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  Abstract 

   Recent advances in genomics have led to the rapid and relatively inexpensive collection of patient molecular 
data including multiple types of omics data. The integration of these data with clinical measurements has 
the potential to impact on our understanding of the molecular basis of disease and on disease management. 
Systems medicine is an approach to understanding disease through an integration of large patient datasets. 
It offers the possibility for personalized strategies for healthcare through the development of a new tax-
onomy of disease. Advanced computing will be an important component in effectively implementing sys-
tems medicine. In this chapter we describe three computational challenges associated with systems 
medicine: disease subtype discovery using integrated datasets, obtaining a mechanistic understanding of 
disease, and the development of an informatics platform for the mining, analysis, and visualization of data 
emerging from translational medicine studies.  
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1       Introduction 

 The ability to collect large volumes of molecular data as well as 
detailed clinical measurements for patients will impact on disease 
classifi cation and clinical management. Systems medicine is an 
approach that uses the concepts and methods of  systems biology   to 
understand disease conditions through an integration of data at 
multiple levels of biological organization [ 1 ]. Systems biology has 
progressed rapidly in recent years due to advances in technology 
that enable the rapid and increasingly inexpensive capture of mul-
tiple “omics” data (e.g., genomics, epigenomics, transcriptomics, 
proteomics, metabolomics), together with advances in computing 
that make it possible to store, query, and analyze the associated 
large datasets. An important feature of systems medicine is the 
interplay between biology, computation, and technology [ 2 ]. 
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 Many diseases are   heterogeneous   , that is, they are associated 
with a variety of phenotypes, which sometimes overlap. Such dis-
eases represent a collection of subtypes, each characterized by, for 
example, different aberrant pathways and processes. Patient strati-
fi cation involves identifi cation of the particular subtype of disease 
from which a patient is suffering, and this can impact on drug dis-
covery toward more personalized and effective treatments. If a dis-
ease condition is considered as a single  homogeneous  entity  , 
potentially useful therapeutics could be discarded as they may show 
no overall benefi cial effect in the cohort as a whole. However, 
these therapeutics might be of value to a selected group of patients 
with a particular disease subtype. In addition, an understanding of 
the mechanistic basis of disease subtypes could lead to the develop-
ment of novel subtype-specifi c medicines. 

 When carried out on a large scale, the application of systems 
approaches to medicine offers the potential for the development of 
a new taxonomy of disease, namely, a taxonomy based on molecu-
lar mechanistic features rather than the presentation of clinical 
symptoms (see, e.g., [ 3 ,  4 ]). For some diseases, such a classifi cation 
may reveal a number of subtypes, each involving different molecu-
lar pathways and processes. This new classifi cation can lead to a 
more individualized approach to therapy, as the identifi cation of 
disease subtypes can directly impact on clinical management, with 
therapeutic intervention tailored to the disease subtype of the 
patient. A new taxonomy might also suggest that several appar-
ently different diseases, hitherto thought to be separate and dis-
tinct conditions, share common mechanisms at the molecular level, 
and such information could be useful for drug repurposing (see, 
e.g., [ 5 ]). Barabasi and coworkers [ 6 ] have used a network 
approach to connect human disease genes (the disease genome) 
with various human diseases (the disease phenome). The relation-
ships are represented as a bipartite graph from which two networks 
are extracted, a human disease network (HDN) and a disease gene 
network ( DGN  ). The modular structure of the HDN approach 
reveals connections between diseases that may appear different at 
the phenotypic level and that of the DGN shows groups of genes 
that share a disease phenotype. 

