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Abstract

From neurons to networks, the kinetic properties of voltage-gated ion channels determine specific patterns
of activity. In this chapter, we discuss how experimental data can be obtained and analyzed to formulate
kinetic mechanisms and estimate parameters, and how these kinetic models can be tested in live neurons
using dynamic clamp. First, we introduce the Markov formalism, as applied to modeling ion channel
mechanisms, and the quantitative properties of single-channel and macroscopic currents obtained in
voltage-clamp experiments. Then, we discuss how to design optimal voltage-clamp protocols and how to
handle experimental artifacts. Next, we review the theoretical and practical aspects of data fitting, explaining
how to define and calculate the goodness of fit, how to formulate model parameters and constraints, and
how to search for optimal parameters. Finally, we discuss the technical requirements for dynamic-clamp
experiments and illustrate the power of this experimental-computational approach with an example.
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1 Introduction

Ion channels are the molecular building blocks of cellular excit-
ability, forming highly specific and efficient pores in the membrane.
Gated by various types of stimuli (chemical ligands, electricity,
mechanical force, temperature, or light), ion channels form a super-
family of transmembrane proteins that underlie a vast number of
physiological and pathological events [1]. Within this superfamily,
voltage-gated ion channels [2] play a uniquely important role: they
detect changes in membrane potential using specialized voltage-
sensing structures [3], and further modify the membrane potential
by allowing ions to flow through the lipid bilayer. To perform this
function, the channel molecule undergoes conformational transi-
tions within a set of conducting and non-conducting states, gov-
erned by specific kinetic mechanisms [4–6].
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The relationship between membrane voltage and ionic current
is simple and can be derived from basic principles [7]. Electrically, a
patch of membrane is equivalent to a capacitor (the lipid bilayer)
connected in parallel with a variable conductance (the ion channels,
swinging between closed and open states), which is connected in
series with a battery (the electrochemical potential of permeant
ions). If no external current is injected in this circuit, the current
flowing through the conductance and the current charging the
capacitor sum to zero. Thus, ignoring spatial effects, the change
in the membrane potential vs. time is proportional to the net ionic
current flowing through the membrane, as described by the differ-
ential equation:

C
dV

dt
¼ �I ; ð1Þ

where C is membrane capacitance, V is membrane potential,
C � dV =dt is the capacitive current that charges the membrane, I
is the ionic current flowing through the membrane, and t is time.

All the ion channels within the membrane contribute to I,
which is the algebraic sum of all the single-channel currents.
Thus, any individual ion channel that opens or closes will cause an
immediate and finite change in the net current I, unless V happens
to be equal to the reversal potential for that channel. From this
perspective, a closing of a channel is as significant as an opening. In
turn, this change in the current modifies the rate at which the
membrane potential changes over time. Then, as V evolves in
time, the driving forces for the permeating ions and the kinetic
properties of voltage-gated channels will also change. These
changes will again modify I, closing the causal loop between mem-
brane potential and ionic current.

Because they both sense and control membrane potential,
voltage-gated ion channels play a key role in action potential gen-
eration and propagation, in neurons and other excitable cells [8].
Neurons, in particular, spend considerable amounts of chemical
energy to create and maintain the electrochemical gradients neces-
sary for action potentials to work [9], and thus to establish com-
munication within the nervous system. Different types of neurons
display unique patterns of cellular excitability [10] and assemble
into brain circuits with distinct network properties [11]. The firing
properties of individual neurons and neuronal circuits, and ulti-
mately the function of the entire nervous system, are largely deter-
mined by the kinetic properties of voltage-gated ion channels
[12–15]. Considering the rich variety of excitable behavior at cel-
lular and system levels, it’s not surprising that voltage-gated ion
channels have their own impressive repertoire of molecular proper-
ties [16]. Understanding these properties, particularly the dynam-
ics of state transitions and their voltage sensitivity, is key to
understanding how neurons and circuits work.
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1.1 Target Audience

and Expectations

The aim of this chapter is to guide the reader through the most
important aspects of modeling and testing the kinetic mechanisms
of voltage-gated ion channels. We are focused on deriving biophy-
sically realistic models from macroscopic currents obtained in
whole-cell voltage-clamp experiments [17] and testing these mod-
els in live neurons using dynamic clamp [18]. The reader is
expected to have a basic understanding of ion channel and mem-
brane biophysics, and some experience with electrophysiology
experiments. We tried to keep the discussion general, without
relying on a specific computer program, hoping that the readers
will be able to take the basic principles learned here and implement
them in their preferred software. Nevertheless, for some of the
examples presented here we have used a version of the QuB soft-
ware (www.qub.buffalo.edu), as developed and maintained by our
lab (http://milesculabs.biology.missouri.edu/QuB).

2 Ion Channel Models

Modeling ion channel kinetics is fun. However, when taken beyond
exponential curve fitting for time constants, or sigmoid fitting of
conductance curves, modeling becomes quite challenging. More
experimental data and more sophisticated computational algo-
rithms are necessary, and results are not so easy to interpret.
Whether this effort is worthwhile depends on the specific goals of
the investigator. For example, onemaywant to find amodel that can
be used as a computational building block in large-scale simulations
of neuronal networks. For this application, simplified phenomeno-
logical models will compute faster and would probably work just as
well [19]. However, one could set a more mechanistically oriented
goal, where the biophysical knowledge available on a particular ion
channel is assembled into a detailed computational model [20],
which is then tested and refined against new experimental data,
and then further used to quantitatively test various hypotheses.

Starting with the seminal work of Hodgkin and Huxley
[21, 22], most ion channel models fall somewhere in the range
defined by these two examples. Although phenomenological mod-
els that simply describe the data are useful, the ultimate goal would
be to quantitatively understand how the ion channel works at the
molecular level and how it interacts with its environment at the
cellular level. A biophysically realistic model must agree with exist-
ing theory and experimental data [23–30], but it should also
remain computationally tractable. Above all, keep in mind that
“all models are wrong but some are useful” [31].

2.1 Kinetic

Mechanisms

First, a kinetic mechanism is defined by a set of possible conforma-
tional states. Although in principle a protein can assume a contin-
uum of structural conformations, statistically, the molecule will
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reside most of the time in a relatively small subset of high-
occupancy states. The time spent continuously in a given state—
the “lifetime”—is a random quantity with an exponential probabil-
ity distribution [32]. For voltage-gated ion channels, the high-
occupancy states are the various conformations that correspond to
functional and structural elements, such as resting or activated
voltage sensors, closed or open pore, inactivated or non-inactivated
channel, etc. [3]. Other states may be characterized by more subtle
or less understood conformational changes. A state can be identi-
fied experimentally if it is associated with a measurable change in
properties (e.g., conductance, fluorescence), or it can be inferred
statistically from the data.

A kinetic mechanism is further defined by a set of allowed
transitions between states. Powered by thermal energy or other
sources, the channel undergoes conformational changes at random
times. Which state is next is also a random event, with the average
frequency of a given transition being inversely related to the energy
barrier separating the two states. Transition frequencies are quanti-
fied by rate constants. According to rate theory [33], a voltage-
dependent rate constant, kij, corresponding to the transition from
state i to state j, has the following expression:

kij ¼ k0ij � ek
1
i j�V ; ð2Þ

where V is the membrane potential and kij
0 is the rate at zero

membrane depolarization. kij
1 is a factor that indicates how sensitive

the rate constant is to the membrane potential, as follows:

k1ij ¼ δ0ij � zij � F
� �

= R � Tð Þ; ð3Þ

where zij is the electrical charge moving over the fraction δij of
the electric field, F is Faraday’s constant, R is the gas constant, and
T is the absolute temperature [34]. kij

1 is zero for voltage-insensitive
rates, while kij

0 is zero for non-allowed transitions. Together, the set
of possible states and the set of possible transitions describe
the topology of a kinetic mechanism. The rate constants and
their voltage dependence define the kinetic parameters of the
mechanism.

2.2 Markov

Formalism

The mathematical properties of a kinetic mechanism—finite set of
discrete conformations, exponentially distributed lifetimes, random
conformational changes—are beautifully captured byMarkov mod-
els. Originally developed for stochastic processes, the Markov for-
malism can be directly applied to ion channels [35], by mapping
each known or hypothesized conformation of the channel into a
state of the Markov model. The rate constants associated with a
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Markov model can be compactly expressed as a rate matrix Q, of
dimensionNS � NS, whereNS is the total number of states. TheQ
matrix has each off-diagonal element, qij, equal to the rate constant
kij, and each diagonal element, qii, equal to the negative sum of the
off-diagonal elements of row i, so that the sum of each row of Q is
zero. If a transition is not allowed between states i and j, qij is zero.

