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Chapter 18

Mathematical and Statistical Techniques for Systems 
Medicine: The Wnt Signaling Pathway as a Case Study

Adam L. MacLean, Heather A. Harrington, Michael P.H. Stumpf, 
and Helen M. Byrne

Abstract

The last decade has seen an explosion in models that describe phenomena in systems medicine. Such mod-
els are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use 
the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain 
insight into (models of) gene regulation and generate testable predictions. We introduce a range of model-
ing frameworks, but focus on ordinary differential equation (ODE) models since they remain the most 
widely used approach in systems biology and medicine and continue to offer great potential. We present 
methods for the analysis of a single model, comprising applications of standard dynamical systems 
approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more 
recent statistical and algebraic approaches to compare models with data. We present parameter estimation 
and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. 
Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of 
models in systems medicine.

Key words Wnt signaling, Model development, Nondimensionalization, Asymptotic analysis, 
Parameter inference, Algebraic methods, Model selection

1 Introduction

Despite the growing number of therapeutic options available to 
clinicians, gaps remain in our fundamental understanding of many 
biological processes. Acquiring this additional knowledge requires 
that we focus on the molecular players that operate in intercellular 
and intracellular environments. Revealing the complex networks 
and dynamics that control cellular, tissue- and host-level behavior 
may enable us to improve existing treatments and design new drug 
targets.

Many intercellular signals are initiated by signaling proteins 
such as cytokines and hormones. When cytokines bind to receptors 
of a target cell, they trigger a cellular response by signal transduction 
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pathways: multistep sequences of intracellular signaling events and 
communication between molecules. Most of these molecules are 
proteins. Enzymes such as kinases and phosphatases, for example, 
catalyze (respectively) the addition/removal of a phosphate group 
to/from a substrate, and thus perform a crucial role in relaying 
information [1]. Phosphorylation (the addition of a phosphate 
group) can be associated with protein activation, and information 
can be communicated downstream, engaging multiple signaling 
cascades by successive chemical reactions. While some reactions are 
linear, with the output proportional to the input [2], many are com-
plex, involving feedback loops or pathway redundancies. Often the 
output of these pathways is activation or inhibition of regulatory 
proteins called transcription factors, which modify gene transcrip-
tion and the cellular state.

To turn a gene on, an activated transcription factor translo-
cates from the cytoplasm into the nucleus, binds to the enhancer or 
promoter region of DNA, and RNA polymerase transcribes the 
DNA template to synthesize RNA. Then messenger RNA (mRNA) 
leaves the nucleus and enters the cytoplasm where ribosomes trans-
late mRNA into protein [1]. Conversely, transcription factors may 
turn a gene off by repressing the recruitment of RNA polymerase. 
These possible responses thus regulate protein synthesis. In addi-
tion to the subcellular processes that changes in protein synthesis 
stimulate, proteins may be released by the cell and act as signaling 
molecules in other pathways.

Gene regulatory pathways are crucial to the normal function-
ing of cells, with many diseases caused by dysfunction of one or 
more pathways. For example, signaling pathways such as NF-κB, 
MAP Kinase, and Wnt/β-catenin are involved in a host of cellular 
processes and functions, including cancer. Due to their complexity, 
a systems approach is needed to understand normal and aberrant 
pathway function. Only by building theoretical models that 
describe how cells signal and validating/updating them using 
experimental data can we develop new drug therapies that target 
specific diseases.

The remainder of the chapter is organized as follows. In 
Subheading 2, we review methods used to model signal transduc-
tion pathways, and introduce an exemplary enzyme kinetics model. 
We then describe the biology of Wnt signaling, with reference to 
relevant models, and introduce two models of the Wnt signaling 
pathway that we focus on throughout the chapter to demonstrate 
various techniques. In Subheading 3, we detail methods that can 
be used to analyze a particular model and discuss the insight that 
each approach can generate. In Subheading 4, we introduce tech-
niques that can be used to compare models, including some new 
methods for systems medicine. We conclude in Subheading 5 with 
a discussion of the different techniques, and ideas for their further 
application in systems medicine.

Adam L. MacLean et al.
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2 Mathematical Modeling

Signaling pathways are complex and may be difficult to understand 
by linear logic alone. Theoretical models can be used to gain insight 
into the dynamics of multiple biochemical interactions. Constructing 
a mathematical model is a nontrivial task that requires sufficient 
understanding of the system to determine not only the type of model 
that should be used to address a particular question but also the limi-
tations of the model. After reviewing some of the modeling approaches 
that are used to study signaling pathways, we focus on ordinary dif-
ferential equation (ODE) models. We introduce basic principles that 
can be used to construct ODE models and illustrate them by refer-
ence to enzyme kinetics and two models of the Wnt pathway.

Many processes associated with systems medicine in general, and 
signaling pathways in particular, can be modeled. These include: 
gene/protein abundances; gene/protein interactions; abundances 
of cellular species; the effects of cytokines, chemicals, drugs, or 
other interventions on system or tissue-level phenomena. Modeling 
strategies for systems medicine can be classified as either determin-
istic or stochastic; we describe stochastic approaches briefly here, 
since the methods introduced in later sections are generally only 
applicable to deterministic systems.

Deterministic approaches describe systems for which, given full 
details of the model (parameter values and initial conditions), its 
time evolution can be determined exactly. This means that if a 
system is restarted multiple times from the same initial state it will 
always return to the same future states. Ordinary and partial dif-
ferential equations (PDEs) are two examples [3]. PDEs with two or 
more independent variables (e.g., space and time) are more flexible 
than ODEs, but their simulation and analysis can be computation-
ally expensive. Deterministic methods provide accurate descriptions 
of population-level behavior if the population sizes are large enough 
that the effects of random fluctuations can be neglected.

Stochastic approaches describe systems whose temporal evolu-
tion has unpredictable elements due to randomness somewhere in 
the system. They are popular for modeling biological systems where 
randomness and heterogeneity abound, and should be used when 
population sizes are small enough that fluctuations cannot be 
ignored. In most cases, population averages will be recovered from 
a stochastic model when the abundances become large enough. 
One can, for example, construct stochastic models of protein 
dynamics with stochastic differential equations [4] (i.e., ODEs 
with noise terms—often Gaussian—added). Such models can be 
used to study the dynamics of species that fluctuate about a well-
defined mean value.

Stochastic modeling can also be developed via agent-based 
approaches [5, 6]. Here, individual agents act according to a set of 

2.1 Modeling 
Approaches 
for Systems Medicine
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rules. For example, within a given pathway, a protein could be 
phosphorylated or dephosphorylated with probabilities that 
depend on its environment. Such a framework treats protein spe-
cies very differently to differential equation methods: each protein 
is viewed as an autonomous agent and population dynamics emerge 
in a “bottom up” manner. Whilst such methods may appeal to our 
intuition about protein heterogeneity, the approach is limited since 
analyses are often computationally expensive. As such, agent-based 
models should be used when population-averaged models fail to 
capture the behavior that the modeler seeks to describe.

Cellular automata are a subset of agent-based models that 
impose spatial structure on the system by constraining the agents 
to lie on a grid, in two or three dimensions [7, 8]. The agents are 
updated via rules which may be deterministic or stochastic. Each 
grid point may be occupied by a finite number of cells (typically 
only one) and the model can accommodate multiple cell types. 
Cellular automata can account for spatial relationships between 
different cell types and have the advantage of being easy to inter-
pret biologically. A challenge associated with these models is that 
the update rules may not translate clearly into biological hypoth-
eses. Additionally, as for other agent-based models, simulation of 
cellular automata can be computationally expensive. Fitting such 
models to data is at the limits of what is currently feasible since, 
despite significant advances in cellular imaging technology, 
obtaining cell data of sufficient resolution and quality to fit to a 
model is rare.

