
Background Independence, Diffeomorphism
Invariance and the Meaning of Coordinates

Oliver Pooley

Abstract Diffeomorphism invariance is sometimes taken to be a criterion of
background independence. This claim is commonly accompanied by a second that the
genuine physical magnitudes (the “observables”) of background-independent theo-
ries and those of background-dependent (non-diffeomorphism-invariant) theories are
essentially different in nature. I argue against both claims. Background-dependent
theories can be formulated in a diffeomorphism-invariant manner. This suggests that
the nature of the physical magnitudes of relevantly analogous theories (one back-
ground free, the other background dependent) is essentially the same. The temptation
to think otherwise stems from a misunderstanding of the meaning of spacetime coor-
dinates in background-dependent theories.

1 What is so Special about General Relativity?

According to a familiar and plausible view, the core of Einstein’s general theory of
relativity (GR) is what was, in 1915, a radically new way of understanding grav-
itation. In pre-relativistic theories, whether Newtonian or specially relativistic, the
structure of spacetime is taken to be fixed, varying neither in time nor from solution
to solution. Gravitational phenomena are assumed to be the result of the action of
gravitational forces, diverting gravitating bodies from the natural motions defined by
this fixed spacetime structure. According to GR, in contrast, freely falling bodies are
force free; their trajectories are natural motions. Gravity is understood in terms of a
mutable spacetime structure. Bodies act gravitationally on one another by affecting
the curvature of spacetime. “Space acts on matter, telling it how to move. In turn,
matter reacts back on space, telling it how to curve” [41, 5]. Note that the first of
the claims in the quotation is as true in pre-relativistic theories as it is in GR, at
least according to the substantivalist view, which takes spacetime structure in such a
theory to be an independent element of reality. The novelty of GR lies in the second
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claim: spacetime curvature varies, in time (and space) and across models, and the
material content of spacetime affects how it does so.

This sketch of the basic character of GR has two separable elements. One is
the interpretation of the metric field, gab, as intrinsically geometrical: gravitational
phenomena are to be understood in terms of the curvature of spacetime. The second
is the stress on the dynamical nature of the metric field: the fact that it has its own
degrees of freedom and, in particular, that their evolution is affected bymatter. While
I believe that both of these are genuine (and novel) features of GR, my focus in this
paper is on the second. Those who reject the emphasis on geometry are likely to
claim that the second element by itself encapsulates the true conceptual revolution
ushered in by GR. Non-dynamical fields, such as the spacetime structures of pre-
relativistic physics, are now standardly labelled background fields (although which
of their features qualifies them for this status is a subtle business, to be explored
in what follows). On the view being considered, the essential novelty of GR is that
such background structures have been excised from physics; GR is the prototypical
background-independent theory1 (as it happens, a prototype yet to be improved
upon).

Although this paper is about this notion of background independence, the question
of the geometrical status of the metric field cannot be avoided entirely. In arguing
against the interpretation of GR as fundamentally about spacetime geometry, Ander-
son writes

What was not clear in the beginning but by now has been recognised is that one does not
need the “geometrical” hypotheses of the theory, namely, the identification of a metric with
the gravitational field, the assumption of geodesic motion, and the assumption that “ideal”
clocks measure proper time as determined by this metric. Indeed, we know that both of
these latter assumptions follow as approximate results directly from the field equations of
the theory without further assumptions. [3, 528]

There is at least the suggestion here that GR differs from pre-relativistic theories
not only in lacking non-dynamical, background structures but also in terms of how
one of its structures, the “gravitational field”, acquires geometrical meaning: the
appropriate behaviour of test bodies and clocks can be derived, approximately, in the
theory. Does this feature of GR really distinguish it from special relativity (SR)?

Consider, in particular, a clock’s property of measuring the proper time along
its trajectory. In a footnote, Anderson goes on to explain that “the behaviour of
model clocks and what time they measure can be deduced from the equations of

1In what follows I focus specifically on the notion of background independence that is connected
to the idea that background structures are non-dynamical fields. In doing so, I am ignoring several
other (not always closely related) definitions of background independence, including those given by
Gryb [35] (which arises more naturally in the context of Barbour’s 3-space approach to dynamics)
and by Rozali [55] (which arises naturally in string theory). A more serious omission is the lack of
discussion of the definition given by Belot [9], which is motivated by ideas closely related to the
themes of this paper. I hope to explore these connections on another occasion.
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sources of the gravitational and electromagnetic fields which in turn follow from the
field equations” [3, 529]. But the generally relativistic “equations of sources of the
gravitational and electromagnetic fields” are, on the assumption ofminimal coupling,
exactly the same as the equations of motion of an analogue specially relativistic
theory.2 It follows that whatever explanatory modelling one can perform in GR, by
appeal to such equations, to show that some particular material system acts as a good
clock and discloses proper time, is equally an explanation of the behaviour of the
same type of clock in the context of SR. Put differently, it is as true in SR as it is in
GR that the “geometrical” hypothesis linking the behaviour of ideal clocks to the (in
this context) non-dynamical background “metric” field is in principle dispensable.3

2 Einstein on General Covariance

The previous section’s positive characterisation of GR’s essential difference from its
predecessors goes hand-in-hand with a negative claim: GR does not differ from its
predecessors in virtue of being a generally covariant theory. In particular, the general
covariance of GR does not embody a “general principle of relativity” (asserting, for
example, the physical equivalence of observers in arbitrary states of relative motion).
In contrast, the restricted, Lorentz covariance of standard formulations of specially
relativistic physics does embody the (standard) relativity principle. InMichael Fried-
man’s words, “the principle of general covariance has no physical content whatever:
it specifies no particular physical theory; rather it merely expresses our commitment
to a certain style of formulating physical theories” [32, 55].

Notoriously, of course, Einstein thought otherwise, at least initially.4 The restricted
relativity principle of SR and Galilean-covariant Newtonian theories is the claim that
the members of a special class of frames of reference, each in uniform translatory

2That it is only in the GR context that material fields merit the label “sources of the gravitational
field” is, of course, irrelevant.
3In this context, it is interesting to consider Fletcher’s proof that the clock hypothesis holds up
to arbitrary accuracy for sufficiently small light clocks [31]. As is explicit in Fletcher’s paper, his
result is as applicable to accelerating clocks in SR as it is to arbitrarily moving clocks in GR.
Fletcher’s proof assumes only that light travels on null geodesics; it does not make any assumptions
about the fundamental physics, or even (specific) assumptions about the deformation of the spatial
dimensions of the clock. All of this is consistent with one of the morals of the “dynamical approach
to special relativity”, defended in Brown [11] and Brown and Pooley [13], that it is no more of a
brute fact in SR than in GR that real rods and clocks, which are more or less complex solutions
of the laws governing their constituents, map out geometrical properties in the way that they do.
What Fletcher’s proof illustrates is that some interesting results are nonetheless obtainable from
minimalist, high-level physical assumptions. (Note that, in contrast to the position taken in Brown
and Pooley [13], I am here assuming that the structure encoded by the flat metric field of special
relativity corresponds to a primitive element of reality, as was entertained in Brown and Pooley [13,
82, fn 22].)
4The evolution of Einstein’s views is covered in detail by Norton[43, §3]. In this section, I largely
follow Norton’s narrative.
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motion relative to the others, are physically equivalent. In such theories, although no
empirical meaning can be given to the idea of absolute rest, there is a fundamental
distinction between accelerated and unaccelerated motion. Einstein thought this was
problematic, and offered a thought experiment to indicate why.

Consider two fluid bodies, separated by a vast distance, rotating relative to one
another about the line joining their centres. Such relative motion is in principle
observable, and so far our description of the set-up is symmetric with respect to
the two bodies. Now, however, imagine that one body is perfectly spherical while
the other is oblate. A theory satisfying only the restricted principle of relativity is
compatible with this kind of situation. In such a theory, the second body might be
flattened along the line joining the two bodies only because that body is rotating,
not just with respect to other observable bodies, but with respect to the theory’s
privileged, non-accelerating frames of reference. Einstein deemed this an inadequate
explanation. He claimed that appeal to the body’s motion with respect to the invisible
inertial frames was an appeal to a “merely factitious cause”. In Einstein’s view, a
truly satisfactory explanation should cite “observable facts of experience” [24, 113].
A theorywhich in turn explains the (local) inertial frames in terms of the configuration
of (observable) distant masses—that is, a theory satisfying (a version of) Mach’s
Principle—would meet such a requirement.

In his quest for a relativistic theory of gravity, Einstein did not attempt to imple-
ment (this version of) Mach’s principle directly. Instead he believed that the equiva-
lence principle (as he understood it) was the key to extend the relativity principle to
cover frames uniformly accelerating with respect to the inertial frames. In standard
SR, force-free bodies that move uniformly in an inertial frame F are equally acceler-
ated by inertial “pseudo forces” relative to a frame F ′ that is uniformly accelerating
relative to F . According to Einstein’s equivalence principle, the physics of frame
F ′ is strictly identical to that of a “real” inertial frame in which there is a uniform
gravitational field. In other words, the same laws of physics hold in two frames that
accelerate with respect to each other. According to one frame, there is a gravitational
field; according to the other, there is not. The laws that hold with respect to both
frames, therefore, must cover gravitational physics. Einstein took it to follow that
there is no fact of the matter about whether a body is moving uniformly or whether
it is accelerating under the influence of gravitation. The existence of a gravitational
field becomes frame-relative, in a manner allegedly analogous to the frame-relativity
of particular electric and magnetic fields in special relativity.5

The equivalence principle, then, led Einstein to believe both that relativistic laws
covering gravitational phenomena would extend the relativity principle and that the
gravitational field would depend, in a frame-relative manner, on the metric field, gab.
A theory implementing a general principle of relativity would affirm the physical
equivalence of frames of reference in arbitrary relative motion. Einstein took the
physical equivalence of two frames to be captured by the fact that the equations

5For a recent, sympathetic discussion of this aspect of Einstein’s understanding of the equivalence
principle, see Janssen [37].
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expressing the laws of physics take the same form with respect to each of them.6

But general covariance is the property that a theory possesses if its equations retain
their form under smooth but otherwise arbitrary coordinate transformation. Einstein
noted that such coordinate transformations strictly include “those which correspond
to all relative motions of three-dimensional systems of co-ordinates” [24, 117]. He
therefore maintained that any generally covariant theory satisfies a general postulate
of relativity.7

Einstein soon modified his view. Essentially the view expressed by Friedman
in the quotation given above—that any theory can be given a generally covariant
formulation—was put to Einstein by Kretschmann [39].8 In his response, Einstein
conceded the basic point [25]. He identified three principles as at the heart of GR:
(a) the (general) principle of relativity; (b) the equivalence principle; and (c)
Mach’s principle. The relativity principle, at least as characterised in his reply to
Kretschmann, was no longer conceived of in terms of the physical equivalence of
frames of reference in various types of relative motion. Instead it had simply become
the claim that the laws of nature are statements only about spatiotemporal coin-
cidences, from which it was alleged to be an immediate corollary that such laws
“find their natural expression” in generally covariant equations. Mach’s principle
was also given a GR-specific rendition: the claim was that the metric was completely
determined by the masses of bodies.

