in the
speed of motion between a center and the surrounding region.

Nevertheless, the approach of Ma et al. used general principles of the visual
attention in the HVS to drive the design of a lightweight attention model. However,
their intended application was video abstraction, and they have not considered using
their model to help assess perceptual quality.

More recently, several methodologies for computing saliency due to spatial and
temporal cues (motion) were proposed. In 2007, Wang and Li [36] extended their
full-reference still image quality assessment methodology by incorporating a speed
perception model. They rely on measures of background global and relative motion
to create a saliency map describing the perceptual uncertainty for different parts
of the frame. Their assumption is that the frames with large global motion which
exhibit the largest perceptual uncertainty will not influence the perceived quality
much. Based on the perceptual uncertainty map, they derive a weighing map for
their quality metric and propose a nonlinear equation to arrive at the MOS estimate.

In [7], the authors proposed the use of a multi-scale background modeling and
foreground segmentation approach proposed in [4] as an efficient attention model
driven by both motion and static cues, which adheres to the principles reported
in [26]. The model employs the principles of multi-scale processing, cross-scale
motion consistency, outlier detection, and temporal coherence. The output of the
segmentation has been used to derive features describing the salient motion in the
frame, as well as to calculate a number of video quality features separately for
regions of the frame observed as salient and the rest of the frame. This enabled the
evaluation of the influence of the saliency on the predictive ability of the proposed
VQ estimators.

The list of measures considered as features for VQA in [7] is shown in
Tables 20.1 and 20.2. The measures shown in Table 20.1 represent conventional
VQA measures adopted by the authors from previous published work. The measures
in Table 20.2 are related to saliency and were proposed in the paper.

As Tables 20.1 and 20.2 show, rather than using the saliency information as
weight, the authors considered separately the salient/non-salient regions and the
border between the two. Figure 20.3 shows salient motion segmentation masks for
sample frames as well as saliency maps detected by the static-saliency approach of
Itti and Koch [13].
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Table 20.1 Initial list of
measures evaluated in [7]
with pertinent references

# Feature Reference

1 Two field difference [40]

2 Variance ratio [17]

3 Blockiness [34]

4 Ringing [18]

5 Ringing 2 [18]

6 Global motion vector intensity [38]

7 Activity [37]

8 Blocking effect [37]

9 Zero-crossing rate [37]

10 Z score [37]

11 Gradient activity [19]

12 Edge activity [19]

13 Contrast [19]

14 Correlation [10]

15 Energy [10]

16 Homogeneity [10]

17 Variance [10]

18 Contrast [10]

Table 20.2 List of
saliency-related measures
proposed in [7] with pertinent
references

# Feature Reference

19 Salient reg. count Proposed

20 Avg. reg. size Proposed

21 Mean change non-salient Proposed

22 Change Std.Dev. non-salient Proposed

23 Mean Change salient Proposed

24 Change Std.Dev. salient Proposed

25 Activity non-salient Modified [37]

26 Blocking effect non-salient Modified [37]

27 Zero-crossing rate non-salient Modified [37]

28 Z score non-salient Modified [37]

29 Activity salient Modified [37]

30 Blocking effect salient Modified [37]

31 Zero-crossing rate salient Modified [37]

32 Z score salient Modified [37]

33 Blockiness non-salient Modified [34]

34 Blockiness salient Modified [34]

35 Blockiness border Modified [34]

The study concluded that significant improvements in the quality estimation can
be achieved when using saliency information. In addition, the study considered
the impact of the presence of specific artifacts in the salient/non-salient parts of
the sequence on the perceived quality. The authors suggest that the intensity of the
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Fig. 20.3 Salient motion detection for the “Ant” VQEG sequence. (a) Sample frame coded at
4 MB/s. (b) Sample frame coded at 0.5 MB/s. (c) Salient motion detected at 4 MB/s. (d) Salient
motion detected at 0.5 MB/s. (e) Static saliency [14] at 4 MB/s. (f) Static saliency [14] at 0.5 MB/s

blurring and blocking effects in the salient regions has most bearing on the perceived
video quality. On the other hand, temporal changes in the non-salient part of the
frame seem to be of more importance when VQA is concerned. This is a significant
parting from other methodologies which assume that saliency of a region is directly
related with the significance of artifacts present in that region.

Moreover, the results presented in the study show that the root mean square error
of the proposed estimator is significantly lower than the mean standard deviation of
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the opinion scores of the human observers in the subjective tests conducted. That
is, the proposed methodology provides more accurate and consistent estimates than
those obtained from subjective experiments.

20.6 Conclusion

Recent years have witnessed an explosion of visual and multimedia applications
across the globe. This proliferation is accompanied by the shift towards user-
generated content in the media production and mobile wireless devices in terms
of media production/consumption platforms.

Such developments put an emphasis on the need to produce no-reference VQA
approaches that will allow for real-time processing of video, using devices with
limited computing power.

Within the VQA research community, saliency-based approaches are gaining
interest, as the saliency information is seen as a potent way to increase the accuracy
and make the VQA methodologies more general. Early studies presented in this
chapter give ground to such optimism.

Methods that allow real-time saliency extraction in video and models of attention
that incorporate motion have not achieved the stage of maturity of still-image
processing approaches, at the time of writing, making spatial-and-motion-based
bottom-up attention models an interesting field of future research.

If one envisions the future in which a mobile device should provide real-time
QoE feedback to the broadcasting entity, then we should assume that lightweight
VQA approaches will gain significance in the years to come. Visual saliency can
help achieve this goal in much the same way it helps optimize the way in which
HVS resources are used.
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Chapter 21
Attentive Robots

Simone Frintrop

21.1 Introduction to Attentive Robots

While it is clear that selective attention is a useful concept for human perception,
it is less obvious that such a concept is helpful for machines, for example, for
autonomous service robots. However, it turns out that the more robotic systems
advance, the higher the need for mechanisms such as computational attention. The
reason is that robots share many requirements with humans: they operate in the same
world as humans and they shall interact with humans. In this chapter, we will outline
why computational attention systems are of large interest for machines, and we will
give an overview of the state of the art in this field. We will focus on three application
areas of computational attention mechanisms in the context of robotics: first, the
detection of salient landmarks that robots can use to navigate in their environment;
second, the detection of objects, which is important for many robot tasks such as
object manipulation or map building; and third, attention as a guiding mechanism
for robot action, in which it helps to direct the camera to regions of interest or
supports human-robot interaction.

Before we start with these topics, let us clarify in more detail why attentional
mechanisms are helpful for robots. First, robots have limited resources to process an
overwhelming amount of perceptual input. While humans have their senses which
open the world for them, robots have cameras, laser scanners, sonar sensors, etc.,
and all of them offer more information than can be processed in reasonable time.
As humans, robots usually have to react instantaneously; therefore, it is not possible
to process all of the sensory input, and decisions have to be made which part of
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the sensory input is currently of most interest. This means, on robots as well as in
human perception, attention serves to prioritize the processing of the huge amount
of sensory input.

Second, robots have physical limitations such as humans. Humans have only one
head, two eyes, two arms, and hands, and if they want to act, they have to decide
what to do first. Similarly, robots have only one or a few cameras, grippers, etc. and
cannot do everything at the same time. Even if they had unlimited processing power,
they would have to decide where to drive, which object to grasp, where to direct the
camera to, and whether to zoom into an object or better explore the surroundings
first.

Third, robots often act in the same world as humans and shall interact with
them. Especially for mobile robots that are supposed to support humans in the
household, in hospitals, or museums, the interaction with humans is essential. Since
these humans are usually no computer experts, it is important that interaction can
take place as naturally and intuitively as possible. The more humanlike robots
act, the easier it is for a human to understand its intentions and to interact with
it. An attention system similar to the human one, which makes the robot pay
attention to the same things as humans and to generate a shared focus of attention
with the interaction partner, helps to facilitate the communication and interaction.
Figure 21.1 visualizes the concept of such an attentive robot.

During the last decade, interest in the robotics community for computational
attention models has increased strongly. There are two reasons for this. First,
algorithms and computer hardware have advanced enough to compute a focus of
attention in real time (e.g., [71]), and methods are robust enough to deal with real-
world conditions such as clutter in a scene, noise in the input data, and unexpected
conditions. Second, basic capabilities of robots such as localizing themselves in an
environment and avoiding obstacles while navigating have reached a quite mature
level. Therefore, interest in the community has moved on to more complex tasks and
challenges. Currently, one of the largest challenges is to deal with the perceptual
input, especially with visual data, and the more complex a system becomes, the
more urgent the need for a selection mechanism that decides which part of the input
to process next.

The large interest in such capabilities has led to a large number of research
projects on cognitive robots worldwide. For example, the European Commission has
funded more than 100 projects on cognitive systems since the year 2000. Many of
the robots that have been developed in these projects have a computational attention
module to focus the processing on relevant parts of the sensory input, e.g., the
projects MACS,1 PACO-PLUS,2 RobotCub,3 and GRASP.4

1http://www.macs-eu.org/
2http://www.paco-plus.org/
3http://www.robotcub.org/
4http://www.csc.kth.se/grasp/

http://www.macs-eu.org/
http://www.paco-plus.org/
http://www.robotcub.org/
http://www.csc.kth.se/grasp/
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Fig. 21.1 The scene visualizes the concept of an attentive robot: to tidy up the room, the robot has
to attend to the human, understand the task, and investigate the scene by attending to the objects
on the floor, one object at a time. An attention module endows it with the capability to focus
on regions of most potential interest. This enables efficient processing and prioritizes the robot’s
actions (Reprinted with permission from [18])

In this chapter, we give an overview of the applications of attention systems to
autonomous robots.5 We start in Sect. 21.2 with a classification of applications into
three areas, from low-level to high-level techniques. In Sect. 21.3, we present three
example applications in more detail.