The state of the model as a function of time can be conveniently
expressed as a probability vector, P. At any time t, each element of P
represents the occupancy of that state, or the fraction of channels
that reside in that state. Under stationary conditions, the average
fraction of the total time spent by the channel in each state can be
calculated as an equilibrium state occupancy. For an ensemble of
channels, the average number of channels residing in state i at
equilibrium is equal to pi � NC, where pi is the equilibrium occu-
pancy of state i and NC is the total channel count.

When conditions change (e.g., when a voltage step is applied in
a voltage-clamp experiment), the energy landscape of the channel
changes as well. All the voltage-sensitive rate constants take differ-
ent values, and thus the rate matrix Q will change as well. As a
result, the equilibrium state occupancies will also be different. For
an ensemble of channels, if a state becomes less likely to be occupied
under the new conditions, the fraction of channels residing in that
state will decrease over time, at a rate that depends on the average
lifetime of that state. The same behavior would be observed from
repeated trials of a single channel. However, in a single trial, the
channel will simply continue its stochastic behavior, just with dif-
ferent transition frequencies.

The process of relaxation towards a new state of equilibrium is
described by the ordinary differential equation (ODE):

dP

dt
¼ P�Q: ð4Þ

The state occupancies corresponding to equilibrium, Peq, can be
obtained by setting the time derivative of P equal to zero and
solving the resulting algebraic equation:

dPeq

dt
¼ Peq �Q ¼ 0: ð5Þ

When conditions are stationary and the rate matrix Q is constant,
the differential equation has a simple analytical solution:

Pt ¼ P0 � eQ�t ; ð6Þ

where Pt and P0 are the state occupancies at an arbitrary time t and
at time zero, respectively. The exponential of Q� t is another
matrix, A, that contains the conditional state transition
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probabilities. Each element of A, aij, is the conditional probability
that the channel will be in state j at time t, given that it was in state i
at time zero. No assumption is made about what other transitions
would have occurred in that time interval. The transition probabil-
ity matrix A for a given time t can be calculated numerically using
the spectral expansion method [35], as follows:

At ¼ eQ�t ¼
X
k

Bk � eλk�t ; ð7Þ

where the Bk values are the spectral matrices derived from the
eigenvectors of Q, and the λk values are the eigenvalues of Q,
with λ0 always equal to zero.

The Bk and λk values can be calculated easily with a numerical
library or with specialized software, such as Matlab or QuB. For
analysis of macroscopic currents, it is convenient to calculate the
transition probability matrix Aδt that corresponds to the data sam-
pling interval, δt. Then, the state occupancies can be calculated
recursively, starting with some initial solution, using a simple vec-
tor–matrix multiplication:

Ptþδt ¼ Pt � Aδt : ð8Þ

In summary, the Markov formalism has the outstanding conve-
nience of encapsulating all the properties of a kinetic mechanism,
as well as the state of the channel, in a few matrices and vectors. The
same mathematical and computational operations will apply to any
ion channel model, regardless of its topology (how many states,
which transitions are allowed) and kinetic properties (rate constant
values). Furthermore, Markov models can be used at both single
molecule [36–42] and macroscopic levels [43–48].

2.3 Hodgkin-Huxley-

Type Models

The ion channel models originally proposed by Hodgkin and Hux-
ley [21] can also be formulated as Markov models, as they explicitly
represent the closed, open, or inactivated states of the channel.
While they were empirical at the time of their discovery, HH
models remain to this day reasonably realistic. Their main
limitation—but also their power, depending on the application—
resides in making some strongly simplifying assumptions about the
channel, which are simply outdated now (e.g., equal and indepen-
dent “activation particles,” or independent activation and inactiva-
tion processes). However, one should keep in mind that HH
models are in disagreement with biophysical theory when their
rate constants do not follow the Eyring rate theory [33], but
instead are formulated as arbitrary functions of voltage. While
their limited number of states and transitions would inherently
reduce their ability to explain experimental data, HH models can
gain more flexibility through these arbitrary rate functions.
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3 Experimental Data

3.1 What Is in the

Data?

A good way to understand the experimental data is to run simula-
tions. Let’s consider the simple ion channel model shown in
Fig. 1a. For illustration purposes, this model is a very crude approx-
imation of a voltage-gated sodium (Nav) channel, featuring closed,

Fig. 1 From model to data. A simple ion channel model (a) was used to simulate single-channel (b) and
macroscopic (c) currents in response to a voltage step (d). The macroscopic current was simulated with an
ensemble of 1000 channels, either deterministically (black trace) or stochastically (red trace). The inset shows
a fit of the stochastic macroscopic current (red) with a two-exponential function. The individual exponential
components of the fit line are also shown (green and blue)

Modeling the Kinetic Mechanisms of Voltage-Gated Ion Channels 273



open, and inactivated states. A single-channel stochastic simulation
of a voltage-clamp recording is shown in Fig. 1b, where a noisy
signal randomly jumps between zero and a tiny negative current.
The noise in the trace is mostly caused by instrumentation, though
the open state has its own intrinsic fluctuation in current [49]. The
average single-channel current corresponding to the open state can
be calculated as follows:

i ¼ g � V � V Rð Þ; ð9Þ

where g is the single-channel conductance, V is the membrane
potential, and VR is the reversal potential for the permeant ion.
Note that Eq. 9 is an approximation: the current is a nonlinear
function of voltage when the permeant ion has unequal intra- and
extracellular concentrations, as described by the Goldman-Hodg-
kin-Katz current equation [1].

For channels that have several conducting states, we can make
the unitary current equation more general by introducing a con-
ductance vector g, with each element gi equal to the conductance of
state i, or equal to zero for non-conducting states. The dot product
between the state occupancy vector P and the conductance vector g
can be used to calculate the unitary current for an arbitrary set of
state occupancies, as a function of time:

it ¼ Pt � gð Þ � V � V Rð Þ: ð10Þ

When a single-channel trace is simulated, at any given time only one
element of P is equal to one, and the rest are zero. As the channel
changes state during the simulation, a different element of P
becomes equal to one, and thus a different conductance is
“selected” by the dot product P · g.

To calculate the total ionic current, It, given by an ensemble of
identical channels, we simply multiply the unitary current by the
total number of channels, NC:

I t ¼ Pt � gð Þ � V � V Rð Þ �NC: ð11Þ

Computationally, It can be efficiently calculated in two steps: first,
calculate the state occupancies Pt, using the recursive Eq. 8; then,
calculate It as a function of Pt, using Eq. 11. The time-invariant
vector g � (V � VR) � NC needs to be recalculated only when the
voltage changes.

As shown earlier in Eq. 6, for a time interval where conditions
are constant (e.g., during a voltage step), Pt can be calculated as a
function of some initial state occupancies, P0. For a typical voltage-
clamp protocol, the P0 at the beginning of a sweep can be calcu-
lated as the equilibrium occupancies corresponding to the holding
membrane potential. For this calculation to be accurate, the
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holding voltage should be maintained long enough to allow
channels to reach equilibrium. If the protocol consists of a sequence
of voltage step commands, the P0 of one step can be calculated as
being equal to the Pt at the end of the previous step. This idea could
also be applied to protocols where the command voltage varies
continuously (e.g., during a “ramp”). In this case, a continuously
varying episode can be approximated with a sequence of discrete
steps of constant voltage. At the limit, each of these steps is as short
as one acquisition sample.

Although very compact, Eq. 11 is not easy to interpret. To
clarify its properties, we first replace Pt with its solution as a func-
tion of P0:

I t ¼ P0 � eQ�t
� � � g� �� V � V Rð Þ �NC: ð12Þ

Then, we replace eQ�t with its spectral expansion:

I t ¼ P0 �
XN S�1

k¼0

Bk � eλk�t

 ! !
� g

 !
� V � V Rð Þ

�NC: ð13Þ

We rearrange the terms and obtain:

I t ¼
XN S�1

k¼0

P0 � Bkð Þ � gð Þ � V � V Rð Þ �NC � eλk�t
� �

: ð14Þ

In the sum above, the term corresponding to k ¼ 0 is a constant,
because λ0 is always equal to zero. That term is actually the current
that would be generated when channels reached equilibrium under
those conditions. The explanation is that all eigenvalues are nega-
tive, except λ0, which makes all terms in Eq. 14 become vanishingly
small when t is sufficiently large, with the exception of the λ0 term,
which remains constant:

I t!1 ¼ P0 � B0ð Þ � gð Þ � V � V Rð Þ �NC: ð15Þ

Since channels are at equilibrium when t is sufficiently large,
one can recognize that the vector (P0 � B0) must be equal to Peq.
Therefore, the current flowing at equilibrium has the expression:

I eq ¼ Peq � g
� �� V � V Rð Þ �NC; ð16Þ

where:

Peq ¼ P0 � B0: ð17Þ
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In the equation above, P0 can be any arbitrary probability vector.
With these results, the macroscopic current can be written as:

I t ¼ I eq þ
XN S�1

k¼1

I k � eλk�t
� �

; ð18Þ

where Ik is a scalar quantity with dimension of current:

I k ¼ P0 � Bkð Þ � gð Þ � V � V Rð Þ �NC: ð19Þ

The eigenvalues, λk, can be replaced with time constants, τk, obtain-
ing the final current equation:

I t ¼ I eq þ
XN S�1

k¼1

I k � e�t=τk
� �

; ð20Þ

where τk ¼ �1/λk. The macroscopic current described by Eq. 20 as
a function of time is a sum of NS � 1 exponentials, plus a constant
term. Each exponential component is parameterized by a time
constant τk and an amplitude Ik.

