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Chapter 9
Model-Based Interpretations of Experimental 
Data Related to the Control of Balance During 
Stance and Gait in Humans

Robert J. Peterka

Abstract An important goal in developing a model is to explain experimental data 
from a physiological system in a manner that provides insight into the function of 
that system. We begin by using data from experiments that characterized the dynamic 
properties of the human balance control system that regulates body orientation dur-
ing stance. The dynamic properties of stance control are expressed as frequency 
response functions derived from body sway evoked by pseudorandom stimuli that 
tilted the surface upon which subjects stood or the visual surround that they viewed. 
A feedback control model is developed in a step-wise manner in order to illustrate 
how different subsystems of the model combine to explain the features of the experi-
mental data and to reveal (1) the contributions of feedback control based on sensory 
measures of body motion from proprioceptive, visual, and vestibular systems, (2) the 
regulation of the responsiveness to perturbations using sensory reweighting, (3) the 
contribution of positive torque feedback, and (4) the influence of passive dynamics 
of muscle/tendon systems. The insights obtained from this stance control model are 
then applied to aid in the interpretation of new results from experiments that inves-
tigate the control of body orientation during a gait-like task of stepping-in-place.

Keywords Modeling · Balance · Stance · Gait · Stepping · Sensory integration · 
Sensory reweighting · Human

9.1  Introduction

Our objectives in this chapter are (1) to demonstrate the steps involved in the de-
velopment of a mathematical model that has sufficient complexity to provide in-
sight into how the nervous system controls balance during quiet stance and (2) to 
illustrate how this model can provide insight into the mechanisms contributing to 
balance during gait.
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For the control of balance during quiet stance, it is well accepted that humans 
use orientation and motion information derived from sensory systems to generate 
corrective actions that resist the destabilizing effects of gravity, external perturba-
tions, and internal perturbations in order to maintain a desired body orientation. 
These active, sensory-driven contributions to balance control act together with pas-
sive contributions that arise primarily from the intrinsic mechanical properties of 
muscle/tendon systems. The primary sensory systems contributing to balance con-
trol are the somatosensory/proprioceptive system (signaling forces applied to and 
within the body in addition to the orientation and motion of body segments relative 
to one another), visual system (signaling head orientation and motion relative to the 
visual environment), and vestibular system (signaling head orientation and motion 
in space) (Nashner 1981; Horak and Macpherson 1996).

In principle, the central nervous system could combine information from visual 
and vestibular sensors with multi-segmental proprioceptive cues in order to derive 
an estimate of body center-of-mass (CoM) orientation (Mergner 2004). Because of 
the importance of the concept of the CoM in describing and predicting the motion 
of mechanical systems in classical physics, it is common in discussions of bal-
ance control to assume that the nervous system can derive an estimate the body’s 
CoM orientation from available sensory information and then generate corrective 
responses based on the deviation of the CoM from a desired position. We will use 
this assumption in the balance control model developed below because our goal is 
to lead the reader, who might not be familiar with physiological system modeling, 
through a logical progression of steps that illustrate how a model of balance control 
can be developed and how that development can enhance our understanding of the 
balance control system.

We will also make the assumption that the body mechanics are those of a single-
segment inverted pendulum with body sway occurring about an ankle joint such 
that the ankle-joint angle also defines the CoM sway angle with respect to the stance 
surface. Because we are focusing on the development of a relatively simple model, 
we will not be considering studies that have used modeling to understand balance 
control in a more complex system that controls a multi-segmental body (van der 
Kooij et al. 1999; Park et al. 2004; Alexandrov et al. 2005; Fujisawa et al. 2005; 
Kiemel et al. 2008; Hettich et al. 2014; Kim et al. 2012; Li et al. 2012; Pasma et al. 
2012; Boonstra et al. 2013).

In quasi-static conditions of quiet or mildly perturbed stance, physics dictates 
that stability is assured if motor actions can maintain body orientation such that 
the body CoM remains within the base of support defined by the area under and 
between the feet. Therefore, the task of balance control during stance is mainly a 
task of controlling body orientation. However, in the dynamic conditions that occur 
during a typical walking gait, there are periods in the gait cycle when the CoM is 
not within the base of support (Winter 1995). In these dynamic conditions, stability 
requires that natural body dynamics and/or motor actions constrain the CoM motion 
to follow a nominal, repeating trajectory and to return to that trajectory following a 
perturbation. Theoretical and experimental studies of dynamic stability during gait 
have been concerned mainly with characterizing the repeatability of trajectories 
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during the gait cycle (Dingwell and Cusumano 2000; Terry et al. 2012; Mummolo 
et al. 2013) and with investigating mechanisms that influence gait variability (Bau-
by and Kuo 2000; Dean et al. 2007; Ahn and Hogan 2013). Less well investigated 
are the mechanisms that regulate body orientation during gait.

In this chapter we will develop and apply a model that gives insights into how 
humans control body orientation during stance and gait. We will first describe the 
methods used to obtain an extensive experimental data set that has sufficient com-
plexity to guide and constrain the development of a model for the control of body 
orientation during stance. We will develop this stance control model in stages so 
that the reader can clearly see that different components of the model account for 
different features of the experimental data. Then the results from stance control 
experiments will be compared to results from similar experiments performed dur-
ing gait. To interpret the results from gait experiments, knowledge gleaned from the 
model-based interpretation of stance data will be used to determine the extent to 
which balance mechanisms contributing to body orientation control during stance 
also contribute to body orientation control during gait.

9.2  An Experimental Data Set Worthy of Modeling

In order to develop a comprehensive model of the human stance control system, 
an extensive set of experimental data are required. If a data set is too limited then 
multiple models may be equally effective in accounting for the experimental data 
with no way to distinguish among them. A comprehensive data set provides the 
constraints necessary to capture functionally important characteristics of the control 
system and distinguishing between different models.

In our studies of balance control we have extensively used a particular type of 
pseudorandom stimulus. Specifically, our pseudorandom stimulus is derived from 
a “maximal length ternary sequence” of numbers (Davies 1970). The ternary se-
quence of 0’s, 1’s, and -1’s are mapped into a set of velocity steps with amplitudes 
of 0, + v, and − v with each value in the sequence having a step duration of Δt sec-
onds. This velocity waveform has the property of a white noise stimulus where the 
amplitude spectrum of the stimulus is approximately constant out to a bandwidth 
of about 1/3Δt Hz. The velocity waveform is integrated to give a stimulus position 
waveform that we have used as stimuli to control, for example, the angular position 
of the support surface that subjects stand on or the visual surround that subjects 
view (Peterka 2002; Goodworth and Peterka 2010b).

