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Abstract Spacetime as we know and love it is lost in most approaches to quantum
gravity. For many of these approaches, as inchoate and incomplete as they may
be, one of the main challenges is to relate what they take to be the fundamental
non-spatiotemporal structure of the world back to the classical spacetime of general
relativity (GR). The present essay investigates how spacetime is lost and how it may
be regained in one major approach to quantum gravity, loop quantum gravity.

Many approaches to quantumgravity (QG) suggest or imply that space and time do
not exist at the most fundamental ontological level, at least not in anything like their
usual form. Thus deprived of their former status as part of the fundamental furniture
of the world, together, perhaps, with quarks and leptons, they merely ‘emerge’ from
the deeper physics that does not rely on, or even permit, their (fundamental) existence,
rather like tables and chairs. The extent towhich the fundamental structures described
by competing approaches to QG diverge from relativistic spacetimes varies, along
different dimensions [22]. That modern physics puts time under pressure is widely
accepted. One can read the history of modern physics from the advent of relativity
theory to the present day as a continuing peeling away of the structure that time was
initially believed to exemplify ([23] §2.1). But at least in some approaches, spacetime
as a whole comes under siege. This may occur in the relatively mild sense that the
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fundamental structure turns out to be discrete; or it may be discrete and non-local,
as it happens in loop quantum gravity (LQG); or the reality of some dimensions
of space is questionable altogether, as it is in theories with certain dualities; or it
may exhibit non-commutativity among different dimensions, obliterating the usual
geometric understanding that we routinely have of spacetime.

Just how radical the departure from the spacetime we know and love is remains
to be seen, but it is likely to have profound implications. For instance, it may render
some of our cherished philosophical theories not just of space and time, but also
of persistence, causation, laws of nature and modality obsolete, or at least in need
of revision [48]. But this paper will be concerned with the consequences for the
physics, rather than the metaphysics. Two urgent, and related, issues arise. First,
one might worry that if it is a necessary condition for an empirical science that we
can at least in principle measure or observe something at some location at some
time. The italicized locution, in turn, seems to presuppose the existence of space and
time. If that existence is now denied in quantum theories of gravity, one might then
fear that these theories bid adieu to empirical science altogether. It thus becomes
paramount for advocates of these theories to show that the latter only threaten the
fundamentality, but not the existence of space and time. To discharge this task means
to show how relativistic spacetimes re-emerge and how measurable quantities arise
from the fundamental structure as postulated by the theory at stake.

This first issue is closely related to a second problem: a novel theory can supplant
an incumbent theory only if it recreates at leastmost of the empirical success of the old
theory. The way in which this requirement is typically met in physics is by showing
how the newer theory offers a more general framework than the older one, and that
therefore the older is a special case of the newer, which can be regained, or at least
mocked in formally suggestive ways, in some limit or to some approximation. For
instance, it was important to Albert Einstein to be able to show that one obtains from
general relativity (GR), in aweak-field limit, a theorywhich returns essentially all the
same empirical results in the appropriate regime as Newtonian gravitational theory.
This recovery mattered because the Newtonian theory garnered impressive empirical
successes over the more than two centuries preceding Einstein’s formulation of GR.
For the very same reason, present-day quantum theories of gravity must eventually
prove that they relate, in physically salient ways, to the classical GR that the last
century of observations has found to be so accurate.1 In fact, given the complete
absence of direct empirical access to the quantum-gravitational regime, establishing
this link with ‘old’ physics arguably constitutes the single most important constraint
on theorizing in the quantum-gravitational realm.

Consequently, in theories of lost spacetime, relativistic spacetimes must be
regained from the fundamental structure in order to discharge the tasks of secur-
ing both the theory’s empirical coherence and its account of why the theory it seeks
to supplant was as successful as it was. It is the goal of this essay to show just

1Given this formidable success of the classical theory, one might wonder why we need a quantum
theory of gravity at all. There are good reasons to think that we do, but they do not fully align with
the standard lore one finds in the physics literature ([49] §1).
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how spacetime vanishes and how it might be seen to re-emerge in one important
approach to quantum gravity, LQG. Since the emergence of spacetime from a non-
spatiotemporal structure is often thought to be impossible, establishing the mere
possibility of such emergence assumes vital importance.2

The next section, Section 1, explicates how time, rather than spacetime, disappears
in a class of approaches toQG, the so-called ‘canonical’ theories. Canonical QG casts
GR in a particular way, and the sectionwill show how time and change vanish already
at the level of GR so cast. Section 2 then investigates the fundamental structures as
they are described byLQGand discusses the twomainways inwhich they differ from
relativistic spacetimes, viz. in their discreteness and their non-locality. The following
section, Section3, starts to clear the path for the re-emergenceof relativistic spacetime
by arguing how the emergence relation should not be construed in the present case.
Specifically, it argues against a non-reductive understanding of emergence and an
attempt to cash out the relation between the structures in terms of unitary equivalence
as both inadequate to the task at hand. Next, Section 4 sketches a way in which the
relationship between fundamental spin networks and relativistic spacetimes might
be worked out and tries to understand what it would generally take to relate them.
Section 5 offers brief conclusions.

1 The Problem of Time in Canonical General Relativity

Casting GR as a Hamiltonian system with constraints has many advantages, as John
Earman [16] affirmed: it gives the vague talk about ‘local’ and ‘global’ transforma-
tions a more tangible meaning, it explains how the fibre bundle formalism arises in
the cases it does, it has a sufficiently broad scope to relate GR to Yang–Mills gauge
theories, it offers a formalization of the gauge concept, and it connects to founda-
tional issues, such as the nature of observables and the status of determinism in GR
and in gauge theories. Moreover, the Hamiltonian formulation affords a natural affin-
ity to the initial-value problem in GR.3 The real gain of a Hamiltonian formulation,
however, arises when one tries to quantize the classical theory. Typically, prescrip-
tions to find a quantum theory from a classical theory require either a Lagrangian
(e.g. for the path integral method) or a Hamiltonian (e.g. for canonical quantization)
formulation of the theory. LQG relies on a canonical quantization procedure and thus
uses a Hamiltonian formulation of GR as a starting point.4,5

2For a very recent critical view, see, e.g. [25].
3Cf. ([46], Appendix E.2). A locus classicus for the Cauchy problem in GR is [12]; a more recent
survey article is [19].
4A useful introduction to the Lagrangian and the Hamiltonian formulation of GR is given in ([46],
Appendix E). Wald’s textbook of 1984 only deals with the ADM version of Hamiltonian GR and,
as time travel was not yet invented in 1984, does not treat Ashtekar’s version, pioneered in 1986.
5Of course, for most cases we care about, Hamiltonian theories afford a corresponding equiva-
lent Lagrangian theory, and vice versa. Currently, a debate rages in philosophy of physics overwhich
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However, forcing GR, to use the words of Tim Maudlin ([29], 9) “into the Pro-
crustean bed of the Hamiltonian formalism” also comes, as conveyed by the quote,
at a cost. The cost arises from the fact that the Hamiltonian formalism tends to
construe the physical systems it describes as spatially extended three-dimensional
objects evolving over an external time, and this is no different for the Hamiltonian
formulation of GR.6 Recasting GR in a Hamiltonian formalism thus reinterprets the
four-dimensional spacetimes of standard GR as three-dimensional ‘spaces’ which
evolve in a fiducial ‘time’ according to the dynamics governed by Hamilton’s equa-
tion. Pulling space and time asunder in this way, of course, contravenes the received
view of what many take to be the deepest insight of relativity, viz. that no separation
of the fundamental spacetime into space and time can in any physically relevant way
be privileged. This blatant violation of four-dimensionalism, of course, gets mathe-
matically mended in the formalism through the imposition of constraints. But we are
getting ahead of ourselves. What this brief paragraph should suggest is that having
a philosophically closer look at the dynamics of this reformulation of classical GR
is worth our while.7

A spacetime is an ordered pair 〈M , gab〉 consisting of a four-dimensional pseudo-
Riemannian manifold M and a metric tensor field gab defined on M . Starting out
from the Einstein–Hilbert action S[gab] for gravity without matter,

S[gab] = 1

16πG

∫
M

d4x
√−gR, (1)

where G is Newton’s gravitational constant, g the determinant of the metric tensor
gab, and R the Ricci scalar, one can gain a Lagrangian formulation of GR with the
dynamical Euler–Lagrange equations in terms of a Lagrangian function L(q, q̇) of
generalized coordinates q and the generalized velocities q̇ . The Lagrange function
is essentially the integrand in the action integral (1) integrated over the three spatial
dimensions. This action leads to the (vacuum) field equations of GR if one varies
(1) with respect to the metric gab. Thus, Einstein’s vacuum field equations can be
recognized as the equations of motion of the Lagrangian formulation of GR, i.e.
as the Euler–Lagrange equations. They are second-order differential equations. The
solutions to the Euler–Lagrange equations will be uniquely determined by q, q̇ just
in case the so-called ‘Hessian’ matrix ∂2L(q, q̇)/∂q̇n′

∂ q̇n of L(q, q̇), where n labels
the degrees of freedom, is invertible. This is the case if and only if its determinant,

(Footnote 5 continued)
of the two, if any, is more fundamental or more perspicuous. Nothing I say here should be taken to
entail a stance in that debate.
6There are, of course, purely internal degrees of freedom of particles, such as classical spin, which
admit of a Hamiltonian treatment without the system necessarily being extended in space. Now,
even a point particle with internal degrees of freedom is at least a physical system in space, and it
certainly also evolves over external time.
7In connection with what follows, Chapter 1 of [21] is recommended reading. For a less formal and
hence more accessible treatment of the problem of time, cf. ([23], §2) and references therein. Cf.
also Kiefer’s contribution to this collection.
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confusingly sometimes also called ‘Hessian’, does not vanish. In case the determinant
of the Hessian vanishes, which means the Hessian is ‘singular’, the accelerations q̈
will not be uniquely determined by the positions and the velocities and the solutions
to the Euler–Lagrange equations are not only not unique in q and q̇ , but also contain
arbitrary functions of time. Thus, the impossibility of inverting ∂2L(q, q̇)/∂q̇n′

∂ q̇n

is an indication of gauge freedom. How such gauge freedom arises in constrained
Hamiltonian systems is the topic of the next subsection, §1.1, followed by an analysis
in §1.2 of how this lesson carries over into the context of Hamiltonian GR and leads
to the problem of time.

1.1 Hamiltonian Systems with Constraints

Finding aHamiltonian formulation amounts to putting the Euler–Lagrange equations
in the formofHamiltonian equations ofmotion, q̇ = ∂H/∂p and ṗ = ∂H/∂q, which
are of first order. This can be achieved by the introduction of canonical momenta via

pn = ∂L

∂q̇n
, (2)

where n = 1, ..., N , N being the number of degrees of freedomof the system at stake.
These momenta are not all independent when we are faced with a system exhibiting
gauge freedom—i.e. just in case the Hessian is singular. These dependencies get
articulated in constraint equations

φm(q, p) = 0, m = 1, ..., M, (3)

whereM is the number of dependencies. The relations (3) between q and p are called
primary constraints and define a submanifold smoothly embedded in phase space
called the primary constraint surface. The phase space � is defined as the space of
solutions of the equations of motion. Assuming that all equations (3) are linearly
independent, which may not be the case, this submanifold will be of dimension
2N − M . Equations (3) imply that the transformation map between the Lagrangian
phase space �(q, q̇) and the Hamiltonian phase space �(q, p) is onto but not one-
to-one. Equations (2) define a mapping from a 2N -dimensional manifold of the q’s
an q̇’s to the (2N − M)-dimensional manifold defined by (3). In order to render the
transformation bijective and thus invertible, the introduction of extra parameters—
‘gauge fluff’—is required.8

Next, one introduces a Hamiltonian H as a function of position and momentum
variables as

H(q, p) = q̇n pn − L(q, q̇). (4)

8For more details on how the constraints arise in some Hamiltonian systems, see ([21], Ch. 1). My
exposition largely follows this reference.
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This canonicalHamiltonian is uniquely definedonly on the primary constraint surface
but can arbitrarily be extended to the rest of phase space. The ‘Legendre transfor-
mation’ defined by (2) turns out to be invertible just in case det(∂2L/∂q̇n′

∂ q̇n) �= 0.
Should the determinant of the Hessian vanish, as above, one can add extra vari-
ables um and thus render the Legendre transformation invertible. In this case, the
Hamiltonian equations corresponding to the Euler–Lagrange equations become

q̇n = ∂H

∂pn
+ um

∂φm

∂pn
,

ṗn = − ∂H

∂qn
− um

∂φm

∂qn
,

φm(q, p) = 0.

