
Chapter 4
Submanifolds in Lie Sphere Geometry

This chapter is an outline of the method for studying submanifolds of Euclidean
space Rn or the sphere Sn in the context of Lie sphere geometry. For Dupin
hypersurfaces this has proven to be a valuable approach, since Dupin hypersurfaces
occur naturally as envelopes of families of spheres, which can be handled well
in Lie sphere geometry. Since the Dupin property is invariant under Lie sphere
transformations, this is also a natural setting for classification theorems.

In Section 4.5, we give a Lie geometric criterion for a Legendre submanifold
to be Lie equivalent to the Legendre lift of an isoparametric hypersurface in Sn,
and we develop the important invariants known as Lie curvatures of a Legendre
submanifold. Finally, in Section 4.6, we formulate the notion of tautness in
the setting of Lie sphere geometry and prove that it is invariant under Lie sphere
transformations.

For the early development of Lie sphere geometry, see the paper of Lie [326] and
the books of Lie and Scheffers [327], Klein [281], Blaschke [42] and Bol [44]. For a
historical treatment of the subject, see the papers of Hawkins [190] and Rowe [466].
For a modern treatment of Möbius geometry, see the book of Hertrich-Jeromin
[198]. The material in this chapter is covered in more detail in Chapters 2–4 of
the book [77], and the figures in this chapter are also taken from that book.

4.1 Möbius Geometry of Unoriented Spheres

We begin with the “Möbius geometry” of unoriented hyperspheres in Euclidean
space Rn or in the unit sphere Sn in RnC1. We always assume that n � 2.

We can go back and forth between these two ambient spaces Rn and Sn via
stereographic projection, which we recall here. Let RnC1 have coordinates x D
.x1; : : : ; xnC1/, and denote the usual inner product in RnC1 by x � y, where
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Fig. 4.1 Inverse stereographic projection

x � y D x1y1 C � � � C xnC1ynC1: (4.1)

In this chapter, we will use the notation x �y instead of hx; yi (as used in the preceding
chapters) to denote the Euclidean inner product, because we want to use hx; yi for
the Lie scalar product, which we will introduce later in this chapter.

The unit sphere Sn is the set of points x 2 RnC1 such that x �x D 1. We identify Rn

with the hyperplane given by the equation x1 D 0 in RnC1. Let P D .�1; 0; : : : ; 0/
be the south pole of Sn.

As in Remark 2.7 on page 21, we define stereographic projection with pole P to
be the map � W Sn � fPg ! Rn given by the formula,

�.x1; : : : ; xnC1/ D
�
0;

x2
x1 C 1

; : : : ;
xnC1

x1 C 1

�
: (4.2)

To describe inverse stereographic projection � W Rn ! Sn � fPg (see Figure 4.1),
we write a point u 2 Rn as u D .u2; : : : ; unC1/, that is, we omit the first coordinate 0.
Then inverse stereographic projection is given by the formula:

�.u/ D
�
1 � u � u

1C u � u
;

2u

1C u � u

�
: (4.3)

Later in this section we will show that stereographic projection � maps a
hypersphere S in Sn that does not contain the point P to a hypersphere �.S/ in Rn. If
S does contain P, then � maps S � fPg to a hyperplane in Rn. Obviously, the inverse
map � has similar properties.

Remark 4.1. Sometimes the map � is referred to as “stereographic projection,” as
in the book Lie Sphere Geometry [77]. However, in this book, we will call the map
� “stereographic projection,” and the map � “inverse stereographic projection.”

To construct the space of unoriented hyperspheres in Sn, we need to consider the
Lorentz space RnC2

1 of dimension n C 2 endowed with the Lorentz metric (bilinear
form) of signature .1; nC1/ defined for x D .x1; : : : ; xnC2/ and y D y1; : : : ; ynC2/ by

.x; y/ D �x1y1 C x2y2 C � � � C xnC2ynC2: (4.4)

This metric is also referred to as the Lorentz scalar product.
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We borrow the terminology of relativity theory and say that vector x in RnC2
1 is

spacelike, timelike, or lightlike, respectively, depending on whether .x; x/ is positive,
negative, or zero. We will use this terminology even when we are using a metric of
different signature.

In the Lorentz space RnC2
1 , the set of all lightlike vectors forms a cone of

revolution, called the light cone or isotropy cone. Lightlike vectors are often called
isotropic in the literature. Timelike vectors are “inside the cone” and spacelike
vectors are “outside the cone.”

We identify RnC1 with the spacelike subspace of RnC2
1 determined by the

equation x1 D 0, and we consider Sn to be the unit sphere in this space RnC1.
We next embed this space RnC1 as an affine subspace of projective space RPnC1 as
follows. Define projective space RPnC1 to be the space of lines through the origin in
RnC2. Equivalently, RPnC1 is the set of equivalence classes Œx� for the equivalence
relation ' on RnC2 � f0g defined by x ' y if and only if y D tx for some nonzero
real number t.

We embed the space RnC1 determined by the equation x1 D 0 in RnC2
1 as an

affine hyperplane in RPnC1 by the map � W RnC1 ! RPnC1,

�.x2; : : : ; xnC2/ D Œ.1; x2; : : : ; xnC2/�: (4.5)

If x 2 RnC2
1 is a spacelike, timelike, or lightlike vector, then the corresponding point

Œx� in RPnC1 will be referred to as spacelike, timelike, or lightlike point, respectively.
Let Sn be the unit sphere in RnC1. The image ˙ of Sn under the embedding �

consists of all points Œ.1; y/� for y 2 Sn. If we compute the Lorentz scalar product on
such a point .1; y/, we get

..1; y/; .1; y// D �1 � 1C y � y D �1C 1 D 0:

Conversely, if the Lorentz scalar product of .1; y/ with itself is zero, then y is in Sn.
Thus the image ˙ D �.Sn/ consists precisely of the projective classes of lightlike
vectors in RnC2

1 .
We identify Rn with the subspace of RnC1 determined by the equation x2 D 0.

We next consider the composition of the map � above with inverse stereographic
projection � , that is, �� W Rn ! RPnC1 given by

��.u/ D
��
1;
1 � u � u

1C u � u
;

2u

1C u � u

��
D

��
1C u � u

2
;
1 � u � u

2
; u

��
: (4.6)

Let .z1; : : : ; znC2/ be homogeneous coordinates on RPnC1. Then ��.Rn/ is just the
set of points in RPnC1 lying on the n-sphere˙ given by the equation .z; z/ D 0, with
the exception of the improper point Œ.1;�1; 0; : : : ; 0/�, that is, the image under � of
the south pole P 2 Sn. We will refer to the points in ˙ other than Œ.1;�1; 0; : : : ; 0/�
as proper points, and will call ˙ the Möbius sphere or Möbius space.



188 4 Submanifolds in Lie Sphere Geometry

ξ⊥ ξ

Σ

Fig. 4.2 Intersection of ˙ with �?

Spheres in Möbius geometry

The basic construction in the Möbius geometry of unoriented spheres is a correspon-
dence between the set of all hyperspheres and hyperplanes in Rn and the manifold of
all spacelike points in projective space RPnC1, and we now give a brief description
of this correspondence.

Let � be a spacelike vector in RnC2
1 . The polar hyperplane �? of Œ�� in RPnC1

intersects the sphere ˙ in an .n � 1/-sphere Sn�1 (see Figure 4.2).
This sphere Sn�1 is the image under �� of a hypersphere in Rn, unless it contains

the improper point, in which case it is the image under �� of a hyperplane in Rn.
Thus we have a bijective correspondence between the set of all hyperspheres and
hyperplanes in Rn and the manifold of all spacelike points RPnC1. We next derive
the analytic formulas for this correspondence.

The hypersphere in Rn with center p and radius r > 0 has equation

.u � p/ � .u � p/ D r2: (4.7)

A straightforward calculation shows that this is equivalent to the following equation
in homogeneous coordinates in RPnC1,

.�; ��.u// D 0; (4.8)

where � is the spacelike vector,

� D
�
1C p � p � r2

2
;
1 � p � p C r2

2
; p

�
; (4.9)

and ��.u/ is given by equation (4.6). Thus the point u 2 Rn lies on the sphere
given by equation (4.7) if and only if ��.u/ lies on the polar hyperplane to Œ��.
Since .�; �/ D r2 > 0, the point Œ�� is spacelike. Note also that �1 C �2 D 1. The
homogeneous coordinates of Œ�� are only determined up to a nonzero scalar multiple,
but we can conclude that �1 C �2 ¤ 0 for any homogeneous coordinates of Œ��.
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Conversely, if Œz� is a spacelike point in RPnC1 with z1 C z2 ¤ 0, then Œz�
corresponds to a hypersphere in Rn as follows. Let � D z=.z1 C z2/ so that Œ�� D Œz�
is a spacelike point with �1C�2 D 1. Then .�; �/ D r2 > 0 for some r > 0, and there
exists a unique p 2 Rn such that � can be written in the form of equation (4.9). This
p 2 Rn and r > 0 determine the sphere in Rn corresponding to Œ�� via equation (4.8).

Next consider the hyperplane in Rn given by the equation

u � N D h; jNj D 1: (4.10)

A direct calculation shows that (4.10) is equivalent to the equation

.�; ��.u// D 0;where � D .h;�h;N/: (4.11)

Note that �1 C �2 D 0, and this is true for any nonzero scalar multiple of �. This
condition �1 C �2 D 0 is equivalent to the equation

.�; .1;�1; 0; : : : ; 0// D 0;

and thus the improper point Œ.1;�1; 0; : : : ; 0/� lies on the hypersphere of˙ obtained
by intersecting ˙ with the polar hyperplane of �.

Conversely, if Œz� is a spacelike point in RPnC1 with z1Cz2 D 0, then .z; z/ D v�v,
where v D .z3; : : : ; znC2/ is a nonzero vector in Rn. If we take � D z=jvj, then �
has the form .h;�h;N/ for some real number h and some unit vector N 2 Rn, and
the polar hyperplane of Œ�� intersects ˙ in an .n � 1/-sphere corresponding to the
hyperplane in Rn given by equation (4.10).

Thus we have a correspondence between each spacelike point in RPnC1 and a
unique hypersphere or hyperplane in Rn. The set of all spacelike points in RPnC1
can be realized as an .n C 1/-dimensional manifold in the following natural way.
Let WnC1 be the set of vectors in RnC2

1 satisfying .�; �/ D 1: This is a hyperboloid
of revolution of one sheet in RnC2

1 . If Œ�� is a spacelike point in RPnC1, then there
are precisely two vectors � D ˙�=p.�; �/ in WnC1 with Œ�� D Œ��. Thus the set of
all spacelike points in RPnC1 is diffeomorphic to the quotient manifold WnC1= ',
where ' is projective equivalence.

Note that this correspondence also demonstrates that inverse stereographic
projection � maps a hypersphere or hyperplane in Rn to a hypersphere in the
sphere ˙ corresponding to the intersection of ˙ with the polar hyperplane of the
appropriate spacelike point Œ�� or Œ��. Conversely, any hypersphere in ˙ is obtained
by intersecting ˙ with the polar hyperplane of some spacelike point Œ�� or Œ�� in
RPnC1, and stereographic projection � maps this hypersphere in˙ to a hypersphere
or hyperplane in Rn determined by equation (4.7) or (4.10), as the case may be.
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The space of hyperspheres in the sphere Sn

Similarly, we can construct a bijective correspondence between the space of all
hyperspheres in the unit sphere Sn � RnC1 and the manifold of all spacelike points
in RPnC1 as follows. The hypersphere S in Sn with center p 2 Sn and (spherical)
radius 	; 0 < 	 < 
 , is given by the equation

p � y D cos 	; 0 < 	 < 
; (4.12)

for y 2 Sn. If we take Œz� D �.y/ D Œ.1; y/�, then

p � y D �.z; .0; p//
.z; e1/

;

where e1 D .1; 0; : : : ; 0/. Thus equation (4.12) is equivalent to the equation

.z; .cos 	; p// D 0; (4.13)

in homogeneous coordinates in RPnC1. Therefore, y lies on the hypersphere S given
by equation (4.12) if and only if Œz� D �.y/ lies on the polar hyperplane in RPnC1
of the spacelike point

Œ�� D Œ.cos 	; p/�: (4.14)

Remark 4.2 (The space of hyperspheres in hyperbolic space Hn). One can also
construct the space of unoriented hyperspheres in hyperbolic space Hn with constant
sectional curvature �1. To do this, we let RnC1

1 denote the Lorentz subspace of RnC2
1

spanned by the orthonormal basis fe1; e3; : : : ; enC2g. Then Hn is the hypersurface

fy 2 RnC1
1 j .y; y/ D �1; y1 � 1g;

on which the restriction of the Lorentz metric . ; / is a positive definite metric of
constant sectional curvature �1 (see Kobayashi–Nomizu [283, Vol. II, p. 268–271]
for more detail). The distance between two points p and q in Hn is given by

d.p; q/ D cosh�1.�.p; q//:

Thus the equation for the unoriented sphere in Hn with center p and radius 	 is

.p; y/ D � cosh 	: (4.15)

As with Sn, we first embed RnC1
1 into RPnC1 as an affine space by the map

 .y/ D Œy C e2�:
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Let p 2 Hn and let z D y C e2 for y 2 Hn. Then we have

.p; y/ D .z; p/=.z; e2/:

Thus, the condition (4.15) for y to lie on sphere S with center p and radius 	 is
equivalent to the condition that Œz� D ŒyCe2� lies on the polar hyperplane in RPnC1 to

Œ�� D Œp C cosh 	 e2�; (4.16)

and we can associate the sphere S with the point Œ��.

