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    Chapter 26   
 Processing of Meat Products Utilizing 
High Pressure                     

       Anna     Jofré     and     Xavier     Serra     

     Abstract     High pressure processing is an alternative to thermal treatment for the 
production of safe meat and meat products which retains quality and freshness. Due 
to its effectiveness and acceptability by consumers, a considerable number of meat 
companies worldwide apply this technology to extend the shelf life of a wide vari-
ety of meat products without using chemical additives. Research studies have shown 
that the inhibitory effect of HPP on microorganisms depends on both the cycle 
parameters (especially pressure intensity and holding time) and the physicochemi-
cal characteristics of the meat product. While low water activity decreases the 
inhibitory effect of HPP, acidity and the combination of HPP with other factors such 
as natural preservatives enhance it. In addition to the inactivation of microorgan-
isms, HPP can also affect the appearance, fl avor, and texture of meat products. The 
extent and importance of these changes ultimately determine the commercial suit-
ability of HPP for use on food products.  

  Keywords     High pressure processing   •   Meat   •   Quality   •   Food safety  

26.1         Introduction 

  High pressure processing (HPP)   facilitates the improvement of the microbial safety of 
meat and meat  products   (Cheftel  1995 ; Cheftel and Culioli  1997 ; Hugas et al.  2002 ). 
Also known as  cold pasteurization  ,    HPP is often presented as the main alternative, 
with good consumer acceptability (Baron et al.  1999 ; Nielsen et al.  2009 ), to thermal 
pasteurization of meat products. The main objectives in industrial HPP are to destroy 
the pathogenic and spoilage microorganisms and to extend shelf life, while maintain-
ing the characteristics and the quality of meat and meat products almost intact 
(Balasubramaniam et al.  2008 ). In some cases, as in dry-cured meat products, HPP is 
the only feasible pasteurization process which has minimal effects on appearance, 
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fl avor, texture, and nutritional value (Hugas et al.  2002 ). Nonetheless, different effects 
of HPP on meat and meat products, other than microbial inactivation, have been stud-
ied and described by many authors, as reported in numerous reviews (Cheftel and 
Culioli  1997 ; Dumoulin and Hayashi  1998 ; San Martín et al.  2002 ; Suzuki et al.  2006 ; 
Rastogi et al.  2007 ; Norton and Sun  2008 ; Sun and Holley  2010 ; Zhou et al.  2010 ).  

26.2     Microbiological Aspects 

26.2.1      High Pressure and Hurdle Technology   

 Hurdle effect refers to the concept of controlling the growth of spoilage or pathogenic 
 microorganisms   by combining in series, or parallel, a number of intrinsic and/or 
extrinsic factors which individually would not be adequate. In the food industry, this 
has led to the application of hurdle technology, where the survival of microorganisms 
is greatly decreased when they are confronted with multiple antimicrobial factors 
such as temperature, water activity ( a  w ), pH, and redox potential (Leistner and Gorris 
 1995 ). With the aim of reducing the extent of processing and due to demand for lightly 
processed or fresh-like  products  , new hurdles such as high pressure processing and 
combinations of hurdles are applied to obtain safe value-added food products. 

 A great number of studies have shown that HPP improves the safety of raw meat 
and various other kinds of meat products (Table  26.1    ); the success of this technology 
is confi rmed by the fact that pressurized meat products are commercially  available 

   Table 26.1    Collection of fresh, cooked, and dry-cured meat  products   assayed by HPP   

 Meat products  References 

  Fresh  
 Pork slurries, minced beef, raw ground 
chicken, mechanically recovered poultry 
meat, raw smoked pork loin, bovine 
muscle, raw marinated beef loin, ground 
pork, ground beef, duck liver, chicken 
mince, poultry sausages 

 Shigehisa et al. ( 1991 ), Carlez et al. ( 1993 ,  1994) , 
O'Brien and Marshall ( 1996 ), Gola et al. ( 2000 ), 
Yuste et al. ( 2000a ,  2001) , Karlowski et al. ( 2002 ), 
Cruz et al. ( 2003 ), Jung et al. ( 2003 ), Garriga et al. 
( 2004 ), Hayman et al. ( 2004 ), Linton et al. ( 2004 ), 
Lindsay et al. ( 2006 ), Morales et al. ( 2008 ), Jofré 
et al. ( 2009b ), Black et al. ( 2010 ) 

  Cooked  
 Cooked ham, poultry cooked sausages, 
canned Vienna sausages, blood sausage 
( morcilla de Burgos ), cooked poultry 
meat, Bologna-type sausage 

 Yuste et al. ( 2000b ), Karlowski et al. ( 2002 ), 
Garriga et al. ( 2004 ), Aymerich et al. ( 2005 ), 
Chung et al. ( 2005 ), Jofré et al. ( 2007 ), Pietrzak 
et al. ( 2007 ), Diez et al. ( 2008a ,  b ,  2009a ,  b ), Jofré 
et al. ( 2008b ,  c ,  2009b ), Marcos et al. ( 2008a ,  b ), 
Morales et al. ( 2009 ), Slongo et al. ( 2009 ), 
Patterson et al. ( 2010 ), Han et al. ( 2010 ) 

  Dry - cured  
 Dry-cured ham, dry-cured beef  Cecina de 
León , fermented sausages ( chorizo , 
 salchichón , Hungarian beef salami, 
Genoa salami), and low-acid fermented 
sausages ( fuet  and  chorizo ) 

 Garriga et al. ( 2004 ,  2005) , Marcos et al. ( 2005 , 
 2007 ), Morales et al. ( 2006 ), Latorre-Moratalla 
et al. ( 2007 ), Rubio et al. ( 2007a ,  b ), Ruiz-Capillas 
et al. ( 2007 ), Campus et al. ( 2008 ), Gill and 
Ramaswamy ( 2008 ), Jofré et al. ( 2008a ,  c , 
 2009a ,  b ), Pal et al. ( 2008 ), Ananou et al. ( 2010 ), 
Porto-Fett et al. ( 2010 ), Bover-Cid et al. ( 2011 ) 
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in the USA, Europe, and Japan (Table  26.2    ). However, it has also been shown that 
the intrinsic properties of the meat products used highly infl uence the effectiveness 
of this technology. While high inactivation rates have been demonstrated in raw and 
cooked meat products, a baroprotective effect has been observed in dry- cured 
meats. As shown in Table  26.3    , inactivation of  L. monocytogenes  after high- pressure 
(HP) treatments at a similar level is higher in cooked ham than in some other 

    Table 26.2     Commercially available meat products treated   by HPP   

 Company  Country  Products 

 Maple leaf  Canada  RTE meat-based meals with rice, pasta, or vegetables 
 Abraham  Germany  Dry-cured ham 
 Vismara  Italy  Dry-cured ham, salami, etc. 
 ITOHAM  Japan  Nitrite-free bacon, sausages, and sliced meat 
 Espuña  Spain  Cooked ham and  Tapas al minuto  (mini  chorizos , fermented 

sausages, etc.) 
 Campofrío  Spain  Cooked ham, dry-cured ham, fermented sausages,  Vuelta y 

vuelta  (gross slices of ham, turkey, and chicken) 
 Hormel Foods  USA  Deli meats (sliced ham, turkey, and beef) 
 Tyson (Ameriqual)  USA  Oven roasted chicken (whole bird, breasts, drumsticks, etc.) 
 Oscar Mayer  USA  Deli meats (sliced ham turkey and chicken) 
 Perdue Farms  USA  Poultry strips 
 Kayem Foods  USA  Chicken sausages 
 Foster Farms  USA  Chicken breast slices and strips 
 Fresherized foods 
(AvoMex) 

 USA  RTE meat meals 

   Table 26.3    Inactivation levels of  L.   monocytogenes    in different meat products submitted to HPP   

 Product 
 HP treatment 
 (MPa, min, °C) 

 Inactivation 
 (log units)  References 

 Cooked ham model  300, 10, 16  2.63  Jofré et al. ( 2008a ) 
 Dry-cured ham model  300, 10, 16  0.57  Jofré et al. ( 2008a ) 
 Fermented sausage ( fuet )  300, 10, 17 before 

ripening 
 1.05  Marcos et al. ( 2005 ) 

 Fermented sausage ( chorizo )  300, 10, 17 before 
ripening 

 0.99  Marcos et al. ( 2005 ) 

 Cooked ham  400, 10, 17  2.01  Aymerich et al. ( 2005 ) 
 Fermented sausage ( fuet )  400, 10, 17 

 after ripening 
 0.58  Jofré et al. ( 2009a ) 

 Fermented sausage ( fuet )  400, 10, 17 
 after ripening 

 0.47  Garriga et al. ( 2005 ) 

 Fermented sausage ( chorizo )  400, 10, 17 
 after ripening 

 0  Garriga et al. ( 2005 ) 

 Dry-cured ham  347, 9, 16  0.05  Bover-Cid et al. ( 2011 ) 
 Dry-cured ham  450, 5, 11  0.32  Bover-Cid et al. ( 2011 ) 
 Cooked ham  600, 5, 15  ≥ 3.79  Jofré et al. ( 2008d ) 
 Fermented sausages  600, 5, 15  0.96  Aymerich et al. ( 2009 ) 

26 Processing of Meat Products Utilizing High Pressure



594

 dry-cured meat products (dry-cured ham and fermented sausages). In contrast, 
 during refrigerated storage, the recovery and growth of survivors is prevented or 
delayed by the presence of hurdles such as low  a  w , acidity, or  bacteriocins   (Leistner 
and Gorris  1995 ; Aymerich et al.  2005 ; Jofré et al.  2010 ).

