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         Introduction 

 Neuroendocrine tumors are a heterogeneous neoplasm of diverse origin arising 
from a multitude of organs and tissues including the gastrointestinal tract, pancreas, 
bronchial tissues, thymus, parathyroid, adrenal, pituitary, and calcitonin-producing 
cells of the thyroid gland. 

 The prevalence is unfortunately increasing to a current rate of over 35/100,000 
[ 1 ]. Complicating this is the fact that tumors in 80 % of cases present with advanced 
disease and metastasis with a 5-year survival rate of less than 40 %. Consequently, 
there is great need for effective systemic therapy [ 2 ].  

    Molecular Biology 

 Neuroendocrine neoplasms, of both endocrine and exocrine types, share the feature 
that they are generally under the control of the peptide hormone somatostatin [ 3 ]. 

 Somatostatin primarily effects its action via interaction with somatostatin recep-
tors (SSTRs). These membrane-associated receptors function via G-coupled signal-
ing. Somatostatin also has effects on ion channels and tyrosine kinase receptors [ 4 ]. 

 There are fi ve main SSTRs that all bind somatostatin but have different cellular 
signaling effects [ 5 ].  
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    SSTR Biology 

 SSTR1 leads to MAPK pathway activation [ 6 ]. 
 SSTR2 is most commonly expressed in GI-NETs and pancreatic NETS. SSTR2 

activation results in activation of SHP1 downregulation of MAPK resulting in cell 
cycle suppression via Rb and p21. Its signaling is inactivated via recycling. 

 SSTR3 is connected with phosphotyrosine phosphatase (PTP)-dependent apop-
tosis, involving p53 and Bax activities. It may also have an effect on suppression of 
VEGF. It is downregulated via internalization and ubiquitination. 

 SSTR4 signaling results in upregulation of MAPK/ERK1/ERK2 pathway and 
subsequent cellular proliferations. SSTR4 is inactivated via internalization. 

 SSTR5 is connected with ion exchange channels K+/H+, voltage dependent 
Ca2+ and also with AMP and kainate glutamate signaling [ 7 ]. 

    Somatostatin Analogues (SSAs) 

 SSTRs represent an attractive target for pharmacological targeting. Natural soma-
tostatin has a very short half-life of only a few minutes due to rapid enzymatic 
digestion. Consequently more stable synthetic forms have been developed for thera-
peutic purposes; these include octreotide (SSTR2), lanreotide (SSTR5), pasireotide 
(SSTR1, SSTR2, SSTR3, SSTR5), and KE108 (SSTR1, SSTR2, SSTR3, SSTR4, 
SSTR5). These various SSAs have different affi nities for SSTRs [ 8 ].  

    SSTRs Expression Patterns 

 SSTRs are also expressed broadly in non-endocrine cells including cells of 
blood vessels, stroma, and the immune system. Because of this broad distribu-
tion of SSTRs, SSAs have both direct and indirect effects on NET biology and 
growth [ 9 ].  

    Direct Effects of SSAs 

 The main direct effects of SSA on NETs are mediated through the action of the 
SSTR system and a variety of molecular signaling pathways within NET cells. 
These pathways and molecular mechanisms include the following:

    1.    Activation of p27kip1 via signaling through SHP1 and SHP2 and r-PTPeta   
   2.    Downregulation of proliferation via suppression of PTP, cGMP, and RAS 

signaling   
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   3.    Triggering of apoptosis via p53 and BAX pathway activation via SSTR3 and 
dopamine receptor   

   4.    Intracellular pH modifi cation via NHE1 channel alterations   
   5.    Induction of endogenous connexins (CX26 GJB2 and CX42) to form gap 

junctions      

    Indirect Effects of SSAs 

 Because SSTRs are expressed on non-NET tissues, SSAs also have indirect effects on 
NET growth. These indirect effects include the following molecular mechanisms:

    1.    Inhibition of trophic hormone release via calcium depletion. These pathways 
include GH, IGF1, EGF, insulin, gastrin, prolactin, VIP, serotonin, and others. 
This is probably mediated via transcription factor STAT5b through SSTR2 or 
SSTR3 activities.   

   2.    Suppression of angiogenesis, via suppression of SSTR2 activity on neoangioge-
netic endothelial cells. In addition, there may be suppression of VEGF and fi bro-
blast growth factor via SSTR1, SSTR2, SSTR3, and SSTR5.   

   3.    SSAs appear to possess immunomodulatory activity via triggering interferon 
release. In addition, there may be effects on lymphocyte proliferation and natural 
killer cell activities.      

    Interferon ALPHA 

 Interferon alpha appears to have a variety of inhibitory effects on NETs. These 
include direct effects on the neoplasms via induction of cell cycle arrest and apop-
tosis via a variety of signaling pathways and interferon receptors. In addition, inter-
feron alpha has effects on angiogenesis via suppression of VEGF and the immune 
activity of the lymphocytes in the surrounding stroma. Unfortunately, INF-alpha 
has marked toxic side effects including induction of fl u-like symptoms, fatigue, 
weight loss, and signifi cant myelotoxicity [ 10 ,  11 ]. 

 SSAs and INF-alpha have also been used in combination with synergistic results.  

    Carcinoid Syndrome 

 Carcinoid syndrome causes serious morbidity in some patients with NETs due to 
release of functional hormones from the neoplasm including serotonin, tachykinin, 
and substance P. The syndrome is characterized by fl ushing, diarrhea, tachycardia, 
abdominal pains, hypo- and hypertension, and cardiac abnormalities including heart 
valve fi brosis. 
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 Carcinoid can be monitored biochemically by laboratory tests that measure 
chromogranin A or 5-hydroxyindoleacetic acid. 

