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Abstract Let FqŒt� denote the polynomial ring over the finite field Fq, and let PR

denote the subset of FqŒt� containing all monic irreducible polynomials of degree
R. For non-zero elements r D .r1; r2; r3/ of Fq satisfying r1 C r2 C r3 D 0, let
D.PR/ D Dr.PR/ denote the maximal cardinality of a set AR � PR which
contains no non-trivial solution of r1x1 C r2x2 C r3x3 D 0 with xi 2 AR .1 �
i � 3/. By applying the polynomial Hardy-Littlewood circle method, we prove that
D.PR/ �q jPRj=.log log log log jPRj/.

1 Introduction

For n 2 N D f1; 2; � � � g, let D3.Œ1; n�/ denote the maximal cardinality of an
integer subset of Œ1; n� containing no non-trivial 3-term arithmetic progressions. In a
fundamental paper, Roth [20] proved that D3.Œ1; n�/ � n= log log n. His result was
later improved by Heath-Brown [8], Szemerédi [24], Bourgain [3, 4] and Sanders
[21, 22]. In 2014, Bloom [2] showed that D3.Œ1; n�/ � n.log log n/4= log n, which
gives the best upper bound up to date. Szemerédi [23] proved that subsets of the
natural numbers with positive upper density contain arbitrarily long arithmetic
progressions, and in 2001, Gowers [5] proved a quantitative version of Szemerédi’s
theorem.

One can consider analogous questions with Œ1; n� replaced by PŒ1; n�, the set of
positive primes up to n. Let D3.PŒ1; n�/ denote the maximal cardinality of an integer
subset of PŒ1; n� containing no non-trivial 3-term arithmetic progression, and let
�.n/ denote the cardinality of PŒ1; n�. In [6], Green proved that
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D3.PŒ1; n�/ � �.n/

�
log log log log log�.n/

log log log log�.n/

�1=2
:

In [7], Green and Tao proved that subsets of the primes with positive upper density
contain arbitrarily long arithmetic progressions.

Let FqŒt� denote the ring of polynomials over the finite field Fq. For R 2
N D f1; 2; : : :g, let PR be the subset of FqŒt� containing all monic irreducible
polynomials of degree R. Let r D .r1; r2; r3/ be non-zero elements of Fq satisfying
r1 C r2 C r3 D 0. Let .x1; x2; x3/ 2 FqŒt�3 be a solution of r1x1 C r2x2 C r3x3 D 0.
We say that .x1; x2; x3/ is a trivial solution if x1 D x2 D x3. Otherwise, we
say that .x1; x2; x3/ is a non-trivial solution. Let D.PR/ D Dr.PR/ denote the
maximal cardinality of a set AR � PR for which there is no non-trivial solution of
r1x1C r2x2C r3x3 D 0 with xi 2 AR .1 � i � 3/, and let jPRj denote the cardinality
of PR. In this paper, we prove the following theorem.

Theorem 1. For R 2 N,

D.PR/ �q
jPRj

log log log log jPRj :

Here the implicit constant depends only on q.

In the special case that r D .1;�2; 1/ and gcd.2; q/ D 1; the number D.PR/

denotes the maximal cardinality of a set AR � PR which contains no non-trivial
3-term arithmetic progression. In large part, this paper will follow the approach of
Green. Our improvement over the analogous bound for Z stems from nice properties
of Bohr sets in FqŒt� and the availability of a stronger bound for Roth’s theorem in
FqŒt� (see [14]) than in Z. It is worth noting that when studying equations of the form
r1x1 C � � � C rsxs D 0 where r1 C � � � C rs D 0 and s � 4, in [14], the authors proved
that

D.PR/ �q
jPRj

.log jPRj/s�3 ;

which provides a strong bound compared to Theorem 1. Also, Lê has proved a
function field analogue of Green and Tao’s theorem on arithmetic progressions
of primes (see [11]). While his method provides results about more general
configurations in the irreducible polynomials of FqŒt�, the approach of this paper
produces stronger quantitative bounds on D.PR/: In addition, several estimates
of exponential sums in this paper are essential to various additive combinatorial
problems in function fields, including the results in [12].

In 2011, the above mentioned bound of Green was improved by Helfgott and de
Roton [9] to

j QARj � j QPRj log log log j QPRj
.log log j QPRj/1=3 :
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Recently, Naslund [16] showed that for any � > 0,

j QARj � j QPRj
�

1

log log j QPRj
�1��

:

In future work, we will show how their methods can be implemented over FqŒt� to
improve Theorem 1.

2 Basic Setup

We start this section by introducing the Fourier analysis of FqŒt�. Let K D Fq.t/
be the field of fractions of FqŒt�, and let K1 D Fq..1=t// be the completion of K
at 1. We may write each element ˛ 2 K1 in the shape ˛ D P

i�r aiti for some
r 2 Z and ai D ai.˛/ 2 Fq .i � r/. If ar ¤ 0, we define ord˛ D r and we write
h˛i for qord˛ . We adopt the conventions that ord 0 D �1 and h0i D 0. Also, it is
often convenient to refer to a�1.˛/ as being the residue of ˛, an element of Fq that
we denote by res˛. For a real number R, we let OR denote qR. Hence, for x 2 FqŒt�,
hxi < ON if and only if ord x < N. Furthermore, we let T denote the compact additive
subgroup of K1 defined by T D ˚

˛ 2 K1W h˛i < 1
�
. Given any Haar measure d˛

on K1, we normalize it in such a manner that
R
T
1 d˛ D 1. Thus if N is the subset

of K1 defined by N D ˚
˛ 2 K1W ord˛ < �N

�
, then the measure of N, mes.N/, is

equal to ON�1.
We are now equipped to define the exponential function on FqŒt�. Suppose that

the characteristic of Fq is p. Let e.z/ denote e2� iz and let tr W Fq ! Fp denote
the familiar trace map. There is a non-trivial additive character eq W Fq ! C

�
defined for each a 2 Fq by taking eq.a/ D e.tr.a/=p/. This character induces a
map e W K1 ! C

� by defining, for each element ˛ 2 K1, the value of e.˛/
to be eq.res˛/. The orthogonality relation underlying the Fourier analysis of FqŒt�,
established in [10, Lemma 1], takes the shape

Z
T

e.h˛/ d˛ D
(
1; when h D 0;

0; when h 2 FqŒt� n f0g:

For N 2 N, let SN denote the subset of FqŒt� containing all monic polynomials
of degree N. For b;m 2 FqŒt� with m monic, hbi < hmi � N and .b;m/ D 1, define
a set

X D �b;m;N D ˚
n 2 SN j mn C b is irreducible

�
(1)

Š ˚
n0 2 SNCord m j n0 is irreducible and n0 � b .mod m/

�
:
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Thus by the prime number theorem in arithmetic progression in FqŒt� [19, Theo-
rem 4.8],

jXj D
ONhmi

.N C ord m/�.m/
C O

 ON1=2hmi1=2
N C ord m

!
; (2)

where �.m/ D ˇ̌˚
n 2 FqŒt� j ord n < ord m and .n;m/ D 1/

�ˇ̌
. Define a function

�b;m;N W SN ! C supported on X by setting

�b;m;N.n/ D
(
.NCord m/�.m/

ONhmi ; when n 2 X;

0; otherwise:

In the following, we will abuse our notation and view �b;m;N as a measure on X.
By (2), we have

�b;m;N.X/ D
X
n2X

�b;m;N.n/ D 1C o.1/:

For functions h1; h2 W SN ! C, we define an inner product

hh1; h2iX D
X

n2SN

h1.n/h2.n/�b;m;N.n/:

We will use the wedge symbol to denote the Fourier transforms on both T and SN .
More precisely, for f W T ! C and h W SN ! C, the functions f ^ W SN ! C and
h^ W T ! C are defined by

f ^.n/ D
Z
T

f .�/e.�n�/ d� and h^.�/ D
X

n2SN

h.n/e.n�/:

Also, we define the convolution of two functions f W T ! C and g W T ! C to be

.f 	 g/ .	/ D
Z
T

f .�/g.	 � �/ d�:

For any measure space Y , let B.Y/ denote the space of continuous functions on Y
and define an operator T W B.X/ ! B.T/ by

T W h 7�! .h�b;m;N/
^:

A dual operator T� W B.T/ ! B.X/ of T is defined by

T� W f 7�! f ^jX:
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We have

hTh; f iT D hh;T�f iX:

Also, the map TT� W B.T/ ! B.T/ is given by

TT� W f 7�! f 	 �b̂;m;N :

Furthermore, for an operator T and positive numbers a and b, we define

kTka!b D sup
f

kTf kb

kf ka
;

where k � ka denotes the La norm and f ranges over continuous functions that map
to C. A main step in proving Theorem 1 will be deriving a restriction theorem for
monic irreducible polynomials. Namely, we will prove the following theorem.

Theorem 2. Suppose that ı > 2 is a real number. Then there exists a constant
C.q; ı/; depending only on q and ı, such that

kTk2!ı � C.q; ı/ ON�1=ı:

As an application of Theorem 2, we are able to derive the Hardy-Littlewood
majorant property for function fields. Namely, we will establish the following
theorem.

Theorem 3. Let .ax/x2PR be any sequence of complex numbers with jaxj � 1 for
all x 2 PR. For a real number ı � 2, we have��� X

x2PR

axe.x�/
���
ı

� C0.q; ı/
��� X

x2PR

e.x�/
���
ı
;

where C0.q; ı/ is a constant depending only on q and ı.

Note that in the special case when ı is an even integer, by considering the under-
lying Diophantine equation, one can show that Theorem 3 holds with C0.q; ı/ D 1.