     Currently, HP treatments of up to 600 MPa are being successfully applied in the 
food industry. The availability of equipment able to reach pressures higher than 
600 MPa is limited; therefore, research performed at those ultra-high-pressure lev-
els is scarce. The application of 200–900 MPa treatments to  L. monocytogenes , 
 Salmonella , and  S. aureus  grown overnight in models of cooked and dry-cured ham 
showed that treatments ≥600 MPa decreased  L. monocytogenes  and  Salmonella  to 
levels below the detection limit (10 CFU/g), while  S. aureus  could be detected even 
after a treatment of 5 min at 900 MPa (16–18 °C) in some of the replicates (Jofré 
et al.  2008a ). Again, dry-cured ham exerted a baroprotective effect, which could be 
related with stress cross-protection and interaction among hurdles (Scheyhing et al. 
 2004 ; Sagarzazu et al.  2010 ), and control (absence of hurdles) showed the highest 
recovery rates. Accordingly, even after treatments at 900 MPa, composition of the 
food product determines both the immediate effect of pressurization and the ability 
of the resulting sublethally injured cells to recover. Apart from increasing pressure 
intensity, inactivation can be enhanced by combination with other factors such as 
antimicrobials, temperature,     etc  .  

26.2.2      Fresh Meat Products   

 Muscle tissue of healthy animals is considered to be essentially sterile. However, 
animals harbor large numbers of various microorganisms on body surfaces that are 
exposed to the environment, e.g., skin, hooves, and mucosal membranes of  diges-
tive and respiratory tracts   (Paulsen and Smulders  2003 ) which can contaminate 
muscle tissues during slaughtering. Thus, hygiene is the primary  factor   for control-
ling initial microbial contamination of fresh meat surfaces, meat being a rich 
medium, and therefore encouraging the growth of mesophile and psychrophile 
microorganisms during storage and distribution. 

 High pressure is a decontamination method that has been described as increasing 
the quality and safety of fresh meat by inactivating both  spoilage and pathogenic 
microorganisms  . Since the 1990s, several studies have been performed on different 
types of raw meat products, and a wide variety of microorganisms, especially bac-
teria (pathogens and spoilers), have been shown to be signifi cantly inactivated. In 
ground beef, a highly perishable derivate of fresh meat, Carlez et al. ( 1993 ) observed 
that pressurization above 200, 280, and 400 MPa for 20 min completely eliminated 
 Pseudomonas fl uorescens ,  Citrobacter freundii , and  L. innocua , respectively. The 
highest inactivation was observed at low (4 °C) and markedly at high (50 °C) hold-
ing time temperatures. When studying the evolution of the bacteria during storage, 
the same authors found that microbial growth was delayed from 2 to 6 days after 
200–300 MPa at 20 °C. After treatment at 400–450 MPa  Pseudomonas  sp., 
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 Lactobacillus  sp., and coliforms were completely inactivated after HPP, but recov-
ered after storage at 3 °C in air. When storage was performed under vacuum, only 
 Pseudomonas  recovered (after 9 days) (Carlez et al.  1994 ). O'Brien and Marshall 
( 1996 ) also demonstrated an extension of the shelf life of raw ground chicken. 
 Treatments   at 408, 616, and 888 MPa (maximal temperatures during holding time 
ranged from 14.4 to 28.4 °C) showed estimated microbial spoilage times of 27 days, 
70 days, and >98 days,  respectively  . 

  E. coli  O157: H7   is of major concern to the meat industry. Despite improvements 
in farming and slaughterhouses, beef products remain a common source of out-
breaks of  E. coli  O157:H7 in ground meat, mainly beef (Black et al.  2010 ). 
Microbiological studies performed to date have shown that HPP has potential as an 
additional hurdle for ensuring the safety of ground beef. Gola et al. ( 2000 ) showed 
immediate reductions up to 5 log units by pressure treatments up to 700 MPa at 15 
°C in raw minced meat. In ground beef, Morales et al. ( 2008 ) compared inactivation 
by single and multiple-cycle treatments of 400 MPa at 12 °C and demonstrated 
higher lethality for the latter for the same total length of treatment. For example, to 
achieve a reduction of 4.4 log CFU/g, a single cycle of 20 min or four 1 min cycles 
was necessary. More recently, Black et al. ( 2010 ) compared the effect of pressuriza-
tion at 400 MPa for 10 min at −5 or 20 °C and storage at the same temperatures in 
ground beef. They concluded that the highest reductions in the levels of  E. coli  
O157:H7 (3 log CFU/g) were achieved after pressurization at 20 °C followed by 
storage at −20 °C (an additional 1.5 log reduction). The authors also observed 
 sublethal injury of the surviving  cells  , which were inhibited by low pH, bile salts, 
and mild cooking, plus an impairment of toxin production. 

 The HPP approach has proved to be successful in ensuring the safety of other 
fresh products apart from  raw meat   such as pork slurries (Shigehisa et al.  1991 ), raw 
smoked pork loin (Karlowski et al.  2002 ), and duck liver (Cruz et al.  2003 ). In pork 
slurries, Shigehisa et al. ( 1991 ) showed that  Gram-positive bacteria   were more HPP 
resistant (treatments of 10 min at 25 °C) than Gram-negative, concretely, 
 Campylobacter jejuni ,  P. aeruginosa ,  Salmonella typhimurium , and  Yersinia entero-
colitica  which were inactivated at pressures higher than 300 MPa;  Escherichia coli , 
 Saccharomyces cerevisiae , and  Candida utilis  at pressures higher than 400 MPa; 
and  Micrococcus luteus ,  Staphylococcus aureus , and  Streptococcus faecalis  at 
600 MPa.  B. cereus  spores were less than 1 log CFU/g inactivated at 600 MPa. In 
marinated beef loin, treatment at 600 MPa for 6 min at 16 °C (experimental process 
parameters estimated to be the maximum industrially acceptable according to cost 
and the available industrial equipment) decreased levels of total aerobics, psychro-
trophs, LAB, enterobacteria, yeasts, and  E. coli  to levels below detection limit (1 or 
2 log CFU/g). These low levels lasted for 120 days of storage at 4 °C in vacuum 
packaging.  Pressurization   also eliminated the presence of  Salmonella  and  Listeria 
monocytogenes  which were found in several of the beef loin samples (Garriga et al. 
 2004 ). In a subsequent study, the same authors artifi cially contaminated marinated 
beef loin with ca. 3.5 log CFU/g of food-borne pathogens  L. monocytogenes , 
 Salmonella enterica ,  S. aureus ,  Y. enterocolitica , and  C. jejuni , spoilage lactic acid 
bacteria (LAB),  Escherichia coli,  and yeast  Debaryomyces hansenii . Pressurization 
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at 600 MPa kept the levels of all studied microorganisms, except for LAB, below 
detection limit for 120 days of storage at 4 °C under vacuum (Jofré et al.  2009b ). An 
increase in shelf life after HPP was also found in raw smoked pork loin treated at 
600 MPa for 10 min (Karlowski et al.  2002 ) and duck liver treated at 550 MPa for 
20 min at 55 °C (Cruz et al.  2003 ). 

 The combination of HPP with other hurdles for microbial growth such as  natural 
antimicrobials   has not been widely studied in raw meat. Yuste et al. ( 2000a ) evalu-
ated the combined effect of HPP with nisin or lysozyme on aerobic mesophile and 
psychrotroph populations of mechanically recovered poultry meat and observed 
enhanced inactivation when nisin and HPP were combined. In contrast, no syner-
gism was observed between HPP and  lysozyme  .  

26.2.3      Cooked Products   

  Pasteurization   destroys vegetative spoilage organisms and food-borne pathogens. 
Therefore, microbiota of cooked products is mainly represented by microorganisms 
resulting from recontamination (Thippareddi et al.  2009 ). According to hurdle tech-
nology, perishability of cooked meat products will depend on their physicochemical 
characteristics, i.e., the number of obstacles to microbial growth they contain. 

  Cooked ham   is a highly perishable product due to its high  a  w , pH close to neutral-
ity, and the absence of competing microbiota. Once sold, sliced post-processing 
contamination is the greatest hazard. However, research has shown that HPP is a 
useful technology for inactivating food-borne pathogens and extending the shelf life 
of cooked ham and cooked meat products in general. Indeed, the fi rst pressurized 
meat product commercialized in the world was sliced cooked ham, which was 
launched by the Spanish enterprise Espuña in 1998. 

 The effectiveness of HPP has been widely studied in sliced cooked ham. 
Karlowski et al. ( 2002 ) showed that application of treatments of 300–400 MPa for 
10 min did not extend the shelf life of the product; 500 MPa produced a decrease in 
levels of total bacterial count, psychrophilic bacteria, acidophilic bacteria and 
 Enterococci ; but application of 600 MPa for 10 min was necessary to reduce the 
number of all investigated microorganisms by 5–6 log units and extend shelf life to 
6–8 weeks. Treatment at 600 MPa for 6 min at 16 °C also demonstrated the ability 
to avoid growth of yeasts and enterobacteria which can potentially produce off- 
fl avors and delay the growth of LAB as spoilage microorganisms at 4 °C (Garriga 
et al.  2004 ). Another study showed that pressurization also reduces safety risks asso-
ciated with   Salmonella  spp. and  L. monocytogenes   . Treatment of sliced ham at 
400 MPa for 10 min at 17 °C did not completely eliminate  L. monocytogenes  nor 
 Salmonella  spiked at 2.5 log CFU/g, but decreased their levels to <1 log CFU/g. 
During subsequent storage at 1 °C, both pathogens were inhibited. In contrast, at 6 
°C,  L. monocytogenes  increased to 6 log CFU/g after 84 days (Aymerich et al.  2005 ). 
In a similar experiment performed at a higher pressure level (600 MPa for 5 min at 
10 °C), both refrigeration temperatures inhibited the growth of pathogens, which 
remained absent in 25 g of product for 90 days of storage. Conversely, baroresistant 
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 S. aureus  only diminished 0.9 log units after 5 min at 600 MPa, although the growth 
of the pathogen was prevented by refrigerated storage (Jofré et al  2008a ). In another 
study at 600 MPa (for 6 min at 31 °C during holding time), a poor decrease of  S. 
aureus  but complete inactivation of  L. monocytogenes ,  Salmonella ,  C. jejuni , and  Y. 
enterocolitica  was reported in cooked ham (Jofré et al.  2009b ). 

