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    Chapter 8   

 MicroRNA (miRNA) Profi ling       

     Lu     Gao     and     Feng     Jiang      

  Abstract 

   MicroRNAs (miRNAs) are small, highly conserved noncoding RNA molecules involved in the regulation 
of gene expression. Since each miRNA regulates the expression of hundreds of target mRNAs, miRNAs 
could function as master coordinators, effi ciently regulating fundamental cellular processes, including pro-
liferation, apoptosis, and development. Furthermore, miRNAs may provide useful diagnostic and thera-
peutic targets in a variety of diseases. However, miRNA expression profi ling is essential for the investigation 
of the biological functions and clinical applications of miRNAs. Therefore, in this chapter, we review and 
discuss commonly used techniques for miRNAs profi ling, as well as their advantages and restrictions.  
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1      Introduction 

 MicroRNAs ( miRNAs  )    are small endogenous noncoding  RNAs  , 
consisting of 19–24 nucleotides in length [ 1 ]. Since the discovery 
of the fi rst  miRNA   (lin-4) in  C. elegans , thousands of miRNAs 
have been identifi ed by experimental or computational approaches 
in a variety of species (XX).  miRNAs   have important roles in regu-
lating protein coding genes’ functions by binding to the 3′-UTR 
sequences. The discovery of  miRNAs   and their biological func-
tions could be one of the most exciting scientifi c breakthroughs in 
the last decade. For example, although miRNAs comprise up to 
5 % of animal sequences, they can regulate approximately 30 % of 
protein coding genes, thus being the most abundant classes of 
regulators. Furthermore, given the important biological roles, 
moRNAs may have oncogenic functions in the development and 
progression of tumorigenesis and, could be used as  biomarkers   for 
malignancies. However, the investigation of the biological func-
tions and clinical applications of  miRNAs   will be based on the 
development of  miRNA    expression    profi ling   method. Indeed, 
 miRNA   profi ling has helped to identify and detect  miRNAs   that 
regulate a range of processes, including organismal development 
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and different diseases. In addition, the ability to effectively profi le 
miRNAs could lead to the discoveries of disease- or  tissue  -specifi c 
 miRNA    biomarkers  , our deep understanding of how miRNAs reg-
ulate cell differentiation and function. Therefore,  miRNA   expres-
sion  profi ling   is crucial for the investigation of the biological 
functions and clinical applications of miRNAs. Several major profi l-
ing approaches for identifi cation and  validation   of  miRNAs   are dis-
cussed below [ 2 – 6 ].  

2    Profi ling Approaches 

   Lee and Ambros [ 1 ] fi rst proposed  cDNA   library-based platforms 
for searching  miRNAs   through discovering  lin-4  and  let-7  of  C. 
elegans . Briefl y, the  cDNA   was cloned and sequenced. The cloned 
sequences were homologically compared in the species genome 
 database   with NCBI Blast by using the related software. The sec-
ondary structure of homologous genomic sequence was predict-
ably analyzed using the program mfold. A small-molecule  RNA   
with a hairpin structure was detected by Northern blot. Although 
this method holds great promise, there are several challenges to 
overcome. These include the low abundance of  miRNA    expres-
sion  , and its specifi c expression in different  tissues   and different 
stages of development. Furthermore, the degradation products of 
endogenous mRNA and other noncoding  RNA   have a certain 
interference effect.  

   Alternatively, computational methods for the prediction of  miR-
NAs   have gained popularity. Currently, two computer analytic 
tools are commonly used to support the approaches. The fi rst one 
is called MiRscan [ 7 ,  8 ]. It produced an initial set of candidates by 
scanning the genome of  C. elegans  with a sliding-window of 
110 nt. The regions were folded and fi ltered according to more 
permissive structural criteria. Potential homologues were sought in 
 C. briggsae  sequences and only conserved hairpins were retained, 
yielding a total of ∼36,000 candidates. The second one is miR-
seeker [ 4 ] that represents the fi rst attempt to identify conserved 
stem-loops due to selection, and not as an artifact of considering 
genomes that are not suffi ciently distant. One can align the non- 
annotated intergenic and intronic sequences of the genomes of  D. 
melanogaster  and  D. pseudoobscura . Both tools have been success-
fully identifi ed a large number of  miRNA   genes and confi rmed by 
the experiments. Furthermore, some researchers have combined 
high-throughput experimental methods with computational pro-
cedures in order to identify a wider range of  miRNAs   [ 9 ]. However, 
the computed-generated data need to be vigorously and reliably 
validated by conventional and gold stand experimental approaches.  