Orthogonal spheres

Möbius geometry in Rn or Sn is often identified with the conformal geometry of
these spaces via the following considerations. Let S1 and S2 denote hyperspheres
in Rn with centers p1 and p2 and radii r1 and r2, respectively. These two spheres
intersect orthogonally (see Figure 4.3) if and only if

jp1 � p2j2 D r21 C r22: (4.17)

Suppose that S1 and S2 correspond to the spacelike points Œ�1� and Œ�2� via
equation (4.9). Then a straightforward calculation shows that equation (4.17) is
equivalent to the condition

.�1; �2/ D 0; (4.18)

in homogeneous coordinates in RPnC1.

p1 p2

r1 r2

Fig. 4.3 Orthogonal spheres
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Similarly, a hyperplane 
 in Rn intersects a hypersphere S in Rn orthogonally if
and only if the center p of S lies in the hyperplane 
 . If 
 is given by equation (4.10)
above, then this condition is p � N D 0. One can easily verify that this equation is
equivalent to the condition .�; �/ D 0 in homogeneous coordinates in RPnC1, where
� and � correspond to S and 
 via equations (4.8) or (4.11), respectively. Finally, two
hyperplanes 
1 and 
2 in Rn are orthogonal if and only if their unit normals N1 and
N2 are orthogonal. A direct calculation shows that this is equivalent to the equation
.�1; �2/ D 0 in homogeneous coordinates for the spacelike points Œ�1� and Œ�2�
corresponding to 
1 and 
2 via equation (4.11). Thus, in all cases of hyperspheres
or hyperplanes in Rn, orthogonal intersection corresponds to a polar relationship in
RPnC1 given by equations (4.8) or (4.11).

Möbius transformations

We conclude this section with a discussion of Möbius transformations. Recall that
a linear transformation A 2 GL.n C 2/ induces a projective transformation P.A/ on
RPnC1 defined by P.A/Œx� D ŒAx�. The map P is a homomorphism of GL.n C 2/

onto the group PGL.n C 1/ of projective transformations of RPnC1, and its kernel
is the group of nonzero multiples of the identity transformation I 2 GL.n C 2/.

A Möbius transformation is a projective transformation ˛ of RPnC1 that pre-
serves the condition .�; �/ D 0 for Œ�� 2 RPnC1, that is, ˛ D P.A/, where
A 2 GL.n C 2/ maps lightlike vectors in RnC2

1 to lightlike vectors. It can be shown
(see, for example, [77, pp. 26–27]) that such a linear transformation A is a nonzero
scalar multiple of a linear transformation B 2 O.n C 1; 1/, the orthogonal group for
the Lorentz inner product space RnC2

1 . Thus, ˛ D P.A/ D P.B/.
The Möbius transformation ˛ D P.B/ induced by an orthogonal transformation

B 2 O.nC1; 1/maps spacelike points to spacelike points in RPnC1, and it preserves
the polarity condition .�; �/ D 0 for any two points Œ�� and Œ�� in RPnC1. Therefore
by the correspondence given in equations (4.8) and (4.11) above, ˛ maps the set
of hyperspheres and hyperplanes in Rn to itself, and it preserves orthogonality and
hence angles between hyperspheres and hyperplanes. A similar statement holds for
the set of all hyperspheres in Sn.

Let H denote the group of Möbius transformations and let

 W O.n C 1; 1/ ! H (4.19)

be the restriction of the map P to O.n C 1; 1/. The discussion above shows that  is
onto, and the kernel of  is f˙Ig, the intersection of O.n C 1; 1/ with the kernel of
P. Therefore, H is isomorphic to the quotient group O.n C 1; 1/=f˙Ig.

One can show that the group H is generated by Möbius transformations induced
by inversions in spheres in Rn. This follows from the fact that the corresponding
orthogonal groups are generated by reflections in hyperplanes. In fact, every
orthogonal transformation on an indefinite inner product space Rn

k is a product
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of at most n reflections, a result due to Cartan and Dieudonné. (See Cartan
[58, pp. 10–12], Chapter 3 of E. Artin’s book [15], or [77, pp. 30–34]).

Since a Möbius transformation ˛ D P.B/ for B 2 O.n C 1; 1/ maps lightlike
points to lightlike points in RPnC1 in a bijective way, it induces a diffeomorphism
of the n-sphere ˙ which is conformal by the considerations given above. It is well
known that the group of conformal diffeomorphisms of the n-sphere is precisely the
Möbius group.

4.2 Lie Geometry of Oriented Spheres

We now turn to Lie’s construction of the space of oriented spheres which is a natural
setting for the study of Dupin hypersurfaces. As noted in the previous section,
each unoriented hypersphere or hyperplane in Rn corresponds to a spacelike point
Œ�� in RPnC1 via the polarity relationships in equations (4.8) and (4.11). If Œ��
is a spacelike point in RPnC1, then there are precisely two unit length spacelike
vectors ˙�=p.�; �/ that determine the same spacelike point Œ�� in RPnC1. Thus, as
noted earlier, the set of spacelike points in RPnC1 is diffeomorphic to the quotient
manifold WnC1= ', where WnC1 is the set of all unit spacelike vectors in RnC2

1 and
' is projective equivalence.

We can associate the two points ˙�=p.�; �/ to the two orientations of the
hypersphere or hyperplane corresponding to Œ�� by the following construction. We
first embed RnC2

1 as an affine space in projective space RPnC2 by the embedding
z 7! Œ.z; 1/�, i.e., we introduce one more coordinate xnC3 to give RnC3 and then
let RPnC2 be the space of lines through the origin in RnC3. If � 2 WnC1 is a unit
spacelike vector in RnC2

1 , then

��21 C �22 C � � � C �2nC2 D 1;

so the point Œ.�; 1/� in RPnC2 lies on the quadric QnC1 in RPnC2 given in
homogeneous coordinates by the equation

hx; xi D �x21 C x22 C � � � C x2nC2 � x2nC3 D 0; (4.20)

which defines the indefinite scalar product h ; i of signature .n C 1; 2/ on the space
RnC3, which we now denote as RnC3

2 to indicate the signature of the indefinite scalar
product h ; i. This scalar product is called the Lie metric or Lie scalar product, and
the quadric QnC1 is called the Lie quadric.

We now give the details of how the set of points on the Lie quadric corresponds
to the set of all oriented hyperspheres, oriented hyperplanes and point spheres in Rn,
or equivalently, to the set of all oriented hyperspheres and point spheres in Sn.

First consider a point Œx� D Œ.x1; : : : ; xnC3/� on QnC1 with last coordinate
xnC3 ¤ 0. Then we can divide x by xnC3 and represent Œx� by a vector of the form
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.�; 1/ with � 2 WnC1. Thus, � represents an unoriented hypersphere or unoriented
hyperplane in Rn via the Möbius geometric correspondence.

Suppose first that �1C�2 is nonzero. Then Œ�� represents a hypersphere in Möbius
geometry via equation (4.8). Specifically, we can divide � by �1C�2 and get a vector
� that is projectively equivalent to � that satisfies �1 C �2 D 1. Then, as in Möbius
geometry, .�; �/ D r2 for some r > 0, and we can take p D .�3; : : : ; �nC2/ in Rn so
that � has the form

� D
�
1C p � p � r2

2
;
1 � p � p C r2

2
; p

�
: (4.21)

Since .�; �/ D r2 and .�; �/ D 1, we see that � D ˙�=r. So the two unit vectors ˙�
in Œ�� 2 RPnC1 give rise to two points

Œ.˙�; 1/� D Œ.˙�=r; 1/� D Œ.�;˙r/�

in the Lie quadric. We associate these two points to the two orientations of the
unoriented hypersphere S in Rn corresponding to Œ�� D Œ�� as follows. For p 2 Rn

and r > 0, and � given by equation (4.21), the point Œ.�; r/� in QnC1 corresponds to
the oriented hypersphere in Rn with center p, radius r, and orientation given by the
inner field of unit normals. The point Œ.�;�r/� corresponds to the same sphere in Rn

with the opposite orientation.
Next we handle the case where .�; �/ D 1, but �1 C �2 D 0. In this case, Œ.�; 1/�

corresponds to an oriented hyperplane in Rn as follows. Since �1 C �2 D 0, the
vector � can be written in the form � D .h;�h;N/, with jNj D 1 since .�; �/ D 1.
Then the two projective points on QnC1 induced by � and �� are

Œ.h;�h;N;˙1/�: (4.22)

These represent the two orientations of the hyperplane in Rn with equation u�N D h.
We adopt the convention that Œ.h;�h;N; 1/� corresponds to the orientation given by
the field of unit normals N, while Œ.h;�h;N;�1/� D Œ.�h; h;�N; 1/� corresponds
to the opposite orientation.

Finally, we consider the case of Œx� D Œ.x1; : : : ; xnC3/� in QnC1 with xnC3 D 0.
Then if we take z D .x1; : : : ; xnC2/, we have

0 D hx; xi D �x21 C x22 C : : :C x2nC2 D .z; z/;

and so Œz� 2 RPnC1 represents a point in the Möbius sphere ˙ , or
equivalently a point in Rn [ f1g, where 1 corresponds to the improper point
Œ.1;�1; 0; : : : ; 0/� 2 ˙ . Thus, Œx� represents a point sphere or sphere with radius
zero in Rn [ f1g. Point spheres do not have an orientation assigned to them.
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Lie coordinates of oriented spheres

In summary, we have the following bijective correspondence between the set of all
oriented hyperspheres, oriented hyperplanes and point spheres in Rn [ f1g and the
set of points on the Lie quadric QnC1.

Euclidean Lie

points W u 2 Rn
��
1Cu�u
2
; 1�u�u

2
; u; 0

�	

1 Œ.1;�1; 0; 0/�

spheres: center p, signed radius r
h


1Cp�p�r2

2
; 1�p�pCr2

2
; p; r

�i

planes: u � N D h, unit normal N Œ.h;�h;N; 1/�

(4.23)

We will use the term Lie sphere to denote any oriented hypersphere, oriented
hyperplane, or point sphere in Rn [ f1g, and we will refer to the coordinates on the
right side of the table above as the Lie coordinates of the corresponding Lie sphere.

We can begin with a point Œx� D Œ.x1; : : : ; xnC3/� in QnC1 and find the
corresponding Euclidean object as follows. If x1 C x2 ¤ 0, then we can divide x
by x1 C x2 to obtain a point y D .y1; : : : ; ynC3/ with y1 C y2 D 1. Then if ynC3 ¤ 0,
we can take r D ynC3, and p D .y3; : : : ; ynC2/, and see that y is in the correct form
for the Lie coordinates of the oriented hypersphere with center p 2 Rn and signed
radius r. If ynC3 D 0, then y is in the correct form for the point u D .y3; : : : ; ynC2/
in Rn.

Next if x1 C x2 D 0 and xnC3 ¤ 0, then we can divide x by xnC3 to get a vector
y D .h;�h;N; 1/, which clearly represents an oriented hyperplane in Rn. Finally, if
x1 C x2 D 0 and xnC3 D 0, then the equation hx; xi D 0 forces x to have the form
.h;�h; 0; : : : ; 0/ ' .1;�1; 0; : : : ; 0/, and so Œx� is the improper point corresponding
to the point 1.

Oriented spheres in Sn and Hn

If we wish to consider oriented hyperspheres and point spheres in the unit sphere Sn

in RnC1, then the table above can be simplified. First, we have shown that in Möbius
geometry, the unoriented hypersphere S in Sn with center p 2 Sn and spherical radius
	, 0 < 	 < 
 , corresponds to the point Œ�� D Œ.cos 	; p/� in RPnC1. To correspond
the two orientations of this sphere to points on the Lie quadric, we first note that

.�; �/ D � cos2 	C 1 D sin2 	:



196 4 Submanifolds in Lie Sphere Geometry

Since sin 	 > 0 for 0 < 	 < 
 , we can divide � by sin 	 and consider the two
vectors � D ˙�= sin 	 that satisfy .�; �/ D 1. We then map these two points into the
Lie quadric to get the points

Œ.�; 1/� D Œ.�;˙ sin 	/� D Œ.cos 	; p;˙ sin 	/�:

in QnC1. We can incorporate the sign of the last coordinate into the radius and
thereby arrange that the oriented sphere S with signed radius 	 ¤ 0, where
�
 < 	 < 
 , and center p corresponds to the point

Œx� D Œ.cos 	; p; sin 	/�: (4.24)

in QnC1. This formula still makes sense if the radius 	 D 0, in which case it yields
the point sphere Œ.1; p; 0/�.

We adopt the convention that the positive radius 	 in (4.24) corresponds to
the orientation of the sphere given by the field of unit normals which are tangent
vectors to geodesics from �p to p, and a negative radius corresponds to the opposite
orientation. Each oriented sphere can be considered in two ways, with center p and
signed radius 	;�
 < 	 < 
 , or with center �p and the appropriate signed radius
	˙ 
 .

For a given point Œx� in the quadric QnC1, we can determine the corresponding
oriented hypersphere or point sphere in Sn as follows. Multiplying by �1, if
necessary, we can arrange that the first coordinate x1 of x is nonnegative. If x1 is
positive, then it follows from equation (4.24) that the center p and signed radius
	;�
=2 < 	 < 
=2, are given by

tan 	 D xnC3=x1; p D .x2; : : : ; xnC2/=.x21 C x2nC3/1=2: (4.25)

If x1 D 0, then xnC3 is nonzero, and we can divide by xnC3 to obtain a point with
coordinates .0; p; 1/. This corresponds to the oriented hypersphere in Sn with center
p and signed radius 
=2, which is a great sphere in Sn.