Figure 9.1a shows an example of one complete cycle of a pseudorandom stimulus 
waveform (2° peak-to-peak amplitude) based on a maximal length ternary sequence 
and the corresponding evoked CoM body sway (averaged across five cycles). Data 
are from a subject with normal sensory function standing with eyes closed on the 
rotating surface. The subject’s ankle joints were aligned with the rotation axis of the 
surface such that surface rotations evoked body sway in the sagittal plane.
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We applied a standard frequency-domain analysis (defined in Otnes and 
Enochson (1972). Bendat and Piersol 2000; Pintelon and Schoukens 2012) using a 
discrete Fourier transform of the stimulus and CoM response waveforms to break 
down the time-domain waveforms into an equivalent set of sinusoidal components 
ranging from a frequency of 1/(cycle duration) = 0.0165 Hz in this example to an up-
per frequency of about 2 Hz. Results from the discrete Fourier transforms are used 
to calculate the power spectra of the stimulus and response, and the cross-power 
spectrum between stimulus and response for each stimulus cycle. The spectra are 
smoothed by averaging power spectra across the stimulus cycles and across selected 
ranges of frequency components in order to reduce variability.

Fig. 9.1  Method to determine dynamic characteristics of the human balance control system dur-
ing stance using wide-bandwidth pseudorandom stimulation. a A subject’s balance was perturbed 
using pseudorandom stimuli that evoked a sagittal plane body sway response consisting of an 
angular tilt of the subject’s center-of-mass from a vertical orientation. One cycle of a pseudo-
random stimulus is shown ( top trace; peak-to-peak amplitude of 2°). The stimulus controlled the 
angular tilt of the surface upon which the subject stood with eyes closed. The average body sway 
response ( bottom trace; averaged across five cycles) is shown. Discrete Fourier transforms were 
applied to the stimulus and response data, and the transformed data were used to calculate power 
spectra of the stimulus and response, and the cross-power spectrum between the stimulus and 
response. b The ratio of the cross-power spectrum to the stimulus power spectrum provides an 
estimate of the frequency response function that defines the dynamic characteristics of the balance 
control system. The frequency response function can be expressed as gain and phase functions 
that describe the relative amplitude and timing, respectively, of body sway evoked by the stimulus 
across a range of stimulus frequencies. Error bars show 95 % confidence intervals calculated fol-
lowing the procedures defined in Otnes and Enochson (1972).
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The ratio of the cross power spectrum between stimulus and response to the 
stimulus power spectrum provides an estimate of the frequency response function 
(FRF). An FRF can be expressed as gain and phase functions, as shown in Fig. 9.1b, 
with the gain values indicating the ratio of CoM response amplitude to stimulus 
amplitude and the phase indicating the timing of the response relative to the stimu-
lus. For a linear system, the FRF provides full knowledge of the system dynam-
ics such that the response to any arbitrary stimulus can be predicted (Pintelon and 
Schoukens 2012).

Although body sway responses to a stimulus at any particular amplitude showed 
no evidence for strong nonlinearities, it was evident, from results of an earlier study 
using sinusoidal stimuli of varying amplitudes, that the response gain was not con-
stant across all stimulus amplitudes (as expected for a linear system), but gain de-
creased with increasing amplitude (Peterka and Benolken 1995). Therefore, when 
we performed experiments using pseudorandom stimuli (Peterka 2002; Cenciarini 
and Peterka 2006; Goodworth and Peterka 2009, 2010a, b), a range of amplitudes 
was applied in each of the various test conditions. For example in our first study 
using pseudorandom stimuli (Peterka 2002) we applied stimuli with peak-to-peak 
amplitudes of 0.5°, 1°, 2°, 4°, and 8° in each of six test conditions. Examples of the 
family of FRFs for two of the test conditions, one for a surface stimulus with eyes 
closed and the other a visual stimulus during stance on a fixed and level surface, are 
shown in Fig. 9.2a and b, respectively.

The general shapes of the gain and phase data of all FRFs were quite similar 
across amplitude for both surface and visual stimuli. For each FRF, the gain was 
largest in the mid-frequency region of ~ 0.1–1 Hz and decreased with both decreas-
ing and increasing frequency. The phase data showed phase leads at the lowest 
frequencies, increasing phase lags with increasing frequency, and a zero crossing at 
about 0.2 Hz. Although the general FRF shapes were similar for both surface and 
visual stimuli, there were some notable differences. For surface-tilt stimuli, the FRF 
gains from the various stimulus amplitudes tended to converge at about 1 Hz while 
this did not occur for FRF gains from the visual stimulus. The higher frequency 
phases from different stimulus amplitudes tended to diverge for surface-tilt stimuli 
with the phase from higher amplitude stimuli showing less phase lag. In contrast, 
the higher frequency phases from visual stimuli showed no change with stimulus 
amplitude.

The FRFs in Fig. 9.2a and b provide a representative data set that guides the 
model development described in the next section.

9.3  Development of a Stance Control Model

In the following subsections we will demonstrate the step-by-step development of 
a model that accounts for a wide variety of experimental FRF results. The stages of 
model development, from simple to more complex, correspond quite well with the 
thought processes that were applied in the original model development.

9 Model-Based Interpretations of Experimental Data Related to the Control …
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9.3.1  Basic Feedback Control Model of Stance

It is widely recognized that balance control is organized as a feedback control sys-
tem with the feedback provided by body orientation information obtained from sen-
sory systems (Johansson et al. 1988; Horak and Macpherson 1996). Figure 9.3a 
shows a block diagram of a simple model that is capable of partially describing 
experimental FRFs and that includes the basic system components that we can rea-
sonably assume to be present in the system. These include the body mechanics, a 
sensory system that detects body sway, a “neural controller” that converts the de-
tected body sway into a corrective torque, Tc, applied about the ankle joints, and a 
time delay element representing all the delays in the system (i.e., sensory transduc-
tion, transmission of sensory information, processing of sensory and motor control 
information, transmission of motor control signals, and muscle activation delays).