In another couple of years, as a result of findings by de Sitter and Klein, Einstein
was also forced to accept that his theory did not vindicate Mach’s ideas about the
origin of inertia. His official objection to the spacetime structures of Newtonian and
specially relativistic theories changed accordingly, in order to fit this new reality.9

Einstein conceded that taking Newtonian physics at face value involves taking New-
ton’s Absolute Space to be “some kind of physical reality” [28, 15]. That it has to
be conceived of as something real is, he says, “a fact that physicists have only come
to understand in recent years” [28, 16]. It is absolute, however, not merely in the
substantivalist sense that it exists absolutely. Now Einstein placed emphasis on the
fact that it is not influenced “either by the configuration of matter, or by anything
else” [28, 15]. This violation of the action–reaction principle, rather than its status
as an unobservable causal agent, came to be seen as what is objectionable about
pre-relativistic spacetime. In Einstein’s words, “it is contrary to the mode of thinking

6Recall Einstein’s 1905 statement of the restricted principle of relativity: “The laws by which the
states of physical systems undergo change are not affected,whether these changes of state be referred
to the one or the other of two systems of co-ordinates in uniform translatory motion” [23, 41].
7“Es ist klar, daß eine Physik, welche diesem Postulat [i.e. general covariance] genügt, dem allge-
meinen Relativitätspostulat gerecht wird” [24, 776].
8Kretschmann’s position is more subtle than the headline lesson that is standardly taken from it. In
particular, he relied on a key premise, closely analogous to the central premise of Einstein’s ‘point-
coincidence’ response to his own hole argument that the factual content of a theory is exhausted
by spatiotemporal coincidences between the objects and processes it posits; see Norton [43, §5.1].
The assumption that the basic objects of a theory must be well defined in the sense of differential
geometry has come to play a similar role in modern renditions of Kretschmann’s claim.
9For more on the evolution of this aspect of Einstein’s thinking, see Brown and Lehmkuhl [12].
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in science to conceive of a thing (the space-time continuum) which acts itself, but
which cannot be acted upon” [27, 62].10 It is clear that, while GR fails to fulfil the
Machian goal of providing a reductive account of the local inertial frames, it does
not suffer from this newly identified (alleged) defect of pre-relativistic theories. The
metric structure of GR conditions the evolution of the material content of spacetime,
but it is also, in turn, affected by that content.

This potted review of Einstein’s early pronouncements is intended to show that
he was one of the original advocates of the view outlined in Section 1, namely,
that GR differs from its predecessors, not through lacking the kind of spacetime
structures that such theories have, but by no longer treating that structure as a non-
dynamical background. It also shows that, despite being responsible for the idea
that the general covariance of GR has physical significance as the expression of the
theory’s generalisation of the relativity principle, Einstein himself quickly retreated
from this idea. He continued (mistakenly) to espouse the idea that GR generalised the
principle of relativity, via the equivalence principle, but GR’s general covariance was
no longer taken to be a sufficient condition of its doing so. Instead the implication in
the opposite direction was stressed. General covariance was taken to be a necessary
condition of implementing a general relativity principle: there can be no special
coordinate systems adapted to preferred states of motion in a theory in which there
are no preferred states of motion!

In the immediate wake of Kretschmann’s criticism, one of Einstein’s most reveal-
ing statements concerning the status of general covariance comes in his response to
a paper by Ernst Reichenbächer. There, Einstein contrasts a theory that includes an
acceleration standard with one that does not

if acceleration has absolute meaning, then the nonaccelerated coordinate systems are pre-
ferred by nature, i.e., the laws then must—when referred to them—be different (and simpler)
than the ones referred to accelerated coordinate systems. Then it makes no sense to compli-
cate the formulation of the laws by pressing them into a generally covariant form.

Vice versa, if the laws of nature are such that they do not attain a preferred form through
the choice of coordinate systems of a special state of motion, then one cannot relinquish the
condition of general covariance as a means of research. [26, 205]

From a modern perspective, several things are notable about this passage. First, GR
qualifies as a theory whose laws do not attain a “preferred form through the choice of
coordinate systems of a special state of motion”, not because (as Einstein believed)
acceleration does not have an absolute meaning in the theory, but because the struc-
ture that defines absolute acceleration is no longer homogeneous; in general, it is not
possible to define, over a neighbourhood of a point in spacetime, a coordinate sys-
tem whose lines of constant spatial coordinate are both non-accelerating absolutely

10Similarly, Anderson writes that violation of what he calls a general principle of reciprocity “seems
to be fundamentally unreasonable and unsatisfactory” [1, 192]. As far as I know, neither he nor
Einstein explain why, exactly, such violation is supposed to be objectionable. At the very least,
given Newton’s open-eyed advocacy of absolute space, it seems peculiar to describe it as “contrary
to the mode of scientific thinking.”
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and not accelerating with respect to each other. GR lacks a non-generally covariant
formulation,11 but not for the reason Einstein suggests.

Second, while the equations expressing a theory’s laws might be simpler in a
coordinate system adapted to the theory’s standard of acceleration, it does not fol-
low that these equations, and the equations that hold with respect to accelerated
coordinate systems, express different laws. In fact, it is much more natural to see the
formally different equations as but different coordinate-dependent expressions of the
same relations holding between coordinate-independent entities. As Anderson says
of entities that occur explicitly in a generally covariant formulation of some laws but
which were not apparent in the non-(generally)-covariant equations: “these elements
were there in the first place, although their existence was masked by the fact that they
had been assigned particular values. That is, the gμν [of a generally covariant formu-
lation of a special relativity] are present in [the Lorentz-covariant form of] special
relativity with the fixed preassigned values of the Minkowski metric” [1, 192].12

Finally, while calculation might not be aided by complicating the formulation of
the laws by expressing them generally covariantly, conceptual clarity can be. Real
structures that are only implicit in the non-covariant formalism are laid bare in the
generally covariant formalism, and their status can then be subjected to scrutiny.

In fact, Einstein himself says something quite consonant with these observations
earlier in the same paper

the coordinate system is only a means of description and in itself has nothing to do with the
objects to be described. Only a law of nature in a generally covariant form can do complete
justice in this situation, because in any other way of describing, statements about the means
of description are jumbled with statements about the object to be described. [26, 203]

Einstein’s idea seems to be that coordinates should not have a function beyond the
mere labelling of physical entities, the qualitative character of which is to be fully
described by other means. But this is a basis, not for an argument in favour of laws
that can only be expressed generally covariantly (seemingly Einstein’s intention), but
for an argument for the generally covariant formulation of laws in general, whatever
they be. Ironically, it is an argument that is most relevant to pre-relativistic theories,
not GR, because only in this context can one choose to encode physically meaningful
quantities (spacetime intervals) via special choices of coordinate system, and thereby
‘jumble up’ the mode of description with that described.

11Even this can be disputed. Fock, for example, argued that harmonic coordinates, defined via the
condition (gμν√−g),μ = 0, have a preferred status in GR, analogous to that of Lorentz charts in
special relativity.
12The sameviewof themeaning of the preferred coordinates of the non-covariant formofNewtonian
gravitation theory is clearly articulated by Trautman [65, 418]. It was thoroughly assimilated in the
philosophical literature; see, e.g., Friedman [32, 54–55]. The perspective is explored further in
Sections 4 and 10, where I argue that its relevance for discussions of alleged differences between
the observables of GR and pre-relativistic theories has not been fully appreciated.
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3 Dissent from Quantum Gravity

Let me sum up the picture presented so far. General covariance per se has no physical
content: the essence ofKretschmann’s objection toEinstein is that any sensible theory
can be formulated in a generally covariant manner. It follows that GR does not differ
from SR in virtue of having a generally covariant formulation. However, GR does
differ from SR in lacking a non-covariant formulation. Some authors have made
this fact the basis for claiming that GR, but not SR, satisfies a “principle of general
covariance”. For example, Bergmann writes “The hypothesis that the geometry of
physical space is represented best by a formalism which is covariant with respect to
general coordinate transformations, and that a restriction to a less general group of
transformations would not simplify that formalism, is called the principle of general
covariance” [10, 159].

In SR, the existence of a non-covariant formulation is connectedwith the failure of
a general principle of relativity. The privileged coordinate systems of SR, in which
the equations expressing the laws simplify, encode (inter alia) a standard of non-
accelerated motion. There can be no preferred coordinate systems (of such a type)
in a theory that implements a general principle of relativity. This might suggest that
GR’s lack of a non-covariant formulation is connected to the generalisation of a
relativity principle, but (pace Einstein) it stems from no such thing. Rather, the lack
of preferred coordinates is due to the fact that the spacetime structures of a generic
solution, including those structures common to SR and GR that define absolute
acceleration (in essentially the same way in both theories), lack symmetries and so
cannot be encoded in special coordinates.

Finally, this lack of symmetry is entailed by, but does not entail, the fundamental
distinguishing feature of GR, namely, that the structure encoded by the metric of
GR is, unlike that of SR, dynamical. A fully dynamical field, free to vary from
solution to solution, will generically lack symmetries. So a background independent
theory, in which all fields are dynamical, will lack a non-covariant formulation (of
the relevant kind). The converse, however, is not true. In principle we can define a
theory involving a background metric with no isometries, and such a theory will only
have a generally covariant formulation.13

Something like this collection of commitments, though not uncontroversial, rep-
resents a mainstream view, at least amongst more recent textbooks in the tradition of
Synge [63] and Misner et al. [41]. Unfortunately, there is a fly in the ointment, for
it apparently conflicts with a dominant view amongst many in the quantum gravity
community, in particular, the founding fathers of loop quantum gravity. Workers in

13Smolin demurs: “if one believes that the geometry of space is going to have an absolute character,
fixed in advance, by some a priori principles, you are going to be led to posit a homogeneous
geometry. For what, other than particular states of matter, would be responsible for inhomogeneities
in the geometry of space?” [58, 201]. But why does a background geometry need to be fixed by “a
priori principles”? Its being what it is could simply be brute fact, inhomogeneities notwithstanding.
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this field often endorse the idea that GR’s background independence, understood as
the absence of ‘fixed’, non-dynamical spacetime structure, is its defining feature. But
they go on to link this property to the theory’s general covariance, or, to use the more
favoured label, its diffeomorphism invariance. For example, Lee Smolin claims that
“both philosophically and mathematically, it is diffeomorphism invariance that dis-
tinguishes general relativity from other field theories” [57, 234]. And Carlo Rovelli,
who has perhaps written the most on the link between background independence and
diffeomorphism invariance, says of the background independence of classical GR
that “technically, it is realised by the gauge invariance of the action under (active)
diffeomorphisms” [53, 10], and (perhaps in less careful moments) he treats the two
as synonymous [33, 279].

On the face of it, these claims conflict with the Kretschmann view. They appear
to assert that a formal property of GR, its “(active) diffeomorphism invariance”, has
physical content in virtue of realising, or expressing, a physical property of the theory,
namely, its background independence. Since specially relativistic theories are not
background independent (as we have been understanding this term), it should follow
that they cannot be formulated in a diffeomorphism invariant manner. At the very
least, if one follows Kretschmann in supposing that any theory can be formulated in a
generally covariant manner, then (active) diffeomorphism invariance, as understood
by Rovelli et al., cannot be the same as general covariance as understood in the
Kretschmann tradition. And, indeed, the same authors routinely draw distinctions of
this kind.

Much of the rest of this paper is concerned to see how far one can push back
against the Rovelli–Smolin line, in the spirit of Kretschmann and Friedman. What
the exercise reveals is that the connection between diffeomorphism invariance and
background independence is messier, and less illuminating, than recent discussions
originating in the quantum gravity literature might suggest. It also sheds light on a
different but closely related topic. In the samediscussions, the diffeomorphism invari-
ance and/or background independence of GR is frequently taken to have profound
implications for the nature of the theory’s observables. It is important that a merely
technical sense of “observable” is not all that is at issue. The claim often appears
to be that GR and pre-relativistic theories differ in terms of the kind of thing that
is observable in a non-technical sense. In other words, it is alleged that the theories
differ over the fundamental nature of the physical magnitudes that they postulate.14

This, I believe, is a mistake, as I hope some of the distinctions to be reviewed below
help to show.

The first task is to clarify what might be meant by “diffeomorphism invariance”
as distinct from “general covariance”. I then revisit the notion of a background field,
as characterised informally above, for finer grained distinctions should be drawn
here too.

14Amongst philosophers, Earman [20] and Rickles [49] are proponents of variants of this view.



114 O. Pooley

4 General Covariance Versus Diffeomorphism Invariance

Several authors have drawn what they presumably take to be the crucial, bipartite
distinction between types of general covariance and diffeomorphism invariance. Nor-
ton, for example, distinguishes “active” and “passive” general covariance [42, 1226,
1230]. Rovelli distinguishes “active diff invariance” from “passive diff invariance”
[52, 122]. Earman distinguishes merely “formal” from “substantive” general covari-
ance [20, 21]. Ohanian and Ruffini distinguish “general covariance” from “general
invariance” [44, 276–9]. Finally, Giulini distinguishes “covariance under diffeomor-
phisms” from “invariance under diffeomorphisms” [34, 108]. As this cornucopia of
terminology indicates, several different distinctions are in play, and linked to further
ancillary notions (for example, that between “active” and “passive” transformations)
in myriad ways. In the face of this morass, my strategy will be to articulate as clearly
as I can what I take to be the most useful distinction, before relating it to several of
the ideas just listed.