We can also find a representation for oriented hyperspheres in hyperbolic
space Hn. We know from equation (4.16) in Möbius geometry that the unoriented
hypersphere S in Hn with center p 2 Hn and hyperbolic radius 	 corresponds to
the point Œp C cosh 	 e2� in RPnC1. Following exactly the same procedure as in the
spherical case, we find that the oriented hypersphere in Hn with center p and signed
radius 	 corresponds to a point Œx� 2 QnC1 given by

Œx� D Œp C cosh 	 e2 C sinh 	 enC3�: (4.26)



4.2 Lie Geometry of Oriented Spheres 197

Oriented contact of spheres

As we saw in the previous section, the angle between two spheres is the fundamental
geometric quantity in Möbius geometry, and it is the quantity that is preserved by
Möbius transformations. In Lie’s geometry of oriented spheres, the corresponding
fundamental notion is that of oriented contact of spheres. By definition, two oriented
spheres S1 and S2 in Rn are in oriented contact if they are tangent to each other and
they have the same orientation at the point of contact. (See Figures 4.4 and 4.5 for
the two possibilities.)

r1 > 0

r2 < 0

Fig. 4.4 Oriented contact of spheres, first case

Fig. 4.5 Oriented contact of
spheres, second case

r1, r2 > 0
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If p1 and p2 are the respective centers of S1 and S2, and r1 and r2 are their
respective signed radii, then the analytic condition for oriented contact is

jp1 � p2j D jr1 � r2j: (4.27)

Similarly, we say that an oriented hypersphere sphere S with center p and signed
radius r and an oriented hyperplane 
 with unit normal N and equation u � N D h
are in oriented contact if 
 is tangent to S and their orientations agree at the point of
contact. This condition is given by the equation

p � N D r C h: (4.28)

Next we say that two oriented planes 
1 and 
2 are in oriented contact if their unit
normals N1 and N2 are the same. These planes can be considered to be two oriented
spheres in oriented contact at the improper point. Finally, a proper point u in Rn is
in oriented contact with a sphere or a plane if it lies on the sphere or plane, and the
improper point is in oriented contact with each plane, since it lies on each plane.

An important fact in Lie sphere geometry is that if S1 and S2 are two Lie spheres
which are represented as in equation (4.23) by Œk1� and Œk2�, then the analytic
condition for oriented contact is equivalent to the equation

hk1; k2i D 0: (4.29)

This can be checked easily by a direct calculation.

Parabolic pencils of spheres

By standard linear algebra in indefinite inner product spaces (see, for example, [77,
p. 21]), it follows from the fact that the signature of RnC3

2 is .n C 1; 2/ that the Lie
quadric contains projective lines in RPnC2, but no linear subspaces of RPnC2 of
higher dimension. These projective lines on QnC1 play a crucial role in the theory
of submanifolds in the context of Lie sphere geometry.

One can show further that if Œk1� and Œk2� are two points of QnC1, then the line
Œk1; k2� in RPnC2 lies on QnC1 if and only if the spheres corresponding to Œk1� and
Œk2� are in oriented contact, i.e., hk1; k2i D 0. Moreover, if the line Œk1; k2� lies on
QnC1, then the set of spheres in Rn corresponding to points on the line Œk1; k2� is
precisely the set of all spheres in oriented contact with both Œk1� and Œk2�. Such a
1-parameter family of spheres is called a parabolic pencil of spheres in Rn [ f1g.

Each parabolic pencil contains exactly one point sphere, and if that point sphere
is a proper point, then the parabolic pencil contains exactly one hyperplane 
 in
Rn (see Figure 4.6), and the pencil consists of all spheres in oriented contact with a
certain oriented plane 
 at p. Thus, we can associate the parabolic pencil with the
point .p;N/ in the unit tangent bundle to Rn [ f1g, where N is the unit normal to
the oriented plane 
 .
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π

Fig. 4.6 Parabolic pencil of spheres

If the point sphere in the pencil is the improper point, then the parabolic pencil
is a family of parallel hyperplanes in oriented contact at the improper point. If N is
the common unit normal to all of these planes, then we can associate the pencil with
the point .1;N/ in the unit tangent bundle to Rn [ f1g.

Similarly, we can establish a correspondence between parabolic pencils and
elements of the unit tangent bundle T1Sn that is expressed in terms of the spherical
metric on Sn. If ` is a line on the quadric, then ` intersects both e?1 and e?nC3 at exactly
one point, where e1 D .1; 0; : : : ; 0/ and enC3 D .0; : : : ; 0; 1/. So the parabolic
pencil corresponding to ` contains exactly one point sphere (orthogonal to enC3)
and one great sphere (orthogonal to e1), given respectively by the points,

Œk1� D Œ.1; p; 0/�; Œk2� D Œ.0; �; 1/�: (4.30)

Since ` lies on the quadric we know that hk1; k2i D 0, and this condition is
equivalent to the condition p � � D 0, i.e., � is tangent to Sn at p. Thus, the parabolic
pencil of spheres corresponding to the line ` can be associated with the point .p; �/
in T1Sn. More specifically, the line ` can be parametrized as

ŒKt� D Œcos t k1 C sin t k2� D Œ.cos t; cos t p C sin t �; sin t/�:

From equation (4.24) above, we see that ŒKt� corresponds to the oriented sphere in
Sn with center

pt D cos t p C sin t �; (4.31)

and signed radius t. The pencil consists of all oriented spheres in Sn in oriented
contact with the great sphere corresponding to Œk2� at the point .p; �/ in T1Sn. Their
centers pt lie along the geodesic in Sn with initial point p and initial velocity vector � .
Detailed proofs of all these facts are given in [77, pp. 21–23].
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Lie sphere transformations

We conclude this section with a discussion of Lie sphere transformations. By
definition, a Lie sphere transformation is a projective transformation of RPnC2
which maps the Lie quadric QnC1 to itself. In terms of the geometry of Rn or Sn, a Lie
sphere transformation maps Lie spheres to Lie spheres, and since it is a projective
transformation, it maps lines on QnC1 to lines on QnC1. Thus, it preserves oriented
contact of spheres in Rn or Sn. Conversely, Pinkall [443] (see also [77, pp. 28–30])
proved the so-called “Fundamental Theorem of Lie sphere geometry,” which states
that any line preserving diffeomorphism of QnC1 is the restriction to QnC1 of a
projective transformation, that is, a transformation of the space of oriented spheres
which preserves oriented contact is a Lie sphere transformation.

By the same type of reasoning given for Möbius transformations, one can show
that the group G of Lie sphere transformations is isomorphic to the group O.n C
1; 2/=f˙Ig, where O.n C 1; 2/ is the group of orthogonal transformations of RnC3

2 .
As with the Möbius group, it follows from the theorem of Cartan and Dieudonné
(see [77, pp. 30–34]) that the Lie sphere group G is generated by Lie inversions,
that is, projective transformations that are induced by reflections in O.n C 1; 2/.

The Möbius group H can be considered to be a subgroup of G in the following
manner. Each Möbius transformation on the space of unoriented spheres, naturally
induces two Lie sphere transformations on the space QnC1 of oriented spheres as
follows. If A is in O.n C 1; 1/, then we can extend A to a transformation B in
O.n C 1; 2/ by setting B D A on RnC2

1 and B.enC3/ D enC3. In terms the standard
orthonormal basis in RnC3

2 , the transformation B has the matrix representation,

B D
�

A 0
0 1

�
: (4.32)

Although A and �A induce the same Möbius transformation in H, the Lie transfor-
mation P.B/ is not the same as the Lie transformation P.C/ induced by the matrix

C D
� �A 0
0 1

�
'

�
A 0

0 �1
�
;

where ' denotes equivalence as projective transformations. Note that P.B/ D
� P.C/, where � is the Lie transformation represented in matrix form by

� D
�

I 0

0 �1
�

'
� �I 0
0 1

�
:

From equation (4.23), we see that � has the effect of changing the orientation
of every oriented sphere or plane. The transformation � is called the change of
orientation transformation or “Richtungswechsel” in German. Hence, the two Lie
sphere transformations induced by the Möbius transformation P.A/ differ by this
change of orientation factor.
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Thus, the group of Lie sphere transformations induced from Möbius transfor-
mations is isomorphic to O.n C 1; 1/. This group consists of those Lie transforma-
tions that map ŒenC3� to itself, and it is a double covering of the Möbius group H.
Since these transformations are induced from orthogonal transformations of RnC3

2 ,
they also map e?nC3 to itself, and thereby map point spheres to point spheres. When
working in the context of Lie sphere geometry, we will refer to these transformations
as “Möbius transformations.”

Laguerre transformations

A Lie sphere transformation that maps the improper point to itself is a Laguerre
transformation. Since oriented contact must be preserved, Laguerre transformations
can also be characterized as those Lie sphere transformations that take planes to
planes. Like Möbius geometry, Laguerre geometry can be studied on its own,
independent of Lie sphere geometry (see, for example, Blaschke [42]). One can
show (see, for example, [77, p. 47]) that the group G of Lie sphere transformations
is generated by the union of the groups of Möbius and Laguerre.

An important Laguerre transformation in the study of submanifolds is Euclidean
parallel transformation Pt that adds t to the signed radius of every oriented sphere
in Rn while keeping the center fixed. In terms of the standard basis of RnC3

2 , the
transformation Pt has the matrix representation,

Pt D

2
664
1 � .t2=2/ �t2=2 0 : : : 0 �t

t2=2 1C .t2=2/ 0 : : : 0 t
0 0 I 0

t t 0 : : : 0 1

3
775 : (4.33)

One can check that if the column vector consisting of the Lie coordinates (see
equation (4.23)) of the oriented sphere with center p 2 Rn and signed radius r is
multiplied on the left by this matrix Pt, the result is the column vector consisting
of the Lie coordinates of the oriented hypersphere with center p and signed radius
r C t.

There is also a parallel transformation that adds t to the signed radius of every
oriented sphere in Sn or Hn while keeping the center fixed. In the case of Sn, using the
fact that Œx� D Œ.cos 	; p; sin 	/� represents the oriented hypersphere in Sn with center
p 2 Sn and signed radius 	, one can check that spherical parallel transformation Pt

is given by the following transformation in O.n C 1; 2/,

Pte1 D cos t e1 C sin t enC3;

PtenC3 D � sin t e1 C cos t enC3; (4.34)

Ptei D ei; 2 � i � n C 2:
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In hyperbolic space, the sphere with center p 2 Hn and signed radius 	
corresponds to the point Œp C cosh 	 e2 C sinh 	 enC3� in QnC1, and so hyperbolic
parallel transformation is accomplished by the transformation,

Ptei D ei; i D 1; 3; : : : ; n C 2:

Pte2 D cosh t e2 C sinh t enC3; (4.35)

PtenC3 D sinh t e2 C cosh t enC3:

The following theorem of Cecil and Chern [79] (see also [77, p. 49]) demon-
strates the important role played by parallel transformations.

Theorem 4.3. Any Lie sphere transformation ˛ can be written as

˛ D �Pt ;

where � and  are Möbius transformations and Pt is some Euclidean, spherical or
hyperbolic parallel transformation.

4.3 Contact Structure and Legendre Submanifolds

The goal of this section is to define a contact structure on the unit tangent bundle
T1Sn and on the .2n � 1/-dimensional manifold �2n�1 of projective lines on the
Lie quadric QnC1, and to describe its associated Legendre submanifolds. This will
enable us to study submanifolds of Rn or Sn within the context of Lie sphere
geometry in a natural way. This theory was first developed extensively in a modern
setting by Pinkall [447] (see also Cecil–Chern [79] or [77, pp. 51–60]).

We consider T1Sn to be the .2n � 1/-dimensional submanifold of

Sn � Sn � RnC1 � RnC1

given by

T1S
n D f.x; �/ j jxj D 1; j�j D 1; x � � D 0g: (4.36)

As shown in the previous section, the points on a line ` lying on QnC1
correspond to the spheres in a parabolic pencil of spheres in Sn. In particular,
as in equation (4.30), ` contains one point Œk1� D Œ.1; x; 0/� corresponding to a
point sphere in Sn, and one point Œk2� D Œ.0; �; 1/� corresponding to a great sphere
in Sn, where the coordinates are with respect to the standard orthonormal basis
fe1; : : : ; enC3g of RnC3

2 . Thus we get a bijective correspondence between the points
.x; �/ of T1Sn and the space �2n�1 of lines on QnC1 given by the map:

.x; �/ 7! ŒY1.x; �/;YnC3.x; �/�; (4.37)
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where

Y1.x; �/ D .1; x; 0/; YnC3.x; �/ D .0; �; 1/: (4.38)

We use this correspondence to place a natural differentiable structure on �2n�1 in
such a way as to make the map in equation (4.37) a diffeomorphism.

We now show how to define a contact structure on the manifold T1Sn. By the
diffeomorphism in equation (4.37), this also determines a contact structure on
�2n�1. Recall that a .2n � 1/-dimensional manifold V2n�1 is said to be a contact
manifold if it carries a globally defined 1-form ! such that

! ^ .d!/n�1 ¤ 0 (4.39)

at all points of V2n�1. Such a form ! is called a contact form. A contact form !

determines a codimension one distribution (the contact distribution) D on V2n�1
defined by

Dp D fY 2 TpV2n�1 j !.Y/ D 0g; (4.40)

for p 2 V2n�1. This distribution is as far from being integrable as possible,
in that there exist integral submanifolds of D of dimension n � 1 but none of
higher dimension (see, for example, [77, p. 57]). The distribution D determines
the corresponding contact form ! up to multiplication by a nonvanishing smooth
function.