The above overview of modeling approaches is not exhaustive: 
in limited space, we make no mention of Boolean, semi- quantitative, 
hybrid, or branching processes. Instead, we continue by explaining 
how to develop ODE models for signaling pathways.

In this section our focus is on using ODEs to develop dynamic 
models of signaling pathways. Two basic principles are integral to 
the development of such models:

●● The Principle of Mass Balance states that the rate of change of a 
species is equal to the difference between the rate at which the 
species is added to the system and the rate at which it is 
removed;

●● The Law of Mass Action states that a reaction proceeds at a rate 
proportional to the product of its reactants.

If, for example, substrate A is irreversibly phosphorylated by 
enzyme B, to produce C then we write 

 A B C B
r

+ ® +1 ,  (1)

2.2 Formulating 
Mathematical Models 
of Signaling Pathways
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where r1 is the rate at which phosphorylation occurs. We construct 
ODEs that describe the dynamics of A, B, and C by appealing to 
the Principle of Mass Balance and the Law of Mass Action: 

 

dA
dt

r AB
dB
dt

r AB r AB
dC
dt

r AB= - = - + º =1 1 1 10, , .
 

(2)

By inspecting the above ODEs, it is straightforward to deduce 
that the following quantities are preserved: 

 A C A C B B+ = + =0 0 0, ,and  

where A t A( )= =0 0 , B t B( )= =0 0  and C t C( )= =0 0  are pre-
scribed as initial conditions. We can exploit these Conservation 
Laws to simplify the governing equations: in this case, we can elim-
inate both B and C and our model reduces to give 

 

dA
dt

r B A A t A A t A e r B t= - = = Þ = -
1 0 0 00 1 0, ( ) ( ) .with

 

Thus, substrate levels decay exponentially, at rate r B1 0 .

We now consider a biochemical reaction that is catalyzed by an 
enzyme. In more detail, the enzyme E binds reversibly with the 
substrate S to form a complex C. While complexed with the sub-
strate, the enzyme converts it into a product P and the enzyme is 
recovered. We represent these reactions as follows: 

 
E S C E P

k

k k

+ ® +
-



1

1 2

.
 

By applying the Law of Mass Action to this reaction scheme 
and appealing to the Principle of Mass Balance, we deduce that the 
following system of ODEs describes the time-evolution of S, E, C, 
and P: 

 

dS
dt

k ES k C= - + -1 1 ,
 

(3)

 

dE
dt

k ES k k C= - + +-1 1 2( ) ,
 

(4)

 

dC
dt

k ES k k C= - +-1 1 2( ) ,
 

(5)

 

dP
dt

k C= 2 .
 

(6)

If we assume further that S t S( )= =0 0 , E t E( )= =0 0 , 
C t( )= =0 0 , and P t( )= =0 0 , and take suitable combinations of 
the governing ODEs, then we deduce 

2.2.1 Case Study I: 
The Enzyme Kinetics 
Model
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d
dt

E C
d
dt

S C P E C E S C P S( ) ( ) , ,+ = + + = Þ + = + + =0 0 0 0and and

We can exploit these conservation laws to eliminate E and P 
and obtain the following reduced model: 

 

dS
dt

k S E C k C= - - + -1 0 1( ) ,
 

(7)

 

dC
dt

k S E C k k C= - - +-1 0 1 2( ) ( ) ,
 

(8)

 with andS t S C t( ) ( ) .= = = =0 0 00  (9)

Wnt signaling is implicated in many biological processes. The path-
way is activated when Wnt ligands bind to specific receptors on the 
cell surface, resulting in the stabilization and nuclear accumulation 
of the transcriptional co-activator β-catenin. Canonical Wnt signal-
ing encompasses cellular responses to external Wnt stimuli medi-
ated by β-catenin. Noncanonical signaling describes cellular 
signaling and responses to Wnt not mediated by β-catenin. The 
canonical Wnt pathway plays a key role in essential cellular pro-
cesses ranging from proliferation and cell specification during 
development to adult stem cell maintenance and wound repair [9]. 
Dysfunction of Wnt signaling is implicated in many pathological 
conditions, including degenerative diseases and cancer [10–12]. 
Despite further  molecular advances [13–15], certain details of the 
dynamics of the pathway are still not well understood.

The basic steps that constitute canonical Wnt signaling are as 
follows (although these are not undisputed; discussed below): Wnt 
binds to cell-surface receptors Frizzled and LRP5/6 [11] that 
transduce a signal via a multistep process involving Dishevelled 
(Dsh) to the so-called destruction complex (DC). The DC con-
tains forms of Axin, adenomatous polyposis coli (APC), glycogen 
synthase kinase 3 (GSK-3), and casein kinase 1α (CK1α). In the 
absence of a Wnt signal, the DC actively degrades β-catenin—
which is being continually synthesized in the cell—by binding and 
phosphorylating the protein and thus marking it for proteasomal 
degradation. Following Wnt stimulation, degradation of β-catenin 
is inhibited through phosphorylation of DC member proteins. 
This leads to accumulation in the cytoplasm of free β-catenin, 
which is able to translocate to the nucleus where it can form a com-
plex with T-cell factor (TCF) and lymphoid-enhancing factor 
(LEF) proteins and, thereby, influence the transcription of target 
genes associated with processes such as self-renewal and prolifera-
tion [16, 17].

2.3 Modeling Wnt 
Signaling

Adam L. MacLean et al.
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In addition to these core mechanisms, evidence for other 
important processes has been found, some of which may challenge 
the Wnt signaling paradigm. Spatial localization within the cell has 
been found to be important not only for β-catenin but also for Dsh 
and DC member proteins including Axin, APC, and GSK-3 [18–
23]. There is also evidence of competitive binding of β-catenin to 
cell membrane proteins such as E-cadherin [24] and intricate 
cross-talk with the Hippo pathway, this being mediated by Yap and 
Taz which promote translocation of cytoplasmic β-catenin to the 
nucleus via phosphorylation and then compete with TCF for 
β-catenin in the nucleus [25]. This spatial organization of Wnt 
pathway members may be key to understanding the pathway, as 
some modeling suggests [26, 27]. Equally, an alternative descrip-
tion for the degradation of β-catenin exists: in this picture, β-catenin 
can be actively degraded while still bound to the DC, rather than 
being released marked for degradation [28]. Discriminating 
between competing hypotheses is needed in order to fully eluci-
date canonical Wnt signaling: mathematical modeling is a natural 
framework within which to achieve this. 

The first quantitative model of Wnt/β-catenin signaling was 
developed in 2003 [29], based on data from Xenopus extracts. 
Formulated as a system of ODEs, the model describes known 
interactions between core components of the canonical pathway, 
these being Wnt, Dishevelled, GSK3β, APC, Axin, β-catenin, 
and TCF. The DC is assumed to act only in the well-mixed cyto-
plasm and, hence, only cytoplasmic levels of pathway compo-
nents are considered. Since its publication, the Lee model has 
been extended in many ways (for recent reviews of mathematical 
models of Wnt signaling, see [16, 30]). The effect of mutations 
in APC was investigated by Cho et al. [31], the action of Wnt 
inhibitors was studied by Kogan et al. [32], and the impact of 
Wnt-ERK cross-talk considered by Kim et al. [33]. The effect of 
competition for β-catenin with adhesion proteins was investi-
gated by van Leeuwen et al. [34], while Schmitz showed how 
shuttling of core proteins between cytoplasm and nucleus could 
influence pathway dynamics [35, 36]. More recently, a new shut-
tling model was constructed that accounts not only for exchange 
of pathway proteins between the nucleus and cytoplasm, but also 
degradation of β-catenin while it is bound to active destruction 
complex (DC) and activation of the DC by dephosphorylation of 
its components [27]. Table 1 summarizes the key features of 
some of these models and Fig. 1 illustrates the localization and 
known interactions between key proteins involved in Wnt 
signaling.

