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    Chapter 9   

 MicroRNAs and Cancer Drug Resistance                     

     Bruno     Costa     Gomes    ,     José     Rueff    , and     António     Sebastião     Rodrigues      

  Abstract 

   The discovery of small regulatory noncoding RNAs revolutionized our thinking on gene regulation. The 
class of microRNAs (miRs), a group of small noncoding RNAs (20–22 nt in length) that bind imperfectly 
to the 3′-untranslated region of target mRNA, has been insistently implicated in several pathological con-
ditions including cancer. Indeed, major hallmarks of cancer, such as cell differentiation, cell proliferation, 
cell cycle, cell survival, and cell invasion, has been described as being regulated by miRs. Recent studies 
have also implicated miRs in cancer drug resistance. Regardless of the several studies done until now, drug 
resistance still is a burden for cancer therapy and patients’ outcome, often resulting in more aggressive 
tumors that tend to metastasize to distant organs. Hence, with this review, we aim to summarize the miRs 
that infl uence molecular pathways that are involved in cancer drug resistance, such as drug metabolism, 
drug infl ux/effl ux, DNA damage response (DDR), epithelial-to- mesenchymal transition (EMT), and can-
cer stem cells.  
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1     Introduction 

  MicroRNAs   (miRs) were discovered  by   Victor Ambros and col-
leagues [ 1 ] in 1993, who observed that the  C. elegans lin - 4  gene 
coded for a pair of small RNAs with antisense complementary to 
multiple sites on the 3′-UTR of  lin - 14  gene. This small RNA sub-
stantially reduced the amount of LIN-14 protein without notice-
ably changing the level of  lin-14  mRNA. This landmark study 
showed that small RNAs possessed regulatory functions and soon 
the presence of other regulatory RNAs (e.g.,  let-7 ) was observed in 
other species namely humans [ 2 ]. This group of regulatory RNAs 
was called microRNAs (miRs) [ 3 ], an evolutionary conserved class 
of small RNAs that was found to control many developmental and 
cellular processes in eukaryotic organisms. The latest version (June 
2014) of the miRBase database (miRbase 21) listed 24 521 miRs 
loci from 206 species, processed to produce 30,424 mature miR 
products. Of these, 1881 sequences belonged to the human 
genome [ 4 ]. 
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 MiRs posttranscriptionally modulate  gene expression   by 
binding to their target mRNAs. miRs can be intergenic or intra-
genic and are produced from endogenous hairpin transcripts 
named pri-miR. Then, the nuclear Drosha/DGCR8 heterodimer 
cleaves pri-miR hairpin stem, producing the pre-miR (60–100 
nucleotides) which is exported to the cytoplasm by Exportin5 and 
RAN-GTP. The pre-miR is then processed by the RNAse III endo-
nuclease Dicer and its TRBP (HIV transactivating response RNA-
binding protein) partner, releasing a duplex with 22–25 nucleotides. 
This duplex associates with the Argonaute protein forming a RNA-
induced silencing complex (RISC). The mature miR stays in the 
complex and the passenger strand is degraded. The RISC complex 
is the functional complex that will interact with mRNA and trigger 
the regulatory effect [ 5 ]. Due to their small size, miRs are capable 
of binding to several regions in the 3′-UTR region of several 
mRNAs and in turn mRNAs can be targeted by several miRs. 
Consequently there is a biological  redundancy in  gene regulation   
executed by miRs. Thus, their action is extremely broad and their 
involvement in  gene expression   and cellular phenotype is well 
established. Although miR binding sites have also been found in 
5′-UTR and in the coding sequences of mRNAs [ 6 ], they prefer-
entially interact with seed-matching sequences in the 3′-UTR of 
mRNA. Several studies have shown that miRs could regulate cell 
differentiation [ 7 – 9 ], cell proliferation [ 10 ,  11 ], cell cycle [ 12 , 
 13 ], cell survival [ 14 ,  15 ], and cell invasion [ 16 – 18 ]. Therefore, 
any misexpression of  miRs   can lead to altered cell phenotypes and 
consequently cancer initiation and progression [ 19 ]. Many miRs 
are located at fragile sites on chromosomes known for having com-
mon alterations (i.e., amplifi cation, deletion, and rearrangements) 
in cancer [ 20 ]. MiRs that inhibit translation of proto-oncogenes 
are considered tumor suppressor miRs, and are usually downregu-
lated in cancer. Other miRs are upregulated in cancer and may act 
as oncogenic miRs by downregulating tumor suppressor genes 
[ 21 ]. Recent studies have highlighted the intratumoral heteroge-
neity in expression of miRs [ 22 ]. This might explain the different 
miR expression profi les described by several groups for the same 
types of cancer and underlines the importance in analyzing numer-
ous sample locations of the primary tumor in order to obtain an 
accurate profi le of miR expression. 

 As stated in previous chapters, drug resistance is frequently 
classifi ed into two broad types: intrinsic and acquired. Intrinsic 
drug resistance is not essentially a genetic attribute of the cancer 
cells, but can be defi ned as preexisting to the therapeutical chal-
lenge endowing the cancer cell with competence to survive treat-
ment, thus rendering therapy potentially ineffective from the 
beginning. More often than not, intrinsic resistance could be con-
ceived as the result of the pharmacogenetic/pharmacogenomic 
confi guration of the host of the tumor. On the other hand, acquired 
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drug resistance is developed during therapy and usually due to 
adaptive processes, such as compensatory signaling pathways, drug 
inactivation, increased expression of drug target, alterations in 
drug targets, increased expression of drug effl ux pumps, cell death 
inhibition,  epigenetic   phenomena, tumor microenvironment, and 
 DNA damage   response and repair augmentation [ 23 – 26 ]. Drug 
resistance usually results in a more aggressive tumor and cancer 
cells often tend to metastasize to distant organs. 