These results are general: any voltage-gated ion channel that
has NS high-occupancy conformations will in principle generate a
macroscopic current with NS � 1 exponentials, when subjected to
a step change in membrane potential. This is illustrated in Fig. 1c
for the simple three-state model: It (the red trace) has the expected
profile of rise (activation) followed by decay (inactivation). This
time course is a sum of two simple exponential components that
vanish to zero with different time constants. In this particular case,
Ieq is almost zero.

In the above equations, the macroscopic current It was calcu-
lated as a deterministic function of some initial conditions P0.
However, one should keep in mind that It is the sum of many
unitary currents, each generated by an individual ion channel that
makes random transitions between states. These stochastic events at
the single-channel level will make the macroscopic current a sto-
chastic process as well. Therefore, the state occupancy at time t is a
random quantity, characterized by a probability distribution
[44, 46, 47, 50]. The state at time t can be statistically predicted
from some known previous state, but the uncertainty of the predic-
tion increases with the time from the reference point. In contrast,
the initial state of a deterministic process can predict any future
state with equal precision. The difference between stochastic and
deterministic processes is illustrated in Fig. 1c, where the trajectory
of the stochastically simulated macroscopic current (black trace)
consistently diverges from the deterministically calculated current
(red trace).
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3.2 Protocol Design As discussed above, an ion channel kinetic mechanism is fully
characterized by its number of states, connectivity matrix of allowed
state transitions, and rate constants quantifying transition fre-
quency and voltage dependence. This information is encoded in
single-channel or macroscopic voltage-clamp recordings as a sto-
chastically fluctuating current, mixed with noise and artifacts. In
single-channel recordings, the mean value of the current randomly
jumps between two (or more) levels, corresponding to molecular
transitions between conducting and non-conducting channel con-
formations. For example, in the single-channel trace shown in
Fig. 1b, there happens to be four conductance changes over
50 ms. A channel with faster kinetics would result in more transi-
tions per second, or, equivalently, in shorter average lifetimes in
each state. Furthermore, a channel with greater voltage sensitivity
would exhibit transition frequencies that change more substantially
with voltage. Overall, the statistical properties of single-channel
data can be analyzed with a variety of mathematical methods and
computational algorithms, to extract the kinetic mechanism of the
underlying ion channel [36–42, 51]

A macroscopic current is also a stochastic sequence of events,
where individual channels randomly change state. Thus, stochastic
fluctuations in the macroscopic current [52, 53] are also a potential
source of information that could be used to extract the kinetic
mechanism [44, 46, 47, 50]. However, these fluctuations are
more difficult to separate from experimental noise and artifacts.
First, depending on the recording technique, the experimental
preparation, and the noise levels of the recording system, a change
in the conductance state of a single channel may be very difficult or
impossible to detect experimentally. Second, the frequency of tran-
sitions in the overall state of the ensemble is proportional to the
total number of channels, and it may exceed the bandwidth of the
recording system. For example, if the average single-channel tran-
sition frequency is 10 s�1, an ensemble of 10,000 channels would
exhibit 100,000 transitions per second, while the recording band-
width may be smaller by an order of magnitude. Thus, information
encoded in the magnitude and frequency of stochastic current
fluctuations may be lost.

A generally more reliable source of information is the mean
value of the macroscopic current, as a function of time and voltage.
Even in this case, although the mean value can be easily extracted
from noisy data, decoding the kinetic mechanism is far from being
trivial. The main difficulty lies in the ambiguous relationship
between the exponential parameters describing the macroscopic
current (time constants τk and amplitudes Ik) and the kinetic para-
meters of the channel (rate constant factors kij

0 and kij
1). Following

a step change in conditions, the overall state of the ensemble relaxes
exponentially towards a new equilibrium. For a channel with NS

states, this relaxation process is quantified by a set of 2 � NS � 1
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parameters, as described by Eq. 20: NS � 1 time constants τk,
NS � 1 amplitudes Ik, and the equilibrium current Ieq. Every one
of these exponential parameters, including Ieq, is a mathematical
function of all the rate constant parameters, and implicitly a func-
tion of membrane potential. Thus, while calculating the exponen-
tial parameters from the kinetic mechanism is straightforward, the
inverse calculation is not. Furthermore, this also implies that no
more than a maximum of 2 � NS � 1 kinetic parameters can be
extracted from a macroscopic current generated in response to a
single voltage step. In reality, kinetic mechanisms may have more
parameters than that. For example, the three-state model in Fig. 1a
has eight kinetic parameters but only five exponential parameters.
Even with this unrealistically simple model, it is clear that the
kinetic parameters of the model cannot be unequivocally deter-
mined from the mean value of the macroscopic current, unless the
voltage-clamp protocol is expanded to more than one voltage step.

A second difficulty is related to the theoretical and experimental
observability of all the exponential components, given the limited
resolution of the recording system. The idea is that, although each
pair of exponential parameters (τk, Ik) depends on all the rate
constants, fast or slow exponential components will be influenced
most by similarly fast or slow rates, respectively. Then, if a certain
exponential component is weakly represented in the data, some of
the kinetic parameters will also be weakly determined. The contri-
bution of an exponential component to the data, given a set of
kinetic and conductance properties, depends on two factors. First,
the amplitudes Ik depend on the initial state occupancies P0. Thus,
depending on the voltage-clamp protocol, some components may
have very small, or even zero, amplitude, and can be undetectable
relative to the experimental resolution. Overall, a change in state
occupancy is accompanied by a change in current only if the total
occupancy of the conducting states changes. If this fraction doesn’t
change, or if the change is small relative to the resolution of the
recording system, the mean current value will remain approximately
constant, even though the properties of the stochastic fluctuations
may change. Second, an exponential component can be observed
experimentally only if the bandwidth of the recording system is
adequate. Thus, very fast exponentials may be distorted or filtered
out, while very slow components may not be detected in short
protocols. A property worth remembering is that these exponential
components vanish in order, from the smallest to the largest time
constant. As a result, the fastest components will be affected the
most by experimental artifacts associated with abrupt changes in
the command voltage.

In conclusion, voltage-clamp protocols must be designed care-
fully and optimized to minimize these issues. Overall, the most
important practical recommendation we can make is to design
and apply as many types of stimuli as feasible, to force the channel
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to visit as many states as possible, which should result in well-
observed exponential components and well-determined kinetic
parameters. Ultimately, designing a good set of stimulation proto-
cols is an iterative process, without a priori solutions. It may well
happen that applying yet another protocol exposes a new behavior
of the channel, which then needs to be investigated with new or
refined stimuli.

An example of a typical set of voltage-clamp protocols is given
in Fig. 2, as applied to recording whole-cell Nav currents from
mammalian neurons in brain slices [54]. A minimum of four pro-
tocols is necessary to investigate the kinetic properties of Nav
channels, as illustrated in Fig. 2a–d. Each of these voltage-clamp
protocols forces the channel on a different state trajectory, thus
exposing a different set of kinetic properties. For example, the
protocol in Fig. 2a starts the channel in a state of deactivation and
takes it through activation, opening, and inactivation. Several expo-
nential components are well defined in the data, particularly
the two time constants of inactivation. In contrast, the protocol
in Fig. 2c starts the channel in a state of deactivation as well, but the
channel is taken directly into inactivation, without opening. Two
time constants of inactivation can also be detected in the data, but
the exponential components have lower amplitude and thus are
slightly less well defined.