The body mechanics are that of a single-segment inverted pendulum. The equa-
tion of motion for the inverted pendulum is:

Fig. 9.2  Sets of frequency response functions calculated using pseudorandom stimuli with five 
different amplitudes. Stimuli were either (a) support surface tilts during eyes closed stance or (b) 
visual surround tilts during stance on a fixed and level surface. (Data plots abstracted from Peterka 
(2002))
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(9.1)

where θbs( t) is the time course of body-in-space sway angle (i.e., body sway with 
respect to earth vertical), J is the moment of inertia of the body about the ankle-joint 
axis, m is body mass (not including mass of the feet), h is height of the body CoM 
above the ankle joint, g is the gravitational constant, and Tc( t) is a torque applied 
at the ankle joint. This time-domain equation can be linearized for small angles of 
motion (i.e., θbs( t) ≅ sin(θbs( t))) and expressed in the Laplace domain:

 (9.2)

where s is the Laplace variable. The Laplace representation is useful because (1) 
it allows for the algebraic manipulation of the differential equations that describe 
the input-output relations of each model component (i.e., each block in the block 
diagram) and (2) it allows for the calculation of FRFs by substitution of s = j2πf with 
j being the imaginary number −1  and f being frequency in Hz.
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Fig. 9.3  Simple feedback control model of the balance control system (a) and model predictions 
expressed in the form of frequency response functions (b). Model assumes a one-segment inverted 
pendulum body is controlled by sensory feedback from proprioception signaling body sway angle 
relative to the surface. The frequency response functions show the effect of changing the values of 
the PD parameters (that define proportional and derivative feedback gains) on the dynamic char-
acteristics of the system. The “x 1” PD scale factor uses PD parameter values defined in Table 9.2 
and produces gain and phase functions that most closely resemble experimental data. The body 
inverted pendulum parameters are given in Table 9.1
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The sensory system provides information about body sway. In the Fig. 9.3a 
model we consider that only proprioception is available and that proprioception sig-
nals body orientation relative to the surface (i.e., it encodes the ankle-joint angle). 
We also assume that the proprioceptive sensory signal is a perfect encoder of the 
ankle joint angle such that there are no sensory dynamics involved. Specifically, the 
“Proprioception” block in Fig. 9.3a is set to a value of “1” to represent this perfect 
encoding with no dynamics. Effectively, we are assuming that the spinal and central 
nervous systems are capable of deriving an essentially perfect encoding of limb 
motion by processing the complex afferent signals available from the peripheral 
sensors such as stretch receptors. Justification for this assumption comes from re-
cordings from the cerebellum and the dorsal spinocerebellar tract where the neural 
signals do not show responses typical of stretch receptors, but rather show activity 
representing kinematic variables of limb motion (Bosco et al. 2000; Casabona et al. 
2004).

The sensory-derived body orientation is compared to an internal reference indi-
cating the desire to remain in an upright orientation. Any deviation from the refer-
ence produces and error signal er( t) = θss( t) − θbs( t) where θss( t) is the tilt angle of 
the support surface. The time delayed error signal, er( t − td) where td is length of the 
delay, is the input to the neural controller. The neural controller then generates a 
corrective torque in relation to the time-delayed error signal according to the time-
domain equation:

 ( (9.3)

The Laplace domain version is:

 (9.4)

where Kp is the proportionality constant for the error angular position and Kd is the 
proportionality constant for the error angular velocity. In engineering systems this 
type of controller is referred to as a PD (proportional-derivative) controller. With all 
the components of the model now defined we can write an equation in the Laplace 
domain and then solve for the ratio of the body sway response to the surface-tilt 
stimulus:

 (9.5)
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After making the s = j2πf substitution, FRF values expressed as real and imaginary 
numbers at each frequency, f, can be calculated and then represented as gain and 
phase values by:

 (9.7)

 (9.8)

where Re(·) and Im(·) refer to the real and imaginary components, respectively, of 
the FRF values and phase is expressed in degrees.

Assuming fixed values for the J, m, and h parameters for a give subject (see 
Table 9.1), the shapes of the gain and phase curves depend on the particular values 
of the parameters Kp, Kd, and td (see Table 9.2). The rather large time delay value 
(0.18 s) accounts for a portion of the large and increasing phase lags seen at higher 
frequencies (consistent with experimental FRF phases). Three different gain and 
phase curves are shown in Fig. 9.3b to demonstrate the effect of varying Kp and Kd 
values. The curves labeled as having PD controller values scaled by a “x 1” scale 
factor result in FRF gain and phase curves that are closest to the shape of experi-
mental FRFs shown in Fig. 9.2.

Consistent with most experimental FRF gains shown in Fig. 9.2, the FRF gains 
at low to mid-frequencies are greater than unity for all FRFs shown in Fig. 9.3b. 
These low-frequency gain values calculated for the Fig. 9.3a model are determined 
by the value of Kp in relation to the value of the product mgh. Specifically, the low 
frequency gain is given by Kp/( Kp − mgh) and this value is obviously always greater 
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Table 9.1.  Model parameters for inverted pendulum body mechanics
Parameter Description Value
J Moment of inertia about ankle joint 81 kg m2

m Body mass (not including feet) 83 kg
h Center-of-mass height above ankle joint 0.9 m
mgh Gravity torque constant 733 kg m2/s2

Table 9.2  Model parameters for feedback control
Parameter Description Value
Kp Neural controller proportional (P) gain constant 968 (1060) Nm/rad
Kd Neural controller derivative (D) gain constant 350 (286) Nms/rad
Kt Torque feedback gain constant 8.7 × 10−4 rad/Nm
τt Torque feedback low-pass filter time constant 15 s
td Time delay 0.18 s

Kp and Kd values in parentheses were used in the model shown in Fig. 9.6a that included stretch 
reflex and Hill muscle/tendon subsystem

9 Model-Based Interpretations of Experimental Data Related to the Control …
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than one. The value mgh is a scale factor that specifies the amount of destabilizing 
torque due to gravity created per unit of body sway away from the upright orien-
tation. The value of Kp must be greater than mgh in order that enough corrective 
torque is generated by the neural controller to resist the destabilizing torque due to 
gravity. For the FRF shown in Fig. 9.3b that most closely resembles the shape of the 
experimental FRFs (the times one PD scale factor), the low frequency gain is ap-
proximately equal to 4 and thus Kp has a value that is about 1/3rd greater than mgh.