 Within the molecular complexity of the cancer cells and their 
readily capacity to change the circuitry of molecular regulation, the 
discovery of miRs and their roles in  gene expression   quickly led to 
studies that assessed the infl uence of miRs in drug resistance. As a 
consequence, many groups have focused on the role of these small 
regulatory RNAs in the development of cancer drug resistance. 
Several studies have shown that drug resistance can also be 
influenced by miRs, since they can regulate drug resistance-related 
genes, alter drug targets, change drug concentrations, infl uence 
therapeutic-induced cell death, regulate angiogenesis, and be 
involved in the development of tumor stem cells.  

2    MicroRNAs in Cancer Drug Resistance 

 As stated above, miRs have been linked to several hallmarks of cancer 
in tumor cells. Differential expression of miRs in tumor cells before 
treatment has been associated with response to  chemotherapy  , 
while changes in miR expression have been observed in cancer cells 
following treatment. Table  1  summarizes the studies that showed 
a regulation of drug resistance by miRs. The table is divided into 
the main categories of drug resistance pathways and the respective 
regulator miR. Thus, we elaborate on miRs infl uencing on drug 
metabolism,  drug transporters  , DNA repair, epithelial to mesen-
chymal transition (EMT), and  cancer stem cells  . Recent studies 
have attempted to identify single nucleotide polymorphisms either 
in miR loci or target loci and correlate their presence with altered 
therapeutic response [ 27 ,  28 ].

     Drug metabolism is a complex pathway of xenobiotic detoxifi cation 
that involves multiple proteins, and can be divided in three main 
phases: modifi cation, conjugation, and excretion. Xenobiotics are 
foreign compounds (such as drugs) that are not normally produced 
or expected to be present in an organism. Concerted actions of drug-
metabolizing enzymes (DME) and  drug transporters   lead primarily 
to an increase in the polarity of xenobiotics, called Phase I reactions, 
followed by conjugation reactions (Phase II reactions) that increase 
their polarity but block the reactivity of polar groups introduced in 
Phase I reactions. Thereafter the transmembrane transport of 
the resulting metabolites is performed by membrane transporter 
proteins, essentially ABC transporters (Phase III reactions). 

2.1  Drug Metabolism

MicroRNAs and Drug Resistance
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 Although extensive studies have been performed on transcriptional 
regulation of the DMEs, there is a lack of understanding of their 
posttranscriptional regulation [ 29 ]. Recent studies have shown 
that miRs also control the expression of some DME [ 30 – 32 ]. 
However few studies have shown a direct involvement of miRs and 
DME with drug resistance. One of the key players of the Phase I 
(modifi cation) are cytochrome P450 (CYP) enzymes that catalyze 
oxidation reactions of the xenobiotics and occasionally reduction 
reactions [ 33 ]. More than 90 % of the reactions involved in the 
metabolism of all chemicals, whether general chemicals, natural, 
physiological compounds, and drugs, are catalyzed by P450s [ 34 ]. 
Three-fourths of the human CYP reactions can be accounted for by 
a set of fi ve CYPs: 1A2, 2C9, 2C19, 2D6, and 3A4, with the largest 
fraction of the CYP reactions being catalyzed by CYP 3A enzymes. 
The importance of CYP 3A4 in metabolic  reactions   of drugs varies 
from 13 % for general chemicals to 27 % for drugs [ 34 ]. Therefore 
the regulation of DMEs is crucial to drug effi cacy and may be 
related to drug failure or drug resistance. 

 Tsuchiya et al. [ 30 ] showed a direct association of miR-27b and 
CYP1B1 in  breast cancer  . The authors not only validated CYP1B1 
as a mirR-27b target in cell lines but also showed that in tissue 
samples there is an inverse correlation between miR-27b expression 
and CYP1B1 protein expression. Indeed, the authors showed that 
miR-27b decreased in expression along the group staining of 
CYP1B1 by  immunohistochemistry  , being more expressed in the 
weak staining group and less expressed in the strong staining group. 
CYP1B1 is highly expressed in estrogen target tissues, and catalyzes 
the  metabolic   activation of various pro- carcinogens and the 
4-hydroxylation of 17β-estradiol, and is also abundant in cancerous 
tissues. However, the authors did not show an association with 
drug resistance. Nevertheless, since deactivation of 4-hydroxy-
tamoxifen, a biotransformation product of tamoxifen that has 100-
fold increased affi nity to estrogen receptors then tamoxifen itself, 
occurs via CYP1B1 [ 35 ], the increased expression of CYP1B1 in 
 breast cancer   cells could augment the resistance to tamoxifen, a 
widely used drug in  breast cancer   treatment. 

 CYP2E1 is the fourth most abundant isoform (approximately 
7 % of total P450 protein) after CYP3A4 (30 % of total P450), 
CYP2C (20 % of total P450), and CYP1A2 (approximately 13 % 
of total P450). CYP2E1 catalyzes the metabolism of numerous 
 low- molecular- weight xenobiotics, including organic solvents 
(e.g., ethanol, acetone, carbon tetrachloride, chloroform, vinyl 
chloride, glycerol, hexane, and toluene), and several procarcinogens, 
such as  N -nitrosodimethylamine and  N -nitrosomethylethylamine. 
Interestingly, the ectopic expression of CYP2E1 induced ROS 
generation, affected autophagy, and inhibited migration in  breast 
cancer   cells, thus potentially being involved in  breast cancer   metas-
tasis [ 36 ]. Mohri et al. identifi ed a possible miR-responsive 
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element (MRE378) in the 3′-UTR of human CYP2E1 mRNA, 
and luciferase assays using HEK293 cells confi rmed that miR-378 
functionally recognized this region [ 37 ]. The overexpression of 
miR-378 signifi cantly decreased the CYP2E1 protein level and 
enzyme activity in cells expressing CYP2E1 including 3′-UTR, but 
not in the cells expressing CYP2E1 excluding 3′-UTR, indicating 
that the 3′-UTR plays a role in the miR-378-dependent repres-
sion. However, the presence of miR-378 did not facilitate the deg-
radation of the CYP2E1 mRNA. Therefore, according to the 
authors, the downregulation of CYP2E1 by miR-378 would 
mainly be due to the translational repression, not mRNA degrada-
tion. Additionally the relationship between the expression levels of 
miR-378, CYP2E1 mRNA and protein as well as enzyme activity 
was assessed using a panel of 25 human livers. CYP2E1 protein 
levels were signifi cantly correlated with the enzymatic activities but 
were inversely correlated with CYP2E1 mRNA levels, while miR- 
378 levels showed a signifi cant inverse correlation with the CYP2E1 
protein levels [ 37 ]. In another study, Pan et al. [ 38 ] showed that 
miR-27b interacts with the 3′-UTR of CYP3A4, thus regulating its 
expression. Moreover an overexpression of miR-27b in PANC1 
Human pancreas cancer cells led to a lower sensitivity to cyclo-
phosphamide, indicating that miR-27b can alter CYP3A4-catalyzed 
drug activation, and consequently impact on drug response and 
resistance. 