21.2 State of the Art

In this section, we give an overview over past and current research in the field of
attentive robots. The tasks of a robot that involve visual attention might be classified
roughly into three categories. The first, most low-level category uses attention to
detect salient landmarks that can be used for localization and scene recognition
(Sect. 21.2.1). The second, mid-level category considers attention as a front end
for object recognition (Sect. 21.2.2). In the third, highest-level category, attention is

5Parts of this chapter have already been published in [18].
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used in a humanlike way to guide the actions of an autonomous system like a robot,
i.e., to guide object manipulation or human-robot interaction (Sect. 21.2.3).

21.2.1 Salient Landmarks

A basic capability for autonomous mobile robots is to determine their position auto-
matically, a technique that is called self-localization or often simply localization.
The robot usually has a map of the environment that has either been provided by
humans or has been built automatically in a preceding training phase. Then, the
sensor data of the robot is interpreted to determine the robot’s current position in
the map. Traditionally, this task has been solved with 2D laser scanners that provide
depth information of the obstacles around the robot. Depending on the structure of
this data, probabilities about the current position are computed which are updated
instantaneously as soon as new perceptions are available. During the last decade,
interest in localization based on visual data has increased since cameras are low-
cost, low-weight, and low-power sensors that provide rich information about the
environment. On the other hand, this rich visual data bears many challenges, starting
from the problem to obtain acceptable processing times to dealing with illumination
changes and noise.

One approach for localization based on visual data is to use visual landmarks.
This idea is not new. Humans have used it since many centuries to navigate on land
and on sea. They have used natural landmarks such as rocks and trees, and they have
built artificial ones, such as lighthouses. When seeing a known landmark, this gives
information about the current position, as long as the landmark is unique. If there
are ambiguities due to the similar appearance of several landmarks, this can lead
to immense problems and many ships sank because of such misinterpretations. The
same problem arises for robots. If they base their processing on visual landmarks, it
is desired that the landmarks are clearly separable from their surroundings and easy
to recognize when coming back to the same position. Here, salient landmarks that
are detected with a visual attention system are excellent candidates since salient
regions have by definition a high rareness/uniqueness. We have shown that the
repeatability of salient image regions is significantly higher than for other standard
region detectors [16].

Several studies have used salient landmarks for robot localization. An early
project was the ARK project [50] that relied on hand-coded maps with the locations
of known static obstacles as well as the locations of natural visual landmarks.
Ouerhani et al. tracked salient spots over time and used them as landmarks for robot
localization [51]. Siagian and Itti presented an approach for scene classification and
global localization based on salient landmarks [62]. Additionally to the landmarks,
the authors use the “gist” of the scene, a feature vector which captures the
appearance of the scene, to obtain a coarse localization hypothesis.

A variant of the localization problem, the SLAM problem (simultaneous local-
ization and mapping), has been investigated in [20]. In SLAM, the environmental
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Fig. 21.2 Salient landmark detection on a robot: robot Dumbo corrects its position estimate by
redetecting a landmark which it has seen before. Landmark detection is done with the attention
system VOCUS. The yellow rectangle shows the view of the robot: an image with a landmark
and the corresponding saliency map (Reprinted with permission from http://www.iai.uni-bonn.
de/~frintrop/research.html)

map is not known in advance and has to be built during localization which makes
the problem intrinsically harder. Figure 21.2 illustrates the process of detecting
landmarks. The application will be described in detail in Sect. 21.3.1.

21.2.2 Object Detection and Recognition

Object detection and recognition are important tasks for mobile robots that are
especially required when a robot is supposed to manipulate objects or interact
with humans. The terms object detection, object discovery, object localization,
object recognition, and object classification are closely related and often used
interchangeably. Let us therefore clarify our understanding of the terms.

Object detection or localization tackles the problem of localizing objects in
images. Usually, the object is comparably small in the scene which makes the task
challenging. Hereby, it is important to distinguish several cases that we will call
general object detection, object instance detection, and object class detection in the
following.

In general object detection, also called object discovery or object proposal
detection, nothing is known about the objects that might occur in the scene, and

http://www.iai.uni-bonn.de/~frintrop/research.html
http://www.iai.uni-bonn.de/~frintrop/research.html
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the task is to “find all objects in the scene.” It is a pure bottom-up process that
does not use preknowledge about a target or the scene. While this task is easily
and effortlessly solved by humans, it is a challenging task for machine vision and
belongs to the open problems in the field.

Object instance detection describes the task to find a specific, previously specified
object, for example, the book “From Human Attention to Computational Attention:
A Multidisciplinary Approach.” In human vision, this task is usually called visual
search and is supported by top-down visual attention.

On the other hand, object class detection means to find all instances of a certain
class (any book). This task is another variant of visual search. In both, object
instance and object class detection, it depends strongly on the type of object (class)
whether the task is easy or hard. For example, a rigid object with plenty of texture
is easy to detect, e.g., a specific book. One can use, for example, SIFT-based object
detection for this purpose [38]. Object class detection also profits from a clear
structure and, as usual in classification, is easy if the intra-class variation is low
and the interclass variation is high. An example of an object detector that works
very well is face detection that is implemented in almost all current digital cameras.
For other types of object classes, the detection can become much harder. This can
be seen, for example, on the results of the ImageNet Recognition Challenge [57].
While some classed achieved a recognition rate of 100 % (e.g., tiger), others were
classified correctly only in 59 % of the images (e.g., letter opener). If the task was to
not only determine whether or not the object is present in the image, but to precisely
localize the object, the performance went down to 8 % for difficult objects such as
letter openers or nails.

Object instance detection as well as object class detection are often also denoted
as object recognition, and object class detection is also referred to as classification.
Classification is usually applied to pre-segmented objects, or it uses a sliding
window approach, in which subregions of the images are successively investigated
by the classifier. Recently, this trend is changing, and many groups apply classifiers
to regions of interest supplied by a proposal detection method that delivers a
collection of windows that are likely to contain objects (see survey in [30]).

Visual attention can support object detection in several ways. On one hand,
bottom-up attention facilitates general object detection in an unknown scene by
restricting the processing to promising image regions. Since it does not require any
preknowledge about the objects, it is a perfect candidate to detect arbitrary objects. If
on the other hand a specific object instance is searched, top-down attention (visual
search) can facilitate the task. The advantage of an attentional front end is that it
limits the search space and thus reduces computational complexity. Additionally,
most recognition methods work best if the object covers a dominant portion of the
image; and thus, the recognition performance is improved.

General object detection based on a visual attention system was investigated by
Walther and Koch [69]. They use an attention system to obtain saliency maps and
generate proto-objects inside this map by thresholding and labeling the resulting
blobs. Rudinac et al. [55] have presented a similar approach in a robotic context.
The attention module detects object hypotheses which are then tracked over time
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while they are manipulated by a human caregiver. This process shall imitate infant
learning. In [19], we have generated object candidates with a method that combines
saliency and segmentation. The approach was extended in [28] to image sequences,
in which candidate regions were tracked over time to generate sequence-level
candidates. In robotics, it is often necessary to not only locate an object in the
2D image but also in the 3D world. Potapova et al. [52] find objects based on
a symmetry-based saliency method that operates on depth data from an RGB-D
depth camera. Martín García et al. [40] integrate color and depth data to obtain
complementary object candidates. In [39], a spatial inhibition of return mechanism
enables to sequentially focus regions of interest without losing track of the regions
under camera motion.

While general object detection is a bottom-up process, object instance and object
class detection are top-down processes since they include preknowledge about the
target. In human vision, such search processes are supported by top-down cues
that guide the visual attention system to target-specific regions of interest. While
a natural choice for modeling this process computationally seem to be top-down
attention systems, most groups use instead bottom-up saliency models as pre-
processing for recognition [45, 67, 68]. This is mainly due to the fact that many
bottom-up attention systems are freely available, while top-down models are rare.
An early approach to combine bottom-up attention with classification was presented
in Miau et al. [45]. They combined the attention system iNVT (iLab Neuromorphic
Vision Toolkit) [33] with the biologically motivated object recognition system
HMAX. The experiments are restricted to recognize simple artificial objects like
circles or rectangles. Alternatively, the authors have used a support vector machine
to detect pedestrians in natural images. Walther [68] combines his Saliency Toolbox,
a Matlab implementation of the iNVT, with an object recognizer based on SIFT
features [38] and shows that the recognition results are improved by the attentional
front end. Vogel and de Freitas combine the iNVT with a classifier to perform gaze
planning in complex scenes [67].

In the abovementioned approaches, the attentional part is separated from the
object recognition; both systems work independently. In human perception, these
processes are strongly intertwined. Accordingly, Walther and Koch suggest a unify-
ing framework for object recognition and attention [70]. It is based on the HMAX
model and modulates the activity by spatial and feature modulation functions which
suppress or enhance locations or features due to spatial attention.

A few approaches use instead a top-down attention system as pre-processing for
classification, for example, [22, 46]. Here, the top-down part of the attention system
VOCUS generates object hypotheses which are verified or falsified by a classifier
for the application of ball detection in the robot soccer scenario RoboCup.6 Xu
et al. [72] have used visual bottom-up and top-down attention to detect objects with
the Autonomous City Explorer (ACE) robot (cf. Fig. 21.3).