In differentiating distinct notions of general covariance and diffeomorphism
invariance, it will be useful to consider various concrete formulations of theories
that exemplify the properties in question. Further, when contrasting specially and
generally relativistic theories, it is a good policy to eliminate unnecessary and poten-
tially misleading differences by choosing theories that are as similar as possible.
My running example, for both the specially and generally relativistic cases, will be
theories of a relativistic massless real scalar field, Φ.

In the context of SR, such a field obeys the Klein–Gordon equation, but there are
at least three “versions” of this equation to consider:

∂2Φ

∂x2
+ ∂2Φ

∂y2
+ ∂2Φ

∂z2
− ∂2Φ

∂t2
= 0, (1)

ημνΦ;νμ = 0, (2)

ηab∇a∇bΦ = 0. (3)

These equations are most plausibly understood as (elements of) different formula-
tions of one and the same theory, not as characterising different theories. This requires
that the equations are understood as but different ways of picking out the very same
set of models (and thereby the very same set of physical possibilities). On the picture
that allows this, one also gains a better understanding of the content of each equation.

What is that picture? Start with equation (3). The roman indices occurring in the
equation are “abstract indices”, indicating the type of geometric object involved. This
equation, therefore, is not to be interpreted (as the other two are) as relating the coor-
dinate components of various objects. Rather, it is a direct description of (the relations
holding between) certain geometric object fields defined on a differentiable mani-
fold. Its models are triples of the form 〈M, ηab, Φ〉: differential manifolds equipped
with a (flat) Lorentzian metric field ηab and a single scalar field Φ. (I am taking the
torsion-free, metric-compatible derivative operator, ∇, to be defined in terms of the
metric field; it is not another primitive object, over and above ηab and Φ.)
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Equations (1) and (2) are to be understood as ways of characterising the very same
models, but now given under certain types of coordinate description. In particular,
in the case of equation (1), one is choosing coordinates that are specially adapted to
symmetries of one of the fields of themodel, namely, the flatMinkowskimetric. Such
coordinates are singled out via the “coordinate condition” ημν = diag(−1, 1, 1, 1).
In the case of equation (2), one is allowing any coordinate system adapted to the
differential structure of the manifold, M .

We are now in a position to draw the crucial distinction betweengeneral covariance
(as it has been implicitly understood in the previous sections) and diffeomorphism
invariance for, on one natural way of further filling in the details, although it is
generally covariant, the theory just given fails to be diffeomorphism invariant.

First, general covariance. We define this as follows:

General Covariance. A formulation of a theory is generally covariant iff the equa-
tions expressing its laws are written in a form that holds with respect to all members
of a set of coordinate systems that are related by smooth but otherwise arbitrary
transformations.

It is clear that such a formulation is possible for our theory. It is what is achieved
in the passage from the traditional form of the equation (1), to equation (2). General
covariance in this sense is sometimes taken to be equivalent to the claim that the laws
have a coordinate-free formulation (32, 54; 34, 108). This takes us to equation (3): if
the laws relate geometric objects of types that are intrinsically characterisable, with-
out recourse to how their components transformations under changes of coordinates,
then one should be able, with the introduction of the right notation, to describe the
relationships between them directly, rather than in terms of relationships that hold
between the objects’ coordinate components.

In order to address the question of the theory’s diffeomorphism invariance, one
needs to be more explicit than we have so far been about how one should understand
equation (3). In particular, what, exactly, is the referent of the ‘ηab’ that occurs in
this equation? Here is one very natural way to set things up. It is a picture that
lies behind the claim of several authors that, while specially relativistic theories can
be made generally covariant in the sense just described, they are nevertheless not
diffeomorphism invariant.

Take the kinematically possible models (KPMs) of the theory to be suitably smooth
functions from some given manifold equipped with a Minkowski metric, 〈M, ηab〉
into R. That is, they are objects of the form 〈M, ηab, Φ〉, where ηab is held fixed—it
is identically the same in every model.15 The dynamically possible models (DPMs)
are then the proper subset of these objects picked out by the requirement that Φ

satisfies the Klein–Gordon equation relative to the ηab common to all the KPMs. So
understood, equation (3) is not an equation for ηab and Φ together. Rather, it is an
equation for Φ alone, given ηab (cf. [34], 107). For ease of future reference, call this
version of the specially relativistic theory of the scalar field SR1.

15This means that the concept of a fixed field is not equivalent to the concept of an absolute object
in the Anderson–Friedman sense. In using “fixed” in this quasi-technical sense, I follow Belot (see,
e.g., [7], 197, fn 137). The distinction is explored more fully in Section 7.
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Our initial definition of diffeomorphism invariance runs as follows:

Diffeomorphism Invariance (version 1). A theory T is diffeomorphism invariant
iff, if 〈M, O1, O2, . . .〉 is a solution of T , then so is 〈M, d∗O1, d∗O2, . . .〉 for all
d ∈ Diff(M).16

So defined, diffeomorphism invariance corresponds to what has sometimes sim-
ply been identified as general covariance in the post-Hole Argument philosophical
literature.17 Friedman is explicit in taking general covariance as defined above (cf.
[32], 51) to be equivalent to diffeomorphism invariance as just defined (cf. [32], 58).
In arguing for this equivalence [32, 52–4], he appears to overlook the crucial possi-
bility, exploited here, that a coordinate-free equation relating two geometric objects
A and B, can nonetheless be interpreted as an equation for B alone, given a fixed A.
(We shall see in Section 9 that Earman [21] seems to be guilty of a similar oversight.)

Returning to SR1, it is clear that, with the KPMs and DPMs defined as suggested,
the theory does not satisfy the definition of diffeomorphism invariance just given.
If 〈M, ηab, Φ〉 is a model of the theory, 〈M, d∗ηab, d∗Φ〉 will be a model only if
d∗ηab = ηab, for only in that case will 〈M, d∗ηab, d∗Φ〉 correspond to a KPM, let
alone a DPM!

Contrast SR1 to the generally relativistic theory of the scalar field. To make the
analogy as close as possible, consider the sector of the theory defined on the same
manifold M mentioned in SR1. Call this theory GR1. Superficially, the KPMs and
the DPMs of GR1 are the same type of objects as those of SR1: triples of the form
〈M, gab, Φ〉, where gab, like ηab, is a Lorentzian metric field. But now one does not
have the option of taking gab to be fixed.18 Rather the KPMs of the theory are all
possible triples of the form 〈M, gab, Φ〉, subject only to gab andΦ satisfying suitable
differentiability (and perhaps boundary) conditions. The DPMs are picked out as a
proper subset of the KPMs by two equations:

gab∇a∇bΦ = 0, (4)

Gab = 8πTab. (5)

16In this statement of the condition, Oi and d∗Oi are distinct mathematical objects; one is not
contrasting different coordinate representations of the very same objects.
17 See, e.g., Earman [17, 47]. As mentioned, Norton distinguishes active and passive general covari-
ance. His statement of the former [42, 1226] is almost identical to the statement of diffeomorphism
invariance just given, save that he considers diffeomorphisms between distinctmanifolds. (His state-
ment of passive general covariance [42, 1230] differs, however, from the characterisation of general
covariance given above, in focusing on the closure properties of the set of coordinate representations
of a theory’s models, rather than on the nature of the equations that pick out such models.)
18Strictly speaking, one could interpret equations (4) and (5), given below, as describing a theory of
a single field Φ propagating on a fixed gab. The resulting space of DPMs would consist of a single
point in this cut-down space of KPMs! What, exactly, would be wrong with such a set-up? We take
ourselves to have evidence for the (approximate) truth of our theory (GR) even though we have not
pinned down a specific model. But on this variant of the theory, pinning down the theory requires
pinning down a unique model.
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Equation (5) is the Einstein field equation, relating the Einstein tensor Gab, encod-
ing certain curvature properties of gab, to the energy momentum tensor Tab.19 Equa-
tion (4) might look superficially like equation (3), but now it is no longer an equation
for Φ given gab. Rather (4) and (5) together form a coupled system of equations—
the “Einstein–Klein–Gordon equations”—for gab and Φ together. This generally
relativistic theory is, of course, diffeomorphism invariant: if 〈M, gab, Φ〉 satisfies
equations (4) and (5), so does 〈M, d∗gab, d∗Φ〉 for any diffeomorphism d.

The rather dramatic way in which SR1 fails to meet our definition of diffeo-
morphism invariance—that for a generic diffeomorphism d, 〈M, d∗ηab, d∗Φ〉 is not
even a KPM when 〈M, ηab, Φ〉 is a DPM—suggests a modification of our defini-
tion. Rather than considering the effect of a diffeomorphism on all of the fields of
a theory’s models, we can exploit the distinction, built into the very construction
of the theory, between fixed fields and dynamical fields. Letting F stand for the
solution-independent fixed fields common to all KPMs, and letting D stand for the
dynamical fields, we can consider the effect of acting only on the latter. This leads
to the following amended definition:
DiffeomorphismInvariance (final version).AtheoryT isdiffeomorphism invariant
iff, if 〈M, F, D〉 is a solution of T , then so is 〈M, F, d∗ D〉 for all d ∈ Diff(M).
More generally, one can say that a theory T is G-invariant, for some subgroup
G ⊆ Diff(M) iff, if 〈M, F, D〉 is a solution of T , then so is 〈M, F, g∗ D . . .〉 for all
g ∈ G.

Since GR1 involves no fixed fields, acting only on the dynamical fields just is to
act on all the fields. Our amendment to the definition of diffeomorphism invariance
therefore makes no material difference in this case. For this reason, focus on theories
like GR1 tends to obscure the difference between our two definitions. Turning to
the case of SR1, this theory still fails to be diffeomorphism invariant under the new
definition: for an arbitrary diffeomorphismd, if 〈M, ηab, Φ〉 is a solution of SR1, then
〈M, ηab, d∗Φ〉, in general, will not be. However, assuming no boundary conditions
are being imposed, 〈M, ηab, d∗Φ〉 will nonetheless be a KPM of the theory. This
becomes significant when considering the definition of the invariance of the theory
under proper subgroups of Diff(M).

Suppose T hasmodels of the form 〈M, F, D〉 and that d is a symmetry of the fixed,
background structure, i.e. d∗F = F . In this case, 〈M, d∗F, d∗ D〉 = 〈M, F, d∗ D〉
and so, for this subgroup of Diff(M), an invariance principle that asks us to consider
transformations of all fields, background and dynamical, will give the same verdict
as those that consider transformations only of the dynamical fields. Further, it fol-
lows from the general covariance of the theory, i.e. from the fact that its defining
equation can be give a coordinate-free expression, that when d is a symmetry of F ,
〈M, d∗F, d∗ D〉 = 〈M, F, d∗ D〉 will be a DPM whenever 〈M, F, D〉 is.20 We can

19For our massless real scalar field, Tab = (∇aΦ)(∇bΦ) − 1
2 gabgmn(∇mΦ)(∇nΦ).

20Note that this claim is not identical to Earman’s claim that it follows from general covariance that
a diffeomorphism that is symmetry of a theory’s spacetime structure will also be what he calls a
“dynamical symmetry” [17, 46–7]. The reason is that Earman’s “general covariance” corresponds
to the (unmodified) definition of diffeomorphism invariance given above.
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therefore define G-invariance either by analogy with the first definition of diffeomor-
phism invariance or (as advocated) by analogy with the final version, and we will get
the verdict that if G is a subgroup of the automorphism group of F , then the theory
is G-invariant.

The definitions give different verdicts, however, when we consider the opposite
implication: if T is a G-invariant theory, does it follow that G is a subgroup of the
automorphism group of its fixed fields F? If G-invariance requires that if 〈M, F, D〉
is a DPM then so is 〈M, g∗F, g∗ D . . .〉, for all g ∈ G, then no diffeomorphism that is
not also an automorphism of F could be amember of G. Such a diffeomorphism does
not map KPMs to KPMs. However, if G-invariance only requires that if 〈M, F, D〉
is a DPM then so is 〈M, F, g∗ D . . .〉, then the automorphisms of F can be a proper
subgroupofG. In fact, this is exactly the situation in the case of SR1. Letd correspond
to a conformal transformation of ηab. Since we are considering the massless Klein–
Gordonfield, if 〈M, ηab, Φ〉 is aDPM, then so is 〈M, ηab, d∗Φ〉, even thoughd∗ηab 
=
ηab. We can only capture this fact in terms of the statement that the theory is invariant
under the relevant group if we define such invariance in the modified manner.21

Let us take a step back and recall the wider project. We are interested in assess-
ing the claim that diffeomorphism invariance is intimately linked to background
independence. I contend that the distinction drawn in this section between general
covariance and diffeomorphism invariance, and exemplified by SR1’s satisfaction of
the first but not the second, is the right one for this purpose, for it makes good sense
of several remarks by the claim’s defenders.