 Regarding Phase II reactions even fewer studies have linked 
miR-mediated regulation and drug resistance. One example is the 
sulfotransferase isoform 1A1 (SULT1A1), a member of the sulfo-
transferase (SULT) family of phase II detoxifi cation enzymes that 
catalyze the transfer of the sulfonyl group from 3′-phosphoadenosine 
5′-phosphosulfate (PAPS) to nucleophilic groups of a variety of 
xenobiotic and endogenous compounds, thus increasing their solu-
bility and excretion [ 39 ]. SULT1A1 is the most highly expressed 
SULT in the liver. Several therapeutic agents, including 4-hydroxy-
tamoxifen, are substrates for SULT1A1, and variability in the activ-
ity levels of the enzyme can markedly infl uence the effi cacy of these 
drugs and consequently drug resistance [ 40 ]. Interestingly, a com-
mon single nucleotide polymorphism (SNP) in the coding region of 
SULT1A1, several proximal promoter SNPs, and copy number vari-
ation (CNV) are associated with altered enzymatic activity, but these 
variants do not fully account for the observed variation of SULT1A1 
activity in human populations. Thus, Yu et al. [ 41 ] looked for SNPs 
in the 3′-UTR region of this gene. In silico analyses predicted that 
the 973C→T SNP would infl uence the binding of miR-631 to the 
SULT1A1 3′-UTR. Accordingly, in vitro luciferase reporter assays 
and overexpression of miR inhibitors in ZR75-1, MCF7, and 
MCF10A breast cell lines confi rmed that SULT1A1 is a direct target 
of miR- 631 [ 41 ]. 
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 Finally, Moriya et al. [ 42 ] found that miR-133a was a potential 
regulator of GSTP1. Transfection of miR-133a repressed GSTP1 
expression at both mRNA and protein levels in several different 
cell lines. The functional signifi cance of miR-133a was investigated 
using  head and neck Squamous Cell Carcinoma   (SCC), esophageal 
SCC, and bladder cell lines, and the authors showed that restora-
tion of miR-133a expression inhibited cancer cell proliferation, 
invasion, and migration, suggesting that miR-133a may function 
as a tumor suppressor. GSTP1 is a member of the GST enzyme 
superfamily, and catalyzes the conjugation of electrophiles to glu-
tathione in phase II detoxifi cation reactions, including platinum 
drugs such as cisplatin and carboplatin [ 43 ]. GSTP1 has several 
critical roles in both normal and neoplastic cells, including phase II 
xenobiotic metabolism, stress responses, signaling, and  apoptosis  . 
Overexpression of GSTP1 has been observed in many types of can-
cer and in human tumor cell lines either inherently or made resis-
tant to  chemotherapy   drugs, including cisplatin and various 
alkylating agents [ 44 ]. For example, GSTP1 knockdown selec-
tively infl uenced cisplatin and carboplatin chemosensitivity; cell 
cycle progression was unaffected, but cell invasion and migration 
was signifi cantly reduced [ 45 ]. The reduced expression of miR-
133a may thus lead to an increased expression of GSTP1, contrib-
uting to drug resistance. 

 In spite of these results, miR-dependent regulation of expres-
sion in DMEs does not seem to be the most important mode of 
regulation as few miR-binding regions are found in the 3′-UTR of 
DME genes. Furthermore, the miR binding sites described for 
most of the DMEs are poorly conserved, leading one to speculate 
that other forms of regulation are more important.  

   Drug transport through cell membranes is a critical step in allow-
ing access of pharmacologic agents to intracellular targets. The 
involvement of drug transport is probably amongst the most stud-
ied mechanisms in cancer drug resistance [ 46 ]. Multidrug resis-
tance (MDR)    is frequently linked to overexpression of one or more 
of drug transport proteins present in the cytoplasmic membrane. 
The ABC transporters have an important cellular role in the effl ux 
and infl ux of several substrates necessary to the cell and also in the 
effl ux of toxic endogenous molecules and xenobiotics (See chap-
ters by Mitra, Viverios, and Gromicho, in this book). Up to now, 
49 different ABC transporters were identifi ed and classifi ed in 
seven families from ABCA through ABCG [ 47 ,  48 ]. The relevance 
of miRs in regulating the expression of ABC transporters has been 
recently reviewed [ 31 ,  49 ]. 