We now present the Lee model [29] and the Schmitz model 
[36], using the notation presented in Table 2. These models, 
together with the enzyme kinetics model introduced above, will be 

Mathematical and Statistical Techniques for Systems Medicine
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Table 1 
Comparison of features across different models of Wnt signaling

Biological feature Lee van Leeuwen Schmitz Shuttle

β-Catenin production ✓ ✓ ✓ ✓

β-Catenin degradation (independent of DC) ✓ ✓ × ✓

β-Catenin degradation (dependent on DC) ✓ ✓ ✓ ✓

β-Catenin sequestration by DC ✓ ✓ ✓ ✓

β-Catenin sequestration by APC × × × ×

Shuttling of species between cytoplasmic  
and nuclear compartments

× × ✓ ✓

Activation/inactivation of DC ✓ ✓ ✓ ✓

Interaction with adhesion molecules × ✓ × ×

Two β-catenin forms: transcription only  
and transcription or adhesion

× ✓ × ×

DC is represented by its constituent parts ✓ × × ×

β-Catenin binds individual parts APC and  
Axin as well as DC

✓ × × ×

β-Catenin binds to TCF to promote  
transcription of target genes

✓ ✓ ✓ ✓

For further details see [27, 29, 34, 36]

A+N

Ca +G ANG

Dan

Yi Ya

Yin Yan

CXT

∅

A∗N∗G

T

T

X Xp Xc

Xn Xpn

CXH

H Y ap/Taz

Y ap/Taz

CY T

P

Pn

∅

DiDa

Da

Cytoplasm

Nucleus

Membrane

Fig. 1 Reaction scheme that incorporates many different Wnt signaling models and additional molecular players 
(e.g., Yap/Taz). Solid arrows denote direct reactions; long-dashed arrows denote species that act as catalysts in 
degradation reactions; and dotted arrows denote alternative paths for the direct activation of Y. Note that active/
inactive forms of Y are equivalent to active/inactive forms of ANG. Species names are defined in Table 2
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revisited throughout the chapter to illustrate how the techniques 
discussed in Subheadings 3 and 4 are applied to specific models.

In its original form, the Lee model comprises 15 time-dependent 
ODEs for protein species and complexes that participate in the 
canonical Wnt pathway, the reaction rates being based on mass 
action kinetics [29]. The model targets the assembly of the destruc-
tion complex from the constituent parts of APC, Axin, and GSK3β. 
It does not distinguish between nuclear and cytoplasmic compart-
ments, instead assumes that all species are uniformly distributed 
throughout the cell. A schematic diagram of the reactions described 
in the Lee model is given in Fig. 2. Using the variable names 
defined in Table 2 and primes to denote differentiation with respect 
to time, the ODEs that specify this model are: 

 ¢ = - +D D Di i aa a1 2 ,  (10) 

 ¢ = -D D Da i aa a1 2 ,  (11) 

 
¢ = - - + +Y Y Y XY C Ca i a a XY XYpa a a a a3 4 10 11 13 ,

 (12) 

 ¢ = - - + -Y GC D Y Y Y Yi NA a i i a ia a a a a6 5 3 4 7 ,  (13) 

 ¢ = - +G D Y GC Ya i NA ia a a5 6 7 ,  (14) 

 ¢ = - + + -C D Y GC Y NA CNA a i NA i NAa a a a a5 6 7 8 9 ,  (15)

 ¢ = - + - +A NA C XA CNA XAa a a a8 9 21 22 ,  (16)

  ¢ = - -C XY C CXY a XY XYa a a10 11 12 ,  (17) 

 
¢ = -C C CXYp XY XYpa a12 13 ,

 (18)

  
¢ = -X C Xp XYp pa a13 14 ,

 (19)

 

¢ = - + + - -
+ - +

X XY C X XT
C XA C

a XY

XT XA

a a a a a
a a a
10 11 15 16 19

20 21 22 ,  
(20)

 

 ¢ = - + + -N NA C NNAa a a a8 9 17 18 ,  (21) 

 ¢ = - +T XT CXTa a19 20 ,  (22) 

 ¢ = -C XT CXT XTa a19 20 ,  (23) 

 ¢ = -C XA CXA XAa a21 22 .  (24)

To facilitate comparison with the Schmitz model (see below), 
the nonnegative rate constants αk, k ∈ (1, 2, …, 22) have been 

2.3.1 Case Study II: 
The Lee Model
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redefined from those used in [29]. Wnt dependence is incorporated 
via the parameter α1 = α1(W) that controls the activation of Dsh.

Inspection of Eqs. 10–24 reveals that there are four conserva-
tions laws: 

 

D D D
G G Y Y C C

A A Y Y C C C C

T

i a

i a XY XYp

i a XY XYp XA NA

0

0

0

= +
= + + + +

= + + + + + +

,
,

,

00 = +T CXT ,  

Table 2 
Definition of notation for the variables used by the Lee and Schmitz 
models

Symbol Species Forms

X β-Catenin Xp—marked for proteasomal 
degradation

Y Destruction complex
(APC/Axin/GSK3β)

Ya—active
Yi—inactive

D Dishevelled Da—active
Di—inactive

A APC

N Axin

G GSK3β

T TCF

C Complex CXY —complex of X and Y (etc.)

N

∅

CNA

G

Yi Ya

X

∅

A T

CXT

CXY CXY p

CXA

Xp ∅

Di Da

Cell

Fig. 2 Schematic of the Lee model [29], which describes the activation of the destruction complex and its effect 
on β-catenin in a single cellular compartment (cytoplasm and nucleus combined). Notation of the model species 
is given in Table 2. Solid arrows represent reactions and dashed arrows represent catalytic processes
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the constants D G A0 0 0, , , and T0 denote the (assumed constant) 
levels of Dishevelled, GSK3β, APC, and TCF initially present in 
the system. These conservation laws are consistent with experi-
mental observations which suggest that levels of these proteins do 
not fluctuate during Wnt signaling (i.e., they are produced and 
degraded at the same rates). They can be used to eliminate four 
variables and, in so doing, to reduce the model from 15 to 11 
ODEs. Further simplifications are achieved by assuming that all 
binding processes, except those for the binding of GSK3β to APC/
Axin, reach equilibrium rapidly and that all species involving Axin 
are present at low levels. Under these assumptions, and after some 
algebra, the following expressions for D G A T X C Cp XT XYp0, , , , , , , 
and CNA are obtained: 

 

D D D G G A
A

X
T

T

X
X C

C

i a p XY

XT

= - = =
+

=
+

=0 0
0

21

22

0

19

20

12

141 1
, , , , ,

a
a

a
a

a
a

==
+

=
+

= =
X T

X
C

A X

X
C C C

A
XA XYp XY NA

.
, , ,0

19

20

0

21

22

12

13

8

9

0

1 1
a
a

a
a

a
a

a
a

NN

1 21

22

+
a
a

,

 

and a reduced system of 7 ODEs for the remaining species is even-
tually recovered (equations not presented since they are rather 
involved and less instructive than Eqs. 10–24). In [29] and [37], 
this model reduction is performed in an ad hoc manner; it would 
be instructive to repeat it by first nondimensionalizing the govern-
ing equations (see Subheading 3.2) and using asymptotic analysis 
to perform the model reduction (see Subheading 3.3).