For example, Smolin [57, §6] offers an extended discussion of diffeomorphism
invariance and its connection to background independence. His focus is on the inter-
pretational consequences of diffeomorphism invariance, rather than on providing a
positive characterisation of the property as such, so no direct comparison with the
definition proposed here can be made. (He is also particularly concerned to stress
the gauge status of diffeomorphisms in the context of a diffeomorphism-invariant
formulation of a theory, a topic I return to in Section 9.) However, his contrasting dif-
feomorphism invariance with general coordinate invariance is fully consonant with
the distinction of this section

it can be asserted—indeed it is true—that with the introduction of explicit background fields
any field theory can be written in a way that is generally coordinate invariant. This is not
true of diffeomorphisms [sic] invariance, which relies on the fact that in general relativity
there are no non-dynamical background fields. [57, 233]

It is natural to read the second half of this passage as committing Smolin to the claim
that SR1 cannot be made diffeomorphism invariant because the theory involves a
non-dynamical background, ηab.

21Similar, historically inspired examples are Galilean-invariant classical mechanics set in full New-
tonian spacetime and, more interestingly, Newtonian gravitational theory set in Galilean spacetime
[see, e.g., 38]. What these examples should remind one is that such theories are epistemologically
problematic. The background structure that they postulate introduces allegedly meaningful prop-
erties (e.g. absolute velocities) that are undetectable in principle. This motivates the search for
formulations with weaker background structure (see, e.g. [48], §3 and §6]).
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Consider, now, a revealing passage from Rovelli. Having summarised what he
takes to be the philosophical implications of GR’s lack of non-dynamical background
structures, he states that these implications are “coded in the active diffeomorphism
invariance (diff invariance) of GR” [52, 108]. He goes on to elaborate in a footnote

Active diff invariance should not be confusedwith passive diff invariance, or invariance under
change of co-ordinates…A field theory is formulated in [a] manner invariant under passive
diffs (or change of co-ordinates), if we can change the co-ordinates of the manifold, re-
express all the geometric quantities (dynamical and non-dynamical) in the new coordinates,
and the form of the equations of motion does not change. A theory is invariant under active
diffs, when a smooth displacement of the dynamical fields (the dynamical fields alone) over
the manifold, sends solutions of the equations of motion into solutions of the equations of
motion. [52, 122]

I take it that SR1 is precisely a theory formulated in a manner invariant under passive
diffs, but not active diffs, whereas GR1 is a theory invariant under active diffs. In
other words, Rovelli’s “passive diffeomorphism invariance” is what I called above
general covariance. Identifying Rovelli’s “non-dynamical” fields with fixed fields,
his “active diffeomorphism invariance” corresponds to our (amended) definition of
diffeomorphism invariance.

Finally, Giulini [34] offers equivalent definitions, although he adopts a rather
different approach to characterising general covariance. He schematically represents
a theory’s equations of motion as

F [γ,Φ,Σ] = 0 (6)

Here γ goes proxy for structures given by maps into the manifold M (representing
particle worldlines, strings, etc.) and Φ goes proxy for the dynamical fields: maps
fromspacetime into somevalue space (or,more generally, structures givenby sections
in some bundle over M). Finally,Σ stands for the fixed (“background”) structures.22

He then distinguishes what he calls the notion of covariance from invariance as
follows (see [34, 108]). Equation (6) is said to be covariant under diffeomorphisms
iff

F [γ,Φ,Σ] = 0 iff F [d · γ, d · Φ, d · Σ] = 0 ∀d ∈ Diff(M). (7)

It is invariant under diffeomorphisms iff:

F [γ,Φ,Σ] = 0 iff F [d · γ, d · Φ,Σ] = 0 ∀d ∈ Diff(M). (8)

The only difference between these conditions is that in the former but not in the
latter case one allows the diffeomorphism to act on the fixed fields. In absence of
fixed fields, therefore, the distinction between the conditions collapses: covariance
implies invariance.

22In both our examples theories, γ is empty and the scalar field Φ belongs to Giulini’s category Φ.
In the case of SR1, ηab belongs to Σ ; in GR1, gab belongs to (Giulini’s) Φ, and Σ is empty.
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The distinction between the γ and Φ, on the one hand, and the Σ on the other is
crucial in understanding these conditions. Consider, first, condition (8). The state-
ment thatF [γ,Φ,Σ] = 0 iffF [d · γ, d · Φ,Σ] = 0 simply means that 〈γ,Φ〉 and
〈d · γ, d · Φ〉 stand or fall together as solutions of (6). The condition is therefore this
section’s (modified) statement of diffeomorphism invariance.

Now consider condition (7). The fact that F [γ,Φ,Σ] = 0 is only an equation
for γ andΦ (but notΣ) means thatF [γ,Φ,Σ] = 0 andF [d · γ, d · Φ, d · Σ] = 0
are distinct equations. The condition states that if 〈γ,Φ〉 is a solution to (6), then
〈d · γ, d · Φ〉 must be a solution of a structurally similar equation involving the
different field(s) d · Σ . The condition (7), therefore, says nothing about whether
d maps a solution of (6) to another solution of the same equation. Given that Σ

represents fixed fields, (7) does not collapse into our original, unmodified statement
of diffeomorphism invariance. All that it requires is that (6) be well defined in the
differential-geometric sense. It is therefore equivalent to the requirement that the
equation have a generally covariant expression in the sense given earlier.

5 Diffeomorphism-Invariant Special Relativity

The previous section described a generally covariant but non-diffeomorphism-
invariant formulation of an intuitively background-dependent theory, SR1. This was
contrasted with a generally covariant and diffeomorphism-invariant formulation of
an intuitively background-independent theory, GR1.23 What should one make of
SR1’s failure to be diffeomorphism invariant? Does it support Smolin’s contention
that diffeomorphism invariance “relies on” the absence of background fields? In this
section and the next, I suggest that it does not. At the very least, whether it does
depends on what counts as a “background field.”

We need to consider yet another formulation of a theory, which I will call SR2.
This theory’s space of KPMs is the very same set of objects that formed the space
of KPMs of the generally relativistic GR1. But, rather than being picked out via
equations (4) and (5), the subspace of DPMs is defined via

gab∇a∇bΦ = 0, (4)

Ra
bcd = 0, (1)

23From here on, when I refer simply to “diffeomorphism invariance” I am referring to the property
captured by the second (final) definition given in the previous section. The merits, or otherwise, of
the first definition will not be discussed further.
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where Ra
bcd is the Riemann curvature tensor of gab.24 Several comments are in

order before we assess the interpretational dilemmas that SR2 presents.
First, the contrast between SR1 and SR2 highlights something of a contrast

between the philosophy literature, including the post-Hole Argument literature,
and discussions of background independence arising from attempts to quantise GR.
Crudely put, philosophers have tended to have a formulation of a theory like SR2
in mind when they have considered ‘generally covariant’ formulations of special
relativity (see, e.g., [22, 518]), whereas physicists have tended to have something
like SR1 in mind. This is not unrelated to the fact, noted in the previous section, that
Friedman, Earman, and even Norton (used to) identify (active) general covariance
with diffeomorphism invariance (as initially characterised in the previous section).

This is not to say that the physics literature has not discussed theories like SR2—
we shall shortly see that it has—but it is possible to mistake a discussion of an
SR1-type theory for that of a SR2-type theory. One does not arrive at SR2 simply
by stipulating that equation (1) is to be satisfied. One must also indicate how gab, as
it occurs in (4) and (1), is to be interpreted. After all, the field ηab of SR1 satisfies
a formally identical equation to (1). It is just that, in this context, the equation does
not function to pick out a class of DPMs from a wider class of KPMs. Instead it
characterises a fixed field common to all the KPMs. In SR2, it is important that (4)
and (1), just like (4) and (5) in GR1, are understood as coupled equations for both
Φ and gab.

Finally, of course, we should note the crucial fact that SR2, like GR1 and unlike
SR1, is diffeomorphism invariant.

6 Connecting Diffeomorphism Invariance
and Background Independence

What does the diffeomorphism invariance of SR2 tell us about the alleged link
betweendiffeomorphism invariance andbackground independence?Aproper answer
to this question will require disentangling various meanings of “background”,
but here is the obvious moral: SR2 is a diffeomorphism-invariant but intuitively
background-dependent theory. Diffeomorphism invariance therefore cannot be
equated with—or be seen as a formal expression of, or sufficient condition for—
background independence. Diffeomorphism invariance is not, per se, what differen-
tiates GR from pre-relativistic theories.

Here is one way that this conclusion might be resisted. Consider the following
questions. (Q1) Is SR2 a background-independent theory? (Q2) Are SR1 and SR2

24As with those of GR1, the theory’s KPMs are restricted to fields defined on a given manifold M .
In the previous section, this restriction served to allow as direct as possible a comparison between
GR1 and SR1. When comparison with SR1 is not at issue, the restriction is arbitrary. One can (and
should) generalise the formulations of SR2 and GR1 further, not least to allow for different global
topologies.
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merely different ways of formulating the same theory? Suppose that one answers
(Q1) in the affirmative, on the grounds that gab in a model of the theory is a solution
to an equation. It therefore counts as a ‘dynamical field’; it is not ‘fixed a priori’. This,
in effect, is to treat ‘background field’ as synonymous with ‘solution-independent
fixed field’ in the sense highlighted in Section 4. One then goes on to answer question
(Q2) in the negative. Precursors of GR were not background independent, period,
and so only SR1 is faithful to the pre-GR understanding of the spacetime structure
of special relativity.

I take it that this package is a highly implausible cocktail of views. First, one
should ask: on what basis can one assert that SR1 and SR2 constitute genuinely
distinct theories, rather than merely different formulations of the same theory? On
the face of it, since their models involve the same types of geometric object, and
since all objects in any solution of one theory are diffeomorphic to the corresponding
objects in some solution of the other, the two formulations appear to be, not merely
empirically equivalent, but equivalent in a thoroughgoing sense. The DPMs of one
theory are isomorphic to the DPMs of the other; it is just that, for each solution of
one of the theories, the other theory has an infinite set of diffeomorphic copies.

Second, the classification of SR2 as relevantly similar toGR1, and so background
independent, focuses on a minor similarity between the theories at the expense of
a more significant contrast. True, the gabs of both theories are treated as ‘solutions
of equations’ and in this sense they are not fixed, but this fact seems much less
interesting than their obvious differences. Recall the intuitive characterisation of the
differences between the spacetime structures ofGR and pre-relativistic theories given
in Section 1: in GR, the curvature of spacetime varies, not just in time and space, but
across models, and the material content of spacetime influences how it does so. The
fact that the gab of SR2 is the solution of an equation is not a sufficient condition
for either of these features. The gab of SR2 is not affected by matter, because it is
wholly determined (up to isomorphism) by equation (1). Relatedly, in the sense that
matters, the metric structure of spacetime does not differ from DPM to DPM: the
gabs in any two DPMs are isomorphic to one another.25

These features of SR2mean that, if onewishes to remain faithful to the natural pre-
theoretic sense of “background”, it should be classified as a background-dependent
theory. They further suggest that one should regard SR1 and the diffeomorphism-
invariant SR2 as different formulations of the same, background-dependent
theory. In contrast,GR1 is (a diffeomorphism-invariant formulationof) a background-
independent theory. This situation might bring to mind Bergmann’s claim, noted in
Section 3, that the distinctive feature of GR is its lack of a non-generally covariant
formulation. This feature of GR could not be equated with its background indepen-
dence: a background-dependent theory might lack a non-generally covariant formu-
lation because its background structures lack symmetries. However, nowwe have the
distinction between general covariance and diffeomorphism invariance on the table,
the general approach might appear more promising.