This relatively low value of Kp makes this simple control system quite sensitive 
to even small perturbations caused by a non-level support surface. With this simple 
feedback model, the only way to reduce the sensitivity to surface tilt would be to 
increase the value of Kp. However, increasing Kp produces an FRF with a resonant 
peak at ~ 1 Hz. (Fig. 9.3b shows the results of increasing both Kp and Kd but similar 
results are seen when only Kp is increased.) This necessitates a careful regulation 
of the neural controller PD values in order to avoid resonant behavior or even un-
stable operation. Furthermore, larger time delay values make the system shown in 
Fig. 9.3a more difficult to stabilize such that no PD values can be found that provide 
stability if the time delay is greater than about 0.35 s (van der Kooij and Peterka 
2011).

In summary, the very simple model in Fig. 9.3a is successful in predicting the 
basic shape seen in experimental FRFs, but this model is clearly incomplete. The 
model cannot account for the stimulus amplitude-dependent variation in overall 
FRF gain magnitude while shapes of the FRF gain and the phase curves remain rela-
tively unaffected. In this simple model, the gain can only be influenced by changes 
in controller parameters, but these changes also change the shapes of the gain and 
phase curves. The next subsection modifies the basic Fig. 9.3a model in order to 
account for stimulus-dependent gain changes.

9.3.2  Accounting for Stimulus Amplitude-Dependent FRF Gain

The addition to the Fig. 9.3a model that accounts for amplitude-dependent changes 
in overall FRF gain values is shown in Fig. 9.4a. This model is expanded to include 
feedback from visual and vestibular systems in addition to proprioception. The 
model includes a “sensory integration” subsystem that represents the process by 
which the orientation information from the three sensory systems is combined, by a 
weighted summation, to form an internal estimate of body orientation. This internal 
estimate is compared to an internal reference of the desired upright body orientation 
(as in the Fig. 9.3a model but not shown in Fig. 9.4a) with the difference between 
the estimate and the reference forming an orientation error signal, er( t). This error 
signal is the input to the neural controller that produces the corrective torque.

The three sensory-system weights represent the relative contributions of the sen-
sory systems to the overall internal estimate of body orientation. Mathematically 
this means that, for a given test condition, the sum of the weights of all sensory 
systems contributing to balance control is equal to unity. As in the Fig. 9.3a model, 
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we continue to assume that ankle proprioception provides a perfect sensory signal 
encoding the ankle joint angle and therefore the block labeled “Proprioception” has 
a value of “1”. We make the same assumption for the “Vision” and “Vestibular” 
blocks.

For the vestibular system the justification for the assumption of perfect encod-
ing of head tilt with respect to earth vertical comes from experimental studies that 
show evidence that central processing of sensory signals from the semicircular ca-
nals (encoding angular head velocity) and otolith organs (encoding an ambiguous 
combination of head linear acceleration and acceleration due to gravity) can sepa-
rate the transient component of linear acceleration from the component of linear 
acceleration due to gravity (Angelaki et al. 1999; Merfeld et al. 1999; Zupan et al. 
2000; Angelaki et al. 2004; Peterka et al. 2004). For our purposes the conclusion is 
that nervous system has available to it an accurate, wide-bandwidth estimate of the 
orientation of the gravity vector with respect to the head and therefore a vestibular-
derived estimate of body orientation with respect to earth vertical.

For the visual system, justification for the presence of wide bandwidth encoding 
of visual motion information comes from experiments showing that (1) eye move-
ments in humans evoked by optokinetic stimuli have approximately constant FRF 
gains over a wide bandwidth (Peterka et al. 1990) and (2) neural recordings from 
Purkinje cells in the cerebellar flocculus of Java monkeys have high sensitivity to 
optokinetic stimuli out to 3 Hz (Markert et al. 1988).

Fig. 9.4  A feedback control model that includes sensory integration (a) and model predictions 
expressed in the form of frequency response functions (b). The model predictions demonstrate 
how changes in the proprioceptive weight (for surface-tilt stimulation) or in visual weight (for 
visual-tilt stimuli) affect the frequency response functions. The body mechanics parameters and 
feedback control parameters are defined in Tables 9.1 and 9.2, respectively
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The Laplace equation for the Fig. 9.4a model when a surface-tilt stimulus is ap-
plied is:

 (9.9)

When a visual-tilt stimulus is applied the equation is:

 (9.10)

Both of these equations are derived with the assumption that the sum of the sensory 
weights is always unity. These two equations differ from Eq. (9.6) only by having 
an additional multiplying factor of either Wprop or Wvis in the numerator. Thus if 
the Kp, Kd, and td parameters of Eqs. (9.9) and (9.10) are set to the same values as 
used to calculate the FRFs shown in Fig. 9.3b, the FRF gain and phase curves will 
have the same shape as those shown in Fig. 9.3b. The only difference will be that 
the overall magnitude of the gain curves will depend on the value of Wprop for test 
conditions where a surface-tilt stimulus was applied and on the value of Wvis for 
conditions where a visual-tilt stimulus was applied.

The FRFs shown in Fig. 9.4b were calculated for 4 different Wprop or Wvis val-
ues ranging from 0.2 to 0.8 and with the remaining parameters set to values in 
Tables 9.1 and 9.2. The phase curves of the FRFs are not affected by changing Wprop 
or Wvis values, so the phase curves calculated for different sensory weights overlay 
one another in Fig. 9.4b. The gain curves calculated using Eqs. (9.9) and (9.10) are 
identical when Wprop and Wvis values are equal to one another. Changing the value 
of Wprop or Wvis simply shifts a gain curve up or down (when gain is plotted on a 
log-log scale).

The FRFs shown in Fig. 9.4b provide a better match to the experimental FRFs in 
Fig. 9.2 in that we now have an explanation that accounts for the decrease in FRF 
gains with increasing stimulus amplitude while the FRF phases are not affected 
by stimulus amplitude. Specifically, when applying a surface-tilt stimulus, the fact 
that the FRF gains are largest at the lowest stimulus amplitude and decrease with 
increasing stimulus amplitude implies that the proprioceptive contribution to bal-
ance control, quantified by Wprop, is greatest at the lowest stimulus amplitude and 
decreases with increasing amplitude. For eyes closed tests using surface-tilt stimuli, 
a decrease in Wprop with increasing stimulus amplitude also implies that the ves-
tibular contribution to balance control (represented by Wvest in the model) increased 
with increasing stimulus amplitude. This increase in Wvest is implied because of the 
constraint that sensory weights must sum to unity.