For a real number ı > 1, let ı0 denote the unique real number satisfying 1=ı C
1=ı0 D 1. Since

kTf kı D sup
kgkı0 D1

hTf ; gi D sup
kgkı0 D1

hf ;T�gi � kf k2 sup
kgkı0 D1

kT�gk2

D kf k2 sup
kgkı0 D1

hg;TT�gi1=2 � kf k2kTT�k1=2
ı0!ı

;
(3)

to prove Theorem 2, it suffices to bound the quantity

kTT�kı0!ı D sup
kf kı0 D1

kf 	 �b̂;m;Nkı: (4)
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In this paper, $ will be used to denote a monic irreducible polynomial. For
a polynomial x 2 FqŒt�, we say that x is OQ-rough if for all monic irreducible
polynomials $ with $ jx, we have h$i > OQ: For Q 2 N, define

�
.Q/
b;m;N.n/ D

8̂̂
<
ˆ̂:

ON�1 Y
h$i� OQ
$−m

�
1 � 1=h$i��1; if n 2 SN and mn C b is OQ-rough,

0; otherwise:

By a sieve argument, one can show that

X
n2SN

�
.Q/
b;m;N.n/ D 1C o.1/:

Also, we define �.0/b;m;N.n/ D 0 for all n 2 SN . Let A D 4=.ı � 2/. For a positive
integer K D ŒA logq N� and 1 � Q � K, let

 Q D �
.Q/
b;m;N � �.Q�1/

b;m;N .1 � Q � K/ and  KC1 D �b;m;N � �.K/b;m;N :

Since
PKC1

iD1  i D �b;m;N , by the triangle inequality, to bound kTT�kı0!ı , it suffices
to consider

sup
kf kı0 D1

kf 	  ĵ kı .1 � j � K C 1/:

To obtain the above bound, we will apply the Riesz-Thorin interpolation theorem
[17, 25] with the following bounds which we will prove in the next two sections:

kf 	  Q̂ k1 �q;ı OQ�1kf k1 and kf 	  Q̂ k2 �q;ı N ON�1 kf k2:

Notation For k 2 N, let f .k/ and g.k/ be functions of k. If g.k/ is positive and
there exists a constant c > 0 such that jf .k/j � cg.k/, we write f .k/ � g.k/. In
the following, all implicit constants depend at most on q and ı. In Sect. 6, while
ı is fixed, all implicit constant depends at most on q. Throughout, the letter � will
denote a sufficiently small positive number. We adopt the convention that whenever
� appears in a statement, then we are implicitly asserting that for each � > 0, the
statement holds for sufficiently large values of the main parameter. Note that the
“value” of � may consequently change from statement.

3 An L2-L2 Estimate

We first state Merten’s theorem for FqŒt�.
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Lemma 4 ([13, Lemma 2]). For Q 2 N, we have

Y
h$i� OQ

�
1 � 1=h$i��1 � Q:

Lemma 5. For a function f W T ! C and 1 � Q � K,

kf 	  Q̂ k2 � Q ON�1 kf k2:

Also, one has

kf 	  K̂C1k2 � N ON�1 kf k2:

Proof. Note that for 1 � Q � K C 1,

kf 	  Q̂ k2 D kf ^ Qk2 � k Qk1kf ^k2 D k Qk1kf k2:

For 1 � Q � K, by Lemma 4,

k Qk1 � k�.Q/b;m;Nk1 C k�.Q�1/
b;m;N k1

D ON�1 Y
h$i� OQ
$−m

�
1 � 1=h$i��1 C ON�1 Y

h$i�bQ�1
$−m

�
1 � 1=h$i��1

� Q ON�1 C .Q � 1/ ON�1 � Q ON�1:

Similarly,

k KC1k1 � k�b;m;Nk1 C k�.K/b;m;Nk1 � �.m/.N C ord m/
ONhmi C K ON�1 � N ON�1:

Thus the lemma follows.

4 An L1-L1 Estimate

For a function f W T ! C and 1 � Q � K C 1, we have

kf 	  Q̂ k1 � k Q̂ k1kf k1:

The goal of this section is to apply the Hardy-Littlewood circle method to establish
the following proposition.
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Proposition 6. For 1 � Q � K, we have

k�b̂;m;N � �.Q/^b;m;Nk1 � OQ�1:

Note that

k�b̂;m;N � �.0/^b;m;Nk1 D k�b̂;m;Nk1 � 1:

Thus by combining Proposition 6 with the triangle inequality, we obtain the
following lemma.

Lemma 7. For a function f W T ! C and 1 � Q � K C 1,

kf 	  Q̂ k1 � OQ�1kf k1:
Let B D 2A C 12. Note that for all ˛ 2 T, by Dirichlet’s theorem for FqŒt� [10,

Lemma 3], there exist a; g 2 FqŒt�with g monic, .a; g/ D 1, h˛�a=gi < NB=.hgi ON/
and hgi � ON=NB. We define the major arcs M and the minor arcs m as follow:

M D
[

hgi�NB

.a;g/D1
g monic

Ma;g and m D T n M;

where

Ma;g D ˚
˛ 2 T j h˛ � a=gi < NB=hgi ON�:

In order to prove Proposition 6, we will separate our analysis into major arc
contributions and minor arc contributions.

4.1 Major Arc Estimates

In the following, we consider a function h W SN ! C which satisfies the following
condition:

• Condition* Let r; g 2 FqŒt� with g monic, hri < hgi and hgi � NB. Let L D
N � dB logq Ne. For r0 2 SN with r0 � r (mod g), let

Y D ˚
r0 C lg j hli < OL� � SN :

Then

X
n2Y

h.n/ D
OL
ON
�

r;g.h/C O.E.h//

�
;

where 
r;g.h/ is a constant depending on h and E.h/ is an error term of size o.1/.
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Let

%.ˇ/ D ON�1 X
n2SN

e.ˇn/:

Lemma 8. Suppose that hˇi < NB=hgi ON and that r; g 2 FqŒt� with g monic, hri <
hgi and hgi � NB. For h W SN ! C satisfying Condition*, we have

X
n2SN

n�r.mod g/

h.n/e.ˇn/ D hgi�1
r;g.h/%.ˇ/C O
�hgi�1E.h/

�
:

Proof. For n 2 SN with n � r (mod g), we can write n D g.ytL C l/ C r with y
monic, hyi D ON=hgi OL and hli < OL. Moreover, for hli < OL, we have

hˇ.gl C r/i < NB

hgi ON � hgi �
ON

q1CdB logq Ne � 1

q
;

which implies that e.ˇ.gl C r// D 1. Thus by applying Condition* with
r0 D gytL C r,

X
n2SN

n�r.mod g/

h.n/e.ˇn/ D
X

hyiD ON=hgiOL
y monic

X
hli<OL

h
�
g.ytL C l/C r

�
e
�
ˇ.g.ytL C l/C r/

�

D
X

hyiD ON=hgiOL
y monic

e.ˇgytL/
X
hli<OL

h
�
gytL C lg C r

�

D
OL
ON 
r;g.h/

X
hyiD ON=hgiOL

y monic

e.ˇgytL/C O
�hgi�1E.h/

�
:

In addition, for hzi < hgtLi D hgi OL, we have

hˇzi < NB

hgi ON � hzi � NB

hgi ON � hgi ON
q1CdB logq Ne � 1

q
;

which implies that e.ˇz/ D 1. Thus

X
hyiD ON=hgiOL

y monic

e.ˇgytL/ D 1

hgi OL
X

hzi<hgtLi

X
hyiD ON=hgiOL

y monic

e
�
ˇ.gytL C z/

�

D 1

hgi OL
X

n2SN

e.ˇn/ D
ON

hgi OL %.ˇ/:
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By combining the above estimates, we have

X
n2SN

n�r.mod g/

h.n/e.ˇn/ D hgi�1
r;g.h/%.ˇ/C O
�hgi�1E.h/

�
:

This completes the proof of the lemma.

Lemma 9. Let h W SN ! C satisfy Condition*. For a; g 2 FqŒt� with g monic,
.a; g/ D 1 and hgi � NB, define

�a;g.h/ D
X

hri<hgi
e

�
ar

g

�

r;g.h/:

Then for ˛ 2 Ma;g,

h^.˛/ D hgi�1�a;g.h/%

�
˛ � a

g

�
C O

�
E.h/

�
:

Proof. Write ˛ D a=g C ˇ with hˇi < NBhgi�1 ON�1. Then by Lemma 8,

h^.˛/ D
X

n2SN

h.n/e.n˛/

D
X

hri<hgi
e

�
ra

g

� X
n2SN

n�r.mod g/

h.n/e.ˇn/

D hgi�1%.ˇ/
X

hri<hgi
e

�
ra

g

�

r;g.h/C O

�hgihgi�1E.h/
�

D hgi�1%.ˇ/�a;g.h/C O
�
E.h/

�
:

Thus the lemma follows.

In the following, we will show that the functions �b;m;N and �.Q/b;m;N .1 � Q � K/
satisfy Condition*. We first recall a result of Rhin.

Lemma 10 (Rhin [18, Theorem 4]). Let c; d 2 FqŒt� with c monic and .c; d/ D
1. For D;M 2 N, we denote by N.c; dI M;D/ the number of monic irreducible
polynomials $ of order M satisfying $ � c .mod d/ and ord .$ tord c � ctord m/ <

�D C ord$ C ord c. Then

N.c; dI M;D/ D
OM

M�.d/ OD C O
�
.ord d C D C 1/ OM1=2

�
:
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Lemma 11. Let r; g 2 FqŒt� with g monic, hri < hgi and hgi � NB. Then �b;m;N

satisfies Condition* with


r;g.�b;m;N/ D
(
�.m/hgi
�.mg/ ; if .mr C b;mg/ D 1;

0; otherwise;

and

E.�b;m;N/ D NBC1C�hmi1=2C� ON�1=2:

Proof. Recall the definition of X in (1). Let r0 2 SN with r0 � r (mod g) and
Y D ˚

r0 C lg j hli < OL� � SN . For n D r0 C lg 2 Y , �b;m;N.n/ D 0 if and only if
mn C b … X.