With some of these protocols, the raw data can be used directly
to determine the kinetic parameters (e.g., the time course of activa-
tion and inactivation in Fig. 2a). With others, the raw data are first
processed to extract some empirical measure of state occupancy,
which is then used to estimate kinetic parameters. Examples are the
(pseudo) steady-state activation and inactivation in Fig. 2e, and the
time course of recovery from inactivation and the subthreshold
inactivation in Fig. 2f. Generally, the raw data are used directly
when an exponential time course is experimentally observable in
the macroscopic current. For example, when the channel activates,
opens, and then inactivates (Fig. 2a). When state changes are not
associated with changes in conductance, information is obtained
from two-pulse protocols. For example, when the channel inacti-
vates at membrane potentials where it cannot activate and open
(Fig. 2c). In this case, the peak of the current is used as an empirical
measure for the total occupancy of non-inactivated states available
to generate current upon activation.

3.3 Experimental

Artifacts

The data recorded in voltage-clamp experiments do not contain
just the current of interest but are contaminated by a variety of
artifacts, including other currents active in the preparation, experi-
mental noise, voltage-clamp errors, etc. [17]. All of these artifacts
will negatively affect fitting algorithms and can result in a distorted
model. Although artifacts cannot be eliminated, they can be
reduced to acceptable levels. Thus, the effects of random
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Fig. 2 Designing voltage-clamp protocols for Na+ currents. To gather information about the kinetic mecha-
nism, the channels are forced to make transitions between different sets of states, as follows: deactivated to
open to inactivated (a), deactivated to inactivated to open (b), non-inactivated to inactivated (c), and
inactivated to non-inactivated (d). Raw data are further processed to extract state occupancies as a function
of time and voltage (e and f). Adapted from [54]
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measurement noise, which lowers the precision of parameter esti-
mates, can always be reduced by collecting more data, and generally
are not an issue. Deterministic power line interference (50 or
60 Hz, or harmonics) can be easily removed online or offline.
Uncompensated brief transients that occur when the command
voltage changes abruptly can simply be excluded from the fit,
provided that they don’t overlap with significant channel activity.
However, longer transients must be somehow separated from the
signal. Voltage-clamp errors caused by incomplete compensation of
the series resistance could be significant. However, the actual volt-
age at the membrane can be either measured directly in some
techniques (e.g., two-electrode voltage clamp) or calculated from
the measured series resistance and the recorded current. Then, a
corrected version of the command voltage protocol can be con-
structed and used in the data fitting procedure. As explained above,
an arbitrary voltage waveform can be approximated with a sequence
of constant voltage steps. Another artifact is imperfect space clamp,
which can occur when recording from neurons in vivo or in brain
slices [55]. In this case, the current recorded from the soma can be
contaminated with action potentials backpropagating from the
axon [56], which usually escapes voltage-clamp control. Space-
clamp errors can be reduced with a simple technique that selectively
inactivates axonal sodium channels and thus makes the axon a
passive compartment [57]. Finally, the bandwidth of the recording
system should be sufficiently wide for the kinetics of the ion channel
investigated. Initially, the cutoff frequency of the low-pass filter and
the sampling rate of the digitizer should be set as high as possible to
identify the fastest time constant present in the data. Then, acquisi-
tion parameters can be set to the values recommended by Nyquist’s
sampling theorem [58]. In many cases, the fastest time constant
corresponds to channel activation or deactivation.

Even when these artifacts cannot be eliminated, in principle
they can be parameterized and included into the fitting algorithm.
Unfortunately, contamination with other ionic currents that are
active in the preparation cannot be easily encoded in the algorithm.
These currents are generally unknown quantities and cannot be
compensated computationally. The ideal solution is to isolate the
current of interest pharmacologically, with a very specific blocker. If
this is available, the same protocols can be repeated under control
conditions and with the blocker applied, and the two sets of data
can be subtracted from each other, giving the current of interest.
This subtraction not only eliminates all other currents, including
leak, but will also remove capacitive transients. However, not all
channels can be completely isolated by pharmacological subtrac-
tion. The solution is to reduce all other currents as much as possi-
ble. Some currents can be blocked pharmacologically, while others
can be rendered inactive by exploiting their kinetic properties,
particularly voltage dependence. Furthermore, the background
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leak currents and possibly other currents left unblocked can be
subtracted using the P/n technique [59], which will also remove
capacitive transients. However, one should be aware that the P/n
method relies on the assumption that leak currents are linear with
voltage and thus cannot subtract voltage-sensitive currents.

When designing protocols to isolate the current of interest,
pharmacologically or via the P/n technique, one should keep in
mind that these procedures will extend the total acquisition time,
and recording parameters may change over time. For example, the
seal resistance may deteriorate, causing an increase in leak, the level
of solution in the bath may change and alter pipette capacitance and
transients, and series resistance may fluctuate and change the ampli-
tude of recorded currents. Generally, currents may run down over
time. All these changes will distort the subtracted current. One
other problem with subtraction methods is that uncompensated
series resistance errors depend on the total current flowing. Then, if
the total current takes significantly different values under control
versus pharmacological block or P/n conditions, the actual voltage
at the membrane will also differ. As a result, the subtracted current
will be contaminated with some leftover current. Thus, even if a
good blocker is available for the channel of interest, reducing all the
other currents pharmacologically is still recommended. A similar
artifact occurs when the current of interest is functionally coupled
with other currents (e.g., Ca2+ � activated K+ currents). These
would no longer be activated when the current of interest is
blocked. Finally, one should keep in mind that when two random
variables are subtracted from each other, their mean values subtract
but their variances add. Thus, subtracting two sets of currents will
result in a signal with greater noise, which would make it difficult to
apply fitting methods that rely on the properties of current
fluctuations.

4 Fitting the Data

The objective is to find the kinetic mechanism that best explains the
experimental data, but also agrees with prior knowledge. As dis-
cussed, a kinetic mechanism is fully defined by its topology, given by
the number of states and the connectivity matrix of possible transi-
tions, and by the parameters quantifying rate constants and voltage
dependence. Finding the topology and finding the parameters are
generally approached as separate problems, and our focus here is on
estimating parameters for a given topology. A computational pro-
cedure for finding the best parameters combines a parameter opti-
mization engine (the optimizer) and an algorithm that calculates
how well the model explains the data (the cost function, or the
goodness of fit). The optimizer starts with a set of initial values and
iteratively explores the parameter space, according to a defined
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search strategy, until it finds a set of parameters that maximizes the
goodness of fit. For each point sampled in the parameter space, the
optimizer calls the estimation algorithm to evaluate the goodness of
fit. Typically, the optimizer is data- and model-blind, although it
can be tweaked for a particular problem. A variety of general
optimization algorithms that have been described in the literature
[60] and are available in numerical libraries can be applied to ion
channels. In contrast, the function that calculates the goodness of
fit is very specialized and can be quite complicated.

4.1 Goodness of Fit In general, how well the model explains the data can be defined in
different ways, depending on the data and the model. For a deter-
ministic time series contaminated by measurement noise, the good-
ness of fit is typically given by the sum of squared errors, S, between
the experimental data points and the fit curve:

S ¼
X
t

yt � f t M;Kð Þ� �2
; ð21Þ

where yt is the data point measured at time t and ft (M, K) is the
calculated value at time t, given a structural model M and a set of
parameters K. The best fit parameters are those that correspond to
the lowest S value that could be reached.

Curve fitting is not the ideal method for data generated by ion
channels or other stochastic processes. These data are not defined
by a deterministic function that can be calculated for every time
point. Instead, they are a stochastic sequence of channel states,
contaminated with random measurement noise. Nevertheless, this
stochastic sequence is generated by the ion channel according to a
probability distribution, which is determined by the kinetic mecha-
nism [32]. For single-channel data, this probability distribution can
be used to calculate the likelihood of the data, L [36]:

L ¼ p Y
��M,K

� �
; ð22Þ

where p is the conditional probability of the data sequence Y, given
a model topology M and a set of parameters K. The best fit para-
meters correspond to the highest L value that could be reached.
In practice, the logarithm of the likelihood function is used instead
of the likelihood itself, because L may reach intractably small or
large values.

Ideally, macroscopic currents should also be approached as a
stochastic process, using a likelihood-based goodness of fit. A
variety of mathematical and computational algorithms have been
designed to calculate the likelihood of a macroscopic current
[44, 46, 47, 50], all making various approximations to speed up
the computation. Ultimately, the fastest but theoretically the least
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accurate approximation that can be made is to completely ignore
the stochastic nature of the macroscopic current. Essentially, the
goodness of fit in this case is calculated as the sum of squared errors
between the experimental data and the calculated macroscopic
current, It:

S ¼
X
t

yt � I t
� �2

: ð23Þ

This approximation is most suitable when the analyzed current is
generated by many channels, when stochastic fluctuations are small
relative to the mean value and comparable to the measurement
noise. All other methods that make more accurate assumptions
exploit in some way the fluctuations of the current, and theoreti-
cally should produce more accurate or more precise parameter
estimates. However, as discussed above, many experimental data
are not clean enough for noise analysis and the mean of the current
may be the only reliable source of information. This condition
describes well the macroscopic currents generated by voltage-
gated ion channels in whole-cell patch-clamp experiments. In the
following section, we assume that the goodness of fit is calculated as
the sum of squared errors, S.