These Hamilton equations lead via arbitrary variations δqn, δpn, δum (except for the
boundary conditions δqn(t1) = δqn(t2) = 0 and that they must conserve H ) to the
Hamiltonian equations of motion for arbitrary functions F(q, p) of the canonical
variables

Ḟ = {F, H} + um{F, φm}, (5)

where {, } is the usual Poisson bracket

{F,G} := ∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi
.

Consistency requires that the primary constraints φm be preserved over time, i.e.
that φ̇m = 0. As primary constraints are phase space functions, equation (5) then
implies

{φm, H} + um
′ {φm, φm ′ } = 0. (6)

This equation has one of two possible forms: either it embodies a relation only
between the q’s and p’s, without any um , or it results in a relation including um . In
the latter case, we just end upwith a restriction on um . In the former case, however, (6)
leads to additional constraints, called secondary constraints, on the canonical vari-
ables and thus on the physically relevant region of the phase space. These secondary
constraintsmust also fulfill the consistency requirement of being preserved over time,
which leads to new equations of the type (6), which again are either restrictions on
the um or constraints on the canonical variables, etc. Once the process is finished, and
we have all secondary constraints,9 denoted by φk = 0 with k = M + 1, ..., M + K ,
all constraints can be rewritten as φ j = 0 with j = 1, ..., M + K =: J . The full set
of constraints φ j = 0 defines a ‘subsubmanifold’ in the phase space�, i.e. a subman-
ifold of the primary constraint surface φm = 0, called the constraint surface C . The
relevant difference between primary and secondary constraints is that primary con-

9They are not referred to as tertiary, quaternary etc. constraints, but only collectively as ‘secondary’
constraints.
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straints are direct consequences of equation (2), whereas the secondary constraints
only arise once the equations of motion (5) are given.

Any two functions F and G in phase space that coincide on the constraint surface
are said to be weakly equal, symbolically F ≈ G. In case they agree throughout the
entire phase space, their equality is considered strong, expressed as usual as F = G.
Above, I have introduced the qualification of constraints as primary. However, there
is a more important classification of constraints into first-class and second-class
constraints, defined as follows:

Definition 1 (First-class constraints) A function F(q, p) is termed first class if and
only if its Poisson bracket with every constraint vanishes weakly,

{F, φ j } ≈ 0, j = 1, ..., J. (7)

If that first-class function is a constraint itself, then we call it a first-class constraint.
A function in phase space is called second class just in case it is not first class.

The property of being first class is preserved under the Poisson bracket, i.e. the
Poisson bracket of two first-class functions is first class again.

The fact that arbitrary functions um enter the Hamilton equations (or, equivalently,
the Hamiltonian equations of motion) implies that a physical state is uniquely deter-
mined by a pair (q, p), i.e. by a point in (Hamiltonian) phase space �(q, p), but
not vice versa. In other words, these arbitrary functions encode the gauge freedom
which arises for systems with a singular Hessian. It can be shown that a dynamical
variable F , i.e. a function on �, differs in value from time t1 to time t2 = t1 + δt by

δF = δva{F, φa} (8)

where the φa range over the complete set of first-class primary constraints and the
va are the totally arbitrary part of the um , with δva = (va − ṽa)δt where va and ṽa

are two different choices of va at t1.10 In a deterministic theory, the transformation
(8) does not modify the physical state and is thus considered a gauge transformation.
In this sense, the first-class primary constraints generate gauge transformations. The
famous ‘Dirac conjecture’ attempts to extend this result to include all first-class
constraints as generating gauge. In general, however, the conjecture is false as the
existence of some admittedly contrived counter examples illustrates.11 There is no
harm for present purposes, however, if we assume that all first-class constraints
generate gauge transformations. The restriction of a phase space function F to C
is gauge-invariant just in case {F, φa} ≈ 0, in which case (8) implies δF ≈ 0. The
first-class constraints are thus seen to generatemotions withinC . In contrast, second-
class constraints generate motions leading outside of C .12 This distinction permits
the explication of another important concept: the gauge orbit. A gauge orbit is a

10Cf. ([21], §1.2.1).
11Cf. ([21] §1.2.2).
12Cf. ([8] §10.2.2).
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submanifold of C which contains all those points in C which form an equivalence
class under a gauge transformation. The sets of these points are path-connected in C
since gauge transformations that connect these points are continuous and do not leave
C . They form a curve in C . The gauge motion produced by the first-class constraints
can thus be seen to be the tangents to these curves. The points of the gauge orbits
in C , equipped with a projection C → �phys , constitute the so-called reduced or
physical phase space �phys . The physical phase space �phys is defined as the set
of points representing gauge equivalence classes of points in �. In other words, the
physical phase space is obtained by identifying all points on the same gauge orbits.
This means that the bundle of admissible dynamical trajectories passing through a
particular point x ∈ C is mapped to the physical phase space such that the bundle is
projected onto a single dynamical trajectory through the point in �phys representing
the gauge equivalence class in which x falls.

Assume a Hamiltonian system with constraints is given. Assume further that all
constraints are first-class.13 Constraint equations are equations which the canonical
variables must satisfy in addition to the dynamical equations of the system. If a
set of variables were to determine one and only one physical state, then, given the
existence and uniqueness of the solutions of the dynamical equations, one could
plug the set of variables uniquely specifying the state into the dynamical equations
and could thus obtain the full deterministic dynamical evolution of the physical
degrees of freedom. If constraints are present, however, a set of variables does not
uniquely describe a physical state. Solving the constraints thus means to use these
additional equations to explicitly solve for a variable. This permits the elimination
of this variable (and the now solved constraint equation). Solving the constraints of
the constrained Hamiltonian system thus amounts to the reduction of the number of
variables used to specify the physical state of the system.Once all constraint equations
are solved and thus eliminated, the remaining canonical variables are ineliminable
for the purpose of uniquely specifying a physical state. In this case, we are back to
an unconstrained Hamiltonian system in the sense that its phase space is its physical
phase space. In the absence of any second-class constraints, the total number of
canonical variables (=2N ) minus twice the number of first-class constraints equals
the number of independent canonical variables. Equally, the number of physical
degrees of freedom is the same as half the number of independent canonical variables,
or the same as half the number of canonical variables minus the number of first-class
constraints.14

13Second-class constraints can be regarded as resulting from fixing the gauge of a ‘larger’ system
with an additional gauge invariance. They can be replaced by a corresponding set of first-class
constraints which capture the additional gauge invariance. Second-class constraints are thus elim-
inable. In fact, in some cases, it may prove advantageous to thus ‘enlarge’ a system as this permits
the circumvention of some technical obstacles ([21] §1.4.3), albeit at the price of introducing new
‘unphysical’ degrees of freedom. Without loss of generality, we can thus consider a Hamiltonian
system whose constraints are all first-class.
14This manner of counting the physical degrees of freedom is well defined for any finite number
of degrees of freedom, and perhaps for countably many too. For uncountably many degrees of
freedom, new subtleties arise. Cf. ([21] §1.4.2).
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1.2 Gauge Freedom in Hamiltonian General Relativity

Hamilton’s equations, at least in the narrower standard sense, explicitly solve for the
time derivatives. This can only be achievedwithin GR if its original four-dimensional
quantities are broken up into (3+1)-dimensional quantities, with time accruing in the
one single dimension. Similar coercion must be exercised upon the four-dimensional
structure of spacetime, nota bene, when we wish to consider an initial-value formu-
lation of GR. In order to find a Hamiltonian or an initial-value formulation, GR
must be regarded as describing the dynamical evolution of something. Breaking up
spacetime into ‘space’ that evolves in ‘time’ in order to determine whether a well-
posed initial-value formulation exists, i.e. whether the physical degrees of freedom
enjoy an at least minimally stable deterministic evolution, becomesmanageable once
we impose a gauge condition to weed out any unphysical degrees of freedom. The
traditional formulation of GR as a constrained Hamiltonian system entertains 12
dynamical variables, the six independent components of the three-metric qab and the
six independent components of the corresponding conjugate momentum πab. Half
this number is six, and there are four first-class constraint equations, which leaves
the gravitational field with two physical degrees of freedom per point in space. For-
tunately, this is the same number of degrees of freedom as one gets for a linear
spin-2 field propagating on a flat spacetime background, which can be considered as
a weak-field limit of GR.15 With a gauge condition enforced, Einstein’s field equa-
tions can be massaged into a form of hyperbolic second-order differential equations
defined on manifolds which admit existence and uniqueness theorems. Even in an
appropriate gauge fix, however, GR allows for ways in which the field equations may
fail to uniquely determine their solutions.16

The conceptually most momentous consequence of casting GR as a constrained
Hamiltonian system is that the Hamiltonian H is itself a constraint bound to vanish
on the constraint surface of the phase space. This is what ultimately leads to the
‘problem of time’, a conceptual tangle in the foundations of Hamiltonian GR and of
quantizations relying thereon, consisting of essentially two strands, the disappearance
of time as a fundamental magnitude and the ‘freezing’ of the dynamics. The first
aspect, the vanishing of time as a fundamental physical magnitude, is suggested at
the classical level by the increasing elimination of time in classical physics, leading
up to Hamiltonian GR, as it is retraced in ([23] §2.1 and §2.2). However, there is a
sense in which it only comes to full fruition in quantum theories, as will be elaborated
below.

15See ([46] §4.4b); cf. also ([46] 266) for a slightly different way of calculating the degrees of
freedom of the gravitational field.
16For an explanation of the failures of determinism in this setting, cf. ([47] §4.1), on which the
past few pages have been based. Also, and at the peril of burying an absolutely central point in a
footnote, this severance of space and time threatens the general covariance so central to GR. How
general covariance gets implemented in Hamiltonian GR and the subtleties that arise in doing so
are discussed in ([47] §4.4). What follows explicates the gist of this implementation.
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The freezing of the dynamics—more aptly called the ‘problem of change’—,
however, fully appears at the classical level. A crucial premise of the argument
leading to the problem of change is that only gauge-invariant quantities can capture
the genuinely physical content of a theory. This premise is justified by pointing
to the fact that two distinct mathematical models of a theory describe the same
physical situation just in case they are related by maps which are interpreted as
‘gauge’ transformations. Of course, it may be controversial for any given theory
just which maps ought to be considered ‘gauge’, but I take the justificatory fact
invoked in the previous sentence to be analytic of what it means to be ‘gauge’, viz. to
capture a representational redundancy not reflective of the true physical situation. In
other words, the premise stipulates that the physical content of a theory is exhausted
by the gauge-invariant quantities as codified by the theory. The concept of ‘Dirac
observables’ tries to capture this idea in the context of constrained Hamiltonian
theories:

Definition 2 (Dirac observables) A(n equivalence class of) Dirac observable(s) is
defined as the (set of those) function(s) in phase space that has (have) weakly vanish-
ing Poisson brackets with all first-class constraints (and coincide on the constraint
surface). Equivalently, Dirac observables are functions in phase space which are
constant along gauge orbits on the constraint surface.

Thus, if the premise is true, and if the gauge-invariant quantities of a constrained
Hamiltonian theory are precisely its Dirac observables as defined in Definition 2,
then the physical content of a constrained Hamiltonian theory is exhausted by its
Dirac observables.

In order to determine the physical content of Hamiltonian GR, thus, it becomes
paramount to identify its first-class constraints. I will not execute this task here with
themathematical precision it deserves but rest contentwith a conceptualmotivation.17

The vantage point is the principle of general covariance so central to GR. This
principle demands that the Einstein equations’ dynamical symmetry group Diff(M )

of active spacetime diffeomorphisms is the gauge group of GR.18,19 In other words,
active spacetime diffeomorphisms, which map a solution of the dynamical equation
to another solution, ought to be considered relating two mathematically distinct
solutions describing one and the same physical situation.20 Thus, general covariance
is spelled out as gauge invariance under active spacetime diffeomorphisms.