(1) Suppose that .mr C b;mg/ ¤ 1. We assume that NB < ON. Then there exists
a monic irreducible polynomial $ such that $ j.mr C b;mg/. Write n D r C
l0g C lg for some l0 2 FqŒt�. Then the polynomial

mn C b D m.r C l0g C lg/C b D .mr C b/C mg.l C l0/

has a factor $ . If mn C b 2 X, then $ D mn C b. Since

h$i � hmgi � hmiNB < hmi ON D hmn C bi;

we have $ ¤ mn C b. Thus we have mn C b … X. It follows that

X
n2Y

�b;m;N.n/ D 0:

Thus the lemma follows in this case.
(2) Suppose that .mr C b;mg/ D 1. Consider

Nr0 D Nr0.m; g;L/ D #
˚
n D r0 C lg j hli < OL and mn C b 2 X

�
;

which is equal to the number of monic irreducible polynomials $ with
ord$ D N C ord m, $ � mr0 C b (mod mg) and h$ � .mr0 C b/i < OLhmgi.
We now apply Lemma 10 with c D mr0 C b, d D mg, M D N C ord m D ord c
and D D N � L � ord g. Since L D N � dlogq NBe, we have

Nr0 D ONhmiOLhgi
.N C ord m/�.mg/ ON C O

��
.ord g C ord m/C .N � L � ord g/C 1

� ON1=2hmi1=2
	

D OLhmgi
.N C ord m/�.mg/

C O
�
.ord m C dB logq Ne/ ON1=2hmi1=2�:
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It follows that

X
n2Y

�b;m;N.n/

D �.m/.N C ord m/
ONhmi

� OLhmgi
.N C ord m/�.mg/

C O
�
.ord m C dB logq Ne/ ON1=2hmi1=2�

�

D OL
ON
�
�.m/hgi
�.mg/

C O

� ON�.m/.N C ord m/
OL ONhmi .ord m C B logq N/ ON1=2hmi1=2

��

D OL
ON
�
�.m/hgi
�.mg/

C O

�
NBC1C�hmi1=2C�

ON1=2

��
:

Thus the lemma also follows in this case.

Lemma 12. Suppose that a; g 2 FqŒt� with g monic, .a; g/ D 1 and hgi � NB. For
� defined as in Lemma 9, one has

�a;g.�b;m;N/ D
( hgi�.g/

�.g/ e
��ab Nm

g

�
; if .m; g/ D 1,

0; otherwise.

Here, we write Nm for the multiplicative inverse of m modulo g and �.�/ the Möbius
function on FqŒt�.

Proof. By Lemma 11, we have

�a;g.�b;m;N/ D
X

hri<hgi
e

�
ar

g

�

r;g.�b;m;N/ D �.m/hgi

�.mg/

X
hri<hgi

.mrCb;mg/D1

e

�
ar

g

�

D �.m/hgi
�.mg/

X
hri<hgi

.mrCb;g/D1

e

�
ar

g

�
:

For z 2 Z with z � 0, if $ zjg and $ zC1 − g, we write that $ zkg. Let

g0 D
Y
$

$ zkg;$−m

$ z;

and g1 D g=g0: If$ jm, then$ − .mr C b/. Thus .mr C b;mg/ D .mr C b; g0/; and

X
hri<hgi

.mrCb;g/D1

e

�
ar

g

�
D

X
hri<hgi

.mrCb;g0/D1

e

�
ar

g

�
:
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By writing r D ug0 C v with hui < hg1i and hvi < hg0i, we have

X
hri<hgi

.mrCb;g0/D1

e

�
ar

g

�
D

X
hvi<hg0i

.mvCb;g0/D1

e

�
av

g

� X
hui<hg1i

e

�
au

g1

�
:

Since

X
hui<hg1i

e

�
au

g1

�
D
(
1; if hg1i D 1,

0; otherwise,

it follows that

X
hvi<hg0i

.mvCb;g0/D1

e

�
av

g

� X
hui<hg1i

e

�
au

g1

�
D

8̂̂
<
ˆ̂:

X
hvi<hgi

.mvCb;g/D1

e

�
av

g

�
; if g1 D 1,

0; otherwise.

One has that .g;m/ D 1 if and only if g1 D 1. When .g;m/ D 1, we have �.m/hgi
�.mg/ D

hgi
�.g/ : Therefore, to prove the lemma, it is enough to show that when .g;m/ D 1,
we have

X
hvi<hgi

.mvCb;g/D1

e

�
av

g

�
D �.g/e

��ab Nm
g

�
:

Suppose that .g;m/ D 1. Let w D mvCb. Then .w�b/ Nm � v .mod g/. By checking

that
X

hwi<hgi
.w;g/D1

e

�
aw Nm

g

�
is a multiplicative function in g, one can verify that

X
hwi<hgi
.w;g/D1

e

�
aw Nm

g

�
D �.g/:

Thus

X
hvi<hgi

.mvCb;g/D1

e

�
av

g

�
D

X
hwi<hgi
.w;g/D1

e

�
a.w � b/ Nm

g

�
D e

��ab Nm
g

� X
hwi<hgi
.w;g/D1

e

�
aw Nm

g

�

D �.g/e

��ab Nm
g

�
:

This completes the proof of the lemma.
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Lemma 13. Let r; g 2 FqŒt� with g monic, hri < hgi and hgi � NB. For 1 � Q � K,

the function �.Q/b;m;N satisfies Condition* with


r;g.�
.Q/
b;m;N/ D

8̂
ˆ̂<
ˆ̂̂:

Y
h$i� OQ
$−m

�
1 � 1=h$i��1 Y

h$i� OQ
$−mg

�
1 � 1=h$i�; if .mr C b;mg/ is OQ-rough;

0; otherwise;

and

E.�.Q/b;m;N/ D ON�1=.2A/C� C ON�1=2C�;

where A D 4=.ı � 2/ is defined as in Sect. 2.

Proof. Let r0 2 SN with r0 � r (mod g) and Y D ˚
r0 C lg j hli < OL� � SN .

Since .b;m/ D 1, if $ 2 FqŒt� is a monic irreducible polynomial with $ jm, then
$ − .mn C b/. Thus it suffices to consider $ with $ − m. Let $1; : : : ;$R 2 FqŒt�
denote the monic irreducible polynomials with h$ii � OQ and $i − m (1 � i � R).
For n D r0 Clg 2 Y , �.Q/b;m;N.n/ D 0 if and only if$ij.mnCb/ for some 1 � i � R.

(1) Suppose that .mr C b;mg/ is not OQ-rough. Then there exists some $i such that
$ij.mrCb;mg/. Write n D rCl0gClg for some l0 2 FqŒt�. Thus the polynomial

mn C b D .mr C b/C mg.l C l0/ has a factor $i. Hence, �.Q/b;m;N.n/ D 0 and the
lemma follows in this case.

(2) Suppose that .mr C b;mg/ is OQ-rough, i.e.,$i − .mr C b;mg/ .1 � i � R/. Let
Xi denote the event that $ij.mn C b/ for n 2 Y , and let P.Xi/ D jXij= OL be the
probability of Xi occurring. We denote by Xc

i the complement of Xi. Note that

X
n2Y

�
.Q/
b;m;N.n/ D 1

ON
Y

h$i� OQ
$−m

�
1�1=h$i��1 �

ˇ̌
ˇ̌ R\

iD1

Xc
i

ˇ̌
ˇ̌ D

OL
ON

Y
h$i� OQ
$−m

�
1�1=h$i��1 �V ;

where

V D P

� R\
iD1

Xc
i

�
:

It remains to estimate V .

(2.1) If $ijg, then mn C b � mr C b ¥ 0 .mod $i/, i.e., $i − .mn C b/. Thus
P.Xi/ D 0.

(2.2) Suppose that $i − g. Since $i − m, we have .$i;mg/ D 1. If OL � h$i,
as l varies with hli < OL, then mn C b D .mr0 C b/ C lmg runs through all
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residue classes modulo $i. Thus we have P.Xi/ D 1=h$ii. On the other
hand, if OL < h$i, then either 0 or 1 choices of l will give$ij.mn C b/. Thus
P.Xi/ D O. OL�1/. From the above estimates, we have

P.Xi/ D �i

h$ii C O. OL�1/;

where

�i D
(
0; if $ijg;
1; otherwise:

By the inclusion-exclusion formula, we have

V D
RX

sD0
.�1/s

X
1�i1<���<is�R

sY
jD1

�i1 � � � �is

h$i1i � � � h$isi
C O

�
OL�1

RX
sD1

 
R

s

!�
:

Note that for any K0 2 N, by considering the even terms of the above
alternating sum, we have

V �
2K0X
sD0
.�1/s

X
1�i1<���<is�R

sY
jD1

�i1 � � � �is

h$i1i � � � h$isi
C O

 
OL�1

2K0X
sD1

 
R

s

!!