6http://www.robocup.org

http://www.robocup.org
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Fig. 21.3 The ACE robot (Autonomous City Explorer) while it is exploring the pedestrian
area in Munich (Reprinted with permission from http://www.lsr.ei.tum.de/research/research-areas/
robotics/ace-the-autonomous-city-explorer-project/)

In a robotics context, some groups have integrated attentive object detection
on real robots. To simulate the different resolutions of the human eye, several
groups use two cameras: one wide-angle camera for peripheral vision and one
narrow-angle camera for foveal vision. For example, Gould et al. [25] and Meger
et al. [42] determine regions of interest with visual attention in a peripheral vision
system, focus on these regions with a foveal vision system, and investigate these
high-resolution images with an object recognition method. The robot in the latter
approach, Curious George, placed first in the robot league of the Semantic Robot
Vision Challenge (SRVC) [27] both in 2007 and 2008 and first in the software
league for 2009. The SRVC and Curious George will be described in more detail
in Sect. 21.3.2.

Some groups have used attentive object detection to support object manipulation
on robots or robot arms. One of the earliest works on this topic was presented by
Bollmann et al. [6]: a Pioneer1 robot used the neural active vision system (NAVIS)
to play dominoes. The group around Tsotsos is working on a smart wheelchair to
support disabled children [54, 64]. The wheelchair has a display as easily accessible
user interface which shows pictures of places and toys. Once a task like “go to table,
point to toy” is selected, the system drives to the selected location and searches for
the specified toy, using mechanisms based on a visual attention system. Rasolzadeh
et al. [53] use bottom-up and top-down attention to control a KUKA arm for
detecting, recognizing, and grasping objects on a table. In [5] and [35] the FOAs
from the same attention system were used as seeds for 3D segmentation of objects
from stereo data.

http://www.lsr.ei.tum.de/research/research-areas/robotics/ace-the-autonomous-city-explorer-project/
http://www.lsr.ei.tum.de/research/research-areas/robotics/ace-the-autonomous-city-explorer-project/
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21.2.3 Guiding Robot Action

A robot which has to act in a complex world faces the same problems as a human:
it has to decide what to do next. Such decisions include where to go (drive), what to
look at, what to grasp, and who to interact with. Thus, even if computational power
would allow to find all correspondences, to recognize all objects in an image, and
process everything of interest, it would still be necessary to filter out the relevant
information to determine the next action [37, 44]. This decision is based first, on the
current sensor input and second, on the internal state, for example, the current tasks
and goals.

A field in which the decision about the next action is intrinsically based on
visual data is active vision, i.e., the problem of where to look next [3]. It deals
with controlling “the geometric parameters of the sensory apparatus . . . in order to
improve the quality of the perceptual results” [2]. Thus, it directs the camera to
regions of potential interest as the human visual system directs the gaze, the head,
and even the body of a person. Since visual attention triggers this control in humans,
it is also an intuitive candidate for the active vision problem on machines.

One of the first active vision systems that integrated visual attention was
presented by Clark and Ferrier [10]. They describe how to steer a binocular robotic
head with visual attention and perform simple experiments to fixate and track the
most salient region in artificial scenes composed of geometric shapes. Bollmann
et al. have used the neural active vision system (NAVIS) to steer the pan-tilt unit of a
domino-playing Pioneer1 robot [6]. Vijayakumar et al. presented an attention system
which is used to guide the gaze of a humanoid robot [66]. The authors consider only
one feature, visual flow, which enables the system to attend to moving objects. Each
eye is represented by a wide-angle camera for peripheral vision and a narrow-angle
camera for foveal vision. In more recent work, the humanoid robot iCub bases its
decisions to move eyes and neck on visual and acoustic saliency maps [56] (see
also Sect. 21.3.3.2). Robot Dumbo performs active gaze control to support landmark
detection for simultaneous robot localization and mapping [20] (see Sect. 21.3.1.2).
Additionally, all the object manipulation approaches of the previous section include
active vision to focus on the detected objects.

In the future, humans shall interact with robots as naturally and intuitively as
possible. Studies in the field of human-robot interaction have shown that humans
treat robots like people [14, 49], and the more a robot interacts with people, the
more lifelike and intelligent it is perceived and the more excited users are [61]. An
essential part for purposefully interacting with humans is to generate a joint focus
of attention. A computational attention system similar to the human one can help a
robot to focus on the same region as a human. According to this, [7] introduced the
social robot Kismet that interacts with humans in a natural and intuitive way. Its gaze
is controlled by a visual attention system (see Fig. 21.4a). Schillaci et al. equipped
a humanoid Nao robot with an attention mechanism based on optical flow and face
detection [61]. The robot is able to interact with humans by looking and pointing at
objects (see Fig. 21.4b).
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Fig. 21.4 Social robots that interact with people. (a) Kismet is one of the earliest social robots.
Its gaze is controlled by a visual attention system (Reprinted with permission from [8]). (b) The
Nao robot is equipped with an attention system that facilitates interaction with a human partner
(Reprinted with permission from [61])

For humans, following pointing gestures of other humans is an important ability
to jointly focus their attention on objects of interest. Approaches to endow robots
with a similar capability were proposed by Heidemann et al. [26] and Schauerte
et al. [58, 60]. They analyze the direction of a pointing finger and fuse this top-
down information with the bottom-up saliency of objects. A robot that learns visual
scene exploration by imitating human gaze shifts is presented by Belardinelli [4].
Nagai developed an action learning model based on spatial and temporal continuity
of bottom-up features [48].

Finally, Muhl et al. presented an interesting sociological study in which the
interaction of a human with a robot simulation is investigated [47]. A robot face on a
screen attends to objects, shown by a human, with help of a visual attention system.
If the robot was artificially diverted and directed its gaze away from the object,
humans tried to reobtain the robot’s attention by waving hands, making noise, or
approaching to the robot. This shows that people established a communicative space
with the robot and accepted it as a social partner. More about socially interactive
robots that use attentional mechanisms can be found in the extensive survey in [13].

21.3 More on Attention Applications for Robots

In this section, we will describe three example application areas for attentive robots.
We start with the topic of visual robot localization and mapping (Sect. 21.3.1),
continue with attentive object detection (Sect. 21.3.2), and finally present attentive
robots that fuse multiple sensor modalities (Sect. 21.3.3). Each subsection starts with
a general explanation of the application area and then presents an example system
in more detail.
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21.3.1 Attentive Visual SLAM

In this section, we introduce the problem of visual SLAM (simultaneous localization
and mapping) (Sect. 21.3.1.1) and describe a system that solves this problem with
salient landmarks that are detected with a visual attention system (Sect. 21.3.1.2).

21.3.1.1 Introduction to Visual SLAM

SLAM stands for simultaneous localization and mapping and describes the problem
of automatically building a map of an unknown environment based on sensor
data. SLAM is a common and widely investigated problem in robotics, but it can
also be applied on systems that do not navigate autonomously such as cars or
handheld cameras. A complete survey on SLAM is beyond the scope of this chapter.
Instead, we will introduce the main ideas and the key terms. For further reading, we
recommend the great tutorial by Durrant-Whyte and Bailey [11].

The SLAM problem is a chicken and egg problem: the robot needs a map to
localize itself while on the other hand it requires an accurate pose estimate to build
this map. The solution is to successively add new parts to the map while permanently
using new sensor data to update existing parts of the map. The process can be
compared with a human that explores an unknown area, e.g., a new city. While
walking through the streets, she/he successively obtains a clearer picture of the
city, of the streets, and their connections. Especially when the streets are narrow
and winding, this can be difficult, and one might be surprised when coming to
a previously seen location to be not where she/he expected. Based on this new
information, the internal picture of the world is updated and corrected. The same
is done on a robot. The key idea for this update is that the information about
the robot pose and the information about all sensor observations (e.g., landmarks)
are correlated. If the position of a single observation is corrected due to better
measurements, this can influence the complete map data, e.g., all other observations
as well as the robot position itself.

During the SLAM process, the computations take place in two steps: first, the
robot moves, which increases the pose uncertainty of robot and landmarks. Then,
the robot processes its new sensor data, which decreases the uncertainty. The largest
correction of uncertainty, and therefore the most useful one, takes place during so-
called loop closing situations. When the robot comes back to a region that it had
already visited previously, it sees the same observations again and can correct its
measurements accordingly. A precondition is of course that the robot realizes that
the new measurements belong to the same observations as before. This step is not
trivial and belongs to the largest challenges in (visual) SLAM.

A typical example of the accumulated position error that occurs if a robot
estimates its position only based on odometry information is shown in Fig. 21.5,
left. After driving three rounds on the same path in an office environment, the robot
is completely lost and the position error has added up to several meters. On the right
of this figure, it is shown how permanent updates with visual SLAM correct the
position errors, resulting in an exactly estimated position.



424 S. Frintrop

Fig. 21.5 The effect of SLAM: when the robot trajectory was estimated only from odometry (left),
the position error of the robot accumulates. When the position estimate is updated with a SLAM
system (right), these errors are corrected (Reprinted with permission from [20])

Traditionally, robots have used distance sensors such as laser range finders to
create a map. They are especially well suited since they offer exact information
about the distance of obstacles and the layout of buildings. On the other hand, laser
scanners are expensive, often heavy, and require much energy. Therefore, other
approaches aim to solve the SLAM problem with cameras as sensors. Camera-
based SLAM is usually called visual SLAM. The main difference in visual SLAM
is that first, images provide a huge amount of data which is time-consuming to
process completely, and second, the 3D position of image regions is not available
instantaneously but has to be estimated from stereo data or by structure from
motion. Therefore, visual SLAM methods often extract 2D features from the images
(e.g., corners or blob-like regions) and estimate their 3D position, resulting in so-
called landmarks. Since several years, cheap RGB-D sensors are available that offer
3D data directly and several groups have investigated SLAM based on such data
(e.g., [12]). This facilitates the 3D localization of landmarks, but the challenges
of feature and landmark detection remain mostly the same. Important to note at this
point is that a map that a robot builds with a landmark-based visual SLAM approach
consists only of the positions of landmarks relative to the position of the robot.