25Strictly, the global topology of the manifold M might allow for infinitely many non-isomorphic
flat metric fields. Even so, these will all be locally isomorphic.
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The idea is that it is the lack of a non-diffeomorphism-invariant formulation, rather
than the existence of a diffeomorphism-invariant formulation, that is the mark of a
background-independent theory. A non-diffeomorphism-invariant formulation of a
theory requires that some elements of its models are regarded as fixed, identically
the same frommodel to model. If a theory is background dependent, in the sense that
it involves non-dynamical fields that (intuitively) do not vary from model to model,
then those fields can be represented by fixed structures in a non-diffeomorphism-
invariant formulation of the theory. But if the theory is background independent, in
the sense that all of its fields can vary frommodel to model, it lacks elements that can
be represented by fixed structures. Of necessity, it will be diffeomorphism invariant.26

The background fields of a theory are to be identified with those fields that appear as
fixed elements in some non-diffeomorphism-invariant formulation that theory. So,
for example, the metric field, gab, of SR2 represents background structure because
it represents the same structure that is represented in the alternative formulation of
the theory, SR1, by ηab.

There is clearly a close connection between identifying a background field in
this way and Anderson’s notion of an absolute object [1, 2]. I will return to this
connection at the end of the next section, after reviewing one more complication.

7 Absolute Objects and the Action–Reaction Principle

Assume that background-independent theories can only be formulated in a
diffeomorphism-invariant manner. That leaves open the issue of whether every the-
ory that must be formulated in a diffeomorphism-invariant manner lacks background
fields. Whether one endorses this further claim in part depends on a subtlety con-
cerning what it takes to be a background field.

When the metric field of GR is presented as an example of field that, unlike its
precusors in pre-relativistic theories, is not a background field, two of its features are
often run together: (i) like other fields in the theory, themetric is dynamical; (ii) it also
obeys the action–reaction principle: it is affected by every field whose evolution it
constrains. The second feature entails the first (assuming the entity in question is not
entirely dynamically redundant); a field obviously cannot be dynamically affected
and yet not be dynamical. However, the converse implication does not hold. A field
might affect without being affected and yet have non-trivial dynamics of its own.

Consider, for example, the theory (call it GR2) given by the following equations:

gab∇a∇bΦ = 0, (4)

26This proposal fits with some of themore careful claims from the quantum gravity community con-
cerning the link between background independence and diffeomorphism invariance. For example,
in an informal website article on the meaning of background independence, Baez claims: “making
the metric dynamical instead of a background structure leads to the fact that all diffeomorphisms
are gauge symmetries in general relativity” [5].
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Rab = 0. (1)

Here Rab is the Ricci tensor associated with gab. In other words, equation (1) is
the vacuum Einstein equation, even though the theory’s models contain a material
scalar field. In this theory the metric is clearly dynamical; it varies from DPM to
DPM. Since it is constrained to obey equation (4), the matter field ‘feels’ the metric.
However, in contrast to the situation in GR, matter does not act back on the metric.
The action–reaction principle is violated. To adapt Einstein’s terminology, as quoted
in Section 2, the metric of GR2 is a causal absolute even though it is a thoroughly
dynamical field.

Should gab count as a background field in this theory? One might naturally char-
acterise the metric as a background relative to the dynamics of Φ. It is a kind of
“dynamical background field”. But it does not seem correct to classify the theory as
a whole as background dependent on this account. After all, in those models where
Φ vanishes, the theory just is vacuum GR. This verdict matches that reached if one
sticks with the criterion proposed in the previous section (necessary diffeomorphism
invariance), for GR2 lacks a non-diffeomorphism-invariant formulation in just the
way GR1 does.

GR2 serves another illustrative purpose. At the end of the previous section, I
suggested that there is a link between whether a field can appear as a fixed field
in a non-diffeomorphism-invariant formulation of a theory and whether that field is
an absolute object in Anderson’s sense. Although Anderson informally introduces
absolute objects in terms of their violation of the action–reaction principle, the defi-
nition he goes on to give characterises them in terms of a notion of sameness in all
DPMs of the theory.27 What the metric field gab of GR2 illustrates is that a field can
be an action–reaction violating causal absolute without being an absolute object in
the Andersonian sense.

Let us return to the connection between absolute objects and fixed fields. How
exactly, are they related? The answer is not entirely straightforward, partly because
different authors define absolute objects slightly differently.

Anderson’s formal definition of absolute objects does not characterise them
directly. Instead he defines them in terms of conditions intended to determine when
a subset of the dynamical variables of a theory constitute the components of the the-
ory’s absolute objects [2, 83]. Friedman [32, 56–60] later advocated a coordinate-free
characterisation, according to which a geometric object field counts as absolute if
there exist the right kind of maps between any two models of the theory that preserve
the object in question (more details shortly). According to Friedman’s set-up, the
metric fields of both SR1 and SR2 count as absolute objects, even though the metric

27The values of the absolute objects are said to determine the values non-absolute objects but not
vice versa ([2, 83]; see also [4] 1658, fn 6). In Anderson [1, 192], he says that “an absolute element
in a theory indicates a lack of reciprocity”. This is consistent with absolute objects being sufficient,
but not necessary, for a violation of the action–reaction principle.
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is a fixed field only in SR1.28 This is not true according to Anderson’s definitions. On
his way of setting things up, in a non-covariant coordinate presentation of SR1, there
are no absolute elements, because the metric field is not explicitly represented (cf.
[2], 87). In this formulation of the theory, all of the variables required to characterise
a solution (in this case, the values of Φ relative to some inertial coordinate system)
are the components of a genuinely dynamical object. Nevertheless, it is clear that
the metric of SR2 counts as an absolute object according to Anderson’s definition.
I suggested above that one should regard SR1 and SR2 as different formulations of
the same theory, and thus regard their metric fields as representing the same element
of physical reality. Generalising this move, one can say that an object that features
as a fixed field in one formulation of a theory will appear as an absolute object in
reformulations of the theory in which that object is no longer treated as fixed.

So far we have noted that fields that are (or can be represented as) fixed are (or can
be represented as) absolute objects. What about the converse? If a diffeomorphism-
invariant theory contains an absolute object, can it be given a non-diffeomorphism-
invariant formulation in which that object features as a fixed field? Here, again,
the way Friedman and Anderson define “absolute object” makes a difference. While
both, in different ways, formalise a notion of “sameness in every model”, Anderson’s
notion of sameness is global whereas Friedman’s is local. More specifically, Fried-
man holds that, if the models of a theory take the form 〈M, O1, . . . , On〉, then object
Oi is an absolute object just if, for any two models M1 = 〈M, O1, . . . , On〉 and
M2 = 〈M, O ′

1, . . . , O ′
n〉, and for every p ∈ M , there are neighbourhoods A and

B of p, and a diffeomorphism h : A → B such that O ′
i = h∗Oi on A ∩ B. Fried-

man’s absolute objects can therefore possess “global degrees of freedom”: differences
between such objects might distinguish between classes of DPMs even though the
objects are (in the sense just characterised) everywhere locally indistinguishable.29

The upshot is that a theory that involves absolute objects in Friedman’s sensemay not
have a (natural) non-diffeomorphism-invariant formulation in terms of fixed fields.

A popular move is to equate background fields and absolute objects, and so to treat
background independence as the lack of absolute objects. Giulini [34] offers a careful
recent development of this strategy. As Giulini notes, and as is discussed in depth
by Pitts [45], several “counterexamples” suggest that neither Anderson’s proposal
nor Friedman’s get things just right. The counterexamples come in three categories.
(1) There are cases where structure that, intuitively, should count as background is
not classified as an absolute. (2) There are cases where structure that, intuitively,

28Effectively, we are distinguishing two senses of “dynamical”. The metric of SR2 counts as
dynamical in a liberal sense, because it varies non-trivially in the space of KPMs and is constrained
to bewhat it is in anyDPMvia the “equation ofmotion” (1). But in a stricter sense it is not dynamical,
because (up to a diffeomorphism) it is the same in every model of the theory. The stricter sense
takes “dynamical” to mean “not absolute”; the liberal sense takes “dynamical” to mean “not fixed”.
29Consider, for example, flat Lorentzian metrics on a manifold with non-trivial global topology.
Such metrics need not be globally isometric even though they are everywhere flat. Some models
might be temporally finite whereas others are temporally infinite but spatially finite in a preferred
spatial direction.
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should not count as background is classified as an absolute. Finally, (3), it is noted
that, on Anderson’s definition (suitably localised), GR itself turns out to have an
absolute object (and so should count as background dependent).

Torretti’s [64] example of a theory set in classical spacetimes of arbitrary but
constant spatial curvature is of type (1). Pitts observes that if one decomposes the
spatial metric into a conformal spatial metric density and a scalar density, then the
former is an absolute object while the latter, while constant in space and time, counts
as a genuine, global degree of freedom.

The best-known case of type (2) is the Jones–Geroch example of the “dust” four-
velocity in GR coupled to matter that is characterised by only a four-velocity field
and a mass density. Pitts sees both Friedman’s own suggestion—that one take the
4-momentumfield of the dust as primitive [32, 59]—and the option of defining the “4-
velocity” so that it vanishes in matter-free regions, as motivated by an Andersonian
ban on formulations of a theory that contain physically redundant variables [45,
361–2].30 My own view is that both of these “solutions” miss the central problem
posed by the example. In the context of this theory, the non-vanishing velocity field
is, intuitively, as dynamical as the 4-momentum. The trouble arises not because we
mistook as indispensable an object that Anderson’s definition correctly classifies
as absolute. The trouble is that Anderson’s definition, intuitively, misclassifies that
object.

The example suggests that the notion of absolute objects might not, in fact,
be a better candidate than the notion of fixed fields for articulating the sense of
“dynamical” relevant to characterising background structure. Consider, for example,
a diffeomorphism-invariant formulation of a theory set in Minkowski spacetime and
involving matter characterised, in part, by a (non-vanishing) four-velocity. One can
define two distinct proper subsets of the KPMs (and, correspondingly, the DPMs)
of this theory. The first is obtained by specialising to a particular metric field on
the manifold, and retaining all and only those KPMs (and DPMs) that include this
metric field. The second is obtained by specialising to a particular representation of
the four-velocity. If we view each set of models as determining some theory, then
both theories involve (in some sense) a fixed field. However, in the case of the theory
obtained by specialising to a particular metric, the solution set is identifiable, as a
subspace of theKPMs, via some differential equations for the truly dynamical objects
given the fixed field (the metric). In the case of the “theory” with the fixed velocity
field, in contrast, it seems highly doubtful that we will be able to view the particular
(flat) metrics occurring in the DPMs as all and only the solutions of an equation for
the metric given the velocity field. (Imagine specialising to coordinates in which the
velocity field takes the value (1, 0, 0, 0) and consider how likely it is that the set of
admissible components of the metric field in such coordinates are picked out via an
equation.)

A similar strategy might be pursued in the case of ((3)). The candidate absolute
object in question is the determinant of the metric,

√−g. One might accept this

30Pitts pursues the topic further in Pitts [46].
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verdict without accepting that this automatically means that GR should count as
background dependent. The latter might be held to further require that

√−g be
interpretable as a fixed field.31

Suppose, however, that one sticks with the proposal that the lack of absolute
objects is equivalent to background independence. What light does that shed on
the relationship between background independence and diffeomorphism invariance?
Does a theory lack a non-diffeomorphism-invariant formulation just if it lacks
absolute objects? We have seen that, not only are fixed fields not absolute objects
(on either Anderson’s definition or Friedman’s), but being representable in terms of
a fixed field is also not equivalent to being an absolute object. Since the presence
of fixed fields would seem to be necessary for the failure of diffeomorphism invari-
ance, this means that necessary diffeomorphism invariance cannot be equivalent to
background independence understood as lack of absolute objects.

There is a rather desperate way to reconnect the question of whether Diff(M) is a
symmetry group with background independence: redefine symmetry! For example,
one might try stipulating that Diff(M) is a symmetry∗ group of a theory T iff, if
〈M, A, D〉 is a model of T , then so is 〈M, A, d∗ D〉 for all d ∈ Diff(M). (Formally
this looks just the definition of diffeomorphism invariance from Section 4, with “F”,
for “fixed field” replaced by “A”, for “absolute object”.) The proposal is problematic,
on at least three grounds.