A tangent vector to T1Sn at a point .x; �/ can be written in the form .X;Z/ where

X � x D 0; Z � � D 0: (4.41)

Differentiation of the condition x � � D 0 implies that .X;Z/ also satisfies

X � � C Z � x D 0: (4.42)

We now show that the form ! defined by

!.X;Z/ D X � �; (4.43)

is a contact form on T1Sn. At a point .x; �/, the distribution D is the .2n �
2/-dimensional space of vectors .X;Z/ satisfying X � � D 0, as well as the
equations (4.41) and (4.42). The equation X � � D 0 together with equation (4.42)
implies that

Z � x D 0; (4.44)

for vectors .X;Z/ in D.
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Note that if we take Y1.x; �/ D .1; x; 0/, and YnC3.x; �/ D .0; �; 1/ as in
equation (4.38), then

dY1.X;Z/ D .0;X; 0/; dYnC3.X;Z/ D .0;Z; 0/: (4.45)

Thus,

hdY1.X;Z/;YnC3.x; �/i D X � � D !.X;Z/: (4.46)

To prove that the form ! defined by equation (4.43) is a contact form and to study
submanifolds in the context of Lie sphere geometry, we use the method of moving
frames, as in Cecil–Chern [79] or the book [77]. (See also the paper of Jensen [229]
and the forthcoming book of Jensen, Musso and Nicolodi [230].)

Moving frames in Lie sphere geometry

Since we want to define frames on the manifold �2n�1, it is better to use frames
for which some of the vectors are lightlike, rather than orthonormal frames. For the
sake of brevity, we use the following ranges of indices in this section:

1 � a; b; c � n C 3; 3 � i; j; k � n C 1: (4.47)

A Lie frame is an ordered set of vectors fY1; : : : ;YnC3g in RnC3
2 satisfying the

relations

hYa;Ybi D gab; (4.48)

for

Œgab� D
2
4 J 0 0

0 In�1 0
0 0 J

3
5 ; (4.49)

where In�1 is the .n � 1/ � .n � 1/ identity matrix and

J D
�
0 1

1 0

�
: (4.50)

If .y1; : : : ; ynC3/ are homogeneous coordinates on RPnC2 with respect to a Lie
frame, then the Lie metric has the form

hy; yi D 2.y1y2 C ynC2ynC3/C y23 C � � � C y2nC1: (4.51)
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The space of all Lie frames can be identified with the group O.n C1; 2/ of which
the Lie sphere group G, being isomorphic to O.n C 1; 2/=f˙Ig, is a quotient group.
In this space, we use the Maurer–Cartan forms !b

a defined by the equation

dYa D
X

!b
a Yb; (4.52)

and we adopt the convention that the sum is always over the repeated index.
Differentiating equation (4.48), we get

!ab C !ba D 0; (4.53)

where

!ab D
X

gbc!
c
a: (4.54)

Equation (4.53) says that the following matrix is skew-symmetric,

Œ!ab� D

2
666664

!21 !11 ! i
1 !nC3

1 !nC2
1

!22 !12 ! i
2 !nC3

2 !nC2
2

!2j !1j ! i
j !nC3

j !nC2
j

!2nC2 !1nC2 ! i
nC2 !

nC3
nC2 !

nC2
nC2

!2nC3 !1nC3 ! i
nC3 !

nC3
nC3 !

nC2
nC3

3
777775
: (4.55)

Taking the exterior derivative of equation (4.52) yields the Maurer–Cartan
equations,

d!b
a D

X
!c

a ^ !b
c : (4.56)

To show that the form defined by equation (4.43) is a contact form on T1Sn we
want to choose a local frame fY1; : : : ;YnC3g on T1Sn with Y1 and YnC3 given by
equation (4.38). When we transfer this frame to�2n�1, it will have the property that
for each point 
 2 �2n�1, the line ŒY1;YnC3� of the frame at 
 is the line on the
quadric QnC1 corresponding to 
.

On a sufficiently small open subset U in T1Sn, we can find smooth mappings,

vi W U ! RnC1; 3 � i � n C 1;

such that at each point .x; �/ 2 U, the vectors v3.x; �/; : : : ; vnC1.x; �/ are unit
vectors orthogonal to each other and to x and � . By equations (4.41) and (4.42),
we see that the vectors

f.vi; 0/; .0; vi/; .�;�x/g; 3 � i � n C 1; (4.57)
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form a basis to the tangent space to T1Sn at .x; �/. We now define a Lie frame on U
as follows:

Y1.x; �/ D .1; x; 0/;

Y2.x; �/ D .�1=2; x=2; 0/;
Yi.x; �/ D .0; vi.x; �/; 0/; 3 � i � n C 1; (4.58)

YnC2.x; �/ D .0; �=2;�1=2/
YnC3.x; �/ D .0; �; 1/:

Note that Y1 and YnC3 are defined on all of T1Sn. We compute the derivatives dY1
and dYnC3 and find

dY1.vi; 0/ D .0; vi; 0/ D Yi;

dY1.0; vi/ D .0; 0; 0/; (4.59)

dY1.�;�x/ D .0; �; 0/ D YnC2 C .1=2/YnC3;

and

dYnC3.vi; 0/ D .0; 0; 0/;

dYnC3.0; vi/ D .0; vi; 0/ D Yi; (4.60)

dYnC3.�;�x/ D .0;�x; 0/ D .�1=2/Y1 � Y2:

Comparing these equations with the equation (4.52), we see that the 1-forms,

f! i
1; !

i
nC3; !nC2

1 g; 3 � i � n C 1; (4.61)

form the dual basis to the basis given in (4.57) for the tangent space to T1Sn at .x; �/.
Furthermore,

!nC2
1 .X;Z/ D hdY1.X;Z/;YnC3.x; �/i D X � � D !.X;Z/; (4.62)

so !nC2
1 is the form ! in equation (4.43).

To prove that !nC2
1 satisfies the condition (4.39) for a contact form, we use the

Maurer–Cartan equations and the skew-symmetry of the matrix in equation (4.55)
to show by a straightforward calculation that

!nC2
1 ^ .d!nC2

1 /n�1 D !nC2
1 ^ .

X
! i
1 ^ !nC2

i /n�1 (4.63)

D .�1/n�1.n � 1/Š !nC2
1 ^ !31 ^ !3nC3 ^ � � � ^ !nC1

1 ^ !nC1
nC3 ¤ 0:
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Here the last form is nonzero because the set (4.61) is a basis for the cotangent
space to T1Sn at .x; �/. We can use the diffeomorphism given in (4.37) to transfer
this contact form !nC2

1 to the manifold �2n�1 of lines on the Lie quadric.
Finally, suppose that

Z1 D ˛Y1 C ˇYnC3; ZnC3 D �Y1 C ıYnC3; (4.64)

for smooth functions ˛; ˇ; �; ı with ˛ı�ˇ� ¤ 0 on T1Sn, so that the line ŒZ1;ZnC3�
equals the line ŒY1;YnC3� at all points of T1Sn. Let �nC2

1 be the 1-form defined by
�nC2
1 D hdZ1;ZnC3i. Then using equation (4.48), we can compute

�nC2
1 D hdZ1;ZnC3i D hd.˛Y1 C ˇYnC3/; �Y1 C ıYnC3i

D ˛ıhdY1;YnC3i C ˇ�hdYnC3;Y1i D .˛ı � ˇ�/hdY1;YnC3i (4.65)

D .˛ı � ˇ�/!nC2
1 :

Thus, �nC2
1 is also a contact form on T1Sn.

Legendre submanifolds

Returning briefly to the general theory, let V2n�1 be a contact manifold with
contact form ! and corresponding contact distribution D, as in equation (4.40). An
immersion � W Wk ! V2n�1 of a smooth k-dimensional manifold Wk into V2n�1
is called an integral submanifold of the distribution D if ��! D 0 on Wk, i.e., for
each tangent vector Y at each point w 2 W, the vector d�.Y/ is in the distribution
D at the point �.w/. (See Blair [41, p. 36].) It is well known (see, for example, [77,
p. 57]) that the contact distribution D has integral submanifolds of dimension n � 1,
but none of higher dimension. These integral submanifolds of maximal dimension
are called Legendre submanifolds of the contact structure.

In our specific case, we now formulate conditions for a smooth map � W Mn�1 !
T1Sn to be a Legendre submanifold. We consider T1Sn as a submanifold of Sn �Sn as
in equation (4.36), and so we can write � D .f ; �/, where f and � are both smooth
maps from Mn�1 to Sn. We have the following theorem (see [77, p. 58]) giving
necessary and sufficient conditions for � to be a Legendre submanifold.

Theorem 4.4. A smooth map � D .f ; �/ from an .n � 1/-dimensional manifold
Mn�1 into T1Sn is a Legendre submanifold if and only if the following three
conditions are satisfied.

(1) Scalar product conditions: f � f D 1; � � � D 1; f � � D 0.
(2) Immersion condition: there is no nonzero tangent vector X at any point x 2

Mn�1 such that df .X/ and d�.X/ are both equal to zero.
(3) Contact condition: df � � D 0.
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Note that by equation (4.36), the scalar product conditions are precisely the
conditions necessary for the image of the map � D .f ; �/ to be contained in T1Sn.
Next, since d�.X/ D .df .X/; d�.X//, Condition .2/ is necessary and sufficient for
� to be an immersion. Finally, from equation (4.43), we see that !.d�.X// D
df .X/ � �.x/, for each X 2 TxMn�1. Hence Condition .3/ is equivalent to the
requirement that ��! D 0 on Mn�1.

We now want to translate these conditions into the projective setting, and find
necessary and sufficient conditions for a smooth map 
 W Mn�1 ! �2n�1 to be
a Legendre submanifold. We again make use of the diffeomorphism defined in
equation (4.37) between T1Sn and �2n�1.

For each x 2 Mn�1, we know that 
.x/ is a line on the quadric QnC1. This line
contains exactly one point ŒY1.x/� D Œ.1; f .x/; 0/� corresponding to a point sphere
in Sn, and one point ŒYnC3.x/� D Œ.0; �.x/; 1/� corresponding to a great sphere in Sn.
These two formulas define maps f and � from Mn�1 to Sn which depend on the
choice of orthonormal basis fe1; : : : ; enC2g for the orthogonal complement of enC3.

The map ŒY1� from Mn�1 to QnC1 is called the Möbius projection or point sphere
map of 
, and the map ŒYnC3� from Mn�1 to QnC1 is called the great sphere map.
The maps f and � are called the spherical projection of 
, and the spherical field of
unit normals of 
, respectively.

In this way, 
 determines a map � D .f ; �/ from Mn�1 to T1Sn, and because of
the diffeomorphism (4.37), 
 is a Legendre submanifold if and only if � satisfies
the conditions of Theorem 4.4.

It is often useful to have conditions for when 
 determines a Legendre subman-
ifold that do not depend on the special parametrization of 
 in terms of the point
sphere and great sphere maps, ŒY1� and ŒYnC3�. In fact, in many applications of Lie
sphere geometry to submanifolds of Sn or Rn, it is better to consider 
 D ŒZ1;ZnC3�,
where Z1 and ZnC3 are not the point sphere and great sphere maps.

Legendre submanifolds in Lie sphere geometry

Pinkall [447] gave the following projective formulation of the conditions needed for
a Legendre submanifold. In his paper, Pinkall referred to a Legendre submanifold as
a “Lie geometric hypersurface.” The proof that the three conditions of the theorem
below are equivalent to the three conditions of Theorem 4.4 can be found in [77,
pp. 59–60].

Theorem 4.5. Let 
 W Mn�1 ! �2n�1 be a smooth map with 
 D ŒZ1;ZnC3�, where
Z1 and ZnC3 are smooth maps from Mn�1 into RnC3

2 . Then 
 determines a Legendre
submanifold if and only if Z1 and ZnC3 satisfy the following conditions.

(1) Scalar product conditions: for each x 2 Mn�1, the vectors Z1.x/ and ZnC3.x/
are linearly independent and

hZ1;Z1i D 0; hZnC3;ZnC3i D 0; hZ1;ZnC3i D 0:
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(2) Immersion condition: there is no nonzero tangent vector X at any point x 2
Mn�1 such that dZ1.X/ and dZnC3.X/ are both in

Span fZ1.x/;ZnC3.x/g:

(3) Contact condition: hdZ1;ZnC3i D 0.

These conditions are invariant under a reparametrization 
 D ŒW1;WnC3�, where
W1 D ˛Z1 C ˇZnC3 and WnC3 D �Z1 C ıZnC3, for smooth functions ˛; ˇ; �; ı on
Mn�1 with ˛ı � ˇ� ¤ 0:

The Legendre lift of a submanifold of a real space form

Every oriented hypersurface in a real space form Sn, Rn or Hn naturally induces a
Legendre submanifold of �2n�1, as does every submanifold of codimension m > 1

in these spaces. Conversely, a Legendre submanifold naturally induces a smooth
map into Sn which may have singularities. We now study the details of these maps.