 Systems medicine involves the collection of large amounts of 
data, including clinical data, omics data, and, recently, data on 
patients’ environment and activities collected through devices that 
make use of wearable sensor technologies. This has led to a new 
approach to personalized medicine, namely,  P4 systems      medicine, 
which is personalized, preventive, predictive, and participatory 
[ 7 – 10 ]. The aim is to develop personalized healthcare plans, to 
monitor the status of a patient’s wellness so that early intervention 
can be made when appropriate, opening the possibility, through 
the identifi cation of actionable molecular or lifestyle targets, to 
prevent the transition from wellness to disease, or to promote the 
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reversal from the early stage of disease onset to the normal condition. 
The ability to accurately predict disease progression would mean 
that unnecessary or inappropriate therapy could be avoided thereby 
saving costs and limiting exposure to potential side effects of the 
therapy. Additionally and importantly, P4 systems medicine is 
participatory, as it involves active engagement of researchers, clini-
cians, and patient groups empowered through social networks. 
Wearable sensor technologies will mean that patients can collect 
their own lifestyle and exposure measurements to score and com-
ment on how they feel on a regular basis and share these data easily 
with the stakeholders they choose. The knowledge gained from 
community participation (e.g., response of individuals to particular 
therapies or other actionable interventions) can be fed back into 
computational systems biology models.  P4 systems      medicine will 
also need to address challenges associated with societal issues such 
as ethics, privacy, and data security or educational issues such as 
understanding how the patient can be seen as his/her own control 
in monitoring the transition from health to disease states [ 11 ]. 

 Advances in genomics have triggered a revolution in medical 
genetics, reducing the cost of sequencing, accelerating health- 
improvement projects, and providing a comprehensive resource on 
human genetic variants establishing the link between the genotype 
and the phenotype [ 12 – 15 ]. The  1000 Genomes Project   released 
a catalogue of validated loss-of-function (LoF) variants and natu-
rally occurring “knockout” alleles for over 1000 human protein- 
coding genes; many of these genes have minimal functional 
annotation [ 16 ,  17 ]. Coding variants could affect human fi tness 
with regard to responses against pathogens and heightened suscep-
tibility to infection. 

 In oncology, there have been several recent examples of the 
clinical potential of a strategy involving diagnosis of subtype fol-
lowed by a specifi c therapy. Most of these have involved the pres-
ence or absence of specifi c mutations or chromosomal 
rearrangements that can be indicative of disease prognosis or drug 
response. The relatively short time in which  crizotinib  [ 18 ] was 
demonstrated to be an effective therapy for a subset of patients 
with non-small cell lung cancer ( NSCLC  ) indicates how patient 
mutational status can be one route to stratifi cation. A subset of 
patients with NSCLC shows a chromosomal inversion that leads to 
the production of a fused protein encoded by a recombination of 
the echinoderm microtubule-associated protein-like 4 (ELM4) 
gene and the anaplastic lymphoma kinase ( ALK  )  gene  . This pres-
ence of the fusion protein can act as a diagnostic and also a target 
for the drug  crizotinib  [ 19 ]. Another example of a therapeutic 
strategy showing the potential of testing for given mutations com-
bined with individualized therapies comes from colorectal cancer 
( CRC). In CRC  , patients with particular mutations in the KRAS 
protein (which is involved in signaling pathways) show poor 
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response to the epidermal growth factor receptor (EGFR) inhibitor 
drugs,  panitumumab  and  cetuximab  [ 20 ]. 

  Respiratory diseases   such as asthma and chronic obstructive 
pulmonary disease (COPD) are examples of complex  heterogeneous  
diseases. These diseases, characterized by airway infl ammation and 
remodeling and airfl ow limitation, involve various types of inter-
acting elements at the molecular level and provide illustrative 
examples for systems medicine approaches. For a number of 
patients suffering from severe asthma, the disease cannot be con-
trolled by corticosteroid therapy. A recent systems medicine proj-
ect U-BIOPRED (Unbiased BIOmarkers for the PREDiction of 
respiratory disease outcomes) aims at the identifi cation of asthma 
subtypes and stratifi cation of patients with respect to subtype that 
offers the prospect of more individualized approaches to treatment 
[ 21 ]. The  Synergy-COPD project   [ 22 ,  23 ] is another recent exam-
ple of a systems medicine initiative aimed at understanding the het-
erogeneity of COPD and the associated patterns of comorbidity. 
As part of Synergy-COPD, Turan and coauthors [ 24 ] explored 
skeletal muscle wasting in COPD patients, by integrating physio-
logical and gene expression data to build molecular networks 
which could then be tested for pathway and functional enrichment. 
The extent to which asthma and COPD share common mecha-
nisms has been discussed in the literature [ 25 ] and illustrates some 
of the challenges of understanding complex  heterogeneous  disease. 
Specifi cally, the authors have curated common pathways and devel-
oped gene networks for four major respiratory diseases (asthma, 
COPD, tuberculosis, and essential hypertension) based on special-
ized studies from literature. The network overlap between these 
disease types has been analyzed, with the highest being identifi ed 
between asthma and COPD. These results show stronger associa-
tion between asthma and COPD than between the other analyzed 
phenotypes, suggesting the potential of developing therapeutic 
strategies to target both these diseases. 