 Combined application of  HPP and natural antimicrobials   such as bacteriocins 
from LAB and lactate salts has been shown to be very useful for increasing the safe 
shelf life of sliced cooked ham. Aymerich et al. ( 2005 ) showed that treatment of 
10 min at 400 MPa (17 °C) reduced counts of  L. monocytogenes  from 2.7 log CFU/g 
to 0.7, 0.3, and 1.3 log CFU/g in the control, nisin (800 AU/g), and 1.8 % potassium 
lactate (3 % Purasal ®  P/Hi Pure 60, Purac Biochem) batches, respectively. During 
subsequent storage, the presence of nisin inhibited recovery of  L. monocytogenes  for 
42 days, while lactate inhibited the pathogen during the entire storage time (84 days 
at 6 °C). When bacteriocins and lactate were applied through active packaging 
(interleavers) in slices of cooked ham inoculated with 4.5 log CFU/g of  L. monocy-
togenes  and submitted to the same HP treatment, the highest reductions (4 log units) 
and the lowest counts (<1.51 log CFU/g) after 3 months of storage at 6 °C were 
found in batches containing bacteriocins (i.e., 200 AU/cm 2  of nisin, 200 and 2000 
AU/cm 2  of sakacin, and 200 and 2000 AU/cm 2  of enterocins A and B). In contrast, 
application of lactate through active packaging was not effective and only moder-
ately reduced  L. monocytogenes  counts, which reached levels of 6.5 log CFU/g at 
the end of storage (Jofré et al.  2007 ). In contrast to  L. monocytogenes ,  Salmonella  
was completely eliminated (from 25 g of ham) by pressurization with nisin- 
containing interleavers (Jofré et al.  2008b ). In another kind of active packaging, 
alginate fi lms containing enterocins A and B, the effi ciency of combining both tech-
nologies was also demonstrated using different storage temperatures. While at 1 °C 
the application of a HP treatment of 10 min at 400 MPa and 17 °C was enough to 
maintain levels of  L. monocytogenes  < 1.5 log CFU/g, the application of active algi-
nate fi lms was necessary to maintain those levels when storage was performed at 6 
°C and after a cold chain break of 24 h at 20 °C (Marcos et al.  2008a ). At 600 MPa, 
the combination of HPP with 800 AU/g of nisin, 1.8 % lactate, and nisin + lactate 
was more effective in the control of  Salmonella  and  L. monocytogenes  inoculated at 
4 log CFU/g than at 400 MPa. After pressurization (600 MPa, 5 min, 10 °C), levels 
of both pathogens decreased to <1 log CFU/g and were kept at this level for 3 months 
at both 1 and 6 °C. However, the proportion of samples with the absence of the 
pathogen in 25 g of product was higher for  L. monocytogenes  (97.6 % of the sam-
ples) than for  Salmonella  (88.7 %) and even higher for control and nisin- containing 
ham batches than lactate. Both HPP and combined treatments were much less effec-
tive against  S. aureus , although additional reduction was observed in the presence of 
nisin (Jofré et al  2008d ). Due to the inability of  S. aureus  to grow at refrigeration 
temperatures together with the fact that at least 10 5  CFU/g is required to produce 
enough toxin to elicit symptoms (Food and Drug Administration  2003 ),  S. aureus  
would not be a major concern if food products were properly refrigerated. In another 
cooked product, Vienna sausages, the application of HPP treatment at 600 MPa for 
5 min at 28 °C applied alone resulted in only a modest decrease in the number of 
positive samples for  L. monocytogenes  48 h after treatment.  Enhanced inactivation   
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was observed by the combination of HPP with 300 ppm of tert- butylhydroquinone 
(TBHQ) or 100 ppm of TBHQ plus 100 IU/g of nisin, which eliminated the patho-
gen from all samples (Chung et al.  2005 ). Thus, the combination of HPP at 600 MPa 
combined with antimicrobials appears to be an effective way of obtaining value-
added cooked meat products with safe long-term storage life. 

 Pressurization has also been shown to improve the shelf life and/or safety of other 
meat products.  Blood sausages   are traditional cooked meat products popular in many 
parts of the world. High-pressure treatment of  morcilla de Burgos , a popular Spanish 
blood sausage made with onion, rice, animal fat, blood, and different spices, was 
studied with the aim of extending shelf life, which under refrigeration and vacuum 
packaging is around 14–21 days. Diez et al. ( 2008a ) showed that the application of 
HPP treatments of 300, 500, and 600 MPa for 10 min at 15 °C reduced enterobacteria 
and pseudomonads to levels below their LOD. In contrast, LAB, typical spoilage 
microbiota under vacuum, were only slightly reduced. After treatment at 600 MPa 
for 10 min at 15 °C, counts of LAB decreased 1.3 log CFU/g and shelf life was 
extended by 15 days (Diez et al.  2009a ). This shelf-life extension was related to a 
reduction of bacterial populations and changes in the prevalence of LAB during stor-
age, mainly  W. viridescens  and  L. mesenteroides , the most intensive spoilage micro-
organisms in  morcilla  (Diez et al.  2008b ,  2009a ). In contrast to what occurs with 
 L. monocytogenes  in cooked ham, the combination of pressurization at 600 MPa 
with potassium and sodium lactate (3 % Purasal™ Lite S/6) in  morcilla de Burgos  did 
not enhance the quality of the product (spoilage reduction) when compared with HPP 
treatment applied alone. In vacuum-packaged cooked poultry meat,  W. viridescens  
was found to be the dominant microorganism and no obvious signs of spoilage were 
observed even when counts were >7 log CFU/g. Due to its high- pressure resistance 
(<1 log reduction after 2 min at 600 MPa and 18 °C) and ability to inhibit  Gram-
positive and Gram-negative pathogens  ,  W. viridescens  could be used to extend the 
shelf life and microbiological safety of the product (Patterson et al.  2010 ). 

  Predictive microbiology   offers various tools in the form of mathematical models 
that can be useful to determine inactivation or growth of microorganisms in foods. 
Slongo et al. ( 2009 ) developed a model of the growth of LAB during storage of vac-
uum-packaged sliced cooked ham processed by HPP applying Gompertz and logistic 
models. The main factor infl uencing the growth of LAB and, consequently, shelf life of 
the product was pressure intensity. The highest inhibition was found after application of 
the most severe treatment (400 MPa, 15 min, and 27 °C), which extended product shelf 
life (LAB levels at 10 7  CFU/g) from 19 days in non- pressurized slices to 85 days.  

26.2.4      Dry-Cured Meat Products   

 Traditionally ripened meat products can be made from chopped meat (fermented sau-
sages) or from whole pieces of meat (dry-cured ham) and have been produced since 
ancient times to extend the longevity of meat. In fermented sausages,  stability i  s due 
to acidulation caused by the production of lactic acid and  a  w  reduction caused by the 
addition of salts (curing by NaCl, nitrite, and/or nitrate) and drying. In dry- cured ham, 
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the amount of NaCl is higher than in sausages and the main hurdle to microbial 
growth is low    a  w . However, traditional manufacturing practices cannot assure the 
elimination of meat-borne pathogens; the application of high pressure processing 
appears to be a nonthermal processing technology that improves the safety of such 
products without affecting sensory quality. 

26.2.4.1      Fermented Sausages   

  Fermentation   is a widely used preservation method in which microorganisms change 
the sensory and functional properties of meat products. Fermented sausages often have 
a long shelf life, but traditional manufacturing practices cannot assure the elimination 
of  meat-borne pathogens   such as  S. aureus ,  L. monocytogenes ,  Salmonella , and vero-
toxigenic  E. coli  from the fi nal product, especially in low-acid and semidry sausages. 

 Porto-Fett et al. ( 2010 ) demonstrated the effectiveness of HPP applied after fer-
mentation and drying to inactivate  L. monocytogenes ,  E. coli  O157:H7, and 
 Salmonella  spp. (inoculated at 7 log CFU/g of batter) in four types of  Genoa  salami 
differing in casing diameter (65 and 105 mm) and  a  w  produced with trichinae- infected 
pork. After fermentation the pH of the  salamis   decreased to 4.6–4.8 and pathogen 
levels decreased, but were not eliminated from any of the salamis. The lowest levels 
were for  Salmonella  (around 2.2 log CFU/g) and the highest for  L. monocytogenes  (6 
log CFU/g in 105 mm diameter casings). Pressurization at 483 MPa for 12 min and 
600 MPa for 5 min at 20 °C completely eliminated  Salmonella  and  E. coli  O157:H7, 
while  L. monocytogenes  reductions ranged from 2 to 6 log units depending on the 
type of salami. During subsequent storage of 28 days at 4 °C,  Salmonella  remained 
absent in all replicates and  E. coli  O157:H7 in the majority of the replicates.  L. mono-
cytogenes  only was completely eliminated when treated for 5 min at 600 MPa from 
the salami with the lowest pH (4.7). However, HPP proved to be useful as a  post-
process intervention   to meet performance standards and/or compliance guidelines for 
the three pathogens and appeared as an alternative method to heating, curing, or 
freezing to eliminate  Trichinella spiralis . The effect of HPP at 600 MPa for 3, 6, and 
9 min (at ambient temperature) on the inactivation of  E. coli  O157:H7 was also tested 
in two types of salami:  Hungarian  (pork meat, pH 4.8, and  a  w  0.927) and  All Beef , 
less acid (pH 6.3) and with higher  a  w  (0.968). HPP reduced  E. coli  levels on both 
salamis by more than 4 log CFU/g. During storage at 15 °C, the numbers of  E. coli  
O157 increased on  All Beef  salami, but remained static on the  Hungarian  salami, 
which had a restrictive pH and  a  w  (   Gill and Ramaswamy  2008 ). 