17For a somewhat rigorous execution in the case of the so-called ADM and Ashtekar-Barbero
versions of Hamiltonian GR, cf. [47], §4.2.1 and §4.2.2, respectively.
18A spacetime diffeomorphism is a one-to-one and onto C∞-map from M onto itself which has
a C∞-inverse. Diffeomorphisms induce transformations in the fields defined on the manifolds.
Intuitively, a map between manifolds is active if it ‘moves around’ the points without recourse to
any coordinate system. Thus, an active transformation is not a change in coordinate systems, but
a transformation pushing around the physical fields on the manifold. But this metaphorical picture
should be enjoyed with the adequate mathematical caution.
19This is the received view, but it should be noted that there has been recent dissent, e.g. in ([14]
§3).
20For a detailed analysis and justification, cf. ([47] §3, particularly §3.2).
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In the Hamiltonian formalism, the dynamical symmetry of GR gets encoded as
constraints which generate the spacetime diffeomorphisms in the sense explained in
§1.1. In the standard formulation ofGR, the elements of the symmetry groupDiff(M )

are defined as maps between four-dimensional manifolds. The Hamiltonian formal-
ism breaks this four-dimensionality down to a three-plus-one-dimensional rendering;
accordingly, Diff(M ) breaks down into a group of three-dimensional ‘spatial’ dif-
feomorphisms and a group of one-dimensional ‘temporal’ diffeomorphisms. This
move is not without subtleties, as expounded in ([47] §4.2): the symmetry group in
Hamiltonian versions of GR differs from that in the usual articulation of the the-
ory, thus distinguishing Hamiltonian GR from its standard cousin in yet another
way from those given at the end of the section. In the exemplary ADM version of
Hamiltonian GR, the spacetime diffeomorphisms are generated by normal and tan-
gential components of the Hamiltonian flow. Since the constraints generating the
diffeomorphism must vanish (weakly), these components of the Hamiltonian vanish
(weakly). Furthermore, in a Hamiltonian theory, it is the Hamiltonian which gener-
ates the dynamical evolution via the Hamilton equations. Since the Hamiltonian is
constrained to vanish, the dynamics gets ‘frozen’.

More specifically, (the normal component of the) Hamiltonian is a first-class con-
straint. Thus, the Dirac observables must have weakly vanishing Poisson brackets
with the Hamiltonian and thus turn out to be constants along the gauge orbits gener-
ated by the Hamiltonian. This accords with the stipulation above that the physical-
content-capturing Dirac observables must be invariant under gauge transformations,
here constituted by active spacetime diffeomorphisms. Since the Dirac observables
are constant along orbits generated by the Hamiltonian, all genuinely physical mag-
nitudes must be constants of the motion, i.e., they must remain constant over time.
In other words, any supposed change is purely a representational redundancy, and
not a physical fact. Thus, the argument concludes, there is no change! Since GR,
or any quantum theory of gravity replacing it, is a fundamental theory, we are sad-
dled with the uncomfortable task of explicating how time and change can arise
phenomenologically—which they undoubtedly do—in a fundamentally changeless
world. O quam cito transit gloria temporis.21

Avoiding this unpalatable conclusion might be all too easy by simply brushing
asideHamiltonianGRas a failed articulation of the theory.But thismove is not readily
available, at least not without some considerable cost. A prima facie justification
for brushing it aside points out that Hamiltonian GR is not theoretically equivalent
to the standard formulation of GR. It is true: Hamiltonian GR presupposes that
spacetimes can always be sliced up to conform to its (3 + 1)-dimensional framework,
but this is demonstrably false inGR. Thus, HamiltonianGR at best captures the sector
of GR containing sliceable, globally hyperbolic spacetimes. Furthermore, known
articulations of Hamiltonian versions of GR exclude any matter content from the
spacetimes and thus only codify vacuum spacetimes. It is not clear, however, that
this inequivalence suffices to evade the strictures of the above argument. And most
importantly, Hamiltonian formulations of GR serve as the basis for one of the most

21For a discussion of philosophical reactions to this situation, cf. ([23] §2.3).
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important family of approaches to formulating a quantum theory of gravity. By virtue
of this fact alone, they deserve to be taken seriously, not just mathematically, but also
philosophically.

2 How Spacetime Dissolves in LQG

Once the classical theory is cast in a Hamiltonian fashion, then it can be subjected
to the powerful canonical quantization technique. This procedure, pioneered by Paul
Dirac, converts the canonical variables of the classical theory into quantum operators
defined on an appropriately chosen Hilbert space. The Poisson bracket structure of
the classical level is thereby transposed to give rise to the canonical commutation
relations obtaining between the basic operators in the quantum theory. From these
basic operators, more complex operators can be built up. The classical constraint
functions get translated into such complex operators acting on elements in the Hilbert
space, thus turning the constraint equations into wave equations. Since they are
constraint equations, the constraint operators annihilate the states on which they are
acting. Only those states which are so annihilated by the constraints operators are
considered physical states. As usual in quantummechanics, theHamiltonian operator
Ĥ generates the dynamics via a Schrödinger-type equation.

As we have seen in §1.2, in Hamiltonian formulations of GR, the Hamiltonian
itself becomes a constraint. In the quantum theory, we get

Ĥ |ψ〉 = 0 (9)

which is demanded to hold for all physical states |ψ〉. The ‘physical’ Hilbert space
H consists just of those states, which satisfy all constraints, i.e., are annihilated
by all constraint operators in the theory. Equation (9), also called the ‘Wheeler–
DeWitt equation’, gives a very direct intuition of both the problem of time and that
of change. Concerning the problem of time strictly so-called, comparing (9) to the
ordinary Schrödinger equation,

Ĥ |ψ〉 = i�
∂

∂t
|ψ〉, (10)

we notice the absence of the time parameter t in (9). This is indicative of the problem
of time: the absence of time from the fundamental picture. Quite literally, time drops
out of the equation in Hamiltonian quantum gravity.

Given that (9) plays the role of the dynamical equation in quantum Hamiltonian
GR just as (10) does for ordinary quantum mechanics, we also glean the first traces
of the quantum version of the problem of change by recognizing that the time deriv-
ative vanishes. Analogous to the classical case, constraint operators generate the
gauge symmetries of the theory. Accordingly, the criterion for the gauge-invariant
observables, the Dirac observables defined in Definition 2 of the quantum theory,
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gets translated as requiring that functions F̂ of operators represent Dirac observables
just in case they commute with all the constraint operators Ĉi

[F̂, Ĉi ]|ψ〉 = 0,

for all i = 1, ...,m, wherem is the number of constraints, and for all |ψ〉 inH . This
entails that every Dirac observable must commute with the Hamiltonian. Since the
Hamiltonian is what generates the dynamical evolution of the states, all Dirac observ-
ables must thus be constants of the motion, i.e., not changing over time. However,
the Dirac observables also exhaustively capture the physical content of the theory, at
least according to the premise stated in §1.2. Thus, no genuine physical magnitude
changes over time. Hence, the dynamics of the world described in canonical quantum
gravity is ‘frozen’ in time. There simply is no change at the most fundamental level
described by these Hamiltonian quantum theories of gravity! Change, as it turns out,
only arises as a representational artefact—‘gauge’—with no physical counterpart in
the fundamental theory.

Unlike at the classical level, where arguably the strictures of the argument can be
evaded, at least to some extent, by avoiding Hamiltonian formulations of GR, this is
evidently not possible for quantizations based on them as the problem is built right
into the framework. Perhaps we ought to have expected such an outcome—after all,
GR teaches us that time is not external to the physical systems of interest but itself
partakes as part of spacetime in dynamical interactions with the material content of
the universe, which constitute the usual physical systems physics describes. In other
words, time is part of the physical system we are trying to quantize.

In fact, indications persist that quite generically in quantum gravity space and
time, at least as standardly understood in GR, no longer form part of the fundamental
ontology. Instead, space and time, or at least one or the other, are ‘emergent’ phenom-
ena that arise from the basic physics. As it is used in the present essay, ‘emergent’
should not be taken as the terminus technicus in philosophy that designates properties
which are not even weakly reducible. Rather, it should be considered as an umbrella
term for a relationship that may well turn out to be reductive, as will be argued in
§3.1. In fact, to characterize the exact nature of this relationship is the ultimate goal
of the research addressing the issue at stake. In the language of physicists, spacetime
theories such as GR are ‘effective’ theories trading in ‘emergent’ phenomena, much
like thermodynamics is an effective theory dealing with the emergent phenomenon
of temperature, as it is built up from the collective behaviour of gas molecules. How-
ever, quite unlike the fact that temperature is emergent, the idea that the universe
and its material content is not in space and time shocks our very idea of physical
existence as profoundly as any previous scientific revolution did.

So there is at least a sense in which time vanishes in canonical approaches to
quantum gravity. It has been argued that because string theory contains GR “in some
limit... [t]he disappearance of external time should... also hold in string theory” ([24]
10). As a consequence of the holographic principle, space as well can be considered
emergent in string theory [23]. Furthermore, the fundamental structures postulated
by various quantum theories of gravity diverge significantly from the familiar space-
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times of GR. For instance, so-called non-commutative geometry replaces the basic
geometric picture we have of spacetime by algebraic relations between temporal
and spatial coordinates or directions and generalizes multiplicative relations among
them so that they no longer commute. This generalization has weird consequences
and renders the basic structure conceptually quite different from spacetime [23]. As
another example, the fundamental structure generically turns out to be discrete rather
than continuous. For a vast class of quantum theories of gravity, Lee Smolin, takes
discreteness to be “well established.” ([42] 549).

Of course, one might react to these developments as John Earman did, at least
concerning LQG, and insist that

although classical general relativistic spacetime has been demoted from a fundamental to an
emergent entity, spacetime per se has not been banished as a fundamental entity. After all,
what LQG offers is a quantization of classical general relativistic spacetime, and it seems not
unfair to say that what it describes is quantum spacetime. This entity retains a fundamental
status in LQG since there is no attempt to reduce it to something more fundamental. ([17]
21)

If this is just a quarrel over words, I have no appetite to engage in it. We are free to
call LQG’s fundamental structure, to be described in the remainder of this section,
‘quantum spacetime’ all right, but given the profound departures from relativistic
spacetimes, the use of a different term is not only warranted, but also preferable, as
I have argued elsewhere [48]. Let us leave this debate to one side and delve into the
physics in order to get a sense of what it is LQG theorizes about.

2.1 Introducing LQG

Canonical quantum gravity generally, and LQG in particular, attempt to transpose
the central lesson of GR into a quantum theory. The pertinent key innovation of GR
is the recognition that spacetime does not passively offer a fixed ‘background’ which
determines the inertial ‘forces’ acting on the physical content of the universe, but
instead a dynamical structure which interacts with matter. To repeat, LQG is based
on a reformulation of GR as a ‘Hamiltonian system’, which reinterprets spacetimes
as (3 + 1)-dimensional rather than 4-dimensional, with constraints. Thus, recasting
GR as a Hamiltonian theory forces a ‘foliation’ of its spacetimes by an equiva-
lence relation into three-dimensional ‘spatial’ hypersurfaces, parametrized by a one-
dimensional ‘time’. The natural interpretation of the Hamiltonian system would be
that of a three-dimensional ‘space’ considered as a dynamical physical systemwhich
evolves over ‘time’, where the three-dimensional hypersurfaces would represent the
instantaneous state of the dynamical theory.

LQG is thus a canonical quantization of Hamiltonian GR.22 Before we proceed,
let it be noted that the particular formulation required entails a substantive limitation

22For a thorough introduction to LQG, cf. [34]; for the mathematical foundations, cf. [44]. [35] is
a recent review article.
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of the approach: only ‘globally hyperbolic’ spacetimes of the classical theory are
considered. If a spacetime is globally hyperbolic, then it is topologically ‘3 + 1’,
i.e., the topology of M is � × R, where � is a three-dimensional submanifold of
M .23 Just how severe this limitation is is debatable; many physicists do not consider
it troubling, some philosophers have dissented. To impose global hyperbolicity as
a necessary condition for physically reasonable spacetimes amounts to asserting a
strong form of themerely conjectured, but not proven, cosmic censorship hypothesis.
Dissenting voices cautioning against stipulating global hyperbolicity as necessary
include Earman [18], Erik Curiel [13], Chris Smeenk and Wüthrich [41], and John
Manchak [27].Manchak ([27] 414) proves that as long as a spacetime is not “causally
bizarre”, it is observationally indistinguishable from another spacetime, not isometric
to the first and not globally hyperbolic, yet with exactly the same local properties.
From this, Manchak concludes that “[i]t seems that, although our universe may
be... globally hyperbolic..., we can never know that it is.” (ibid.) In the light of this
result, it appears brash to enthrone global hyperbolicity as a sine qua non of physical
reasonability. Having said that, however, if LQGwere to be a huge empirical success,
its premises would be vindicated. Note the future subjunctive tense in the previous
sentence.