 Finally, one of the most recent initiatives in  P4 systems      medi-
cine is the pioneers of health and wellness pilot project [ 8 ]. The 
project targets deep characterization of wellness and proposes to 
(1) obtain a complete genome sequence for each individual; (2) 
follow with digital-monitoring devices that measure heart rate, 
activity, quality of sleep, weight, and blood pressure; and (3) follow 
every 3 months measurements of blood metabolites; blood organ- 
specifi c proteins for the brain, heart, and liver; the gut microbi-
ome; salivary cortisol; white cell methylation; and telomeric lengths 
and clinical chemistries focused on nutrition, thus combining 
approaches that have proven to be effective by two pioneering 
individuals who monitored themselves for environmental factors 
and lifestyle [ 26 ] or multiple omics [ 27 ] which when combined 
with clinical assessments enabled the identifi cation of early signs of 
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disease occurrence that they could counteract through appropriate 
individual adaptations. 

 Large-scale systems medicine studies will require robust com-
putational pipelines. The application of  computing methodologies   
to the domain of translational medicine research to enable the stor-
age, mining, analysis, and visualization of large patient datasets is 
sometimes referred to as translational informatics. In the next sec-
tions, we describe three computational challenges associated with 
 P4 systems      medicine, namely:

    1.    Integrative approaches to subtype discovery   
   2.    Obtaining a mechanistic understanding of disease subtypes   
   3.    Developing a platform for translational informatics    

  We conclude with a brief discussion of some of the broader 
educational challenges associated with the development of systems 
medicine.  

2     Integrative Approaches to Disease Subtype Discovery 

  Biomarkers   are patterns that discriminate between disease and 
non-disease or between different disease subtypes. Identifi cation of 
subtypes could suggest appropriate therapeutic strategies. 
Biomarkers can also be used prognostically, for example, to predict 
whether a patient may have an aggressive or benign form of a dis-
ease. The components of the patterns could be a set of genes or 
metabolites or other measured biological features. 

 Relatively few clinically useful biomarkers have been devel-
oped, although extensive work has been done on biomarker stud-
ies during the last decades [ 28 ]. Given that biological data is 
generally noisy (perhaps due to the  heterogeneous  nature of most 
complex diseases), it is diffi cult to obtain reproducible molecular 
signatures. Filtering and integrating, which exploit prior knowl-
edge and the ability to group together data, can help to improve 
the signal to noise ratio [ 29 ]. In an analysis of breast cancer metas-
tasis [ 30 ], gene expression patterns were integrated with protein- 
protein interaction networks and  biomarkers   were identifi ed as 
subgraphs. These network-based signatures were more robust than 
markers based on individual genes, showing greater reproducibility 
across studies. 

 Biomarker identifi cation is usually carried out in a supervised 
manner. Supervised approaches use the patient phenotype as a class 
label associated with each patient. This might be assigned from the 
clinical presentation of the patient and could, for example, be asso-
ciated with severity or aggressiveness of the disease. Supervised 
approaches aim to fi nd sets of features that distinguish between 
classes. 
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 Unsupervised approaches to disease classifi cation make no 
assumption as to patient phenotype, and, essentially, group data 
according to similarities among the molecular features (e.g., gene 
expression, metabolomics profi les), resulting in groups ( clusters ) 
that may represent disease subtypes. These may correspond to 
already known differences in the phenotypes or may represent 
some as-yet undiscovered subtypes refl ecting some perturbation of 
underlying molecular processes and pathways that are not immedi-
ately apparent from the patient’s clinical measurements. 

  Omics measurements   from different platforms can provide 
complementary types of information, and the collection and inte-
gration of data from multiple omics platforms can suggest novel 
disease subtypes. Several cancer-related studies have recently been 
published with multiple omics data types collected for the same 
group of patients (e.g., refer to [ 31 ]). This strategy of data collec-
tion is likely to become increasingly common in translational medi-
cine [ 32 ,  33 ]. In the context of asthma treatment, this approach 
has been taken, for example, with the U-BIOPRED consortium, 
which aims to develop molecular fi ngerprint and handprint signa-
tures that will lead to a better classifi cation of the different types of 
severe asthma [ 34 ]. Knowledge of these subtypes may help in the 
development of better types of treatment for asthma patients. 