D
RY

iD1

�
1 � �i

h$ii
�

C O

� RX
sD2K0C1

X
1�i1<���<is�R

sY
jD1

�i1 � � � �is

h$i1i � � � h$isi
�

C O

�
OL�1

2K0X
sD1

 
R

s

!�
:

Similarly, by considering the odd terms of the alternating sum, we have

V �
2K0�1X

sD0
.�1/s

X
1�i1<���<is�R

sY
jD1

�i1 � � � �is

h$i1i � � � h$isi
C O

�
OL�1

2K0�1X
sD1

 
R

s

!�

D
RY

iD1

�
1 � �i

h$ii
�

C O

� RX
sD2K0

X
1�i1<���<is�R

sY
jD1

�i1 � � � �is

h$i1i � � � h$isi
�

C O

�
OL�1

2K0�1X
sD1

 
R

s

!�
:
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Thus for any J 2 N, we have

V D
Y

h$i� OQ
$−mg

�
1 � 1=h$i/C O

� RX
sDJ

X
1�i1<���<is�R

sY
jD1

�i1 � � � �is

h$i1i � � � h$isi
�

C O

�
OL�1

JX
sD1

 
R

s

!�
:

To estimate the error terms, note that

OL�1
JX

sD1

 
R

s

!
� OL�1RJC1:

Also, for J � s � R,

X
1�i1<���<is�R

sY
jD1

�i1 � � � �is

h$i1i � � � h$isi
� 1

sŠ

� RX
iD1

1

h$ii
�s

� 1

sŠ

� X
h$i� OQ

1

h$i
�s

� 1

sŠ

�
ln Q C c/s:

The last inequality follows from Lemma 4 with c some fixed constant. It follows
that for J > 3.ln Q C c/,

RX
sDJ

X
1�i1<���<is�R

sY
jD1

�i1 � � � �is

h$i1i � � � h$isi

�
RX

sDJ

1

sŠ
.ln Q C c/s

� .ln Q C c/J

JŠ

�
1C ln Q C c

J C 1
C .ln Q C c/2

.J C 1/.J C 2/
C � � �

�

� .ln Q C c/J

JŠ
.1C 1=3C 1=32 C � � � /

�
�

e ln.ecQ/

J

�J

:

The last inequality follows from Stirling’s formula, namely that JŠ Dp
2�J.J=e/J

�
1C O.1=J/

�
. Thus we have

V D
Y

h$i� OQ
$−mg

�
1 � 1=h$i�C O

��
e ln.ecQ/

J

�J

C OL�1RJC1
�
:
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Since R � OQ � NA, by choosing J D N=.2A logq N/, we have

�
e ln.ecQ/

J

�J

� ON�1=.2A/C� and OL�1RJC1 � ON�1=2C�:

Thus

V D
Y

h$i� OQ
$−mg

�
1 � 1=h$i�C O

� ON�1=.2A/C� C ON�1=2C��:

By Lemma 4, we have
Y

h$i� OQ
$−m

�
1 � 1=h$i��1 �

Y
h$i� OQ

�
1 � 1=h$i��1 � Q � logq N:

It follows that

X
n2Y

�
.Q/
b;m;N.n/

D
OL
ON
� Y

h$i� OQ
$−m

�
1 � 1=h$i��1 Y

h$i� OQ
$−mg

�
1 � 1=h$i�C O

� ON�1=.2A/C� C ON�1=2C���:

This completes the proof of the lemma.

For a polynomial x 2 FqŒt�, we say that x is OQ-smooth if for all monic irreducible
polynomials $ with $ jx, we have h$i � OQ.

Lemma 14. Suppose that a; g 2 FqŒt� with g monic, .a; g/ D 1 and hgi � NB: Also,
suppose that 1 � Q � K. For � defined as in Lemma 9, one has

�a;g.�
.Q/
b;m;N/ D

( hgi�.g/
�.g/ e

��ab Nm
g

�
; if .m; g/ D 1 and g is OQ-smooth,

0; otherwise,

where Nm is the multiplicative inverse of m modulo g.

Proof. By Lemma 13, we have

�a;g.�
.Q/
b;m;N/ D

X
hri<hgi

e

�
ar

g

�

r;g.�

.Q/
b;m;N/

D
Y

h$i� OQ
$−m

�
1 � 1=h$i��1 Y

h$i� OQ
$−mg

�
1 � 1=h$i� X

hri<hgi
.mrCb;mg/ is OQ-rough

e

�
ar

g

�
:
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Note that if .m; g/ D 1 and g is OQ-smooth, then
Y

h$i� OQ
$−m

�
1 � 1=h$i��1 Y

h$i� OQ
$−mg

�
1 � 1=h$i� D hgi=�.g/:

Thus to prove the lemma, it is enough to show that

X
hri<hgi

.mrCb;mg/ is OQ-rough

e

�
ar

g

�
D
8<
:
�.g/e

�
�ab Nm

g

	
; if .m; g/ D 1 and g is OQ-smooth,

0; otherwise.

Let

g2 D
Y

h$i� OQ
$ zkg;$−m

$ z;

and g3 D g=g2: If $ jm, then $ − .mr C b/. Thus .mr C b;mg/ D .mr C b; g/; and

X
hri<hgi

.mrCb;mg/ is OQ-rough

e

�
ar

g

�
D

X
hri<hgi

.mrCb;g2/D1

e

�
ar

g

�
:

Note that .m; g/ D 1 and that g is OQ-smooth if and only if g3 D 1. Then using a
similar argument as the one in the proof of Lemma 12 (with g0 replaced by g2 and
g1 replaced by g3), we can show that

X
hri<hgi

.mrCb;g2/D1

e

�
ar

g

�
D
8<
:
�.g/e

�
�ab Nm

g

	
; if .m; g/ D 1 and g is OQ-smooth,

0; otherwise.

This completes the proof of the lemma.

We now summarize the major arc contribution to Proposition 6.

Lemma 15. For 1 � Q � K, we have

sup
˛2M

j�b̂;m;N.˛/ � �.Q/^b;m;N.˛/j � OQ�1:

Proof. Let ˛ 2 M. Then there exists a; g 2 FqŒt� with g monic, .a; g/ D 1, h˛ �
a=gi < NB=

�hgi ON� and hgi � ON=NB. By combining Lemmas 9, 11, 12, 13 and 14,
if g is OQ-smooth, we have

j�b̂;m;N.˛/��.Q/
^

b;m;N.˛/j � NBC1C�hmi1=2C� ON�1=2 C ON�1=.2A/C� C ON�1=2C� � OQ�1:
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If g is not OQ-smooth, then there exists an irreducible polynomial $ with h$i > OQ
and $ jg. It follows that �.g/ � �.$/ D h$i � 1 
 OQ. Thus we have

j�b̂;m;N.˛/ � �.Q/^b;m;N.˛/j � j�b̂;m;N.˛/j C j�.Q/^b;m;N.˛/j
� 1=�.g/C NBC1C�hmi1=2C� ON�1=2 C ON�1=.2A/C� C ON�1=2C�

� OQ�1:

This completes the proof of the lemma.

4.2 Minor Arc Estimates

We will now turn our attention to obtaining a minor arc estimate for �b;m;N.˛/. We
will obtain the following result.

Lemma 16. Suppose that hmi � N. One has

sup
˛2m

j�b̂;m;N.˛/j � N6�B=2 D N�A;

where A D 4=.ı � 2/ and B D 2A C 12 are defined as in Sects. 2 and 3.

In order to prove this lemma, we need to establish more notation. Whenever a
sum has a superscript C, which will look like

PC, the sum will be restricted to
monic polynomials. Let R 2 N, and let U be a parameter with 1 � U < R=2.
Define x by

x D
XC

djx
hdi� OU

�.d/: (5)

Let

�.y/ D
(

ord$; when y D $ l for some monic, irreducible polynomial $ and l 2 N;

0; otherwise.

We now will present a sequence of lemmas concerning the weighted exponential
sum

XC

hyi�OR
y�b .mod m/

�.y/e.˛y/I

from these lemmas, we will be able to extract Lemma 16. Due to the underlying
shape of Dirichlet series in FqŒt�, we are unable to take an approach similar to that
in [1]. Instead, we will follow the ideas of [26, Chap. 3].
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Lemma 17. Let �.x; y/ denote a function on FqŒt�2. Then we have

XC

OU<hyi�OR
�.1; y/C

XC

OU<hxi�OR

XC

OU<hyi�OR=hxi
x�.x; y/ D

XC

hdi� OU

XC

OU<hyi�OR=hdi

XC

hzi�OR=hydi
�.d/�.dz; y/:

Proof. By writing x D dz, we have

XC

hdi� OU

XC

OU<hyi�OR=hdi

XC

hzi�OR=hydi
�.d/�.dz; y/ D

XC

OU<hxi�OR

XC

OU<hyi�OR=hxi
�.x; y/

XC

djx
hdi� OU

�.d/

C
XC

hxi� OU

XC

OU<hyi�OR=hxi
�.x; y/

XC

djx
hdi� OU

�.d/:

(6)
For hxi � OU, we have

XC

djx
hdi� OU

�.d/ D
(
1; when x D 1;

0; otherwise.

Thus
XC

hxi� OU

XC

OU<hyi�OR=hxi
�.x; y/

XC

djx
hdi� OU

�.d/ D
XC

OU<hyi�OR
�.1; y/: (7)

The lemma now follows from (5), (6) and (7).