There currently still persists another, uncontroversially problematic, limitation
of the approach: only vacuum spacetimes are considered, i.e., the classical vantage
point of the approach is the vacuum sector of GRwith everywhere vanishing energy-
momentum. This technical simplification comes at the price of rendering it unclear
whether the resulting quantum theory can deal with a non-zero energy and matter
content of the universe, presumably a necessary condition for giving an empirically
adequate account of the actual world. The situationmay not be quite as bleak for LQG
as this may suggest, for three reasons. First, vacua are physically important states
and their theoretical understanding may shed decisive light on the necessary steps
leading to a more general theory encompassing matter. Second, the assessment as to
whether or notmodels of a theory or vacuum states of the universe containmattermay
come apart for classical and quantum theories. In other words, the quantum theory
which started out from classical vacuum states may be interpreted to contain matter.
This possibility does not come without further complications, though: the emerging
matter may well be highly non-local and may violate most or all energy conditions.
Third, and most speculatively, matter, just as space and time, may emerge from the—
perhaps topological or combinatorial—properties of the fundamental structure and
hence not be present at the fundamental level.

The goal of the quantization is to find the Hilbert space corresponding to the
physical state space of the theory and to define operators on the Hilbert space rep-
resenting the relevant physical magnitudes. The hope would naturally be that some
of the latter make contact to the empirically testable. In order to get the quantization
started, one chooses a pair of canonically conjugate variables which coordinatizes
the relevant sector of the classical phase space. Different choices lead to differ-

23For a more systematic explication of global hyperbolicity and neighbouring concepts, see ([41]
593).
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ent quantum theories: geometrodynamics’s choice is the induced three-metric on
the three-hypersurface and its conjugate momentum constructed from the external
curvature of the three-hypersurface, LQG starts out from Abhay Ashtekar’s ‘new
variables’ of a connection Ai

a and its conjugate, a densitized triad ‘electric field’
Ea
i and constructs a ‘holonomy’ and its conjugate ‘flux’ variables from them. The

geometrical structure of the classical phase space is encapsulated in the canoni-
cal algebra given by the Poisson brackets among the basic variables. This structure
gets transposed into a quantum theory by first defining an initial functional Hilbert
space of quantum states |ψ〉. The basic canonical variables are turned into operators
whose algebra is determined by their commutation relations arising from the classi-
cal Poisson brackets. The classical constraints, which are functions of the canonical
variables, now become operators constructed ‘isomorphically’ as functions of the
basic operators. Classically, the constraint functions are set to zero; in the quantum
theory, they annihilate the states. Thus, by imposing the constraints, the theory effec-
tively demands that only states which are annihilated by all constraint operators are
considered physical. Dynamical equations, as was already clear at the outset of this
section, play a somewhat different role. In a sense, given that the ‘Schrödinger-like’
equation of the quantum theory is the constraint equation (9), there is no additional
dynamical equation governing any ‘dynamics’ of the theory.

In LQG, three families of constraints arise. First, the so-called ‘Gauss constraints’
indicate a rotational gauge freedom of the triads and generate an infinitesimal SU (2)
transformation in the internal, as opposed to spacetime, indices (indicated by letters
from the middle of the alphabet). These are comparatively straightforward to solve.
Next, we find three ‘(spatial) diffeomorphism’ constraints, which generate the spatial
diffeomorphisms on the three-hypersurfaces. These constraints are hard to solve, but
it has been done. The resulting Hilbert space, i.e., the Hilbert space we obtain from
the states which get annihilated by the Gauss and diffeomorphism constraints, is
called the ‘kinematical Hilbert space’ and will here be denoted byHK . Finally, there
is the Hamiltonian constraint which has so far defied solution. In fact, it is not even
clear what the concrete form of the formal equation (9) is. In this sense, LQG is not
yet a complete theory. As will hopefully become clear later in the essay, there remain
plenty of reasons not to walk away from LQG, at least not just yet.

Given the technical and conceptual difficulties with the ‘dynamics’ (9), various
authors have sought ways to circumvent the standard conceptualization of dynamics
in a Hamiltonian theory. One main approach conceives of the dynamics in ways
similar to perturbative approaches to quantum field theory, taking elements of HK

as three-dimensional ‘initial’ and ‘final’ ‘spaces’ and compute transition amplitudes
between them ([35] §3). Or alternatively, as Carlo Rovelli has suggested, the states in
the physical Hilbert space may not be ‘states at some time’; instead, they are ‘bound-
ary states’, i.e., states describing quantum space surrounding a four-dimensional
region of spacetime.24

Because (9) is not solved yet, all results must remain preliminary. One way to see
this immediately is to remind the reader that all Dirac observables must commute

24A more detailed analysis of dynamics in LQG can be found in ([47] §5.3).
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Fig. 1 A spin network state
is characterized by an
abstract graph with
‘spin’-representations on the
nodes and the links between
them

with all constraints. If we accept that the set of Dirac observables is identical to the
set of genuine physical magnitudes, as arguably we should on pain of introducing
gauge-dependent quantities, then we cannot determine the physical magnitudes yet,
as we do not know the explicit form of Ĥ and so cannot determine which operators
commute with it. It thus remains open whether any of the geometric operators to be
introduced shortly really corresponds to a genuine physical magnitude.

Let us study the structure of HK then. It turns out that so-called ‘spin network
states’ provide a useful basis inHK .25 These spin network states are interpreted to be
the quantum states of the gravitational field. Since physical ‘space’ will be in a state
in HK , as §4.2 will suggest, it will generally be in a quantum superposition of spin
network states. Spin network states can be represented by abstract labelled graphs as
in Figure 1,26 as they are completely characterized and uniquely identified by three
types of ‘quantum numbers’. The first label characterizes the abstract graph �, the
second the irreducible SU (2)-(hence ‘spin’) representations jl on the links and a third
the SU (2)-representations on the nodes, denoted by in . It should be emphasized that
the abstractness of the graph is central to the correct interpretation of the emerging
picture here: the spin network states are not quantum states of a physical system in
space; rather they are the quantum states of physical space.

The spin network states |�, jl , in〉 are eigenstates of the so-called area and volume
operators defined onHK . The spectra of these operators yield important information
concerning the geometrical interpretation of the spin network states, although it must
be emphasized that the interpretation of the states relies, in turn, on an interpretation
of these operators as geometric. Since we study the properties of the gravitational
field via the geometry of the physical space, the properties of (three-dimensional)

25For the technical background of this basis and its interpretation, cf. ([35] §2.3).
26More precisely, they are represented by labelled graphs embedded in some background space.
Thus, they are not invariant under spatial diffeomorphisms, i.e., when they are ‘pushed around’
on the embedding manifold. In order to fully solve the diffeomorphism constraints, then, we need
equivalence classes of spin network states under three-dimensional diffeomorphisms on the back-
ground manifold. Sometimes, these equivalence classes, represented by abstract labelled graphs,
are called ‘s-knot states’ in the literature. So I am being slightly sloppy by using the locution ‘spin
network states’ ambiguously.
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gravitational fields are determined by the spectral properties of the area and volume
operators. These operators, which will be discussed in greater detail in §4.2, turn out
to have discrete spectra [2–4, 36, 37]. The granularity of the spatial geometry—the
‘polymer’ geometry of space—follows from the discreteness of the spectra of the
volume and the area operators. Essentially, each node (and only the nodes) in the
network contributes a term to the sum of the volume of a region. On each node,
there sits an ‘atom’ of space with volume Vn , as it were. These elementary grains
of space are separated from each other by their surfaces of contiguity. Just as the
volume operator receives contributions from the nodes of a region, the area operator
acquires contributions from all the links that intersect the surface. For instance, the
surface whose only intersecting link is a link with quantum number jl has a surface
area of Al ∝ √

jl( jl + 1) ([34] §6.7). Thus, the ‘size’ of the surface connecting
adjacent ‘chunks’ of ‘space’ is constructed from the spin representations sitting on
the relevant links. Thus, the smooth space of the classical theory is supplanted by
a discrete quantum structure displaying the granular nature of space at the Planck
scale. Continuous space as we find it in classical theories such as GR and as it figures
in our conceptions of the world is a merely emergent phenomenon.27

Physical three-space, in Rovelli’s interpretation, is a quantum superposition of
spin network states, analogously to the physical electromagnetic field consisting of
a superposition of n-photon states. LQG predicts the existence of indivisible quanta
of volume, area, and length, as well as their spectra (up to a constant). Importantly,
this discreteness was a result of the loop quantization, rather than an assumption.
According to LQG, measurements of the Planck geometry of space must therefore
yield one of the values in the spectrum of the concerned operator.

As mentioned above, the ‘dynamics’ of canonical LQG are only known in formal
outline. As in any Hamiltonian theory, the dynamics of the theory is generated by
the Hamiltonian operators Ĥ , which is defined on HK , via the Wheeler–DeWitt
equation (9). The space of the solutions of (9) will constitute the physical Hilbert
spaceH . But since there exist several inequivalent versions of Ĥ—all of whichmay
be false—the Hilbert spaceH has not yet been constructed and the theory remains
incomplete.

Before we start to consider how spacetime emerges from the fundamental struc-
tures of LQG—spin network states—, let us make sure that it has indeed vanished
from the fundamental ontology. Of course, as Earman suggested in the quote above,
we might simply call the spin-network structure ‘quantum spacetime’ and move
on with it. To use homonyms, or near-homonyms, for two rather different struc-
tures, however, promises to create more confusion than comprehension. The spin
networks diverge from classical relativistic spacetimes in at least two crucial points.
First, unlike the continua of classical physics, they are discrete. As was observed
above, many expect the fundamental structure in quantum gravity to be discrete and
this expectation is certainly borne out in many of the extant approaches. This is

27It should be kept in mind, however, that these operators are not Dirac observables and should
therefore be taken with a grain of salt. They are partial observables in the sense of [33].
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a significant departure, but may not sway everyone to discontinue considering the
fundamental structure a ‘spacetime’.

Arguably, however, the deeper divergence from classical spacetimes arises from
the ‘non-localities’ that we find in spin networks (and in many other quantum struc-
tures).28 How these fundamental structures can be ‘non-local’ needs a bit of explain-
ing, given that (non-)locality is a spatiotemporal, or anyway a spatial, concept. To
appreciate the sense in which the spin networks do contain ‘non-localities’, consider
a fundamental relational structure consisting of a set of basal atoms,which exemplify,
in pairs, a basal ‘adjacency’ relation. Together with an intrinsic ‘valence’ attributed
to each of the atoms and each of the exemplified relations, this yields a connected
structural complex of the kind we find in LQG. Contrast this with the spatiotemporal
structure we find in GR, where the spatiotemporal, indeed metric, relations obtain-
ing between the spacetime events give rise to a locality and neighbourhood edifice.
Now, these two structures are supposed to be related by an emergence relation. More
specifically, the idea is that the exemplified fundamental structure is related, in some
limit or in some approximation or at some scale, to a relativistic spacetime. Given
two particular structures related in this way, one can map the atoms of the fundamen-
tal structure onto events in the spacetime. What it then means to say that there are
‘non-localities’ present in the fundamental structure is that some pairs of adjacent
basal atoms, i.e., pairs of atoms exemplifying the fundamental adjacency relation, get
mapped onto events in the spacetime which can be at arbitrarily large distances now
as measured in the metric of the emerging spacetime.29 Locality is notoriously tricky
in GR, of course, but in globally hyperbolic relativistic spacetimes, a precise notion
of locality is readily available. Given a possibly physically privileged foliation, a
spatial metric is induced on the leaf containing the events, which are thus spatially
related. This now permits an explication of locality e.g. in terms of convex spatial
neighbourhoods of events. Thus, what is adjacent in the fundamental structure in
general is not local or nearby in the emerging spacetime as judged by the latter’s
induced spatial metric.