 One might expect that the underlying biology associated with 
different disease subtypes would be refl ected within different types 
of molecular data collected across the patient cohort. The identifi -
cation of consistent patterns across different omics platforms may, 
therefore, refl ect more reliable subgroupings. Alternatively, it may 
be the case that the signal from an individual platform is too weak 
to distinguish between disease subtypes, but taken together, the 
data might lead to the discovery of robust patterns that are useful 
diagnostically and prognostically. Disease subtype discovery using 
multiple genomics datasets of different types (e.g., gene expres-
sion, copy number variation, methylation) collected for the same 
set of patients can offer new insights into the taxonomy of disease. 
Each data type can be clustered separately, and the concordance 
and the confl ict between clusters can be explored. An  integrative 
approach   should ideally identify (1) molecular patterns (signa-
tures) that are common across the different omics datasets, (2) 
patterns that are specifi c to individual datasets, and also (3) pat-
terns that only emerge after data integration [ 35 ]. We report below 
a few examples of integrative approaches to the subtype discovery 
problem. Patterns specifi c to a given data type can be termed  fi n-
gerprints , and those associated with the integrated data can be 
termed  handprints . 

 The multiple “omics” data types can include gene expression, 
proteomics, and metabolomics. The data matrices associated with 
each data type  j  are of dimensionality  n  by  p    j    where the number of 
patients is  n  and the index  p   j   refers to the number of features or 
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variables for data type  j . Typically,  p   j   will be different across differ-
ent platforms. Several exploratory data analysis methods have been 
proposed to compare two omics datasets ( j  = 2). These include  par-
tial least squares (   PLS    )     and  canonical correlation analysis (   CCA    )    , 
and  sparse   approaches    have been used to perform the integration 
and variable selection together [ 36 ]. 

 Co-inertia analysis ( CIA        ) [ 37 ] measures the degree to which 
two datasets are in concordance and is suitable for datasets where the 
number of features (variables) exceeds the number of samples 
(patients) which is usually the case with omics data. An approach 
using CIA has been applied to compare microarray data from two 
different platforms [ 38 ]. Recently, this approach has been extended 
to handle more than two omics datasets [ 39 ], and the multiple 
co- inertia analysis method is available as an R package (omicade4). 
For example, given the same set of ( n ) patients for which multiple 
data types are available (such as gene expression, transcripts, meth-
ylation levels), the omicade4 package performs co-inertia analysis by 
combining information from all these datasets provided for the  n  
patients. Note that all datasets must have one common dimension 
(i.e., the patient number), while the second dimension can differ. 

 Shen and coworkers [ 35 ] proposed an integrative method 
called   iCluster    using a joint latent variable approach. iCluster per-
forms a simultaneous clustering of omics datasets, which are rep-
resented by ( p  ×  n ) matrices with  p  being the number of features 
(e.g., genes) and  n  the number of patients. The method simulta-
neously projects high-dimensional data matrices associated with 
various omics platforms and with different numbers of features 
onto a unifi ed latent space of lower dimensionality. Simulations 
show that clustering in the latent space produces a better separa-
tion than using PCA [ 40 ]. A recent breast cancer study using 
iCluster demonstrated the value of integration through the iden-
tifi cation of subtypes that were not suggested by the component 
data platforms of gene expression and copy number [ 41 ]. The 
program iCluster + (a further development to iCluster) permits 
integration of different data types, e.g., binary, categorical, and 
continuous [ 42 ]. The program is available as an R package. 

 Kirk and coauthors [ 43 ] use an unsupervised Bayesian corre-
lated clustering approach for  multiple dataset integration  ( MDI        ). 
MDI allows the identifi cation of subsets of samples that cluster 
across several different datasets. Lock and Dunson [ 44 ] described 
a fl exible integrated approach that allows an overall clustering to 
identify shared structure and a clustering that is specifi c to each 
data modality. 