 In slightly fermented sausages, typically produced in Mediterranean countries 
and characterized by a relatively high pH, microorganisms contaminating raw mate-
rials (pathogens and aminogenic bacteria) might not be totally inhibited during the 
manufacturing process and can compromise the safety and stability of the fi nal 
product. The application of HPP before fermentation was an additional hurdle to 
control  Salmonella  but had a negative effect on  L. monocytogenes  due to inactiva-
tion of endogenous LAB and consequent delay in pH drop (Marcos et al.  2005 ). 
In contrast, pressurization after ripening produced better results at both  sensory 
and microbiological levels  . However, treatments of 400 MPa (for 10 min at 17 °C) 
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applied alone were not enough to completely eliminate  L. monocytogenes , and the 
combination of HPP with the use of starter cultures was necessary to eliminate 
 L. monocytogenes  and  Salmonella , to control enterobacteria and  Enterococci , and to 
reduce the content of biogenic amines in the fi nal product (Garriga et al.  2005 ; Marcos 
et al.  2007 ). The combination of HPP with bacteriocins (enterocins A and B and 
enterocin AS48) also proved to be useful in reducing  L. monocytogenes  and 
 Salmonella  spiked at 3 log CFU/g to levels ≤ 1 log CFU/g during storage under refrig-
eration but especially during storage at room temperature where decrease of  a  w  was 
higher. These hurdles could not decrease the levels of  S. aureus , a baroresistant and 
low  a  w -tolerant bacterium (Jofré et al.  2009a ; Ananou et al.  2010 ). Given the capacity 
of certain pathogenic bacteria to survive in low-acid fermented sausages, selection of 
high-quality raw materials and good manufacturing  practices   are crucial.     

26.2.4.2      Dry-Cured Ham   

  Whole-muscle dry-cured meat products  , such as dry-cured ham, have pH values 
close to neutrality, and low  a  w  is the main hurdle for the growth of spoilage and 
pathogenic microorganisms. In dry-cured ham, the inhibitory effect of HPP has 
been shown to vary depending on  a  w  of the product. Morales et al. ( 2006 ) compared 
inactivation of  L. monocytogenes  in Iberian and Serrano ham by treatment at 
450 MPa for 10 min at 12 °C and observed higher inactivation in Iberian ham 
( a  w  = 0.904 and 1.5 log unit decrease) than in Serrano ham ( a  w  = 0.880 and 1.16 log 
decrease). The authors attributed these differences to the higher concentration of 
NaCl and lower fat content of Serrano ham. Another study demonstrated that after 
treatment at 600 MPa for 6 min at 16 °C (31 °C during holding time), sensory fresh-
ness of sliced dry-cured ham was maintained due to reduction of aerobic bacteria 
from 4.8 to 2.1 log CFU/g and diminution of psychrotrophs, LAB, and  yeasts   to 
levels below plate detection limit. During 120 days of storage at 4 °C, populations 
maintained similar levels (Garriga et al.  2004 ). Furthermore, when dry-cured 
ham was spiked with a wide range of  pathogenic and spoilage microorganisms   
(i.e.,  L. monocytogenes ,  Salmonella ,  S. aureus ,  Y. enterocolitica ,  C. jejuni , LAB, 
 E. coli , and  D. hansenii ) and treated at 600 MPa for 6 min at 31 °C during holding 
time, all microorganisms decreased to below the limit of detection (3–4 log unit 
reduction) with the exception of  S. aureus  and LAB, which decreased only 0.5 and 
1.6 log CFU/g, respectively. During 120 days of storage at 4 °C, both pressurized 
and non-pressurized microorganisms remained at the same level (Jofré et al.  2009b ). 
Recently, modeling of HPP inactivation of  L. monocytogenes  in dry-cured ham has 
shown that pressure time and intensity, but not temperature (in the range of 2.3–24.4 
°C), infl uence inactivation of the pathogen. According to the validated model, treat-
ment of 807 MPa for 5 min would be necessary to attain the 6D reduction recom-
mended by the US Government for RTE products. However, given the inability of 
 L. monocytogenes  to grow in dry-cured ham, in addition to the assumed levels of 
post-processing contamination of 10 CFU/g, Hoz et al. ( 2008 ) proposed a 2.39D 
process to meet the  US  zero tolerance  policy  , which requires, according to the 
model proposed, treatment of 613 MPa for 5 min (Bover-Cid et al.  2011 ). 
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 As shown for other meat products, combination of HPP with bacteriocins increases 
the  inhibitory effect   of HPP in dry-cured ham. Application of sakacin K, enterocins 
A and B, and especially nisin together with HPP treatment of 600 MPa for 5 min at 
15 °C eliminated  Salmonella  and  L. monocytogenes  spiked at 3.5 log CFU/g and 
decreased  S. aureus  to <1 log CFU/g in the batch containing nisin. During storage at 
temperature of abuse (15 °C), none of the pathogens recovered (Jofré et al.  2008c ). 

 In conclusion, from a microbiology point of view, the main goal of HPP in the 
food industry is to ensure absence or low levels of pathogens and spoilage microor-
ganisms in foods at the time of consumption. In meat products, HPP appears to be 
a promising technology which is already used by companies and accepted by con-
sumers.  Intrinsic and extrinsic factors   associated with each meat product result in 
high- and low-risk products and determine levels of microbial inactivation by HPP 
and growth during storage. Thus, research efforts are needed to generate realistic 
data and to determine which combinations would be more effective to ensure 
destruction of food-borne pathogens in a wide variety of  optimal quality meat prod-
ucts  . At the same time, development of cost competitive industrial equipment able 
to reach pressure intensities higher than 600 MPa is  necessary  .    

26.3     HPP Effects on Color, Texture, and Other 
Quality Characteristics 

26.3.1      Raw Meat   

 In the last 15 years, the HPP effect on the color of raw minced beef, pork, and poul-
try meat and whole muscles has been studied by many authors. The main reason for 
this interest is because the most frequent visible effect of HPP on raw meat is a 
 dramatic color change  , i.e., meat discoloration, due to protein denaturation caused 
by the pressure increase necessary to reach microbial inactivation (i.e., >400 MPa). 
Many studies have focused on the HPP effect on meat color as the main aim of their 
investigation (Carlez et al.  1995 ; Goutefongea et al.  1995 ; Jung et al.  2003 ), but also 
in many other studies the effect on color was complementary information to their 
main objective, i.e., effect on  pathogenic and/or spoilage microorganisms and shelf- 
life extension  , among others. In any case, most studies agree on reporting lightness 
(  L   * ) increase with increasing pressure, whereas yellowness ( b  * ) either increases or 
is not affected, and redness ( a  * ) is the more variable and dependent on experimental 
design (i.e., meat species, minced or whole muscle, and HPP conditions). 

26.3.1.1      Minced Meat Color      

 Minced beef from  semimembranosus  muscle subjected to HPP (200–500 MPa, 10 
min, 10 °C) showed paler color at pressures above 200 MPa. Lightness ( L  * ) values 
increased from 200 to 350 MPa, whereas redness ( a  * ) values decreased with increas-
ing pressure, and yellowness ( b  * ) did not change signifi cantly. The pH of minced 
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meat increased with HPP from 5.55 to 5.78 (Carlez et al.  1995 ). Discoloration of 
HPP red meat is caused both by a whitening effect, probably related to globin dena-
turation, that would occur between 200 and 350 MPa (causing an increase in  L  *  
values and turning the red color of beef into a paler pink), and by a loss of red color 
between 400 and 500 MPa (causing a decrease in  a  *  values and turning the pale pink 
color into a pale gray-brown) which could be attributed to the oxidation of ferrous 
myoglobin into ferric metmyoglobin (Carlez et al.  1995 ). Frozen ground beef (−15 
°C) submitted to high-pressure thawing (210 MPa, 30 min, and 280 MPa, 25 min, 
room temperature) showed higher lightness ( L  * ) and lower redness ( a  * ) at 280 MPa 
than at 210 MPa or samples thawed in a cooler at 3 °C (Zhao et al.  1998 ). Fresh 
minced pork ( m. gluteus superfi cialis ) and beef ( m. semimembranosus ) meat showed 
brownish-grayish color after HPP (600 MPa, 30 min, 20 °C), which was consistent 
with signifi cantly higher  L  * ,  a  * , and  b  *  values and oxymyoglobin oxidation to met-
myoglobin (Goutefongea et al.  1995 ). Ground beef lean meat subjected to HPP (400 
MPa, 1–20 min single cycles and multiple cycles of up to 3 × 5 min, 12 °C) showed 
higher lightness ( L  * ) and yellowness ( b  * ) values, in the exterior of beef patties, with 
increasing treatment length and number of cycles. Similarly, color measurements of 
the inner part of beef patties showed higher lightness but lower redness ( a  * ) (Morales 
et al.  2008 ). Pressurization above 300 MPa (HPP: 200–800 MPa, 20 min, 20 °C) 
caused oxymyoglobin denaturation (ferric form) in post-rigor minced pork and pH 
increase from 5.90 to 6.06 (measured in muscle suspension) as a result of protein 
denaturation (Cheah and Ledward  1996 ). Pork loin slurries subjected to HPP (100–
600 MPa, 10 min, 25 °C) showed discoloration with increasing pressure. Higher 
lightness ( L  * ) and lower redness ( a  * ) were observed above 300 MPa, whereas yel-
lowness ( b  * ) increased above 400 MPa (Shigehisa et al.  1991 ). Minced chicken 
thighs (HPP:500 MPa, 60 min, −10, +5, 20, and 50 °C) showed a cooked appear-
ance (lightness increase and redness decrease) at all temperatures tested (Beltran 
et al.  2004 ). Thawed minced chicken breast mixed with spices (HPP:300, 600, and 
800 MPa, 10 min, initial  T  = 5 °C and reaching max.  T  = 22.6, 40.2, and 49.7 °C, 
respectively) showed increased  light     ness and reduced redness with increasing pres-
sure, irrespective of use of spices (Mariutti et al.  2008 ).  

