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         Only recently has the complexity of adipose tissue become more apparent and 
appreciated. The two well-known forms of adipose tissue have been recognized: 
brown and white. Historically, these have been seen as two separate entities, with 
brown adipose tissue (BAT) primarily playing its role in thermogenesis through 
uncoupling protein 1, and white adipose tissue (WAT) with its role as fat storage 
[ 1 – 4 ]. Even this concept is riddled with controversy given the transdifferentiation 
and plasticity that exists between these two, as observed with alterations in tempera-
ture, pregnancy and lactation, and fasting and obesity [ 5 ,  6 ]. This chapter, however, 
focuses on white adipose tissue, and its derangement with the onset and progression 
of obesity and insulin resistance. It begins with a brief overview characterizing 
white adipose tissue and the adipocyte, and then proceeds to a discussion regarding 
the multifaceted dysfunction that accompanies obesity. 

5.1     White Adipose Tissue 

   Less than 50 % of white adipose tissue is  composed      of preadipocytes and lipid-fi lled 
adipocytes [ 7 ,  8 ]. White adipose tissue is also composed not only of precursors, but 
also stromal cells, endothelial cells, fi broblasts, and a multitude of immune cells 
including macrophages, lymphocytes, natural killer cells, and mast cells [ 5 ,  9 ,  10 ]. 
M1 Macrophages, induced by pro-infl ammatory cytokines, are found in equal 
amounts to M2 macrophages, induced by anti-infl ammatory cytokines [ 11 ]. The 
mature adipocytes are responsible for synthesis, storage (in the form of the lipid 
droplet), and mobilization of triglycerides [ 12 ,  13 ]. Adipocytes are organized into 
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lobules separated and surrounded by loose connective tissue organized in an extra-
cellular matrix composed primarily of collagen [ 13 ]. 

 In humans, the major fat depots are intra-abdominal including omental and mes-
enteric (visceral), lower body including gluteal, intramuscular, subcutaneous lower 
body, and subcutaneous upper body fat [ 14 ] The distribution of WAT within these 
sites varies signifi cantly between sexes and individuals, with central obesity por-
tending a higher risk of diabetes, dyslipidemia, and several other comorbidities, 
along with mortality [ 15 ]. The importance of this distribution is noteworthy even in 
normal weight individuals with centrally focused obesity [ 16 ]. Signifi cant func-
tional regional differences lie with regards to free fatty acid (FFA) release, hyperpla-
sia and/or hypertrophy, preadipocyte characteristics, and adipocytokine secretion 
[ 14 ,  17 – 19 ]. 

 Innervation to WAT is primarily mediated via the sympathetic nervous system 
(SNS). Youngstrom and Bartness supplied evidence when single neuron tract trac-
ing was used to demonstrate postganglionic sympathetic innervation bidirectionally 
[ 20 ]. Along with insulin, SNS is a primary mediator of lipolysis in WAT [ 21 ]. 
Mansfi eld fi rst observed this in 1913 after witnessing that patients with hemiplegia 
and cancer cachexia only mobilized lipid from their neurally intact leg [ 21 ,  22 ]. 
Further evidence in support of SNS function has been observed in a number of ani-
mal models in which surgical denervation of SNS to WAT blocks or attenuates 
lipolysis with food deprivation [ 23 – 26 ].    

5.2     Brief Overview: Adipocyte Function 

    As noted above, the lipid  droplets      composing the adipocytes are specialized in 
energy storage and release. Glucose transport and lipogenesis are stimulated by 
insulin. Once activated by insulin, glucose transport activity is redistributed from 
intracellular to the plasma membrane [ 27 ,  28 ]. The transport is mediated via mem-
brane transporters belonging to the Major Facilitator Superfamily, part of the Glut 
protein family [ 29 ]. Most studied is Glut4, whose role has been highlighted in sce-
narios in which mice without Glut4 in adipose tissue develop adipocyte and sys-
temic insulin resistance, whereas mice with overexpression are protected [ 30 ,  31 ]. 
The uptaken glucose then serves as the substrate for pyruvate and glycerol-3- 
phosphate and then the production of triglycerides. The other manner of increasing 
lipid storage is via direct uptake, in which insulin remains the main regulator. Fatty 
acids delivered via diet are esterifi ed and bound to a glycerol backbone, and then 
stored as triglycerides in the lipid droplet. Triglycerides can then be hydrolyzed 
back into fatty acids and 2-monoacylglycerol by  lipoprotein lipase (LPL).   Notably, 
the LPL gene promoter is activated by the transcription factors sterol regulatory 
element- binding protein (SREBP) 1 and 2, and  peroxisome proliferator-activated 
receptor γ (PPARγ)   [ 32 ,  33 ]. While PPARγ is expressed in many tissues, it is 30–40-
fold higher in WAT [ 34 ]. Its importance in lipid homeostasis is no more highlighted 
in serving as the main target for the thiazolidinedione receptor class of 
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insulin-sensitizing drugs, in serving its role in adipogenesis [ 35 – 37 ]. Thus, adipo-
cytes have a crucial role in controlling circulating FFA levels (Fig.  5.1 ).