 A network-based approach to subtype discovery was developed 
by [ 45 ]. A similarity network is constructed for each data type, 
such as gene expression or DNA  methylation  . These individual 
networks are fused to form an integrated network. An advantage of 
this approach is that strong similarities supported by evidence from 
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several data modalities are retained, as well as some weak similarities 
that share a common tightly connected network neighborhood 
across the individual networks. The method has been demon-
strated [ 45 ] to detect clinically relevant subtypes for a variety of 
cancer datasets from the Cancer Genome Atlas TCGA.  

3     Toward a Mechanistic Understanding of Disease Subtypes 

 After identifying putative molecular signatures that are associated 
with disease subtypes, the next challenge for translational infor-
matics is to use these signatures to get a mechanistic insight into 
disease  heterogeneity .  Pathways and networks   describe a level of 
functional organization that is between molecular function and 
physiological function. As such, mapping genes, which are sus-
pected to be involved in disease, to pathways and networks can 
give insight into potential mechanisms that may be involved in the 
disease process and could also suggest strategies for therapeutic 
intervention.  Pathways and networks   represent collections of 
molecular components that interact in some way and participate in 
a given process, and these collections can be represented in a vari-
ety of ways and at different levels of granularity. Traditional path-
way and network maps captured metabolic reactions showing the 
associated reactants and products. These have been extended to 
include signaling pathways and pathways involved in disease. 

 The Systems Biology Graphical Notation ( SBGN  )  project      [ 46 ] 
aimed to provide a standard representation of molecular pathways 
and networks while recognizing that their complexity required 
different views depending on the visualization requirements. The 
SBGN standard [ 46 ] consists of three complementary languages: 
process description (PD), activity fl ow (AF), and entity relation-
ship (ER). Each of these three complementary languages has 
certain purpose, advantages, and limitations (refer to Table  1 ). 
The process description is currently the most widely used language. 

   Table 1  
  Advantages and limitations of the three complimentary languages within SBGN   

 Features  Process description  Activity fl ow  Entity relationship 

 Ambiguity  Unambiguous  Ambiguous  Unambiguous 

 Sequence of events  Sequential  Sequential  Nonsequential 

 Advantage  Clear sequence of events  Compactness  Can deal with combinatorial explosion 

 Limitation  Cannot deal with 
combinatorial explosion 

 Ambiguity  Sequence of events cannot be shown 

Mansoor Saqi et al.



51

It represents biological events such as metabolic reactions, protein 
phosphorylation, and complex formation in an unambiguous way 
and depicts causal sequences of events that are well-suited for 
mathematical modeling and simulation. This language is arguably 
the best environment for knowledge representation that can be 
used both by mathematicians and biologists to accurately express 
detailed information about a biological system and use it for model 
development, hypothesis generation, and predictions. One of the 
major limitations of this language, similarly to other pathway map 
visualizations, is that it cannot deal with potential combinatorial 
explosion [ 47 ]. The activity fl ow language can be seen as a simpli-
fi ed version of process description language with fewer details and 
the focus on activity transformation from one molecule to another 
in a pathway. This SBGN language is the closest to the commonly 
used signaling pathway diagrams, for example, in BioCarta. This 
level of representation is a good fi t for omics data visualization and 
functional analysis. Similar less-detailed compact diagrams are 
used, for example, in Ingenuity Pathway Analysis (Qiagen) and 
MetaCore (Thomson Reuters). The entity relationship language 
loses the sequential expressiveness of the other two languages but 
instead can very well deal with combinatorial explosion. The entity 
relationship diagram cannot be read as a pathway or network but 
rather as a set of states one molecule can be in depending on the 
infl uences from other molecules. There are many software appli-
cations that support SBGN diagrams (  www.sbgn.org/
SBGN_Software    ).

   CellDesigner [ 48 ] is a software       used for developing diagrams 
in a format compliant with SBGN process description language, 
with visual elements that in most cases correspond to visual ele-
ments of SBGN process description. These diagrams can be 
exported from CellDesigner in SBGN and SBML formats. 