The interpretation of experimental results based on the Fig. 9.4a model allows 
us to recognize the contribution of a “sensory reweighting phenomenon” to the 
regulation of balance. Specifically, an amplitude-dependent sensory reweighting 
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occurs such that the contribution to balance control from the sensory system encod-
ing the primary perturbing stimulus (e.g., proprioception for surface movements) 
is decreased while the contribution from secondary sensory systems (e.g., the ves-
tibular system in eyes closed tests) is increased. This model prediction of reciprocal 
reweighting has been tested and confirmed experimentally (Cenciarini and Peterka 
2006).

However, the model-predicted FRFs in Fig. 9.4b are not yet entirely consistent 
with the experimental FRFs in Fig. 9.2. In particular, each of the experimental FRFs 
for both surface and visual stimuli show a decrease in gain and phase advance with 
decreasing frequency for frequencies below about 0.1 Hz. The next subsection will 
modify the Fig. 9.4a model to account for this low frequency behavior.

9.3.3  Accounting for Low Frequency FRF Gain Reduction  
and Phase Advance

If balance control were governed entirely by feedback control with the properties 
of the Fig. 9.4a model, the regulation of body orientation would be very sensitive to 
the static conditions in the environment. For example, the Fig. 9.4a model predicts 
that if a subject was relying 80 % on proprioception for balance control and was 
standing on a surface that was tilted by only 1°, the subject’s body would remain 
tilted from upright by almost 4°. That is, the Fig. 9.4a model predicts that equilib-
rium between the torque due to gravity and the corrective torque generated by the 
control system is achieved at a body angle of Wprop · Kp/( Kp − mgh) for a 1° surface-
tilt angle. This equation shows that the only way to reduce the sensitivity to surface 
tilt would be to reduce Wprop (and therefore increase Wvest in this eyes-closed condi-
tion) or to greatly increase Kp. As shown in the Fig. 9.3b FRFs, it is not possible to 
greatly increase Kp. Furthermore, results based on optimal control concepts indicate 
that it is not desirable to rely heavily on vestibular information due to the high noise 
levels in the vestibular sensory system (van der Kooij and Peterka 2011). Therefore 
some other mechanism must be contributing to balance control to regulate low fre-
quency or static body orientation.

An earlier sensory integration model attempted to account for the low frequency 
gain declines and phase advances by having a neural controller that includes integral 
control action in addition to PD control (i.e., PID control) (Peterka 2002). However, 
the PID controller did not fully account for the low frequency gain and phase data 
and motivated us to consider that the balance control system might exploit its abil-
ity to sense a sustained corrective torque in order to move the body toward a more 
upright orientation. The model originally proposed in Peterka (2002) was modified 
to include an additional feedback pathway based on sensory systems that encode the 
force exerted by muscle stretch and activation (e.g., by Golgi tendon organs) or by 
other somatosensory contributions such as sensing center-of-pressure (CoP) shifts 
on the feet (Peterka 2003; Cenciarini and Peterka 2006).

9 Model-Based Interpretations of Experimental Data Related to the Control …
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A model that incorporates torque feedback is shown in Fig. 9.5a along with FRFs 
that demonstrate how the dynamic characteristics of the system are affected by in-
clusion of a torque feedback pathway. Note that the torque feedback pathway pro-
vides positive feedback. Positive force feedback has previously been understood 
to contribute to motor control in specific circumstances such as load compensation 
(Prochazka et al. 1997; Duysens et al. 2000). Functionally, the Fig. 9.5a model 
predicts that when a subject is leaning forward and generating a sustained correc-
tive torque, the positive torque feedback causes the error signal to increase in value. 
The increased error signal generates additional corrective torque that overcomes the 
torque due to gravity such that the body is moved toward an upright position. As the 
body-sway angle decreases, the magnitude of corrective torque decreases, and the 
contribution of the positive torque feedback pathway diminishes.

To account for the experimental FRFs we found it necessary to include an in-
tegrator, or to be more physiologically realistic, a leaky integrator (i.e., a low-pass 
filter with a long time constant) in the torque feedback pathway. When torque feed-
back is included in the model, the equation describing the FRF becomes much more 
complicated and it is more informative to present it as follows:

Fig. 9.5  A feedback control model that includes sensory integration and torque feedback (a) and 
model predictions expressed in the form of frequency response functions (b). The model predic-
tions demonstrate how changes in the proprioceptive weight (for surface-tilt stimulation) or in 
visual weight (for visual-tilt stimuli) affect the frequency response functions. The torque feedback 
loop provides positive feedback such that the magnitude of corrective torque, Tc, is increased 
if Tc is sustained for longer periods of time. The increased Tc will move the body toward an 
upright position. The effect of the positive torque feedback is to reduce the low frequency gain 
and advance the low frequency phase of the frequency response functions. The body mechanics 
parameters and feedback control parameters are defined in Tables 9.1 and 9.2, respectively

 



259

 (9.11)

where NC, B, TD, and TF are the Laplace equations for the neural control-
ler, body mechanics, time delay, and torque feedback, respectively, given by 
NC K K s B J s mgh TD e TF K sp d

t s
t t

d= + = − = = +−• , / ( • ), , / ( • )1 12  and τ  The 
parameters Kt and τt are the gain and time constants, respectively, of the low-pass 
filter in the torque feedback pathway. As with the Fig. 9.4a model the assumption is 
that the sum of sensory weights is unity. The functional form of the FRF equation 
for a visual stimulus is the same except that Wprop in Eq. (9.11) is replaced with Wvis. 
As with the Fig. 9.4a model, variation in Wprop or Wvis produces FRF gain curves 
with different amplitudes but with identical shapes (when plotted on log-log axes) 
and the FRF phase curves are the same for all values of Wprop or Wvis. The model-
predicted FRFs now show a gain decrease and phase advance at lower frequencies, 
consistent with the experimental FRFs shown in Fig. 9.2.

The FRFs predicted by the Fig. 9.5a model now closely resemble FRFs across 
the entire bandwidth of test frequencies from experiments using visual stimuli 
(Fig. 9.2b) but the resemblance is not quite as good for surface stimuli (Fig. 9.2a). 
Specifically, experimental FRFs obtained using different amplitudes of surface 
stimuli show a convergence of the gain curves in the 1–2 Hz region and a diver-
gence of the phase curves with increasing frequency. The next subsection considers 
an extension of the Fig. 9.5a model that includes additional mechanisms.