   More recently, the endocrine role of adipocytes has been gaining attention 
given its relative complexity and underlying pathologic involvement in a number 
of disease states. Adipose tissue synthesizes and secretes a number of different 
proteins with systemic action, termed adipocytokines, or adipokines [ 38 – 40 ]. 
While more than 100 different adipokines have been identifi ed, proteomic studies 
have indicated the possibility of several hundreds. Their roles vary, and include 
controlling appetite, insulin sensitivity, blood pressure, hemostasis, and infl amma-
tion [ 12 ,  41 ,  42 ]. They also affect several organs, including the liver, pancreas, and 
muscle, along with the central nervous system [ 43 ]. The adipocyte’s role in infl am-
mation has been of particular interest given its ability to secrete a variety of the 
well-known cytokines and chemokines including TNF-α, IL-1β, IL-6, IL-10, and 
several others [ 44 ,  45 ]. Few others have garnered particular interest as well, nota-
bly leptin and adiponectin. Leptin, fi rst identifi ed by Friedman and colleagues in 
1994, serves a primarily antidiabetic role modulating food intake and energy 
expenditure, regulating hepatic lipogenesis, and enhancing muscle fatty acid oxi-
dation [ 43 ,  46 – 48 ]. It has been shown to protect mice from obesity as well [ 49 ]. 
Thus, leptin concentration increases as the proportion of stored fat increases [ 50 ]. 
Adiponectin has roles in insulin sensitizing, as an anti-infl ammatory agent, and is 
anti-atherogenic in character [ 51 – 53 ].     
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  Fig. 5.1    Lean adipose in insulin-sensitive state. The  adipocyte      is responsive to insulin stimulation, 
thus prompting glucose uptake via Glut4 transporter, and free fatty acid uptake (FFA). Glucose is 
converted to glycerol and is combined with FFA to form triglycerides. PPARγ promotes triglycer-
ide synthesis and lipoprotein lipase activity. As noted, the drug class of thiazolidinediones (TZD) 
increases PPARγ activity. Adapted from Guilherme et al. [ 60 ]       
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5.3     Obesity and Changes to the Adipocyte and WAT 

     Globally, it has long been observed that  the            prevalence of obesity has been on the 
rise. This is not only true in the adult population, but also alarmingly so in the pedi-
atric population, with potentially signifi cant impact on the future of health care [ 54 ]. 
Long-known associated risks of obesity include type 2 diabetes mellitus (T2DM), 
cardiovascular disease, arthritis, and increased mortality, among others [ 55 – 58 ]. 
These pathologic outcomes are the product of signifi cant changes resulting primar-
ily from an energy imbalance, and start at the level of cellular mechanisms involv-
ing the adipocyte, its relation its neighboring cells, and beyond with its interplay 
with the body as a whole. 