Landmark selection and matching belong to the most important issues in visual
SLAM. Feature selection is performed with a detector and the matching with a
descriptor. A stable detector is necessary to redetect the same regions in different
views of a scene. In applications like visual SLAM with time and memory
constraints, it is also favorable to restrict the amount of detected regions. A powerful
descriptor on the other hand has to capture the image properties at the detected
region of interest and enable a stable matching of two regions with a high detection
and low false-detection rate. It has to be able to cope with viewpoint variations as



21 Attentive Robots 425

Fig. 21.6 Overview of the active visual SLAM system that estimates a map of the environment
from image data and odometry based on salient landmarks (Reprinted with permission from [20])

well as with illumination changes. An overview of feature detection methods can be
found in the survey of Tuytelaars and Mikolajczyk [65].

21.3.1.2 An Example of Attentive Visual SLAM: Robot Dumbo

Here, we present an approach for visual SLAM that is based on salient landmarks
that are detected with a visual attention system. Such landmarks are especially
suitable since they have a high uniqueness and are therefore easy to detect, to track,
and to redetect in loop closing situations. The approach is presented in detail in
[20].

The robotic platform that we used for our experiments is the robot Dumbo
[34]. Dumbo is an ActivMedia PowerBot platform and is visible in Fig. 21.6. The
sensor that is used in our application is a Canon VC-C4 pan/tilt/zoom camera
that is mounted in the front of the robot at a height of 0.35 m above the ground.
Additionally, we use odometry information. The platform possesses also other
sensors such as laser scanners, but these are not used for the current application.

The SLAM module on Dumbo is based on an extended Kalman filter. Details
about the SLAM architecture can be found in [34]. Here, we focus on the visual
front end that detects, tracks, and redetects landmarks and provides their estimated
positions to the SLAM module which computes the map. The architecture of the
visual front end for SLAM is displayed in Fig. 21.6. When a new frame from
the camera is available, it is provided to the feature detector which finds salient
regions of interest (ROIs) in the images based on a visual attention system. Next, the
features are provided to the feature tracker which stores the last n frames, performs
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matching of ROIs in these frames, and creates landmarks. A triangulator identifies
useful landmarks and estimates their position in 3D. Triangulated landmarks are
stored in a database and a loop closer matches current ROIs to database entries
to detect if the robot returned to a known position. Finally, a gaze control module
determines where to direct the camera to, based on the three behaviors: tracking
visible landmarks, actively redetecting expected landmarks, and exploring unseen
areas. In the following, we will concentrate on the detection and matching of
landmarks. The other modules, especially the active camera control, are described
in more detail in [20].

Attentional Feature Detection and Matching

An ideal candidate for selecting a few, discriminative regions in an image is a visual
attention system. In previous chapters, several computational attention systems have
been introduced. Here, we use the attention system VOCUS [15, 17].7

VOCUS consists of a bottom-up part which computes saliency purely based on
the content of the current image and a top-down part which considers preknowledge
and target information to perform visual search. Here, we consider only the bottom-
up part of VOCUS; however, top-down search can be used additionally if a target is
specified. For the approach presented here, any real-time capable attention system
which computes a feature vector for each region of interest could be used.

An overview of VOCUS is shown in Fig. 21.7. The bottom-up part is similar to
the Itti-Koch model [33] (differences in [15]). The computations for the features
intensity, orientation, and color are performed on three different scales with
image pyramids. The feature intensity is computed by center-surround filters that
approximate the response of retinal ganglion cells in the human visual system.
After summing up the scales, this results in two intensity maps. Similarly, four
orientation maps (0 ı; 45 ı; 90 ı; 135 ı) are computed by Gabor filters and four color
maps (green, blue, red, yellow) which highlight salient regions of the corresponding
color.

Before the features are fused, they are weighted according to their uniqueness:
a feature which occurs seldomly in a scene is assigned a higher saliency than a
frequently occurring feature. This mechanism enables to detect outliers in a scene
as in human perception. The uniqueness W of map X is defined as

W .X/ D X=
p

m; (21.1)

7A more recent reimplementation of VOCUS, called VOCUS2 [24], is available online at http://
www.iai.uni-bonn.de/~frintrop/vocus2.html. It achieves state-of-the-art performance on current
benchmarks for saliency computation, operates in real-time, and is well suited for real-world
images as obtained from a robot.

http://www.iai.uni-bonn.de/~frintrop/vocus2.html
http://www.iai.uni-bonn.de/~frintrop/vocus2.html
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Fig. 21.7 The visual attention system VOCUS detects regions of interest (ROIs) in images based
on the features intensity, orientation, and color. For each ROI, it computes a feature vector which
describes the contribution of the features to the ROI (Reprinted with permission from [20])

where m is the number of local maxima that exceed a threshold and “=” is here the
point-wise division of an image with a scalar. The maps are summed up to three
conspicuity maps I (intensity), O (orientation), and C (color) and combined to form
the saliency map:

S D W .I/ C W .O/ C W .C/: (21.2)

The feature and conspicuity maps for one example image are displayed in Fig. 21.8.
From the saliency map, the brightest regions are extracted as regions of interest

(ROIs). This is done by first determining the maxima in the map and then finding for
each maximum a surrounding region with seeded region growing [1]. This method
finds recursively all neighbors with sufficient saliency. For the sake of efficient
storage of the ROIs, we approximate the region by a rectangle. The output of
VOCUS for one image is a list of ROIs, each defined by its 2D location, size, and a
feature vector that describes its content (see next section).
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Fig. 21.8 The feature and conspicuity maps for the input image from Fig. 21.7. Top-left to bottom-
right: intensity on-off, intensity off-on, color maps green, blue, red, yellow, orientation maps 0ı,
45ı, 90ı, 135ı and conspicuity maps I, C, O. Since the red region sticks out as a unique peak
in the feature map red, this map is weighted strongly by the uniqueness weight function, and the
corresponding region becomes the brightest in the saliency map (see Fig. 21.7) (Reprinted with
permission from [20])

To compare if two image regions belong to the same part in the world, both
regions have a descriptor, which is a vector that describes the appearance of the
region and usually its local neighborhood. In this work, we use two kinds of
descriptors: first, we determine a simple attentional descriptor for tracking ROIs
between consecutive frames. Second, we use the more sophisticated SIFT descriptor
to match ROIs in loop closing situations [38].

The attentional descriptor can be obtained almost without cost from the ten
feature and three conspicuity maps of VOCUS. For each ROI R, a 13-element
feature vector v is determined, which describes how much each feature contributes
to the ROI (cf. Fig. 21.7). The value vi for map Xi is the ratio of the mean saliency
in the target region R and the background B D Xi � R:
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vi D mR=mB; with mR D � X

p2R

Xi.p/
�
=jRj and mB D � X

q2B

Xi.q/
�
=jBj;

(21.3)

where jRj and jRj denotes the number of pixels in the regions R and B. This
computation does not only consider which features are dominant in the target
region but also which features separate the region best from the rest of the image
(details in [15]). In the tracker, two vectors v and w are matched by calculating the
similarity d.v; w/ according to a distance similar to the Euclidean distance [21].
Since the vectors have only 13 elements, matching them is faster than matching
SIFT descriptors. It is less powerful, but sufficient, in tracking situations.

The SIFT descriptor [38] belongs to the most powerful and widely used
descriptors in computer vision and robotics. It is a 4 � 4 � 8 D 128 dimensional
descriptor vector which results from placing a 4�4 grid on a point and calculating a
gradient histogram for each of the grid cells. Usually, SIFT descriptors are computed
at intensity extrema in scale space [38]. Here, we calculate one SIFT descriptor for
each ROI. The center of the ROI provides the position, and the size of the ROI
determines the size of the descriptor grid. The grid should be larger than the ROI
to allow catching information about the surrounding but should also not include too
much background and stay within the image borders.8 The difference dS of two SIFT
descriptors is calculated as the sum of squared differences (SSD) of the descriptor
vectors.

Feature Tracking and Loop Closing

The ROIs are matched with previous ones over several frames, and all successfully
matched ROIs form a chain of ROIs that all belong to the same item in the world.
This item is called a landmark; that means, while a feature is a 2D region in an
image, a landmark is a 3D part of the real world which is represented here by
a collection of 2D views. Next, the triangulator estimates the 3D location of the
landmark, and finally, the landmark is stored in the database.

In the loop closing module, it is detected if the robot has returned to an area
where it has been before. Loop closing is done by matching the ROIs from the
current frame to landmarks from the database with the SIFT descriptor as described
before. When a match is detected, the coordinates of the matched ROI in the
current frame are provided to the SLAM system, to update the coordinates of
the corresponding landmark. Some examples of correct matches in loop closing
situations are displayed in Fig. 21.9, col. 1–4. False matches occur seldomly with
this approach. If they do, the ROIs usually correspond to almost identical objects.
An example is shown in Fig. 21.9, right.