From the perspective of the emerging spacetime, the spin networks generally get
the locality structure wrong, or so one would expect. The expectation that these
non-localities are generic arises from the fact that relation between spin networks
and classical spacetimes—to the extent to which we understand it—is many-to-
one.30 In other words, there are in general many spin network states whose best
classical approximation is the same relativistic spacetime. Since these spin networks
are physically distinct, and one of the main ways in which they can differ is by
their connectivity defined by the obtaining adjacency relations, spin networks with
distinct topologies will be best approximated by one and the same spacetime. As
spin networks that give rise to realistically large universes will consist of very many
adjacent pairs of nodes, it seem natural to think that at least some of them will be
non-local in the present sense. If this is right, then non-localities generically arise in

28Cf. e.g. [28].
29Cf. Figure 1 in [22].
30Cf. Section 4. Cf. also ([28] §2) who give a related reason.
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spin networks, and we have a second deep departure of the latter from relativistic
spacetimes.

These non-localities are suppressed in the low-energy approximation from the spin
network to the relativistic spacetime. In fact, they must be suppressed, for otherwise
they would have to be emulated by the emerging structure in the sense that these
adjacency relations would re-occur in the spacetime in the form of neighbouring
relations and thus not qualify as ‘non-localities’. To repeat, ‘non-localities’ of the
relevant sort are fundamental adjacencies with no vicinity-type counterpart in the
emerging spacetime. If the course graining attendant to the emergence of spacetime
from spin network states—of which more in §4—would not ‘wash out’ the non-local
connections, they would have to be encoded in the emerging relativistic spacetime,
perhaps as non-local ‘wormholes’. If, however, their presence were so strong as
to preclude essentially local physics at comparatively low energy scales, such as
described by quantum field theory on relativistic spacetime backgrounds, then the
corresponding theory, or at least model, would have to be considered empirically
inadequate.31 So we would expect those non-localities to be generically present, but
suppressed in the coarse graining to macroscopic scales.

Relativistic spacetimes arguably differ in significant ways in how they concep-
tualize space and time from our intuitive concepts of space and time. But whatever
differences these are, they do not suffice to call into questionwhywe refer to the struc-
tures of GR as ‘spacetimes’, and justifiably so. Whatever the differences between
intuitive space and time and spacetime in GR may be, it is clear that the departures
of LQG from the manifest image run much deeper. Not only is the fundamental
structure discrete and non-local, but as we have seen in §1, the problem of time in its
different forms illustrated how our common concepts of time, change and dynamics
and the way these concepts are standardly encoded in physical theories and their
languages completely and utterly fails. Even though this failure was enunciated in
§1 at the classical level already, it crucially depended on the particular non-standard,
and inequivalent, formulation of GR necessary for the canonical programme to get
going. If we could directly quantize GR from its standard formulation, the resulting
theory’s departure from classical spacetime physics might be milder. But alas, no
promising strategy along these lines is known.

I conclude that we can safely assume that spacetime has been lost, at least in its
traditional, relativistic sense, somewhere in the transition from GR to LQG. Now
that the Babylonians of quantum gravity have removed spacetime from its sacred
place, amid rampant speculation concerning its whereabouts, serious efforts have
commenced to recover the lost spacetime and restore it to its lawful place. He or she
who recaptures it may be blessed with wisdom—or be smitten, as the case may be.

31This does not entail that the fundamental non-localities could not have observable consequences,
such as those proposed by [32].
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3 What Emergence of Spacetime is Not

In order to honour the covenant—and to avoid being smitten—, then, let this section
clarify what the emergence of spacetime could not be. First, §3.1 explains the dif-
ference between the standard concepts of ‘emergence’ as they figure in philosophy
and physics, respectively, and states that it is the physicists’ use that will be rele-
vant for our purposes. Second, it will be argued in §3.2 that the use of the notion of
‘unitary equivalence’ will not serve to determine whether spacetime still maintains
fundamental existence in LQG.

3.1 Non-reductive Relation

The concept of ‘emergence’ has a venerable history in philosophy: arguably stretch-
ing back toAristotle andGalen, it attracted renewed interest in the nineteenth century,
reflected in the work of George Henry Lewes, John Stuart Mill, and C D Broad in
Britain, and Nicolai Hartmann on the continent. Despite some variation among them,
authors in this tradition as well as contemporary philosophers use the term so as to
imply a non-reductive relation between the emergent and the fundamental, presup-
posing that reality is somehow layered into different ‘strata’ and that the properties
and relations attributed to entities at different levels in general differ fromone another.
The general spirit of the concept is well captured by Brian McLaughlin’s definition
in terms of supervenience:

Definition 3 (Emergent property) “If P is a property of w, then P is emergent if and
only if (1) P supervenes with nomological necessity, but not with logical necessity,
on properties the parts of w have taken separately or in other combinations; and (2)
some of the supervenience principles linking properties of the parts of w with w’s
having P are fundamental laws.” ([30] 39)

Definition 3 only gets traction if all the terms in the definiens are defined in their
turn. Let us briefly discuss some of them. The first clause in the definition betrays
the physicalist underpinnings of the version of emergentism which I assume here
as standard. As ([30] §3) explains, the relevant notion of ‘supervenience’ in this
context is based on the idea of a “required-sufficiency relationship” (ibid.), i.e., that
the possessing of a higher-level property requires the possessing of a lower-level
property which in turn suffices for the possessing of the higher-level property. This
supervenience should not be forced by logic alone, but instead result from contingent
laws of nature. To grasp the meaning and the role of the second clause, let me state
the definition of ‘fundamental law’ as given by McLaughlin:

Definition 4 (Fundamental law) “A lawL is a fundamental law if and only if it is not
metaphysically necessitated by any other laws, even together with initial conditions.”
(ibid., 39)
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The second clause is necessary; for without it, Definition 3 would be overly inclu-
sive, as McLaughlin argues, in that reducible properties would often also qualify as
emergent, against the stated intention of the emergentists. If the laws which codify
the connections between the properties of the lower level entities with those of the
higher level, or those of the parts with those of the whole, are fundamental, then they
are in principle not reducible to other laws governing the properties of lower levels,
thus ruling out that reducible properties qualify.32

It should be emphasized that in the context of the present study, and of much of the
physics literature on the subject, ‘emergent’ should not be understood as the terminus
technicus defined in Definition 3, where an emergent property (or, mutatis mutandis,
an emergent entity) is not even weakly reducible. Rather, it is to be understood as a
collective designation for broadly reductive relationships. Indeed, that is the point of
the entire enterprise: to understand how classical spacetime and its properties reduce,
ormore neutrally relate, to the fundamental non-spatiotemporal structure. Reduction,
as an inter-theoretic relation, can thus be regarded as a working hypothesis of the
quest to regain spacetime.

3.2 Unitary Equivalence

Leaving behind the general philosophical literature, we find in the pertinent phi-
losophy of physics a very specific criterion which has been proposed to determine
whether or not in a quantum theory of gravity spacetime can still be regarded as
fundamental or not. Almost as an aside, Craig Callender and Nick Huggett ([11] 21)
use the criterion of unitary equivalence for exactly this purpose, and in the context
of LQG! Unitary equivalence, here as elsewhere, is used as a sufficient condition
for physical equivalence. Callender and Huggett state that if bases of spin network
states and of (functionals of) three-metrics in quantum geometrodynamics are uni-
tarily equivalent, then they would merely constitute different representations of the
same objects—viz. space—, rather than of numerically distinct objects. Hence, if
successful, unitary equivalence would establish a particularly direct (reductive) rela-
tion, at least concerning space. If the two bases turn out to be unitarily inequivalent,
then the reductive relation will be more complex. To invoke unitary equivalence as
a (necessary and sufficient) condition for physical equivalence is well motivated.33

Despite qualms onemight entertain regarding the equivalence of the equivalences, let
us grant, for the sake of argument, that unitary equivalence and physical equivalence
come together. It turns out, however, that the criterion is nevertheless unhelpful, for
three reasons.

32For an up-to-date review on emergent properties, cf. [31].
33At least at the level of ordinary quantum mechanics; in relativistic quantum theories, matters
become more subtle. Cf. ([38] §2.2).
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Since unitary (in)equivalence is usually predicated of representations, not of
bases, let us translate the condition into the language of bases of Hilbert spaces
before we start listing the problems:

Definition 5 (Unitary equivalence between bases) Two bases {|a(k)〉} and {|b(l)〉}
of two Hilbert spaces H and H ′, respectively, are unitarily equivalent just in case
there is a unitary map U : H → H ′ such that U |a(k)〉 = |b(k)〉 for all k.
Now, given this definition, and the orthonormality and the completeness of bases, it is
easy to construct such a unitary map between Hilbert spaces of the same dimension:
U = ∑

k |b(k)〉〈a(k)|. For our discussion below, we need to put two theorems on the
table. Here is the first one:

Theorem 1 ([15], 3.11.3(a)) If H is an infinite-dimensional separable Hilbert
space, then it is isomorphic to l2, the space of square-summable sequences.

Two Hilbert spaces are isomorphic just in case there is a unitary map that leaves
the inner product invariant. Since being isomorphic is a transitive relation, any two
infinite-dimensional separable Hilbert spaces are isomorphic. In other words, there
is a unitary map between the bases of any two infinite-dimensional separable Hilbert
spaces. This entails, of course, that for any two infinite-dimensional separable Hilbert
spaces, we can find unitarily equivalent bases in the sense of Definition 5. In fact,
we have the more general theorem:

Theorem 2 ([20], §16) Any two Hilbert spaces H and H ′ are isomorphic iff
dim(H ) = dim(H ′).

An immediate consequence of this theorem is that any twoHilbert spaces of the same
dimension will have unitarily equivalent bases. So our knee-jerk reaction right after
Definition 5 stands vindicated. Quite generally, the theorem shows thatHilbert spaces
of the same dimension are geometrically indistinguishable and can thus rightfully be
considered identical as far as their physically salient structure is concerned.

Let us return to the proposal by Callender and Huggett [11] and discuss its prob-
lems. As announced above, there are three of them. Primo, in order for this criterion
to get any traction, the relevant Hilbert spaces would have to be known—but they
are not. We have already seen that the physical Hilbert space H of LQG has not
yet been constructed, only its kinematic Hilbert space HK . The same is true for
geometrodynamics, where the constraints are non-polynomial and so far defy solu-
tion. No Hilbert space, no basis. No basis, no checking for unitary equivalence. But
let us proceed, again for the sake of argument, on the assumption that we had the
relevant Hilbert spaces.

Secundo, the criterion, although perhaps necessary, is far removed from anything
close to a sufficient condition, at least on its own. Consider the following three
exhaustive possibilities. First, the physical Hilbert spaces of quantum geometrody-
namics and LQG are both separable, i.e. they each have a countable basis. Second,
one of them is separable, but the other is not. And third, both Hilbert spaces are
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non-separable, with either (a) their bases having the same cardinality, or (b) different
cardinality.

In the first case, the criterion is trivially satisfied because two bases in any two
(infinite-dimensional) separable Hilbert spaces are unitarily equivalent. In the second
case, the criterion is trivially violated, for corresponding reasons. In the third case,
if the bases of the two Hilbert spaces have the same cardinality, we are back to the
first situation; if they do not, we find ourselves in the second case again. So either
way, the criterion by itself is not very illuminating and clearly not sufficient. It would
have much more bite—and that may be the unarticulated intention behind Callender
and Huggett’s proposal—if it were augmented by some additional condition such as
the preservation of the characteristic algebraic relations among the operators (such
as the canonical commutation relations) in the transformation from one to the other.

Tertio, the Callender-Huggett criterion gives themetric codification, which is used
in quantum geometrodynamics, undue precedence over the connection codification,
which is LQG’s vantage point, in that it assumes that only the first captures the
geometric essence of relativistic spacetimes. At least classically, both the metric and
the connection descriptions are equally respectable ways of capturing the geometry
of a spacetime and I see no reason to elevate one at the expense of the other. So
we might, with equal justification, demand that a quantum theory of gravity offers a
description of a quantum spacetime just in case a basis of its physical Hilbert space is
unitarily equivalent to the connection basis of the physical Hilbert space of a quantum
theory of gravity based on a connection representation.34 Such a choice would be,
of course, vulnerable to the same charge raised here.