 With persistent consumption of calories in excess of expenditure naturally comes 
the demand for increasing storage capacity. During states of excess, lipogenic 
enzymes, localized in the cytoplasm and endoplasmic reticulum (ER), synthesize 
triglyceride, which is then incorporated into the fat droplet. Adipocytes have a sig-
nifi cant capacity to synthesize and store triglycerides. Early on, adipocytes compen-
sate for the increase FFA load by increased expression of enzymes associated with 
triglyceride synthesis [ 59 ]. With progression, accommodation occurs via hypertro-
phy and hyperplasia [ 60 ]. Regional tissue variability associated with adipogenesis 
has been observed. Intraperitoneal (visceral) fat general enlarges via hypertrophy, 
whereas regions of subcutaneous fat tend to expand via hyperplasia [ 61 ]. It has been 
suggested in animal models that hyperplasia occurs fi rst in increasing the number of 
preadipocytes, and then proceeding to mature adipocytes [ 62 ]. While much remains 
to be delineated, larger cells release more FFA, which may underlie the signifi cance 
of fat distribution and elevated free fatty acid levels in obesity. This was portrayed 
in a mouse model in which overdevelopment of subcutaneous adipose tissue resulted 
improved glucose and lipid homeostasis [ 63 ]. Thus, and not surprisingly, visceral 
adipose tissue is signifi cantly linked to increased risk of cardiovascular disease and 
a strong predictor for developing T2DM, and may act as a surrogate marker for 
ectopic fat distribution, namely the liver and muscle [ 64 ,  65 ]. Another regional dif-
ference is the signifi cantly greater FFA release in upper body in addition to the 
aforementioned visceral fat, when compared to the nonobese or lower body-obese 
state. Hence, lower body stores, mainly the gluteo-femoral region, may be viewed 
as a protective metabolic region [ 66 ]. Aging and sedentary lifestyles also serve as 
factors in increasing the ratio of visceral to subcutaneous fat [ 67 ]. 

 Histologically, beyond the changes to the adipocytes themselves, macrophage 
infi ltration increases in WAT. Macrophages typically organize in a ring around the 
adipocyte; such organization is specifi c to adipose tissue, and more prevalent in 
visceral WAT than subcutaneous WAT, and intimates their role in the phagocytosis 
of necrotic adipocytes [ 68 ]. In contrast to the relative balance of M1 and M2 mac-
rophages, these macrophages are M1, and thus pro-infl ammatory in nature. T-cell 
infi ltration is also present in WAT without an increase in systemic circulation, pre-
sumably due to dysfunctional adipokine release, discussed below [ 69 ]. Not surpris-
ingly, accompanying the pro-infl ammatory state is fi brosis of the extracellular 
matrix, organized in clusters and fi brotic bundles, and surrounding adipocytes [ 70 ]. 
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Interestingly, M2 macrophages expressing higher levels of tumor growth factor β 
(TGFβ), which stimulates collage VI production, were found in greater number. 
They also express increased IL-1, suggesting more of a pro-infl ammatory role con-
trasting M2 macrophages in the non-obese state [ 71 ]. It has been shown that patients 
with a higher degree of adipose tissue fi brosis were found to lose less fat mass after 
gastric bypass, and that fi brosis may serve a protective role in omental WAT in limit-
ing hypertrophy and its associated deleterious effects [ 70 ].      

5.4     Excessive FFA, Ectopic Fat Deposition, 
and Insulin Resistance 

       Naturally, with progression of  obesity                  comes an increased release of FFAs into the 
blood stream [ 72 ]. Circulating levels of FFAs are a signifi cant mediator connecting 
obesity with insulin resistance. Elevated levels have been shown to cause insulin 
resistance in both animals and humans, with an acute decrease in levels resulting in 
enhanced insulin activity and peripheral glucose uptake [ 73 ,  74 ]. With the accumu-
lation of fatty acids and its metabolites, activation via phosphorylation of serine 
kinases such as JNK and IKK results in blocking and inactivating insulin receptors. 
Said mechanism is present in a multitude of cells including adipocytes, myocytes, 
and hepatocytes [ 75 – 77 ]. Knockout mouse models of JNK and IKK show resistance 
to the effects of high fat diet on insulin receptor signaling [ 78 ,  79 ]. JNK is required 
for FFA-mediated macrophage release of infl ammatory cytokines such as TNFα, 
IL-6, and MCP-1 [ 80 ]. Additionally, FFAs may induce insulin resistance via their 
activation of  Toll-like receptors (TLR)   on adipocytes and macrophages, as mutation 
of TLR4 prevents obesity and insulin resistance in mice on a high fat diet [ 60 ,  81 ,  82 ]. 
Mice with myeloid-specifi c TLR4 deletion became obese on a high fat diet but were 
protected from insulin resistance [ 83 ]. Cells from TLR4 knock out mice were unre-
sponsive to the infl ammatory effects of FFAs [ 82 ,  84 ]. One of the end results is 
decreased membrane mediated glucose transport via disruption of Glut4. As such, 
hyperinsulinemia ensues as compensation [ 84 ] (Fig.  5.2 ).