Like the Lee model, the Schmitz model [36] focuses on the canon-
ical Wnt pathway. Key differences between the Lee and Schmitz 
models are that the latter distinguishes between the cytoplasm and 
nucleus and accounts for exchange of β-catenin and DC between 
these compartments (see Table 2 and Fig. 3 for further descrip-
tion). In each compartment, DC binding to β-catenin leads to its 
phosphorylation, and phosphorylated β-catenin is degraded. We 
use subscript n to denote species residing in the nucleus with the 
exception of TCF (T) and the β-catenin-TCF complex (CXT); since 
these species are localized in the nucleus and to facilitate compari-
son with the Lee model, the subscript is omitted. Using notation 
that is modified from that used in [36], the ODEs that define the 
Schmitz model are: 

 ¢ = + - + -X X X C XYn XY ad d d d d0 2 1 6 5( ) ( ),  (25)

  ¢ = - + - + -X X X C X Y C X Tn n XYn n an XT n( ) ( ) ( ),d d d d d d1 2 9 8 12 11  (26)

 
¢ = -X C Xp XY pd d7 13 ,

 (27)

2.3.2 Case Study III: 
The Schmitz Model
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¢ = -X C Xpn XYn pnd d10 14 ,

 (28) 

 ¢ = - + - + + -Y Y Y C XY C Y Ya an a XY a XY i a( ) ( ) ( ),d d d d d d d4 3 6 5 7 16 15  (29) 

 ¢ = -Y Y Yi a id d15 16 ,  (30) 

 ¢ = - + - +Y Y Y C X Y Can a an XYn n an XYn( ) ( ) ,d d d d d3 4 9 8 10  (31) 

 ¢ = - +C XY C CXY a XY XY( ) ,d d d5 6 7  (32) 

 ¢ = - -C X Y C CXYn n an XYn XYn( ) ,d d d8 9 10  (33) 

 ¢ = -T C X TXT nd d12 11 ,  (34) 

 ¢ = -C X T CXT n XTd d11 12 ,  (35)

where δk (k = 1, 2, …, 17) are nonnegative rate constants and 
d d15 15= ( )W  so that Wnt acts to inactivate the destruction com-
plex in the cytoplasm.

By taking appropriate combinations of Eqs. 25–35, it is 
straightforward to show that there are two conservation laws: 

 Y Y Y C C Y T C Ti a an XY XYn XT+ + + + = + =TOT TOTand ,  (36)

the constants YTOT and TTOT denoting, respectively, the total num-
ber of molecules of DC and TCF in the system, as determined 
from the initial conditions. These identities may be used to reduce 

CXY

YaX∅

Xp

Yi

∅

YanXnT

CXT

CXY n

Xp ∅

Cytoplasm

Nucleus

Fig. 3 Schematic of the Schmitz model [36], which describes the interaction between β-catenin and the 
destruction complex in two cellular compartments: cytoplasm and nucleus. Notation of the model species is 
given in Table 2
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the order of the Schmitz model from 11 to 9. As explained below, 
further systematic simplifications may be possible following model 
nondimensionalization and parameter estimation.

3 Techniques for the Analysis of a Specific Model

Once model construction is complete, the modeler aims to extract 
from it new insight. This can be done in a number of ways: if no 
data are available, standard mathematical techniques can be used to 
increase understanding of the behavior of the model; however, if 
data are available, then it may be possible to estimate model param-
eters. In this section we describe a number of techniques, some 
standard and others less so, that can be used to analyze models. 
We demonstrate these methods by reference to the models of 
enzyme kinetics and Wnt signaling introduced in Subheading 2.

Broadly speaking, the behavior of an ODE model can be categorized 
as either transient or steady state. The latter describes the behavior 
at large timescales ( t ®¥ ). For systems that reach single valued 
(i.e., not oscillating) steady states, we refer to the long time values 
that system variables take as the fixed points. Much theory exists 
for the analysis of fixed points, which can be helpful in  characterizing 
model behavior and predicting the effects of perturbations [38]. 
We continue by calculating the steady states for the enzyme kinet-
ics model and the Schmitz model (similar analysis can be performed 
for the Lee model but the resulting expressions are rather involved 
and therefore omitted).

Setting 
d
dt

= 0  in Eqs. 3–6, we deduce that our model for enzyme 

kinetics evolves to the following unique, steady state solution: 

 S E E C P S= = = =0 00 0, , .and  

Thus, as expected, the reaction proceeds until all of the sub-
strate S has been converted to product P. 

Setting 
d
dt

= 0  in Eqs. 25–35 and manipulating the resulting alge-

braic equations supplies the following expressions for 
Y Y X X C C Tan i p pn XY XYn, , , , , , , and CXT in terms of X, Xn, and Ya: 

 

Y Y Y Y

X XY X

an a i a

p a pn

= =

=
+

=
+

d
d

d
d

d
d

d
d d

d
d

d
d d

3

4

15

16

7

13

5

6 7

8

14

10
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wherein Y Y X Xa a n= ( , )  satisfies 
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while Xn depends linearly on X via 
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(37)

and X solves a quadratic of the form 

 0 2= + +AX BX C  (38)

where the constant coefficients A B, ,  and C  are functions of the 
model parameters. For physically realistic solutions, we require 
X, Xn > 0. Therefore, we conclude that this model has at most two 
steady states and at most one of them may be stable.

As models increase in complexity, the algebra usually prohibits 
the construction of analytical expressions for the steady state solu-
tions. In the following sections we present other methods that can 
be used to generate insight in such situations.

When a mathematical model is first developed, the independent 
and dependent variables typically represent physical quantities 
(e.g., protein levels) which are measured in dimensional units (e.g., 
protein levels may be measured as the number of molecules per 
unit volume or the number of molecules per cell). The model may 
also contain parameters which relate to physical processes (e.g., 
reaction rates, Michaelis–Menten constants) and are also dimen-
sional (e.g., rates may be measured per second, per hour, or per 
day). Nondimensionalization involves recasting the model in terms 
of dimensionless (or unit-less) variables. This process is instructive 
for several reasons. First, the number of model parameters is typi-
cally reduced. Second, the resulting dimensionless parameter 
groupings can provide useful information about the system’s 
behavior. Further, if estimates of these parameters can be obtained 
and then compared, it is possible to identify physical processes that 

3.2 Nondimensiona - 
lization
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dominate on a particular timescale and, thereby, rationale to sim-
plify the governing equations. We illustrate these concepts by non-
dimensionalizing the enzyme kinetics and Schmitz models.

We introduce the dimensionless variables τ, s, e, c, and p where 

 t T S S s E E e C E c P S p= = = = =t , , , , .0 0 0 0  

and the timescale T is specified below. It is natural to scale the com-
plex C with E0 since the amount of complex that forms is limited 
by the amount of enzyme present. If the enzyme is working effec-
tively (i.e., serving as an efficient catalyst), then the amount of 
product created will be comparable to the amount of substrate. 
Therefore, we scale P with S0 rather than E0.

There are several possible choices for the timescale T. Consider 
Eq. 3. Initially, when C = 0, the maximum rate of uptake of S is 
k E1 0  and similarly the initial rate of uptake of E is k S1 0 . The associ-
ated timescales are T k E1 1 01= ( )  and T k S2 1 01= ( ) . Since enzyme 
 levels are typically much smaller than substrate levels (i.e., 
E S0 0 1= e  ), it is clear that T T E S2 1 0 0 1=  . We conclude 
that T1 represents a long timescale, associated with substrate deple-
tion, while T2 represents a short timescale, associated with the ini-
tial rapid uptake of enzyme.

Rescaling on the longer timescale, so that t T k E= =t t1 1 0( ) , 
Eqs. 7–9 transform to give 
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(42)

Comparing Eqs. 7–9 and 39–42 we note that nondimensionaliza-
tion has reduced the number of model parameters from five to 
three. We remark further that in Eq. 40, the initial conditions sup-
ply dc d( ) .0 1t e=  Thus, if ε ≪ 1, then c will initially increase very 
rapidly on the timescale τ.