Let f W Mn�1 ! Sn be an immersed oriented hypersurface with field of unit
normals � W Mn�1 ! Sn. The induced Legendre submanifold is given by the map

 W Mn�1 ! �2n�1 defined by 
.x/ D ŒY1.x/;YnC3.x/�, where

Y1.x/ D .1; f .x/; 0/; YnC3.x/ D .0; �.x/; 1/: (4.66)

The map 
 is called the Legendre lift of the immersion f with field of unit normals � .
To show that 
 is a Legendre submanifold, we check the conditions of Theo-

rem 4.5. Condition (1) is satisfied since both f and � are maps into Sn, and �.x/
is tangent to Sn at f .x/ for each x in Mn�1. Since f is an immersion, dY1.X/ D
.0; df .X/; 0/ is not in Span fY1.x/;YnC3.x/g, for any nonzero vector X 2 TxMn�1,
and so Condition .2/ is satisfied. Finally, Condition (3) is satisfied since

hdY1.X/;YnC3.x/i D df .X/ � �.x/ D 0;

because � is a field of unit normals to f .
In the case of a submanifold � W V ! Sn of codimension m C 1 greater than

one, the domain of the Legendre lift is be the unit normal bundle Bn�1 of the
submanifold �.V/. We consider Bn�1 to be the submanifold of V � Sn given by

Bn�1 D f.x; �/j�.x/ � � D 0; d�.X/ � � D 0; for all X 2 TxVg:

The Legendre lift �.V/ (or the Legendre submanifold induced by �) is the map

 W Bn�1 ! �2n�1 defined by


.x; �/ D ŒY1.x; �/;YnC3.x; �/�; (4.67)



210 4 Submanifolds in Lie Sphere Geometry

where

Y1.x; �/ D .1; �.x/; 0/; YnC3.x; �/ D .0; �; 1/: (4.68)

Geometrically, 
.x; �/ is the line on the quadric QnC1 corresponding to the parabolic
pencil of spheres in Sn in oriented contact at the contact element .�.x/; �/ 2 T1Sn.
In [77, pp. 61–62], we show that 
 satisfies the conditions of Theorem 4.5,

Similarly, suppose that F W Mn�1 ! Rn is an oriented hypersurface with field
of unit normals � W Mn�1 ! Rn, where we identify Rn with the subspace of RnC3

2

spanned by fe3; : : : ; enC2g. The Legendre lift of .F; �/ is the map 
 W Mn�1 ! �2n�1
defined by 
 D ŒY1;YnC3�, where

Y1 D .1C F � F; 1 � F � F; 2F; 0/=2; YnC3 D .F � �;�.F � �/; �; 1/: (4.69)

By equation (4.23), ŒY1.x/� corresponds to the point sphere and ŒYnC3.x/� corre-
sponds to the hyperplane in the parabolic pencil determined by the line 
.x/ for each
x 2 Mn�1. One can easily verify that Conditions (1)–(3) of Theorem 4.5 are satisfied
in a manner similar to the spherical case. In the case of a submanifold  W V ! Rn

of codimension greater than one, the Legendre lift of  is the map 
 from the unit
normal bundle Bn�1 to �2n�1 defined by 
.x; �/ D ŒY1.x; �/;YnC3.x; �/�, where

Y1.x; �/ D .1C  .x/ �  .x/; 1 �  .x/ �  .x/; 2 .x/; 0/=2; (4.70)

YnC3.x; �/ D . .x/ � �;�. .x/ � �/; �; 1/:

The verification that the pair fY1;YnC3g satisfies conditions (1)–(3) of Theorem 4.5
is similar to that for submanifolds of Sn of codimension greater than one.

Finally, as in Section 4.1, we consider Hn to be the submanifold of the Lorentz
space RnC1

1 spanned by fe1; e3; : : : ; enC2g defined by:

Hn D fy 2 RnC1
1 j.y; y/ D �1; y1 � 1g;

where . ; / is the Lorentz metric on RnC1
1 obtained by restricting the Lie metric. Let

h W Mn�1 ! Hn be an oriented hypersurface with field of unit normals � W Mn�1 !
RnC1
1 . The Legendre lift of .h; �/ is given by the map 
 D ŒY1;YnC3�, where

Y1.x/ D h.x/C e2; YnC3.x/ D �.x/C enC3: (4.71)

Note that .h; h/ D �1, so hY1;Y1i D 0, while .�; �/ D 1, so hYnC3;YnC3i D 0. One
can easily check that the conditions (1)–(3) are satisfied. Finally, if � W V ! Hn

is an immersed submanifold of codimension greater than one, then the Legendre
submanifold 
 W Bn�1 ! �2n�1 is again defined on the unit normal bundle Bn�1 in
the obvious way.
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Conversely, suppose that 
 W Mn�1 ! �2n�1 is an arbitrary Legendre
submanifold. We have seen above that we can parametrize 
 as 
 D ŒY1;YnC3�,
where

Y1 D .1; f ; 0/; YnC3 D .0; �; 1/: (4.72)

for the spherical projection f and spherical field of unit normals � . Both f and �
are smooth maps, but neither need be an immersion or even have constant rank
(see Example 4.6 below). The Legendre lift of an oriented hypersurface in Sn is the
special case where the spherical projection f is an immersion, i.e., f has constant
rank n � 1 on Mn�1. In the case of the Legendre lift of a submanifold � W Vk ! Sn,
the spherical projection f W Bn�1 ! Sn defined by f .x; �/ D �.x/ has constant
rank k.

If the range of the point sphere map ŒY1� does not contain the improper point
Œ.1;�1; 0; : : : ; 0/�, then 
 also determines a Euclidean projection F W Mn�1 ! Rn,
and a Euclidean field of unit normals, � W Mn�1 ! Rn. These are defined by the
equation 
 D ŒZ1;ZnC3�, where

Z1 D .1C F � F; 1 � F � F; 2F; 0/=2; ZnC3 D .F � �;�.F � �/; �; 1/: (4.73)

Here ŒZ1.x/� corresponds to the unique point sphere in the parabolic pencil
determined by 
.x/, and ŒZnC3.x/� corresponds to the unique plane in this pencil.
As in the spherical case, the smooth maps F and � need not have constant rank.

Finally, if the range of the Euclidean projection F lies inside some disk ˝ in Rn,
then one can define a hyperbolic projection and hyperbolic field of unit normals by
placing a hyperbolic metric on ˝.

There are, however, many Dupin submanifolds whose spherical (or Euclidean)
projection is not an immersion and does not have constant rank. Examples of
this type can be obtained by applying a parallel transformation Pt to a Dupin
submanifold 
 whose spherical or Euclidean projection is an immersion, where Pt

is chosen in such a way that the spherical or Euclidean projection of Pt
 contains
a focal point of the original hypersurface. In particular, consider the following
example from [77, pp. 63–64].

Example 4.6. A Euclidean projection F that is not an immersion.
An example where the Euclidean (or spherical) projection does not have constant
rank is illustrated by the cyclide of Dupin in Figure 4.7. Here the corresponding
Legendre submanifold is a map 
 W T2 ! �5, where T2 is a 2-dimensional torus.
The Euclidean projection F W T2 ! R3 maps the circle S1 containing the points
A;B;C and D to the point P. However, the map 
 into the space of lines on the
quadric (corresponding to contact elements) is an immersion. The four arrows in
Figure 4.7 represent the contact elements corresponding under the map 
 to the four
points indicated on the circle S1.
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Fig. 4.7 A Euclidean projection F with a singularity

4.4 Curvature Spheres and Dupin Submanifolds

In this section, we discuss the notions of curvature spheres and Dupin hypersurfaces
in the context of Lie sphere geometry, and we prove that the Dupin property is
invariant under Lie sphere transformations.

We begin with the case of an oriented hypersurface f W Mn�1 ! Sn with field of
unit normals � W Mn�1 ! Sn. As we showed in Section 2.2, a point

ft.x/ D cos t f .x/C sin t �.x/ (4.74)

is a focal point of .Mn�1; x/ of multiplicity m > 0 if and only if cot t is a principal
curvature of multiplicity m at x. Note that each principal curvature � D cot t D
cot.t C 
/ produces two distinct antipodal focal points on the normal geodesic
to f .Mn�1/ at f with parameter values t and t C 
 . The oriented hypersphere
centered at a focal point p and in oriented contact with f .Mn�1/ at f .x/ is called
a curvature sphere of f at x. The two antipodal focal points determined by � are
the two centers of the corresponding curvature sphere. Thus, the correspondence
between principal curvatures and curvature spheres is bijective. The multiplicity of
the curvature sphere is by definition equal to the multiplicity of the corresponding
principal curvature.

Curvature spheres in Lie sphere geometry

We now formulate the notion of curvature sphere in the context of Lie sphere
geometry. As in equation (4.66), the Legendre lift 
 W Mn�1 ! �2n�1 of the oriented
hypersurface .f ; �/ is given by 
 D ŒY1;YnC3�, where

Y1 D .1; f ; 0/; YnC3 D .0; �; 1/: (4.75)
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For each x 2 Mn�1, the points on the line 
.x/ can be parametrized as

ŒKt.x/� D Œcos t Y1.x/C sin t YnC3.x/� D Œ.cos t; ft.x/; sin t/�; (4.76)

where ft is given in equation (4.74) above. By equation (4.24), the point ŒKt.x/� in
QnC1 corresponds to the oriented sphere in Sn with center ft.x/ and signed radius t.
This sphere is in oriented contact with the oriented hypersurface f .Mn�1/ at f .x/.
Given a tangent vector X 2 TxMn�1, we have

dKt.X/ D .0; dft.X/; 0/: (4.77)

Thus, dKt.X/ D .0; 0; 0/ for a nonzero vector X 2 TxMn�1 if and only if dft.X/ D 0,
i.e., p D ft.x/ is a focal point of f at x corresponding to the principal curvature cot t.
The vector X is a principal vector corresponding to the principal curvature cot t, and
it is also called a principal vector corresponding to the curvature sphere ŒKt�.

This characterization of curvature spheres depends on the parametrization of 
 D
ŒY1;YnC3� given by the point sphere and great sphere maps ŒY1� and ŒYnC3�, and it
has only been defined in the case where the spherical projection f is an immersion.
We now give a projective formulation of the definition of a curvature sphere that
is independent of the parametrization of 
 and is valid for an arbitrary Legendre
submanifold.

Let 
 W Mn�1 ! �2n�1 be a Legendre submanifold parametrized by the pair
fZ1;ZnC3g, as in Theorem 4.5. Let x 2 Mn�1 and r; s 2 R with at least one of r and
s not equal to zero. The sphere,

ŒK� D ŒrZ1.x/C sZnC3.x/�;

is called a curvature sphere of 
 at x if there exists a nonzero vector X in TxMn�1
such that

r dZ1.X/C s dZnC3.X/ 2 Span fZ1.x/;ZnC3.x/g: (4.78)

The vector X is called a principal vector corresponding to the curvature sphere ŒK�.
This definition is invariant under a change of parametrization of the form considered
in Theorem 4.5 on page 208. Furthermore, if we take the special parametrization
Z1 D Y1, ZnC3 D YnC3 given in equation (4.75), then condition (4.78) holds if and
only if r dY1.X/C s dYnC3.X/ actually equals .0; 0; 0/.

From equation (4.78), it is clear that the set of principal vectors corresponding
to a given curvature sphere ŒK� at x is a subspace of TxMn�1. This set is called
the principal space corresponding to the curvature sphere ŒK�. Its dimension is the
multiplicity of ŒK�.



214 4 Submanifolds in Lie Sphere Geometry

Lie equivalent Legendre submanifolds

We next show that a Lie sphere transformation maps curvature spheres to cur-
vature spheres. We first need to discuss the notion of Lie equivalent Legendre
submanifolds. Let 
 W Mn�1 ! �2n�1 be a Legendre submanifold parametrized
by 
 D ŒZ1;ZnC3�. Suppose ˇ D P.B/ is the Lie sphere transformation induced by
an orthogonal transformation B in the group O.n C 1; 2/. Since B is orthogonal, the
maps, W1 D BZ1, WnC3 D BZnC3, satisfy the Conditions (1)–(3) of Theorem 4.5,
and thus � D ŒW1;WnC3� is a Legendre submanifold which we denote by ˇ
 W
Mn�1 ! �2n�1. We say that the Legendre submanifolds 
 and ˇ
 are Lie
equivalent. In terms of submanifolds of real space forms, we say that two immersed
submanifolds of Rn, Sn, or Hn are Lie equivalent if their Legendre lifts are Lie
equivalent.

Theorem 4.7. Let 
 W Mn�1 ! �2n�1 be a Legendre submanifold and ˇ a Lie
sphere transformation. The point ŒK� on the line 
.x/ is a curvature sphere of 
 at x
if and only if the point ˇŒK� is a curvature sphere of the Legendre submanifold ˇ

at x. Furthermore, the principal spaces corresponding to ŒK� and ˇŒK� are identical.