 One of the most well-known ABC transporters is  ABCB1  , also 
known as MDR1 or P-gp transporter. In chemotherapeutic- 
resistant cancer cell lines,  ABCB1   is often observed to be upregu-
lated. The increased expression of  ABCB1   leads to an increased 
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resistance of several chemotherapeutics, such as taxanes (e.g., 
paclitaxel and docetaxel), epipodophyllotoxins derivates (e.g., eto-
poside and teniposide), anthracyclines (e.g., doxorubicin), antibi-
otics (e.g., actinomycin D), vinca alkaloids (e.g., vinblastine and 
vincristine), and  tyrosine kinase inhibitors   (e.g., imatinib and erlo-
tinib) [ 47 ,  50 ]. To date, several authors have published data about 
misexpression of miRs and  ABCB1   [ 51 – 54 ]. Kovalchuck and col-
leagues [ 51 ] showed that the   ABCB1    gene is highly expressed in 
the MCF-7/DOX breast tumor cell lines resistant to doxorubicin 
when compared with wild type MCF-7. Conversely, miR-451 
expression is undetected, showing a negative correlation between 
 ABCB1   and miR-451 expression. These authors then showed that 
miR-451 targets the   ABCB1    3′-UTR regulatory region which 
consequently leads to a depletion of the drug transporter and 
increased sensitivity to doxorubicin. Transfection of miR-451 rees-
tablished the sensitivity of the MCF-7/DOX cells to doxorubicin. 
Similarly, Chen and colleagues [ 52 ] showed the same pattern but 
with miR-200c. The authors also showed a correlation of miR- 
200c with poor response to neoadjuvant chemotherapeutics using 
 breast cancer   tissues. Low expression of miR-200c leads to poor 
neoadjuvant therapeutic outcomes. However, they did not follow 
  ABCB1    gene and protein expression in the patients. Although 
published studies suggest a decreased expression of miR-451 cor-
related with higher expression of  ABCB1   in drug resistant cells 
[ 51 ,  55 ], in a human ovarian cancer cell line, and its multidrug 
resistant counterpart, as well as in a human cervix carcinoma cell 
line and its multidrug resistant variant, expressions of miR-27a and 
miR-451 were upregulated in multidrug resistant cells as com-
pared with their parental lines, downregulating expression of the 
  ABCB1  gene   [ 56 ]. These results seem to point that the involve-
ment of specifi c miRs in drug resistance should be cautiously taken 
at the moment, since the results could depend on various factors, 
including the cell lines under study. Bao et al. [ 53 ] used a different 
breast tumor cell line, MDA-MB-231, to show that miR-298 reg-
ulates   ABCB1     gene expression   and increases resistance to doxoru-
bicin. Remarkably, the authors also showed that the miR processing 
is altered in the resistant cell lines, due to the fact that DICER is 
weakly expressed and higher levels of miR-298 precursor was 
detected instead of mature form. Other authors also demonstrated 
a regulation of  ABCB1   by miR-145 [ 57 ] in intestinal epithelial 
cells, and mir-381 and miR-495 in leukemia  K562   cells resistant to 
adriamycin (K562/ADM cells)    [ 58 ]. In this last study, functional 
analysis indicated that restoring expression of miR-381 or miR- 
495 in K562/ADM  cells   was correlated with reduced expression 
of the   ABCB1    gene and its protein product and increased drug 
 uptake   by the cells [ 58 ]. 

 ABCG2 is another ABC transporter that, in normal tissues, 
functions as a defense mechanism against toxins and xenobiotics, 
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with expression in the gut, bile canaliculi, placenta, blood–testis 
and blood–brain barriers. ABCG2 recognizes and transports a 
variety of chemotherapeutic drugs out of cancer cells, thereby 
resulting in reduced drug concentration, and subsequent drug 
resistance. Consequently ABCG2 plays a critical role in the devel-
opment of  MDR   in  breast cancer   [ 59 ]. Increased ABCG2 expres-
sion has been found in  breast cancer   cells that exhibit resistance to 
mitoxantrone (MX), topotecan, and 7-ethyl-10-hydroxycampto-
thecin (SN-38) [ 60 ]. Upregulation of ABCG2 also confers resis-
tance to tamoxifen in breast cancer cells [ 61 ]. In addition, ABCG2 
expression correlates with  chemotherapeutic response   to anthra-
cycline in patients with breast cancer [ 62 ]. Jiao et al. [ 63 ], per-
formed microarray analysis to determine the differential expression 
patterns of miRs that target ABCG2 between the MX resistant 
 breast cancer   cell line MCF-7/MX and its parental MX sensitive 
cell line MCF-7. MiR- 181a was found to be the most signifi cantly 
downregulated miRNA in MCF-7/MX cells. Overexpression of 
miR-181a downregulated ABCG2 expression, and sensitized 
MX-resistant MCF-7/MX cells to MX. Moreover, in a nude 
mouse xenograft model, intratumoral injection of miR-181a mim-
ics inhibited ABCG2 expression, and enhanced the antitumor 
activity of MX. Other authors have shown that ABCG2 is regu-
lated by other miRs, including miR-328 [ 64 ] and 487a [ 65 ], and 
can infl uence MX resistance. miR-519c and miR-328 were also 
described as ABCG2 regulators and Li et al. [ 66 ] showed intracel-
lular accumulation of MX in cells lacking ABCG2 expression. 
Interestingly, the authors also showed differences in expression of 
this miRs in stem-like ABCG2 +  cells and their ABCG2 −  counter-
parts. Thus, further investigation of miR regulation in stem cells 
may provide new insights into  chemoresistance  . 