First, the notion of symmetry∗ is transparently ad hoc.When our theory contained
fixed fields, restricting the action of Diff(M) to the dynamical (i.e. non-fixed) fields
was natural. Only by doing so could one define a natural group action on the space of
KPMs. The symmetry group is then naturally defined to be the subgroup of this group
that fixes the space of DPMs. When one has a diffeomorphism-invariant theory that
includes absolute objects, one (obviously!) does not need to stipulate that Diff(M)

acts only on the dynamical (i.e. non-absolute) fields in order for its action on the
space of KPMs to be well defined.

Second, defining the action of Diff(M) on the space of KPMs in such a way that
it does not act on the As breaks the natural definition of symmetry. The definition
yields, as intended, that a theory with, say, a flat Lorentzian metric as its absolute
object will fail to have Diff(M) as a symmetry∗ group. But it will also fail to have the
Poincaré group as a symmetry∗ group. For anygiven solution 〈M, A, D〉, themaximal
group G such that, for all g ∈ G, 〈M, A, g∗ D〉 is a solution, will be isomorphic
to the Poincaré group (or, possibly, a supergroup of the Poincaré group). But for

31Can the equations of the theory be interpreted as equations for the other variables given fixed√−g? This seems to be the correct verdict for unimodular GR, but not (or not clearly so) for GR
itself. For further discussion of this case, although not in terms of the notion of fixed fields, see
Earman [19]; Pitts [45]; Sus [61, 62].
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two arbitrary solutions 〈M, A, D〉 and 〈M, A′, D′〉, the groups so defined need not
coincide. In fact, in general, they will coincide only when A = A′.32

Suppose one circumvents these problems by adding some epicycles to the defini-
tion of symmetry∗. There remains a third reason to be dissatisfied with the proposal
that background independence is equivalent to Diff(M)’s being a symmetry∗ group.
At bottom, what is doing all the work is the notion of absolute object, in terms of
which the gerrymandered notion of symmetry is defined. If our interest is in char-
acterising background independence, why not simply characterise it as the lack of
absolute objects and be done with it? In particular, the detour via symmetry∗ does not
give us a better handle on GR’s background independence versus SR’s background
dependence.

8 Diff(M) as a Variational Symmetry Group

When physicists talk of a generally covariant formulation of a specially relativistic
theory, they typically have in mind a formulation like SR1. Undue focus on such
examples, at the expense of examples like SR2, might explain why the connection
between background independence and diffeomorphism invariance is sometimes
taken to be tighter than it really is. However, theories along the lines of SR2 do get
considered by those who defend a diffeomorphism invariance/background indepen-
dence link. As we have seen, the possibility of such formulations of specially rela-
tivistic theories is central to Anderson’s thinking (and explains the idiosyncrasies of
his definition of symmetry). The option is also considered by Rovelli, who concedes

even full diffeomorphism invariance, should probably not be interpreted as a rigid selection
principle, capable of selecting physical theories just by itself. With sufficient acrobatics, any
theory can perhaps be re-expressed in a diffeomorphism invariant language. …

But there are prices to pay. First, [SR2]…has a “fake” dynamical field, since g is constrained
to a single solution up to gauges, by the second equation of the system. Having no physical
degrees of freedom, g is physically a fixed background field, in spite of the trick of declaring
it a variable and then constraining the variable to a single solution. Second, we can insist on
a lagrangian formulation of the theory…[59], but to do this we must introduce an additional
field, and it can then be argued that the resulting theory, having an additional field is different
from [the original] [17]. [54]

32Invariance, as I defined it in Section 4, is called covariance by Anderson [2, 75]. He defines a
theory’s symmetry, or “invariance” group as the “largest subgroup of the covariance group…which
is simultaneously the symmetry group of its absolute objects” [2, 87]. It would seem, therefore, that
Anderson’s symmetry group is related to the notion of symmetry∗ in exactly the way the group of
automorphisms of the fixed fields of a theory is related the symmetry group (as defined in Section 4)
of that theory. In both cases one should expect the former to be a (possibly proper) subset of the
latter. But we have just seen that, without some finessing, the symmetry∗ group of a theory will be
trivial. The same trouble afflicts a flatfooted reading of Anderson’s definition. Consider SR2. The
symmetry group of any particular absolute gμν , occurring in a particular DPM, will be (isomorphic
to) the Poincaré group (cf. [2, 87]), but the only diffeomorphism that belongs to every such group
is the identity map.
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Several comments are in order. First, reference to “sufficient acrobatics” seems
like hyperbole, given the relatively straightforward nature of the transition from a
theory like SR1 to a reformulation along the lines of SR2.

Second, it is true that, inSR2, gab is a “fake” dynamical field. It should be classified
as background structure. Despite our treating it as dynamical in the liberal sense,
it remains non-dynamical in a stricter sense. The previous sections have reviewed
apparatus that allows us to draw precisely these distinctions, and to differentiateGR1
and SR2, despite both theories being equally diffeomorphism invariant. So, it is not
clear why there is a “price to pay” in adopting such a formulation, particularly since
we are regarding SR2 as merely a reformulation of SR1. Rovelli, perhaps, would
question this last stance. The diffeomorphism invariance of any theorymight be taken
to have significant implications for the nature of the true physical magnitudes of the
theory, and thus require that one distinguish SR2 from (the non-diffeomorphism-
invariant) SR1. If so, I disagree, for reasons I explain in the final section of this
paper.

Third, and most interestingly, Rovelli’s description of the second cost suggests a
quite different way to connect the question of whether diffeomorphisms are symme-
tries to background independence. Prima facie, there is a formal difference between
SR2 and GR1 that I have not so far mentioned. The two theories are defined on the
same space of KPMs. In the case of GR1, the space of solutions picked out by its
equations can also be fixed via a variational problem defined in terms of the action
SGR1 = ∫

d4x(LG + LΦ).33 On the face of it, the same is not true of SR2. One can
pick out the solution space of SR1 in terms of a variational problem, defined via
the action SSR1 = ∫

d4xLΦ , whereLΦ depends on the fixed metric field ηab. In the
context of the space of KPMs common to GR1 and SR2, however, elements in the
solution space of SR2 are not stationary points of

∫
d4xLΦ . The latter can identified

by considering the Euler–Lagrange equations one obtains by applying Hamilton’s
principle to both Φ and gab. From the first, one gets the Klein–Gordon equation, but
from the second one gets the trivialising condition that the stress-energy tensor for
Φ vanishes.

These reflections might suggest that background independence could be linked
to the symmetry status of Diff(M) in the following way:

Background Independence (version 1). A theory T is background independent if
and only if it can be formulated in terms of a variational problem for which Diff(M)

is a variational symmetry group.
Although one can write an action for SR1 in a generally covariant or coordinate-

independent manner, Diff(M) is not a symmetry group of the variational problem
that defines the theory’s models.34 Recall that the action of Diff(M) on the SR1’s
space of KPMs acts on Φ but not on ηab, and does not leave the space of DPMs
invariant. A useful alternative way of stating the proposed condition is as follows:

33The “gravitational” part of the Lagrangian is the Einstein–Hilbert Lagrangian LG = √−gκ R,
where R is the curvature scalar and κ is a suitable constant. The “matter” term is the standard
Lagrangian for the massless Klein–Gordon field: LΦ = √−ggab∇aΦ∇bΦ.
34See Belot [7, 161–2] for further discussion of the notion of a variational symmetry.
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Background Independence (version 2). A theory T is background independent if
and only if its solution space is determined by a generally covariant action all of
whose dependent variables are subject to Hamilton’s principle.

This rules out the generally covariant version of the SR1 action principle, since
in this case only Φ and not ηab is subject to Hamilton’s principle. It will also rule out
SR2 if the solution space of this theory really is not obtainable from an appropriately
formulated action principle.

Despite these promising results, the proposal does not work. In the quotation
above, Rovelli refers to Sorkin [59]. In that paper, Sorkin, rediscovering a procedure
originally employed by Rosen [50], shows how one can derive equations (4) and
(1) from a diffeomorphism-invariant action. One obtains a Sorkin-type action by
replacingLG in SGR1 with a different “gravitational” term,LS = √−g
abcd Rabcd .
The theory therefore involves a Lagrange multiplier field, 
abcd , in addition to the
fields common to SR2 and GR1. In this new action, all the dependent variables are
to be subject to Hamilton’s principle. For ease of reference, let us call the resulting
theory (so formulated) SR3. Varying 
abcd leads to equation (1). Since Φ does not
occur inLS , varying this field has the same effect as inGR1, and leads to the Klein–
Gordon equation (4). (One also needs to consider variations of gab. Rather than the
EFE, this leads to an equation that relates Θabcd , gab and Φ.)35

Let us assume, for the moment, that in SR3 we have yet another way to formu-
late the specially relativistic theory that has been our example throughout this paper.
Since its models are determined by a diffeomorphism-invariant action, all of whose
dependent variables are subject to Hamilton’s principle, the theory counts as back-
ground independent according to our latest proposal. The proposal therefore needs
to be revised. A natural thought is to amend it as follows:

Background Independence (version 3). A theory T is background independent if
and only if its solution space is determined by a generally covariant action: (i) all of
whose dependent variables are subject to Hamilton’s principle, and (ii) all of whose
dependent variables represent physical fields.
The idea is that SR3 fails to satisfy the second of these conditions because the
dynamics of the additional field Θabcd strongly suggest that it is not a physical field.
Itmakes no impact on the evolution of gab andΦ and hence,were it a genuine element
of reality, it would be completely unobservable (on the natural assumption that our
empirical access to it would be through its effect on “standard” matter fields such
as Φ). Indeed, it is only on the basis of interpreting Θabcd as a mere mathematical
device that one can view SR3 as a reformulation of SR2.

In the quotation at the start of this section, Rovelli suggests that one might instead
regard SR3 as a different theory from SR2, on the grounds that SR3 involves an

35Note that the evolution of Θabcd is constrained by, but does not affect the evolutions of gab and
Φ. The action–reaction principle is therefore violated by Φ, with respect to Θabcd , and not just by
gab. The theory illustrates that requiring that all of the dependent variables in an action be subject to
Hamilton’s principle does not entail that the resulting theory satisfies the action–reaction principle,
pace Baez [5].
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additional field (presumably because one views this field as representing a genuine
element of reality, the points just made notwithstanding). This might seem to pro-
vide an alternative way to argue that our revised proposal does not classify SR2 as
background independent on the basis of SR3’s satisfying its conditions: if SR3 is a
different theory, it clearly does not show that the solutions of SR2 can be derived
from a diffeomorphism-invariant action.

While this might get the classification of SR2 correct, it does so at the cost of mis-
classifying SR3. According to the current suggestion, SR3 now is a theory that meets
the conditions for being background independent. But this is not the right result. The
fact the equation of motion for its metric field is derived from a diffeomorphism-
invariant action expressed only in terms of physical fields, hardly makes that metric
more dynamical than the metric of SR2. After all, they both obey exactly the same
equation of motion. And once this problem is recognised, reclassifying Θabcd as
unphysical does not seem like enough to salvage the proposal. Even if SR3 is no
longer a counterexample, might there not be a relevantly similar theory that the pro-
posal incorrectly classifies as background independent? The Rosen–Sorkin method
is not the only way to construct a diffeomorphism-invariant variational problem for
a theory that involves non-dynamical fields. These alternative procedures arguably
provide examples of exactly the type envisaged.

One such procedure, developed by Karel Kuchař, is parameterization. In the sim-
plest case one starts with the Lorentz-covariant expression for the action, defined
with respect to inertial frame coordinates. Note that the field ηab does not explicitly
occur in this expression. One then treats the four coordinate fields Xμ of this formu-
lation as themselves dependent variables (“clock fields”), writes them as functions
of arbitrary coordinates, Xμ = Xμ(xν), and re-expresses the Lagrangian in terms of
these new variables. Hamilton’s principle is applied to the original dynamical vari-
ables, now conceived of as functions of xν , and to the coordinate fields, Xμ. In our
simple example of SR1, stationarity under variations of Φ leads to an equation for
Φ and Xμ that is satisfied just if Φ satisfies the standard Lorentz-covariant Klein–
Gordon equation (1) with respect to the Xμ. Stationarity under variations of the Xμ

yields equations that are automatically satisfied if the first equation is satisfied (see,
e.g. §II.A [66]). Let us call the resulting theory SR4.