2.1   cDNA   Library- 
Based Platforms

2.2  Computation 
for the Prediction 
of  miRNAs  
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   Because mature  miRNAs   are very small, they require appropriate 
small size primers for the quantifi cation. It was challenging to use 
qPCR for the analysis of  miRNAs  . However, successful real-time 
 RT-PCR   technologies are recently developed to amplify and quan-
tify both the precursor and mature microRNA [ 10 ]. One major 
approach relies on reverse transcription from  miRNA   to  cDNA  , 
followed by qPCR with real-time monitoring of reaction product 
accumulation. An appealing aspect of this approach is the ease of 
incorporation into the workfl ow for laboratories that are familiar 
with real-time  PCR  . In order to scale this approach for miRNA 
profi ling, reactions are carried out in a highly parallel, high- 
throughput form. Basically,  qRT-PCR   methods designed for miR-
NAs include  SYBR green   and  TaqMan   assays. Several manufacturers 
offer SYBR green detection for small  RNA   species. Generally, this 
method including Qiagen miScript and WaferGen system rely on 
polyadenylation of small  RNAs  , followed by  a reverse transcription   
using an oligo-dT primer with tag. This tag sequence is then used 
as a universal reverse primer site  SYBR-green   detection [ 11 ]. Qigen 
maintains specifi city for small RNA species using a proprietary 
Hi-Spec buffer, which inhibits the reverse transcription of longer 
coding and noncoding RNAs. Exiqon miRNA PCR. Exiqon’s 
microRNA qPCR system combines the speed of a Universal RT 
reaction with the sensitivity and specifi city of LNA™-enhanced 
PCR primers, and based on  SYBR green   reagents [ 12 ]. Because of 
ribose modifi cations, locked nucleic acids increase the acidity of 
Watson-Crick binding and specifi city of primers allowing for simi-
lar primer Tms with short sequences. 

 The  TaqMan  -probe method is designed to detect and accu-
rately quantify mature  miRNAs   using real-time  PCR   system [ 10 ]. 
The principle of the  TaqMan  ™ microRNA assays is similar to con-
ventional TaqMan™  RT-PCR   ones. A major difference is the use of 
a novel  target  -specifi c stem-loop reverse transcription primer dur-
ing the RT reaction, which address the challenge of the short 
length of mature  miRNA  . The primer extends the 3′ end of the 
target to produce a template that can be used in standard  TaqMan   ®  
Assay-based real-time  PCR  . Also, the stem-loop structure in the 
tail of the primer confers a key advantage to these assays: specifi c 
detection of the mature, biologically active  miRNA  . Moreover, 
 TaqMan   technology can detect mature  miRNAs   that differ by as 
little as one nucleotide. 

 Since mature  miRNA   exerts its activity by binding to the 3′ 
untranslated region of mRNA, quantifi cation of the active, mature 
 miRNA  , rather than the inactive, premiRNA, is generally preceded. 
Pre-miRNA exists as a stable hairpin of approximately 70 nts in 
length [ 13 ]. To amplify the pre-miRNA, forward and reverse prim-
ers were designed to anneal to the stem portion of the hairpin. 
Isoforms present another issue that needs to be carefully consid-
ered when designing quantifi ed miRNA. Numerous  miRNAs   exists 

2.3  Quantitative 
 Reverse Transcription   
 PCR  -Based Methods
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as isoforms of identical mature and precursor sequences. Using 
 SYBR green   detection, it is often not possible for the  PCR   primers 
designed to the hairpin to discriminate among various isoforms. 
However,  TaqMan  ™ minor groove binding (MGB) probes can be 
used to detect a family of different isoforms [ 14 ]. Sequences of the 
primers and  TaqMan  ™ MGB probes for the analysis of the  miRNA   
might be found in the website [ 15 ].  