 Two disease maps have recently been constructed in the area of 
neurodegenerative disease. Mizuno and coauthors [ 49 ] have devel-
oped a map of signaling pathways in Alzheimer’s disease, and Fujita 
and coauthors [ 50 ] have constructed a Parkinson’s disease (PD) 
map which captures known components involved in gene regula-
tory and metabolic processes associated with this disease. Both the 
Alzheimer’s map and the PD map are developed in CellDesigner in 
SBGN compliant format. The PD map is coupled to  bioinformatics 
tools that, for example, explore the overlay of differentially 
expressed genes from a gene expression study in order to allow 
identifi cation of the main pathways that may be perturbed. The 
map can be extended by the addition of other data types such as 
protein interaction data and associations derived from text mining 
that can facilitate hypothesis discovery. 

 A major challenge  i  n the construction of disease maps is the 
extraction of information from the scientifi c literature. While text- 
mining approaches have considerable potential [ 51 ], this needs to 
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be supplemented by manual curation by domain experts if a reli-
able high-quality map is to be developed. Another challenge is the 
level of detail to be included. A description of a disease condition 
at the molecular level ideally needs also to capture the effect of, for 
example, single-nucleotide polymorphism (SNP) or information 
relating to enrichment of gene expression in particular tissue types. 
Quantitative information about reaction kinetics could be included, 
which would allow simulations and modeling to be carried out. 
However, mostly only qualitative information about correlative 
relationships can be found. The biological expression language 
(BEL) [ 52 ] is a framework for capturing causal and correlative 
relationships and has the advantage that it is expressive and human 
readable and can be extended. The BEL framework does not have 
its own ontology but makes use of existing ontologies. 

 Disease maps represented at  multiple levels of granularity   are 
important to obtain mechanistic insight into disease subtypes and 
to put biological context around experimental results. Although 
details of sequential reaction steps and temporal and spatial infor-
mation in relation to these processes are valuable, many relation-
ships described in the scientifi c literature are at a much higher level 
of granularity suggesting that entity A has an effect on entity 
B. Malhotra and coauthors [ 53 ] describe an integrative approach 
to put functional context around putative biomarkers by capturing 
more speculative interactions and relationships using text mining 
and by including protein-protein interaction networks and gene 
expression data. This strategy is a synthesis of data driven and back-
ground knowledge-based approaches. 

  Multi-scale modeling,   which aims to describe functionality of 
the whole system rather than of its components, is being increas-
ingly used in systems medicine during recent years in order to facil-
itate exploration of key features at various scales, from molecular 
(e.g., metabolite network) to cellular (e.g., intercellular infl uences) 
and macroscopic levels (e.g., phenotype manifestation) [ 54 ]. Major 
advantages of developing multi-scale models in systems medicine 
are represented by the possibility of integrating experimental data 
at different scales, exploring features of phenomena across system 
layers, and investigating drug effects on the whole biological sys-
tem. Although considered powerful, the multi-scale description 
approach is characterized by (1) a large set of parameters needed to 
represent system compounds and (2) various ranges of both spatial 
and temporal scales (e.g., from rapid dynamics and microscopic 
spaces, such as metabolic activity occurring at second order within 
the nucleus, to slow dynamics and extensive spaces, such as disease 
progression observed at the tissue and organ level over years). The 
multi-scale modeling approach has been used in cancer medicine 
to explore, e.g., abnormal phenomena during breast, colorectal, 
lung, and prostate cancers, reviewed in [ 54 ,  55 ] and references 
therein; in drug discovery and development research to investigate 
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the impact, e.g., of cytostatic agents on tumor progression [ 56 ] of 
danoprevir inhibitor on hepatitis C virus dynamics [ 57 ]; and in 
epigenetics research to analyze relationships between aging and 
aberrant modifi cations of the transgenerational epigenetic inheri-
tance mechanisms [ 58 ]. A recent paper by [ 59 ] introduces a multi- 
scale computational model developed to predict lung functional 
deregulations during respiratory disease development by integrat-
ing information on CT images from COPD and asthma patients.  

4     Developing a Platform for Translational  Informatics   

 What systems need to be in place to enable the exploitation of the 
large datasets that are being collected as part of ongoing and 
planned systems medicine initiatives? Although the cost of genome 
sequencing has dropped dramatically in recent years to around 
1000 US$, the cost of analysis and interpretation is still consider-
ably higher by two orders of magnitude [ 60 ]. Additionally, imple-
mentation of systems medicine approaches to health and wellness 
transitions, drug development, and treatment will require a com-
putational infrastructure to allow for storage, retrieval, and mining 
of data in an integrated manner (refer to Fig.  1    ).