The procedure for nondimensionalizing the Schmitz model is 
identical to that used for the enzyme kinetics model. As the dimen-
sion of the system increases, and more processes are included, the 
number of ways to rescale the independent and dependent variables 
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increases rapidly. In such situations, it is important to consider 
which variables are expected to vary and over what timescale: the 
answers to these questions should help to identify appropriate 
scalings.

When studying Wnt signaling, inactivation of the DC plays a 
key role in the system dynamics and therefore when we nondimen-
sionalize the Schmitz model time is rescaled so that t = t d15  (d15

1-  
is the timescale for inactivation of the DC). Variables relating to 
free β-catenin (i.e., X X X Xn p pn, , , ) are all rescaled with B = d d0 15 ,  
the amount of β-catenin produced during the typical timescale t .  
This scaling eliminates δ0 from the dimensionless equations (see 
below). When choosing the scalings for variables involving DC and 
TCF, we aim to preserve conservation laws. Accordingly, guided by 
Eq. 36, we scale Y Y Y Ca i an XY, , , , and CXYn with YTOT, the total 
amount of DC in the system. Similarly, we scale T and CXT with 
TTOT, the total amount of TCF in the system. Summarizing, we 
have 

 

( , , , ) ( , , , ),
( , , , , ) (

X X X X B x x x x
Y Y Y C C Y y

n p pn n p pn

a i an XY XYn a
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TOT ,, , , , ),
( , ) ( , ),

y y c c
T C T c

i an xy xyn

XT x= 0 q q

 

where x x cn x( ), ( ), , ( )t t tq¼  are dimensionless variables. Under 
these scalings, the Schmitz model gives the following nondimen-
sional system: 

 
¢ = + - + -x x x c xyn xy a1 2 1 6 5( ) ( ),   d d d d
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where primes denote differentiation with respect to τ and 
di i( , , , )= ¼1 2 16  are the following dimensionless parameters: 
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(57)

In applied mathematics, if the (dimensionless) governing equa-
tions contain a small parameter, it is common to assume that there 
is an asymptotic expansion for the solution, as a power series in the 
small parameter. As we demonstrate below, this technique can be 
used systematically to simplify a mathematical model and, in so 
doing, provide useful information about the dynamics of its 
components.

A key assumption of the enzyme kinetics model is that initial 
enzyme levels are much smaller than substrate levels. This assump-
tion is represented in the dimensionless model equations via the 
small parameter e = E S0 0 1 . We exploit this small parameter by 
seeking a solution to Eqs. 39–41 of the form 

 s s s c c c( ) ( ) ( ), ( ) ( ) ( ).t t e t t t e t~ + ~ +0 1 0 1  (58)

Substituting with Eq. 58 in the governing equations and equat-
ing to zero terms of O(εn), we deduce that, at leading order, s0 and 
c0 satisfy 
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(59)

 

 0 10 0 0= - -s c cm( ) ,k  (60)

 

 s c0 00 1 0 0( ) , ( ) .= =  (61)

Thus the ODE for c reduces to an algebraic relation, giving c0 
in terms of s0, and an ODE for s0, with the implicit solution 
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km
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s s A c
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log ( ) ( ) , ,0 0 0

0

0
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(62)

where A is a constant of integration. A problem arises when we 
attempt to impose the initial conditions: it is not possible simulta-
neously to satisfy both initial conditions. This is because the lead-
ing order problem is of lower order than the original one.

In order to resolve this problem, we use matched asymptotic 
expansions. We recall that c varies rapidly near τ = 0 and, hence, 
examine the system dynamics near τ = 0 by switching to the short 
timescale T = t e .  In terms of T, the model becomes 
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  s c( ) , ( ) .0 1 0 0= =  (65)

where s T s( ) ( )= t , c T c( ) ( )= t . As before, we seek asymptotic 
expansions for s  and c  in terms of ε ≪ 1, of the form specified at 
Eq. 58. In this way, we obtain the following leading order solutions 

for s T0( )  and c T0( ) : 

 
 s T c T

e m T
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0 0
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1
1

1
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= =
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- +k
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(66)

The above approximate solution is accurate near τ = 0 but not 
for τ = O(1), whereas Eq. 62 is accurate for τ = O(1) but not for τ ≪ 1. 
The method of matched asymptotics involves choosing the constant 
of integration A to match Eqs. 62 and 66 [39]. By imposing the 
matching conditions 

 
lim( ( ), ( )) lim( ( ), ( )),
t

t t
® ®¥

=
0 0 0 0s c s T c T

T c 

 

we deduce that A = 1.
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In practice, similar asymptotic analyses can be used to study 
ODE models of signaling pathways. As we have seen, such models 
may involve large numbers of variables and parameters, and esti-
mates for many parameters may be lacking. In such cases, progress 
can be made by using order of magnitude estimates for certain pro-
cesses. For example, in [29], the authors assume that all binding 
reactions are rapid, apart from the binding of GSK3β to APC/
Axin. Under this fast kinetics assumption, the ODEs for the rele-
vant species reduce to algebraic equations, in the same way that, 
for the enzyme kinetics model, on the longer timescale the ODE 
for the complex c reduces to an algebraic relation (see Eq. 60).

To the best of our knowledge, the Schmitz model has yet to be 
subject to such asymptotic analysis. Referring to Eqs. 43–53, and 
by analogy with the asymptotic analysis of the enzyme kinetics 
model presented above, we note that the dynamics of the system 
will be strongly influenced by the ratios ω and ν. For example, if 
typical levels of β-catenin are much greater than levels of TCF and 
DC, then we could construct approximate solutions to the Schmitz 
model in the limit for which ν ≪ 1 ≪ ω. Such an analysis of the Lee 
model was performed by Mirams et al. [40]. Since the details are 
rather involved, we summarize the key points below and refer the 
interested reader to [40] for further details.

Numerical simulations of the Lee model generated using parameter 
estimates reported in [29] (see Fig. 5) suggest that the processes 
involved in the Wnt signaling pathway act over at least two differ-
ent timescales. Lee et al.’s parameter estimates indicate that the 
basal rate at which β-catenin is degraded is much smaller than the 
rate at which the DC becomes inactive. This discrepancy is 
exploited to define a small parameter, h a a= 16 15 , which is the 
ratio of the rate at which β-catenin undergoes natural decay to the 
rate at which the DC becomes inactive. The dimensionless param-
eters are then rescaled by multiplying them by appropriate powers 
of η so that they are O(1). By retaining terms of leading order, the 
following reduced model is obtained: 
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(72)

We remark that Eq. 67 decouples and if a constant Wnt stimu-
lus is applied (W(t) = W, constant), then 

 
D

W
a ®

+
a

a a
1

1 2

.
 

We note further that the time derivatives in Eqs. 67–72 are 
premultiplied by three different powers of η. This suggests that 
model processes act on three distinct timescales, a prediction that 
is consistent with the rapid fluctuations and slow increases depicted 
in Fig. 5.

As we have already seen for the enzyme kinetics model (Eq. 58), 
it is possible to analyze the reduced Lee model on different timescales; 
here we have short, medium, and long timescales for which 
t = O(η), O(1), and O(η−1), respectively. In each case, asymptotic 
expansions in powers of the small parameter η are sought and used 
to simplify the governing equations. The results of this analysis can 
be summarized as follows (see [40] for details).

 1. Short timescale (t = O(η)): all model variables except Yi and 
CXY are constant, at leading order. The dominant reaction is 
phosphorylation of β-catenin by active destruction complex.

 2. Intermediate timescale (t = O(1)): the dominant reaction is 
found to involve inactivation of the destruction complex.