8We chose a grid size of 1.5 times the maximum of width and height of the ROI.
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Fig. 21.9 Some examples of matched ROIs, displayed as rectangles. Top: current frame. Bottom:
frame from the database. Col. 1–4 are correct matches; col. 5 shows a false match (Reprinted with
permission from [20])

Fig. 21.10 Attentive visual SLAM: The estimated robot trajectory (red) and the created map
consisting of detected landmarks (green dots) (Reprinted with permission from [20]) (See also
videos on http://www.informatik.uni-bonn.de/~frintrop/research/aslam.html)

Attentive Visual SLAM

The estimated positions of the landmarks that were detected by the attention system
are handed to the SLAM module that computes a map of the environment, consisting
of estimated positions of the robot and the detected landmarks. An example of such
a map is displayed in Fig. 21.10. Note that the walls are only superimposed onto the
map for better visibility; the robot has no knowledge about them. This example was
obtained with active camera control, in which the robot actively directed the camera
to regions with expected landmarks. This enabled loop closing also in situations
in which the current viewpoint of the robot differed strongly from the previous
observation of this landmark.

http://www.informatik.uni-bonn.de/~frintrop/research/aslam.html
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21.3.2 Attentive Object Detection

In this section, we describe attentive object detection in more detail (Sect. 21.3.2.1)
and describe as example application the robot system Curious George
(Sect. 21.3.2.2).

21.3.2.1 Introduction to Attentive Object Detection

As introduced in Sect. 21.2.2, the broad area of object detection can be subdivided
into general object detection, object instance detection, and object class detection.
Attentive object detection denotes any type of object detection that involves a visual
attention system, either bottom-up or top-down.

In the case of attentive general object detection, usually a bottom-up attention
system provides object hypotheses, sometimes also called proto-objects [69]. These
proto-objects are salient blobs from a bottom-up saliency map. This step is mostly
followed by a segmentation step that uses properties such as feature similarity and
proximity to obtain a better shape of the proto-objects. Finally, the camera can focus
the proto-object and zoom in on it. In object instance and object class detection, an
additional step is to recognize the identity of the objects.

Attentive object detection is especially useful in scenarios in which a robot has
to find objects in a complex, realistic scenario. In contrast to the task of object
recognition in web images, it is not possible here to directly apply object classifiers
to all possible subwindows since their number is large (106�107 windows per image
[30]), and real-time computation is usually required.

In attentive object detection, the selection of promising views is performed by a
visual attention system. Selecting a view includes determining the direction of the
object to center it in the field of view as well as determining a zoom level to obtain
an image that includes as much of the object as possible without cutting its borders.
To solve this task, most robotic systems use a peripheral-foveal vision system. This
includes a peripheral camera with a wide field of view and low resolution to find
regions of potential interest and a foveal camera with a high resolution and the
ability to zoom.

In a realistic scenario, objects of interest are usually not all visible from one
position in the scene. That means, in order to find the objects, the robot has to
explore the environment by moving around. This involves many challenges: it
has to avoid obstacles, map the environment to maintain a spatial representation
of the surrounding, and plan its motions to obtain better views of objects and to
discover new ones in unexplored areas. While many mature methods exist for such
problems, building a complete integrated system with all of these modules is still a
big challenge.

A research competition that has been designed in order to push and evaluate
recent developments of recognition systems on autonomous mobile robots is the
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pumpkin
orange
red ping pong paddle
white soccer ball
laptop
dinosaur
bottle
toy car
frying pan
book ”I am a Strange Loop” by Douglas Hofstadter
book ”Fugitive from the Cubicle Police”
book ”Photoshop in a Nutshell”
CD ”And Winter Came” by Enya
CD ”The Essential Collection” by Karl Jenkins and Adiemus
DVD ”Hitchhiker’s Guide to the Galaxy” widescreen
game ”Call of Duty 4” box
toy Domo-kun
Lay’s Classic Potato Chips
Peperidge Farm Goldfish Baked Snack Crackers
Peperidge Farm Milano Distinctive Cookies

Fig. 21.11 List of objects to find in the SRVC 2009 challenge [63]

Semantic Robot Vision Challenge (SRVC)9 [27]. The competition consists of two
phases: a training phase, in which the robot receives a text list of objects and
uses the web to learn visual classifiers for these objects. The list contains both
object categories, such as “bottle,” as well as specific objects, such as a specific
CD or book. The list of objects from the 2009 challenge is shown in Fig. 21.11.
Thus, object instance detection and object class detection have to be performed.
The second phase is the exploration phase, in which the robots have to explore an
unknown arena, arranged roughly like a living room, and locate the objects of the
list within it.

In the following section, we describe the robot “Curious George” that participates
in this challenge and performed successfully in several contests.

21.3.2.2 An Example of Attentive Object Detection: Curious George

Curious George is a robotic platform that was built to perform real-world object
recognition in realistic scenarios [42, 43]. Its recognition abilities include instance
as well as class detection. A picture of Curious George is shown in Fig. 21.12,
left. The robot is an ActivMedia PowerBot, equipped with a peripheral-foveal
vision system mounted on a pan-tilt unit. This enables the robot an effective

9The challenge took place until 2009; after that, similar challenges have been organized, e.g., the
ImageCLEF Robot Vision Challenge: http://www.imageclef.org/2014/robot

http://www.imageclef.org/2014/robot
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Fig. 21.12 Left: the robot Curious George within the room it is exploring. Right: two objects
detected and successfully recognized by Curious George. (Reprinted with permission from [42])

360ı gaze range. The camera for peripheral vision is a Bumblebee color stereo
camera with 1024 � 786 resolution and a 60ı field-of-view. The foveal camera is
a Canon PowerShot G7 camera, with 10 megapixel resolution and 6� optical zoom.
Additionally to the camera system, the robot has a laser range finder that is used for
mapping the environment. Curious George executes up to 50 independent processes
simultaneously to perform all tasks from navigation to object recognition. To enable
this, six computation units are used: one on-board processor and five laptops.

The main application area of Curious George has been the Semantic Robot Vision
Challenge that was described in the previous section. Figure 21.12, left, shows the
scenario in which the robot had to operate during the challenge and Fig. 21.12, right,
shows two of the objects that have been successfully identified by it. Curious George
has placed first in the SRVC 2007 and 2008 robot league and in the 2009 software
league. In the latter, it has recognized 13 out of 20 objects.

The vision system of Curious George consists mainly of an attention system that
focuses the regions of interest and a recognition system that analyzes these regions
in detail and determines the identity and/or class of the visible objects. Let us have
a closer look at these two system parts.

The visual attention system of the robot aims at selecting the interesting views
out of the enormous number of actual and possible views that the robot faces during
exploration. It identifies potential objects within its peripheral vision system, centers
these objects in the camera view, selects an appropriate zoom level, and finally
obtains a detailed image using the foveal vision system.

The saliency approach to identify potential objects is based on the Spectral
Residual Saliency method by Hou and Zhang [31]. The main idea of this approach
is to analyze the frequency spectrum of the image and assign higher saliency to
rarely occurring frequencies. It was extended to color, resulting in three feature
channels: one intensity channel and two color channels, one for red-green and one
for yellow-blue. Instead of the classical winner-takes-all method to determine most
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Fig. 21.13 Saliency computation on the robot Curious George. Top to bottom: input image, color
opponency channels (intensity, red-green, yellow-blue), spectral saliency map, detected regions,
regions superimposed on input image (Reprinted with permission from [42])

salient regions, maximally stable extremal regions (MSERs) [41] are detected in the
saliency map. The region that is finally selected for further processing is the tightest
one at which the MSER fits entirely in the image. Figure 21.13 shows the process
of saliency computation for an example image.
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After a potential object has been detected, the selected image is provided to the
object identification system. This contains three different methods: a SIFT-based
method that is used to recognize specific objects based on texture, a contour-
matching method based on edge detection that recognizes objects based on shape,
and a deformable parts model (DPM) classifier that is used for category recognition.
Details about these methods and how they are integrated into Curious George can
be found in [42].

Additional to the visual components, the robot requires several other capabilities
to detect the objects. Since not all objects are visible or recognizable from the
starting position, Curious George has to navigate and explore the environment.
The map that is required for successful exploration is built with a SLAM approach
(cf. Sect. 21.3.1.1) based on laser scanner data and odometry data. The exploration
strategy itself is based on the frontier-based exploration strategy by Yamauchi
et al. [73].

While a robot like Curious George is still far from the human level of object
recognition, there has been large progress during the last years, and the visual
understanding by mobile robots has the potential to build useful household robots
in the future.

21.3.3 Multimodal Attention

In this section, we describe how saliency from different modalities, especially visual
and auditory saliency, can be integrated into a mobile robot. Section 21.3.3.1 starts
with a general introduction to multimodal attention on machines and Sect. 21.3.3.2
presents the robot iCub as an example application.

21.3.3.1 Introduction to Multimodal Attention

While most work on attention in psychophysics as well as in computer modeling of
attention focuses on visual cues, it is well known that attentional mechanisms also
exist for the other senses. The best investigated among the nonvisual attentional
cues in human perception is probably auditory attention, known, for example, by
the cocktail party effect [9].

It is obvious that not only humans but also robots profit strongly from exploiting
perceptual data from different sources. Different sensors enable to extract com-
plementary aspects of the environment and to exploit the advantages of different
sensing capabilities. These sensors can be similar (but never equal) to human senses,
e.g., cameras that correspond roughly to eyes or microphones that correspond
roughly to ears. On the other hand, robots can have sensors that do not correspond
directly to human perception but offer additional sensing capabilities, e.g., laser
range finders, ultrasonic sensors, or infrared cameras.