9.3.4  Accounting for FRF Differences for Surface  
and Visual Stimuli

The differences between experimental FRFs from surface and visual stimuli oc-
cur mainly at higher frequencies. If a single model can account for both sets of 
FRFs then there must be some asymmetry in the balance control system that causes 
responses evoked by a surface-tilt stimuli to differ from those evoked by visual 
stimuli. There are two obvious oversights in the models considered so far. One is the 
absence of a contribution from passive muscle/tendon mechanics, and the second is 
the absence of a stretch reflex contribution to muscle activation.

The model shown in Fig. 9.6a adds these two components. The muscle/tendon 
properties were modeled using a linearized Hill-type model (McMahon 1984) that 
included an elastic element in series with a parallel combination of a contractile 
component (generating internal muscle force), and elastic and damping elements. 
Inclusion of this muscle/tendon system alters the balance control model in two 
ways. First, the passive mechanical properties of the muscle/tendon system generate 
an ankle torque, Tpas, as a function of ankle joint motion. This torque is generated 
without time delay. Tpas sums with the torque generated by active muscle contrac-
tions, Tact, to produce that total corrective ankle torque, Tc. Second, the activation of 
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Fig. 9.6.  A feedback control model that includes sensory integration, torque feedback, stretch 
reflex, muscle/tendon contractile dynamics, and passive muscle/tendon dynamics (a) and model 
predictions expressed in the form of frequency response functions (b, c). The stretch reflex is 
assumed to generate a muscle activation signal proportional to the velocity of ankle joint motion. 
The muscle/tendon contractile and passive dynamics are based on a linearized Hill-type muscle/
tendon system. With the addition of stretch reflex and muscle/tendon components, the model-
predicted frequency response functions for surface-tilt stimuli (b) and visual-tilt stimuli (c) now 
resemble experimental frequency response functions in Fig. 9.2. The body mechanics parameters, 
feedback control parameters, and stretch reflex and muscles/tendon parameters are defined in 
Tables 9.1, 9.2, and 9.3, respectively
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the muscle contractile element generates an internal muscle force that acts through, 
and is effectively low-pass filtered by the muscle mechanics to produce Tact. The 
output of the neural controller is now considered to be a muscle activation signal, 
rather than an applied ankle torque.

The stretch reflex is represented as a subsystem whose output is a muscle activa-
tion signal that is a function of the angular velocity of the ankle joint motion. The 
stretch reflex output is summed with the activation signal from the neural controller. 
The stretch reflex includes a time delay that is assumed to be shorter than the delay 
associated with the sensory integration mechanism.

With the addition of muscle/tendon and stretch reflex components, the Laplace 
equations describing body sway responses to surface and visual stimuli now differ 
from one another. These equations are:

 (9.12)

 (9.13)

where M, P, and SR are the Laplace equations for linearized Hill-type muscle/
tendon contractile dynamics, passive muscle/tendon dynamics, and stretch 
reflex dynamics, respectively. The Laplace equations for these components are 
M K K K B s P K K K B s K K Bse ce se ce se ce se ce ce se ce= + + ⋅ = ⋅ + ⋅ ⋅ + + ⋅/ ( ), ( ) / ( ss), and 
SR B s esr

t ssr= −• • . The additional model parameters (values given in Table 9.3 in-
clude the linearized Hill-type muscle/tendon properties of series elastic stiffness, 
Kse, contractile element stiffness, Kce, and contractile element damping, Bce. The 
functional stretch reflex is assumed to contribute a muscle activation signal propor-
tional to ankle velocity (proportionality constant Bsr) and with time delay tsr. Note 
that the passive muscle/tendon dynamics have properties of a “lead/lag” system that 
generates more passive torque for higher compared to lower frequencies of ankle 
joint motion. The muscle/tendon contractile dynamics have the functional form of 
a low-pass filter. The static gain of this filter is Kse/( Kse + Kce), which is less than 
unity. Therefore adjustments in system parameters are necessary to make up for this 
gain reduction such that the overall dynamic characteristics of the balance control 
system remain similar to the ones shown for the Fig. 9.5a model. The adjusted pa-
rameter values are shown in parentheses in Table 9.2.
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Table 9.3  Model parameters for stretch reflex and muscle/tendon subsystems
Parameter Description Value
Bsr Stretch reflex velocity gain constant 115 Nms/rad
tsr Stretch reflex time delay 0.07 s
Kse Hill muscle/tendon subsystem series element stiffness 660 Nm/rad
Kce Hill muscle/tendon subsystem contractile element stiffness 147 Nm/rad
Bce Hill muscle/tendon subsystem contractile element damping 22 Nms/rad
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With a proper selection of parameters, Eqs. (9.12) and (9.13) now predict a set 
of FRFs that differ for surface and visual stimuli (Fig. 9.6b and c) and that display 
characteristics that approximately match those of experimental FRFs. The set of vi-
sual FRFs shown in Fig. 9.6c are very similar to the ones predicted by the Fig. 9.5a 
model that did not include the stretch reflex or muscle/tendon mechanics. This simi-
larity occurs because a visual stimulus only indirectly evokes body sway causing 
ankle-joint motion. That is, the dynamics of the balance control system effectively 
filters out the higher frequency components of the visual stimulus leaving only low-
er frequency component of the ankle-joint motion. This limits the higher frequency, 
velocity-related contributions to corrective torque arising from the stretch reflex and 
passive muscle/tendon mechanics. In contrast, the same stimulus applied to the sur-
face directly activates the stretch reflex and passive muscle/tendon pathways such 
that the higher frequency components of the stimulus contribute additional correc-
tive torque at higher frequencies (as compared to the visual stimulus), thus affect-
ing the higher frequency dynamics of the balance control system (Fig. 9.6b). Fur-
thermore, as the surface-tilt amplitude increases, the proprioceptive weight, Wprop, 
decreases. With decreasing Wprop the influence of the stretch reflex contribution and 
passive muscle/tendon mechanics on overall response dynamics increases in com-
parison to the influence of the proprioceptive contribution from the sensory integra-
tion subsystem. Thus, the FRF gain curves from surface stimuli change in shape as 
well as magnitude, and the FRF phase curves change shape as Wprop changes.