Another technique is described by Lee and Wald [40, 734].36 Let the KPMs of
SR5 be defined in terms of two maps from the spacetime manifold, M . One is our
familiar scalar field Φ. The other is a diffeomorphism y into a copy of spacetime,
M̃ , that is equipped with a particular flat Lorentzian metric field. One can use the
diffeomorphism y to pull back the metric on M̃ onto M , and use the result, gab(y),
to define the standard Lagrangian, LΦ(y, Φ) = √−g(y)g(y)ab(∇aΦ)(∇bΦ), and
action functional S = ∫

d4xLΦ . To determine the theory’s solutions we require that
S is stationary under variations in both of the theory’s fundamental variables, y and
Φ. Φ variations give us that Φ satisfies the Klein–Gordon equation with respect to
gab(y). Variations in y give equations that involve the vanishing of terms that are

36See Belot [7, 206–9] for an extended discussion of this example.
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proportional to∇nT n
b, where T ab is the stress-energy tensor forΦ. Since∇nT n

b = 0
follows from the Klein–Gordon equation, these equations are automatically satisfied.

Both SR4 and SR5 are examples of theories defined by diffeomorphism-invariant
actions all of whose dependent variables are subject to Hamilton’s principle. They
will therefore be counterexamples to our latest proposal just if (i) they are background
dependent and (ii) all of their fields are physical fields. One way to explore whether
(i) and (ii) are satisfied is to consider how the theories relate to SR2. In particular,
if they count as reformulations of SR2, then they are formulations of a background-
dependent theory.

First, recall that a model of SR2 is a triple of the form 〈M, gab, Φ〉, where gab

is flat. A model of SR4, is of the form 〈M, Φ, X0, X1, X2, X3〉. That is, it lacks
a (primitive) field gab, and includes instead four scalar fields. Finally, models of
SR5 are of the form 〈M, y, Φ〉, where y is a diffeomorphism into M̃ , a copy of M
equipped with a fixed metric.

For both SR4 and SR5, there is a natural map from that theory’s solution space
to the solution space of SR2. For SR4, one first defines the unique flat metric
field gX

ab associated with the fields Xμ (the metric for which the Xμ are every-
where Riemmann–normal coordinates). One then requires that the map associates
〈M, Φ, X0, X1, X2, X3〉 with 〈M, gab, Φ〉 just if gX

ab = gab. For SR5, 〈M, y, Φ〉
maps to 〈M, gab, Φ〉 just if g(y)ab = gab. In the first case, the map is many-one. The
solution space of SR4 is intuitively ‘bigger’ than that of SR2. In the case of SR5,
however, the map is a bijection.

Thismachinery helps articulate how both SR4 and SR5 can naturally be viewed as
reformulations of SR2.37 First, consider SR4. For any model of SR2 one can choose
special coordinates that encode itsmetric via the requirement that, in these coordinate
systems, gab = diag(−1, 1, 1, 1). In order to understand SR4 as a reformulation of
SR2, one interprets the fundamental fields of SR4 to be such coordinate fields. So
interpreted, SR4 is a formulation of a background-dependent theory, since SR2 is.
Do the Xμ count as “physical fields”?Unlike theΘabcd of SR3, they certainly encode
something physical, since they encode the metrical facts. But there is also a sense
in which they do not themselves directly represent something physical: coordinate
systems are not physical objects. Note also that encoding a flat metric via special
coordinates in the manner proposed does not uniquely determine the coordinates.
If {Xμ} corresponds to one such set of fields, then so will any set {X ′μ} where the
X ′μ are related to the Xμ by a Poincaré transformation. This is the source of the fact
that the map from models of SR4 to those of SR2 is many-one. This means that
(on the suggested interpretation our formalism) the {Xμ} contain some redundancy;
“internal” Poincaré transformations Xμ �→ X ′μ should be regarded as mere gauge
re-descriptions.

37A similar observation can bemade concerning SR3. Its models are of the form 〈M, gab, Φ,Θabcd 〉
and the map from its solution space to that of SR2 simply involves throwing away Θabcd :
〈M, gab, Φ,Θabcd 〉 �→ 〈M, gab, Φ〉. This map is many-one, but the differences between SR3mod-
els mapped to the same SR2 model concern differences in the non-physical field Θabcd .
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The nature of the bijection between the solution space of SR5 and that of SR2
makes their interpretation as reformulations of the same background-dependent
theory even more straightforward. Are SR5’s basic variables physical fields? The
dynamical role of y is exhausted by its use to define the pull-back metric on M . It
is only through this metric that y enters into the Lagrangian of the theory. Nonethe-
less, there is again a clear sense in which the machinery involves arbitrary elements
that do not represent the physical facts directly. In particular, we might have set up
the theory in terms of a different (but still flat) metric on the target manifold. As a
mathematical object, this would constitute a different formulation of the theory, and
yet the difference does not show up at the level of the pulled-back metrics on M : the
same range of metrics for M is surveyed, just via different maps to a different object.

The upshot is that it is not clear whether SR4 and SR5, interpreted as reformula-
tions of SR2, constitute counterexamples to the proposed criterion for background
independence. All hinges on whether the relevant fields count as physical fields.
They clearly encode physical facts but, equally clearly, they do not do so in the most
perspicuous manner. One might seek to solve this dilemma via further proscriptive
modifications to the proposal. This, of course, risks creating further problems.38

More importantly, one should recognise that we are now far past the point where one
might hope to articulate a simple and illuminating connection between diffeomor-
phism invariance and background independence.

Rovelli writes

Diffeomorphism invariance is the key property of the mathematical language used to express
the key conceptual shift introduced with GR: the world is not formed by a fixed non-
dynamical spacetime structure, which defines localization and on which the dynamical fields
live. Rather, it is formed solely by dynamical fields in interactions with one another. Local-
ization is only defined, relationally, with respect to the fields themselves. [54, 1312]

The moral of our investigation so far is that diffeomorphism invariance can-
not be taken to express the shift from non-dynamical to only dynamical space-
time structures. Theories with non-dynamical structure can be formulated in a fully
diffeomorphism-invariant manner. But note that Rovelli’s description of the key con-
ceptual shift introduced with GR involves two elements. In addition to themove from
non-dynamical to dynamical spacetime, there is the claim that, in GR, “localization
is only defined, relationally, with respect to the fields themselves”. I agree that this is
how one should understand diffeomorphism-invariant theories. What the existence
of diffeomorphism-invariant formulations of theories with non-dynamical structure
indicates, however, is that this feature of a theory is not peculiar to theories that lack
non-dynamical fields. A diffeomorphism-invariant, relational approach to “localiza-
tion” is as appropriate in the context of Newtonian physics and special relativity as
it is in GR. A defence of this claim is the task of the last two sections.

38For example, does the metric field of GR1 represent the physical facts in the most perspicuous
manner? If GR1 is not to count as fully background independent, it should not be on account of
this type of failure.
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9 An Aside on the Gauge Status of Diff(M)

My central claim is this: the observable content of, and the nature of the genuine
physical magnitudes of, a specially relativistic theory, whether formulated along
the lines of SR1 or SR2, are identical in nature to those of an analogue generally
relativistic theory, such as GR1. In the next section, I will spell out how this can be
so. In this section, I say a little about when one should interpret diffeomorphisms as
gauge transformations.

In the previous section, we saw that Rovelli claimed that SR3 might be distin-
guished from SR2 on the grounds that the former involves an additional field. In the
passage quoted above, he cites Earman,who does indeed argue that one should distin-
guish SR3 from more standard formulations of specially relativistic Klein–Gordon
theory. Earman’s reasoning, however, is rather different from Rovelli’s.

Earman [21] defines (massive variants of) SR1, SR2 and SR3, via the analogues
of the equations considered earlier in this paper.39 (To ease exposition, I use this
paper’s labels to refer to Earman’s theories.) He is primarily concerned with the
comparison between SR1 (as obtained from an action principle) and SR3. Earman’s
reasons for differentiating the theories, unlike Rovelli’s, have nothing directly to do
with the presence of an additional field. He views the theories as distinct because he
believes that, in the context of SR1, Φ can be treated as an observable but, in SR3, it
cannot because: (i) only gauge-invariant quantities are observable and (ii) one should
regard the Diff(M) symmetry of SR3 as a gauge symmetry. Earman takes (ii) to be
justified by the fact that Diff(M) is both a local and a variational symmetry group
in the context of SR3. In reaching this judgement in this way, he takes himself to
be applying a “uniform method for getting a fix on gauge that applies to any theory
in mathematical physics whose equations of motion/field equations are derivable
from an action principle” and that is “generally accepted in the physics community”
[18, 19].

As I have argued elsewhere [47], the fact that this apparatus tells us that Diff(M)

is not a gauge group of SR1 is not surprising. Diff(M) is not a symmetry group of
SR1 and so a fortiori it is not a gauge symmetry group. What one really wishes
to know is whether one should view Diff(M) as a gauge group of SR2. Earman
does not address this question head-on, but one suspects that his answer would be in
the negative, for he argues that the solution sets of SR1 and SR2 are the same [21,
455]. This, of course, simply cannot be correct. It cannot be the case that (i) Diff(M)

is not a symmetry group of SR1; (ii) Diff(M) is a symmetry group of SR2; and
(iii) the solution sets of SR1 and SR2 are the same. It is (iii) that should be given
up, and it will be instructive to see where Earman’s argument goes wrong.

39His equation (3) [21, 451 ] is (once corrected) the massive analogue of my (3), and defines his
SR1-type theory. His equations (5) and (6) [21, 455] are the analogues of (4) and (1), and define
his SR2-type theory.
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Here is what he says

The solution sets for [SR1] and for [SR2] are the same, at least on the assumption that
the spacetime manifold is R4. For then there is a global coordinate system {xμ} such that
gμν = ημν (where ημν is the Minkowski matrix) solves [(1)]. Moreover, in this coordinate
system [(4)] reduces to [(3)40]. And every solution of [(1)] can be transformed, by a suitable
coordinate transformation, into a solution of the form gμν = ημν . Thus, every solution of
[SR2] is a solution of [SR1]. Similar reasoning shows that the converse is also true. [21,
455, 466, n 26]

This argument, effectively, ignores the distinction between fields that are solutions
to equations and fields that feature in equations as fixed fields. Here is one way to see
the error. Fix a coordinate system K on M (of the kind Earman considers). Relative
to K , ηab always has the same components in the coordinate representation of every
solution of SR1. Every one of these coordinate descriptions is also a description
with respect to K of a solution of SR2. But, in addition to these, every possible
set of coordinate functions that one can obtain from the original sets by acting by a
diffeomorphism on R4 also describes—still relative to K—a solution of SR2. Note,
too, that each of these additional sets of coordinate functions corresponds (relative
to K ) to a representation of a (mathematically, though not necessarily physically)
distinct solution of SR2. But these new coordinate functions are not descriptions
of solutions of SR1 relative to K (the components of the metric tensor have been
changed, so they no longer describe ηab).41

I conclude that Earman’s claims do not speak against the natural interpretation of
Diff(M) as a gauge group of SR2. His own favoured apparatus is simply silent on
the question. When physicists themselves justify the use of the apparatus to identify
gauge freedom, they take the deterministic nature of the theories in question as a
premise (see, e.g. [16, 20]). In the context of SR2, this premise also leads to the
conclusion that Diff(M) is a gauge group. In fact, Belot [8] shows how one can
regiment the intuitions that are arguably behind such arguments in order to define
a notion of gauge equivalence that matches Earman’s favoured notion in its ver-
dicts concerning Lagrangian theories but which applies more widely. Unsuprisingly,
Belot’s definition tells us that Diff(M) is a gauge group of SR2. There remains just
one task. We need to see how this interpretative stance with respect to SR2 can be
reconciled with a relatively orthodox account of the nature of the observables of both
background-dependent SR and background-independent GR.