Thus, unitary equivalence between a basis of the physical Hilbert space of a theory
in question and the three-metrics basis of quantum geometrodynamics is certainly
not sufficient to think that the fundamental structure proposed by the theory in ques-
tion is still spacetime. Perhaps it is not even necessary. But even if the criterion
were valuable, we would still be faced with a rather complete dissolution of the
classical continuous and local spacetime structure into granular structure with odd
non-localities, represented by labelled graphs. And the question would still naturally
arise how come our world looks like it is well described at sufficiently large scales
by relativistic spacetimes. This explanation would still be owed, even if we man-
aged to convince ourselves that the fundamental structure still deserves to be called
‘spacetime’.

4 Re-emergence of Spacetime

Before we venture into the enterprise of investigating how spacetime emerges from
spin networks, one mistaken argument should be put to the side. I am thinking of a

34Strictly speaking, LQG basic variables are the holonomies and fluxes introduced in §2.1, which
are not identical to the connection and the canonically conjugate electric field of the connection
representation but are constructed from them.
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Kantian who nonchalantly responds to the present situation of the fundamental loss
of spacetime by declaring that spacetime is a ‘pure form of intuition’ and as such does
not exist mind-independently anyway. So, the Kantian continues, we should not have
expected to find spacetime as an ontological posit of a fundamental theory in the first
place. But such a complacent ‘told-you-so’ reaction would be entirely misguided;
assuming space and time to be pure forms of intuition does nothing to relieve us from
the obligation to explicate how relativistic spacetimes emerge fromwhat physics tells
us is fundamental. On a Kantian perspective, the job of physics is to describe nature
as it appears to us, not as it may be an sich. And the natural world surely appears to be
spatiotemporally ordered, which is why (earlier) physical theories made the natural
assumption that there are space and time. Since physical theories involving such
postulations have been empirically very successful, any theory seeking to supplant a
theory as successful as, e.g., GR, must explain why the latter was as successful as it
was given that it is not true. In this sense, recovering spacetime from the fundamental
structure becomes part of the task of justifying the fundamental theory. This aspect
assumes great urgency in a field plagued by the lack of empirical data.

This justificatory task of understanding the emergence of spacetimes from fun-
damental structures, such as spin networks, is discharged by ‘taking the classical
limit’ of the fundamental theory: one shows that the classical theory results from an
appropriate mathematical procedure which is interpreted to physically explain why
and how the proprietary effects of the fundamental theory are hidden behind the
phenomena so well represented by the classical theory. To express the situation in
Reichenbachian terms, taking the classical limit, and thus showing how relativistic
spacetimes emerge from fundamental structures, constitutes, at least partially, the
‘context of justification’. As indicated in Figure 2, the reverse process by which we
arrived at the quantum theory of gravity from the classical theory is of course the
quantization studied in §2 and can thus be understood as the ‘context of discovery’
(of the novel quantum theory). Understanding how classical spacetimes re-emerge is
thus not only important to save the appearances and to accommodate common sense,
but also a methodologically central part of the entire enterprise of quantum gravity.

Nota bene, the quantization procedure as outlined above lacks a unique implemen-
tation for which every step is well justified. At various steps, one can choose to follow
different paths, all presumably leading to inequivalent quantum theories. Some may
find the fact that the construction of the quantum theory does not proceed along
more principled lines troublesome. Applying this Reichenbachian terminology also

Fig. 2 Quantization and the
classical limit as ‘inverse’
tasks

Classical general-relativistic spacetimes

quantization classical limit

spin network states
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illustrates why this need not be a problem: the ‘context of discovery’ is dominated
by creative elements which defy being bound by the narrow strictures of a research
logic. On the other hand, the same traditional philosophy of science also urges that
the other direction, the ‘context of justification’, be taken very seriously. Regardless
of this traditional philosophy of science’s merits, the urgency clearly applies to the
case at hand.35

‘Taking the classical limit’means establishing amapping between, in some princi-
pled way, either individual models of the fundamental, ‘reducing’, theory to individ-
ual models of the higher level, ‘reduced’, theory, or ‘generic’ models of the reducing
theory to ‘generic’ models of the reduced theory, or the totality or near-totality of
models of the reducing theory to the totality or near-totality of models of the reduced
theory. It will not suffice to just procure a merely mathematical expression of such
a mapping; instead, any formal articulation of it will need to be supplemented by a
demonstration of its ‘physical salience’ [22]. To start with the obvious, the map from
the set of quantum states to the set of classical spacetimes should not be expected to
be bijective, but many-to-one as there will be multiple distinct quantum states with
the same classical limit.36 Furthermore, there will be no classical analogue for some
sets of quantum states. Also, the quantization of a classical theory might not guar-
antee the re-emergence of the classical structure from the resulting quantum theory,
due to interpretational issues ([10], 80).

So far, the classical limit of LQG (and many other quantum theories of gravity)
has resisted understanding. The difficulties tend to be of two disparate kinds. First,
there are technical intricacies. Second, and of present interest, there are numerous
conceptual and interpretational issues. This is where philosophers can hope to make
contributions by helping to explore the conceptual landscape, to map possibilities,
and, more concretely, bring the literature on emergence and reduction to bear on the
problems at hand. To date, only few philosophers have ventured into this area. I hope
that more will follow—and there are hopeful signs. But still, [9] and [10] constitute
more or less the complete philosophical literature on emergence in canonical quantum
gravity, together with my dissertation ([47], §9.2) on which the remainder of this
section is based.

A caveat before we proceed to portray the emergence scheme proposed by Jeremy
Butterfield and Chris Isham and articulate its application to LQG and hence to the
emergence of the full spacetime, rather than just time, as Butterfield and Isham do.
As we noticed above (in §2.1), LQG is not a complete theory in that the ‘dynamics’
is not well understood and in this sense the physical Hilbert space has not yet been
isolated. Therefore, what follows below is limited to the kinematical level. This has
some of the advantages of theft over honest toil, as we can thus circumvent the
notorious problem of time, which of course Butterfield and Isham address. But it

35The remainder of this section draws on ([47] §9).
36Consider the n-body problem: while the phase space of states of an n-particle system in a physical
space ofm dimensions is topologicallyR2mn and thereforefinite-dimensional in classicalmechanics,
the corresponding quantum space of states is the infinite-dimensional Hilbert space L2(Rmn), the
space of square-integrable functions on R

mn .
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brings with it the distinct disadvantage that the following remains preliminary and
must thus be taken with a grain of salt.

4.1 The Butterfield-Isham Scheme

Let us then orient our conceptualization of the problem toward the extant literature on
emergence in canonical quantum gravity. Similarly to my suggestion above, [9, 10]
propose to regard quantization and emergence as two distinct, somewhat inverse, and
independent strategies for solving the problem of quantum gravity. Butterfield and
Isham consider various potentially helpful explications of the concept of emergence.
As it turns out, all of them cast emergence as a reductive relation. As we have
seen in §3.1, this usage is consonant with the physics literature, but dissonant with
the one in general philosophy. Given the richness and diversity of the literature on
reductive relations between theories, [9] conclude that this should be taken to sustain
the conclusion that there may not be a single concept of reduction to fit all instances
considered, not even if the analysis is confined to physics.37

Butterfield and Isham [9] distinguish three ways in which theories (or their con-
cepts, entities, laws, or models) can stand in a reductive relation to one another:
definitional extension, supervenience, and emergence. The first typically assumes
a syntactic understanding of theories, i.e. it understands a theory as a deductively
closed set of propositions. Applying Butterfield and Isham’s definition of it to the
case at hand, one could say that GR is a definitional extension of LQG iff it is possible
to add to LQG definitions of all non-logical symbols of GR such that every theorem
of GR can be proven in LQG thus augmented. The concept of definitional extension
is attractive because it gives us a clear understanding of how two theories, one of
which is a definitional extension of the other, relate to one another. Thus, definitional
extension goes a long way to explain why the predecessor theory was as successful
as it was and why it breaks down where in fact it does. However, we do not expect
the relation between GR and LQG to be as clear-cut as it is between Newtonian
mechanics and special relativity, where the concept of definitional extension admits
a rather straightforward application. In order to determine whether or not GR is a
definitional extension of LQG, one would need to know how to recover the classical
limit. Unless there is at least some progress in the recovery of the classical limit of
LQG, the concept of definitional extension cannot usefully be applied to the case at
stake. One would expect, to be sure, that relating LQG to GR will involve approxi-
mations such that general-relativistic propositions only hold approximately in LQG,
and only under certain conditions. More specifically, one first extends the definitions
of LQG such as to make it conceptually sufficiently potent to be able to prove all
theorems of an intermediate theory, from which GR can, in a well-understood way,

37No attempt shall be made to substantially consider the wider literature on the topic. Cf. [43] for
an analysis of various proposals for reduction as an inter-theoretic relation, with a particular eye on
the physical sciences.
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be recovered as an approximation. This process of approximation can be defined as
follows:

Definition 6 (Approximating procedure) An approximating procedure designates
the process of either neglecting some physical magnitudes, and justifying such
neglect, or selecting a proper subset of states in the state space of the approximating
theory, and justifying such selection, or both, in order to arrive at a theory whose val-
ues of physical quantities remain sufficiently close to those of appropriately related
quantities in the theory to be approximated.

But all of this goes beyond the concept of definitional extension and shall be discussed
below when I will discuss approximation as a form of emergence.38

The second relation considered by Butterfield and Isham is supervenience. Per
definitionem, GR supervenes onLQG iff all its predicates supervene on the predicates
of LQG, with respect to a fixed set A of objects on which both predicates of GR and
of LQG are defined. The set of predicates of GR is said to supervene on the set of
predicates in LQG, given a setA of objects, iff any two objects inA that differ in what
is predicated of them inGRmust also differ inwhat is predicated of them inLQG.The
fact that supervenience requires a stable setA of objects underlying both theories, i.e.
an identical ontology on which the ideologies of both theories are defined, renders it
rather useless in the present case. In a very rough way, the ontology of both theories
of course contains the gravitational field. But the finer structure of the ontologies of
both theories do not resemble each other: in LQG, one might perhaps find loops, or
spin networks, or more generally the inhabitants of the physical Hilbert space in its
ontology, while in GR, no such objects can be found. Hence, supervenience, at least
as defined above, does not offer any help in understanding the relation between GR
and LQG. Of course, the requirement that the set A must underlie both theories can
be relaxed: one could instead demand that the set A of objects on which the setsP1

and P2 of properties figuring in the two theories are defined must be closed under
compositional operations such as mereological sums or the formation of sets. The
setsP1 andP2 would then be defined with respect to some base individuals, forming
subsets A1 and A2 of A. Typically, these predications would induce some properties
on the non-basic composite objects. Conceivably, this relaxation might be sufficient
to overcome the disjointness of the sets A1 and A2.39

Consequently, we should not harbour any hope that GR either is a definitional
extension of LQG or supervenes on LQG. However, if one admits a sufficiently
liberal notion of emergence, hope resurges. The third broadly reductive relation
proposed by Butterfield and Isham, and termed ‘emergence’ by them, fits the bill:

Definition 7 (Emergence) For Butterfield and Isham, a theory T1 emerges from
another theory T2 iff there exists either a limiting or an approximating procedure to
relate the two theories (or a combination of the two).

38The clause “appropriately related quantities in the theory to be approximated” in Definition 6
above occludes substantive work that must be completed to achieve such “appropriate relation”. I
am grateful to Erik Curiel for pushing me on this point—I most certainly deserve the pushing here.
39I wish to thank Jeremy Butterfield for suggesting this relaxation.
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The definition of ‘approximating procedure’ was given in Definition 6; here is the
one for ‘limiting procedure’:

Definition 8 (Limiting procedure) A limiting procedure is taking the mathematical
limit of some physically relevant parameters, in general in a particular order, of the
underlying theory in order to arrive at the emergent theory.