26.3.1.2      Whole Muscle Color      

 In beef  biceps femoris  muscle (2.5 × 2.5 × 3.0 cm samples), instrumental color 
parameters ( L  * ,  a  * , and  b  * ) increased signifi cantly after HPP (520 MPa, 260 s, 10 °C) 
at 2 days post-mortem. However, color differences after cooking between HPP and 
unprocessed samples were reduced to less than one third (Jung et al.  2000 ). Redness 
( a  * ) values of beef  biceps femoris  muscle (2.5 × 2.5 × 2.5 cm samples) (HPP: 50–600 
MPa, 20–300 s, 10 ± 3 °C) increased up to 350 MPa, but above this pressure started 
to decrease. Metmyoglobin content followed redness evolution with increasing 
pressure, but conversely, i.e., metmyoglobin content decreased with increasing 
pressure up to 300 MPa approximately and then increased up to 600 MPa. Total 
color difference between HPP and unprocessed meat increased signifi cantly with 
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increasing pressure. In concordance with these results, refl ectance spectra showed 
that HPP meat had higher lightness than the control. However, refl ectance spectra of 
raw HPP samples were very similar to those of the cooked control, suggesting that 
HPP could induce myoglobin modifi cations similar to cooking. Furthermore, no 
color differences between cooked control and raw pressurized samples after cook-
ing were observed. Color evolution up to 4 days of storage showed higher redness 
in HPP meat at 130 MPa (10 °C; 260 s) than in control samples, whereas meat at 
520 MPa showed lower values. In contrast, after 7 days of storage, meat at both 130 
and 520 MPa showed lower redness than the control. Evolution of redness ( a  * ) dur-
ing storage was well correlated with metmyoglobin content (Jung et al.  2003 ). Beef 
 semitendinosus  muscle steaks subjected to HPP (100–500 MPa, 5 min, 15 ± 3 °C) 
showed signifi cant lightness ( L  * ) increase with increasing pressure above 200 MPa 
and up to 500 MPa. Redness ( a  * ) decreased at 500 MPa, whereas yellowness ( b  * ) 
increased above 300 MPa (Kim et al.  2007 ). Raw beef  longissimus dorsi  samples 
(cylinders: 2.5 cm Ø × 6.0 cm length) showed increased lightness ( L  * ) and yellow-
ness ( b  * ) and reduced redness ( a  * ) values after HPP (650 MPa, 10 min, 20 °C) with 
respect to the control. In contrast, HPP (650 MPa, 10 min, −35 °C) of raw beef 
frozen at −30 °C did not affect  L  *  and  b  *  parameters measured after thawing, but  a  *  
values were lower than the control. Despite the redness reduction observed, freezing 
would apparently protect beef meat against negative color changes, i.e., lightness 
increase,  caused   by HPP (Fernández et al.  2007 ). Beef  longissimus dorsi  muscle 
(2.5 × 2.5 × 3 cm samples) subjected to HPP (200–600 MPa, 20 min, 10–30 °C) 
showed lightness ( L  * ) increase in all pressure × temperature combinations tested. 
Yellowness ( b  * ) increased only at 400 and 600 MPa, whereas redness ( a   *  ) was not 
affected. However, when comparing HPP, independently from process temperature, 
redness reduction was observed at 600 MPa, which could be related to ferric met-
myoglobin formation. The highest lightness values were observed at 400 MPa, fol-
lowed by 600 MPa. Meat at 400 and 600 MPa showed the highest yellowness and 
total color increase values. The temperature effect, independently of pressure level, 
lightness, and total color  increase  , showed the highest values at 30 °C (Marcos et al. 
 2010 ). Beef  pectoralis profundus  steaks showed a higher lightness (HPP:200–400 
MPa, 20 min, 20 and 40 °C) in all processes except for the mildest one at 200 MPa 
and 20 °C. Temperature effect, independently of pressure level, showed the highest 
lightness and the lowest yellowness values at 40 °C (McArdle et al.  2010 ). Fresh 
beef ( m. semitendinosus ) and pork ( m. longissimus dorsi ) submitted to HPP (200 
MPa, 2.5 h, −20 °C, plus 0.5 h at 30 °C before depressurization) and pressure shift 
freezing (200 MPa, 2.5 h, −20 °C) showed higher lightness, redness (only in beef), 
and yellowness than raw samples, after overnight thawing at 20 °C, in both treat-
ments (Fernández-Martín et al.  2000 ). Fresh pork loin (post-rigor) submitted to 
HPP (414 MPa, 9 min at 2 °C and 13 min at 25 °C) showed higher lightness ( L  * ) and 
yellowness ( b  * ) than control samples, but no redness ( a  * ) differences. These color 
differences continued during storage at 4 °C up to 33 days. However, these color 
differences disappeared after cooking (Ananth et al.  1998 ). Fresh pork rib portions 
(cylinders: 5 cm Ø × 16 cm length) submitted to pressure shift freezing (100, 150 
and 200 MPa, 3 MPa s −1 , −11, −16.5, and −21.5 °C, respectively) showed increase 
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in lightness, yellowness, and total color difference with increasing pressure, after 
thawing at room temperature (20 °C) (Zhu et al.  2004 ). Pork meat (cylinders, 3.2 cm 
Ø × 2.8 cm length; HPP, 600 MPa, 10 min, ambient  T ) showed higher lightness ( L  * ) 
and yellowness ( b  * ) and lower redness ( a  * ) than control samples (Wackerbarth et al. 
 2009 ). Different meat species (pork,  m. longissimus dorsi ,    turkey and chicken,  m. 
pectoralis superfi cialis ) showed clear color change after HPP (100–600 MPa, 1 min, 
10 °C) with increasing lightness ( L  * ) above 300 MPa (above 200 MPa in chicken) 
(Tintchev et al.  2010 ). Chicken breast fi llets subjected to HPP (300–600 MPa, 5 min, 
15 ± 3 °C) showed higher  L  * ,  a  * , and  b  *  values with increasing pressure. However, 
redness reduction was observed at 600 MPa, though it was still higher than the con-
trol (Kruk et al.  2011 ). In another study, chicken breast fi llets submitted to HPP (400 
MPa, 1–20 min single cycles and multiple cycles of up to  10      min overall, 5 °C) 
showed higher  L  * ,  a  * , and  b  *  values in all treatments (Del Olmo et al.  2010 ).  

26.3.1.3     Texture and Other Quality Characteristics 

 During HPP ( isostatic compression  ), although no shear forces are produced, some 
texture changes occur as a result of the increasing pressure effect on the structure 
and functionality of proteins (Cheftel and Culioli  1997 ). Quality changes in post- 
rigor meat and muscle protein gelation, i.e., texture changes induced by pressuriza-
tion, have been studied by different authors at both nonthermal denaturing 
temperatures (before reaching 30–35 °C) and in heating under pressure (thermal 
denaturing conditions >40 °C) (Jiménez-Colmenero  2002 ). Generally, HPP at non- 
denaturing temperatures has been reported to increase cooking loss and texture 
parameters such as TPA hardness and  Warner-Bratzler shear force      .  In contrast, heat-
ing under pressure (HPP) seems to decrease texture characteristics like shear force 
and hardness. In addition, some studies with seemingly contradictory results could 
probably be explained by different effects, often opposite, resulting from different 
combinations of pressure, temperature, and other HPP parameters. 

 In a nonthermal denaturing study, frozen ground beef (−15 °C) submitted to 
high-pressure thawing (280 MPa, 25 min, room temperature) showed higher cook-
ing loss than conventional thawing, although no differences in penetration force 
were observed (Zhao et al.  1998 ). Ground beef lean meat subjected to HPP (400 
MPa, 1–20 min single cycles and multiple cycles of up to 3 × 5 min, 12 °C) showed 
higher Kramer shear force and energy values than the control (Morales et al.  2008 ). 
Fresh pork loin showed no differences in moisture content, water-holding capacity, 
or instrumental texture (peak load) between HPP (414 MPa, 9 min at 2 °C and 
13 min at 25 °C) and control samples (Ananth et al.  1998 ). Fresh pork ( m. longis-
simus dorsi ) and beef ( m. semitendinosus ) submitted to pressure shift freezing (200 
MPa, 2.5 h, −20 °C) showed higher drip loss (centrifugal method) than HPP meat 
(200 MPa, 2.5 h, −20 °C plus 0.5 h at 30 °C before depressurization) and raw meat 
(Fernández-Martín et al.  2000 ). Beef  biceps femoris  (BF) and  longissimus dorsi  
(LD) muscles (HPP:520 MPa, 260 s, 10 °C) showed higher Warner-Bratzler shear 
force (toughness increase) and cooking loss values than the control meat during 
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aging (2–17 days post-mortem). HPP appeared to delay natural tenderization (i.e., 
shear force decrease) in both BF and LD muscles (Jung et al.  2000 ). Fresh pork rib 
portions submitted to pressure shift freezing (100–200 MPa, 3 MPa s −1 , −11 to 
−21.5 °C) were tougher, i.e., showing higher Warner-Bratzler shear force values, 
than unprocessed meat (Zhu et al.  2004 ). Similarly, beef  semitendinosus  muscle 
steaks (HPP:100–500 MPa, 5 min, 15 ± 3 °C) showed an increase in Warner-Bratzler 
shear force and TPA (texture profi le analysis) hardness at 500 MPa. However, a 
decrease in these two parameters was observed at 300 MPa. Cooking loss values 
increased with increasing pressure and stabilized at 300 MPa, whereas water- 
holding capacity decreased at 200 MPa and remained stable. The pH values (mea-
sured in muscle suspension) increased with increasing pressure above 200 MPa 
(Kim et al.  2007 ). Raw HPP beef  longissimus dorsi  (650 MPa, 10 min, 20 °C) 
showed higher expressible moisture (centrifugal method) than unprocessed meat. In 
contrast, air-blast frozen-HPP raw beef (650 MPa, 10 min, –35 °C) showed lower 
expressible moisture than raw HPP beef, indicating a freezing protective effect 
against HPP protein denaturation (Fernández et al.  2007 ). Water-holding capacity 
( WHC        ) of beef  longissimus dorsi  muscle (measured as expressible moisture with a 
centrifugal method) decreased with increasing pressure at 400 and 600 MPa, irre-
spective of the process temperature (HPP:200–600 MPa, 20 min, 10–30 °C) (Marcos 
et al.  2010 ). Beef  pectoralis profundus  HPP steaks (200–400 MPa, 20 min, 20 and 
40 °C) showed the highest cooking loss at 400 MPa and 20 °C, whereas no differ-
ences were observed at 40 °C. HPP at 300 and 400 MPa increased cooking loss and 
pH values irrespective of process temperature (McArdle et al.  2010 ). Chicken breast 
fi llets subjected to HPP (400 MPa, 1–20 min single cycles and multiple cycles of up 
to 10 min overall, 5 °C) showed higher shear force values in single-cycle HPP for 
10 min with increasing number of 1 min cycles (Kramer cell) and in single-cycle 
HPP for 15 min and in 2× 1 min (Warner-Bratzler cell). However, instrumental tex-
ture parameters in the most severe multiple-cycle HPP were similar to controls (Del 
Olmo et al.  2010 ). HPP chicken breast fi llets (300–600 MPa, 5 min, 15 ± 3 °C) 
showed higher cooking loss and TPA hardness and chewiness at 450 and 600 MPa 
than unprocessed meat or at 300 MPa (Kruk et al.  2011 ). 