Let

S1.˛/ D
XC

hyi� OU
y�b .mod m/

�.y/e.˛y/; S2.˛/ D
XC

hxyi�OR
hxi� OU

xy�b .mod m/

�.x/.ord y/e.˛xy/;

S3.˛/ D
XC

hxyi�OR
hxi� OU2

xy�b .mod m/

XC

xDuv
hui;hvi� OU

�.u/�.v/e.˛xy/;

and

S4.˛/ D
XC

hxyi�OR
hxi;hyi> OU

xy�b .mod m/

x�.y/e.˛xy/:
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Lemma 18. One has

XC

hyi�OR
y�b .mod m/

�.y/e.˛y/ D S1.˛/C S2.˛/ � S3.˛/ � S4.˛/:

Proof. Let

�.x; y/ D
(
�.y/e.˛xy/; when xy � b .mod m/;

0; otherwise:

We first notice that

XC

hyi�OR
y�b .mod m/

�.y/e.˛y/ D S1.˛/C
XC

OU<hyi�OR
�.1; y/:

Thus we are left to show that

XC

OU<hyi�OR
�.1; y/C S4.˛/ D S2.˛/ � S3.˛/:

Applying Lemma 17, we have

XC

OU<hyi�OR
�.1; y/C S4.˛/ D

XC

hdi� OU

XC

OU<hyi�OR=hdi

XC

hzi�OR=hydi
�.d/�.dz; y/: (8)

Since

S3.˛/ D
XC

hdi� OU

XC

hyi� OU

XC

hzi�OR=hydi
�.d/�.dz; y/;

by combining this with (8), we find that

XC

OU�hyi�OR
�.1; y/C S4.˛/ D

XC

hdi� OU

XC

hyi�OR=hdi

XC

hzi�OR=hydi
�.d/�.dz; y/ � S3.˛/

D
XC

hdi� OU

XC

hyi�OR=hdi

XC

hzi�OR=hydi
dyz�b .mod m/

�.d/�.y/e.˛dyz/ � S3.˛/

D
XC

hdi� OU

XC

hwi�OR=hdi
dw�b .mod m/

�.d/e.˛dw/
XC

vjw
�.v/ � S3.˛/
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D
XC

hdi� OU

XC

hwi�OR=hdi
dw�b .mod m/

�.d/.ord w/e.˛dw/ � S3.˛/

D S2.˛/ � S3.˛/:

The lemma now follows.

We will now obtain upper bounds for the sums S1.˛/, S2.˛/, S3.˛/ and S4.˛/.

Lemma 19. One has

S1.˛/ � OUU:

Proof. By applying the triangle inequality and the trivial bound, we have

S1.˛/ �
XC

hyi� OU
y�b .mod m/

�.y/ � OUU:

Lemma 20. Suppose that h˛�a=gi < hgi�2 with .a; g/ D 1. Assume that S;R 2 N

with S � R. Then for any real number T with T � OR=OS , we have

XC

hxi�OS

ˇ̌̌
ˇ

XC

T<hyi�OR=hxi
e.˛xy/

ˇ̌̌
ˇ � ORShgi�1 C OSR C hgi.RS C ord g/:

Proof. By the triangle inequality, we have

XC

hxi�OS

ˇ̌̌
ˇ

XC

T<hyi�OR=hxi
e.˛xy/

ˇ̌̌
ˇ �

XC

hxi�OS

R�ord xX
WD0

ˇ̌̌
ˇ
XC

hyiD OW
e.˛xy/

ˇ̌̌
ˇ: (9)

Also, it was proved in [10, Lemma 7] that

ˇ̌̌
ˇ
XC

hyiD OW
e.˛xy/

ˇ̌̌
ˇ D

( OW; when hk˛xki < OW�1;
0; otherwise.

Thus we have

XC

hxi�OS

R�ord xX
WD0

ˇ̌̌
ˇ
XC

hyiD OW
e.˛xy/

ˇ̌̌
ˇ

D
XC

hxi�OS

min.R�ord x;�ord k˛xk�1/X
WD0

OW
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�
XC

hxi�OS
min

� OR=hxi; hk˛xki�1	

�
XC

hxi<hgi
hk˛xki�1 C

SX
WDord g

XC

hxiD OW
min

� OR=hxi; hk˛xki�1	

D E1 C E2; (10)

where

E1 D
XC

hxi<hgi
hk˛xki�1 and E2 D

SX
WDord g

XC

hxiD OW
min

� OR=hxi; hk˛xki�1	 :

We first bound E1. For hxi < hgi, since h˛ � a=gi < hgi�2, we have

D
˛x � ax

g

E
<

hxi
hgi2 <

1

hgi :

Since hkax=gki � hgi�1, we deduce that

hk˛xki D
D��ax

g
C �

˛ � a

g

�
x
��E D

D��ax

g

��C �
˛ � a

g

�
x
E

D
D��ax

g

��E:
Since .a; g/ D 1, we have

E1 �
X

hxi<hgi
hk˛xki�1 D

X
hxi<hgi

D��ax

g

��E�1 D
X

hyi<hgi

D�� y

g

��E�1

�
ord g�1X
WD0

OW
� hgi

OW
	

� hgi.ord g/: (11)

We are now left to bound E2. Note that

E2 D
SX

WDord g

� XC

hxiD OW
hk˛xki�1�OR= OW

OR
OW C

R�W�1X
VD0

XC

hxiD OW
hk˛xki�1D OV

OV
	

�
SX

WDord g

R�WX
VD0

XC

hxiD OW
hk˛xki�1� OV

OV �
SX

WDord g

R�WX
VD0

X
hxi<q OW

hk˛xki<q OV�1

OV:
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By [10, Lemma 7], we deduce that

E2 �
SX

WDord g

R�WX
VD0

X
hxi<q OW

ˇ̌̌ X
hyi< OVq�1

e.˛xy/
ˇ̌̌
:

We now apply [15, Lemma 11.1] to get
X

hxi<q OW

ˇ̌̌ X
hyi< OVq�1

e.˛xy/
ˇ̌̌

� OW OV
�
hgi�1 C OW�1 C OV�1 C hgi OW�1 OV�1	:

Using this bound, we see that

E2 �
SX

WDord g

R�WX
VD0

OW OV
�
hgi�1 C OW�1 C OV�1 C hgi OW�1 OV�1	

�
SX

WDord g

� ORhgi�1 C OR OW�1 C OWR C hgiR
	

� ORShgi�1 C OSR C hgiRS:

(12)

The lemma now follows by combining (9)–(12).

Lemma 21. Suppose that h˛ � a=gi < hgi�2 with .a; g/ D 1 and ord m < U. Then
one has

S2.˛/ � OUhmiR2 C ORR2hgi�1 C hgiR.R2 C ord g/:

Proof. Note that

S2.˛/ D
XC

hxyi�OR
hxi� OU

xy�b .mod m/

�.x/.ord y/e.˛xy/

D
XC

hxi� OU
�.x/

XC

hyi�OR=hxi
xy�b .mod m/

e.˛xy/
Z hyi

1

dt

t log q

D
XC

hxi� OU
�.x/

Z OR=hxi

1

� XC

t<hyi�OR=hxi
xy�b .mod m/

e.˛xy/

�
dt

t log q
:

By two applications of the triangle inequality, we get

S2.˛/ �
XC

hxi� OU

Z OR=hxi

1

ˇ̌̌
ˇ

XC

t<hyi�OR=hxi
xy�b .mod m/

e.˛xy/

ˇ̌̌
ˇdt

t
:
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Switching the leftmost sum with the integral in the last expression, we obtain

S2.˛/ �
Z OR

1

XC

hxi�min. OU; OR=t/

ˇ̌̌
ˇ

XC

t<hyi�OR=hxi
xy�b .mod m/

e.˛xy/

ˇ̌̌
ˇdt

t
�
Z OR

1

XC

hxi� OU
.x;m/D1

ˇ̌̌
ˇ

XC

t<hyi�OR=hxi
y�Nxb .mod m/

e.˛xy/

ˇ̌̌
ˇdt

t
;

where Nx is the multiplicative inverse of x modulo m. We now split the sum over y
into two sums depending on whether or not hyi � hmi. Write y D Nxb C my0 and
x0 D mx. Then by the triangle inequality, we have

S2.˛/ �
Z OR

1

OUhmidt

t
C
Z OR

1

XC

hxi� OU
.x;m/D1

ˇ̌̌
ˇ

XC

max.t;hmi/<hyi�OR=hxi
y�Nxb .mod m/

e.˛xy/

ˇ̌̌
ˇdt

t

� OUhmiR C
Z OR

1

XC

hxi� OU
.x;m/D1

ˇ̌
ˇ̌ XC

max.t=hmi;1/<hy0i�OR=hmxi
e.˛mxy0/

ˇ̌
ˇ̌ˇ̌e.˛b/

ˇ̌dt

t

� OUhmiR C
Z OR

1

XC

hx0i� OUhmi

ˇ̌̌
ˇ

XC

max.t=hmi;1/<hy0i�OR=hx0i
e.˛x0y0/

ˇ̌̌
ˇdt

t
:

Since ord m < U < R, by Lemma 20, we deduce that

S2.˛/ � OUhmiR C
Z OR

1

� OR.U C ord m/hgi�1 C OUhmiR

Chgi..U C ord m/R C ord g//
dt

t

� OUhmiR2 C ORR2hgi�1 C hgiR.R2 C ord g/:

This completes the proof of the lemma.

