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    Chapter 17   

 Complex Spike Patterns in Olfactory Bulb Neuronal 
Networks                     

     Alister     U.     Nicol     ,     Anne     Segonds-Pichon     , and     Magnus     S.     Magnusson      

  Abstract 

   Using T-pattern analysis, a procedure developed for detecting a particular kind of nonrandomly recurring 
hierarchical and multi-ordinal real-time sequential patterns (T-patterns), we have inquired whether such 
patterns of action potentials (spikes) can be extracted from extracellular activity sampled simultaneously 
from many neurons across the mitral cell layer of the olfactory bulb (OB). Spikes were sampled from 
urethane-anesthetized rats over a 6 h recording session, or a period lasting as long as permitted by the 
physiological condition of the animal. Breathing was recorded as markers of peak inhalation and exhala-
tion. Complex t-patterns of up to ~20 elements were identifi ed with functional connections often spanning 
the full extent of the array. A considerable proportion of these sequences were related to breathing. By 
comparing sequence detection in our real data with that in the same data when randomized (using either 
of two procedures, one preserving the interval structure of each spike train, and so the more conservative), 
we fi nd that the incidence of sequences is very much greater in the real than in the random data. Further, 
in cases where recordings were terminated before completion of the full recording session, the difference 
between pattern detection in real data and that of randomized data strongly correlated with the physiologi-
cal condition of the animal—in recordings leading to the preparation becoming physiologically unstable, 
the number of patterns detected in real data approached that in the randomized data. We conclude that 
such sequences are an important physiological property of the neural system studied, and suggest that they 
may form a basis for encoding sensory information.  
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1      Introduction 

 Much of the computational power of the brain undoubtedly resides 
in the activities of cooperating and competing networks of neu-
rons.  Functional coupling   between  s        imultaneously sampled neu-
rons in an in vivo preparation was fi rst reported 1963 by  Griffi th   
and  Horn   [ 1 ] and has long been recognized as theoretically impor-
tant in neuroscience. Synchronized activation between neurons 
has been linked to perceptual cognition, namely “the binding 
problem” [ 2 ], whereby the combined features of a complex 
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 stimulus are associated by the synchronization of the activities of 
neurons responding to one or more of those features. The most 
widely accepted theory of the physiology of memory formation 
[ 3 ], is also based upon the occurrence of such interactions in  mem-
ory systems  —“When an axon of cell A is near enough to excite B 
and repeatedly or persistently takes part in fi ring it… A’s effi ciency, 
as one of the cells fi ring B, is increased.” 

  Experimental models   have provided evidence that memory 
formation may adhere to so-called “Hebbian”  principle  s.  Long- 
term potentiation (LTP)   is a physiological process that has been 
studied extensively since its fi rst description in 1974 by  Bliss   and 
 Lomo   [ 4 ]. In  LTP  , presynaptic and postsynaptic elements in a neu-
ral pathway are simultaneously activated by repeated electrical 
stimulation of the presynaptic elements, thereby fulfi lling the fi rst 
of Hebb’s principles [ 3 ]—neuron A repeatedly activates neuron B 
through the synaptic connection between the two elements. 
Subsequently, the effi ciency of neuron A in activating neuron B is 
increased, and so a simple hebbian assembly is formed. In this para-
digm, a large number of  neuron A’s  activate a large number of 
 neuron B’s  (i.e., there is little noise in the system), and the enhanced 
effi ciency of transmission from one to the other  i        s evident in the 
increased amplitude of the fi eld potential generated when a single 
pulse is delivered to the presynaptic elements. However, evidence 
for such a process occurring across a single synapse in a functioning 
system remains elusive. 