 In a study combining  nonthermal denaturing temperatures and heating   under 
pressure, beef  longissimus dorsi  muscle (HPP:200–800 MPa, 20 min, 20–70 °C) 
showed pH increase (between 0.06 and 0.19 units) with increasing pressure, irre-
spective of the temperature applied. Concerning texture, instrumental hardness 
(TPA) increased with increasing pressure (HPP at 20 °C) up to 400 MPa and then 
decreased slightly up to 800 MPa, but was still above the control values. Similar 
behavior was observed for HPP at 40 °C, although hardness continued to increase 
slightly up to 800 MPa. In contrast, HPP at both 60 and 70 °C led to hardness 
decrease at 200 MPa, but above this pressure hardness increased again. In general, 
all other TPA parameters (chewiness, cohesiveness, springiness, etc.) increased 
with increasing pressure at both 20 and 40 °C (Ma and Ledward  2004 ). Beef  longis-
simus  muscle at different aging times (1–16 days) cooked after HPP (samples pre- 
heated at 45 °C for 45 min before HPP: 150 MPa, 30 min, 60 °C) showed lower 
shear force (Warner-Bratzler) than cooked control samples. In HPP samples, shear 
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force was very low and did not vary much throughout the aging period. In contrast, 
control samples showed higher values, the highest being 1 and 8 days of aging. HPP 
cooking loss was quite similar throughout the aging period and higher than that of 
the control at aging days 1 and 3 (Bertram et al.  2004 ). Post-rigor chicken ( pectora-
lis fundus  muscle, samples: 3 × 2.5 × 6 cm) submitted to HPP (200–800 MPa, 30 
min, 20–70 °C) showed increase in TPA hardness with increasing pressure from 20 
to 50 °C. The highest increase was observed between 200 and 400 MPa from 20 to 
50 °C. In contrast, from 60 to 70 °C hardness increased at 200 MPa and subse-
quently decreased between 200 and 400 MPa, where it stabilized (Zamri et al. 
 2006 ). Post-rigor beef neck muscle ( sternomandibularis ; samples: 15 × 3.5 × 3.5) 
submitted to HPP (200 MPa, 20 min, 60 °C) showed higher pH values and lower 
Warner-Bratzler peak force than the raw control (Sikes et al.  2010 ). 

 With regard to sensory characteristics of meat, only a few studies have been 
focused on the HPP effect on fl avor. Suzuki et al. ( 1994 ) studied the effects of HPP 
(100–400 MPa, 5 min, 2 °C) on fl avor-related components in beef shoulder lean 
meat, concluding that HPP caused similar fl avor changes to those caused during 
meat conditioning. Similarly, Schindler et al. ( 2010 ) studied  aroma development   in 
HPP beef sirloin and chicken breast meat (400 and 600 MPa, 15 min, 5 °C) and 
reported no signifi cant changes when compared with raw and cooked meat.   

26.3.2     Cooked and Raw Salted Meat  Products   

 In general, HPP effect on muscle proteins and minced meat products depends on the 
combination of pressure, temperature, time, and product type (Jiménez-Colmenero 
 2002 ). Many studies of minced meat products have reported HPP effects on color: 
lightness ( L  * ) increase with increasing pressure and, to a lesser extent, a decrease in 
redness ( a  * ) and affecting yellowness (Jiménez-Colmenero et al.  1997 ; Carballo 
et al.  2000 ; Sikes et al.  2009 ). Furthermore, HPP at  non-denaturing temperatures   has 
been reported to improve texture in low-salt minced meat products by improving 
protein gelation and thus increasing the water-holding capacity (Iwasaki et al.  2006 ; 
Sikes et al.  2009 ). In contrast, heating under pressure (HPP with thermal denatur-
ation) produces less protein denaturation than thermal treatment alone, and the 
resulting gel structures have improved water-holding capacity, although texture char-
acteristics like hardness, cohesiveness, and chewiness are decreased, i.e., producing 
weaker gels (Jiménez-Colmenero et al.  1998b ; Carballo et al.  2000 ; Fernández-
Martín et al.  2002 ; Jiménez-Colmenero  2002 ). A compilation of studies carried out 
over the last 15 years on the HPP effects on the quality characteristics of processed 
minced meat products, i.e., sausage batters, patties, gels, and emulsions from differ-
ent meat species in combination with other effects, is presented in Table  26.4    .

   Cured minced beef meat (100–200 mg/kg sodium nitrite, 10 g/kg NaCl, vacuum- 
packaged and stored overnight at 5 °C to allow nitrosomyoglobin formation) showed 
higher lightness ( L  * ) values with increasing pressure (HPP:350–500 MPa; 10 min; 10 
°C) but no differences in redness ( a  * ) and yellowness ( b  * ). In cured meat products, 
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nitrosomyoglobin resists the HPP-induced oxidation into ferric form. However, the 
HPP-induced “whitening” effect (protein denaturation) is not prevented (Carlez et al. 
 1995 ). In another study, raw sausage batter with and without NaCl and nitrites sub-
jected to HPP (600 MPa, 20 min, room temperature) showed visual discoloration, 
higher lightness ( L  * ), and lower redness ( a  * ) than the control samples. Furthermore, 
 discoloration   was higher in HPP batters without nitrites than in HPP batters with 
nitrites. HPP reduced batter softness, especially in batters with salt (Farkas et al.  2002 ). 