 3. Long timescale ( t O= -( )h 1 ): the dynamics are dominated by 
degradation of free β-catenin.

Pathway components acting on the short, intermediate, and 
long timescales are highlighted in Fig. 4, while Fig. 5 shows good 
agreement between the approximate solutions and those of the full 
model.

The selection of model parameters, their physical meaning, and 
numerical values are especially important; parameter analysis 
examines the response of the system to changes in parameters. 
Many methods for estimating parameters depend on time course 
data. These data generally give a quantitative measure of the variable 

3.4 Parameter 
Analyses
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Fig. 4 Series of schematics showing which components of the Lee model of Wnt signaling are active on the 
short (top), medium (middle), and long timescales. The active components on each timescale are highlighted 
with bold borders. Figure reproduced from [40], with permission
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Fig. 5 Series of figures showing how the Lee model responds to a Wnt stimulus (W = 1) that is applied at t = 0 
when the pathway is in equilibrium (W = 0) at t = 0. Also shown is the asymptotic solution obtained by matching 
the short, medium, and long time approximations to the Lee model. There is good agreement between the 
approximate and numerical solutions at all timescales. Key: numerical simulations of the (dimensionless) Lee 
model, Eqs. 10–24 (solid line); short, medium, and long time approximations are represented by dash-dotted, 
dotted, and dashed lines, respectively. Figure reproduced from [40], with permission
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level, such as mRNA or protein concentration level, at different 
time points. Testing a model against experimental data is a good 
way to validate or invalidate it; however, gathering experimental 
data is often too expensive to determine all parameter values and 
overfitting, i.e., describing noise instead of the relationship is a 
risk, as demonstrated for Wnt signaling later in this section. 
Following parameter estimation (using optimization) or parame-
ter inference (using statistics), a good way to test a model is by 
 performing parameter sensitivity analysis: this evaluates qualitative 
or quantitative relationships between parameters and their effect 
on the system outcome [41].

Ultimately, every model should be tested against data, a process 
that can either invalidate the model or provide evidence in its favor, 
if it provides a good fit under acceptable conditions. The aim is to 
estimate parameters that drive the model close to the data; this can 
be done using minimization techniques. Effectively, one calculates 
an objective function which is defined as the difference between 
the model simulated for particular value of parameters κ and the 
observations (data), and aims to minimize the error of the objec-
tive function, often performed iteratively [42–44].

Since the publication of the Lee model [29], where estimates 
of the parameters controlling Wnt signaling were based on data 
from Xenopus extracts, few studies have quantitatively studied the 
dynamics of the Wnt pathway. This knowledge gap means that cur-
rently it remains difficult to test the models that have arisen in 
recent years. This problem is not uncommon in systems medicine. 
We also remark that the Xenopus data gathered by Lee et al. may 
be markedly different from those for mammalian Wnt signaling. 
In [13], dynamic changes in β-catenin levels were investigated in 
Xenopus extracts. They demonstrated that absolute levels of 
β-catenin did not dictate the Wnt signaling outcome: rather the 
β-catenin fold-change was the crucial variable. They used the Lee 
model to test their experimental results and, via sensitivity analysis, 
identified that the model confirmed their experimental findings.

Quantification of Wnt signaling in mammalian cell lines was 
undertaken by Hernández et al. [14] and Tan et al. [15]. 
Discrepancies with data from Xenopus extracts (such as higher Axin 
levels and lower APC levels in mammalian cells) highlight the need 
for caution in data gathering and for further quantification of the 
pathway. Since these measurements were made at steady state, they 
do not yet permit elucidation of transient Wnt signaling. More 
recent measurements of cytoplasmic and nuclear β-catenin in 
response to a Wnt stimulus provide a valuable first look at the 
dynamics of the pathway [45].

The above studies provide preliminary insight into the Wnt 
pathway but much remains to be done. The data are not yet of 

3.4.1 Parameter 
Estimation and Wnt Data
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sufficient quality to discriminate between most models (which 
typically contain many molecular species). Caution must be taken 
when applying data. For example, where data generated from non-
mammalian systems may be used in a model that addresses clinical 
outcomes. For systems medicine to have the greatest impact, mod-
eling (with prediction) and experimentation (to test predictions) 
must proceed iteratively.

There are often cases where it is either infeasible or impossible 
experimentally to determine values for parameters that describe a 
given model. In such cases, we may be able to estimate (some of) 
the parameters using statistical inference. In general the aim is to 
identify the values of the parameters, q  (ideally including corre-
sponding confidence regions), for which a model best explains the 
data.

A reliable way of doing so is to focus on the likelihood L( )q , 
which is defined as the probability of observing the data (x) given 
parameters (q ): 

 L P x( ) : ( | ).q q=  

Varying q  to identify the value for which this probability is 
maximized gives the maximum-likelihood estimate. There is a rich 
literature on this topic and how confidence of the estimates can be 
assessed [46].

Likelihood estimates center around the available data. In many 
circumstances we may have additional information, for example 
based on biophysical arguments, about which parameter values can 
be ruled out. Incorporating such prior information is hard in a 
pure likelihood framework, but lies at the heart of Bayesian infer-
ence [47]. Here inferences are based on the posterior distribution 
over model parameters. The posterior distribution can be described 
starting from Bayes rule: 

 P x P x( | ) ( | ) ( ).q q p qµ  (73)

P x( | )q , the probability of q  given x, is called the posterior prob-
ability, P x( | )q  is the likelihood function, and p q( )  is the prior 
probability (knowledge about parameters before we begin fitting 
to data) [48]. As well as the full (joint) posterior distribution, one 
may also analyze the marginal posterior distributions which are the 
individual distributions over each parameter.

In certain cases, such as for large, complex systems, computing 
the likelihood is impractical. In such cases approximate Bayesian 
computation (ABC) should be considered [49]. Instead of the 
likelihood, a distance function is used to compare the actual data 
with data simulated by a model, denoted xm. If the underlying 
model is given by f f xm= ( | )q , then we express the ABC poste-
rior function by 

3.4.2 Parameter 
Inference
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 P x x x f xm mABC( | ) ( ( , ) ) ( | ) ( )q D e q p qµ £1  (74)

where D( , )a b  denotes a distance measure between a and b, and ε 
is the tolerance level that determines how well real and simulated 
data should agree.

By evaluating the posterior function, ABC allows the modeler 
to identify parameter regions that are of interest, and ignore those 
that are not. Furthermore, the posterior distribution gives infor-
mation about joint distributions in parameter space and can reveal 
multivariate dependencies between parameters.

ABC for parameter inference has been implemented in the 
software package ABC-SysBio with support for parallelization 
[50]. For the examples given below, we used the CUDA imple-
mentation of ABC-SysBio with a Euclidean distance measure 
between model and data [51, 52]. Proceeding to analyze the Lee 
and Schmitz models, we do not try to infer all of the model param-
eters, since this is not possible with the data available, but instead 
study a 3D subset of parameter space. We choose free parameters 
that have direct (or strong) influence on the dynamics of β-catenin, 
since this is the species for which we have experimental measure-
ments. The data used for fitting are published in [45]: they describe 
how the level of β-catenin changes over time in the cytoplasm and 
nucleus, following application of a Wnt stimulus to the system. 
These data, alongside the results of the parameter inference, are 
shown in Fig. 6.

For the Lee model, we study the β-catenin-DC binding rate 
(α10) that has a prior of [0, 100], the β-catenin degradation rate 
that is independent of the DC (α16), and the binding rate of 
β-catenin to TCF (α19). The latter two parameters both have priors 
of [0, 1]. The marginal posterior distributions for these three 
parameters (Fig. 7) show that the β-catenin-DC binding parameter 
takes values over the lower half of its prior range, whereas the other 
two parameters can take any values spanning the prior range. This 
suggests that for this model the parameter that has the greatest 
impact on outcome is the β-catenin-DC binding rate; however, we 
note the larger prior range over this parameter.