Lemma 22. Suppose that h˛ � a=gi < hgi�2 with .a; g/ D 1 and ord m < U. Then
one has

S3.˛/ � ORR2hgi�1 C OU2hmiR2 C hgiR.R2 C ord g/:

Proof. For any hxi � OU2, we have

XC

xDuv
hui;hvi� OU

�.u/�.v/ �
XC

vjx
�.v/ D ord x � R:
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Write y D NxbCmy0 and x0 D mx, where Nx is the multiplicative inverse of x modulo m.
Then from the above inequality, we deduce that

S3.˛/ D
XC

hxyi�OR
hxi� OU2

xy�b .mod m/

XC

xDuv
hui;hvi� OU

�.u/�.v/e.˛xy/

�
XC

hxi� OU2

ˇ̌
ˇ XC

xDuv
hui;hvi� OU

�.u/�.v/
ˇ̌
ˇ �
ˇ̌
ˇ XC

hyi�OR=hxi
xy�b .mod m/

e.˛xy/
ˇ̌
ˇ

� R
XC

hxi� OU2

.x;m/D1

ˇ̌̌ XC

hyi�OR=hxi
y�Nxb .mod m/

e.˛xy/
ˇ̌̌

D R
XC

hxi� OU2

.x;m/D1

ˇ̌̌ XC

hy0i�OR=hmxi
e.˛mxy0/

ˇ̌̌

� R
XC

hx0i� OU2hmi

ˇ̌
ˇ XC

hy0i�OR=hx0i
e.˛x0y0/

ˇ̌
ˇ:

Since ord m < U < R, by Lemma 20, we obtain that

S3.˛/ � R
� OR.2U C ord m/hgi�1 C OU2hmiR C hgi..2U C ord m/R C ord g/

�
� ORR2hgi�1 C OU2hmiR2 C hgiR.R2 C ord g/:

This completes the proof of the lemma.

Lemma 23. Suppose that h˛ � a=gi < hgi�2 with .a; g/ D 1 and ord m � U. Then
one has

S4.˛/ � ORR9=2hmi1=2hgi�1=2 C ORR9=2hmi OU�1=2 C OR1=2R9=2hmi1=2hgi1=2:
Proof. By writing x D y1z, z D rs and y1 D uv, we have

XC

hxiD OV
x�Qx .mod m/

jxj2 �
XC

hxiD OV
2x �

XC

hxiD OV

�XC

yjx
1
	2 D

XC

hy1i� OV

XC

hxiD OV
y1jx

XC

y2jx
1

D
XC

hy1i� OV

XC

hziD OV=hy1i

XC

y2jy1z

1

�
XC

hy1i� OV

XC

d1jy1

XC

hziD OV=hy1i

XC

d2jz
1 D

XC

hy1i� OV

XC

d1jy1

XC

r;s
hrsiD OV=hy1i

1

� OVV
XC

hy1i� OV

XC

d1jy1
hy1i�1 D OVV

XC

u;v
huvi� OV

huvi�1 � OVV3:

(13)
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Note that

S4.˛/ D
XC

hxyi�OR
hxi;hyi> OU

xy�b .mod m/

x�.y/e.˛xy/

D
X

U<V;W<R�U
VCW�R

X
Qx;Qy

QxQy�b .mod m/

XC

hxiD OV
x�Qx .mod m/

x

XC

hyiD OW
y�Qy .mod m/

�.y/e.˛xy/:

Applying the Cauchy-Schwarz inequality and (13), we obtain that

S4.˛/ �
X

U<V;W<R�U
VCW�R

X
Qx;Qy

QxQy�b .mod m/

� XC

hxiD OV
x�Qx .mod m/

jxj2
�1=2

�
� XC

hxiD OV
x�Qx .mod m/

ˇ̌̌ XC

hyiD OW
y�Qy .mod m/

�.y/e.˛xy/
ˇ̌̌2�1=2

�
X

U<V;W<R�U
VCW�R

X
Qx;Qy

QxQy�b .mod m/

OV1=2V3=2

� XC

hxiD OV
x�Qx .mod m/

ˇ̌̌ XC

hyiD OW
y�Qy .mod m/

�.y/e.˛xy/
ˇ̌̌2�1=2

:

(14)
One has

XC

hxiD OV
x�Qx .mod m/

ˇ̌̌ XC

hyiD OW
y�Qy .mod m/

�.y/e.˛xy/
ˇ̌̌2

D
XC

hxiD OV
x�Qx .mod m/

XC

hy1iDhy2iD OW
y1�y2�Qy .mod m/

�.y1/�.y2/e.˛x.y1 � y2//

D
XC

hyiD OW
y�Qy .mod m/

X
hhi< OW

h�0 .mod m/

�.y/�.y C h/
XC

hxiD OV
x�Qx .mod m/

e.˛xh/: (15)

For .Qx;m/ D .Qy;m/ D 1, V C W � R and hmi � min. OV; OW/; since j�.z/j � ord z,
by writing h D mh0, x D Qx C mx0 and h00 D m2h0, we have



132 Y.-R. Liu and C.V. Spencer

XC

hyiD OW
y�Qy .mod m/

X
hhi< OW

h�0 .mod m/

�.y/�.y C h/
XC

hxiD OV
x�Qx .mod m/

e.˛xh/

� W2
XC

hyiD OW
y�Qy .mod m/

X
hhi< OW

h�0 .mod m/

ˇ̌̌ XC

hxiD OV
x�Qx .mod m/

e.˛xh/
ˇ̌̌

D
OWW2

hmi
X

hh0i< OW=hmi

ˇ̌̌ XC

hx0iD OV=hmi
e.˛m2x0h0/

ˇ̌̌

�
OWW2

hmi
X

hh00i< OWhmi

ˇ̌̌ XC

hx0iD OV=hmi
e.˛x0h00/

ˇ̌̌
:

(16)

When V C W � R and U � min.V;W/; it follows from [15, Lemma 11.1] that

X
hh00i< OWhmi

ˇ̌̌ XC

hx0iD OV=hmi
e.˛x0h00/

ˇ̌̌
�

X
hh00i< OWhmi

ˇ̌̌ X
hx0i<q OV=hmi

e.˛x0h00/
ˇ̌̌

� OW OV�hgi�1C OW�1hmi�1C OV�1hmiChgi. OW OV/�1�
� ORhgi�1 C ORhmi OU�1 C hgi:

(17)
Upon combining (14)–(17), we have

S4.˛/ �
X

U<V;W<R�U
VCW�R

X
Qx;Qy

QxQy�b .mod m/

OV1=2V3=2 OW1=2Whmi�1=2� ORhgi�1

C ORhmi OU�1 C hgi�1=2
�

X
U<V;W<R�U

VCW�R

OR1=2R5=2hmi1=2� ORhgi�1 C ORhmi OU�1 C hgi�1=2

� ORR9=2hmi1=2hgi�1=2 C ORR9=2hmi OU�1=2 C OR1=2R9=2hmi1=2hgi1=2:

Lemma 24. Suppose that hmi � OR2=5R, hgi < ORhmi and h˛ � a=gi < hgi�2 with
.a; g/ D 1. Then one has

XC

hyi�OR
y�b .mod m/

�.y/e.˛y/ � OR4=5hmiR4 C hgiR3 C ORR9=2hmi1=2hgi�1=2

COR1=2R9=2hmi1=2hgi1=2:
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Proof. We deduce from Lemmas 18, 19, 21, 22 and 23 that when ord m � U, we
have

XC

hyi�OR
y�b .mod m/

�.y/e.˛y/ � OU2hmiR2 C hgiR.R2 C ord g/C ORR9=2hmi1=2hgi�1=2

C ORR9=2hmi OU�1=2 C OR1=2R9=2hmi1=2hgi1=2:

The lemma now follows by setting OU D OR2=5R.

We will now derive Lemma 16 from Lemma 24.

Proof (of Lemma 16). Note that

�b̂;m;N.˛/ D .N C ord m/�.m/
ONhmi

XC

hniD ON
mnCb irred

e.˛n/

D �.m/
ONhmi

XC

hniD ON
�.mn C b/e.˛n/

C O

�
N C ord m

ON
� XC

h$iD. ONhmi/1=2
$ irred

1

2
C

XC

h$iD. ONhmi/1=3
$ irred

1

3
C � � �

	�

D �.m/
ONhmi

XC

hniD ON
�.mn C b/e.˛n/C O

� ON�1=2hmi1=2�:

By writing x D mn C b, we have

�b̂;m;N.˛/ D �.m/e.�˛b=m/
ONhmi

XC

hxiD ONhmi
x�b .mod m/

�.x/e.˛x=m/C O
� ON�1=2hmi1=2�:

By the triangle inequality, we deduce that

�b̂;m;N.˛/ � ON�1
�ˇ̌ˇ̌ XC

hxi� ONhmi
x�b .mod m/

�.x/e.˛x=m/

ˇ̌
ˇ̌C

ˇ̌
ˇ̌ XC

hxi�q�1 ONhmi
x�b .mod m/

�.x/e.˛x=m/

ˇ̌
ˇ̌�

C ON�1=2hmi1=2:
(18)

Let ˛ 2 m. By Dirichlet’s approximation theorem, there exist a; g 2 FqŒt� with g
monic, hgi � ONhmi=NB, .a; g/ D 1 and h˛=m � a=gi < NB=.hmgi ON/ � hgi�2. Let
d D .g;m/. Then
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D
˛ � am=d

g=d

E
<

NB

hgi ON � NB

hg=di ON :

Since ˛ 2 m, we must have hg=di > NB; which implies that hgi > NBhdi � NB: By
Lemma 24 and (18), we have

�b̂;m;N.˛/

� ON�1� ON4=5hmi9=5N4 C hgiN3 C ONN9=2hmi3=2hgi�1=2 C ON1=2N9=2hmihgi1=2�
C ON�1=2hmi1=2

� ON�1=5N29=5 C N4�B C N6�B=2 C ON�1=2N1=2 � N6�B=2 D N�A:

This completes the proof of the lemma.

We will next prove a minor arc estimate for �.Q/
^

b;m;N.˛/.