436 S. Frintrop

Fig. 21.14 Multimodal attention: Range and reflection data from a 3D laser range finder are
visualized as images. For depth visualization, close objects obtain bright intensities while faraway
regions are visualized dark. Then, saliencies are computed with a standard visual attention system
(Reprinted with permission from [15])

The attentional concept can be transferred easily to this nonhuman perceptual
data. The idea is simple: detect parts of the data that differ from their (local) sur-
round. The extraction mechanisms however differ for each sensor. One possibility
is to visualize the data and then apply standard visual feature extraction methods on
the visualizations. This idea was pursued, for example, in [15, 23], where the depth
and reflection data of a laser range finder were visualized as images, their saliencies
were computed with visual feature extraction methods according to Itti et al. [33],
and the saliencies from the two modalities were finally fused to a single map (see
Fig. 21.14). Also the auditory attention of the iCub robot, that will be described
in more detail in the following section, visualizes the auditory data before fusing it
with the visual cues. An alternative for audiovisual saliency detection is presented by
Schauerte et al. who fuse visual bottom-up saliency with a surprise-based auditory
saliency module [36, 59].

The same group has also worked on an interesting approach to fuse saliency with
higher-level information based on language: They introduce a top-down attention
system that performs visual search for objects in spoken human-robot interaction
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by integrating visual information with linguistic descriptions about the visual
appearance of a searched object. Visual attention is hereby guided by integrating
spatial information of a bottom-up saliency map with an area of interest obtained
from of pointing gestures of the human partner [58]. More about multimodal
attention on robots can be found in the extensive survey in [13].

One challenge in multimodal attention is the fusion of data from the different
modalities. It is not clear how visual data and auditory data can be combined and
even less how data from other sensors fits into the picture. Most approaches ignore
the problem to a wide extend and simply apply the same mechanisms that are used
to fuse visual information from different feature channels in visual attention models:
the saliency maps from the different modalities are summed up or the maximum is
taken. Since the influence of data from different modalities depends on the hardware
of the robot as well as on the current situation and context, a good solution is
certainly to learn the weighting of modality saliencies from experience.

21.3.3.2 An Example of a Humanoid with a Multimodal Attention
System: iCub

The iCub is a humanoid robot of the size of a 3.5-year-old child that was developed
within the EU project RobotCub.10 The main purpose of the robot platform was to
study cognition. Figure 21.15 shows a picture of iCub; a detailed explanation of
iCub’s attention system can be found in Ruesch et al. [56].

Fig. 21.15 The humanoid
robot iCub (Fig. from http://
www.robotcub.org/)

10http://www.robotcub.org/

http://www.robotcub.org/
http://www.robotcub.org/
http://www.robotcub.org/
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Fig. 21.16 Multimodal fusion of visual and auditory saliency information into a single saliency
representation (Reprinted with permission from [56])

The sensor modes used for the iCub system are visual and auditory data. Visual
saliency is computed according to the approach of Itti et al. [33], using the feature
channels’ intensity, color, and orientation. Additionally, a motion feature channel
is integrated according to [32]. Auditory saliency is determined by estimating the
position of a sound source with interaural spectral differences (ISD) and interaural
time difference (ITD). Details about the process can be found in [29]. An example
of a visual and an auditory saliency map can be seen in Fig. 21.16.

In iCub, the saliencies from different modes are integrated into a topologically
organized ego-sphere. The ego-sphere is a continuous spherical surface with infinite
radius that is centered at the robot’s head. Saliency maps from different sensor
modalities are mapped into the ego-sphere, resulting in a coherent representation of
multimodal saliency. While for the iCub system only visual and auditory saliency
is computed, in principle, also cues from other sensor modes can be integrated.
Figure 21.17, left, shows the concept of the ego-sphere; Fig. 21.17, right, shows a
spherical mosaic to illustrate the mapping of data onto it. It was obtained by directly
mapping camera images instead of saliency maps onto the ego-sphere.

Saliency information from the different modes is projected onto the sphere by:

• Converting stimulus orientation to head-centered, spherical coordinates
• Projecting stimulus intensity onto rectangular egocentric maps, one per modality
• Aggregating multimodal sensory information

Next, the saliencies from the different sensor modes are integrated into a single
saliency representation by taking the maximum over the saliencies of all sensor
modes. This process is visualized in Fig. 21.16.

Now, the ego-sphere can be used to control the attention of the robot in order
to explore the environment. The approach is simple: first, attend to the most salient
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Fig. 21.17 Left: the iCub ego-sphere. Right: a spherical mosaic, obtained by mapping camera
images onto the ego-sphere. (Reprinted with permission from [56])

location on the sphere by moving the neck and eyes; second, inhibit this region in
the ego-sphere. Then, repeat this process (details in [56]).

Several videos that show the behavior of iCub are available on the project’s web
pages11 and on Youtube.

21.4 Summary and Perspectives

In this chapter , we have introduced attentive robots, that is, robots that are equipped
with a computational attention system that guides their focus of attention to special
parts of the sensory input. This capability that originates from human perception is
also very useful for robots. It helps to decide which parts of the sensory input to
process first and which actions to perform, and it enables to establish a joint focus
of attention in human-robot interaction. The areas in which attention is useful for
a robot can be classified roughly into three areas: salient region detection, object
detection and recognition, and guiding robot action. We have illustrated each of
these areas by one example application.

Attentive robots are a step into the direction of more humanlike robots which are
therefore more intuitive and natural to interact with. Currently, most existing robots
are applied for specialized tasks, but the more general a robot system will be, the
more urgent the need of an attention system that guides the processing. An example
is household robots that obtain orders of a human supervisor and that should be able
to act in complex, unknown real-world environments.

11http://www.robotcub.org/

http://www.robotcub.org/
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Among the biggest challenges of future research are dealing intelligently with the
large amount of sensory input, learning to deal autonomously with new situations
and new objects, and integrating the data from all the different sensors and modules
of a robot.
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Chapter 22
The Future of Attention Models: Information
Seeking and Self-awareness

Matei Mancas, Vincent P. Ferrera, and Nicolas Riche

This book contributes to the crucial endeavor of understanding and modeling human
attention. It gives an overview of physiological and computer science models, an
extensive approach to model validation, as well as new trends and applications of
attention models. It also paves the way for further investigations. Some directions
for future research are discussed in the next section, in relation to the major
contributions summarized above. In the second section, a perspective on issues
beyond attention, such as higher level processing and consciousness, is provided.
We propose that human attention can be viewed as a suite of computational
strategies that are essential for autonomous behavior by agents both natural and
artificial. The study of attention should go beyond filtering of sensory data to
develop an understanding of how relevant and valuable information is actively
gathered by agents who possess an integrated awareness of both their internal
goals, needs and abilities and external sources of sustenance or danger. This kind
of awareness implies an ability to model both the environment and the self that acts
within that environment. Understanding the computational mechanisms underlying
active, goal-oriented attention may be a first step toward artificial consciousness.

M. Mancas (�) • N. Riche
Numediart Institute, University of Mons (UMONS), 31, Bd. Dolez, 7000 Mons, Belgium
e-mail: matei.mancas@umons.ac.be; nicolas.riche@umons.ac.be

V.P. Ferrera
Department of Neuroscience, Columbia University, 1051 Riverside Drive, Unit 87, New York,
NY 10032, USA
e-mail: vpf3@cumc.columbia.edu; vincent.ferrera@gmail.com

© Springer Science+Business Media New York 2016
M. Mancas et al. (eds.), From Human Attention to Computational Attention,
Springer Series in Cognitive and Neural Systems 10,
DOI 10.1007/978-1-4939-3435-5_22

447

mailto:matei.mancas@umons.ac.be
mailto:nicolas.riche@umons.ac.be
mailto:vpf3@cumc.columbia.edu
mailto:vincent.ferrera@gmail.com


448 M. Mancas et al.

22.1 Perspectives in Attention Modeling

22.1.1 Models

22.1.1.1 Computing Eye Scan Paths from Saliency Maps

Most saliency models take color images as input and produce saliency maps that
estimate the probability distribution of the gaze in the image. The static nature of
these maps could be an issue for some applications as these models do not predict
the temporal sequence of human fixations (also called scan path). What is the order
of fixations? How is the image seen dynamically? Some models like FSM [1], DVA
[2] or ESAL [3] propose algorithms to predict the scan path from a saliency map.
However, this question deserves to be investigated more deeply. Indeed, the dynamic
nature of attention was less investigated in the saliency models than in the visibility
models (see Chap. 7).

22.1.1.2 Modeling Visual Attention with Learning Algorithms
Such as Deep Neural Networks

Recently, with the advent of deep learning in many areas, some general multilayer
deep networks have been proposed to detect human fixations (see Chap. 7).
Although the neural network methods are very effective, some issues remain to be
solved by further research to mix the advantages of those models with more classical
handcrafted ones. First, current deep neural networks remain unclear about the
nature of the learned representation and about their results. This is not the case for
handcrafted models which are often clear and interpretable. In neural networks, it is
not easy to distinguish learning of bottom-up factors from top-down factors or even
viewer biases like the center bias. The second major issue is the dependency of deep
neural network on databases. The database containing eye tracking data is small
compared to databases in other fields like object recognition. There are solutions
like mouse tracking or webcam-based systems to build medium-sized databases but
to the detriment of precision. Moreover, the database has to be representative of each
situation because the neural network will be trained on this database.