 Attempts have been made to discover spike patterns within 
populations of  neurons  , but so far these have not produced the 
desired kinds of results. Thus, Abeles [ 5 ] proposed a search algo-
rithm for the detection of multi-neuron patterns called “ synfi re  .” 
While numerous patterns were detected, doubt remains regarding 
the statistical signifi cance of the fi ndings [ 6 ,  7 ]. In this chapter, a 
more fl exible pattern model, called a T-pattern, is applied (see 
Chapter   1     in this volume).  T-pattern detection   uses an evolution 
algorithm for the detection of the repeated hierarchical and multi- 
ordinal real-time patterns in data sets consisting of a number of 
time point series all occurring within the same observation period 
[ 8 – 10 ]. The large number of T-patterns detected frequently far 
exceeds those found in randomized data thus the complex patterns 
discovered through T-pattern analysis provide a dynamic view of 
neuronal interaction which may be invaluable in understanding the 
mechanisms of neuronal networks and the way they encode sen-
sory information. 

 Olfactory encoding is of specifi c interest as behavioral para-
digms underpinning studies of the neurobiology of olfactory learn-
ing and memory are considered particularly robust [ 11 ] and 
considerable progress has been made in establishing the neural 
substrates and pathways involved [ 12 – 14 ]. Much of the encoding 
takes place at the level of the olfactory bulb (OB), the primary 
cortical projection area for olfactory input, and an area that is 
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entirely committed to processing this information. Structurally, the 
OB is widely conserved across vertebrate taxa. The area has been 
confi rmed as playing an important role in olfactory memory for-
mation. Thus, understanding the processes involved in encoding 
 olfactory         information is of great importance to understanding the 
fundamental neuronal mechanisms of learning and memory. 
Olfactory receptor neurons in the olfactory epithelium in the nasal 
cavity project mitral cells in glomeruli in the OB [ 15 ].  Optical 
imaging   studies demonstrate that different odorants elicit spatially 
defi ned spatial patterns of glomerular activity in the olfactory bulb 
[ 16 ,  17 ]. The quality of an olfactory stimulus is thus encoded by 
the combined specifi c activation of glomeruli by a given odorant. 
Gaining access to the olfactory bulb with a microelectrode array 
(MEA) allows in vivo electrophysiological sampling of neuronal 
activity over a relatively large area of cortex (>2 mm 2 ). We have 
applied t-pattern analysis to spike data collected simultaneously 
across many OB neurons, using microelectrode arrays [ 18 ], and 
established that recurring complex sequences of spikes can be 
detected in the activity sampled across the mitral cell layer of the 
OB. These patterns have been characterized in light of a putative 
role in processing sensory information.  

2    Methods 

 The present data were collected from the olfactory bulb of anes-
thetized  rats   (see Fig.  1  for further details). Throughout surgical 
and experimental procedures, humidifi ed air was supplied through 
a mask over the nose, and breathing was monitored and recorded 
using a thermistor in the mask. Data were sampled in 10s periods 
(trials) at 5 min intervals through a recording session of 6 h, or for 
as long as the animal remained physiologically stable as judged by 
its breathing. Some animals reached a point when irregular breath-
ing clearly indicated degrading physiological condition. In such 
cases recordings were terminated, and degrading condition noted 
as an experimental variable. Here we compare one such animal 
with another which remained physiologically viable throughout 
the full sampling period.

    Microelectrode arrays   of sharpened tungsten electrodes, 
arranged in a 6 × 5 array with 350 μ spacing, were advanced later-
ally into the OB (for one animal a 6 × 8 electrode array, with 250 μ 
spacing was used). Action potentials (spikes) were sampled from 
mitral layer  OB         neurons across an area of ~2.2 mm 2  using a 100 
channel laboratory interface (Bionic Technologies Inc./
Cyberkinetics Inc., USA). Spikes sampled in the mitral cell layer 
are assumed to be generated by mitral cells, as the other cell type 
in this layer, the granule cell, does not possess an axon [ 19 ]. After 
completion of recordings, offl ine discrimination of spikes from 
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individual neurons was performed using a  spike sorting procedure   
based upon machine learning algorithms to combine the features 
acquired using principle components analysis (PCA) with features 
describing the geometric shapes (curvature) within the spike wave-
form. This procedure was developed specifi cally to process these 
data and allows discrimination of activity from multiple neurons at 
each active electrode [ 20 ]. Typically, spikes were sampled simulta-
neously from ≥100 neurons across the array. Times of occurrence 
of spikes generated by individual neurons were stored as events 
coded with the identity of the neuron and its location on the 