4.2 Computing

the Cost Function

A variety of voltage-clamp protocols can be applied to determine
the kinetic mechanism, as illustrated in Fig. 2. For each data set that
is included in the fitting procedure, the estimation algorithm must
calculate the goodness of fit. When the cost function is the sum of
squared errors, S, then the mean current It must be calculated for
every point in the data. Essentially, the algorithm must simulate a
macroscopic current in response to the same voltage-clamp proto-
col as was used to record the data, given the set of parameters
proposed by the optimizer in that iteration. For two-pulse proto-
cols, such as those shown in Fig. 2, the simulated current sequence
must also be processed in the same way as the experimental data.
For example, the experimental recovery from inactivation (Fig. 2d)
is calculated, as a function of time and recovery potential, as the
ratio between the peak current obtained with the test pulse and the
peak current obtained with the conditioning pulse. Although it
might be tempting, it is a bad idea to calculate the theoretical
recovery from inactivation using the sum of non-inactivated state
occupancies. Instead, it should be calculated as for the experimental
curve: first, simulate the response of the model to the two-pulse
protocol, then, from this simulation, calculate the ratio of the two
peaks.

It is most efficiently computed recursively, using Eq. 8 to
calculate Pt+1 from Pt, where t and t + 1 refer to consecutive
samples. The computation is initialized with P0, which is calculated
as the equilibrium state occupancies that correspond to the holding
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voltage. The entire sequence of operations can be summarized as
follows:

Peq ¼ 1 � B0,VH
,

P0 ¼ Peq,

P1 ¼ P0 � Aδt ,V 1
,

. . .

Pt ¼ Pt‐1 � Aδt ,V t ,

I t ¼ Pt � IV t ,

St ¼ yt � I t
� �2

;

ð24Þ

where 1 is the normalized unity vector, with each element equal to
1/NS; B0,VH

is the spectral matrix corresponding to λ0 and calcu-
lated for a voltage equal to the holding potential, VH; Aδt ,V t is the
transition probability matrix calculated for δt and a voltage equal to
the command potential at time t,Vt; St is the squared error at time t.
Finally, IV t is a vector with dimension of current, with each element
equal to the maximum current that would be generated if all the
channels resided in that state:

IV t ¼ g� V t � V Rð Þ �NC: ð25Þ

When the command voltage changes during a protocol sequence,
the spectral matrix B0 and the transition probability matrix Aδt
are replaced with the matrices calculated for that voltage value. As
discussed, instead of the command voltage, one could use the
actual voltage measured at the membrane, when available, or a
voltage corrected for errors caused by the uncompensated series
resistance.

The total sum of squared errors, S, is the sum of squared errors
for all data points used in the analysis. S could be divided in
components corresponding to individual data sets, each multiplied
by a weighting factor:

S ¼
X
i

wi � Si: ð26Þ

These weighting factors can be chosen empirically, to establish the
relative contribution of each data component to the cost function.

4.3 Model

Parameters

For a given model topology, the unknown parameters to be
determined are the rate constant factors kij

0 and kij
1. However, the

macroscopic current depends on additional quantities: the unitary
conductance, g, and the total number of channels,NC. Calculating
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It in the cost function requires these quantities. Normally, for a
given ion channel type, the unitary conductance has the same value
in every recording and can be estimated directly from single-
channel data, or via noise analysis from macroscopic currents [53,
61]. AlthoughNC can also be determined through noise analysis, it
takes a different value in each experimental preparation and it
cannot always be known. One possibility is to makeNC a parameter
to be estimated [44]. If the data used in the fit were obtained from
multiple experiments, then there will be multiple NC parameters,
one for each preparation. The downside with this approach is a
potentially large increase in the dimensionality of the parameter
space, which would slow down the optimizer. Another possibility
is to normalize the current in each data set to the local maximum
value. The disadvantage in this case is a greater ambiguity in the
estimated kinetic parameters. Furthermore, it can be problematic
to analyze fluctuations. With some models, distinct combinations
of rate constants and channel count values can generate the same
macroscopic current in response to a voltage-clamp protocol [44].
However, in principle this ambiguity could be resolved by adding
more protocols to the fit.

4.4 Prior Knowledge Including prior knowledge in the model is necessary: although it
restricts the freedom of the optimizer to search for parameters, it
ensures that the parameters that best explain the new data are also
in agreement with previous experiments and theory. Prior knowl-
edge can be encoded in the topology of the model, but also in the
kinetic parameter values. For example, the number and sequence of
distinct conformational states that can be assumed by voltage sen-
sors is defined by topology, while their degree of cooperativity is
defined by rate constants. One could also encode in the model a
hypothesis about the kinetic mechanism, and test it by fitting the
data with this model. If the optimizer can find parameters that
explain the data well, then the hypothesis is potentially correct,
and vice versa.

A good example of including prior knowledge in the model is
the study of inactivation in Nav channels by Kuo and Bean [62].
Phenomenologically, the steady-state and transient inactivation
properties of Nav currents appear to be strongly voltage sensitive,
as initially determined and modeled by Hodgkin and Huxley [21].
Yet, in more recent studies, very little electrical charge was detected
to move during inactivation [26, 59, 63–66]. While Hodgkin and
Huxley postulated that activation and inactivation are independent
processes in Nav currents, Kuo and Bean proposed instead an
allosteric coupling of inactivation to activation, which makes inac-
tivation apparently but not intrinsically voltage dependent. Their
model is shown in Fig. 3.
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4.5 Model

Constraints and Free

Parameters

Knowledge—or hypotheses—about rate constants can be imple-
mented either as a set of mathematical constraints or as a penalty
term added to the cost function. Generally, constraints are defined
as an invertible transformation, c, between a set ofmodel parameters
K and a set of free parameters F:

F ¼ c Kð Þ; ð27Þ

K ¼ c�1 Fð Þ: ð28Þ

The model is defined by the K parameters, which are subject to the
constraints implemented by c. In contrast, the optimizer is model-
blind and operates with the F parameters, which are “free” to take
any value in the (�1, +1) range. The optimizer searches in the
free parameter space and finds a set F* that is converted, via the c�1

transformation, into a setK* that best explains the data. The search
is initialized with a set of free parameters F0, obtained via the c
transformation from an initial set of model parameters K0.

If no constraints are formulated, c is the identity transforma-
tion. In this case, the number of free parameters is equal to the
number of model parameters. However, at least one type of

Fig. 3 Representing ion channel kinetic mechanisms with state models. This model has been formulated for
Nav channels [62]. States C1. . .C5 and O6 represent the non-inactivated channel, whereas I7. . .I12 are
inactivated states. O6 is the only conducting (open) state. The pathway either from C1 to C5 or from I7 to I12
corresponds to the activation of the four voltage sensors, assumed to be equal and independent. This
assumption is denoted by the 4:3:2:1 or 1:2:3:4 ratios in the factors multiplying the αm or βm rates. The C5
to O6 transition corresponds to the opening of the channel. The model allows the channel to inactivate without
opening, from any of the closed states C1. . .C5. However, the channel is most likely to inactivate from the
open state O6 or when more voltage sensors are activated (e.g., from C5). This property is implemented via the
allosteric factors a and b, which control the equilibrium and transition frequency between closed and
inactivated states. The I7. . .I11 transition rates also include the allosteric factors a and b, to satisfy microscopic
reversibility. When the channel reaches the open state O6 upon membrane depolarization, it is quickly and
completely absorbed into the inactivated states I12 and I11. Inactivation from closed states happens more
slowly, which gives the channel a chance to open before it inactivates during an action potential [54]. The only
rates with significant voltage sensitivity are αm and βm. The allosteric coupling between activation and
inactivation can explain the apparent voltage sensitivity of inactivation but also the minimal electrical charge
detected to move within the channel during inactivation
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constraint has to be applied, which is to keep the rate constant
factors kij

0 greater than zero. This constraint can be implemented
easily by using ln kij

0 as the free variable, which can take any value in
the (�1, +1) range, but restricts kij

0 to (0, +1). This transforma-
tion keeps the numbers of free and model parameters equal. How-
ever, any other type of constraint reduces the number of free
parameters by one. A variety of useful model constraints can be
implemented with c as a simple linear transformation. For example,
one can constrain a rate to have a constant value, or two rates to
have a constant product, or one can enforce microscopic reversibil-
ity. Detailed explanations of how to implement linear constraints
are available in the literature [39, 44, 67].