For it to have any prayer of sufficing to relate two theories, a limiting procedure as
envisioned by Butterfield and Isham must be accompanied by a specification of a
map between the theories that relates at least some of their algebraic or geometric
structures.40 For both technical and conceptual reasons, one should not expect that the
emergence of GR from LQG can be understood only as a simple limiting procedure.
Carlo Rovelli ([34] §6.7.1) delivers an account of how limiting procedures alone are
incapable of establishing the missing link. He relates how loop quantum gravitists
have not suspected that quantum space might turn out to have a discrete structure
during the period from the discovery of the loop representation of GR around 1988 to
the derivation of the spectra of the area and volume operators in 1995. He reminisces
how during this period researchers believed that the classical, macroscopic geometry
could be gained by taking the limit of a vanishing lattice constant of the lattice of
loops. This limiting procedure was taken to run analogously to letting the lattice
constant of a lattice field theory go to zero and thus define a conventional quantum
field theory (QFT). With this model in mind, something remarkable happened when
people tried to construct so-called weave states which are characterized as approxi-
mating a classicalmetric: when the quantum states were defined as the limit one gains
when the spatial loop density grows to infinity, i.e. when the loop size is assumed to
go to zero, it turned out that the approximation did not become increasingly accurate
as the limit was approached. This can be taken as a clear indication that taking this
limit was physically inappropriate. What was observed instead was that eigenvalues
of the area and volume operators increased. This, of course, meant that the areas and
volumes of the spatial regions under consideration also increased. In other words,
the physical density of the loops did not increase when the ‘lattice constant’ was
decreased. The physical density of loops, it turned out, remains unaffected by how
large the lattice constant is chosen; it is simply given by a dimensional constant of
the theory itself, Planck’s constant. This result is interpreted to mean that there is a
minimal physical scale. Or, in Rovelli’s words, “more loops give more size, not a
better approximation to a given [classical] geometry” (ibid.). The loops, it turns out,
have an intrinsic physical size. Taking this limit, then, does not change the structure
from discrete quantum states to smooth manifolds. It just does not change anything
in the physics, except that we look at larger volumes. As some of the features of
the classical geometry such as smoothness cannot be reduced to or identified with
properties of the quantum states of the more fundamental theory, GR in toto does
not reduce to LQG. Thus, a limiting procedure, at least if used in isolation, will just
not do the trick.

40Thanks to Erik Curiel for holding me to task here.
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On the conceptual side, a limiting procedure never eliminates superposition states,
which of course are generic in a quantum theory. For this reason alone, a limiting
procedure cannot succeed in recovering a classical theory from a quantum one. As
argued by Klaas Landsman [26], the classical world only emerges from the quantum
theory if some quantum states and some observables of the quantum theory are
neglected, and some limiting procedure is executed. According to his view, to be
discussed below, relating the classical with the quantum world thus takes both, the
limiting as well as the approximating, procedures.

Turning to approximations then, a series of theories the last of which will mimic
classical spacetimes via approximations needs to be constructed. First, let us consider
what the ‘approximandum’, the classical theory to be approximated, should be. In
GR, and in quantum theories based on it, one standardly, and perhaps somewhat
unprincipledly, distinguishes between gravity and matter—a distinction routinely
downplayed in particle-physics based approaches. They differ in their role and where
they show up in the Einstein equations: gravity, the “marble” as Einstein called it,
constitutes the left-hand side of the equations anddetermines the spacetimegeometry;
matter, the “low-grade wood”, enters the stress-energy tensor on the right-hand side.
In the quantization that led to LQG, nomatterwas assumed to be present: LQG results
from a vacuum quantization of GR. It would seem, therefore, that states in LQG’s
physical Hilbert space should generically give rise to semi-classical states which
yield emergent classical spacetimes that are vacuum solutions. But this expectation
may be disappointed, and perhaps for a reason: it has been claimed that matter is
implicitly built into LQG and that it would therefore be a mistake to think that no
matter is present in spin network states. In particular, it may be that the very structure
of the spin networks gives rise to matter in the appropriate low-energy limit. This
means that it may be advisable not to be fixated on vacuum spacetimes.

Similarly, Hamiltonian GR is restricted to spacetime models with topology
� × R. Should we thus expect that the procedure for recovering relativistic space-
timeswould only yield spacetimes of such topology?While spacetimeswith different
topology may be suppressed and the generic result thus be concentrated on (� × R)-
spacetimes, the quantum structures with their combinatorial and topologically var-
iegated connections may lead to spacetimes with more complicated topologies than
those permitted by Hamiltonian GR.

In order to prepare the field for applying the Butterfield-Isham scheme, let us
consider the major ways in which classical physics is typically held to relate to
quantum physics, as listed and discussed, e.g., by Landsman [26]: (i) by a limiting
procedure involving the limit � → 0 for a finite system, (ii) by a limiting procedure
involving the limit N → ∞ of a large system of N degrees of freedom while � is
held constant, and (iii) either by decoherence or by a consistent histories approach.
Landsman defends the point of view that while none of these manners is individually
sufficient to understand how classicality emerges from the quantum world, they
jointly suggest that it results from ignoring certain states and certain observables
from the quantum theory.41

41For a more thorough discussion of Landsman’s argument, cf. ([47] §9.2.1).
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As Landsman shows, taking limits such as N → ∞, albeit ‘factual’, i.e., pertain-
ing to our world, and hence physically more reasonable, is mathematically just a
special case of the ‘counterfactual’, and hence physically more problematic, limit
� → 0. Regardless of their physical salience, these limits will in themselves not
suffice because no such limit can ever resolve a quantum superposition state into a
classical state. Thus, something more will be necessary, and that is where many think
‘decoherence’ will come into play. The main idea of the program of decoherence is
that the generically assumed presence of interference in quantum states is suppressed
by the system’s interaction with the ‘environment’, such as is thought to occur in the
measurement process.42 Decoherence, then, is the phenomenon that pure quantum
states, by virtue of their interaction with the system’s ‘environment’, evolve, over
very short time spans, from superposition states to ‘almost’ mixed states with clas-
sical probability distributions but ‘almost’ no quantum interference left. Roughly
speaking, decoherence leaves the quantum system, to a high approximation, in an
eigenstate of a macroscopically relevant operator; the classical probabilities of the
resulting mixed states then only reflect our ignorance as to which eigenstate the
system’s in.

Given that the system at stake is the universe, and all of it, of course, the notion that
‘environmental’ degrees of freedom are those which decohere the system must be
generalized so as to include ‘internal’ degrees of freedom of the system. This does
not mean that the system is put in a mixed state from the beginning—that would
be begging the question, as a referee correctly remarked—, but instead to ‘coarse
grain’ and thereby ‘wash out’ many degrees of freedom, which then effectively act
as the environment of the ‘system’ consisting of the remaining, physically salient
degrees of freedom. This ‘internal’ environment then induces the decoherence of
the originally pure state. We will return to this ‘cosmological’ problem below in the
specific context of LQG.

The cosmological problem thus requires that we operate with a generalized notion
of decoherence, which does not rely on a decohering system being embedded in an
environment which is literally external to it. There is, however, a second issue that
needs to be addressed. Decoherence is usually understood as a dynamical process
of a system interacting with a large number of ‘environmental’ degrees of freedom.
How shouldwe conceive of a dynamical process in the general quantum-gravitational
context in which time itself is part of the system at stake and, at least for canonical
approaches, in which we face the nasty problem of time? Unfortunately, I have no
solution to offer here, but can only note the puzzling problem and venture a guess
as to the direction in which its resolution may have to go. In my view, the solution
will come from a considered understanding of how dynamical processes such as
decoherence can co-emerge with spacetime such that the emergence of the former
facilitates the emergence of the latter, and vice versa, to let dynamics and spacetime
mutually enable one another.

In sum, if—and only if—a theory of decoherence manages to give us a handle on
how to identify the relevant degrees of freedom, and under what circumstances the

42For reviews of decoherence, see [7] and [40].



328 C. Wüthrich

Fig. 3 The Butterfield-Isham scheme transposed to the present case

interaction between these degrees of freedom and those which were not picked out
as ‘environmental’ leads to a suppression of interference, and how this suppression
works in detail, particularly concerning its ‘dynamics’, then we will have a mech-
anism that ‘drives the system’ to the right sorts of semi-classical quantum states.
In other words, such a mechanism would then justify the selection of the subset of
states (and of a subset of physical magnitudes) we made in what Butterfield and
Isham called the ‘approximating procedure’.

In general outline, then, following Butterfield and Isham’s proposal will lead to a
two-step procedure, as illustrated in Figure 3. The first step consists of an approxi-
mating procedure, driving the generic quantum states, by some physical mechanism
or other, into the semi-classical states, which are more closely related to classical
states. The second step involves a limiting procedure relating these semi-classical
states to states in the classical phase space, denoted in Figure 3 by Γ . Regardless of
how the details of this story work out, one thing is clear: a whole host of issues known
from the traditional problem of understanding the relation between the quantum and
the classical world will arise.

4.2 Applying the Butterfield-Isham Scheme

The thesis—or should I say the ‘promissory note’—to be suggested in the remainder
of this essay asserts that at least to the extent to which LQG is a consistent and
complete theory, (a close cousin of) GR can be seen to emerge from LQG if a
delicately chosen ordered combination of approximations and limiting procedures
is applied. This note is yet to be redeemed. All approaches to finding the semi-
classical and classical limits of LQG are confined, to date, to using the kinematical
Hilbert space HK rather than the physical Hilbert space H as their starting point.
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This raises the concern of both the viability and the meaningfulness of relating the
kinematical states to corresponding classical spacetimes, or spaces. But concerns like
these, although perhaps ultimately critical, should not keep us from attempting to get
a grasp on what it means to draw the classical limit of the background-independent
QFT as it stands now (and has been sketched above), as it may turn out to be an
eminent help in the construction of the physical Hilbert space itself. To be sure, even
the relationship between kinematic LQG and classical theories is ill-understood.
Let me sketch, however, how preliminary work by physicists might bear out the
Butterfield-Isham scheme.

The rough idea of constructing semi-classical states from the kinematical Hilbert
space HK is to find those kinematical states which correspond to almost flat three-
metrics, i.e. to three-geometries where the quantum fluctuations are believed to be
negligibly small. Two major approaches to construct semi-classical theories domi-
nate the extant literature, the so-called ‘weave state approach’ and the ansatz using
coherent states. The latter has been pioneered by Thomas Thiemann and OliverWin-
kler.43 Other proposals include Madvahan Varandarajan’s ‘photon Fock states’ and
generalizations thereof [1, 45], and the Ashtekar group’s ‘shadow states’ [6].44 The
remainder of this essay shall be dedicated, however, to the most prominent approach
of constructing semi-classical states, the so-called ‘weave states’.