For the Schmitz model, we study the β-catenin production 
rate (δ0), the β-catenin shuttling rate (δ1), and the binding rate of 
β-catenin to TCF (δ11). The prior used for each parameter is [0, 1] 
and we see from Fig. 7 that the marginal posterior distributions are 
relatively stiff: each parameter is constrained to lie within a narrow 
range relative to its prior. In order to fit the data, the rates of 
β-catenin shuttling and binding to TCF must be low, while the rate 
of β-catenin production must be high.

Sensitivity analysis investigates how a model responds to perturba-
tions around a set of parameter values and characterizes its robust-
ness: a robust system is one for which perturbations of the parameters 

3.4.3 Sensitivity Analysis
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or initial conditions do not change the outcome. However, many 
trade-offs between sensitivity and robustness exist [53–55].

Local sensitivity analysis determines how parameter perturba-
tions affect the output of a system. Estimated or inferred parame-
ters can be used as a baseline for parameter sensitivity. If the output 
of dx dt f x= ( , )k  is approximated by a first-order Taylor series in 
a neighborhood of reference input values, then the local sensitivity 
coefficient si, j is the partial derivative of the ith state to the jth 
parameter: 

 
s t

x t
i j

i

j
, ( )

( )
,=

¶
¶k

 
(75)

The elements si, j define a sensitivity matrix S = ¶ ¶x k . This 
local method provides information about the sensitivity in a given 
parameter region but not the global sensitivity landscape. Local 
sensitivity analysis can reveal parameters that are sensitive or robust 
to perturbations in the region of interest.

Principal component analysis (PCA) offers another way to 
investigate system sensitivity. This technique can be readily applied 
to the posterior distribution obtained following Bayesian infer-
ence. The principal components are constructed by evaluating the 
eigenvalues and eigenvectors of the covariance matrix of the param-
eters: the first principal component (given by the largest eigen-
value) corresponds to the direction in which the posterior is most 
wide; the last principal component (given by the smallest eigen-
value) corresponds to the direction in which the posterior is most 
narrow [49, 56]. The last few principal components represent the 
most sensitive (or “stiff” parameters) [57].
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Fig. 6 Data published in [45] were used to fit the Lee and Schmitz models using 
approximate Bayesian computation for parameter inference. β-catenin concen-
tration units were normalized based on their initial values. From the inference, 
we can see that the Lee model provides a better fit to the data
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In Fig. 7, sensitivity analysis via PCA for the Lee and Schmitz 
models is shown. The principal components (PC) are ordered 1–3, 
thus PC3 is the last component and contains the most sensitive 
parameter combinations. For both models, PC3 is dominated by 
two parameters: the rates of β-catenin binding to the destruction 
complex (DC) or to TCF for the Lee model (a a10 19, ); and the 
rates of β-catenin production or binding to TCF for the Schmitz 
model (d d0 11, ). These results suggest that the Lee model is more 
robust to changes in the β-catenin degradation rate (α16), and that 
the Schmitz model is more robust to changes in the β-catenin 
shuttling rate (δ1).
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Fig. 7 Posterior distributions and sensitivity analysis for the Lee and Schmitz models. Histograms of marginal 
posteriors for each free parameter in the two models are shown. The marginal posterior is the probability 
distribution for a single parameter, given data describing β-catenin dynamics in cytoplasmic and nuclear 
compartments [45]. Principal component (PC) analysis allows us to assess the sensitivity of the parameters to 
small perturbations: the last PC (PC3), contains the most sensitive parameters. We see that for each model, two 
parameters dominate PC3 and, thus, are most sensitive in this system
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4 Techniques for the Comparison and Discrimination of Models

Given a set of models that describe similar biological phenomena, 
a challenge is to determine which model best describes the system, 
given the evidence available. In this section we describe two meth-
ods that enable comparison and discrimination between models. 
The first employs ABC, introduced above, and has already gained 
a strong foothold in systems medicine [50, 58–60]. The second is 
model discrimination with the use of algebraic matroids; as far as 
we know this is a recent addition to the modeler’s toolkit and holds 
great potential for advances in systems medicine.

Returning now to the Lee and Schmitz models, we consider how 
to choose between models using ABC model selection. We have 
already demonstrated how methods for parameter inference, such 
as ABC, can yield the posterior distributions over the parameters of 
a model (given data) and discussed briefly how this can be inter-
preted. For two or more models (Mi,  i = 1, …, n) some measure of 
the evidence for each model is needed [61], 

 P M x P x M Mi i i( | ) ( | ) ( ),µ p  (76)

where (as previously) x represents the data and π the prior 
probability.

The ABC approach may be extended to parameter inference 
and model selection simultaneously using a joint space approach [49]. 
This may be performed for M models where M M Mn= ¼[ , , ]1 , by 
assigning to each model (and parameters therein) a prior distribu-
tion and perturbation kernel that designates weights for model 
transition. The algorithm accepts N particles at the εF tolerance, 
which forms the joint posterior distribution P M( , | )a x  and upon 
marginalizing over parameters, the marginal posterior distribution 
P M( | )x  is approximated, providing a measurement for model 
selection. Bayesian model selection, like other approaches includ-
ing the likelihood ratio test or Akaike Information Criteria (AIC), 
also penalizes over-parameterization.

The AIC for model Mi, with i ∈ { 1, …, n}, is defined as 

 AICi i i iL x M k= - +*2 2log ( ; , ) ,q  
(77)

where L is the likelihood, and qi
*  and ki are (respectively) the maxi-

mum likelihood parameter and number of parameters in model Mi. 
This criterion, probably the best known model selection tool, 
makes explicit the penalty for an increased number of  parameters. 
However, as the amount of data increases, the AIC introduces bias 
and tends to favor models that are over-parameterized. Therefore 
the Bayesian information criterion (BIC), 

 BICi i i iL x M k n= - +*2log ( ; , ) log ,q  
(78)

4.1 Model Selection 
via ABC
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may be preferred, as it remains unbiased for large samples, n. The 
BIC is effectively an approximation to the model probability (76); 
the penalty term, explicit in the AIC and BIC definitions, is implicit 
in (76), where it enters via the priors for each model.

Model selection chooses, from among a set of candidate mod-
els, the model that best explains observed data. Two things need to 
be kept in mind: (1) one model will always be chosen as the best 
but this does not mean that the model is necessarily a good one; 
ideally model selection should go hand-in-hand with model check-
ing (and topological sensitivity analysis [62]). (2) Model selection 
depends on the data available for testing the different models; since 
different data may favor different models, careful experimental 
design should precede model selection. With these issues in mind 
we have the pragmatic choice about which statistical model selec-
tion framework to employ. Fully Bayesian, even in an ABC context, 
is more expensive than identifying the maximum likelihood param-
eter set and applying AIC or BIC.

Shown in Fig. 8 are the results of ABC model selection for the 
Lee and Schmitz models, with the probability of the model given 
for successive iterations (populations). We see that initially both 
models are equally probable, but subsequently the probability of 
selecting the Schmitz model drops to close to zero and we 
 conclude that the Lee model is favorable given these data and 
parameter combinations.

When parameter values are unknown or cannot be estimated from 
data, one may still be able to discriminate between competing mod-
els. We present two approaches, one that requires no data (rather 
qualitative insight into whether the system can have multiple 
responses) and another method which requires either highly resolved 
single cell data or multiple replicates of steady state measurements.