Sometimes, a model parameter is allowed to take any value in a
defined range, as implemented via the c transformation, but some
of these values may be considered “better” than others. For exam-
ple, a rate constant estimated at 100,000 s�1 by the (model-blind)
optimizer, although physically acceptable, could be considered
quite unlikely when obtained from data sampled at 1 kHz. In this
case, a penalty term can be factored into the cost function S*:

S* ¼ S � p Kð Þ; ð29Þ

where the penalty p(K) is a function of model parameters K. In
principle, constraints implemented via the c transformation can also
be formulated as a penalty, by making p(K) equal to one when K
satisfies the constraints, or equal to a very large number when not.
However, the advantage of having a reduced number of free para-
meters would be lost, and defining p(K) is not trivial.

Fundamentally, any assumption about the kinetic mechanism
results in adding one or more computational constraints to the
model, and thus reduces the number of free parameters. While
having fewer parameters makes the fitting easier, the model will
also have less flexibility in explaining the data. For example, the
model proposed by Kuo and Bean [62], although making a radical
departure from the classical dogma, makes the simplifying assump-
tion that the channel has identical and independent voltage sensors,
which dramatically limits the number of free parameters. This
assumption has later been invalidated by clever biophysical experi-
ments [68]. Another study relaxed the constraint that the inactiva-
tion rates in the Kuo and Bean model are voltage independent and
found that a small but finite charge can explain their data better
[54]. Ideally, one should always start with a well-constrained model
that has relatively few free parameters and gradually remove the
constraints until the fit no longer improves.

4.6 Searching for

Best Parameters

Let’s take an intuitive look at how the optimizer searches for
parameters. If we had a model that has only two parameters, we
could imagine a 2D surface that represents on the z axis the error of
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the model relative to the data, as a function of the two parameter
values represented on the x and y axes. The greater the error, the
greater the z value. Hopefully, somewhere on this surface there is a
single point where the error is the lowest. That is the solution that
the optimizer has to find, corresponding to the set of best para-
meters. If we could apply a grid over the parameter space and
calculate the error at every node, we could simply identify the
parameter values where the error is lowest. As a further refinement,
we could apply a smaller and finer grid on that point and improve
the estimate.

Unfortunately, a grid search is prohibitive, because the number
of free parameters can be large and the cost function can be com-
putationally expensive. For example, for only two parameters, a
100 � 100 search grid requires 10,000 evaluations of the cost
function. For some of these parameter values, the cost function
may even be impossible to calculate, due to numerical instability,
particularly for large kij

1 values. For ten free parameters, which is
not an unusually large number, we would need 10010 evaluations.
Assuming an optimistic 1 ms computation time per cost function
evaluation, this search would take a long, long, long time. Essen-
tially, the optimizer is in the situation of a tourist trapped in a
multidimensional universe, having to find the best restaurant in
the city, in complete darkness and without map or smart phone,
just guided by smell.

Clearly, the optimizer must use a clever and more efficient
strategy. A solution is to mimic the effects of gravity. If we place
a ball on our error surface, the ball will start rolling downhill,
eventually settling at the bottom. Like our tourist, the ball is in
darkness: it does not see the whole map, but it’s simply taken by
gravity down the local gradient. An optimization algorithm can
use the same search strategy, following the error function down its
gradient in the multidimensional parameter space. Because of
noise, the error is never zero at the bottom of the surface. Instead,
the search is terminated when the gradient is zero for all
parameters.

We had good experience with the Davidon-Fletcher-Powell
method [69], implemented in code as dfpmin [70]. Compared to
other search strategies, such as simplex [71], dfpmin is very quick
and efficient. As with any gradient-based method, dfpmin requires
the gradients of the cost function with respect to each parameter. In
some cases, the gradients can be calculated analytically [44]. When
not, the gradients could be approximated numerically by evaluating
the cost function at two points in the parameter space that are
separated by a very small distance, for each parameter. Due to
potential numerical errors in the calculation, this distance must be
chosen carefully, to be sure that the cost function does actually
change over that small distance.

Modeling the Kinetic Mechanisms of Voltage-Gated Ion Channels 289



4.7 Interpreting

Fitting Results

An example of fitting macroscopic currents with an ion channel
kinetic mechanism is shown in Fig. 4. Although the fit is clearly very
good, the best parameters found by the optimizer should be taken
with a grain of salt. First, it’s possible that the parameters are not
the very best, but only a local solution. Following the smell of food,
our tourist will eventually find a restaurant, yet a much better one
may be just around the corner. How does he find the very best place

Fig. 4 Fitting the data. This is an example where macroscopic data obtained with several voltage-clamp
protocols, as discussed in Fig. 2, were pooled together and fitted with the kinetic mechanism shown in Fig. 3,
using a computational algorithm that minimized the sum of squared errors. The response of the model to the
same voltage-clamp protocols as used to record the data is represented by the red trace, which corresponds
to the best parameters found by the optimizer. Adapted from [54]
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to eat, without trying them all? Indeed, finding the global mini-
mum is a difficult problem in optimization [72]. A poor man’s
global search strategy is simply to restart the optimizer at different
points in the parameter space and take the overall best. While there
is no theoretical guarantee, the more restarting points tried, the
more likely it is that the solution is truly global. Alternatively, one
could use algorithms specifically designed for global search, which
are slower but more exhaustively explore the parameter space and
can even search across model topologies [73, 74].

A second issue to consider is the theoretical (a priori) identifia-
bility of the model, which has two related aspects [75]. First, there
may be distinct model topologies that explain the data equally well
[76, 77]. Second, for a given model structure, there may be multi-
ple parameter sets that are equally good [44], either as a continuum
or as discrete points in the parameter space. As a result, even when
the optimizer finds the global best, there may be other solutions
that are just as good (although the corresponding physical models
may not be equally plausible). The theoretical identifiability of a
model does not depend on the quality of experimental data.
Instead, it depends on the voltage-clamp protocols that were
included in the analysis and on the mathematical criteria that were
used to calculate the goodness of fit. Essentially, both of these
narrow the range of equivalent solutions in the parameter space,
which can lead to unique solutions. For example, if we tried to fit a
stationary macroscopic current using the sum of squared errors as
the goodness of fit, there would be a large continuum of solutions
that could all explain equally well the data. However, if we then
switched to a maximum likelihood method, the range of equivalent
solutions in the parameter space would be narrower, because a
solution must explain not only the mean value of the current but
also the properties of fluctuations. If we further add a voltage step
protocol, the range of equivalent parameters would narrow even
more. Finally, including prior knowledge implemented as model
constraints or as penalty would further restrict parameter space and
increase model identifiability.

How do we know when a parameter solution is unique? A
simple empirical technique can be used to determine whether a
continuum of equivalent solutions exists. Starting from the solu-
tion found by the optimizer, one parameter can be slightly per-
turbed, and then constrained to a constant value. The resulting
parameter set should give a higher error. Then, we restart the
optimizer and test whether it is able to reach the same goodness
of fit as before, by adjusting the other parameters to compensate for
the change in the one that was constrained. If the optimizer returns
to the same goodness of fit, though with a different set of para-
meters, we have proof that a continuum of solutions exists around
that point. In this case, one could either add constraints to make the
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model simpler or add stimulation protocols to make the data more
informative.

Another important issue is the practical (a posteriori) identifia-
bility of the model, which depends on the properties of the data
used in analysis [78]. Each time a new data set is recorded and
analyzed, the parameter estimates and the cost function will be
different. Because of stochastic fluctuations and experimental noise
and artifacts, these quantities are not deterministic, but vary from
trial to trial. Moreover, even a good model would never give a
perfect fit. The variance of a parameter estimate depends on how
much information is contained in the data about that parameter,
relative to noise and fluctuation levels. A parameter that has large
variance can take a broad range of values without changing the fit
significantly, and thus cannot be trusted much. Ultimately, it
comes down to how many times the channel visits a state, and
how long-lived that state is. For states that are rarely visited or are
very long-lived, there will be little information in the data about
the transitions connecting that state to others. For example, in the
limit case of a single-channel recording, a state simply cannot be
identified if it is never visited in a data set. In general, certain
features of the model that are theoretically observable in practice
may be buried in the noise and hidden or distorted by artifacts. To
reduce parameter variance, one can include more data in the
analysis, but can also optimize the voltage-clamp protocols. The
variance in the cost function is a factor to consider when different
models are tested. If two models are comparable, their cost func-
tion probability distributions may overlap, which means that, sta-
tistically, the wrong model will sometimes give a better fit than the
correct model [38, 79].