Proof. Let 
 D ŒZ1;ZnC3� and ˇ
 D ŒW1;WnC3� as above. For a tangent vector
X 2 TxMn�1 and real numbers r and s, at least one of which is not zero, we have

r dW1.X/C s dWnC3.X/ D r d.BZ1/.X/C s d.BZnC3/.X/ (4.79)

D B.r dZ1.X/C s dZnC3.X//;

since B is a constant linear transformation. Thus, we see that

r dW1.X/C s dWnC3.X/ 2 Span fW1.x/;WnC3.x/g

if and only if

r dZ1.X/C s dZnC3.X/ 2 Span fZ1.x/;ZnC3.x/g:

ut
We next consider the case when the Lie sphere transformation ˇ is a spherical

parallel transformation Pt given in equation (4.34), that is,

Pte1 D cos t e1 C sin t enC3;

PtenC3 D � sin t e1 C cos t enC3; (4.80)

Ptei D ei; 2 � i � n C 2:

Recall that Pt has the effect of adding t to the signed radius of each oriented sphere
in Sn while keeping the center fixed.
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If 
 W Mn�1 ! �2n�1 is a Legendre submanifold parametrized by the point
sphere map Y1 D .1; f ; 0/ and the great sphere map YnC3 D .0; �; 1/, then Pt
 D
ŒW1;WnC3�, where

W1 D PtY1 D .cos t; f ; sin t/; WnC3 D PtYnC3 D .� sin t; �; cos t/: (4.81)

Note that W1 and WnC3 are not the point sphere and great sphere maps for Pt
.
Solving for the point sphere map Z1 and the great sphere map ZnC3 of Pt
, we find

Z1 D cos t W1 � sin t WnC3 D .1; cos t f � sin t �; 0/; (4.82)

ZnC3 D sin t W1 C cos t WnC3 D .0; sin t f C cos t �; 1/:

From this, we see that Pt
 has spherical projection and spherical unit normal field
given, respectively, by

f�t D cos t f � sin t � D cos.�t/f C sin.�t/�; (4.83)

��t D sin t f C cos t � D � sin.�t/f C cos.�t/�:

The minus sign occurs because Pt takes a sphere with center f�t.x/ and radius �t to
the point sphere f�t.x/. We call Pt
 a parallel submanifold of 
. Formula (4.83)
shows the close correspondence between these parallel submanifolds and the
parallel hypersurfaces ft to f , in the case where f is an immersed hypersurface.

In the case where the spherical projection f is an immersion at a point x 2 Mn�1,
we know that the number of values of t in the interval Œ0; 
/ for which ft is not an
immersion is at most n � 1, the maximum number of distinct principal curvatures
of f at x. Pinkall [446, p. 428] proved that this statement is also true for an arbitrary
Legendre submanifold, even if the spherical projection f is not an immersion at x by
proving the following theorem (see also [77, pp. 68–72] for a proof).

Theorem 4.8. Let 
 W Mn�1 ! �2n�1 be a Legendre submanifold with spherical
projection f and spherical unit normal field � . Then for each x 2 Mn�1, the parallel
map,

ft D cos t f C sin t �;

fails to be an immersion at x for at most n � 1 values of t 2 Œ0; 
/.
As a consequence of Pinkall’s theorem, one can pass to a parallel submanifold to

obtain the following important corollary. Note that parts (a)–(c) of the corollary are
pointwise statements, while (d)–(e) hold on an open set U if they can be shown to
hold in a neighborhood of each point of U.

Now let x be an arbitrary point of Mn�1. If the spherical projection f of 
 is an
immersion at x, then it is an immersion on a neighborhood of x, and the corollary
holds on this neighborhood by known results concerning hypersurfaces in Sn given
in Chapter 2, and by the correspondence between the curvature spheres of 
 and
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the principal curvatures of f . If the spherical projection f is not an immersion at x,
then by Theorem 4.8, there exists parallel transformation P�t such that the spherical
projection ft of the Legendre submanifold P�t
 is an immersion at x, and hence on
a neighborhood of x. So the corollary holds for P�t
 on this neighborhood of x, and
by Theorem 4.7, the corollary also holds for 
 on this neighborhood x.

Corollary 4.9. Let 
 W Mn�1 ! �2n�1 be a Legendre submanifold. Then:

(a) at each point x 2 Mn�1, there are at most n � 1 distinct curvature spheres
K1; : : : ;Kg,

(b) the principal vectors corresponding to a curvature sphere Ki form a subspace
Ti of the tangent space TxMn�1,

(c) the tangent space TxMn�1 D T1 ˚ � � � ˚ Tg,
(d) if the dimension of a given Ti is constant on an open subset U of Mn�1, then the

principal distribution Ti is integrable on U,
(e) if dim Ti D m > 1 on an open subset U of Mn�1, then the curvature sphere map

Ki is constant along the leaves of the principal foliation Ti.

We can also generalize the notion of a curvature surface defined in Section 2.5
(page 32) for hypersurfaces in real space forms to Legendre submanifolds. Specifi-
cally, let 
 W Mn�1 ! �2n�1 be a Legendre submanifold. A connected submanifold
S of Mn�1 is called a curvature surface if at each x 2 S, the tangent space TxS is equal
to some principal space Ti. For example, if dim Ti is constant on an open subset U
of Mn�1, then each leaf of the principal foliation Ti is a curvature surface on U. It is
also possible to have a curvature surface S which is not a leaf of a principal foliation
as in Example 2.22 on page 33.

Dupin submanifolds in Lie sphere geometry

Next we generalize the definition of a Dupin hypersurface in a real space form to the
setting of Legendre submanifolds in Lie sphere geometry. We say that a Legendre
submanifold 
 W Mn�1 ! �2n�1 is a Dupin submanifold if:

(a) along each curvature surface, the corresponding curvature sphere map is
constant.

The Dupin submanifold 
 is called proper Dupin if, in addition to Condition (a), the
following condition is satisfied:

(b) the number g of distinct curvature spheres is constant on M.

In the case of the Legendre lift 
 W Mn�1 ! �2n�1 of an immersed Dupin
hypersurface f W Mn�1 ! Sn, the submanifold 
 is a Dupin submanifold, since
a curvature sphere map of 
 is constant along a curvature surface if and only if
the corresponding principal curvature map of f is constant along that curvature
surface. Similarly, 
 is proper Dupin if and only if f is proper Dupin, since the
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number of distinct curvatures spheres of 
 at a point x 2 Mn�1 equals the number
of distinct principal curvatures of f at x. Particularly important examples of proper
Dupin submanifolds are the Legendre lifts of isoparametric hypersurfaces in Sn.

Remark 4.10 (Relationship to the Euclidean definition of Dupin). Reckziegel [458]
gives a definition of principal curvatures and curvature surfaces in the case of an
immersed submanifold � W V ! Sn of codimension � C 1 > 1. In that case,
Reckziegel defines a curvature surface to be a connected submanifold S � V for
which there is a parallel section of the unit normal bundle � W S ! Bn�1 such that
for each x 2 S, the tangent space TxS is equal to some eigenspace of A�.x/. The
corresponding principal curvature function � W S ! R is then a smooth function
on S. As noted in Remark 2.26 on page 35, Pinkall [447] calls a submanifold
�.V/ of codimension greater than one Dupin if along each curvature surface (in the
sense of Reckziegel), the corresponding principal curvature is constant. A Dupin
submanifold �.V/ is proper Dupin if the number of distinct principal curvatures is
constant on the unit normal bundle Bn�1. One can show that Pinkall’s definition is
equivalent to requiring that the Legendre lift 
 W Bn�1 ! �2n�1 of the submanifold
�.V/ is a proper Dupin submanifold in the sense of Lie sphere geometry, as defined
above.

Lie invariance of the Dupin condition

By Theorem 4.7 both the Dupin and proper Dupin conditions are invariant under Lie
sphere transformations (see Theorem 4.11 below), and many important classifica-
tion results for Dupin submanifolds have been obtained in the setting of Lie sphere
geometry, as we will see in Chapter 5.

Theorem 4.11. Let 
 W Mn�1 ! �2n�1 be a Legendre submanifold and ˇ a Lie
sphere transformation.

(a) If 
 is Dupin, then ˇ
 is Dupin.
(b) If 
 is proper Dupin, then ˇ
 is proper Dupin.

Proof. By Theorem 4.7, a point ŒK� on the line 
.x/ is a curvature sphere of 
 at
x 2 M if and only if the point ˇŒK� is a curvature sphere of ˇ
 at x, and the principal
spaces corresponding ŒK� and ˇŒK� are identical. Since these principal spaces are the
same, if S is a curvature surface of 
 corresponding to a curvature sphere map ŒK�,
then S is also a curvature surface of ˇ
 corresponding to a curvature sphere map
ˇŒK�, and clearly ŒK� is constant along S if and only if ˇŒK� is constant along S. This
proves part (a) of the theorem. Part (b) also follows immediately from Theorem 4.7,
since for each x 2 M, the number g of distinct curvature spheres of 
 at x equals the
number of distinct curvatures spheres of ˇ
 at x. So if this number g is constant on
M for 
, then it is constant on M for ˇ
. ut
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4.5 Lie Curvatures and Isoparametric Hypersurfaces

In this section,we introduce certain natural Lie invariants, known as Lie curvatures,
due to R. Miyaoka [365], that have been important in the study of Dupin and
isoparametric hypersurfaces in the context of Lie sphere geometry. We also find a
criterion (Theorem 4.16) for when a Legendre submanifold is Lie equivalent to the
Legendre lift of an isoparametric hypersurface in Sn. This theorem has been used in
proving various classification results for Dupin hypersurfaces.

Let 
 W Mn�1 ! �2n�1 be an arbitrary Legendre submanifold. As before, we can
write 
 D ŒY1;YnC3�, where

Y1 D .1; f ; 0/; YnC3 D .0; �; 1/; (4.84)

where f and � are the spherical projection and spherical field of unit normals,
respectively.

For x 2 Mn�1, the points on the line 
.x/ can be written in the form,

�Y1.x/C YnC3.x/; (4.85)

that is, we take � as an inhomogeneous coordinate along the projective line 
.x/.
Then the point sphere ŒY1� corresponds to � D 1. The next two theorems give the
relationship between the coordinates of the curvature spheres of 
 and the principal
curvatures of f , in the case where f has constant rank. In the first theorem, we assume
that the spherical projection f is an immersion on Mn�1. By Theorem 4.8, we know
that this can always be achieved locally by passing to a parallel submanifold.

Theorem 4.12. Let 
 W Mn�1 ! �2n�1 be a Legendre submanifold whose spherical
projection f W Mn�1 ! Sn is an immersion. Let Y1 and YnC3 be the point sphere and
great sphere maps of 
 as in equation (4.84). Then the curvature spheres of 
 at a
point x 2 Mn�1 are

ŒKi� D Œ�iY1 C YnC3�; 1 � i � g;

where �1; : : : ; �g are the distinct principal curvatures at x of the oriented hyper-
surface f with field of unit normals � . The multiplicity of the curvature sphere ŒKi�

equals the multiplicity of the principal curvature �i.

Proof. Let X be a nonzero vector in TxMn�1. Then for any real number �,

d.�Y1 C YnC3/.X/ D .0; � df .X/C d�.X/; 0/:

This vector is in Span fY1.x/;YnC3.x/g if and only if

� df .X/C d�.X/ D 0;

i.e., � is a principal curvature of f with corresponding principal vector X. ut



4.5 Lie Curvatures and Isoparametric Hypersurfaces 219

We next consider the case where the point sphere map Y1 is a curvature sphere
of constant multiplicity m on Mn�1. By Corollary 4.9, the corresponding principal
distribution is a foliation, and the curvature sphere map ŒY1� is constant along the
leaves of this foliation. Thus the map ŒY1� factors through an immersion ŒW1� from
the space of leaves V of this foliation into QnC1. We can write ŒW1� D Œ.1; �; 0/�,
where � W V ! Sn is an immersed submanifold of codimension mC1. The manifold
Mn�1 is locally diffeomorphic to an open subset of the unit normal bundle Bn�1
of the submanifold �, and 
 is essentially the Legendre lift of �.V/, as defined in
Section 4.3. The following theorem relates the curvature spheres of 
 to the principal
curvatures of �. Recall that the point sphere and great sphere maps for 
 are given
as in equation (4.68) by

Y1.x; �/ D .1; �.x/; 0/; YnC3.x; �/ D .0; �; 1/: (4.86)

Theorem 4.13. Let 
 W Bn�1 ! �2n�1 be the Legendre lift of an immersed
submanifold �.V/ in Sn of codimension m C 1. Let Y1 and YnC3 be the point sphere
and great sphere maps of 
 as in equation (4.86). Then the curvature spheres of 

at a point .x; �/ 2 Bn�1 are

ŒKi� D Œ�iY1 C YnC3�; 1 � i � g;

where �1; : : : ; �g�1 are the distinct principal curvatures of the shape operator A� ,
and �g D 1. For 1 � i � g � 1, the multiplicity of the curvature sphere ŒKi� equals
the multiplicity of the principal curvature �i, while the multiplicity of ŒKg� is m.

The proof of this theorem is similar to that of Theorem 4.12, but one must
introduce local coordinates on the unit normal bundle to get a complete proof (see
[77, p. 74]).

Given these two theorems, we define a principal curvature of a Legendre
submanifold 
 W Mn�1 ! �2n�1 at a point x 2 Mn�1 to be a value � in the set
R [ f1g such that Œ�Y1.x/C YnC3.x/� is a curvature sphere of 
 at x, where Y1 and
YnC3 are as in equation (4.84).

Lie curvatures and Möbius curvatures

The principal curvatures of a Legendre submanifold are not Lie invariants, and they
depend on the special parametrization for 
 given in equation (4.84). However, R.
Miyaoka [365] pointed out that the cross-ratios of the principal curvatures are Lie
invariants. This is due to the fact that a projective transformation preserves the cross-
ratio of four points on a projective line.

We now formulate Miyaoka’s theorem specifically. Let 
 W Bn�1 ! �2n�1 be
a Legendre submanifold, and let ˇ be a Lie sphere transformation. The Legendre
submanifold ˇ
 has point sphere and great sphere maps which we denote by



220 4 Submanifolds in Lie Sphere Geometry

Z1 D .1; h; 0/; ZnC3 D .0; �; 1/;

where h and � are the spherical projection and spherical field of unit normals of ˇ
.
Let

ŒKi� D Œ�iY1 C YnC3�; 1 � i � g;

denote the distinct curvature spheres of 
 at a point x 2 Mn�1. By Theorem 4.7, the
points ˇŒKi�; 1 � i � g, are the distinct curvature spheres of ˇ
 at x. We can write

ˇŒKi� D Œ�iZ1 C ZnC3�; 1 � i � g:

Then these �i are the principal curvatures of ˇ
 at x.
Next recall that the cross-ratio of four distinct numbers a; b; c; d in R [ f1g is

given by

Œa; bI c; d� D .a � b/.d � c/

.a � c/.d � b/
: (4.87)

We use the usual conventions involving operations with 1. For example, if d D 1,
then the expression .d � c/=.d � b/ evaluates to one, and the cross-ratio Œa; bI c; d�
equals .a � b/=.a � c/.