22.1.1.3 Multimodal Modeling of Attention

One of the future trends will be to aggregate results from attention algorithms on
videos, but also on sound or 3D objects. This integration will drastically augment
the already numerous engineering applications of attention modeling. Of course
those new models will need new ground truth and new validation techniques, but
this effort is crucial to boost the attention modeling community and to augment its
visibility both in other research communities and in industry. The arrival of those
new techniques comes along with an increasing access to video and 3D data using
simple devices.

http://dx.doi.org/10.1007/978-1-4939-3435-5_7
http://dx.doi.org/10.1007/978-1-4939-3435-5_7
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22.1.1.4 Curiosity: Uncertainty Reduction Through Guided Exploration

When humans encounter a novel environment, one of their first priorities is to learn
whom, what and where to attend. Random, novelty-driven exploration has to be
balanced with hypothesis-driven mechanisms for identifying sources of valuable
or meaningful information [4]. This kind of everyday goal-directed information
seeking can be called curiosity. Reward circuits in the brain respond not only to the
likelihood and amount of reward but also to uncertainty [5]. Quantifying uncertainty
is essential for decision-making [6]. Attention can be thought of as a mechanism to
seek information that reduces uncertainty through guided exploration. Future studies
should focus on the neural and computational mechanisms of attention and decision-
making in environments where risk, uncertainty and ambiguity can be controlled.
An autonomous agent, such as a robot, should be able to pose questions that are
relevant to its current situation and to formulate plans to seek answers to those
questions.

22.1.2 Model Validation

22.1.2.1 Exploring Databases with New Classes of Stimuli

Currently, saliency models for still images are very effective on natural images.
However, their performance is frequently disappointing on other kinds of stimuli
like websites, paintings, etc. Indeed, for such stimuli, there is a significant decrease
in performance. To address this issue, more databases like [7] have to be collected
on diverse sources (websites, advertising, etc.) to understand what attracts attention
when observing stimuli different from classical “natural images.”

22.1.2.2 Large-Scale Human Data During Natural Explorations of Videos

Recently, large-scale datasets have become a necessity in several domains of
computer vision. In saliency, it is complicated to obtain large-scale datasets due
to the nature of the ground truth. Conventional eye tracking studies are time
consuming. However, there are alternatives such as mouse tracking [8] or webcam-
based eye tracking [9], but they are currently applied only on still image databases.

22.1.2.3 Metrics for Comparing Temporal Sequences of Eye Fixations

As is the case for saliency models, standard metrics to compare the output of
attention models and human fixations are static. They do not take into account the
temporal sequence of human fixations. Although in [10], the authors proposed some
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dynamic metrics to compare two scan paths, there are still too few databases and
models providing temporal sequences of fixations.

22.1.2.4 Study of Biases Inside Stimulus Categories

As described in [11], there are different classes of stimuli, such as noisy images,
indoor pictures, etc. For each type of image, major biases exist either from viewers
who are watching static and dynamic scenes or from features of the stimuli. The
impact of salient object size in outdoor pictures or different kind of movements in
videos is addressed in [12]. These studies show how saliency models manage the
size of salient objects or videos from static or moving cameras. They also help to
have a better understanding of current model biases and show how to improve them.
The recording of new databases with other biases or the addition of new categories
inside existing datasets is needed.

22.1.2.5 Other Application-Based Validation Frameworks

A new trend in attention model validation is to have application-based protocols. In
Chap. 19, for example, a system is established to compare several attention models
for a precise application (CBIR), as the rankings might be different between the
existing models depending on the application of interest.

22.1.2.6 Audiovisual Validation Based on Eye Tracking Data

There is no easy way to validate the use of audio information in saliency models
because there is no auditory ground truth and the dimensions of audio and video
information are different. The idea is thus to find a way to build an audiovisual
validation protocol. Eye tracking data acquired with visual and audiovisual condi-
tions should be used. All saliency models for videos could be validated by only one
condition inside the validation framework. Some audio features could be used to
weight the saliency results on videos and better predict where people attend.

22.1.2.7 Deployment of Attention During the Performance
of Natural Tasks

Attention is often studied in situations where subjects are given various cues
or reinforcement. In other words, the tasks are structured to guide attention to
locations, features, or objects that have been chosen by the experimenter. This
begs of the question of how subjects naturally deploy attention when performing
everyday tasks such as driving, making a sandwich, or playing sports. Ballard,

http://dx.doi.org/10.1007/978-1-4939-3435-5_19
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Hayhoe, and colleagues [13] have recently developed an immersive virtual reality
system for recording eye, head, and hand movements when human subjects are
performing simple tasks. Such systems allow experimental control over external
variables like novelty, reward, and context while imposing minimal constraints on
subject behavior. In the future, such systems can be combined with mobile EEG
recording to map the brain activity during natural, goal-directed behavior.

22.2 Attention Beyond Information Filtering

22.2.1 Structure, Semantics, and Objects

In Chaps. 1 and 2, we saw that attention is the gate between the outer world (or
subconscious in the case of dreams) and consciousness. Part of the attention process
occurs before information reaches awareness; it is pre-attentive or reflex and can
use a parallel processing strategy to acquire data. The attentive process is conscious
and uses a serial discovery strategy based on selected data from the pre-attentive
acquisition. Serial deployment of attention is highly dynamic and depends on a
number of factors:

• Bottom-up: related to information maximization of the field of view where
features are extracted and processed.

• Top-down: depends on the task on hand or on specific object recognition.
• Previous eye fixation location: the dynamical process of vision provides different

bottom-up cues depending on the fixation location.

The eye scan path can be very different from one person to another depending on
the image content, the initial eye fixations, and the importance of the task. Attention
acts as an information filter and prioritization strategy, transforming a huge amount
of unstructured information to a serial discovery of the most interesting areas or
objects. This eye scan path shows that attention not only discovers important areas
but also seeks to find how those areas are related (object-subject relationship).
Moreover, attention due to object changes (motion) has a huge impact on the final
result and is obtained using a different pathway in the brain than an object-oriented
attention. Indeed, visual signals mainly follow two different pathways in the brain,
a dorsal and a ventral, one focusing more on object recognition (what?) and the
other on space and movement (where?). This distinction between the fundamental
question of what (the objects/subjects) and where/how (their interaction) is directly
related to the minimal semantics of a sentence composed of a subject/verb/object. In
[14], it is hypothesized that children already base their first thoughts (in a language
nonspecific way) as a “transfer” (verb) between an “agent” (subject) and a “willing
recipient” (object). When children learn a language, they actually try to encode
this first conscious representation into a given language, as an expression of their
consciousness.

http://dx.doi.org/10.1007/978-1-4939-3435-5_1
http://dx.doi.org/10.1007/978-1-4939-3435-5_2
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Beyond being a simple information filter, attention gives cues on which areas
(subject/object) are interesting in the scene and their changes (verb), leading to the
first notion of semantics. It seems that the influence of the attentive system goes
beyond the initial role of selecting the information that gains access to awareness,
and it also intends to provide it with a structure. Indeed in Chap. 15, it is shown
how attention can be related to the notions of “proto-objects” or “objectness” which
are the first steps toward the notion of object. This represents a milestone in the
understanding of our environment.

22.2.2 Emotions, Memory, and Actions

Attention and memorability are heavily interlinked. While the influence of emotions
and memory on attention is obvious and this influence is part of the definition of
top-down attention, in the other direction (attending toward emotions and memory),
things are less clear. Nevertheless, even if the links are not as obvious as one
would think, the first step toward memorizing an object may require attention. In
Chap. 18, the link between visual attention and image memorability is detailed as
an application of attention modeling.

In the brain, a basic structure within the thalamus provides very interesting clues
about a possible relationship between attention, memory, and emotions. This is the
Papez circuit (Fig. 22.1) which was initially seen as a mechanism for emotions [15].

Fig. 22.1 A simplified schematic view of the Papez circuit. In green the areas which are directly
involved in the circuit. This circuit is linked to both emotions and memorability. Indeed, if
impaired, new data will not go into the long-term memory, but older recollection is not affected

http://dx.doi.org/10.1007/978-1-4939-3435-5_15
http://dx.doi.org/10.1007/978-1-4939-3435-5_18
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The main element of this circuit is the hippocampus which is related to episodic
and spatial memory [16].

At the rostral end of the temporal lobe, a collection of nuclei called the amygdala
is involved in emotions. The emotions related to the amygdala are mainly negative,
but positive emotions also evoke a response in this area [17]. The amygdala also
responds to high interest or unusual images which attract attention [18].

At the other side of the Papez circuit, one can find the mamillary body and the
anterior thalamic nuclei. The mamillary body relays the output of the hippocampus
and amygdala to the anterior thalamus and has an important role in spatial memory
[19]. The anterior thalamic nuclei are linked to action and the motor cortex. Other
thalamic nuclei that are important in sensory processing and attention are the lateral
geniculate nucleus (relays signals from the retina to visual cortex [20]), the medial
geniculate nucleus (auditory perception), and the pulvinar which is directly related
to attention by modulating or gating sensory signals in relay nuclei [21].

It is very difficult to isolate locations in the brain which are responsible for
complex tasks such as attention (see Chap. 4) or memory, but the Papez circuit
is of particular interest because in the limbic system, attention, memory, action,
and emotions have a close anatomical proximity and are all needed in the process
of memory formation. Thus, attention is heavily interconnected with emotions,
memory, and action. Indeed the effects of an agent’s own body on its environment
are highly important in scene understanding, and it also has a crucial impact in the
feeling of self-awareness and ownership which are at the basis of consciousness.