   Microarrays have been widely used to profi le large numbers of 
mRNAs [ 16 ,  17 ].  cDNA   microarrays are an increasingly popular 
technology to profi le  miRNAs   [ 18 ], which includes synthesis of 
cDNA,  labeling   the product with fl uorophore followed by disso-
ciation and hybridization to complementary probes immobilized 
on a surface. It is practical to profi le  miRNA   expression using real- 
time  PCR   in 384-well reaction plates. Gene  expression profi ling   
using real-time  PCR   has better sensitivity, which translates into 
smaller sample size. However, a disadvantage of real-time  PCR   
profi ling of gene expression is how to effi ciently and accurately 
transfer small volumes of liquid into 384-well plates. Furthermore, 
some challenges also exist in microarray primer design. 

 The major commercial hybridized-based platforms, such as 
Affymetrix,  Agilent  , Exiqon ( miRNA   only), and  Illumina   
BeadChip, have all been demonstrated to provide similar data 
quality [ 19 – 21 ]. The commercial micro-assays have typically soft-
ware for extracting probe intensities form hybridization images as 
well as  preprocessing   of the data, including background connec-
tion and  normalization  . In addition, ones need to acquire their 
own tools for the downstream data management and analysis by 
using  bioinformatics   tools. Table  1  shows comparison of some 
common sued platforms for various qualities, providing some 
information to help decide which platform might be chosen for 
certain purposes.

2.4  Microarray- 
Based Techniques 
for Quantifi cation 
of  miRNAs  

   Table 1  
  The commonly used microarray platforms for  profi ling    miRNAs     

 Affymetrix   Agilent     Illumina   

 Amount of DNA 
requested for service 

 please inquire  100 ng total  RNA    200 ng total  RNA   

 1- or 2-color  1-color  1-color  1-color 

 Probe size  25-mer  60-mer  50-mer 

 Species for which catalog 
arrays are available a  

 Human, mouse, rat, 
canine, monkey 

 Human, mouse, rat, 
custom printing 

 Human, mouse, 
custom printing 

 Array formats  Mini-array (format 400) 
4 identical sense probes 
for each  miRNA   

 8 × 15 K  12-sample BeadChip 

   a All species are represented on one array  
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       qRT-PCR   and hybridization-based microarray platforms have 
been used to identify  cancer  - associated   miRNA   aberrations [ 22 ]. 
Yet these technologies only measure relative abundant and known 
miRNA sequences, and have limited capacity in identifying novel 
 miRNAs   whose aberrations are associated with cancer. Next-
generation deep sequencing has emerged as a powerful tool for 
global miRNA analysis. DNA sequencing was first reported by 
Sanger [ 23 ], providing a tool to decipher genes. However, low 
throughput and high cost stalled its use for deciphering the 
human genome. A more cost-effective sequencing technology 
was developed by 545 Life Sciences [ 24 ]. Since then, several 
next-generation sequencing (NGS) platforms, such as  Illumina   
Genome Analyzer (Illumina, Inc., San Diego, CA, USA) and 
SOLiD™ (Life Technologies Corporation, Carlsbad, CA, USA) 
have been developed. The newly develop NGS platforms have 
been used to various fields of biological and medical research, 
including measuring  expression   levels of known miRNAs and 
detecting unknown  miRNAs   as shown in Table  2 . Deep sequenc-
ing processes millions of independent sequencing events, allows 
providing billions of nucleotide information within a single 
experiment. Furthermore, deep sequencing system enables com-
prehensive analyses of large amounts of sequence data, resulting 
in dramatically accelerated research compared to traditional 
labor-intensive efforts and is a powerful approach to determine 
accurate encoded- information from nucleotide fragments [ 25 ]. 
Therefore, its advantages over the current techniques include 
pooling of samples for high-throughput purposes, a wide detect-
able expression range, analyzing expression of all annotated  miR-
NAs  , and detecting novel  miRNAs   [ 26 ].