 Another well-known ABC transporter is ABCC1, also known 
as MRP1. The main subtracts of ABCC1 are vincristine and etopo-
side and ABCC1 also confers resistance to anthracyclines (doxoru-
bicin, daunorubicin, epirubicin), mitoxantrone, fl utamide, and 
methotrexate. Curiously, many drugs are only transported in the 
presence of glutathione [ 67 ]. Regarding ABCC1, three reports 
were published showing a regulation by miRs [ 68 – 70 ]. Pogribny 
and colleagues [ 68 ] revealed that miR-345 and miR-7 increases 
sensitivity to cisplatin through a negative correlation with ABCC1. 
For that, the authors used a MCF-7 cell line resistant to cisplatin 
which expresses high levels of ABCC1 and lower levels of miR-345 
and miR-7. Liang et al. [ 69 ] showed that miR-326 represses 
ABCC1 expression and sensitizes VP-16 resistant MCF-7 cells to 
VP-16 and doxorubicin. Pan et al. [ 70 ] reported that miR-1291 
targets the 3’UTR of ABCC1 and consequently regulates its 
expression. This has impact in drug disposition and consequently 
in drug resistance. Interestingly, miR-1291 was described by these 
authors as being originated from a small nucleolar RNA, SNORA34. 
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 ABCC2, also known as MRP2, and ABCC1 share a 49 % amino 
acid identity. As ABCC1, this effl ux pump needs the presence of 
glutathione and can transport methotrexate, cisplatin, irinotecan, 
paclitaxel, and vincristine. ABCC2 is expressed in some solid 
tumors from the kidney, colon, breast, lung, ovary, and as well as 
in cells from patients with acute myelogenous leukemia [ 71 ]. 
Regarding ABCC2, to our knowledge, only one article has been 
published associating miR misexpression and ABCC2. Xu et al. 
[ 72 ] showed that miR-297 targets the 3′ UTR region of ABCC2 
transcripts and consequently downregulates its expression. They 
also showed an inverse correlation between both molecules in 
colorectal carcinoma cell lines. Moreover, cell lines resistant to 
oxaliplatin and vincristine were sensitized when miR-297-mimics 
were transfected into these cells, in vitro and in vivo. 

 Intestinal epithelial cells are responsible for the absorption of 
most cancer drugs, and they express a variety of infl ux transporters 
specifi c for drugs, amino acids, peptides, organic anions, organic 
cations, and other nutrients. Peptide transporter 1 (PEPT1/
SLC15A1), organic cation/carnitine transporter 2 (SLC22A5), 
organic anion transporting polypeptide 2B1 (SLCO2B1), and 
monocarboxylate transporter 1 (MCT1/SLC16A1) are expressed 
at the brush-border membrane, whereas organic cation transporter 
1 (SLC22A1) is mainly expressed at the basolateral membrane in 
the small intestine [ 31 ]. Recent studies have indicated that the 
regional differences in the expression of these transporters are 
dependent on the differentiation of intestinal epithelial cells [ 73 ]. 
Hence, misexpression of miRs could have a marked impact on 
absorption of cancer drugs. There are a limited number of reports 
on the SLC transporters regulated by miRNAs (Table  1 ). Dalmasso 
et al. [ 74 ] showed for the fi rst time that SLC15A1 is regulated by 
a miR, namely miR-92b, causing diminished infl ux activity. 
Moreover, it suppresses bacterial peptide-induced proinfl amma-
tory responses in intestinal epithelial cells by inhibiting 
SLC15A. Pullen et al. [ 75 ] showed that miR-29a, miR-29b, and 
miR-124 can target SLC16A1, resulting in decreased expression at 
the protein level. The authors also refer that this regulation mecha-
nism is not the main regulator but complements other transcrip-
tional mechanisms and mutations that alter SLC16A1 expression.  

    DNA damage   by endogenous or exogenous agents elicits a power-
ful cellular response called the  DNA Damage   Response (DDR), 
which call up concerted molecular pathways to detect, repair, 
induce cell cycle arrest to allow repair, or in cases of high numbers 
of DNA lesions or irreparable damage,  apoptosis  , or cellular senes-
cence (permanent cell cycle arrest) [ 76 – 79 ]. In the past few years 
evidence has accumulated that drug resistance is also linked to 
alterations in these pathways [ 26 ,  80 – 85 ]. The DDR pathways 
include DNA tolerance mechanisms by error-prone polymerases, 
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the direct reversal of lesions, essentially de-alkylation of alkylated 
bases by O 6 -methyl-guanine-DNA methyltransferase ( MGMT ), 
alkylation repair homolog 2 ( ALKBH2 ) and alkylation repair 
homolog 3 ( ALKBH3 ); nucleotide excision repair (NER); base 
excision repair (BER); mismatch repair (MMR); and the double 
strand break repair by homologous recombination (HR) and non-
homologous end joining (NHEJ) [ 86 ,  87 ]. Besides these signaling 
cascades, the DDR also elicits the induction of several noncoding 
RNAs, including miRs. A large number of miRs are transcription-
ally induced upon  DNA damage   and the level of induction is vari-
able depending on cell type and the nature and the intensity of 
 DNA damage   and time after  DNA damage   [ 88 – 93 ]. Conversely 
many miRs target DDR genes, thus controlling feed-back and 
feed- forward loops to fine-tune the response (for a review see 
refs.  88 ,  94 ,  95 ). Wouters et al. found that 74 (52 %) mammalian 
DNA repair and  DNA damage   checkpoint genes contain conserved 
microRNA target sites predicted in their 3′-UTR by the algorithms 
Targetscan, Miranda, or both [ 95 ]. 

 One of the fi rst indications that implicated miR- mediated reg-
ulation of the DDR was knockdown of the miR biogenesis path-
way (Dicer and Ago2), which resulted in increased sensitivity to 
UV and altered cell cycle after UV damage [ 90 ]. Following this 
study many reports have shown that different DNA damaging 
agents induce different patterns of miR expression [ 95 ]. Thus it is 
conceivable that alterations in miRs are involved in tumor response 
to anticancer agents. 