Miyaoka’s theorem can now be stated as follows.

Theorem 4.14. Let 
 W Mn�1 ! �2n�1 be a Legendre submanifold and ˇ a Lie
sphere transformation. Suppose that �1; : : : ; �g; g � 4; are the distinct principal
curvatures of 
 at a point x 2 Mn�1, and �1; : : : ; �g are the corresponding principal
curvatures of ˇ
 at x. Then for any choice of four numbers h; i; j; k from the set
f1; : : : ; gg, we have

Œ�h; �iI �j; �k� D Œ�h; �iI �j; �k�: (4.88)

Proof. The left side of equation (4.88) is the cross-ratio, in the sense of projective
geometry, of the four points ŒKh�; ŒKi�; ŒKj�; ŒKk� on the projective line 
.x/. The
right side of equation (4.88) is the cross-ratio of the images of these four points
under ˇ. The theorem now follows from the fact that the projective transformation
ˇ preserves the cross-ratio of four points on a line. ut

The cross-ratios of the principal curvatures of 
 are called the Lie curvatures of 
.
There is also a set of similar invariants for the Möbius group defined as follows.
Here we consider a Möbius transformation to be a Lie sphere transformation that
takes point spheres to point spheres. Hence the transformation ˇ in Theorem 4.14
is a Möbius transformation if and only if ˇŒY1� D ŒZ1�. This leads to the following
corollary of Theorem 4.14.
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Corollary 4.15. Let 
 W Mn�1 ! �2n�1 be a Legendre submanifold and ˇ a
Möbius transformation. Then for any three distinct principal curvatures �h; �i; �j

of 
 at a point x 2 Mn�1, none of which equals 1, we have

˚.�h; �i; �j/ D .�h � �i/=.�h � �j/ D .�h � �i/=.�h � �j/; (4.89)

where �h; �i, and �j are the corresponding principal curvatures of ˇ
 at the point x.

Proof. Note that we are using equation (4.89) to define the ratio ˚ , which is
called a Möbius curvature of 
. Since ˇ is a Möbius transformation, the point ŒY1�,
corresponding to � D 1, is taken by ˇ to the point Z1 with coordinate � D 1.
Since ˇ preserves cross-ratios, we have

Œ�h; �iI �j;1� D Œ�h; �iI �j;1�: (4.90)

Since the cross-ratio on the left in equation (4.90) equals the left side of equa-
tion (4.89), and the cross-ratio on the right in equation (4.90) equals the right side
of equation (4.89), the corollary holds. ut

Criterion for Lie equivalence to an isoparametric hypersurface

We close this section with a local Lie geometric characterization of Legendre
submanifolds that are Lie equivalent to the Legendre lift of an isoparametric
hypersurface in Sn (see Cecil [73]). Here a line in RPnC2 is called timelike if
it contains only timelike points. This means that an orthonormal basis for the
2-plane in RnC3

2 determined by the timelike line consists of two timelike vectors.
An example is the line Œe1; enC3�.

Theorem 4.16. Let 
 W Mn�1 ! �2n�1 be a Legendre submanifold with g distinct
curvature spheres ŒK1�; : : : ; ŒKg� at each point. Then 
 is Lie equivalent to the
Legendre lift of an isoparametric hypersurface in Sn if and only if there exist g
points ŒP1�; : : : ; ŒPg� on a timelike line in RPnC2 such that

hKi;Pii D 0; 1 � i � g:

Proof. If 
 is the Legendre lift of an isoparametric hypersurface in Sn, then all
the spheres in a family ŒKi� have the same radius 	i, where 0 < 	i < 
 . By
formula (4.24), this is equivalent to the condition hKi;Pii D 0, where

Pi D sin 	i e1 � cos 	i enC3; 1 � i � g; (4.91)

are g points on the timelike line Œe1; enC3�. Since a Lie sphere transformation
preserves curvature spheres, timelike lines and the polarity relationship, the same
is true for any image of 
 under a Lie sphere transformation.
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Conversely, suppose that there exist g points ŒP1�; : : : ; ŒPg� on a timelike line `
such that hKi;Pii D 0, for 1 � i � g. Let ˇ be a Lie sphere transformation that maps
` to the line Œe1; enC3�. Then the curvature spheres ˇŒKi� of ˇ
 are orthogonal to the
points ŒQi� D ˇŒPi� on the line Œe1; enC3�. This means that the spheres corresponding
to ˇŒKi� have constant radius on Mn�1. By applying a parallel transformation Pt, if
necessary, we can arrange that none of these curvature spheres has radius zero. Then
Ptˇ
 is the Legendre lift of an isoparametric hypersurface in Sn. ut
Remark 4.17. In the case where 
 is Lie equivalent to the Legendre lift of an
isoparametric hypersurface in Sn, one can say more about the position of the points
ŒP1�; : : : ; ŒPg� on the timelike line `. By Theorem 3.26 (page 108) due to Münzner,
the radii 	i of the curvature spheres of an isoparametric hypersurface satisfy the
equation

	i D 	1 C .i � 1/

g
; 1 � i � g; (4.92)

for some 	1 2 .0; 
=g/. Hence, after Lie sphere transformation, the ŒPi� have the
form (4.91) for 	i as in equation (4.92).

On an isoparametric hypersurface, the distinct principal curvatures have the form

cot 	i; 1 � i � g; (4.93)

for 	i as in equation (4.92). From this, we can determine the Lie curvatures of an
isoparametric hypersurface, which are obviously constant.

For the sake of definiteness, we make the calculation as follows. First we order
the principal curvatures so that

�1 < � � � < �g; (4.94)

and so the �i decrease as the 	i increase.
We first consider the case g D 4. Then the ordering of the principal curvatures in

equation (4.94) leads to a unique Lie curvature � defined by

� D Œ�1; �2I �3; �4� D .�1 � �2/.�4 � �3/=.�1 � �3/.�4 � �2/: (4.95)

With this ordering of the principal curvatures, the Lie curvature � satisfies the
inequality 0 < � < 1. Using equations (4.93) and (4.95), one can compute that
� D 1=2 on any isoparametric hypersurface with g D 4 principal curvatures, i.e.,
the four curvature spheres form a harmonic set in the sense of projective geometry
(see, for example, [472, p. 59]).
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Computation of the Lie curvature

There is, however, a simpler way to compute � by considering the focal sub-
manifolds. By Theorem 3.44 (page 131), each isoparametric hypersurface Mn�1
embedded in Sn has two distinct focal submanifolds, each of codimension greater
than one. The hypersurface Mn�1 is a tube of constant radius over each of these focal
submanifolds. Therefore, the Legendre lift of Mn�1 is obtained from the Legendre
lift of either focal submanifold by parallel transformation. Thus, the Legendre lift
of Mn�1 has the same Lie curvature as the Legendre lift of either focal submanifold.

Let � W V ! Sn be one of the focal submanifolds of an isoparametric
hypersurface Mn�1 with g D 4 principal curvatures. By Theorem 3.21 (page 105)
and Theorem 3.26 (page 108), we see that if � is any unit normal to �.V/ at any
point, then the shape operator A� has three distinct principal curvatures,

�1 D �1; �2 D 0; �3 D 1:

By Theorem 4.13, the Legendre lift of � has a fourth principal curvature �4 D 1.
Thus, the Lie curvature of this Legendre lift is

� D .�1 � 0/.1 � 1/=.�1 � 1/.1 � 0/ D 1=2; (4.96)

as stated above.
We can determine the Lie curvatures of an isoparametric hypersurface Mn�1 in

Sn with g D 6 principal curvatures in the same way. Let �.V/ be one of the focal
submanifolds of Mn�1. By Münzner’s formula (4.92) and Theorem 3.21 (page 105),
the Legendre lift of �.V/ has six constant principal curvatures,

�1 D �p
3; �2 D �1=p3; �3 D 0; �4 D 1=

p
3; �5 D p

3; �6 D 1;

as in Theorem 4.13. The corresponding six curvature spheres ŒK1�; : : : ; ŒK6� are
situated symmetrically on a projective line, as in Figure 4.8.

There are only three geometrically distinct configurations which can obtained by
choosing four of the six curvature spheres. These give the cross-ratios:

Œ�3; �4I �5; �6� D 1=3; Œ�2; �3I �5; �6� D 1=4; Œ�2; �3I �4; �6� D 1=2:

Of course, if a certain cross-ratio has the value r, then one can obtain the values,

fr; 1=r; 1 � r; 1=.1 � r/; .r � 1/=r; r=.r � 1/g; (4.97)

by permuting the order of the spheres (see, for example, Samuel [472, p. 58]).
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Fig. 4.8 Curvature spheres
on a projective line, g D 6
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4.6 Lie Invariance of Tautness

In this section, we discuss the notion of tautness for Legendre submanifolds in
the context of Lie sphere geometry. This was introduced in a paper of Cecil and
Chern [79], although the approach taken here is due to Álvarez Paiva [14], who used
functions whose level sets form a parabolic pencil of spheres rather than the usual
distance functions or height functions to formulate tautness. This approach leads to
a natural proof of the invariance of tautness under Lie sphere transformations. In
this section, we follow Section 4.6 of the book [77] closely, although we will omit
some of the calculations given there. (See also another paper of Álvarez Paiva [13]
that extends the notion of tautness to symplectic geometry.)

In the proof of the Lie invariance of tautness, it is more convenient to consider
embeddings of compact, connected manifolds into Sn rather than Rn. Theorem 2.70
on page 61 shows that these two theories are equivalent.

As noted in Theorem 2.28 on page 38, Kuiper [301] reformulated tightness and
tautness in terms of an injectivity condition on homology which has turned out be
very useful. Let f be a nondegenerate function on a manifold V . We consider the
sublevel set

Vr.f / D fx 2 V j f .x/ � rg; r 2 R: (4.98)

The next theorem, which follows immediately from Theorem 29.2 of Morse–Cairns
[379, p. 260] was a key to Kuiper’s formulation of these conditions. (This is the
same as Theorem 2.28, see page 38 for more discussion).

Theorem 4.18. Let f be a nondegenerate function on a compact, connected
manifold V. For a given field F, the number �.f / of critical points of f equals the
sum ˇ.V;F/ of the F-Betti numbers of V if and only if the map on homology,

H�.Vr.f /;F/ ! H�.V;F/; (4.99)

induced by the inclusion Vr.f / � V is injective for all r 2 R.
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Of course, for an embedding � W V ! Sn and a height function `p, the set Vr.`p/,
is equal to ��1.B/, where B is the closed ball in Sn obtained by intersecting Sn

with the half-space in RnC1 determined by the inequality `p.q/ � r. Kuiper [304]
used the continuity property of Z2-Čech homology to formulate tautness in terms of
��1.B/, for all closed balls B in Sn, not just those centered at non-focal points of �.
Thus, Kuiper proved the following theorem (see also Theorem 2.54 on page 54 for
the Euclidean version).

Theorem 4.19. Let � W V ! Sn be an embedding of a compact, connected manifold
V into Sn. Then � is taut if and only if for every closed ball B in Sn, the induced
homomorphism H�.f�1.B// ! H�.V/ in Z2-Čech homology is injective.

The key to the approach of Álvarez Paiva [14] is to formulate tautness of
Legendre submanifolds in terms of functions whose level sets form a parabolic
pencil of unoriented spheres, instead of using linear height functions. This is quite
natural in the context of Lie sphere geometry, and it is equivalent to the usual
formulation of tautness in the case of the Legendre lift of an embedding � W V ! Sn.

The specific construction is as follows (see [77, pp. 83–84]). Given a contact
element .p; �/ 2 T1Sn, we want to define a function

r.p;�/ W Sn � fpg ! .0; 
/;

whose level sets are unoriented spheres in the parabolic pencil of unoriented spheres
determined by .p; �/. (We will often denote r.p;�/ simply by r when the context is
clear.) Every point x in Sn � fpg lies on precisely one sphere Sx in the pencil as the
spherical radius r of the spheres in the pencil varies from 0 to 
 . The radius r.p;�/.x/
of Sx is defined implicitly by the equation

cos r D x � .cos r p C sin r �/: (4.100)

This equation says that x lies in the unoriented sphere Sx in the pencil with center

q D cos r p C sin r �; (4.101)

and spherical radius r 2 .0; 
/ (see Figure 4.9).
This defines a smooth function

r.p;�/ W Sn � fpg ! .0; 
/: (4.102)

Note that the contact element .p;��/ determines the same pencil of unoriented
spheres and the function r.p;��/ D 
 � r.p;�/. Some sample values of the function
r.p;�/ are

r.p;�/.�/ D 
=4; r.p;�/.�p/ D 
=2; r.p;�/.��/ D 3
=4:
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Fig. 4.9 The sphere Sx in the
parabolic pencil determined
by .p; �/
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Consider an immersion � W V ! Sn, where V is a k-dimensional manifold with
k < n. If x 2 V , we say that the sphere Sx and �.V/ are tangent at �.x/ if

d�.TxV/ � T�.x/Sx; (4.103)

where d� is the differential of �.