What if the best fit is still bad? This could be an indication that
the topology of the model is wrong or that the optimization start-
ing point was not appropriate and the optimizer has been trapped in
a local minimum. As a solution, the optimization can be restarted
with different initial values. If this doesn’t improve the fit, one
could try different model topologies. One should be aware, how-
ever, that when the data included in the fit are collected with
multiple voltage-clamp protocols, it becomes more difficult for
the optimizer to explain all the data collectively. To improve the
fit, there are simple changes that can be made to a model, such as
inserting a state or connecting or disconnecting two states. Param-
eter estimates should always be inspected. For example, if the
optimizer estimates a rate constant at one million per second, that
could indicate something wrong with the model or with the data.
Or, if rate constants that lead to an end state are very small while the
opposite rates are very large, this could indicate a lack of evidence in
the data for that state. Another example is when the rate constants
connecting two states have very large values, which could indicate
that the two states are in fact just one.
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5 Testing Models in Live Neurons

As shown in the previous section, it is possible to find an ion
channel model that explains voltage-clamp data well and gives
insight into the biophysical mechanism of the channel. However,
in an excitable cell, there are many ion channel types that work
together to generate specific patterns of firing activity. A cell is a
complex system where multiple components interact nonlinearly
[80]. In contrast, voltage-clamp experiments isolate the channel of
interest from this system and test it with predefined voltage wave-
forms. It is quite possible that some features of the kinetic mecha-
nism that are critically important to the function of the cell may not
be revealed in the voltage-clamp data and may not be captured by
the model. Ideally, the model should also be tested functionally, in a
cellular context.

A powerful tool for studying the function of voltage-gated ion
channels in live neurons is dynamic clamp [81–83]. The principle is
to pharmacologically block the channel of interest and then func-
tionally replace it with an injected current, dynamically calculated
on the basis of a kinetic model [18]. As a first-order approximation,
where we ignore the potential regulatory function of the permeant
ions, Ca2+ in particular [84], the neuron makes no distinction
between the native current and the model-based current, which
are not necessarily carried by the same ions. Then, if the model is
accurate, the neuron would exhibit the same firing pattern as with
the actual channel. The sensitivity of the firing pattern to channel
properties and the contribution of that particular current to spiking
can be easily studied by varying the properties of the model and
manipulating the model-based current in real time. The major
advantage of this hybrid experimental-computational approach is
that a channel can be investigated within a live cell without any
knowledge about other conductances or cell properties.

5.1 Solving the

Model in Real Time

Dynamic clamp can be understood within the context of a cellular
model. To make it easier to explain the concepts, we make several
simplifying assumptions: (1) besides voltage-independent leak
channels, the neuron contains only Nav and Kv channels, with
kinetic mechanisms described by Markov models; (2) the neuron
has a single compartment and the membrane is isopotential; and
(3) the model corresponds to an ideal whole-cell recording (zero
access resistance, no pipette capacitance, etc.) [17]. The state of the
model as a function of time is completely described by three vari-
ables: the membrane potential V, and the state occupancies of the
Nav and Kv channels, PNa and PK. These state variables evolve in
time according to the following ordinary differential equations:

C
dV

dt
¼ � INa þ IK þ I leakð Þ þ I app; ð30Þ
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dPK

dt
¼ PK �QK ; ð31Þ

dPNa

dt
¼ PNa �QNa; ð32Þ

where Iapp is the current injected into the neuron through the
patch-clamp pipette. To run a computer simulation of our model
neuron, we would have to integrate these equations with an ODE
solver. A real neuron “integrates” a similar set of differential equa-
tions, just more complex, to account for multiple cellular compart-
ments, ion channel stochasticity, etc.

In voltage clamp, Iapp is in principle equal to the sum of all ionic
currents, so as to keep V equal to the command voltage and dV/dt
equal to a predefined value (e.g., zero for a constant voltage step, or
a finite value for a voltage ramp). In this sense, Iapp becomes a
measure of the total ionic currents active in the cell. In current
clamp, Iapp is typically used to test the firing properties of a neuron
under a range of conditions. For example, Iapp can be a constant
value to bias the membrane potential or it can be a predefined
waveform that mimics excitatory or inhibitory synaptic input. In
dynamic clamp, Iapp is not predefined. Instead, Iapp is calculated in
real time, as a function of the membrane potentialVand some other
quantities.

How can dynamic clamp be used to test a voltage-gated ion
channel model in a live neuron? Let’s consider the case of Nav
channels. First, we pharmacologically block the channel, with
TTX in this case. As the Nav current was eliminated, the equations
“integrated” by the cell simplify to just two:

C
dV

dt
¼ � IK þ I leakð Þ þ I app; ð33Þ

dPK

dt
¼ PK �QK : ð34Þ

Next, we replace the blocked current with a current generated by a
Nav model that is solved on the computer. Effectively, we now have
a hybrid biological-computational model that has the same set of
ODEs, but two equations are “integrated” by the cell, and one is
integrated on the computer:

C
dV

dt
¼ � IK þ I leakð Þ þ I app, integrated by the neuron ð35Þ

dPK

dt
¼ PK �QK, integrated by the neuron ð36Þ
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dPNa

dt
¼ PNa �QNa, integrated on the computer ð37Þ

where the injected current, Iapp, is now equal to the negative current
generated by the Nav model,�I C

Na, plus a constant component, Iinj,
that can be used to apply current steps or for other functions:

I app ¼ �I C
Na þ I inj: ð38Þ

The channel model is solved on the computer over discrete time
steps, using the recursive method:

PNa, tþδt ¼ PNa, t � ANa,V; ð39Þ

where ANa,V is the transition probability matrix calculated for a
given membrane potential V. ANa,V can be precalculated over a
voltage range (e.g., �100 to +100 mV, every 0.1 mV) and stored
in a look-up table. As illustrated in Fig. 5, the model is solved in a
real-time computational loop, where every iteration corresponds to
one integration step. For each iteration, V is read from the amplifier
through the digital acquisition card (DAQ). Depending on V, the
appropriate Amatrix is selected from the look-up table and used to
update PNa. Then, INa

C is recalculated and injected into the neuron
via Iapp. This loop must execute fast enough so that the voltage at
the membrane does not change significantly within one iteration,
which would invalidate both the selected ANa,V and the injected

Fig. 5 Testing ion channel models in live neurons with dynamic clamp. As illustrated here, a Nav current is
blocked with TTX and replaced with a model-based current, which is calculated in real time on the basis of a
model and injected into the neuron via the patch-clamp pipette [18]
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current INa
C . The update rate should match the maximum rate of

voltage change, which is typically the rising phase of the action
potential. An update every 20 μs (50 kHz), or faster, is generally
adequate. Once an update interval is chosen, every iteration of the
loop should be completed precisely within that time. To ensure
predictable time steps with minimum variability, the code should
run with real-time priority on the computer.

5.2 Equipment

and Software

While dynamic clamp can be performed under a variety of electro-
physiology paradigms, we focus here on whole-cell patch-clamp
experiments in neurons [17]. Thus, in addition to the equipment
and software used for patch clamp, one also needs a digital acquisi-
tion card, a dedicated computer, and specialized software for real-
time computation. Ideally, the patch-clamp amplifier should feature
“true” current clamp. We had good results with HEKA’s EPC 9
and 10 amplifiers, as well as with Molecular Devices’ Multiclamp
700B. EPC 10 is more convenient, because it allows summation of
external and internal current in current-clamp mode. In contrast,
the Multiclamp amplifier has only one input connection for applied
current, which is normally used by the external DigiData digitizer.
A solution in this case is to use an electronic summation circuit or a
mechanical switch box. Although we don’t have first-hand experi-
ence with other instruments, there are several commercially avail-
able patch-clamp amplifiers that feature true current clamp, e.g.,
those made by A-M Systems, NPI, and Warner Instruments.

Although some patch-clamp amplifiers already include an inter-
nal (EPC 10) or external (Multiclamp 700B) digitizer, these are not
necessarily optimized for real-time feedback acquisition, where, in a
very short time (tens of microseconds), a sample is read from the
analog input, processed on the CPU, and another sample is written
to the analog output. With a few exceptions (e.g., the hardware-
based dynamic-clamp device commercialized by Cambridge Elec-
tronic Design), all dynamic-clamp applications use digitizers made
by National Instruments. At the time of writing, we recommend
the NI PCIe-6351 or NI PCIe-6361 (slightly faster) boards, which
have been optimized for very low latency. One should be aware that
the manufacturer typically specifies the maximum rate for buffered
acquisition, not for real-time applications. Transferring one single
sample across the PCIe bus has a finite latency that limits dramati-
cally the throughput rate in real-time acquisition. For example, the
maximum rate that we could obtain with a NI PCIe-6361 card is
~220,000 acquisition cycles per second, even though the board
can acquire two million samples per second in buffered mode.
Nevertheless, a throughput rate like this is excellent, being compa-
rable with the bandwidth of the patch-clamp amplifier in current
clamp.