9.3.5  Limitations and Extensions of the Stance Control Model

The predictions from the Fig. 9.6a model suggest that we can now account for the 
major features of experimental FRFs. It seems like it should be possible to obtain 
reliable measures of the various model parameters by applying optimal estimation 
methods to fit the model FRF equation to the experimental FRF data (see details 
of fitting methods in (Peterka 2002; van der Kooij and Peterka 2011)). Assum-
ing that we use estimates of parameters associated with body mechanics ( J, m, h) 
obtained from anthropometric measures, there are 11 additional free parameters in 
Eqs. (9.12) and (9.13).

Unfortunately, limitations in our ability to reliably identify the free parameters 
are quickly revealed from the results of optimal estimation procedures to deter-
mine model parameters. A major difficulty is that there is considerable redundancy 
in that, for some combinations of parameters, more than one parameter can ac-
count for particular features of the FRFs. To overcome this problem of parameter 
redundancy, our approach in previous studies (Peterka 2002, 2003; Cenciarini and 
Peterka 2006; van der Kooij and Peterka 2011) has been to simplify the model to 
reduce redundancies in parameters. The simplified model in these previous studies 
did not include the stretch reflex subsystem and muscle/tendon contractile dynam-
ics subsystem, and the passive muscle/tendon dynamics were simplified by rep-
resenting this subsystem as a summation of stiffness and damping elements (i.e., 
P = Kpas + Bpas·s) rather than the more complex definition of P used in Eqs. (9.12) 
and (9.13). With these simplifications, the number of free parameters is reduced to 
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eight and the optimal fits to the experimental FRFs typically yield reliable param-
eters in the sense that the variance of parameters across subjects is relatively low. 
However, the tradeoff for this reduced variability is the recognition that the model 
is deviating from reality to some extent.

Another approach to enhancing our ability to identify parameters of more real-
istic models is to gather more complex data sets. More complex data sets could be 
obtained from experiments that include stimuli with wider bandwidths (Goodworth 
and Peterka 2009, 2010b, 2012), stimuli that include multiple types of perturbations 
that are presented simultaneously (e.g., combinations of visual-tilt stimuli, surface-
tilt stimuli, surface translations, galvanic vestibular stimulation, and/or applications 
of external force; see (Cenciarini and Peterka 2006; Pasma et al. 2012; Boonstra 
et al. 2013)), and recordings of additional “in-the-feedback-loop” signals such as 
muscle activation signals recorded using electromyography (Kiemel et al. 2008) or 
muscle motion recorded using ultrasound techniques (Loram et al. 2005). The idea 
is that the added richness of the experimental data will provide sufficient additional 
information to allow for the reliable identification of more realistic models that 
include the added parameters that are necessary to represent the various subsystems 
contributing to balance control.

Since a particular balance control model represents a quantitative hypothesis 
about the organization and function of the system, the model can be used to make 
predictions that motivate new experiments to test these predictions and thereby test 
the hypothesis represented by the current model. Failure of the model to account 
for some aspects of new experimental data should then motivate refinements of the 
existing model or the consideration of alternative model structures (for example 
see (Mergner et al. 2002; Mergner 2010) for the description of a model structure 
that is quite different from the one discussed here). The ongoing cycle of model 
development, followed by experimental challenges, followed by model refinement 
simply represents the productive application of the scientific method. The general 
trend will be for the models to become more complex as they become better able to 
explain the complex nature of balance control.

However, it is also worth noting that simpler models retain some value. As a 
specific example, the Fig. 9.5a model does account for the main dynamic character-
istics of the stance control system. Parameters determined from a fit of this model 
to FRFs of individual subjects provide quantitative measures with physiological rel-
evance, such as sensory weights. Tests that quantify the function of the balance con-
trol system using a model-based interpretation of stimulus-response behavior could 
be used clinically to diagnose neurological disorders, track changes over time, or 
monitor the effectiveness of therapy.

9.4  Investigation of Balance Control During Gait

Of interest to us is whether or not the sensory integration principles identified for 
stance control also apply to the control of body orientation during gait. If so, then 
we would expect the mean body orientation during gait would be significantly in-
fluenced by environmental conditions such as walking on a sloped surface.

9 Model-Based Interpretations of Experimental Data Related to the Control …
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As with our studies of stance control, we want to have an experimental data set 
that is rich enough to promote the development of models that help us to understand 
the mechanisms contributing to the control of body orientation and dynamic stabil-
ity during gait. Our prior use of pseudorandom stimuli and FRF analysis methods 
to study stance control motivated us to apply similar methods to study gait. The 
experimental results reported here focus on the control of body orientation in the 
frontal plane.

In order to apply pseudorandom stimuli during gait, we adopted a stepping-in-
place (SiP) protocol as a surrogate for walking gait. The roll motions of the body 
CoM during SiP (Fig. 9.7a) closely resemble the frontal plane motions of the CoM 
during forward walking (Brenière 1996; Hof et al. 2005). Specifically, the CoM 
oscillates right and left with a sinusoidal motion, and the peak lateral displacement 
of the CoM is typically located medial of the stance foot. The CoP oscillates right 
and left with plateaus occurring when only 1 ft is on the surface. The CoP shows a 
ramp trajectory during the double leg support phase as weight is shifted from 1 ft 
to the other. From analysis of the CoP trajectory, the timing of the gait-cycle events 
can be measured.

All SiP tests were performed with eyes closed. To maintain an approximately 
constant location of the subject during SiP on the surface of our balance test device, 
soft foam guides were taped to the surface in a T-shaped configuration. Subjects 
were instructed to make small corrections in stepping location when they made 
contact with the T.

Balance in the frontal plane was perturbed using pseudorandom surface-tilt stim-
uli (six cycles per test trial, peak-to-peak amplitudes of 0° (control trial), 1°, 2°, and 
4°) while subjects performed SiP. Metronome clicks were used to pace the stepping 
such that subjects performed 38 step cycles in each 48.4-s cycle of the pseudoran-
dom stimulus (i.e., stepping frequency of ~ 0.8 Hz). Measurements included subject 
CoM sway angle in the frontal plane, lateral displacement of the CoP, and lateral 
displacements of right and left heels. The same stimuli were used to evoke frontal-
plane sway during stance. Stance trials were performed eyes closed with the feet 
separated by 8 cm (intermalleolar distance). CoM sway in response the surface-tilt 
stimulus was analyzed to calculate FRFs from SiP trials and stance trials. Step width 
and step timing were also measured in order to investigate mechanisms contributing 
to the control of dynamic balance (Kuo 1999; Hausdorff 2005; Maufroy et al. 2010), 
but only results related to the control of body orientation are discussed below.