Lemma 25. Let 1 � Q � K and hmi � N. Suppose that h˛ � a=gi < hgi�2 with
.a; g/ D 1. Then one has

j�.Q/^b;m;N.˛/j � logq N
�

Nhgi�1 C ON�1hgi.N2 C ord g/C ON�1=.3A/N
	
:

Proof. Let f$1; : : : ;$Rg denote the set of monic, irreducible polynomials $ with
h$i � OQ and $ − m. By the inclusion-exclusion principle, we have

�
.Q/^

b;m;N.˛/ D
X

n2SN

�
.Q/
b;m;N.n/e.˛n/ D ON�1

RY
iD1
.1 � 1=h$ii/�1h.˛/; (19)

where

h.˛/ D
RX

sD0
.�1/s

X
1�i1<���<is�R

XC

hyiD ONhmi=h$1���$si
$i1 ���$is y�b .mod m/

e

�
˛
�$i1 � � �$is y � b

m

	�
: (20)

By Lemma 4, we have

RY
iD1

�
1 � 1=h$ii

��1 � Q � logq N: (21)

Let J D N=.2A logq N/. If 0 � s � J, since h$ii � OQ � NA, we have

sY
jD1

h$iji � NAN=.2A logq N/ D NN=.2 logq N/ D ON1=2:
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Therefore, by writing y D NxbCmy0, where Nx is the multiplicative inverse of x modulo
m, it follow from Lemma 20 that

X
0�s�J

.�1/s
X

1�i1<���<is�R

XC

hyiD ONhmi=h$1���$si
$i1 ���$is y�b .mod m/

e

�
˛
�$i1 � � �$is y � b

m

	�

�
XC

hxi� ON1=2
.x;m/D1

ˇ̌̌
ˇ

XC

hyiD ONhmi=hxi
xy�b .mod m/

e

�
˛xy

m

�ˇ̌̌
ˇ �

XC

hxi� ON1=2

ˇ̌̌
ˇ
XC

hy0iD ON=hxi
e
�
˛xy0�ˇ̌̌ˇ

� ONNhgi�1 C ON1=2N C hgi.N2 C ord g/:

(22)

For s > J, we have

X
J<s�R

.�1/s
X

1�i1<���<is�R

XC

hyiD ONhmi=h$1���$si
$i1 ���$is y�b .mod m/

e

�
˛
�$i1 � � �$is y � b

m

	�

�
X

J<s�R

X
1�i1<���<is�R

ONhmi=h$i1 � � �$isi

� ONhmi
X

J<s�R

.sŠ/�1
�h$1i�1 C � � � C h$Ri�1�s

� ONhmi
X

J<s�R

.sŠ/�1.C1 logq logq N/s;

(23)

where the last inequality follows from Lemma 4. By Stirling’s formula, we have

sŠ D p
2�s

�
s
e

	s�
1C O

�
1
s

��
: Thus for s > J D N=2A logq N, we have

X
J<s�R

.sŠ/�1.C1 log log N/s �
X

J<s�R

s�1=2
�

C1e logq logq N

s

�s

�
X

J<s�R

�2A logq N

N

	1=2�2C1Ae logq N logq logq N

N

�s

�
� logq N

N

	1=2 X
J<s�R

Ns
�

�1Co.1/
�

�
� logq N

N

	1=2
N
�

�1Co.1/
�

N=.2A logq N/

�
� logq N

N

	1=2 ON�1=.2A/Co.1/ � ON�1=.3A/: (24)
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By combining (19)–(24), we deduce that

j�.Q/^b;m;N.˛/j � ON�1 logq N
� ONNhgi�1 C ON1=2N C hgi.N2 C ord g/C ON1�1=.3A/hmi�

� logq N
�
Nhgi�1 C ON�1hgi.N2 C ord g/C ON�1=.3A/N

�
:

Lemma 26. Let 1 � Q � K and hmi � N. One has

sup
˛2m

j�.Q/^b;m;N.˛/j � N2�B logq N � N�A:

Proof. Let ˛ 2 m. By Dirichlet’s approximation theorem, there exist a; g 2 FqŒt�
with g monic, hgi � ON=NB, .a; g/ D 1 and h˛ � a=gi < NB=.hgi ON/ � hgi�2. Since
˛ 2 m, we have hgi > NB. By Lemma 25,

j�.Q/^b;m;N.˛/j � logq N
�
Nhgi�1 C ON�1hgi.N2 C ord g/C ON�1=.3A/N

�
� N2�B logq N � N�A:

We now summarize the minor arc contribution in Proposition 6.

Lemma 27. For 1 � Q � K, we have

sup
˛2m

ˇ̌
�b̂;m;N.˛/ � �.Q/^b;m;N.˛/

ˇ̌ � N�A � OQ�1:

Proof. The lemma follows by combining Lemmas 16 and 26 and noting that

N�A � OK�1 � OQ�1:

Note that by combining Lemmas 15 and 27, we obtain Proposition 6.

5 Proofs of Theorems 2 and 3

We will first prove Theorem 2.

Proof (of Theorem 2). By Lemmas 5 and 7, for 1 � Q � K, we have

kf 	  Q̂ k1 � OQ�1kf k1 and kf 	  Q̂ k2 � Q ON�1 kf k2:

By the Riesz-Thorin interpolation theorem [17, 25], we interpolate between these
two bounds to find that for ı � 2, we have

kf 	  Q̂ kı � OQ�1C2=ıQ2=ı ON�2=ıkf kı0 :
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Similarly, since

kf 	 K̂C1k1 � 2.K C 1/�1kf k1 � N�Akf k1 and kf 	 K̂C1k2 � N ON�1 kf k2;

for ı > 2, we have

kf 	  K̂C1kı � NA.�1C2=ı/C2=ı ON�2=ıkf kı0 :

Upon recalling that A D 4=.ı � 2/, we have

kf 	  K̂C1kı � N�2=ı ON�2=ıkf kı0 :

By the triangle inequality,

kf 	 �b̂;m;Nkı �
KC1X
QD1

kf 	  Q̂ kı � ON�2=ıkf kı0 :

Therefore, by (3) and (4), we have

kTk2!ı � sup
kf kı0 D1

kf 	 �b̂;m;Nk1=2ı � ON�1=ı:

This completes the proof of the theorem.

We will now deduce Theorem 3 from Theorem 2.

Proof (of Theorem 3). When ı D 2, the theorem follows from Parseval’s inequality.
Hence, we assume that ı > 2. Let .ax/x2PR be a sequence of complex numbers with
jaxj � 1 for x 2 PR. Let

f .x/ D
(

ax; if x 2 PR;

0; otherwise.

Then, by setting �b;m;N D �0;1;R, it follows from Theorem 2 that

�Z
T

ˇ̌̌ X
x2PR

ax
R
ORe.˛x/

ˇ̌̌ı
d˛

�1=ı
D kTf kı � OR�1=ıkf k2 D OR�1=ı

� X
x2PR

jaxj2R
OR
�1=2

� OR�1=ı:

Thus

��� X
x2PR

axe.x�/
���
ı

D
�Z

T

ˇ̌̌ X
x2PR

axe.˛x/
ˇ̌̌ı

d˛

�1=ı
� OR1�1=ıR�1: (25)
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Also, for hˇi < q�1 OR�1 and x 2 PR, we have hˇxi < q�1, implying that

��� X
x2PR

e.x�/
���
ı

D
�Z

T

ˇ̌
ˇ X

x2PR

e.˛x/
ˇ̌
ˇıd˛

�1=ı

�
�Z

hˇi<q�1 OR�1

ˇ̌̌ X
x2PR

e.ˇx/
ˇ̌̌ı

dˇ

�1=ı



�Z

hˇi<q�1 OR�1

ORıR�ıdˇ
�1=ı


 OR1�1=ıR�1:

(26)

The theorem now follows by combining (25) and (26).

6 Proof of Theorem 1

To prove Theorem 1, we will employ the W-trick (see [7] for a discussion of the
method). Namely, we will pass to an arithmetic progression with common difference
equal to a product of small irreducible polynomials and this will allow us to avoid
some obstacles modulo small irreducible polynomials. It is worth noting that if
one is able to avoid using the W-trick, the resulting bound in Theorem 1 could
be improved to Dr.PR/ � jPRj= logq jPRj:
Lemma 28. Let r1; r2; r3 2 Fq with r1 C r2 C r3 D 0. Suppose that AR � PR and
that there is no non-trivial solution to r1x1 C r2x2 C r3x3 D 0 with x1; x2; x3 2 AR.
Suppose also that jARj > � OR=R for some � 2 R with � > 0. Let

W D
h

logq

� logq R

4

	i
and m D

Y
h$i� OW

$:

Set ON D OR=hmi. Then for N sufficiently large, there exists A � SN such that

• There is no non-trivial solution to r1x1 C r2x2 C r3x3 D 0 with x1; x2; x3 2 A ,
• There exists some b 2 FqŒt� with .b;m/ D 1 and �b;m;N.A / � �.

Proof. Let 1AR denote the characteristic function of the set AR. We have

X
hbi<hmi
.b;m/D1

X
x2SR

x�b .mod m/

1AR.x/ � � OR=R:

By the pigeonhole principle, there exists b 2 FqŒt� with hbi < hmi and .b;m/ D 1

such that
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X
x2SR

x�b .mod m/

1AR.x/ � � OR
�.m/R

:

Let A D fn 2 SN j mn C b 2 ARg: Thus

�b;m;N.A / D .N C ord m/�.m/
ONhmi

X
n2SN

1AR.mn C b/ � �:

Since r1 C r2 C r3 D 0 and there is no non-trivial solution to r1x1 C r2x2 C r3x3 D 0

with x1; x2; x3 2 AR; it follows that there is no non-trivial solutions to r1x1 C r2x2 C
r3x3 D 0 with x1; x2; x3 2 A : This completes the proof of the lemma.