2.5  Deep 
Sequencing/Next-
Generation 
Sequencing

   Table 2  
  Next-generation sequencing platforms   

 Roche’s 454 
sequencing   Illumina/  Solexa  ABI SOLiD 

 Sequencing Chemistry  Pyrosequencing   Polymerase-  based 
sequence-by-synthesis 

 Ligation-based 
sequencing 

  Amplifi cation    Emulsion  PCR    Bridge  amplifi cation    Emulsion  PCR   

 Paired-end (PED) 
separation 

 3 kb  200–500 bp  3 kb 

 Mb per run  100 Mb  1300 Mb  3000 Mb 

 Time per PED run  <0.5 day  4 days  5 days 

 Read length (update)  100–400 bp  15–200 bp  15, 35, and 50 bp 

MicroRNA (miRNA) Profi ling
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   Hu et al. [ 27 ] used Solexa sequencing to evaluate  miRNA   
profi ling in serum of patients with stages I to IIIa NSCLC. 
Levels of four serum-based  miRNAs   (miR-486, miR-30d, miR-1, 
and miR- 499) were signifi cantly associated with overall survival. 
Using SOLiD  transcriptome   sequencing of  miRNAs   in peripheral 
blood of lung  cancer   patients, Keller et al. [ 28 ] identifi ed 32 anno-
tated and seven unknown  miRNAs   that were altered in the blood 
specimens of cancer patients. We recently used next-generation 
deep sequencing to comprehensively characterize  miRNA   profi les 
in eight lung tumor  tissues   consisting of two major types of 
NSCLC. We successfully identifi ed 896 known miRNAs and 14 
novel miRNAs, of which 24 miRNAs displayed dysregulation with 
fold change ≥4.5 in either stage I ACs or SCCs or both relative to 
normal tissues [ 29 ]. In comparison with NGS platforms, microar-
ray only covers known genes and probe design is based to the ref-
erence sequence. Therefore microarray is able to detect the 
concentration of known sequence fragments. Microarray may have 
better accuracy and precision than NGS, which is based on  PCR   
character and sequencing by synthesis (SBS) technology. Using 
NGS, all fragments can be detected without reference sequence, 
and the fragment sequence is well presented. In addition, during 
building in sequencing library, PCR  amplifi cation   increases a rela-
tively sensitivity for detection, but following the imbalance of 
 amplifi cation  , it is lacking in quantitative accuracy. Therefore, NGS 
can discover new and small fragments without tedious probe 
design. However, for detection of gene  expression   levels, we should 
choose microarray analysis in my studies. 

 454 deep sequencing system from Roche was one of the fi rst 
NGS platforms on the market, launching in 2005. The system uses 
emulsion  PCR   (emPCR) to clonally amplify the fragments that are 
then sequenced via sequencing-by-synthesis (SBS) technology 
[ 30 ]. Differing from 454 deep sequencing system, the  Illumina   
sequencing is a base-by-base sequencing technology using a revers-
ible terminator-based method, enabling detection of single base 
that is incorporated into growing  DNA   strands complementary to 
the template [ 31 ]. Since this technology reads out one base at a 
time, the main error mode is substitution rather than insertion or 
deletion. However, Applied Biosystems’ SOLiD sequencing tech-
nology is based on ligation of oligonucleotides. 16 different dinu-
cleotides are encoded with four fl uorescent color dyes, each dye 
encoding four dinucleotides. SOLiD performs double interroga-
tion of each base by combining the four-dye encoding scheme with 
a sequencing assay for every base in samples [ 32 ].  

   Quantitative polymerase chain reaction (qPCR) is one of the most 
commonly used techniques that can estimate  expression   levels of 
 miRNAs   in clinical specimens [ 22 ,  33 – 35 ]. However, qPCR has 
two major challenges for the assessment of plasma  miRNAs   [ 36 ,  37 ]. 