  Fig. 1    Action  potentials (spikes)   from individual neurons were sampled from the olfactory bulb of urethane- 
anesthetized rats using a microelectrode array positioned laterally in the mitral cell layer of the olfactory bulb 
of urethane-anesthetized rats.          Each electrode in the array could sample spikes from multiple neurons. Here, 
individual neurons are coded in varied greyscale in the four traces displayed. Humidifi ed air was supplied 
through a mask over the nose, and breathing was monitored and recorded via a thermistor in the mask       
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MEA. Also stored were events marking onset of expiration and 
onset of inspiration in the breathing cycle to allow this data to be 
related to patterns identifi ed in the neural data. The data stored in 
this way are suitable for t-pattern analysis using Theme™ software 
(PatternVision,   www.patternvision.com    , Iceland). In each trial, 
data were collected during fi ve consecutive complete breathing 
cycles, each cycle beginning with the onset of inhalation, and end-
ing with the offset of  exhalation   (see Fig.  2 ). Event types entered 
into t-pattern analyses were times of occurrence of spikes from 
individual neurons, and times of onset of inhalation and exhalation 
in the breathing cycle.

3       Results 

 In these data, the relationship between pattern lengths and fi ring 
rates amongst the neurons was not simply determined by a  stochas-
tic process  . It might be assumed that neurons with higher  fi ring 
rates would by chance have a greater opportunity to participate in 
longer patterns. We  categorized   the neurons as slow, medium, or 
fast, according to fi ring rate, based approximately around modal 
fi ring  rates         determined across the entire sample. Slow neurons were 
suffi ciently slow that they contributed to no patterns of any length. 
Amongst the fast neurons, the  longest  patterns to which these 

  Fig. 2    An  example   breathing-related sequence of spikes across the olfactory bulb. This pattern spanned the full 
vertical extent of the 6 × 5 microelectrode array, incorporating 6 neurons, each sampled on a separate elec-
trode in the array. One neuron, sampled at the electrode ( outlined in black  on the array), was activated twice in 
the sequence, and provided the fi nal spike in the pattern. The fi rst event in the t-pattern, not shown on the array, 
was the onset of inhalation—the sequence of spikes occurred regularly as the animal breathed in       
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 neurons contributed were indeed longer than those amongst the 
medium  neurons   (Fig.  3a ). However, conversely to what might 
have been expected by chance, the  average  length of patterns to 
which the medium neurons contributed was longer than that for 
the fast neurons (Fig.  3b ). In this way, pattern length is not a sim-
ple function of the fi ring rate of the underlying neurons.

     The  detection    of   critical intervals is based on a null hypothesis that 
is tested a large number of times when seeking patterns in a single 
data set. Accordingly, many signifi cant patterns are expected to be 
found even in random data. A crucial issue, therefore, is whether 
signifi cantly more t-patterns are detected in the initial data than in 
the same data after they have been randomized. For this the 
Theme™ software allows randomizing and reanalyzing the data an 
optional number of times using the same detection parameters as 
for the real data and then comparing the fi ndings. For this two 
types of randomization are provided:  shuffl ing and rotation  . In 
both cases the number of series and the number of points in each, 
remain unchanged.

 –     Randomization by shuffl ing:  Here the time points in each series 
in the real data are randomly redistributed (shuffl ed) over the 
observation period.  