   At a cellular level, obesity decreases the rate of lipid turnover, and is related to 
decreased catecholamine stimulated lipolysis given the sympathetic innervation of 
WAT [ 85 – 87 ]. The primary mediators of lipolysis are adipose triglyceride lipase 
(ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase (MGL) [ 88 ]. 
HSL is responsible for converting triacylglycerol to diacylglycerol and monoacylg-
lycerol, while  ATGL   participates in fat mobilization and  MGL   in the fi nal hydroly-
sis of the 2-monoacylglycerols produced by HSL [ 89 ]. ATGL is important for basal 
lipolysis, whereas HSL is important during catecholamine-stimulated lipolysis, via 
the SNS, as previously noted [ 90 ]. Obesity results in signifi cantly decreased HSL 
and ATGL in obese patients. Regionally, ATGL is not signifi cantly different between 
omental and subcutaneous storage depots, but  HSL   does differ and is much higher 
in omental stores correlating with adipocyte size and fasting plasma insulin concen-
trations [ 91 ]. The activity of HSL is further affected by a blunted catecholamine 
response seen in obesity, correlating with the notion that catecholamines exert their 
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strongest infl uence over visceral fat [ 92 ]. Hypertrophy, observed more so in visceral 
obesity, correlates with a decrease in lipolytic activity governed by a higher density 
of α-2 adrenergic receptors, and a lower density of lipolytic β-1/2 adrenergic recep-
tors presumably in an effort to limit contributing to the already elevated circulating 
FFA levels [ 92 ,  93 ]. 

 Once FFA storage capacity has been met coupled with the decreased lipid mobi-
lization, a spillover effect is observed, at which point organs are exposed to the 
deleterious effects of unoxidized FFA. Increased hepatic FFA uptake results in 
hepatic steatosis, then worsening insulin resistance and hyperglycemia in addition 
to leading to nonalcoholic steatotic hepatitis (NASH)    [ 94 ]. Evidence suggests that 
hepatic fat is strongly associated with insulin resistance [ 95 ,  96 ]. As visceral fat 
increases, so does hepatic delivery via the splanchnic bed, more selectively so than 
increases in subcutaneous fat do [ 94 ]. This in turn stimulates hepatic VLDL- 
triglyceride production [ 97 ]. FFA deposition and intracellular accumulation may 
also be observed in muscle, pancreatic β-cells, and the heart, which exacerbate 

  Fig. 5.2    Hypertrophic adipocyte in infl ammatory state. Adipocyte hypertrophy results in increased 
free fatty acid (FFA). With the increased  FFA      comes mitochondrial oxidative stress and endoplas-
mic reticulum stress. This in turn results in increased reactive oxidative species (ROS) and activa-
tion of the unfolded protein response (UPR). Infl ammatory cytokines like TNFα lead to increased 
activation of the proinfl ammatory pathway NF-κB, decreased cellular insulin responsiveness, and 
decreased PPARγ and lipoprotein lipase activity. Adapted from Guilherme et al. and de Ferranti 
et al. [ 60 ,  101 ]       
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insulin resistance perpetuating a vicious cycle [ 98 ]. Elevated circulating FFA is 
also associated with inhibition of carbohydrate oxidation and glycogen synthesis 
in muscle [ 99 ]. The direct lipotoxicity to pancreatic β-cells is signifi cant as it can 
lead to their dysfunction and apoptosis hindering their capacity to accommodate 
the metabolic derangement at a time of increased insulin requirements [ 100 ,  101 ]. 
In rodents, lipid accumulation in cardiac myocytes results in cellular damage and 
ventricular dysfunction [ 98 ]. The effects of ectopic distribution of adipose tissue 
are observed as well in lipodystrophic patients with defects in triglyceride storage 
in adipose tissue, and in mice without WAT, as both populations exhibit severe 
insulin resistance. Upon surgical transplantation of functional adipose tissue in 
mice, there is a dramatic reversal of hyperglycemia, hyperinsulinemia, and insulin 
resistance [ 102 ,  103 ]. 