The idea of a weave state originally introduced by Ashtekar, Rovelli, and Smolin
[5],45 revolves around selecting spin network states that are eigenstates of the geo-
metrical operators for the volume of a (spatial) region R with eigenvalues which
approximate the corresponding classical values for the volume of R as determined
by the classical gravitational field. Simultaneously, these selected spin network states
are eigenstates of the geometrical area operator for a surface S . More technically,
consider a macroscopic three-dimensional region R of spacetime with the two-
dimensional surfaceS and the three-dimensional gravitational field eia(x) defined for
all x ∈ R. This gravitational field defines a metric field qab(x) = eia(x)e j

b(x)ηi j (x),
where ηab is the Minkowski metric, for which it is possible to construct a spin
network state |S〉 such that |S〉 approximates the metric qab for sufficiently large
scales � � �Pl, where �Pl is the Planck length, in a yet to be rigorously specified
sense.46 Classically, the area of a two-dimensional surfaceS ⊂ M and the volume
of a three-dimensional regionR ⊂ M with respect to a (sufficiently well-behaved)

43For a review, cf. [39] and ([44] §11.2). Thiemann’s book also discusses weave states in §11.1 and
the photon Fock states in §11.3.
44As ([44] §11) points out, there are deep connections between the various semi-classical pro-
grammes.
45For an intuitive introduction, see ([34] §6.7.1). The picture is that of the gravitational field like a
(quantum cloud of) fabric(s) of weaves which appears to be smooth if seen from far but displays a
discrete structure if examined more closely. Hence weave states.
46The ‘upper case’ spin network states |S〉 live in K , the pre-kinematical Hilbert space, i.e. the
Hilbert space containing all spin network states which solve the Gauss constraints, but not necessar-
ily the spatial diffeomorphism constraints. Thus, the spin network states inK  are not represented
by abstract graphs, as are those in the full kinematical Hilbert space HK , but as embedded graphs
on a backgroundmanifold. This choice is just conveniently following the established standard in the
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fiducial gravitational field 0eia are given by ([34] §2.1.4)

A[0e,S ] =
∫

|d2S |, (11)

V[0e,R] =
∫

|d3R|, (12)

where the relevant measures for the integrals are determined by 0eia . This fiducial
metric is typically, but not necessarily, chosen to be flat. The requirement that the
spin network state |S〉 must approximate the classical geometry for sufficiently large
scales is made precise by demanding that |S〉 be a simultaneous eigenstate of the area
operator Â and the volume operator V̂ as mentioned above with eigenvalues equal
to the classical values as given by (11) and (12), respectively, up to small corrections
of the order of �Pl/�:

Â(S )|S〉 = (
A[0e,S ] + O(�2Pl/�

2)
) |S〉, (13)

V̂(R)|S〉 = (
V[0e,R] + O(�3Pl/�

3)
) |S〉. (14)

If a spin network state |S〉 satisfies these requirements, then it is called a weave
state. In fact, the length scale �, which is large compared to the Planck length �Pl,
characterizes the weave states, which are for this reason sometimes denoted by |�〉
in the literature. At scales much smaller than �, the quantum features of spacetime
would become relevant, while at scales of order � or larger, the weave states exhibit
a close approximation to the corresponding classical geometry in the sense that it
determines the same areas and volumes as the classical metric qab. In this sense, the
weave states are semi-classical approximations.

It should be noted that the correspondence between weave states and classical
spacetimes is many-to-one. In other words, equations (13) and (14) do not determine
the state |S〉 uniquely from a given three-metric qab. The reason for this is that these
equations only put constraints on values averaged over all ofS andR, respectively,
and we have assumed ex constructione that these regions are large compared to the
Planck scale. Of course, there are many spin network states with these averaged
properties, but only one classical metric which exactly corresponds to these averages
values. The situation can be thought of as somewhat analogous to thermodynamics,
where a physical system with many microscopic degrees of freedom has many dif-
ferent microscopic states with the same averaged, macroscopic properties such as
temperature.47

(Footnote 46 continued)
literature on weave states; we will see below in Footnote 47 that this poses no problem as everything
can be directly carried over to the spatially diffeomorphically invariant level.
47The weave states as introduced above have merely been defined at the pre-kinematic level, i.e.
they are not formulated in terms invariant under spatial diffeomorphisms (cf. also Footnote 46). The
reason for this choice lies mostly in that this is the canonical choice in the literature, but also because
in this way, the weave states can be directly related to three-metrics, rather than equivalence classes
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Apart from a serious difficulty in constructing semi-classical weave states corre-
sponding to classical Minkowski spacetime,48 it seems as if the notion of approxima-
tion as captured in Definition 6 and the Butterfield-Isham scheme might bear fruit in
relating semi-classical weave states to classical spacetimes (or at least spaces). If the
weave states are taken to be simultaneous eigenstates of the area and volume oper-
ators, as they are in (13) and (14), then some physical quantities must be neglected,
viz. all those operators constructed from connection operators, since the ‘geometri-
cal’ eigenstates are maximally spread in these operators, and the kinematical (weave)
states must be carefully selected to only include those which are peaked around the
geometrical values determined by the fiducial metric. It is at least questionable, how-
ever, whether the neglect of connection-based operators can be justified. If it cannot,
then only semi-classical states which are peaked in both the connection and the triad
basis, and are peaked in such a manner as to approximate classical states, should be
considered. In this case, we would still only have a selection of states, but perhaps
no operators, or no physically salient ones, which are being ignored.

None of this gives us just as yet a physical mechanism that drives generic kine-
matical states to the semi-classical weave states. Just as above in the general case,
decoherence is widely assumed to offer such a mechanism in the context of weave
states. But this brings what I termed above the ‘cosmological problem’ back into the
fold: how should such a story possibly apply to the present context where the spin
network states are supposed to be the quantum account of space—and all of it. If we
thus think of an ‘environment’ as something external to the system for which it is
an environment, then relying on such an environment in our story implies that there
must be something outside of space. But this is clearly incoherent. Not all hope is
lost, however, as there are at least two ways to escape the incoherence. First, as in
the general case above, one might conceive of decoherence not in terms of exter-
nal, environmental degrees of freedom which interact with the system, but instead
as interactions among different degrees of freedom of the system itself. This will
presuppose a partition of the system’s degrees of freedom into ‘salient’ ones and
mere ‘background’; but there is no reason that this could not be done in a principled
fashion.

Second,wemay reconceptualizeLQG’s subjectmatter.Wemay,more specifically,
conceive of areas and volumes as local properties of the quantum gravitational field,
just as these geometrical properties were local in GR. As was explicated in §2.1,
given a region R of quantum space, e.g. a chunk of space in our laboratory, each
node of the spin network state represents a grain of such a space as it contributes to

(Footnote 47 continued)
of three-metrics. This, however, does not constitute a problem whatsoever, as the characterization
of weave states carries over into the context of diffeomorphically invariant spin network states in
HK , as follows. If we introduce a map Pdiff : K  → HK which projects states in K  related by
a spatial diffeomorphism unto the same element of HK , then the state HK � |s〉 = Pdiff|S〉 is a
weave state of the classical three-geometry [qab], i.e., the equivalence class of three-metrics qab
under spatial diffeomorphisms, just in case |S〉 is a weave state of the classical three-metric qab as
defined above.
48For details, cf. ([47] 181).
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the eigenvalue of the volume operator. Similarly, each link from a node withinR to a
node outside ofR, i.e. each link which intersects the boundaryS ofR, contributes
to the eigenvalue of the area operator. If we had measurement devices at our disposal
with Planck-scale accuracy, we could, in principle, measure the volume and the
surface area of a region of space(time) given in our lab. Such a measurement would
essentially amount to counting (and weighing) the nodes within a region as well as
counting (and weighing) the links which leave the region. If the regionR considered
does not encompass all of space, but only a delimited piece of it, then of course finding
an environment for such a ‘mid-sized’ region is straightforward and the cosmological
problem dissolves. In fact, it would arguably also resolve the dynamical problem, as
the lab frame would offer a context in which dynamical processes unravel. It could
thus be the case that if we performed an area or volume measurement on surfaceS
or region R, respectively, then we would find the quantum state of this ‘mid-sized’
region decohered into an eigenstate of the relevant operator, and thus into a weave
state.

Once we have completed this stage, and we have found semi-classical states
which approximate classical states, then a limiting procedure can be executed. Such
a limiting procedure will involve taking the limit �Pl/� → 0, which will make the
small corrections in (13) and (14) disappear. This limit can be performed by either
having � go to infinity, or �Pl go to zero (or both). The first choice corresponds to
letting the size of the spatial regionR grow beyond all limits, and thus resembles the
‘factual’ limit N → ∞ as discussed above. The second choice, letting the Planck
size go to zero, corresponds, accordingly, to the ‘counterfactual’ case � → 0. With
the second choice, but arguably not the first, we leave the realm of the quantum
theory and arrive at a strictly classical description of the spatial geometry.

It should be noted that none of this solves the measurement problem. Only a full
solution of the measurement problem will ultimately give us complete comprehen-
sion of the emergence of classicality from a reality which is fundamentally quantum.
But to solve this problem is hard in non-relativistic quantum mechanics, harder still
if special relativity must be incorporated, and completely mystifying once we move
to fully relativistic quantum theories of gravity. In light of this, I submit that we
would have reason to uncork our champagne even if we only managed to articu-
late a complete and consistent quantum theory of gravity with a well-understood
approximation to semi-classical states and a somewhat rigorous limiting procedure
connecting these semi-classical states to classical states of the gravitational field.

5 Conclusion

We have seen how classical space and time ‘disappear’ in quantum gravity and
considered a sketch of how theymight re-emerge from the fundamental, not obviously
spatiotemporal structure. Even though the situation is technically and conceptually
more demanding overall and even though a case must be made for the applicability
of a traditional measurement concept more specifically, I hope the reader has also
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recognized that the way in which classicality emerges from the quantum theory does
not radically differ fromordinary quantummechanics, at least along somedimensions
of comparison.

The project of analyzing the emergence of spacetime, and hence of classicality,
from quantum theories of gravity, which often deny at least some aspects of spa-
tiotemporality, is relevant for two reasons. First, important foundational questions
concerning the interpretation of, and the relation between, theories are addressed,
which contributes to the conceptual clarifications in the foundations of physics
arguably necessary to achieve a breakthrough. Not only philosophers of physics
will contribute to this project, of course. They are not even likely to shoulder the
lion’s share, which will still fall on the physicists. But they can nevertheless bring
their unique skill set to the table, to the benefit, it is hoped, of the entire dinner party.
Second, and conversely, quantum gravity is rich with implications for specifically
philosophical, and particularly metaphysical, issues concerning not just space and
time, but also causation, reduction and evenmodality. Quantum gravity thus turns out
to be a very fertile ground for the philosopher. Altogether, I take it, there is no reason
for philosophers to keep aloof from these exciting developments in the foundations
of physics.

References

1. Abhay Ashtekar and Jerzy Lewandowski. Relation between polymer and Fock excitations.
Classical and Quantum Gravity, 18:L117–L128, 2001.

2. Abhay Ashtekar and Jerzy Lewandowski. Quantum theory of geometry I: Area operators.
Classical and Quantum Gravity, 14:A55–A81, 1997.

3. Abhay Ashtekar and Jerzy Lewandowski. Quantum theory of geometry II: Volume operators.
Advances in Theoretical and Mathematical Physics, 1:388–429, 1998.

4. Abhay Ashtekar and Jerzy Lewandowski. Quantum field theory of geometry. In Tian Yu Cao,
editor, Conceptual Foundations of Quantum Field Theory, pages 187–206, Cambridge Univer-
sity Press, Cambridge, 1999.

5. Abhay Ashtekar, Carlo Rovelli, and Lee Smolin. Weaving a classical metric with quantum
threads. Physical Review Letters, 69:237–240, 1992.

6. Abhay Ashtekar, Stephen Fairhurst, and Joshua L Willis. Quantum gravity, shadow states, and
quantum mechanics. Classical and Quantum Gravity, 20:1031–1062, 2003.

7. Guido Bacciagaluppi. The role of decoherence in quantum theory. In Edward N. Zalta, edi-
tor, Stanford Encyclopedia of Philosophy, 2012. URL http://plato.stanford.edu/entries/qm-
decoherence/.

8. Gordon Belot and John Earman. Pre-Socratic quantum gravity. In Craig Callender and Nick
Huggett, editors, Physics Meets Philosophy at the Planck Scale, pages 213–255. Cambridge
University Press, Cambridge, 2001.

9. Jeremy Butterfield and Chris Isham. On the emergence of time in quantum gravity. In Jeremy
Butterfield, editor, The Arguments of Time, pages 111–168. Oxford University Press, Oxford,
1999.

10. Jeremy Butterfield and Christopher Isham. Spacetime and the philosophical challenge of quan-
tum gravity. In Craig Callender and Nick Huggett, editors, Physics Meets Philosophy at the
Planck Scale, pages 33–89. Cambridge University Press, Cambridge, 2001.

http://plato.stanford.edu/entries/qm-decoherence/
http://plato.stanford.edu/entries/qm-decoherence/


334 C. Wüthrich

11. Craig Callender and Nick Huggett. Introduction. In Craig Callender and Nick Huggett, edi-
tors, Physics Meets Philosophy at the Planck Scale, pages 1–30. Cambridge University Press,
Cambridge, 2001.

12. Yvonne Choquet-Bruhat and James W York, Jr. The Cauchy problem. In Alan Held, editor,
General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein,
pages 99–172. Plenum Press, New York, 1980.

13. Erik Curiel. Against the excesses of quantum gravity: A plea for modesty. Philosophy of
Science, 68(3):S424–S441, 2001.

14. Erik Curiel. General relativity needs no interpretation. Philosophy of Science, 76(1):44–72,
2009.
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