9.4.1  Control of Body Orientation During Gait

Do the principles of sensory integration and sensory reweighting identified for 
stance control also apply to the control of body orientation during gait? The re-
sults from sway measured during eyes closed SiP suggest there are similarities. 
Figure 9.7b shows one subject’s frontal-plane CoM sway during a SiP test while 
balance was perturbed by a continuous pseudorandom tilt of the surface upon which 
the subject was stepping. Results are shown for three different stimulus amplitudes 
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and the CoM sway data were averaged across the last five cycles of the pseudo-
random stimulus. The regularity of oscillations occurring at the 0.8 Hz stepping 
frequency become more disrupted at larger stimulus amplitudes due to changes in 
body orientation evoked by the stimulus. The time course of the change in body 
orientation is made more evident by low-pass filtering (0.5 Hz cutoff frequency) 
the CoM sway data to remove the 0.8-Hz oscillation at the stepping frequency. The 
low-pass filtered CoM traces (thick traces) tend to increase with increasing stimulus 
amplitude and show some resemblance to the time course or the stimulus waveform.

Fig. 9.7  Results from stepping-in-place ( SiP) experiments. a Example data recorded during SiP 
showing frontal-plane displacements of center-of-pressure ( CoP), center-of-mass ( CoM), and 
right and left heel position from which step-by-step measures of step width and step timing (stance 
times and swing times of right and left legs) were taken. b Example CoM sway recorded from an 
individual subject during eyes-closed SiP on a surface that was rotated according to a pseudoran-
dom waveform at three different amplitudes. CoM sway data, averaged across five cycles of the 
pseudorandom stimuli, shows that the oscillating pattern of CoM in the frontal plane ( gray traces) 
is disturbed by the surface-tilt stimulus. Application of a 0.5 Hz low-pass filter to the CoM elimi-
nates the oscillatory component at the 0.8 Hz SiP frequency and reveals the deviations of the CoM 
orientation across the stimulus cycle (thick black traces)
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FRFs calculated from the CoM sway evoked by surface-tilt stimulation during 
SiP are shown in Fig. 9.8a. For comparison, FRFs from stance trials of the same 
subjects are also shown in Fig. 9.8b. Each set of FRFs show results for the three 
different stimulus amplitudes and the FRFs are average results from six young adult 
subjects with normal sensory function. There were similarities and differences 
between FRFs from stance and SiP trials. Both showed the largest gains in the 
mid-frequency region, decreasing gains with decreasing frequencies below about 
0.1 Hz, and decreasing gains with increasing frequencies above about 0.8 Hz. Mid-
frequencies gains were greater than unity for both SiP and stance indicating the high 
sensitivity to surface-tilt perturbations in this mid-frequency range. Results from 
SiP and stance both showed decreasing FRF gains with increasing stimulus ampli-
tude. For the SiP FRFs, this gain decrease with increasing amplitude was evident 
at frequencies below about 0.2 Hz while for stance FRFs, the amplitude-dependent 

Fig. 9.8  Frequency response functions ( FRFs) from SiP experiments (a) and stance experiments 
(b). Pseudorandom surface-tilt stimuli at three different amplitudes were used to evoke CoM sway 
in the frontal plane. FRF results were averaged across the data from six subjects with normal sen-
sory function who performed both SiP and stance experiments with eyes closed
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gain decrease was evident at frequencies below about 0.8 Hz. Both SiP and stance 
FRFs showed phase leads at frequencies below about 0.2 Hz, and increasing phase 
lags at higher frequencies. SiP and stance phase data was minimally influenced by 
stimulus amplitude.

Differences between SiP and stance FRFs relate to the detailed shapes of the gain 
curves. The SiP gain curves show a notched decrease in gain at about 0.4 Hz and a 
peak near the stepping frequency while the stance gain curves are more uniform in 
this frequency region. It is perhaps notable that a previous study, that perturbed bal-
ance during treadmill walking using a sinusoidal visual stimulus at various frequen-
cies, observed a similar enhancement of lateral sway amplitude when the stimulus 
frequency was close to the walking frequency (Kay and Warren 2001).

To the extent that we are confident that an amplitude-dependent change in FRF 
gains in the absence of phase changes is indicative of a sensory reweighting phe-
nomenon, the pattern of amplitude-dependent changes seen in the SiP FRFs implies 
that the same or a very similar sensory reweighting phenomenon is contributing to 
the regulation of body orientation during SiP. Because the frontal-plane body mo-
tion during SiP and actual walking gait are similar, we anticipate that the balance 
mechanisms regulating the control of quiet stance are also influencing frontal-plane 
balance control during walking. As discussed previously, the balance mechanisms 
regulating body orientation during stance do a relatively poor job of maintaining an 
upright body orientation in conditions where the surface is not level or the visual 
system is not providing accurate orientation information. Therefore when walking 
on a tilted surface, for example, the mechanisms that control body orientation will 
evoke a leaning posture, and this leaning posture will impose a mechanical asym-
metry that would be expected to complicate the task of maintaining dynamic stabil-
ity during gait.

The FRF gain values at the lowest frequencies are notably smaller for the SiP 
trials than the stance trials, particularly in the results from the largest stimulus am-
plitude where the SiP gains are about half the value of the stance trials. The gain 
decrease and phase advance at lower frequencies are consistent with a torque feed-
back mechanism contributing to the control of body orientation at these lower fre-
quencies. The lower low-frequency gains during SiP compared to stance suggest 
that this mechanism made a stronger contribution to orientation control during SiP. 
Assuming that SiP results apply to actual walking, a low FRF gain at low frequen-
cies predicts that the mean body orientation would be close to zero (i.e., vertical) if 
a subject were walking for an extended period of time across a surface with a con-
stant slope. However, if the slope was changing, as it would be on uneven terrain, 
the mean body orientation will be affected to a much greater extent and thus have 
a greater impact on the task of maintaining both static and dynamic stability, thus 
perhaps increasing the likelihood of falling.
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