 A few examples indicate indeed that misexpression of miR is 
associated with drug responsiveness [ 96 ,  97 ]: members of the let-7 
family of miRs are rapidly downregulated upon ionizing radiation 
in A549 lung cancer cells. Interestingly, the let-7 family of miRs 
regulates expression of oncogenes, such as RAS, and is specifi cally 
downregulated in many cancer subtypes. Low levels of let-7 pre-
dict a poor outcome in lung cancer. Overexpression of the let-7 
family leads to radiosensitization in vitro of lung cancer cells and 
in vivo in a  Caenorhabditis elegans  model of radiation- induced cell 
death, whereas decreasing their levels causes radioresistance. In  C. 
elegans , this was shown to occur partly through control of the 
proto-oncogene homologue let-60/RAS and genes in the  DNA 
damage   response pathway [ 96 ]. 

 In another example, miR-138 was shown to target the ERCC1 
gene, involved in NER, and to increase the sensitivity of A549/DDP 
cells to cisplatin in vitro and augmented  apoptosis  , suggesting 
that miR-138 could play an important role in the development of 
cisplatin resistance [ 98 ]. 

 Valeri et al. [ 99 ] showed that MMR proteins MSH2 and 
MSH6 are inhibited by miR-21 overexpression causing a reduction 
in 5-fl uorouracil (5-FU) induced G2/M damage arrest and  apop-
tosis  , in vitro. Moreover, xenograft studies demonstrate that miR- 21 
overexpression reduced the therapeutic effi cacy of 5-FU. 
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 REV1, an error-prone Y-family DNA polymerase required for 
translesion synthesis across interstrand crosslinks, was validated as a 
target of miR-96. Overexpression of miR-96 promoted cellular 
hypersensitivity to cisplatin in vitro and in vivo and enhanced sensitiv-
ity to the PARP inhibitor AZD2281. This miR also targets RAD51, 
a recombinase that promotes HR repair of double strand breaks 
(DSBs) and interstrand DNA crosslink (ICLs) [ 100 ]. RAD51 is also 
targeted by miR-155 in human  breast cancer   cells and affects the cel-
lular response to ionizing radiation (IR). Due to this interaction, the 
effi ciency of HR repair is reduced and sensitivity to IR augmented 
in vitro and in vivo. Indeed, overexpression of miR-155 was related 
with low levels of RAD51 and with better  overall survival   of patients 
with triple-negative  breast cancers   (TNBC) [ 101 ]. This emphasizes 
the possibility of how personalized therapy in TNBC patients could 
be used, knowing the miR- 155 levels. 

 BRCA1 is an important component of the DDR pathway. 
BRCA1 encodes a nuclear phosphoprotein and primarily functions 
to maintain genomic stability via critical roles in DNA repair, cell 
cycle checkpoint control, transcriptional regulation,  apoptosis  , and 
mRNA splicing [ 102 ]. Mutations in BRCA1 are associated with an 
increased risk of developing breast and ovarian cancer. BRCA1 is 
also a target of miRNA-182 [ 103 ], indeed, the authors showed 
that high expression of this miR in multiple breast tumor cell lines 
infl uences BRCA1 levels and sensitivity to PARP1 inhibition. 
MiRNA-146a and miRNA-146-5p also bind to the same site in the 
3′-UTR of BRCA1 and downregulate its expression. In breast 
tumors, levels of these miRs are inversely correlated with that of 
the BRCA1 protein and these miRs are overexpressed in triple neg-
ative  breast cancers  , a common type of  breast cancer   in women 
with BRCA1 mutations [ 104 ]. 

 In another study, although the authors did not show specifi c 
targets, miR-296-5p and miR-193a-3p overexpression induced 
resistance to cisplatin, whereas miR-183 overexpression induced 
sensitivity. This study was done in breast cancer cells and also 
showed that miR-296-5p overexpression led to doxorubicin and 
paclitaxel resistance. These authors also examined whether 
 overexpression of miR-16, miR-21, and miR-382 in Human Small 
Airway Epithelial progenitor (HSAEpCs) cells could modulate 
 chemotherapy   sensitivity. Thus, they found that miR-382 and miR-21 
had no effect in resistance, while miR-16 promoted sensitivity to 
cisplatin and doxorubicin [ 91 ].  

   Metastasis is the ultimate cause of death in most cancer patients. 
The growth of cancer cells at distant organs of a different tissue 
requires complex processes of detaching from the original tissue; 
invasion through the basement membrane; movement in the 
bloodstream or lymphatic system; and anchorage in other organs. 
The initial process is called epithelial-to-mesenchymal transition 
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(EMT) and is characterized by a phenotypic change of the tumor 
cells from cell–cell adhesion and polarity to motility, invasiveness, 
and some of the features of stem cells. This process not only enable 
the spread of the tumor cells but also their anchorage in distant 
organs, since tumor cells that undergo EMT can reverse this char-
acteristic acquiring the epithelial phenotype again, in a process 
called mesenchymal-to-epithelial transition (MET). In EMT, cells 
lose the expression of E-cadherin and gain the expression of vimen-
tin, N-cadherin, and fi bronectin, markers of mesenchymal pheno-
type. Presumably, EMT is sustained by transient molecular changes 
and not by permanent genetic alterations. Indeed, the reversible 
nature of EMT must be associated with reversible  epigenetic 
  mechanisms, which allows stable but reversible modifi cations that 
do not directly affect the DNA primary sequence [ 105 – 107 ]. 

 MiRs, as posttranscriptional regulators, are good candidates as 
EMT regulators and, as with  epigenetic   mechanisms, do not affect 
the DNA primary sequence and can press tumor cells to acquire an 
EMT phenotype in the tumor microenvironment. The most stud-
ied case is the miR-200 family that targets at least two transcrip-
tional repressors of E-cadherin, ZEB1, and ZEB2. 