3.1  Statistical 
Validation 
of T-Patterns

  Fig. 3     Distribution of   pattern lengths according to neuron fi ring rate. Neurons were categorized as slow (0–7 
spikes), medium (8–100 spikes), or fast (>100 spikes) according the total number of spikes per trial. These 
fi ring rates were determined from approximate modal fi ring rates across the full data set. Slow neurons did not 
contribute to patterns, and so occur only independently (i.e., pattern length = 1). The remaining fast and 
medium neurons each, on average, participated in multiple patterns. The average maximum length of pattern 
that neurons participated in, increased with increasing fi ring rate. Thus, the average maximum pattern length 
was longer for fast neurons than for medium neurons. However, this distribution was reversed when consider-
ing the average length of patterns in which these neurons participated; the average length of patterns for fast 
neurons was shorter than that for medium neurons       
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 –    Randomization by rotation:  This can be imagined thus: all the 
series in the data set are wrapped around the same cylinder, 
each series thus forming a circle that is independently rotated 
by a random number of degrees (0–360°). This procedure, the 
more conservative of the two, leaves the structure of each 
series practically unchanged while randomizing the temporal 
relationship between the series.    

 By repeatedly randomizing and then searching for patterns in 
the same data set with the same search parameters as for the real 
data, an occurrence distribution with mean and a standard devia-
tion is obtained for each pattern length. This allows statistical com-
parison of the number of patterns of each length detected in the 
real data as compared to the randomized data and differences can 
be expressed in terms of the number of standard deviations between 
the two. 

 Comparing the lengths and incidence of t-patterns extracted 
from this data, t-patterns were similarly extracted from the same 
data  when         randomized either by shuffl ing or by rotation. Using 
either procedure, signifi cantly  fewer   sequences were detected in 
the randomized data than in the original electrophysiological data 
(e.g., see Figs.  4 ,  5 ,  6 ,  7 ,  8 , and  9 ). The incidence of t-patterns in 

  Fig. 4    This chart shows the numbers of different patterns of each length detected in fi rst of the 12 control trials 
of animal r2, which became physiologically instable and fi nally had to be terminated after the 12th trial. It also 
shows the number of different patterns of each length detected on average over 100 repetitions of randomiza-
tion and search for each of two types of randomization, shuffl ing and rotation. Here the number  of         patterns 
detected and the differences between the real data and the randomized data are at a maximum for the 12 
control trials       
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  Fig. 5    For  the   fi rst of the 12 control trials for animal r2 that became instable and fi nally had to be terminated 
after the 12th control trial, this chart shows the standardized differences between the numbers of patterns of 
each length detected in the original data versus the average over 100 repetitions of data randomization and 
search using the same search parameters. Here these differences are at the maximum for the 12 control trials       

  Fig. 6    This chart  shows   the numbers of different patterns of each length detected in the 7th of the 12 control 
trials of animal (r2) that became physiologically instable and fi nally had to be terminated after the 12th trial. It 
also shows the number of different patterns of each length detected on average over 100 repetitions of ran-
domization and search for two types of randomization, shuffl ing and rotation. Here the number of patterns 
detected and the differences of detection between the real data and the randomized data are intermediate 
between the fi rst and last of the 12 control trials and illustrates the gradual degradation of patterning over the 
12 trials       
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  Fig. 7    For the 7th of the 12 control trials for animal (r2) which became instable and fi nally had to be terminated 
after the 12th trial, this chart shows the standardized differences between the numbers of patterns of each 
length detected in the original data versus the average numbers over 100 repetitions of data randomization 
and search with the same search parameters. Here these differences are at an intermediate level for the 12 
control trials       

  Fig. 8    This chart shows the numbers of different patterns of each length detected in the last of the 12 control 
trials of an animal (r2) that became physiologically instable and fi nally had to be terminated after this trial. It 
also shows the number of different patterns of each length detected on average over 100 repetitions of ran-
domization and search for each of two types of randomization, shuffl ing and rotation. Here the number of 
patterns detected and the differences of detection between the real data and the randomized data are at the 
minimum for the 12 control trials       
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the real data was far greater compared to either type of randomized 
data. Moreover, the differences were generally much greater for 
the longer (and a priori less probable) patterns. The number of 
patterns under randomization as a percentage of patterns in real 
data also fell rapidly with pattern length dropping to just a few 
percent or less for the longest patterns.