2.6  Droplet Digital 
 PCR   (ddPCR)
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First, qPCR is an indirect and labor-consuming approach to 
analyze miRNAs, as it relies on an increase in fl uorescence signal 
that is proportional to the polymerase reaction product, and uses 
the cycle threshold (C T ) as a metric. C T  values for  miRNA    targets   
are referenced to endogenous small  RNA   controls across samples 
and used for  normalization  . This can become problematic, because 
expression levels of the endogenous controls and their transcripts 
may differ between samples [ 36 ,  38 ]. Furthermore, numerous 
endogenous genes have been evaluated for determination of  target   
 miRNAs  , including U6, U6B, 18S rRNA, 5S RNA, RNU38B, and 
RNU43; yet none has been widely accepted as a standard control 
[ 22 ,  33 ]. These problems can be partially solved through the use 
of an exogenous “spike-in” control, which, however, does not 
account for any template-specifi c effect or bias introduced through 
primer design. Moreover, to estimate the absolute abundance of a 
given miRNA, data must be compared to a previously generated 
standard curve of the same template with identical primers and 
conditions. However, the additional manipulations are labor inten-
sive, and extreme care should be taken when measuring the refer-
ence samples and comparing the references and experimental 
standard curves [ 36 ]. Second, the sensitivity of qPCR for the 
detection of low copy number of genes is not high enough, as it 
only resolves ~1.5-fold changes of nucleic acids [ 37 ]. Given that a 
proportion of the  cancer  -associated miRNAs is derived from pri-
mary tumor and could be “diluted” in a background of normal 
miRNAs [ 39 – 41 ], the  miRNAs   presenting at low levels in plasma 
could be undetectable by qPCR. 

 ddPCR is a direct method for quantitatively measuring nucleic 
acids [ 42 – 49 ], as it depends on limiting partition of the  PCR   vol-
ume, where a positive result of a large number of microreactions 
indicates the presence of a single molecule in a given reaction. The 
number of positive reactions, together with Poisson’s distribution, 
can be used to produce a straight and high-confi dence measure-
ment of the original  target   concentration [ 47 ]. Therefore, ddPCR 
does not require the reliance on rate-based measurements (C T  val-
ues), endogenous controls, and the use of  calibration   curves. 
Furthermore, previous studies targeting low copy number of 
nucleic acids have demonstrated that ddPCR has a high degree of 
sensitivity and precision than does qPCR [ 50 – 52 ]. We recently 
investigated the effi cacy of using ddPCR for quantitative detection 
of two  miRNAs   (miRs-21-5p and 335-3p) in artifi cially seeded 
samples,  RNA   of  cancer   cells, and clinical plasma samples. miRs-21- 5p 
and 335-3p were chosen, because our previous studies [ 22 ,  33 – 35 ] 
showed that miR-21-5p displayed a high  expression   level, whereas 
miR-335-3p had an endogenously low level in plasma. We then 
used ddPCR to quantify copy number of plasma miR-21-5p and 
miR-335-3p in 36 lung cancer patients and 38 controls. ddPCR 
showed a high degree of linearity and quantitative correlation 
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( R  2  = 0.96–0.99) of measuring the miRNAs in a dynamic range 
from one to 10,000 copies/μl of input with high reproducibility. 
qPCR exhibited a dynamic range from 100 to 1 × 10 7  copies/μl 
of input. ddPCR had a higher sensitivity to detect copy number of 
the  miRNAs   compared with qPCR (one vs. 100 copies/μl, 
 P  < 0.05). In plasma, ddPCR could detect copy number of both 
miR-21-5p and miR-335-3p, whereas qPCR was only able to 
assess miR-21-5p. Quantifi cation of the plasma miRNAs by ddPCR 
provided 71.8 % sensitivity and 80.6 % specifi city in distinguishing 
lung cancer patients from cancer-free subjects. Therefore, as 
ddPCR becomes more established, it might be a robust tool for 
quantitative assessment of  miRNA   copy number in  cancer   
diagnosis.   

3    In Summary 

 Each platform has the advantages and disadvantages. In addition 
to carefully selecting the appropriate one for each research or clini-
cal applications regarding effi cacy and cost, we also need to pay 
attention on intra- and interlaboratory reproducibility, developing 
method standardization, establishing guidelines for sample  collec-
tion   and preparation. For instance, one of the major technical chal-
lenges in applying the techniques in clinical settings is how to 
standardize protocols for  miRNA   extraction from biological speci-
mens such as serum or plasma, and to normalizing measured values 
and controls. Nevertheless, the rapid advance in the development 
of the sophistication of miRNA  profi ling   tools provides the techni-
cal capabilities required for function analysis of  miRNAs   and 
miRNA  biomarker   discovery and  validation  . Future use of the 
techniques will dramatically deep understanding of biological func-
tion of miRNAs, and develop the small molecules as important 
diagnostic and therapeutic  targets   for various human diseases.     
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