 It is known that the sensitivity to some cancer drugs like eto-
poside, taxol, and epidermal growth factor receptor inhibitors is 
increased with restoration of E-cadherin expression. Chen et al. 
[ 108 ] showed that miR-200c increases drug sensitivity of  breast 
cancer   cells to doxorubicin through the E-cadherin-mediated 
upregulation of PTEN. Similarly, Manavalan et al. [ 109 ] showed 
that an increased expression of miR-200b and miR-200c enhances 
the sensitivity to growth inhibition by 4-hydroxytamoxifen 
(4-OHT) and fulvestrant in  breast cancer   cells. Although it is 
known that miR-200 family regulates EMT through ZEB1 and 
E-cadherin, the real mechanism through which the miR-200 fam-
ily regulates drug resistance is not known, and thus further studies 
are necessary to understand these phenomena. In order to answer 
this question, Bai et al. [ 110 ] published interesting data about 
miR-200c and feedback circuits of miR-200c/ZEB1 and miR- 
200c/ZNF217/TGF-β/ZEB1. The authors showed that these 
circuits contribute to trastuzumab resistance and metastasis of 
 breast cancers.   Interestingly, this feedback circuits might be related 
with reverse EMT in metastasis formation, since ZEB1 can inhibit 
miR-200c expression. The authors also showed that low levels of 
miR-200c activate the TGF-β signaling pathway and consequently 
trastuzumab resistance in  breast cancer   cells. Indeed, restoring 
miR-200c was suffi cient to resensitize cells to trastuzumab and 
reverse the mesenchymal phenotype by inhibiting TGF-β signaling 
and ZEB1 expression. Similarly, Izumchenko et al. [ 111 ] reported 
that a high MIG6 expression and a suppression of miR-200c 
expression is a consequence of TGF-β-induced EMT and a signa-
ture for resistance to erlotinib. 
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 Kitamura and colleagues [ 112 ] also showed, in lung adenocar-
cinoma, the importance of TGF-β signaling in drug resistance and 
EMT, namely, they showed that miR-134/miR-487b/miR-655 
cluster promotes the EMT through TGF-β signaling and induces 
resistance to gefi tinib by directly targeting MAGI2, whose sup-
pression is encompassed by loss of PTEN stability [ 112 ]. 

 Another example is the overexpression of miR-147, which 
alone induced reversal of EMT and consequently reversal of the 
native drug resistance of the colon cancer cell line HCT116 to 
gefi tinib. Although the specifi c mechanism of action of miR-147 is 
still unknown, the authors found that miR-147 signifi cantly upreg-
ulates CDH1 and represses ZEB1, known EMT markers, and 
inhibited TGF-β1 expression and also repressed Akt phosphoryla-
tion, leading to gefi tinib sensitivity [ 113 ]. Jiang et al. [ 114 ] 
reported that miR-489 is underexpressed in a MCF7  breast cancer 
  cell line resistant to doxorubicin, a cell line that shows mesenchy-
mal phenotype. On the contrary, SMAD3, involved in TGF-β- 
induced EMT, is overexpressed in the same cell line. Ectopic 
expression of mir-489 not only reversed mesenchymal features, as 
well as sensitized the breast cell line to doxorubicin, through inhi-
bition of SMAD3. No matter what miR and the respective target 
might be deregulated, all these studies show a point in common 
that is TGF-β signaling. This enhances the importance of TGF-β 
signaling in EMT and the regulation of EMT infl uenced drug 
resistance by miRs. miR-223 was also associated with drug resis-
tance and EMT in  pancreatic cancer  . miR-223 is upregulated in 
gemcitabine resistant  pancreatic cancer   cells, thus acting as an 
oncogene, most probably, through inhibition of Fbw7 which con-
sequently overexpresses Notch-1. The authors also showed that 
by inhibiting miR-223,  pancreatic cancer   cells were sensitized to 
gemcitabine [ 115 ].  

   Somatic stem cells are typically slowly cycling cells capable of self- 
renewing mitotic divisions in which one or both of the daughter 
cells are faithful reproductions of the parent stem cell. The experi-
mental observation that certain minority subpopulations of primary 
human acute myeloid leukemias (AMLs) could propagate the dis-
ease in immunodefi cient mouse hosts at higher frequencies than the 
bulk populations of leukemic cells, led to the basis of what was later 
called the stem cell hypothesis. These cells made up the so- called 
side population (SP) cells, described as a subset of cells highly 
expressing ABC transporters and exhibiting cancer stem cell (CSC)-
like phenotypes. Initially they were isolated by fl uorescence-activated 
cell sorting (FACS) techniques based on Hoechst 33342 effl ux. 
The SP cells were fi rst isolated from the hematopoietic system but 
were then identifi ed in normal tissues and several solid tumors. 

 Although it is accepted that most tumors arise from a single 
mutated cell, i.e., their origin is monoclonal, the tumor itself is a 
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sum of several types of cells, due to the heterogeneity derived from 
a continuous evolution of the primitive cancer cell. Not all of these 
cells will display characteristics of cancer cells, such as metastization 
or unlimited replication potential. Operationally,  (CSC)   make up 
subpopulations of neoplastic cells within a tumor that have an ele-
vated ability to seed new tumors upon experimental implantation 
in appropriate animal hosts [ 116 ]. They share many of the features 
of normal stem cells, including the capacity for self- renewal and 
differentiation, although their ability to differentiate into more 
than a few cell types has not been unequivocally proven, besides 
leukemias [ 117 ]. Although CSCs have been well characterized in 
hematological malignancies, their existence in other tissues has 
been much debated (for a review see Ref. [ 118 ]). Over the past 
few years CSC have been identifi ed using stem cell specifi c markers 
in several solid tumors including breast, brain, colon, prostate, and 
 pancreatic cancer   [ 119 – 122 ]. It is often diffi cult to strictly defi ne 
CSCs by associating them with traits beyond their tumor-initiating 
capability [ 118 ,  123 ]. Moreover, the possible existence of CSCs 
within tumors is intimately linked to tumor heterogeneity and 
tumor dedifferentiation. Nevertheless, several miRs have been 
shown to regulate stemness, or what we consider as properties of 
tumor-initiating and maintaining cancer cells, of different cancer 
types. 