Historically, the first dynamic-clamp programs were coded in
some flavor of real-time Linux [85–87]. At the time, obtaining
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acceptable real-time performance under the MS Windows
operating system—or any other non-real-time OS—was simply
not possible. On such a system, user programs can be interrupted
at random by other programs or by the operating system itself.
Another limitation at the time was the driver provided by National
Instruments for programming their boards, which was incredibly
slow for real-time applications (~1,000 cycles per second, according
to our tests). However, the situation has completely changed over
the last ten years, with the development by National Instruments of
new digitizers and optimized drivers, with the advent of multicore
processors and an improved PCIe bus, and with the general increase
in CPU speeds. Today, dynamic-clamp software can be run in MS
Windows with excellent real-time performance, on par with what is
achieved under real-time Linux.

Dynamic-clamp programs are available for both real-time
Linux [88] and MS Windows [18, 89–91]. For the more biophy-
sically inclined user, we recommend our own implementation of
dynamic clamp in the QuB software, which runs under MS Win-
dows (http://milesculabs.biology.missouri.edu/QuB). The major
advantages are integration with a variety of ion channel modeling
algorithms, a powerful scripting language for customized models
and protocols, and sophisticated methods for solving Markov mod-
els of ion channels, deterministically or stochastically. The only
method that can be used to solve large Markov models accurately
is the matrix method described in this chapter, which is available in
our software. Once a few quantities are precalculated and stored in
look-up tables, very large Markov models can be solved using only
vector–matrix multiplications, which can be executed very quickly
on modern CPUs or on graphics processors (GPUs). For example,
we were able to run models with as many as 26 states at 50 kHz or
faster [18]. Thematrix method is also very stable and accurate, even
with long sampling intervals, which is generally not the case with
methods that rely exclusively on ODE solvers to advance the state
probabilities. In particular, integration with the Euler method,
which is practically the only one that is fast enough for real-time
applications, is bound to fail with even small Markov models [18].

In principle, any desktop computer can be used for dynamic
clamp. However, for high-performance applications (large models
and high-throughput rates), we recommend a fast computer that is
used exclusively to run the dynamic-clamp engine. We had the best
results with multicore Intel Xeon CPUs, installed in dual-processor
server-grade systems. For example, the computer that we currently
use in the lab has two Intel Xeon E5-2667 v2 8-core processors,
clocking at 3.3 GHz, and runs Windows 7 Pro 64-bit. Our system
was built by ASL, Inc., but many other computer integrators sell
configurable systems. Of all the components, the most critical are
the CPU and the motherboard.
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5.3 Preparing and

Running a Dynamic-

Clamp Experiment

Setting up a dynamic-clamp experiment involves a few steps. First,
the voltage monitor output of the patch-clamp amplifier should be
connected to one of the analog inputs of the National Instruments
digitizer, while the external current input of the amplifier should be
connected to one of the analog outputs of the digitizer. Next,
one needs to zero the offsets and calibrate the scaling factors
between the amplifier and digitizer, for both input and output.
The calibration procedure depends on the specific dynamic-clamp
software but the idea is to make sure that the membrane voltage
value read into the dynamic-clamp software is the same as the value
reported by the patch-clamp amplifier. Likewise, the external cur-
rent reported by the amplifier should match the current sent by the
dynamic-clamp software. In our experience, there are always slight
offsets of a few mV in membrane potential and a few pA in injected
current, between the amplifier and the digitizer. These offsets must
be compensated for in the software. In particular, one should be
careful that the amplifier receives no unwanted external current
when Iapp is equal to zero, as even a small current of a few pA can
alter the firing pattern of a neuron. Most amplifiers have adjustable
gain in current clamp (e.g., 1 pA/mV). The smallest gain should be
selected that still allows the injection of the largest current that
might be predicted by the model. For example, a model-based Nav
current ranges from a few pA in the interspike interval, small but
sufficient to influence neuronal firing properties, to several nA
during an action potential.

The pipette capacitance should be reduced as much as possible
by coating with Sylgard or other agents. In our experience, the
residual capacitance should be no more than 5–6 pF, otherwise
ringing may occur in dynamic clamp when large currents are
injected, particularly with Nav currents during action potentials.
Once a patch is obtained, the typical artifact estimation and com-
pensation procedures should be applied for series resistance and
pipette capacitance, as well as for membrane capacitance. Then,
upon switching to current clamp, the pipette capacitance compen-
sation should be slightly reduced (10–20 %) to avoid ringing, while
series resistance should be compensated 100 %.

An example of a dynamic-clamp experiment is shown in Fig. 6,
adapted from a previous study on serotonergic Raphé neurons in
the brainstem [54]. In that study, the voltage-gated sodium current
was investigated with voltage clamp to determine its kinetic mech-
anism and tested with dynamic clamp to determine its contribution
to the neuronal firing. These neurons exhibit a pattern of sponta-
neous spiking with low frequency (1–5 Hz) and broad action
potentials (4–5 ms), as shown in Fig. 6a, top traces. Other proper-
ties that are visible during a current step injection are a slow
reduction in spiking frequency, a broadening of the action potential
shape, and a reduction in spike height. A slow kinetic process was
also observed in the voltage-clamp data [54, 92–94], which has
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Fig. 6 Validating the kinetic mechanism in a live neuron. The figure compares the spiking patterns of a neuron
under control conditions and with the Nav current blocked with TTX and replaced with a model-based current
injected with dynamic clamp. A Nav model based on the kinetic mechanism shown in Fig. 7 was able to
explain well the firing properties, including the slow adaptation in action potential shape and frequency (a and
b, lower traces, and c, upper traces). In contrast, the Nav model shown in Fig. 3 could not reproduce the slow
adaptation (c, lower traces). Adapted from [54]



been explained by adding an inactivated state to the Kuo and Bean
Nav model, as shown in Fig. 7. After blocking Nav channels with
TTX and injecting this model into the cell, a firing pattern was
obtained that exhibited the same spike frequency and shape as
the control, maintained under a range of injected current values
(Fig. 6a, b, lower traces). For this experiment, a unitary conduc-
tance of 10 pS was used and the total number of Nav channels,NC,
was chosen so as to match the maximum slope of the action
potential rising phase between control and dynamic-clamp experi-
ments. In most of the examined cells, NC was � 20,000.

The model with an additional inactivated state also reproduced
the slow adaptation in frequency and action potential shape. A
logical follow-up question is whether the adaptation in firing prop-
erties is caused by the slow inactivation detected within the kinetic
mechanism. If true, then a dynamic-clamp-injected current based
on a model that lacks slow inactivation should not result in adapta-
tion. Indeed, as shown in Fig. 6c, this model generates a spiking
pattern that clearly differs from the control: the spike height
remains constant and only the falling phase of the action potential
is slowed down. One should remember that the slope of the rising
phase is proportional to the total number of Nav channels that are
available to generate current, whereas the falling phase depends
mostly on Kv channels. The explanation for the observed spike
shape adaptation is that more and more Nav channels enter the
slow inactivated state after each action potential, leaving progres-
sively fewer channels available to contribute current to the rising
phase.

Clearly, in this case the kinetic model obtained from voltage-
clamp data was well validated by the dynamic-clamp experiment.
However, the keen observer will have noticed a small but important
difference: the action potential starts more abruptly in control than
with the model (Fig. 6a2, b2). In fact, this is not a shortcoming of
the kinetic model but a technical limitation of the brain slice prepa-
ration, where neurons maintain their processes intact. Although
Nav channels are distributed throughout the cell in the soma,
dendrites, and axon [95, 96], the axonal initial segment [97] has
special properties that make it the site of action potential initiation

Fig. 7 A Nav channel kinetic mechanism obtained from voltage-clamp data and validated in live neurons. An
inactivated state (I13) with special properties was added to the Kuo and Bean model [62] to explain voltage-
clamp data and neuronal firing behavior [54]
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[98–100]. From the axonal initial segment, the action potential
backpropagates to the soma, causing the abrupt onset [101–104].
In contrast, the model-based current is injected strictly in the soma,
which becomes the site of action potential initiation. This configu-
ration resembles the case of dissociated neurons that have lost their
axon and exhibit similarly smoothly rising action potentials. Never-
theless, this abrupt action potential onset can be reproduced in a
dynamic-clamp experiment by adding a virtual axonal compart-
ment that generates its own spike and thus contributes additional
current to the rising phase of the somatic action potential [18].
Overall, it is quite remarkable that basic spiking properties are
reproduced so well by a soma-injected model-based current.
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