26.3.2.1      Ready-to-Eat Meat Products   

  Frankfurter-type sausages  , elaborated with different percentages of mechanically 
recovered poultry meat and minced pork meat and submitted to HPP (500 MPa, 30 
min, 50–75 °C), showed higher lightness ( L  * ), yellowness ( b  * ), and cohesiveness 
(TPA) and lower hardness and springiness than cooked sausages (30 min, 75 °C) 
(Yuste et al.  1999 ). Raw minced beef (HPP:150 and 300 MPa; 5 min; 20 °C) was 
used for the elaboration of frankfurters with reduced salt content (1.5 % and 2.5 % 
NaCl). Frankfurters with HPP beef at 150 MPa showed lower cooking loss values 
than controls, whereas emulsion stability (% expressible fl uid) was similar to con-
trols. In contrast, frankfurters with HPP beef at 300 MPa showed the lowest emulsion 
stability, i.e., higher expressible fl uid. No HPP effect on color was observed. In gen-
eral, HPP frankfurters were more juicy but with lower overall texture and acceptabil-
ity scores than the controls. Salt-reduced frankfurters (1.5 %) with 300 MPa treated 
beef had less smoky and spicy fl avor values. Instrumental texture parameters (TPA) 
decreased at 300 MPa in comparison with controls and 150 MPa, irrespective of salt 
level. Furthermore, HPP (300 MPa) salt-reduced frankfurters had lower TPA hard-
ness and chewiness, i.e., better texture attributes than the controls (Crehan et al. 
 2000 ). In another study, frankfurter-type cooked sausages (made with poultry and 
pork meat) submitted to HPP (500 MPa, 5 and 15 min, 65 °C) showed higher total 
color difference values than cooked sausages with conventional heat pasteurization 
or non-pasteurized cooked sausages (although no differences in  L  *  a  *  b  *  values were 
observed). HPP sausages showed higher TPA cohesiveness and lower hardness (less 
fi rmness) and weight loss than cooked sausages. According to sensory analysis 
results, HPP sausages were preferred because of their better appearance (with less 
gelatin on the surface due to lower formation of exudates), a stronger and more pleas-
ant taste, and better texture, i.e., more juicy, less grainy, and more uniformly consis-
tent (Mor-Mur and Yuste  2003 ).  Raw sausages   formulated to obtain low-acid 
fermented sausages ( fuet  and  chorizo ) were subjected to HPP (300 MPa, 10 min, 17 
°C) 1 day after stuffi ng (i.e., prior to pH decrease and dehydration typical of the rip-
ening stage). Visual discoloration was observed after HPP in both types of sausages. 
The instrumental color measurements showed a lightness ( L  * ) increase, but no 
changes in redness ( a  * ) were observed due to the protective effect of nitrifi cation 
against HPP, i.e., nitrosomyoglobin formation. Yellowness ( b  * ) decreased in HPP  fuet  
but not in  chorizo , probably due to the  chorizo  formulation which includes paprika 
and cayenne pepper (Marcos et al.  2005 ). Ostrich-meat  yor  (Thai sausage) heated 
under pressure (HPP:300–700 MPa, 40 and 60 min, 40 and 60 °C) showed higher 
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lightness ( L  * ) and yellowness ( b  * ) and lower redness ( a  * ) with increasing pressure and 
temperature. The amount of released plus expressible water of HPP sausages 
decreased with increasing  pressure   and temperature, indicating an increase in cook-
ing yield. Furthermore, gel strength and elasticity of HPP sausages increased gradu-
ally with increasing pressure and temperature (Supavititpatana and Apichartsrangkoon 
 2007 ). In another study, ostrich-meat  yor  submitted to HPP (200–600 MPa; 40 and 60 
min, 40 and 50 °C) showed that increasing pressure, temperature, and holding time 
increased water-holding capacity and solid-like behavior, indicating a stronger gel 
structure. Sensory analysis (hedonic) comparing  yors  processed at 600 MPa at 50 °C 
for 60 min (completely denatured protein) with  yors  elaborated using a conventional 
steaming process showed that texture, color, juiciness, and acceptability of HPP  yors  
were higher than results for the steamed sausages. However, no fl avor differences 
were observed (Chattong and Apichartsrangkoon  2009 ).  Prepacked, sliced, refriger-
ated  , ready-to-eat (RTE) commercial meat products like low-fat pastrami (a cooked, 
cured, whole beef muscle product), Strasburg beef (a cooked, cured, comminuted 
beef product), export sausage (a cooked, cured, comminuted beef product), and 
Cajun beef (a cooked, uncured, whole beef muscle encrusted with spices) were evalu-
ated during shelf life after HPP (600 MPa, 3 min; 20 °C). HPP did not affect pH or 
water activity ( a  w ) of RTE products. Consumer acceptability evaluation during shelf 
life showed no differences between HPP and unprocessed RTE meats (Hayman et al. 
 2004 ). Cooked ham (cured and cooked at 68 °C) showed no color changes after HPP 
(600 MPa; 30 min; 20 °C). In contrast, HPP raw-cured (salted) minced pork and beef 
meats showed higher lightness ( L  * ) than unprocessed meat. Furthermore, HPP raw-
cured beef also showed higher redness ( a  * ) and yellowness ( b  * ) values than the con-
trol, whereas raw-cured pork was not affected (Goutefongea et al.  1995 ). 
Vacuum-packaged, sliced cooked ham submitted to HPP (200 and 400 MPa; 5 and 20 
min; 7 °C) showed no pH or purge loss (liquid loss) differences when compared with 
controls during chilled storage at 2 °C (López-Caballero et al.  1999 ). In another study 
with sliced cooked ham (HPP:300 MPa, 15 min, 5–50 °C), no color changes were 
observed between HPP ham and control (López-Caballero et al. ( 2002 )). HPP raw 
smoked pork loin (500 MPa, 10 and 30 min) showed higher lightness values than 
controls, whereas in HPP cooked pork ham (300–500 MPa, 10 and 30 min) lightness 
decreased slightly, but  visual color and sensory characteristics   were not affected 
(Karlowski et al.  2002 ). Cooked pork ham (with low or high salt and sodium nitrite 
contents) submitted to HPP (600 MPa, 10 min, 20 °C) showed higher weight loss 
during storage than the controls. HPP did not affect color, instrumental texture, (pen-
etration force) or sensory characteristics of  ham   (Pietrzak et al.  2007 ).  

26.3.2.2     Raw Salted Meat Products 

 HPP has also been used in marinated or salted raw meat  studies  . Marinated sliced 
beef loin (1 % NaCl and without nitrites) subjected to HPP (600 MPa, 6 min, 16 °C) 
showed visual color modifi cations, i.e., grayish color, whereas HPP in sliced cooked 
ham helped to prevent off-odors, ropiness, and color changes, thereby contributing 
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to the maintenance of sensory freshness for at least 60 days (Garriga et al.  2004 ). 
Salted raw beef ( m. longissimus dorsi ; 1 % NaCl) air-blast frozen and with subse-
quent HPP (650 MPa, 10 min, −35 °C) showed lower expressible moisture than 
HPP salted raw beef (650 MPa; 10 min; 20 °C) and unprocessed salted raw beef. 
With regard to color, HPP salted raw beef showed higher lightness ( L  * ) and yellow-
ness ( b  * ) than air-blast-frozen-HPP and unprocessed salted raw beef. These results 
indicate a protective effect of freezing against HPP protein denaturation. Concerning 
redness, both HPP and air-blast HPP samples showed lower values than the control 
(Fernández et al.  2007 ). Turkey breast cubes (2 × 2 × 2 cm cut from thawed muscle) 
vacuum-packaged, immersed in a NaCl solution (50 g/l), and submitted to HPP 
(50–300 MPa, pressure holding time = 0.1 s, 25 ± 1 °C) showed higher moisture and 
NaCl contents with increasing pressure up to 150 MPa. In contrast, moisture and 
NaCl contents decreased between 200 and 300 MPa, probably due to a decrease in 
protein solubility. HPP reduced salting time and enhanced moisture content in com-
parison with salting at atmospheric pressure. HPP with increasing holding time 
(50–300 MPa, 1–15 min, 25 ± 1 °C) increased NaCl content and decreased moisture 
content, although these were higher than those in unprocessed samples. TPA hard-
ness and chewiness were lowest at 150 MPa (pressure holding time = 0.1 s), but 
their values increased at higher pressures. Furthermore, HPP at 100–150 MPa and 
15 min holding time also showed the lowest hardness and chewiness values. In 
general, HPP at 15 min holding time showed higher hardness, cohesiveness, and 
chewiness than at 0.1 s, at all the pressures tested. The authors concluded that pres-
sure treatment resulted in a tenfold increase in  NaCl diffusion coeffi cient   in turkey 
meat in comparison to salting at ambient pressures (Villacís et al.  2008 ).  

26.3.2.3     Pressure-Assisted Thermal Sterilization   

 HPP can also be used for  food sterilization  , although its industrial application is not 
yet available. Lau and Turek ( 2007 ) studied the quality differences between low- 
acid foods sterilized by HPP and retorting. Fresh chicken breasts sprinkled with 
barbecue spice rub, grilled for 30 s, and vacuum-packaged were equilibrated, fi rst in 
a 40 °C water bath for 15 min and subsequently pre-heated in a 90 °C hot water bath 
until reaching an internal temperature of 80 °C. After heating, the chicken breasts 
were subjected to HPP by means of a two-pulse process (690 MPa, 90s pressure 
come-up time and 1 min holding time; 106 ºC maximum temperature attained dur-
ing pressurization) with pressure release between the two consecutive pulses. The 
 sensory evaluation results   showed that HPP chicken “retained the fl avor of a fresh 
roast chicken” and was moist and tender in contrast with the retorted chicken that 
had a “fl avor similar to stewed or canned chicken” and was fi brous, tender, and soft. 
Furthermore, HPP chicken showed a muscle structure that was more intact than 
retorted chicken, which had lost muscle integrity and “tended to ‘fall apart’ parallel 
to the grain.” However, the  instrumental texture test   (single blade shear) showed no 
differences between HPP and retorted chicken. With regard to color evaluation, 
HPP chicken was lighter (higher  L  * ) and yellower (higher  b  * ) than retorted  chicken  .   
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26.3.3     Dry-Cured Meat  Products   

 Conventional thermal pasteurization is not a good option for application to dry- 
cured meat products due to the dramatic color and texture changes these products 
undergo when heated. Alternatively, HPP allows the submission of dry-cured meat 
products to  cold pasteurization   with minimal changes in product quality (Hugas 
et al.  2002 ). Therefore, HPP meets the needs of industry for greater microbiological 
safety and longer shelf life of sliced meat products. As evidence of its effectiveness 
and good consumer acceptability (Baron et al.  1999 ; Nielsen et al.  2009 ), several 
 food companies   throughout the world are currently using HPP on an industrial scale 
to cold pasteurize meat products (see Table  26.2 ) (Balasubramaniam et al.  2008 ) 
and, particularly, sliced ready-to-eat meat products, including a wide range of dry- 
cured meat products such as low-acid and acid fermented sausages and dry-cured 
ham and loin (Hyperbaric  2006 ; Avure  2009 ). 

26.3.3.1     Fermented Sausages   

 Low-acid cured fermented sausages (Catalan  fuet  and Spanish  chorizo , pH > 5.3) 
after 28 days of ripening (water activity, 0.854–0.878) were subjected to HPP (400 
MPa, 10 min, 17 °C). HPP low-acid fermented sausages showed no instrumental 
color changes, although a slight decrease in color intensity was observed by the 
trained sensory panel in HPP  chorizo . The texture profi le analysis (TPA) showed 
higher cohesiveness, chewiness, and springiness in both HPP  fuet  and  chorizo . 
However, no sensory texture differences were observed in the sensory analysis by 
trained panelists (Marcos et al.  2007 ). Sliced cured fermented sausages (Spanish 
 salchichón , pH = 5.1–5.2 and  a  w  = 0.827–0.853) at the end of the ripening process 
were subjected to HPP (500 MPa; pressure come-up time, approx 4 min; pressure 
holding time, 5 min; decompression time, instantaneous, 18 °C). HPP fermented 
sausages showed no instrumental color differences and no changes in sensory attri-
butes in comparison with the controls throughout the storage period (from 1 day to 
210 days). However, by the end of the storage period, both HPP and control samples 
showed lower scores in sensory analysis (Rubio et al.  2007a ). In the aforementioned 
studies, the authors suggest that the ripening process leads to color stabilization due 
to transformation of  my  oglobin into nitrosylmyoglobin and nitrosyl-haemochrome, 
as described previously (Carlez et al.  1995 ; Cheftel and Culioli  1997 ).  