40Since Earman refers to ημν as the Minkowski matrix, and since he has switched from Roman
indices—which I interpret as signalling coordinate-free, abstract index notation—to Greek indices,
it would seem more appropriate to refer to his equation (2), i.e., to equation (1), rather than to
his (3).
41They can be understood as descriptions of solutions of SR1, but only if we allow ourselves to
describe things with respect to coordinate systems other than K (in fact, we need to consider one
coordinate system for each class related by Poincaré transformations). And when we do this, each
solution of SR1 is, of course, multiply represented.
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10 On the Meaning of Coordinates

Recall, again, the similarities between GR1 and SR2. The two theories share a
space of KPMs. They differ only in terms of which subsets of this space are picked
out as dynamically possible. The DPMs of each theory, although distinct sets of
mathematical objects, are sets of the same kind of objects. Thatmuch ismathematical
fact. These similarities, I submit, make plausible the following interpretative stance:
one should treat the two theories uniformly. On this view, the physical magnitudes of
the two theories describe the same types of physical objects. The theories postulate
the same kind of stuff; they just differ over which configurations of this stuff are
physically possible.

Why might one reject such a view? The reason, I think, has to do with a popular,
but potentially misleading, way of thinking about the coordinates of non-generally
covariant formulations of pre-relativistic theories. As Iwill describe in amoment, this
way of thinking about the coordinates of, for example, Lorentz-invariant theories has
implications for howone conceives of the content of those theories. It leads to awayof
thinking about the theory’s physical content that does not transfer to theories without
special coordinates. The lack of non-dynamical background fields entails (though,
as we saw, cannot be equated with) the lack of such coordinates. It is therefore
natural to see the shift from SR to GR, in which background structures are excised,
as heralding a radical change in the nature of the content of our physical theories.
Against this, I want to highlight an alternative way of conceiving of the special
coordinates of a non-covariant physics. This alternative way is perfectly compatible
with the fundamental nature of the content of our physics remaining unchanged in the
passage from background dependence to background independence. It also provides
an independently plausible account of the content of background-dependent theories,
such as SR.

The influence of the problematic viewmight well flow from the following passage
in Einstein’s groundbreaking paper on special relativity:

The theory to be developed—like every other electrodynamics—is based upon the kinematics
of rigid bodies, since the assertions of any such theory concern relations between rigid bodies
(systems of coordinates), clocks, and electromagnetic processes. [23, 38, my emphasis]

Einstein seems here to be claiming that the meaning of the theoretical claims of
Lorentz-invariant electromagnetism—that is, what those claims are fundamentally
about—concerns the relationships between electromagnetic phenomena and rods
and clocks. In other words, the content of the theory’s claims is held to be about
relationships between electromagnetic phenomena and material bodies outside of
the electromagnetic system under study.

Versions of this type of view, as an interpretation of the special coordinates of
specially relativistic and Newtonian physics, are explicitly endorsed by, for exam-
ple, Stachel [60, 141–2], Westman and Sonego [67, 1592–3] and, in several places,
Rovelli. To give a flavour of the importance of the view for Rovelli, I quote at length
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For Newton, the coordinates x that enter his main equation

F = m
d2x(t)
dt2

(2.152)

are the coordinates of absolute space. However, since we cannot directly observe space, the
only way we can coordinatize space points is by using physical objects. The coordinates
x…are therefore defined as distances from a chosen system O of objects, which we call a
“reference frame”…

In other words, the physical content of (2.152) is actually quite subtle:

There exist reference objects O with respect to which the motion of any other object A is
correctly described by (2.152)…

Notice also that for this construction to work it is important that the objects O forming
the reference frame are not affected by the motion of the object A. There shouldn’t be any
dynamical interaction between A and O . [53, 87–8]42

The similarity with Einstein’s claim is clear. The “physical content” of an equa-
tion of restricted covariance turns out to involve claims about relations between the
dynamical quantities that are explicitly represented in the equations and other mate-
rial bodies that are only implicitly represented via the special coordinates. There is
one difference worth noting. For Einstein, the important role of external bodies is
to make meaningful spatial and temporal intervals; the bodies in question are rods
and clocks. Rovelli, in contrast, emphasises two other roles played by the bodies of
his reference system: they fix a particular coordinate system (define its origin) and,
more importantly, they define same place over time. In fact, in spelling out his notion
of a material reference system, Rovelli seems to take the notion of spatial distance
as primitive and empirically unproblematic.

Now contrast this Einstein–Stachel–Rovelli (ESR) way of understanding special
coordinates to what I will call the Anderson–Trautman–Friedman (ATF) perspec-
tive (recall footnote 12), which has already been adopted throughout in this paper.
According to this latter view, a generally covariant formulation of a theory has the
advantage over formulations of limited covariance of making the physical content of
the theory fully explicit. This content includes certain spatiotemporal structures, such
as those encoded by the Minkowski metric field ηab. In cases where these structures
are highly symmetric, one can encode certain physical quantities (e.g. spatiotemporal
intervals) via special choices of coordinates adapted to these structures. Newton’s
special coordinates are not fundamentally defined in terms of, and Newton’s equa-
tions do not make implicit reference to, external material bodies. Rather they are

42A similar claim is found in Rovelli [51, 187–9]. There Rovelli combines the claim that in pre-
relativistic physics “reference system objects are not part of the dynamical system studied, their
motion…is independent from the dynamics of the system studied” with the further assertion that
the “mathematical expression” of the failure of this condition in GR is “the invariance of Einstein’s
equations under active diffeomorphisms.”
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equations that encode physically meaningful chronometric and inertial structure, via
certain “gauge fixing” coordinate conditions.43

In order to avoid confusion, let me stress that according to both the ESR view
and the ATF view the special coordinates of a non-covariant form of pre-relativistic
physics have a different meaning to arbitrary coordinates in GR (or a generally
covariant form of the pre-relativistic theory). On both views the special coordinates
have physical meaning. The accounts just differ over what that physical meaning is.

To help further clarify the differences between two views, let me highlight three
distinct features that concrete applications of coordinate systems must or may have.

1. The coordinate system must be anchored to the world in some way. If it is to be
concretely applied, and predictively effective,wemust be able to practically deter-
mine which coordinate values’ particular observable events are to be assigned.

2. The coordinate system might be anchored to the world by observable material
objects outside the system under study. (The system under studymight be a proper
subsystem of the universe.)

3. The coordinate system might partially encode, or be partially defined in terms
of, physically meaningful spatiotemporal quantities (spacetime intervals; inertial
trajectories, etc.). In order for this to be applied in concrete cases, we require
physical systems that disclose these facts. Further, these systems may or may not
be external to the system being modelled by our theory.

The ATF perspective wholly concerns the third point: the special coordinates
of non-generally covariant formulations of theories encode physical magnitudes. It
is simply silent on the issues raised in the first two points. The ESR perspective
assumes such encoding too, but it makes various further commitments concerning
how such coordinate systems are anchored to the world, and what kind of systems
disclose the magnitudes that the coordinate systems encoded. It is important to see
that these additional claims are not necessary concomitants of the idea that there is
such encoding.

To see this, consider how one might in practice get one’s hands on an ATF special
coordinate system. The coordinates encode spatial intervals and temporal intervals.
So one needs to be able tomeasure spatial and temporal intervals. But without further
argument, one’s ability to measure these should not be taken to require that the rods
and clocks one uses are outside the system that one is describing, much less outside
the scope of the theory one is using. Note that such spatiotemporal measurement
is equally essential to the concrete application of GR, not now to give meaning to
special coordinates, but to give empirical content to one of the dynamical fields that
is explicitly described.

The ESR idea that, necessarily, special coordinates in pre-relativistic physics gain
their meaning from material systems outside the system being studied, blurs the dis-
tinction between (i) coordinates encoding physical magnitudes that are disclosed by

43Specifically, one imposes �
μ
νρ = 0, tμ = (1, 0, 0, 0) and hμν = diag(0, 1, 1, 1), where �

μ
νρ are

the components of the connection, tμ are the components of the one-form that defines the temporal
metric and hμν are the components of the spatial metric.
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systems not covered by the theory in question and (ii) the coordinates being anchored
to the world via material systems outside the system under study. Rovelli’s idea that
“localisation” is inherently non-relational in pre-relativistic physics really only relies
on (ii). However, it is easy to see that (ii) is not an intrinsic feature of the special
coordinates of pre-relativistic physics. Even if in practice we often use physical sys-
tems to measure spatiotemporal intervals (and thereby fix the “magnitude-encoding”
aspect of the coordinate system) that we do not (or cannot) actually model in our
theory, the anchoring of particular coordinates to the world might simply involve the
stipulation that some qualitatively characterisable components of the system under
study are to be given such-and-such coordinate values.

Consider the case of a Lorentz-covariant formulation of our theory of the spe-
cially relativistic scalar field, for which Φ(x) is supposed to be an “observable”, in
contrast to the analogous quantity in GR. If the special coordinate system in terms of
which Φ is being described is anchored to the world by some reference system not
described by the theory, and if the coordinates are understood as encoding objective
spatiotemporal quantities, then it is clear what physical meaning Φ(x0) is supposed
to have (for any given, particular x0) and what the difference in meaning is between
the quantities Φ(x0) and Φ(x0 + Δx). However—and this is the absolutely crucial
observation—such coordinate representations of Φ can also be understood to be
physically meaningful (in essentially the same way) without understanding them in
terms of “non-relational localisation” thought of as provided by an external anchor
for the coordinate system.

Imagine, for example, that one measures Φ to take a certain value (at one’s loca-
tion). One stipulates that this value is to be given coordinate values x0.44 One then
asks what value the theory predicts that the field will take at a certain spatiotempo-
ral distance away from the observed value. Since such spatiotemporal distances are
encoded in the coordinates of the Lorentz-covariant formulation of the theory, this is
to ask what the theory predicts the value of Φ(x0 + Δx) will be, given the value of
Φ(x0), where the coordinate difference Δx encodes the spatiotemporal interval we
are interested in. Note that, conceived of in this way, Φ(x) and Φ(x + Δx) specify,
not two independently predictable quantities ultimately defined in terms of the rela-
tionship of Φ to an unstated reference object, but a single diffeomorphism-invariant
coincidence quantity, involving how the variation of Φ is related to the underlying
metric field ηab.

If one considers Newtonian physics or special relativity as potentially providing
complete cosmological theories, then any anchoring of special coordinate systems
has to be done, ultimately, in this second way. Moreover, any systems that disclose
the metric facts are, by hypothesis, describable by the theory. Of course, this is not

44In reality, in order both to provide a uniquely identifying description of the field that allows us to
anchor the coordinate system, and to provide sufficient initial data that a prediction can be extracted
from the theory, one should really consider the observation of a certain qualitatively characterisable
and spatially extended continuum of field values. This complication does not alter the basic structure
of the story given in the text.
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how we now understand the empirical applicability of Newtonian physics or special
relativity in the actual world. But the point is that there is no logical incoherence in
so conceiving of them. Indeed, it was the interpretation each was assumed to have
prior to 1905 and 1915 respectively. A theory’s including non-dynamical background
fields does not, per se, preclude such a cosmological interpretation.

To summarise, the additional commitments of the ESR interpretation of coor-
dinates, over those of the ATF view, are not necessary consequences of a theory’s
being background dependent in the sense of involving non-dynamical structure. The
conditions that ESR write into the very meaning of all special coordinate systems
might correctly characterise some concrete applications of such systems, but they
need not do so. In fact, sometimes, they do not do so. Consider, for example, a case
whose philosophical importance is stressed by Julian Barbour: the use of Newtonian
mechanics by astronomers to determine ephemeris time and the inertial frames.45

Here certain facts about simultaneity and spatial distances are determined “exter-
nally”, but the way the coordinate system is anchored to the world, and the way some
of the spatiotemporal quantities encoded by the coordinate system are determined
(time intervals and an inertial standard of equilocality) are not.

There is, perhaps, one qualification to be made. I have argued that, in the context
of classical background-dependent physics, the ESR story about special coordinate
systems does not provide an analysis of their fundamental meaning. This, however,
does not rule out something like the story being correct for background-dependent
quantum theory. In this context, the suggestion would be that certain (non-quantum)
background structure in the theory, namely, Minkowski spacetime geometry, really
does acquire physical meaning via an implicit appeal to physical systems outside
the scope of the theory. Even if something along these lines were correct (and I
register my scepticism), the point to be stressed is that its correctness is not to be
understood as flowing from the necessary meaning of such coordinate systems in
classical background-dependent physics.
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