4.2 Model 
Discrimination Using 
Parameter- Free 
(Algebraic) 
Approaches
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Fig. 8 Model selection via ABC for the Lee and Schmitz models. The results show 
that, over successive populations, evidence in favor of the Lee model grows until 
there is a high probability that this model will be selected, given the data pub-
lished in [45]
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Chemical reaction network theory (CRNT) studies the structure 
of a model (which can also be described as a network) constructed 
from chemical reactions without relying on specific parameter val-
ues. The aim here is to use such theory to preclude (and sometimes 
assert) possible qualitative behaviors in the positive orthant, i.e., 
>0 . Cases where multiple positive states are stable (i.e., biologi-
cally accessible) are of particular biological importance for cellular 
decision making, for example, differentiation into one of two or 
more specialized cell lineages.

The field of CRNT initially focused on a structural property of 
a model called deficiency, which could preclude multiple steady 
states [63, 64]. Then theorems were proved for precluding/assert-
ing multiple equilibria by studying the cycles in the graph of a net-
work, or the sign of the determinant of the Jacobian; some of these 
approaches can provide conditions on the parameters for behaviors 
such as bistability and oscillations [65–70]. An excellent and com-
prehensive survey of techniques for multistationarity was written by 
Joshi and Shiu [71]. One main tool for precluding multistationar-
ity of a model is testing whether it is injective (a model, including 
conservation relations, is injective if F x F x x x( , ) ( , )k k= Þ =  ). 
Here we demonstrate the application of multistationarity tests 
(developed for chemical reaction networks) to Wnt signaling 
models.

We begin with the Lee model. First we test injectivity, noting 
that while injectivity precludes multistationarity, failure of injectiv-
ity does not imply multistationarity. We use the algorithms in the 
CRNT Toolbox to determine whether the system can ever admit 
multiple positive steady states—multistationarity [72]. The Lee 
model fails injectivity, but cannot admit multiple positive steady 
states for any values of the system parameters and/or total concen-
tration amounts (algorithms within [72]). Conversely, the Schmitz 
model has the capacity for multiple steady states; however, as cal-
culated earlier, only one can ever be stable. Therefore, in this 
example, since both models only can have one stable steady state, 
it is difficult to use only qualitative data to discriminate between 
them. Clearly, if data suggested two stable states could exist, and all 
of the data had the same initial conditions, then one could rule 
both models out.

When data from a model clearly supports a specific behavior—
whether monostable, bistable, or oscillatory, qualitative approaches 
such as those mentioned above may be a good first step for classify-
ing models, especially if the data are not sufficient to estimate 
parameters. However, if steady state data are available, then deter-
mining steady state invariants may be helpful for determining 
whether a model is compatible with given data using a statistical 
parameter-free model discrimination method.

4.2.1 Precluding/
Asserting Behaviors 
via Chemical Reaction 
Network Theory

4.2.2 Model 
Discrimination Using 
Coplanarity via Algebraic 
Geometry
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Since often data are not available for all model species, vari-
ables must be eliminated. A systematic technique from algebraic 
geometry proceeds by computing the Gröbner Bases of the model 
variety (studying the model at steady state) and eliminating unob-
servable variables. The resulting steady state invariant enables us to 
focus on part of the system and to test whether the data suggests 
that the relationships between species still hold. Notions of depen-
dence and independence between model variables can also be stud-
ied using algebraic matroids and were recently applied to steady 
state model discrimination [27].

For smaller models, the steady states can be determined explic-
itly. For example, for the Schmitz model, the steady state values 
can be expressed in terms of X and Xn: all other variables can be 
eliminated by exploiting conservation laws and using variable sub-
stitution (see Eqs. 37–38). Either by hand, by computing the 
matroid, or by using Gröbner bases, the polynomial relationship/
algebraic dependence between X and Xn in the Schmitz model 
gives the following invariant: 

 

 = + + + - +
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which vanishes at steady state (i.e.,  = )0 . Effectively, we aim to 
test whether the data are coplanar with our model, via the steady 
state invariant transformation. Model compatibility is determined 
by computing the coplanarity error (D ) via the singular value 
decomposition of the matrix 
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where 


X  denotes the observed value of species X. The null 
hypothesis (that the model is compatible with the data) can be 
rejected when the coplanarity error (normalized smallest singular 
value) is less than a statistical bound, which is determined by the 
Gaussian measurement noise in the data and the invariant structure 
[73]. This method was recently applied to β-catenin localization 
data (cytoplasmic, X; and nuclear, Xn) published in [27, 45]. The 
Schmitz model could be ruled out if data were perturbed less than 
10−5 by measurement error/noise; for higher levels of noise, the 
model is compatible.
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5 Discussion

Paradoxically, technological advances sometimes create new chal-
lenges for clinicians. For example, as the number and variety of 
treatments for cancer increase, it can be difficult to identify the 
combination of treatments that will most benefit a given patient (if 
a unique, optimal treatment even exists). The situation is further 
complicated when we consider the different types of data that can 
be used as a basis for diagnosis and treatment planning; it is often 
impossible to integrate the available data by linear thinking alone. 
Systems medicine aims to address these challenges by developing 
mathematical and computational tools that integrate different 
types of information in order to generate objective decisions for 
patient treatment. In this chapter we have focused on ODE mod-
els, a class of models widely used in systems medicine, particularly 
to study signaling pathways. We have reviewed a variety of tech-
niques that can be used to develop and analyze ODE models, 
using models of enzyme kinetics and the Wnt signaling pathway as 
test cases.

Many of the techniques that we have presented are already well 
established (such as model development, nondimensionalization, 
identification of steady state solutions, asymptotic analysis, and 
parameter sensitivity analysis); however, others are less well known 
(such as ABC, CRNT, and matroid-informed coplanarity). In addi-
tion to the benefit that these methods bring to the field, model 
development for systems medicine—in its increasing sophistica-
tion—is helping to stimulate further development and application 
of mathematical and statistical techniques.

Many of the challenges in systems medicine arise because most 
biological processes, including the actions of whole pathways, do 
not act in isolation. For example, at the subcellular level, pathway 
cross-talk can have a significant effect on cell function. In particu-
lar, there is growing evidence of cross-talk between Wnt and 
E-cadherin [74], Wnt and Erk [33]), and Wnt and the Hippo 
pathway [75]. Even simplistic models of such pathway cross-talk 
quickly become large and demand sophisticated techniques for 
their analysis. The situation becomes even more complex when we 
consider the impact of signaling pathways at the multicellular and 
tissue scales. The impact of Wnt signaling at the multicellular and 
tissue levels has been studied theoretically, most prominently in 
models of intestinal crypts [76–79]. These models (for example) 
introduce spatial dependence by imposing a graded Wnt distribu-
tion along the crypt axis [78] or provide comparison of a contin-
uum model with a cell-based model that incorporates heterogeneity 
and noise [79]. In [74], a multiscale model of interactions between 
the pathways affecting β-catenin and E-cadherin is developed and 
used to study the role of epithelial–mesenchymal transitions in can-
cer growth and metastasis, whereas in [80] a simple rule-based 
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model for cross-talk between the Wnt and delta-notch pathways is 
embedded within discrete epithelial cell agents and used to study 
cell fate specification within the intestinal crypt. In addition to 
these theoretical studies (ever growing in complexity), more 
sophisticated data collection is urgently needed as a basis for 
hypothesis testing and model (in)validation.

We end by proposing two grand challenges, whose solutions 
will bear much fruit in systems medicine. The first is to incorporate 
multiple levels of information—from biochemical reactions within 
a single cell to tissue-level processes—into cohesive models. The 
second is to incorporate data which is resolved in space and time 
into a theoretical framework. There are, of course, many other 
important challenges, and work in these areas should provide many 
exciting opportunities for theoreticians in systems medicine for 
years to come.
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