26.3.3.2    Dry-Cured Ham and Other Dry-Cured Muscles 

 Many recent studies have dealt with HPP effects, not only on dry-cured whole- 
muscle products such as pork dry-cured ham and loin but also dry-cured  beef mus-
cles ( cecina ).   In a study with vacuum-packaged pieces of Parma ham (elaborated 
without nitrites and ripened for 14 and 18 months) subjected to HPP (600 MPa, 9 
min), pressurized hams showed a lightness ( L  * ) and yellowness ( b  * ) increase and a 
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redness ( a  * ) decrease in both HPP 14– and 18–month ripened hams, although red-
ness decrease was lower in HPP 18-month hams. Instrumental color measurements 
were in concordance with the visual color evaluation, since lower visual color inten-
sity was observed in HPP hams, with differences being more marked in 14 – month 
hams. With regard to sensory evaluation,  HPP hams   showed higher salty taste, 
fi brousness on chewing, and consistency (described as resistance to compression) 
than unprocessed hams. However, HPP differences were lower in hams aged for 18 
months in comparison with those aged for 14 months. Longer-ripened hams (18 
months) undergo higher dehydration and, presumably, have higher pigment stability 
and are therefore less exposed to HPP changes because of the protective effect of the 
lower moisture content on color and sensory characteristics (Tanzi et al.  2004 ). 
Parma ham elaboration does not include the use of nitrites, which increase myoglo-
bin stabilization by means of nitrosomyoglobin formation, as reported by Carlez 
et al. ( 1995 ), and this could explain the redness decrease induced by HPP. In another 
study, sliced dry-cured ham (elaborated with nitrites and with an average moisture 
content of 50.2 % in the fi nal product) subjected to HPP (600 MPa, 6 min, 16 °C) 
showed no visual color differences and maintained sensory freshness for up to 120 
days (Garriga et al.  2004 ).  Iberian dry-cured ham   (samples 4 × 3 × 0.3 cm) submitted 
to HPP (200–800 MPa, 15 min, 20 °C) showed a lightness ( L  * ) decrease with HPP, 
although at 600–800 MPa  L  *  values increased back to unprocessed samples. Redness 
( a  * ) decreased with pressure increase up to 600 MPa, whereas at 800 MPa  a  *  values 
increased again above 400 MPa values (Andrés et al.  2004 ). In a similar study, 
slices of Iberian dry-cured ham submitted to HPP (200 and 400 MPa, 15 min, 20 °C) 
showed a lightness ( L  * ) increase, especially at 400 MPa and a redness ( a  * ) decrease 
(Andrés et al.  2006 ). Sliced Iberian and Serrano dry-cured hams subjected to HPP 
(450 MPa, 10 min, 12 °C) did not show color differences except for yellowness ( b  * ) 
in HPP Iberian ham, which was higher than before HPP. No detrimental effect of 
HPP was observed as to the sensory characteristics (score preference of visual 
appearance, fl avor, and texture) of either Iberian or Serrano ham (Morales et al. 
 2006 ). The effect of HPP (400 MPa and 600 MPa, 10 min, 10 °C) on the sensory 
properties of  commercial   dry-cured hams with texture problems, i.e., defective tex-
ture such as pastiness and excessive softness, was evaluated by Serra et al. ( 2006 ) 
in vacuum-packaged slices (1.5 mm thick) alternately assigned to either control or 
HPP. The fl avor attributes of HPP dry-cured hams with defective texture were not 
affected, except for the BF saltiness, which increased at 600 MPa (scores control vs 
HPP, 2.9 vs 4.0). However, HPP reduced adhesiveness and pastiness and increased 
hardness and fi brousness in both  biceps femoris  (Fig.  26.1a ) and  semimembranosus  
(Fig.  26.1    b) muscles. These results show that HPP can be used to improve the sen-
sory texture of pasty and excessively soft dry-cured hams by reducing sensory pasti-
ness and increasing hardness. Furthermore, HPP increase in fi brousness does not 
affect dry-cured ham texture negatively (Serra et al.  2006 ).

   The effect of HPP (400 MPa, 6 min, 11 °C and 600 MPa, 12–35 min, 20 °C) on 
whole frozen hams at two early stages of the dry-cured ham process (green hams 
and at the end of the resting stage) was studied by Serra et al. ( 2007b ). HPP at the 
green ham stage increased lightness ( L  * ) of the  biceps femoris  muscle (BF) in the 
fi nal product (i.e., dry-cured ham) both at 400 MPa and 600 MPa. Similarly, visual 
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color intensity was lower (higher discoloration) with increasing pressure. At the end 
of the resting stage, HPP effect on the color of dry-cured ham was limited to 
600 MPa. In general, HPP did not much affect the sensory attributes of dry-cured 
ham. Nonetheless, at the green ham stage HPP at 600 MPa decreased sensory crum-
bliness of BF muscle, whereas at the end of the resting stage, HPP at 600 MPa 
decreased crumbliness and increased fi brousness in both BF and  semimembranosus  
muscles of the fi nal dry-cured ham (Serra et al.  2007a ). In a study with a slightly 
different dry-cured ham type, transglutaminase restructured dry-cured hams (boned 
hams with reduced salt content and potassium lactate; fi nal product, 60–65 % mois-
ture content) subjected to HPP (600 MPa, 6 min, 10 °C) showed a pH increase 
(0.2–0.3 units) and a water-holding capacity decrease (centrifugal method). The 
instrumental color of the  biceps femoris  (BF) muscle was affected by HPP, showing 
an increase in lightness ( L  * ), redness ( a  * ), and yellowness ( b  * ) in comparison with 
unprocessed samples. Similarly, HPP also affected the slice appearance by increas-
ing brightness and iridescence and decreasing color homogeneity. Pressurization 
affected both sensory and instrumental (tensile test) texture attributes. HPP increased 
sensory hardness, gumminess, and fi brousness, whereas adhesiveness and pastiness 
incidence and its intensity decreased. The tensile test results showed that the appar-
ent Young’s modulus (high values indicate lower elasticity) and the breaking stress 
increased with HPP. Regarding sensory fl avor, HPP increased saltiness perception, 
sweetness, and umami fl avors (Fulladosa et al.  2009 ). Sliced  biceps femoris  muscle 
from dry-cured Iberian ham and dry-cured Iberian loin submitted to HPP (200 and 
300 MPa, 15 and 30 min, <14 °C) showed no effect on color lightness ( L  * ) and yel-
lowness ( b  * ). In contrast, redness ( a  * ) decreased in dry-cured ham with increasing 
pressure, as it did in HPP dry-cured loin with respect to unprocessed loin, although 
no  a  *  differences were observed between the different pressure levels (Cava et al. 
 2009 ). Iberian dry-cured ham  biceps femoris  muscle (vacuum-packaged slices and 
pieces) subjected to HPP (600 MPa, 6 min, 12 °C) showed no color changes in light-
ness ( L  * ) or yellowness ( b  * ), although redness ( a  * ) decreased slightly and the lean 

  Fig. 26.1    Results of  sensory analysis   of ( a )  biceps femoris  and ( b )  semimembranosus  muscles 
from commercial dry-cured hams with defective texture, i.e., pastiness and excessive softness (– 
Control; · · · 400 MPa; - - - 600 MPa). Least squares means with a common letter are not signifi -
cantly different ( P  > 0.05)       
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appearance was less bright. Concerning sensory attributes, HPP samples were 
harder, chewier, and less juicy and showed higher saltiness, bitterness, cured, and 
overall fl avor scores than unprocessed samples (Fuentes et al.  2010 ). Commercial 
dry-cured hams (5 cm thick slices) of two different salt levels submitted to HPP 
(500 MPa, 7 min, 7 °C) showed higher pink color appearance (i.e., visual lightness), 
sweetness, saltiness, hardness, and stringiness (fi brousness) and lower crumbliness 
than unprocessed samples, irrespective of the salt content (Guerrero et al.  2010 ). 
Commercial vacuum-packaged sliced dry-cured pork loin subjected to HPP (300–
400 MPa, 10 min, 20 °C) showed a lightness ( L  * ) increase and a redness ( a  * ) decrease 
above 300 MPa, which were observed throughout the storage time (Campus et al. 
 2008 ). Vacuum-packaged pieces of pork  longissimus  muscle, salted either with 
NaCl or KCl, without nitrites and dried at different moisture contents, were submit-
ted to HPP (600 MPa, 6 min, 12 °C). Irrespective of the salting treatment, HPP 
increased lightness ( L  * ) and sensory fi brousness at moisture contents above 50 %, as 
shown in Figs.  26.2  and  26.3    , respectively. However, in the driest samples (below 50 
% moisture content), no differences were observed between HPP and unprocessed 
loins. The visual color appearance was lighter in HPP samples in agreement with 
the  L  *  increase. Furthermore, visual redness was lower in HPP, although no differ-
ences were observed for either  a  *  or  b  *  (Serra et al.  2009 ). Dry-cured beef  Cecina de 
León  (a salted, smoked, and dried traditional product from northwestern Spain) was 
subjected to HPP (500 MPa, 5 min, 18 °C) in vacuum-packaged cuts (4–5 cm) and 
slices (1.5 mm). HPP did not affect  Cecina de León  instrumental color ( L  * ,  a  * , 
and  b  * ), texture (TPA), or sensory attributes (Rubio et al.  2007b ).

  Fig. 26.2    Effect of  HPP   on the relationship between instrumental lightness ( L  * ) and moisture 
content (%) in pork  longissimus  muscle salted and dried at different levels ( fi lled circle  Control; 
 open triangle  600 MPa)       
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    As a general conclusion, HPP of dry-cured meat products increases lightness 
( L  * ), decreases redness ( a  * ), and affects both sensory texture and fl avor by increas-
ing fi brousness, hardness, and saltiness. However, it is worth mentioning that in 
most cases these changes fall within the intrinsic product variability range and, 
therefore, changes are not to be seen as negative, but as slight product modifi cations. 
Furthermore, the extent of most HPP changes in dry-cured meat products is deter-
mined by the moisture content of the product, i.e., the moister the product, the big-
ger the HPP changes expected.       
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