 As noted earlier, the effective nature of thiazolidinediones is due to their action 
on PPARγ receptors which stimulate FFA uptake by subcutaneous adipocytes 
resulting in decreased ectopic fat distribution and the increased insulin sensitivity 
[ 104 ].  PPARγ   is also present in macrophages where they negatively regulate a 
multitude of infl ammatory genes [ 105 ]. In PPARγ knockout mice, insulin resis-
tance is impaired, and worsens following high-fat feeding [ 106 ,  107 ]. An impor-
tant aspect of adipocyte dysfunction arises from downregulation of PPARγ by 
infl ammatory cytokines, and in particular TNFα, both from macrophages and 
adipocytes. TNFα has been shown to negatively impact PPARγ in many ways, 
including transcription, posttranscription, and translation [ 108 ]. When treated with 
TNFα, PPARγ mRNA is more rapidly turned over in adipocytes [ 109 ]. Another 
factor negatively affecting PPARγ expression in preadipocytes and adipocytes is 
hypoxia. This may also be the underlying reason for the inhibited adipocyte 
differentiation in a hypoxic state [ 110 ].        

5.5     Hypoxia and Inflammation 

     As indicated by the histologic  changes            accompanying obesity, infl ammatory 
changes are a signifi cant driver of pathogenicity as well. With the advent of hyper-
plasia and more so hypertrophy comes macrophage infi ltration and aggregation 
around necrotic adipocytes. Adipocytes enlarge to accommodate for the increased 
FFA load. However, their growth will then reach a limit given restraints from oxy-
gen tension, which could explain the ensuing cell death and initiation of macro-
phage infi ltration [ 68 ,  111 ]. The degree of infi ltration correlates with obesity and 
insulin resistance regardless of BMI. Thus, of two similarly obese patients, the 
patient with increased macrophage infi ltration will exhibit worse insulin resistance 
[ 112 ]. The concept of hypoxia-induced infl ammation is supported given that adipo-
cytes can increase in size to up to 200 μM in the obese state which is similar to or 
greater than that of normal oxygen diffusion distance, and although lean patients 
have the ability to increase postprandial blood fl ow to WAT, no such increase in 
blood fl ow is observed in obese patients [ 113 ,  114 ]. Both qualitative and quantita-
tive studies via the hypoxyprobe system and needle-type fi ber-optic O 2  sensor, 

5 Adipocyte Dysfunction, Infl ammation, and Insulin Resistance in Obesity



68

respectively, have also demonstrated hypoxia present in adipose tissue in the obese 
mouse model [ 8 ,  115 ,  116 ]. Macrophage tissue infi ltration is evident in hypoxic tis-
sue areas as well, thus providing a link between hypoxia, adipocyte stress and apop-
tosis, and infl ammation [ 114 ]. In humans, the PO 2  of oxygen has been observed to 
be decreased in the adipose tissue of obese patients, when compared to lean coun-
terparts, with PO 2  levels inversely correlating with percent body fat [ 117 ]. 

 One of the main aspects lending support to hypoxia as a factor in infl ammation 
is the up-regulation of hypoxic induced factors, mainly  hypoxia-inducible factor 1α 
(HIF-1α)  , a key regulator of oxygen homeostasis [ 118 ]. Using a transgenic mouse 
model of HIF-1α overexpression, adipose tissue fi brosis and increased local infl am-
mation are observed [ 119 ]. With selective pharmacologic and genetic inhibition of 
HIF-1α activity, high-fat diet-fed obese mice demonstrated signifi cant metabolic 
improvements and reduced infl ammation in WAT [ 120 ]. A key role in the increased 
infl ammation may be the role HIF-1α has in downregulating the expression of 
PPARγ [ 110 ].      