 SSAs often have good effects on treating the symptoms of carcinoid syndrome 
by inducing stable disease or disease regression and reducing the levels of 5HIAA 
and chromogranin A [ 12 ]. 

 Octreotide was approved in 1987 for the treatment of carcinoid, glucagonoma, 
and Verner-Morrison disease [ 13 ,  14 ]. Octreotide has a modifi ed amino acid struc-
ture with a substitution of 3 amino acids resulting in an enhanced activity and stabil-
ity of the molecule resulting in a 120-min half-life and an effective activity of over 
12 h. The drug has low toxicity and has an effect against NET with low Ki67 prolif-
erative indices.   

    Clinical Trials and SSAs 

 Trials such as PROMID which examined octreotide vs. placebo and CLARINET 
pitting lanreotide against placebo in phase II studies showed excellent signals with 
notable gains in progression-free survival [ 14 – 16 ]. 

    Resistance to SSAs 

 Unfortunately, NETs often develop resistance to SSA treatment. This is via a variety 
of mechanisms including the following:

    1.    Tachyphylaxis, desensitization of the receptors   
   2.    Development of mutated forms of the SSTR receptors (SSTR5/MD4 in pituitary 

adenoma)   
   3.    Development of autoantibodies against the SSAs as SSAs are peptides and 

potentially immunogenic   
   4.    Modifi cation of other regulatory proteins such as amphiphysin IIb       

    Targeted Agents 

 Besides the SSTRs, NETs show a variety of potentially actionable molecular altera-
tions. These include signifi cant vascularity and overexpression of pro-angiogenic 
factors such as VEGF, VEGFR, and PDGF raising the possibility of using anti- 
angiogenic agents such as bevacizumab [ 17 – 19 ]. 

 Further, several of the signaling pathways lead to mTOR activation, raising it as 
a potentially attractive target. This has led to the initiation of trials combining the 
anti-mTOR everolimus with octreotide (RADIANT 2, a phase III study) [ 20 – 22 ]. 
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 Sunitinib, an oral multitargeted RTK inhibitor of VEGFR, PDGFR, cKIT, RET 
FLT3, and others, has shown benefi t in phase II and phase III trials with patients 
with NETs and has been approved for use by both European authorities and the 
FDA for treatment of metastatic unresectable PNET [ 23 – 25 ]. 

 The Raf pathway has been investigated in NETs but with limited results. In mela-
nomas and other tumors, BRAF is frequently activated via a mutational event 
(V600E) making BRAF an attractive and functional target. However, in NETs BRAF 
mutations are not observed. Some effects were noted with anti-RAF treatment using 
sorafenib, but the effects were most likely due to anti-angiogenic activities [ 26 ]. 

 Following the report of EGFR expression and upregulation in some cases of 
NET [ 27 ], anti-EFGR therapies have also been tested in a limited number of 
patients.  

    Telotristat Etiprate (LX1606) 

 Telotristat etiprate is an inhibitor of tryptophan hydroxylase involved in serotonin 
biosynthesis and an attractive target to abrogate the effects of carcinoid syndrome 
[ 28 ,  29 ].  

    Chimeric Somatostatin 

 Evidence is emerging that there may be interactions between SSTR and D2 recep-
tors leading to the development of a new class of chimeric molecules that target 
both, and these include BIM-23A758 and BIM-23A760 [ 30 – 32 ].  

    Radiotargeted Therapy 

 Trials are underway to evaluate the effectiveness of radiotargeted therapies using 
90Y and 177Lu. Agents include 177Lu-DOTA-TYR3-octreotate [ 33 ].  

    Other Molecular Targets 

 Advances in genomic analysis technology and deep sequencing methods enable the 
uncovering of novel potentially actionable targetable mutations. Some targets that 
have emerged are of interest and include SMAD4 (targeting the TGF-beta path-
way). DAXX and ATRX have also been shown to be altered [ 34 ,  35 ]. These genes 
are involved in chromatin remodeling.  
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    Immunotherapy 

 Immunotherapy is rapidly emerging as a consideration in many tumor types, par-
ticularly after the spectacular results in several trials using immune checkpoint 
inhibitors for the treatment of advanced solid tumors including metastatic mela-
noma. These results are particularly encouraging given that in many instances, the 
checkpoint inhibitors display synergistic activity and extremely long durable 
responses unlike many targeted therapies. Current targets include PD-1, PD-L1, and 
CTLA4. These agents are currently under investigation in advanced NET [ 36 – 38 ].  

    Summary 

 NETs represent a diverse, heterogeneous group of neoplasms that frequently present 
with advanced stage and are often complicated by development of carcinoid syn-
drome. The mainstay of treatment is based on their proliferative activity. Tumors with 
high activity are subjected to cytotoxic therapy using combinations of platinum, temo-
zolomide, and capecitabine. Biotherapy with SSAs is utilized in low- and mid-grade 
tumors. Interferon shows some effectiveness but has signifi cant toxicity. Sunitinib (a 
multitarget TKI) and everolimus (against mTOR) have shown effect. Ongoing studies 
are investigating other targeted therapies and anti-angiogenic agents. Finally, immu-
notherapy using immune checkpoint inhibitors is under intense evaluation.     
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