22.2.3 Toward Consciousness

In [22] Schmidhuber links the notion of attention to compression progress. It is
interesting to note that the concepts of compression and prediction are not only
emphasized in [22], but this concept is quite well accepted as a driver of our brain.
The idea of matching sensory inputs to stored patterns from memory to predict what
will happen in the future is also present in [23] where the interaction of neocortex,
hippocampus, and thalamus is central to the model. The brain is analyzed as an
encoding problem, complete with error-correction codes.

In [22], the incoming data has regularities and irregularities: each time regulari-
ties are found, they can be further compressed and simplified. A better explanation
of the environment results in its simplification, and thus its compression. A complex
concept which is very well compressed will be considered as subjectively beautiful.
For example, a beautiful face will be one close to the average face previously
learned, as only few bits are necessary to code the deviation of the new face from
the previously learned one. Also symmetries are important regularities which can
be compressed and which can be seen as subjectively beautiful. The approach of
Schmidhuber implies that a subjectively beautiful woman, for example, has a face
with perfect symmetries and very close to the average of faces that the observer
has seen (related to the observer family and social class). But beautiful does not

http://dx.doi.org/10.1007/978-1-4939-3435-5_4
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mean interesting. In [22], the author states that beauty is interesting only during a
given time period, as long as it is new. He thus defines the interest or attention as
the derivative of the subjective beauty. A beautiful object attracts attention only if
the beauty (compression) progresses. For example, a perfect beautiful woman for a
subjective observer will attract attention at the beginning, but this attention rapidly
fades. If this woman has a small defect, the need for compression of this small defect
will provide more interest to this woman than to a perfect one. It is important to
differentiate the subjective beauty due to information compression from the beauty
coming from external rewards (linked to emotions and memory). In [22] attention
is also linked to consciousness as compression induces the use of symbols or codes
summarizing regularities with a high occurrence probability in the information. In
the same way, a subject which occurs very frequently in a subjective observation of
the world is the observer or agent himself; thus, it is very efficient for him to find a
code for himself, and by doing this, the agent becomes self-aware and conscious.

There are several models of consciousness. In those models, attention plays
an important role as in [24] where the colliculus, in addition to its role of
fusing attention of several modalities (visual and auditory attention) on a unique
topographic map, also generates a simulation of the sensory world that corresponds
to primary (sensory) consciousness. The interaction between perception and action
(eye orientation) is a key to the development of consciousness.

In [25] attention is an emerging property due to subsets of neurons which activate
at the expense of other groups related to stimuli which will thus remain unattended.
When no stimulation is present, groups of neurons related to a past stimulus can
activate and synchronize with other related groups of neurons. In that way, the
network pays attention to a stimulus which is actually not present but occurred in
the past. This way of thinking about a stimulus is viewed in [25] as the emerging of
consciousness, which is like “attention to memory.”

In one model of consciousness, attention and consciousness are viewed insep-
arable: the CODAM model of John Taylor [26]. Taylor developed and refined his
model until [27] which is a vibrant and complete legacy of 10 years of research on
the notion of consciousness. CODAM stands for “Corollary Discharge of Attention
Movement.” The importance of attention is signified by its appearance in the name
of the model. This model is based on control theory. Modules representing goals
integrate top-down attention with a module for the input signal which focuses
on bottom-up attention. Two other key modules are used in CODAM. One is the
working memory buffer and the other is the corollary discharge, which is the key
of the model. This corollary discharge is a copy of the attention movement control
signal, and it activates the working memory buffer. The corollary discharge signal
is an internal copy of the location-to-be-attended, and it can be interpreted as a
signal of the ownership of the about-to-be-experienced content as well as a signal
of guarantee of the content-to-be-acquired to be the one that the agent chooses to
acquire. This signal of ownership and self-awareness or correct self-identification
is of a crucial importance in the building of the “I” and the consciousness. The
CODAM model also helps explain pathologies like schizophrenia where a higher
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weight to the corollary discharge is enough to amplify the self-awareness so the
subject is too involved with his own thoughts and cannot cope with the reality of an
external world.

22.2.4 The Rise and Fall of Consciousness

CODAM is one of the models where attention is tightly related to consciousness.
But is this hypothesis necessary? In [28] the author insists on the clear separation
of consciousness and attention. Attention may only select among already conscious
concepts. Also attention is a process where not all of the attended regions reach
the conscious state: looking is not watching and hearing does not mean listening.
Attention can be parallel and serial. During parallel strategies, the gist of a scene
or other global details can become conscious without the need of being explicitly
attended. However, if attention is considered in both covert and overt aspects, it
is hard to find examples where attention and consciousness do not match. Even if
attention is NOT consciousness, it is safe to argue that the relationship between the
two concepts is very tight and that full consciousness requires some form of attentive
mechanism.

Given these considerations, measuring the state of attention can be an indirect
measure of the state of consciousness. Meditation studies using EEG, PET, or fMRI
imaging have found that (1) there might be an increased attentional control in the
frontal brain regions [29, 30] and (2) this occurs at the same time primary visual
cortex regions acquiring signals from the outside world decrease [31, 32]. The
above studies seem to lead toward the possibility that meditation is an augmented
consciousness state, but focused on the self and not on the external world.

A strange case was reported in [33] in which a young woman was in a vegetative
state following severe brain injuries sustained in a car accident. While no overt
sign of awareness could be observed, an fMRI study suggested that she was able
to hear, understand speech, and follow doctor instructions. Indeed, when she was
asked to think about playing tennis, for example, her brain acted in a very similar
way as a control patient. This is a case showing that despite no visible awareness,
consciousness can still be at work.

A final question is how attention and consciousness initially develop and later
decline throughout the lifespan of an individual. In [34, 35] evidence of REM sleep
as early as around the sixth month of fetal development suggests that even with
rudimentary auditory sensing, spatial coding of sound and processing of structure
and meaning are already at work. Following the CODAM theory, these early
attentional signs suggest that the first sense of ownership begins to be set up before
birth. However, the exact mechanisms of attentional development remain unknown.

On the other side of life, during agony, one would expect attention and conscious-
ness to slowly fade until their complete shutdown when vital functions cease. While
work relating agony to attention and consciousness is very sparse, some evidence
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supports the idea that, contrary to the slow fading of consciousness, the approach
of death induces massive cerebral activity closer to attentional fireworks than slow
shutdown. As [33] shows in the case of a vegetative state, the visible state of a person
is not necessarily related to his/her awareness or state of consciousness. In [36, 37]
the authors show that in rare cases, patients can recall auditory details during general
anesthesia where attention and consciousness are presumably inhibited or absent.

In [38], the authors performed EEG measurements on rats during waking periods,
during anesthesia, and after induced cardiac arrest. While awake, the rats showed a
normal EEG. During anesthesia, the activity drastically decreased. But, just after
the heart stopped, EEG activity exceeded activity levels found during the conscious
waking state (especially in the gamma range, which is related to visual attention
[39]). Contrary to expectations, attention-related EEG signals were greater than
normal for roughly 30 s after the heart stopped beating. In [40], similar results
are described, this time demonstrating hyperactivity of the sympathetic system.
Sympathetic system arousal generally occurs during stressful situations that require
rapid preparation of the body to fight or flee from danger. This hypothesis might
explain part of the sudden near-death sympathetic hyperactivity in the brain as a kind
of hyperawareness might improve the odds of survival in cases where the animal is
able to escape or recover from a near-death situation.

In humans, about 10 % of dying people are conscious during their agony. Within
those 10 %, it is estimated that 50–60 % have deathbed visions. A deathbed vision
is thus present in most of the deaths where people are conscious, and they consist
in visions of dead relatives or friends, religious figures, or a language related to
travel [41]. Those deathbed visions are positive visions that comfort the dying and
prepare them psychologically for death [42]. The visions are positive, structured,
and meaningful, in contrast to the case of more chaotic and mostly auditory
illusions associated with mental illnesses, dementia, delirium, or drugs which are
mostly negative and with little meaning [43]. Interestingly the near-death visions
in humans could be related to the high arousal in visual attention demonstrated in
moribund rats. They are also concomitant with people gazing in fixed regions with
few eye movements and dilated pupils and reduced social interaction with people
nearby. Bottom-up attention seems thus reduced, while all the attention focuses on
the top-down component which is related to memory and emotions. The state of
consciousness of the dying is closer to that experienced during meditation and focus
on the self and not on outside. The higher weight of top-down component might
explain part of those visions, but it seems difficult to explain them entirely. Another
explanation might be a psychological defense against the idea of ceasing to exist
and the shutdown of consciousness. But again, this approach probably only partly
explains those visions.

These studies show that the shutdown of consciousness is not necessarily slow,
but in the very last moments (when physically possible), people experience a very
high degree of attention and consciousness before brain death and maybe even
after heart stops like in rats. However, due to the lack of scientific experiments and
measurements on dying people, it is very difficult to provide an objective view on
the topic.
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In this book, we focused on attention from the level of single neurons to visual
detection and on through computational modeling of salience and scan paths. Those
models are mostly concerned with information filtering, but some applications like
image memorability (see Chap. 18) go further than simple information filtering. In
this last chapter, we provided some insights on structure and objects, memorability,
and the first steps toward consciousness where attention plays a crucial role. We
also saw that attention and consciousness are at the very beginning of life (during
fetal development) focused inwardly on the self; they then open to others during life
and return again to the self during the natural dying process. How exactly attention
begins to work in babies and how it acts in the very final moments of life still remains
very speculative and reaches the boundaries of current science.
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