5.6     Inflammation, Endoplasmic Reticulum, 
and Mitochondria 

       As the demand for increased lipid storage expands,                   so does the capacity and activity 
of the adipocyte endoplasmic reticulum, which is responsible for synthesizing pro-
teins, forming lipid droplets, and regulating cholesterol [ 101 ]. Thus, with obesity 
and increasing FFA load, ER “stress” develops. This state is characterized by its 
functional disturbance in which case proper folding and modifi cation of proteins 
and lipid droplet creation are disturbed [ 101 ]. The ER is able to identify the imbal-
ance in supply and production via the Unfolded Protein Response (UPR), which is 
subsequently activated through its three arms: PKR-like eukaryotic initiation factor 
2α kinase (PERK), inositol-requiring enzyme-1 (IRE-1), and activating transcrip-
tion factor-6 (ATF-6) [ 121 ,  122 ].  PERK   activation leads to decreased protein trans-
lation and increased expression of a multitude of genes, including those related to 
apoptosis [ 123 ]. Another  UPR   response is to induce transcription of chaperones to 
assist with the increasing volume of unfolded proteins. IRE-1 contributes to the 
increase in chaperone proteins produced to assist with the unfolded protein load, 
while ATF-6 is responsible for increasing the expression of ER degradation- 
enhancing α-mannosidase like protein (EDEM) facilitating the clearance of chaper-
one proteins [ 124 ,  125 ]. The increased chaperone load is likely responsible for the 
increased oxidative stress via increased  reactive oxidative species (ROS)   from 
mediating oxidation-reduction reactions [ 121 ,  126 ]. IRE-1 also upregulates JNK 
and IKK resulting in increased expression of infl ammatory genes responsible for 
increased cytokine production [ 127 ,  128 ]. While the goal of such changes brought 
about by UPR  are   for preserving cell function and stressor accommodation, the end 
result of inadequate adaptation may yet be apoptosis [ 121 ]. 

 Mitochondria also exhibit signs of distress, not only in adipocytes, but in multi-
ple organs as well. Increases in FFA causes increased release of  ROS   in obese 
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patients [ 129 ]. Lipid infusion in lean human subjects results in decreased mRNAs 
for many mitochondrial genes [ 130 ]. Mitochondrial dysfunction is evident in the 
pancreas, liver, and muscle as well [ 125 ,  131 ,  132 ]. In the pancreas, insulin produc-
tion is negatively affected by ROS. In muscle, there is decreased fat oxidation and 
ectopic fat accumulation contributing to insulin resistance [ 133 ]. Increased intra-
myocellular lipid content has been observed with down-regulation of genes encod-
ing mitochondrial respiratory complexes I–IV, and genes responsible for cytochrome 
c oxidase complexes I and III which are subunits of the electron transport chain 
[ 134 ,  135 ].  PPARγ   is responsible for controlling mitochondrial gene subsets, and 
with its reduced activity may contribute to the decreased mitochondrial function 
[ 136 ]. Also contributing to the decreased mitochondrial function is the increased 
amount of infl ammatory cytokines [ 137 ]. Notably, with the mitochondrial dysfunc-
tion comes decreased fatty acid oxidation and metabolites that inhibit glucose trans-
port [ 138 ]. 

 The presence of  ROS   associated with obesity is thought to play a central role in 
the decreased mitochondrial activity [ 139 ]. Once again, with the elevated FFA lev-
els in obesity comes increased ROS [ 140 ]. In diabetic patients, endothelial cells 
portray elevated ROS via NADPH oxidase activation [ 141 ]. Mice overexpressing 
superoxide dismutase 2 have decreased levels of ROS, improved hepatic insulin 
sensitivity, and normalization of glucose and insulin levels [ 142 ]. In rats, soleus 
muscle exposure to nitric oxide donors caused decreased insulin sensitivity, and 
were associated with decreased insulin-stimulated phosphorylation of insulin recep-
tor (IR) and insulin receptor substrate-1 (IRS-1), critical in the insulin intracellular 
signaling pathway [ 143 ]. Other kinases are also activated, including JNK and NFκB, 
further inhibiting IRS-1 progressing insulin resistance [ 144 – 146 ]. 

  Uncoupling proteins (UCP)   are mitochondrial inner membrane proteins that 
mediate the coupling of electrons through the electron transport chain, primarily 
allowing for a proton leak through the inner membrane [ 147 ]. UCP2 is expressed in 
several tissues, and because of its distribution in multiple tissues, it has been hypoth-
esized to have a signifi cant role in decreasing ROS, thus protecting against oxidative 
stress [ 148 ,  149 ]. At the same time, several studies have shown that increased UCP2 
production leads to decreased insulin secretion from pancreatic β cells, predispos-
ing to diabetes mellitus [ 150 – 152 ]. In UCP2 knockout mice, pancreatic islets have 
increased insulin secretion in response to glucose when compared to wild-type mice 
[ 153 ]. Furthermore, double-mutant leptin/UCP2 knockouts also have improved beta 
cell function independent of obesity [ 153 ]. FFAs seem to be a key mediator of 
UCP2 as in preadipocytes, UCP2 mRNA expression increases signifi cantly when 
exposed to FFAs [ 154 ].        