 Recent studies showed differential expression of certain miRs 
between CSC and their differentiated counterparts [ 6 ,  124 ,  125 ], 
suggesting that miRs could also be involved in the regulation of 
CSC. For example, miR-200c and miR-34 have been shown to 
regulate CSC properties by targeting Bmi1 and downregulating 
Bcl2 and Notch, respectively [ 125 ,  126 ]. Additionally, miR-134, 
miR-296, and miR-470 modulate embryonic stem cell differentia-
tion by suppressing the expression of the stem cell transcription 
factors Nanog, Oct4, and Sox2 [ 6 ]. Therefore miRs may impact on 
cancer drug resistance and several miRs have been reported to regu-
late stem cell properties and drug resistance concomitantly [ 127 ]. 

 Yu et al. showed that let-7a expression was signifi cantly 
decreased and Nanog/Oct4 expression was increased in head and 
neck cancer (HNC) tissues as compared to adjacent normal cells 
[ 128 ]. HNC–ALDH1+ cells displayed a decreased level of let-7a 
than HNC–ALDH1− cells. The overexpression of let-7a in vitro 
and in vivo showed that the  self-renewal  , resistance to cisplatin, and 
tumor initiation properties were signifi cantly suppressed in let7a-
overexpressing HNC–ALDH1+ cells, suggesting that the resistance 
of HNC–ALDH1+ cells to  chemotherapy   is partially due to the 
preferential activation of let-7a miRNA  gene expression.   

 In another study, expression of miR-145, a tumor-suppressive 
miR, was shown to be inversely correlated with the levels of Oct4 
and Sox2 in glioblastoma-CD133+ (GBM-CD133+) cells and 
malignant glioma specimens [ 129 ]. CD133 is a putative CSC 
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marker in glioblastomas. The authors subsequently showed that 
miR-145 negatively regulates GBM tumorigenesis by targeting 
Oct4 and Sox2 in GBM-CD133 +  cells. miR-145 delivery to 
GBM-CD133 +  cells using polyurethane-short branch polyethyl-
enimine (PU-PEI) signifi cantly inhibited their tumorigenic and 
CSC-like abilities and facilitated their differentiation into CD133 − -
non-CSCs. Moreover, PU-PEI-miR145-treated GBM-CD133 +  
cells suppressed the expression of stemness (Nanog, c-Myc, and 
Bmi-1), drug-resistance (ABCG2, ABCC5,  ABCB1),   and anti- 
apoptotic genes (Bcl-2, Bcl-xL) and increased the sensitivity of the 
cells to radiation and temozolomide. The in vivo delivery of 
PU-PEI-miR145 alone signifi cantly suppressed tumorigenesis with 
stemness, and synergistically improved the survival rate when used 
with radiotherapy and temozolomide in orthotopic GBM-CD133 + -
transplanted immunocompromised mice [ 129 ]. 

 Some miRs possess the ability to promote the generation of 
CSC by downregulating tumor suppressors. In hepatocellular car-
cinoma, miR-130b was shown to be associated with CSC growth 
that leads to worse  overall survival   and more frequent recurrence 
of cancer in patients. The increased miR-130b occurs in parallel 
with the reduction of tumor protein 53-induced nuclear protein 1, 
a known miR-130b target. Moreover, cells transfected with miR- 
130b presented a higher resistance to doxorubicin [ 130 ]. 

 Similarly, other studies have revealed a regulation of stem cell 
properties through stem cell factors, including the p53–Nanog 
axis. For example, Xu et al. [ 131 ] showed that miR-214 regulates 
ovarian cancer cell stemness and  chemoresistance   towards cisplatin 
and doxorubicin treatment by targeting p53–Nanog, and expres-
sion of p53 abrogated miR-214-induced ovarian CSC properties. 

 Bitarte et al. [ 132 ] prepared colonospheres with CSCs proper-
ties from different colon carcinoma cells, and after performing miR 
profi ling observed that miR-451 was downregulated in colono-
spheres versus parental cells. Expression of miR-451 caused a 
decrease in  self-renewal  , tumorigenicity, and  chemoresistance   to 
irinotecan, through a downregulation of the  ABCB1   transporter. 

 Bourguignon et al. [ 133 ] observed that human  head and neck 
squamous cell carcinoma (HNSCC)   derived HSC-3 cells contain a 
subpopulation  of      (CSCs)    characterized by high levels of CD44v3 and 
aldehyde dehydrogenase-1 (ALDH1) expression. These tumor cells 
also expressed stem cell markers (Oct4, Sox2, and Nanog) and dis-
played the hallmark CSC properties of  self-renewal/clonal   formation 
and the ability to generate heterogeneous cell populations. 
Hyaluronan (HA) activation of CD44v3 (an HA receptor) lead to 
nuclear accumulation of oncogenic transcription factors (Nanog, 
Oct4, Sox2), and CSCs in  HNSCC   display upregulated miR-302 
expression which, in turn, upregulates several survival proteins 
responsible for clonal formation,  self-renewal,   and cisplatin resis-
tance. MiR-302 is controlled by an upstream promoter containing 
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Oct4-Sox2-Nanog binding sites, while stimulation of miR-302 
expression by HA-CD44 is Oct4- Sox2- Nanog-dependent in 
HNSCC-specifi c CSCs.    This process results in suppression of several 
 epigenetic   regulators (AOF1/AOF2 and DNMT1) and the upregu-
lation of several survival proteins (cIAP-1, cIAP-2, and XIAP) lead-
ing to  self-renewal,   clonal formation, and cisplatin resistance [ 133 ]. 

 Several of these studies have used cell lines in vitro that express 
stem cell markers; however, one must keep in mind that these cell 
lines have vastly altered karyotypes (e.g., several translocations, 
insertions, and deletions) that will obviously alter their biological 
behavior. Therefore, caution must be exercised in interpreting the 
results described.      
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