   In addition to omics datasets being collected from different 
platforms (such as gene expression, copy number variation meth-
ylation, etc.), phenotypic data is also becoming richer. Instead of a 
single endpoint status representing the phenotype (e.g., disease or 
non-disease), a set of measurements may be collected (e.g., mild, 

Warehouse

(sub-type discovery)

(harmonised data)

Data Analytics Knowledge Base

(mechanistic
insight)

   Fig. 1     Three key  components   for a translational medicine platform: ( a ) A data 
warehouse for storage and querying of clinical and multi-omics data associated 
with patient cohorts; data harmonization is needed to ensure that the data con-
forms to standards, in order to facilitate comparison across different studies. ( b ) 
A data analytics component for visual exploration of the data and for subtype 
discovery. ( c ) A knowledge base to enable experimental results to be understood 
in the context of known disease pathways and processes and to suggest a pos-
sible mechanistic basis for subtypes       
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moderate, or severe disease). These can give a better description of 
the phenotype and may, if taken across time, describe disease pro-
gression or reversal [ 26 ,  27 ]. It is likely that such  high-dimensional 
phenotype datasets   (described by a large number of clinical mea-
surements for each patient taken at given time points) will become 
increasingly important. As these datasets start to be routinely col-
lected, each patient will be associated with a cloud of data consist-
ing of millions to billions of data points, and the mining and 
analysis of this data is likely to offer insight into the onset of disease 
as well as transitions from health to disease and vice versa [ 8 ,  10 ]. 

 Traditionally, various bioinformatics data repositories have 
tended to be centered around fi xed data types. Until fairly recently, 
the identifi cation of molecular signatures associated with disease 
conditions has been derived from analyses of gene expression data, 
with the main public repositories being the gene expression omni-
bus (GEO) [ 61 ] and ArrayExpress databases [ 62 ]. Other omics 
data types in addition to transcriptomics data can include pro-
teomics, metabolomics, and data from genome structural varia-
tions, and these can provide additional molecular signatures 
(refer to, e.g., [ 63 ]). More recently, the database of genotypes and 
phenotypes ( dbGAP     ) has been established as a repository for 
genotype- phenotype data and includes molecular data (e.g., 
expression, copy number variation, methylation) as well as pheno-
typic data and contextual information (e.g., research protocols). 

 A number of initiatives are underway aimed at making bioin-
formatics tools more accessible and at sharing analysis workfl ows 
and results: GenomeSpace (  www.genomespace.org    ) and Garuda 
(  www.garuda-alliance.org    ) are frameworks    for interoperability of 
bioinformatics tools; Galaxy [ 64 ] is a web-based platform for tools 
integration which also allows tracking of provenance and the shar-
ing of workfl ows; Synapse [ 65 ] provides a framework for collabo-
ration with particular emphasis on provenance and sharing, with 
respect to the data and also the results of analyses carried out on 
the data; cBioPortal [ 66 ] provides a web-based tool for analysis 
and visualization of cancer datasets of multiple data types, such as 
gene expression and copy number variation, and offers an R 
 interface so that data in the repository can be queried from R 
scripts and a Matlab (  www.mathworks.com    ) toolbox to allow pro-
grammatic access from Matlab code (  www.mathworks.com    ); and 
OMICtools    [ 67 ] is a manually curated repository for web-based 
tools related to “omics” data analysis. 

 Computational platforms to enable systems medicine will 
need to be accessible to researchers and clinicians and have 
advanced visualization functionalities to facilitate hypothesis 
generation. The data types that need to be stored, queried, and 
integrated include gene expression, proteomics, metabolomics 
data, and DNA structural variations such as chromosomal rear-
rangements, copy number variations, DNA methylation data, 
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microRNA data, as well as data associated with medical imaging 
and clinical data. 

 One of the main challenges in the development of a data 
repository for translational medicine studies is the semantic hetero-
geneity of the data. This means that the same concept (e.g., a clini-
cal measurement) may be referred to by different names or different 
concepts may be referred to by the same name. The use of available 
standards for clinical data (e.g., CDISC) and for multi-omics data 
(ISA standards [ 68 ]) will help to address this challenge and will 
enable cross-study comparisons. However, there will remain a 
problem in the harmonization of legacy data, which do not con-
form to current standards, and this is likely to be resource inten-
sive, involving semi-manual curation. A translational medicine 
platform also needs to be secure and to conform to legislation 
relating to data privacy. 