5.7     Inflammation and Adipocytokines 

     The complex role of the adipocyte as  an            endocrine organ has gained signifi cant 
attention given its ability to secrete several different types of factors. With the infi l-
tration of macrophages into adipose tissue, cytokine secretion accompanies and 
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infl uences the adipose tissue environment. FFAs have been shown to strongly stimu-
late  TNF-α   production in macrophages via TLR4 receptor activating NFκB [ 155 ]. 
Further activation from ER stress and UPR along with secretion from adipocytes 
also increases local TNF-α concentration [ 121 ]. Conversely, TNF-α secretion inhib-
its lipoprotein lipase activity, thus increasing FFA release from adipocytes [ 156 ]. 
Thus, a vicious paracrine loop develops that perpetuates the macrophage-adipocyte 
infl ammatory state [ 157 ]. TNF-α leads to activation of JNK1 via phosphorylation of 
IRS-1 and its inhibition, as mentioned above, linking TNF-α with insulin resistance 
[ 158 ]. The cycle is worsened as adipocyte hypertrophy develops given their capac-
ity for increased FFA release [ 63 ]. TNF-α also decreases adiponectin secretion, 
whose actions result in increased insulin sensitivity by decreasing hepatic glucose 
production and increasing fatty acid oxidation in both liver and muscle [ 159 ]. 
Multiple studies have implicated low adiponectin levels as a strong indicator for the 
development of insulin resistance and T2DM [ 160 ,  161 ]. Adiponectin-defi cient 
mice develop insulin resistance in the setting of elevated TNF-α and reduced respon-
siveness to PPARγ [ 161 ]. Adiponectin acts via its two receptors, AdipoR1 and 
AdipoR2. AdipoR1 is universally expressed whereas AdipoR2 is primarily local-
ized to the liver. Mouse knockouts of these two receptors have increased lipid accu-
mulation, and infl ammation, and exhibit increased insulin resistance [ 43 ,  160 ,  162 ]. 

 Whereas adiponectin production is decreased in hypertrophic and infl amed tis-
sue, leptin production is signifi cantly increased [ 50 ]. In leptin-defi cient mice mod-
els and humans, leptin administration leads to decreased hyperphagia and reduced 
body mass [ 163 ]. However, it has also been seen to increase IL-6 and TNF-α pro-
duction by macrophages [ 164 ]. Leptin acts via a number of different pathways 
including the JAK-STAT pathway which regulates the expression of anorexic neu-
ropeptides, and the phosphatylinositol-3-kinase pathway which stimulates insulin 
sensitivity in peripheral tissues [ 43 ,  165 ]. The interesting concept of leptin resis-
tance, similar to insulin resistance, has also been proposed, and been shown in states 
of infl ammation whereby subsequent metabolic stress negatively regulates leptin 
signaling [ 166 ]. Similar resistance has been proposed to be evident in the hypo-
thalamus as well [ 167 ]. Overall, energy expenditure and appetite remains poorly 
controlled even as leptin levels increase in obese patients [ 43 ,  163 ]. 

 Other chemokines play important roles in attracting macrophages and perpetuat-
ing the infl ammatory response, including IL-6 and monocyte chemotactic protein I 
(MCP-I). Other factors are also released from adipocytes, which increase macro-
phage diapedesis, including PECAM-I and ICAM-I [ 168 – 170 ].      

5.8     Conclusion 

 The complexity that characterizes insulin resistance is underscored by the remark-
able evolution of our understanding of the adipocyte and its role in metabolic 
homeostasis. The mechanisms underlying the progression from an insulin sensitive 
state to that of adipocyte dysfunction, infl ammation, and local and systemic insulin 
resistance are complex, and include a series of vicious cycles that perpetuate the 
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infl ammatory state. As we continue to delineate the mechanisms that accompany 
the changes in the adipocyte correlating with obesity, potential therapeutic targets 
will continue to emerge. For now, surgery will continue to serve as one of the main-
stays in the treatment of obesity, and will remain a source for potential answers in 
reversing some of the deleterious effects of obesity and insulin resistance.     
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