        Although the difference between real and randomized data 
was often smaller when the more conservative rotation method 
was used to randomize the data, this difference was nonetheless 
highly signifi cant. The number of patterns of the same length (m) 
detected in the original data was thus 5–1000 standard deviations 
greater than the mean number of patterns in the randomized data, 
increasing with pattern length, corresponding  to   signifi cance levels 
far lower than 0.0001. 

 In the case of the subject for which recordings were terminated 
early when irregular breathing indicated deteriorating  physiological 
condition, the difference between T-pattern incidence in random 
data and that in real data decreased through the recording session. 
This decrease in the distinction between random and real data con-
tinued until the termination of recordings. At that point, there was 
relatively little difference between t- pattern   incidence in real data 
and that in either form of randomized data (see Fig.  10 ), although 

  Fig. 9    For the last of  the   12 control trials for an animal (r2), which became instable and fi nally had to be termi-
nated after this 12th and last trial, this chart shows the standardized differences between the numbers of 
patterns of each length detected in  the         original data versus the average over 100 repetitions of data random-
ization and search with the same search parameters. Here these differences are at the minimum for the 12 
control trials       
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the combined fi ring rates of the neurons remained relatively 
unchanged, and were even slightly increased, that is, from total of 
3042 spikes over all 39 neurons in the fi rst trial to 3114 over all  43 
  neurons in the last.

      As would  be   expected, independently of neuronal fi ring, the 
breathing cycle was detected in all data sets as two-element 
(length = 2) t-patterns relating only the two different markers of 
ventilation (i.e., onset of inhalation and onset of exhalation) 

3.2  Breathing 
and Neuronal Firing 
Patterns

  Fig. 10     Relative incidence of   patterns in real and randomized data. The average incidence of patterns of any 
length in 20 randomizations of the data was compared to the pattern incidence in the real data. Here, pattern 
incidence in randomized data is expressed as a percentage of that in the real data. Data were randomized 
using the conservative rotation procedure described in the text. In the data from all but one of the animals, the 
difference in pattern detection between real and randomized data was large throughout the series of record-
ings, tending to increase as the recordings progressed, i.e., the ratio of patterns in randomized data to those in 
the real data declined across trials. However, in subject r2, the relative separation in pattern incidence between 
randomized and real data, whilst maintaining a level similar to that in other animals through the initial 5–6 tri-
als, subsequently degraded (see also Figs.  4 ,  5 ,  6 ,  7 ,  8 , and  9 ). This accompanied a deterioration in the physi-
ological condition of the anesthetized animal, to the point when recordings were stopped. In another subject 
animal, r6 ( inset ), separation between randomized data and real data in the early trials was relatively poor, but 
improved through the series. For this animal, less time was allowed for the animal to stabilize after initial anes-
thesia and surgical preparation before commencing recordings. It may be that, in this case, consistent with r2, 
the relative incidence of patterns in randomized and real data refl ects the stability of the preparation       
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which regularly alternate. Numerous relationships were detected 
between the breathing markers and (a)  the         fi ring of individual 
neurons and (b) multi-neuron t-patterns. Thus approximately 
3–5 % of the t-patterns detected in all data sets analyzed were 
related to breathing as they included either one or both of the 
markers of  ventilation (e.g., see Fig.  2 ) and all ventilation events 
were involved in at least one neuronal fi ring t-pattern. When only 
the breathing event series were randomized in the original data 
and a pattern search performed using the same search parameters 
as before, no patterns relating breathing and spikes were detected. 
This was consistent over all fi les and subjects indicating a highly 
signifi cant synchronization between breathing and neuronal 
activity. Figures  11  and  12  show two examples of the kind of 
T-patterns detected, but these were chosen as they are among the 
 relatively   few where each T-pattern occurrence covers a full 
breathing cycle and, moreover, contain bursts (T-bursts) in one 
or more neurons. (Regarding T-bursts and T-pattern diagrams 
see Chap.   1     in this volume.)