 The data analytics component of such a platform will need to 
handle common types of analyses, such as exploring attributes of 
the patient cohorts, required by clinicians and biomedical research-
ers, and include workfl ows for facilitating disease subtyping by the 
identifi cation of molecular signatures from the omics datasets 
associated with each patient sample. Finally, the platform should 
put putative disease subtypes into biological context by using 
background knowledge in disease maps, to suggest a mechanistic 
basis for the subtypes. 

 An early example of the development of a translational infor-
matics platform Oncomine [ 69 ] aimed at the integration of micro-
array data from cancer studies. This platform attempted to address 
some of the challenges of semantic and syntactic heterogeneity of 
the data. The  tranSMART platform   [ 70 ,  71 ] was developed as a 
warehouse for both clinical and high-dimensional omics data such 
as gene expression and SNP data. The platform facilitates cohort 
selection and exploratory visual exploration of clinical data associ-
ated with the cohorts and has been integrated with more special-
ized analytics tools such as GenePattern (  www.genepattern.org    ). 
More recently, tranSMART has been integrated with Genedata 
Analyst for advanced analysis of a number of omics datasets [ 72 ]. 
The  Innovative Medicines Initiative   recently funded a project to 
build a platform for translational research eTRIKS (European 
Translational Information and Knowledge Management Services), 
which uses tranSMART at the core of its infrastructure. 

 To advance systems medicine clinical data, basic research data, 
mathematical modeling, and knowledge management need to be 
integrated and interlinked. Important prerequisites to achieve this 
are standards for data acquisition, harmonization of documenta-
tion, and a policy for data sharing [ 73 ].  BioXM,   developed by 
Biomax Informatics, has been used for data management in the 
Synergy-COPD project [ 74 ], where information is represented as 
a network showing evidence that relates different biological 
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concepts [ 75 ]. This has been extended to allow the integration 
with applications for computational modeling and simulation and 
for clinical decision support systems [ 76 ]. Accessibility to a wide 
range of biomedical and clinical researchers can be an important 
feature in some environments for a data integration platform for 
translational medicine. T-MedFusion [ 77 ] is a system    that inte-
grates patient data, clinical measurements, and omics data that 
have been evaluated in use cases for psoriasis and rheumatoid 
arthritis. Recently, the STATegra project developed STATegra 
EMS to manage clinical with high-throughput omics data (RNA-
seq, ChIP- seq, Methyl-seq, etc.) [ 78 ]. 

 As large cohort longitudinal studies gain momentum, patients 
will be represented by millions to billions of data points based on 
the collection of increasingly complex and heterogeneous data 
types, and fast effective data analytics and visualization will be nec-
essary if these platforms are to become clinical decision support 
tools. Cloud computing may provide a solution which is scalable 
and requires low start-up costs [ 79 ].  

5     Conclusions 

 Systems medicine will involve the collection, integration, and anal-
ysis of large patient datasets. It offers the prospect of suggesting a 
new taxonomy of disease, from which patient-specifi c therapeutic 
strategies can be developed. It represents the best option to enable 
implementation of participatory, personalized, predictive, and pre-
ventive medicine, thus fostering the transition from the reactive 
practice of medicine and treating the symptoms when they have 
fully developed into a disease stage, to a proactive and anticipative 
medical practice based on a scientifi c understanding of wellness. 

 Large longitudinal studies will enable monitoring the transi-
tion from wellness to disease and identifi cation of the associated 
perturbations in molecular networks. The application of genomic 
medicine will present several challenges. It will necessitate the 
 education of both clinicians and the patient community. Modern 
medical curricula will need to refl ect the importance of an inte-
grative, holistic, patient-centered approach. It will also require 
developments in data integration, big data analytics, and 
visualization. 

 Personalized predictive approaches to medicine have the 
potential to impact signifi cantly on patient wellness. The challenge 
to overcome, in order to make it endorsed and practiced across 
developed as well as very poor social environments and scientifi c 
and medical infrastructures, is to demonstrate that it could lead to 
reductions in healthcare costs through more effective strategies for 
disease management.     
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