Critical point behavior

The following lemma describes the critical point behavior of a function of the form
r.p;�/ on an immersed submanifold � W V ! Sn. This lemma is similar to the Index
Theorem Lp functions (Theorem 2.51 on page 53), and it is proven by a direct
calculation of the first and second derivatives of r. We will omit the proof here
and refer the reader to [77, pp. 84–88] for a complete proof.

Lemma 4.20. Let � W V ! Sn be an immersion of a connected manifold V with
dim V < n into Sn, and let .p; �/ 2 T1Sn such that p … �.V/.
(a) A point x0 2 V is a critical point of the function r.p;�/ if and only if the sphere

Sx0 containing �.x0/ in the parabolic pencil of unoriented spheres determined
by .p; �/ and the submanifold �.V/ are tangent at �.x0/.

(b) If r.p;�/ has a critical point at x0 2 V, then this critical point is degenerate if and
only if the sphere Sx0 is a curvature sphere of �.V/ at x0.
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Next we show that except for .p; �/ in a set of measure zero in T1Sn, the function
r.p;�/ is a Morse function on �.V/. This is accomplished using Sard’s Theorem in a
manner similar to the proof of Corollary 2.33 on page 40.

In our particular case, from Lemma 4.20 we know that the function r.p;�/, for
p … �.V/, is a Morse function on �.V/ unless the parabolic pencil of unoriented
spheres determined by .p; �/ contains a curvature sphere of �.V/. We now show that
the set of .p; �/ in T1Sn such that the parabolic pencil determined by .p; �/ contains
a curvature sphere of �.V/ has measure zero in T1Sn.

Let Bn�1 denote the unit normal bundle of the submanifold �.V/ in Sn. Note that
in the case where �.V/ is a hypersurface, Bn�1 is a two-sheeted covering of V . We
first recall the normal exponential map,

q W Bn�1 � .0; 
/ ! Sn; (4.104)

defined as follows. For a point .x;N/ in Bn�1 and r 2 .0; 
/, we define

q..x;N/; r/ D cos r x C sin r N: (4.105)

Next we define a .2n � 1/-dimensional manifold W2n�1 by

W2n�1 D f..x;N/; r; �/ 2 Bn�1 � .0; 
/ � Sn j � � q..x;N/; r/ D 0g: (4.106)

The manifold W2n�1 is a fiber bundle over Bn�1 � .0; 
/ with fiber diffeomorphic
to Sn�1. For each point ..x;N/; r/ 2 Bn�1 � .0; 
/, the fiber consists of all unit
vectors � in RnC1 that are tangent to Sn at the point q..x;N/; r/.

We define a map,

F W W2n�1 ! T1S
n; (4.107)

by

F..x;N/; r; �/ D .cos r q C sin r �; sin r q � cos r �/; (4.108)

where q D q..x;N/; r/ is defined in equation (4.105).
The next lemma shows that if the parabolic pencil of unoriented spheres

determined by .p; �/ 2 T1Sn contains a curvature sphere of �.V/, then .p; �/ is
a critical value of F. Since the set of critical values of F has measure zero by
Sard’s Theorem (see, for example, Milnor [359, p. 33]), this will give the desired
conclusion. The proof of this lemma is a fairly straightforward calculation of the
differential of the map F, and we refer the reader to [77, pp. 89–91] for a detailed
proof.

Lemma 4.21. Let � W V ! Sn be an immersion of a connected manifold V with
dim V < n into Sn, and let Bn�1 be the unit normal bundle of �.V/. Define

F W W2n�1 ! T1S
n;
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as in equation (4.108). If the parabolic pencil of unoriented spheres determined by
.p; �/ in T1Sn contains a curvature sphere of �.V/, then .p; �/ is a critical value of
F. Thus, the set of such .p; �/ has measure zero in T1Sn.

Corollary 4.22. Let � W V ! Sn be an immersion of a connected manifold V with
dim V < n into Sn. For almost all .p; �/ 2 T1Sn, the function r.p;�/ is a Morse
function on V.

Proof. By Lemma 4.20, the function r.p;�/ is a Morse function on V if and only if
p … �.V/ and the parabolic pencil of unoriented spheres determined by .p; �/ does
not contain a curvature sphere of �.V/. The set of .p; �/ such that p 2 �.V/ has
measure zero, since �.V/ is a submanifold of codimension at least one in Sn. The
set of .p; �/ such that the parabolic pencil determined by .p; �/ contains a curvature
sphere of �.V/ has measure zero by Lemma 4.21. Thus, except for .p; �/ in the set
of measure zero obtained by taking the union of these two sets, the function r.p;�/ is
a Morse function on V . ut

Tautness in Lie sphere geometry

We will now formulate the definition of tautness for Legendre submanifolds in Lie
sphere geometry. Recall the diffeomorphism from T1Sn to the space �2n�1 of lines
on the Lie quadric QnC1 given by equations (4.37) and (4.38),

.p; �/ 7! Œ.1; p; 0/; .0; �; 1/� D ` 2 �2n�1: (4.109)

Under this correspondence, an oriented sphere S in Sn belongs to the parabolic pencil
of oriented spheres determined by .p; �/ 2 T1Sn if and only if the point Œk� in QnC1
corresponding to S lies on the line `. Thus, the parabolic pencil of oriented spheres
determined by a contact element .p; �/ contains a curvature sphere S of a Legendre
submanifold 
 W Bn�1 ! �2n�1 if and only if the corresponding line ` contains the
point Œk� corresponding to S.

A compact, connected Legendre submanifold 
 W Bn�1 ! �2n�1 is said to be
Lie-taut if for almost every line ` on the Lie quadric QnC1, the number of points
x 2 Bn�1 such that 
.x/ intersects ` is ˇ.Bn�1;Z2/=2, i.e., one-half the sum of the
Z2-Betti numbers of Bn�1. Here by “almost every,” we mean except for a set of
measure zero.

Equivalently, this definition says that for almost every contact element .p; �/ in
T1Sn, the number of points x 2 Bn�1 such that the contact element corresponding
to 
.x/ is in oriented contact with some sphere in the parabolic pencil of oriented
spheres determined by .p; �/ is ˇ.Bn�1;Z2/=2.

The property of Lie-tautness is clearly invariant under Lie sphere transforma-
tions, i.e., if 
 W Bn�1 ! �2n�1 is Lie-taut and ˛ is a Lie sphere transformation,
then the Legendre submanifold ˛
 W Bn�1 ! �2n�1 is also Lie-taut. This follows
from the fact that the line 
.x/ intersects a line ` if and only if the line ˛.
.x//
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intersects the line ˛.`/, and ˛ maps the complement of a set of measure zero in
�2n�1 to the complement of a set of measure zero in �2n�1.

Remark 4.23 (Comments on the definition of Lie-tautness). The factor of one-half
in the definition comes from the fact that Lie sphere geometry deals with oriented
contact and not just unoriented tangency, as we will see in the proof of Theorem 4.24
below. Recall that if � W V ! Sn is an embedding of a compact, connected manifold
V into Sn and Bn�1 is the unit normal bundle of �.V/, then the Legendre lift of � is
defined to be the Legendre submanifold 
 W Bn�1 ! �2n�1 given by


.x;N/ D Œ.1; �.x/; 0/; .0;N; 1/�; (4.110)

where N is a unit normal vector to �.V/ at �.x/. If V has dimension n � 1, then
Bn�1 is a two-sheeted covering of V . If V has dimension less than n � 1, then Bn�1
is diffeomorphic to a tube Wn�1 of sufficiently small radius over �.V/ so that Wn�1
is an embedded hypersurface in Sn. In either case,

ˇ.Bn�1;Z2/ D 2ˇ.V;Z2/:

This is obvious in the case where V has dimension n � 1, and it was proved by
Pinkall [447] in the case where V has dimension less than n � 1.

Since Lie-tautness is invariant under Lie sphere transformations, the following
theorem establishes that tautness is Lie invariant. Recall that a taut immersion � W
V ! Sn is in fact an embedding (see Theorem 2.59 on page 56). Here we use the
proof of Theorem 4.28 of the book [77, pp. 93–95].

Theorem 4.24. Let � W V ! Sn be an embedding of a compact, connected manifold
V with dim V < n into Sn. Then �.V/ is a taut submanifold in Sn if and only if the
Legendre lift 
 W Bn�1 ! �2n�1 of � is Lie-taut.

Proof. Suppose that �.V/ is a taut submanifold in Sn, and let


 W Bn�1 ! �2n�1

be the Legendre lift of �. Let .p; �/ 2 T1Sn such that p … �.V/ and such that
the parabolic pencil of unoriented spheres determined by .p; �/ does not contain a
curvature sphere of �.V/. By Lemma 4.21, the set of such .p; �/ is the complement
of a set of measure zero in T1Sn. For such .p; �/, the function r.p;�/ is a Morse
function on V , and the sublevel set

Vs.r.p;�// D fx 2 V j r.p;�/.x/ � sg D �.V/ \ B; 0 < s < 
; (4.111)

is the intersection of �.V/with a closed ball B � Sn. By tautness and Theorem 4.19,
the map on Z2-Čech homology,

H�.Vs.r.p;�/// D H�.��1.B// ! H�.V/; (4.112)
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is injective for every s 2 R, and so by Theorem 4.18, the function r.p;�/ has ˇ.V;Z2/
critical points on V .

By Lemma 4.20, a point x 2 V is a critical point of r.p;�/ if and only if the
unoriented sphere Sx in the parabolic pencil determined by .p; �/ containing x
is tangent to �.V/ at �.x/. At each such point x, exactly one contact element
.x;N/ 2 Bn�1 is in oriented contact with the oriented sphere QSx through x in
the parabolic pencil of oriented spheres determined by .p; �/. Thus, the number
of critical points of r.p;�/ on V equals the number of points .x;N/ 2 Bn�1 such
that .x;N/ is in oriented contact with an oriented sphere in the parabolic pencil of
oriented spheres determined by .p; �/.

Thus there are

ˇ.V;Z2/ D ˇ.Bn�1;Z2/=2

points .x;N/ 2 Bn�1 such that .x;N/ is in oriented contact with an oriented sphere
in the parabolic pencil of oriented spheres determined by .p; �/. This means that
there are ˇ.Bn�1;Z2/=2 points .x;N/ 2 Bn�1 such that the line 
.x;N/ intersects
the line ` on QnC1 corresponding to the contact element .p; �/. Since this true for
almost every .p; �/ 2 T1Sn, the Legendre lift 
 of � is Lie-taut.

To prove the converse, we use a Čech homology argument similar to that of
Kuiper [303] used in the proof of Theorem 2.41 on page 44. Suppose that the
Legendre lift 
 W Bn�1 ! �2n�1 of � is Lie-taut. Then for all .p; �/ 2 T1Sn except
for a set Z of measure zero, the number of points .x;N/ 2 Bn�1 that are in oriented
contact with some sphere in the parabolic pencil of oriented spheres determined by
.p; �/ is ˇ.Bn�1;Z2/=2 D ˇ.V;Z2/. This means that the corresponding function
r.p;�/ has ˇ.V;Z2/ critical points on V . By Theorem 4.18, this implies that for a
closed ball B � Sn such that ��1.B/ D Vs.r.p;�// for .p; �/ … Z and s 2 R, the map
on homology,

H�.��1.B// ! H�.V/; (4.113)

is injective. On the other hand, if B is a closed ball corresponding to a sublevel set
of r.p;�/ for .p; �/ 2 Z, then since Z has measure zero, one can produce a nested
sequence,

fBig; i D 1; 2; 3; : : : ;

of closed balls (coming from r.p;�/ for .p; �/ … Z) satisfying

��1.Bi/ � ��1.BiC1/ � � � � � \1jD1��1.Bj/ D ��1.B/; (4.114)

for i D 1; 2; 3; : : : ; such that the homomorphism in Z2-homology,

H�.��1.Bi// ! H�.V/; is injective for i D 1; 2; 3; : : : (4.115)
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If equations (4.114) and (4.115) are satisfied, then the map

H�.��1.Bi// ! H�.��1.Bj// is injective for all i > j: (4.116)

The continuity property of Čech homology (see Eilenberg–Steenrod [145, p. 261])
says that

H�.��1.B// D  
lim

i!1 H�.��1.Bi//:

Equation (4.116) and Theorem 3.4 of Eilenberg–Steenrod [145, p. 216] on inverse
limits imply that the map

H�.��1.B// ! H�.��1.Bi//

is injective for each i. Thus, from equation (4.115), we get that the map

H�.��1.B// ! H�.V/

is also injective. Since this holds for all closed balls B in Sn, the embedding �.V/ is
taut by Theorem 4.19. ut
Another formulation of the Lie invariance of tautness is the following corollary, as
in [77, p. 95].

Corollary 4.25. Let � W V ! Sn and  W V ! Sn be two embeddings of a compact,
connected manifold V with dim V < n into Sn, such that their corresponding
Legendre lifts are Lie equivalent. Then � is taut if and only if  is taut.

Proof. Since the Legendre lifts of � and  are Lie equivalent, the unit normal
bundles of �.V/ and  .V/ are diffeomorphic, and we will denote them both by
Bn�1. Now let 
 W Bn�1 ! �2n�1 and � W Bn�1 ! �2n�1 be the Legendre lifts of
� and  , respectively. By Theorem 4.24, � is taut if and only if 
 is Lie-taut, and
 is taut if and only if � is Lie-taut. Further, since 
 and � are Lie equivalent, 
 is
Lie-taut if and only if � is Lie-taut, so it follows that � is taut if and only if  is
taut. ut
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