  Fig. 11     This   T-pattern diagram shows one pattern detected in the fi rst of the 12 control trials for an animal (r2) 
that later became instable and fi nally had to be terminated after the 12th trial. The pattern shown is one of the 
15  different         patterns and with occurrences spanning a full breathing cycle, that is, from one exhale event (c80, 
n3) to the next, and containing bursts (T-bursts) in individual neurons. Note that this pattern includes a kind of 
cascade of bursts, that is, fi rst in neuron c14, n3 and then in neuron c1, n2. About T-bursts and T-pattern 
diagrams see Chapter   1     in this volume (Magnusson)       
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4         Discussion 

 In the present work we show that complex sequences occur across 
large areas of the two-dimensional network of mitral neurons in 
the olfactory bulb. The occurrence of all lengths of these patterns 
is many times greater than that would be expected by chance. The 
patterns detected incorporated functional connections spanning in 
some cases the entire area sampled by the MEA (>2 mm 2 ). This is 
perhaps less remarkable given the presence of  anatomical connec-
tions   (paradoxically termed “short axons”) spanning many (≤30) 
mitral cells across the olfactory bulb [ 21 ]. 

 Precisely timed sequences have previously been described for 
neuronal  fi ring   in cortical neurons [ 5 ] and in simulated neuronal 
networks [ 22 ,  23 ]. Such “synfi re” sequences in spontaneous corti-
cal neuronal activity have been reported in intracellularly recorded 
postsynaptic potentials and in extracellularly recorded spikes both 
in an isolated tissue preparation and in vivo [ 24 ].  Synfi re patterns   
are in some ways similar to t-patterns and may be simply described 
as t-patterns where all critical intervals are of the same very short 
length (one millisecond?), that is, [d 1  + 1]. However, critics of the 
synfi re algorithm have noted that the incidence of sequences 
extracted from electrophysiological data using this procedure, may 

  Fig. 12     This   T-pattern diagram shows one pattern detected in the last of the 12 control trials in animal (r2) that 
had become instable and had to be terminated after this 12th control trial. At this point, all patterning had 
become minimal compared to the initial trial. The fi gure shows the only pattern containing a burst (T-burst) in 
one neuron with occurrences spanning a full breathing cycle, that is, from one exhale event (c80, n3) to the 
next. The burst connecting the two exhale events is in neuron c36, n5. About T-bursts and T-pattern diagrams 
see Chap.   1     in this volume (Magnusson)       
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differ little (nonsignifi cantly) from the incidence of  those         similarly 
extracted from random data [ 6 ,  7 ]. Thus it may be that synfi re 
sequences are largely artifactual, refl ecting the particular structure 
of the underlying series rather than dependencies between those 
series (cf  25 ). In this respect t-patterns differ markedly from synfi re 
patterns as the number of t-patterns detected in our electrophysi-
ological data greatly exceeds that detected in randomized data, 
irrespective of the method employed for randomization (from 5 to 
1000 standard deviations, depending respectively on whether ran-
domization is effected using the conservative rotation procedure 
or by shuffl ing, as described in this paper). 

 The algorithm used in t-pattern analysis differs profoundly 
from the synfi re algorithm. In t-patterns, the spikes of neurons A 
and B (or patterns of such) are connected if, more often than 
expected by chance, they occur in sequence such that after A there 
is at least one occurrence of B within particular time window 
(interval), and the critical interval is neither user defi ned nor 
uniquely fi xed, but each critical interval relationship is detected by 
a special algorithm. The synfi re detection algorithm does not 
search for critical interval relationships between events, but 
attempts to match the spike data to a user-defi ned interval that 
typically is very short, conforming to acknowledged synaptic physi-
ological properties, i.e., synaptic delay in the order of a few milli-
seconds. The interval is thus also constant from one pair of neurons 
(and/or neuronal patterns) to another, whereas the intervals in 
t-patterns are variable and automatically detected as a function of 
the actual data. 

 The constraints imposed on the  biological system   in relying on 
a precise, infl exible, and short interval to establish sequences across 
multiple neurons, may be, and indeed might be expected to be, 
extreme. In a neuronal system, a postsynaptic neuron may receive 
many inputs from many afferent neurons. Some of those inputs are 
excitatory, others inhibitory. The activation of the postsynaptic 
neuron is dependent on the summative infl uences of those excit-
atory and inhibitory inputs. Moreover, the synapses themselves are 
subject to failure [ 26 ]. Thus, the activity of a single afferent neu-
ron, whilst having a probabilistic infl uence over the susceptibility 
of the postsynaptic neuron to discharge, may have negligible 
impact on the activity of the postsynaptic neuron relative to ongo-
ing activation by the large number of other  presynaptic         neurons. 
The statistical nature of the critical intervals used in t-pattern anal-
ysis makes this an ideal technique for the detection of sequences 
amongst such neuronal populations. 

 These analyses of spike data recorded simultaneously from mul-
tiple olfactory bulb neurons demonstrate the occurrence of repeat-
ing patterns of activity, many simple, involving perhaps two or three 
neurons, but many much more complex, across as many as 20 or 
more neurons. The incidence of these patterns in our neuronal data 
was very much greater than in the same data when either of two 
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randomization procedures was used—often the separation of real 
and randomized data was in the order of hundreds of standard devi-
ations, implying that these sequences are by no means a chance 
phenomenon. This was maintained across the series of recordings 
for all subject animals, with the exception of one, which for unknown 
reasons became physiologically unstable under anesthesia, and ulti-
mately died before completion of the series of recordings. In the 
trials leading up to the point at which recordings were terminated, 
the separation between real and randomized data degenerated pro-
gressively until the incidence of patterns no longer distinguished 
them convincingly, despite there being no corresponding degrada-
tion in the combined fi ring rates of the underlying neurons. Again, 
this points to the incidence of organized spike sequences being a 
property of the functioning neuronal system. 

 Individual neurons sampled from each subject animal varied 
widely in their fi ring rates. We considered the possibility that faster 
neurons might have greater opportunity, by chance, to contribute to 
longer patterns. However, conversely to what might have been 
expected by chance, whilst the longest patterns involving fast neu-
rons were longer than those involving medium fi ring rate neurons, 
the average pattern length to which faster neurons contributed was 
in fact shorter than for the medium neurons. This again counters the 
possibility that chance factors might play a part in the incidence of 
neuronal sequences detected by t-pattern analysis, and also suggests 
a dissociation in function between fast and medium neurons. 

 In addressing the potential physiological function of neuronal 
sequences in the olfactory bulb, we considered the relationship 
between sequences and breathing. A sizeable subset of patterns 
detected incorporated the onset of one or other phase in the 
breathing cycle, inhalation or exhalation. Thus, these patterns are 
timed to the animal’s ventilation, and are consistent with other 
observations of neuronal activation in phase with breathing using 
in vivo optical imaging techniques [ 17 ] or electrophysiological 
techniques [ 27 ]. The latter study demonstrated that mitral cell 
membrane potential fl uctuations, and therefore likelihood of dis-
charge, occur in phase with ventilatory rhythm. Here we demon-
strate that neuronal activity further involves complex sequences of 
discharge that are related to ventilatory activity. 

 These investigations demonstrate that complex sequences of 
spikes can be detected in a neuronal network using t-pattern analy-
sis. Their incidence is very much greater than can be explained by 
chance, and this property alone can refl ect the physiological condi-
tion of the animal. These patterns can be categorized according  to 
        discrete physiological functions, and hence may represent an 
important mechanism for coding odor information in the olfactory 
bulb. In our ongoing investigations we intend to expand our anal-
yses to establish the utility of complex spike sequences detected by 
t-pattern analysis in the coding of sensory information in the cen-
tral nervous system.     
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