In order to apply Lemma 28 with the earlier work in this paper, we need to bound
hmi in terms of N. Note that

ord m D
X

h$i� OW
ord$ D

WX
KD1

K
� OK=K C O. OK1=2=K/

� D q.q � 1/�1 OW C O. OW1=2/:

Since W D 

logq

� logq R

4

��
, for R sufficiently large in terms of q, we have

ord m 2
h logq R

4:1q
;

logq R

1:9

i
I

from which we derive that

ON D OR=hmi 2 
 ORR�1=1:9; ORR�1=.4:1q/
�
:

In addition, we have hmi � R1=1:9 � N and W � logq logq N:
For a set A � SN and a monic irreducible polynomial$ of degree N, we embed

A into FqŒt�=$FqŒt� via the bijection x ! x .mod$/. Also, we define Fourier
analysis for FqŒt�=$FqŒt�: if f ; g W FqŒt�=$FqŒt� ! C and r 2 FqŒt�=$FqŒt�, we
write

Qf .r/ D
X

hxi<h$i
f .x/e.rx=$/ and .f 	 g/.r/ D

X
hxi<h$i

f .x/g.r � x/:

We define functions �; � W FqŒt�=$FqŒt� ! C by

�.x/ D
(
1; if there exists y 2 A such that x � y .mod$/,

0; otherwise,
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and �.x/ D �b;m;N.y/; where y is the unique element of SN with x � y .mod$/:
We also define a function a W FqŒt�=$FqŒt� ! C by a.x/ D �.x/�.x/: First, we
estimate the function Q�.

In what follows, we will fix ı D 5=2. Thus all implicit constants below depend
at most on q.

Lemma 29. We have

sup
z¥0 .mod$/

j Q�.z/j � .logq N/�1:

Proof. Note that Q�.z/ D �b̂;m;N.z=$/: For z=$ 2 m, by Lemma 16, we have

Q�.z/ � N�A � .logq N/�1:

Thus we are left to prove the lemma for the case that z=$ 2 Ma;g � M. By
Lemmas 9, 11 and 12, we have

Q�.z/ D
8<
:
�.g/
�.g/ e

��ab Nm
g

�
%
�

z
$

� a
g

�C O
�

NBC1C�hmi1=2C�

ON1=2
	
; if .g;m/ D 1;

O
�

NBC1C�hmi1=2C�

ON1=2
	
; otherwise.

Because

NBC1C�hmi1=2C�
ON1=2

� .logq N/�1;

it is enough to show that when .g;m/ D 1, we have

�.g/�1%
� z

$
� a

g

	
� .logq N/�1:

For hgi D 1, since z ¥ 0 .mod$/,

�.g/�1%
� z

$
� a

g

	
D %.z=$/ D ON�1 X

x2SN

e.zx=$/ D 0:

For hgi > 1, note that j%.˛/j � 1 for all ˛ 2 T: When hgi > 1 and .g;m/ D 1, by
the definition of m, there exists a monic irreducible polynomial $ 0 with $ 0jg and
h$ 0i > OW: Thus

�.g/�1 � �.$ 0/�1 � OW�1 � .logq N/�1:

This completes the proof of the lemma.
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We now prove a discrete version of the majorant property with ı D 5=2. Note
that the proof below can be adapted to give a discrete majorant property for any
ı > 2.

Lemma 30. There exists an absolute constant C00.q/ such that

X
hzi<h$i

jQa.z/j5=2 � C00.q/:

Proof. For h$i D ON > 1, x 2 SN and h�i < 1, we have e
� x.zC�/

$

� D e
�

xz
$

�
e
�

tN�
$

�
:

Thus for all h˛i < ON, by writing ˛ D z C � with z 2 SN�1 and � 2 T, we have

X
hzi<h$i

jQa.z/j5=2 D
X

hzi<h$i

ˇ̌̌ X
x2SN

�.x/�.x/e.zx=$/
ˇ̌̌5=2

D
Z

h˛i< ON

ˇ̌̌ X
x2SN

�.x/�.x/e.˛x=$/
ˇ̌̌5=2

d˛:

(27)

By writing ˛ D $
 , we deduce that

Z
h˛i< ON

ˇ̌
ˇ X

x2SN

�.x/�.x/e.˛x=$/
ˇ̌5=2

d˛ D ON
Z
T

ˇ̌
ˇ X

x2SN

�.x/�b;m;N.x/e.
x/
ˇ̌5=2

d
:

(28)
By Theorem 2,

�Z
T

ˇ̌
ˇ X

x2SN

�.x/�b;m;N.x/e.
x/
ˇ̌
ˇ5=2 d


�2=5

D kT�k5=2 � ON�2=5k�k2

D ON�5=2� X
x2SN

j�.x/j2�b;m;N.x/
	1=2 � ON�5=2:

(29)

By combining (27)–(29), we find that

X
hzi<h$i

jQa.z/j5=2 � 1:

This completes the proof of the lemma.

Let & be a real parameter satisfying 0 � & � 1 and define

Z D Z .&/ D ˚
z 2 FqŒt�=$FqŒt�

ˇ̌ jQa.z/j � &
�
:
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Let k D jZ j and write Z D fz1; : : : ; zkg: We now are able to define a Bohr set

B D B.Z / D
n
x 2 FqŒt�=$FqŒt�

ˇ̌̌ D���xzi

$

���E < q�1 .1 � i � k/
o
:

Define a function ˇ W FqŒt�=$FqŒt� ! C by

ˇ.x/ D
(

jBj�1; if x 2 B,

0; otherwise.

We define a function a1 W FqŒt�=$FqŒt� ! C by a1.x/ D .a 	 ˇ 	 ˇ/.x/.
Lemma 31. There exists a positive constant C2.q/ such that whenever k �
logq logq N; we have ka1k1 � C2.q/ ON�1:

Proof. From the definition of a1 and Lemma 29, we have

a1.x/ D �
a 	 ˇ 	 ˇ�.x/ � �

� 	 ˇ 	 ˇ�.x/ D ON�1 X
hyi<h$i

Q�.y/ Q̌.y/2e� � xy=$
�

� ON�1 Q�.0/ Q̌.0/2 C ON�1 X
hyi<h$i

y¤0

Q�.y/ Q̌.y/2e� � xy=$
�

� ON�1 C ON�1 sup
y¥0 .mod$/

j Q�.y/j
X

hyi<h$i
j Q̌.y/j2

� ON�1 C .logq N/�1jBj�1:

Recall that Z D fz1; : : : ; zkg. Consider the mapping � W FqŒt�=$FqŒt� ! T
k

defined by

� .x/ D �kxz1=$k; : : : ; kxzk=$k�:
Let

G D ˚
.˛1; : : : ; ˛k/ 2 T

k j h˛ii < q�1 .1 � i � k/
�
:

By the pigeonhole principle, there exists an element .v1; : : : ; vk/ 2 F
k
q where

H D fx .mod$/ j� .x/ � .v1; : : : ; vk/ 2 G g

contains at least ONq�k elements. Let y 2 H . Then for any y0 2 H , we have
� .y � y0/ 2 G : Hence, jBj � ONq�k; implying that

ja1.x/j � ON�1 C .logq N/�1 ON�1qk � ON�1:
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We will now prove upper and lower bounds for the sum

ON�1 X
hzi<h$i

Qa1.r1z/Qa1.r2z/Qa1.r3z/;

and we will then deduce Theorem 1 by comparing these upper and lower bounds.

Lemma 32. Suppose that there is no non-trivial solution to r1x1 C r2x2 C r3x3 D 0

with xi 2 A .1 � i � 3/: Then

ON�1 X
hzi<h$i

Qa1.r1z/Qa1.r2z/Qa1.r3z/ � ON�2N2 C ON�1&1=2:

Proof. Since there is no non-trivial solution to r1x1 C r2x2 C r3x3 D 0 with
xi 2 A .1 � i � 3/; we have

ON�1 X
hzi<h$i

Qa.r1z/Qa.r2z/Qa.r3z/ D
X

hx1i<h$i

X
hx2i<h$i

a.x1/a.x2/a.�r1r
�1
3 x1 � r2r

�1
3 x2/

D
X

hxi<h$i
a.x/3 �

X
y2SN

�b;m;N.y/
3

� .N C ord m/2�.m/2

ON2hmi2 � N2 ON�2:

Since Qa1 D Qa Q̌2, it follows that

ON�1 X
hzi<h$i

Qa1.r1z/Qa1.r2z/Qa1.r3z/

D ON�1 X
hzi<h$i

�
Qa1.r1z/Qa1.r2z/Qa1.r3z/ � Qa.r1z/Qa.r2z/Qa.r3z/

	

C O.N2 ON�2/

D ON�1 X
hzi<h$i

Qa.r1z/Qa.r2z/Qa.r3z/
� Q̌.r1/2 Q̌.r2/2 Q̌.r3/2 � 1

	

C O.N2 ON�2/:

(30)

Note that when z 2 Z and r 2 Fq, since hkrzx=$ki < q�1 for all x 2 B, we have

Q̌.rz/ D jBj�1
X
x2B

e.rzx=$/ D 1:

Thus X
z2Z

Qa.r1z/Qa.r2z/Qa.r3z/
� Q̌.r1z/2 Q̌.r2z/2 Q̌.r3z/2 � 1

	
D 0: (31)
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Note that for all z .mod$/,

ˇ̌ Q̌.r1z/2 Q̌.r2z/2 Q̌.r3z/2 � 1ˇ̌ � 2:

By combining Hölder’s inequality with Lemma 30, we have

X
hzi<h$i

z…Z

Qa.r1z/Qa.r2z/Qa.r3z/
� Q̌.r1z/2 Q̌.r2z/2 Q̌.r3z/2 � 1

	

� sup
hzi<h$i

z…Z
jQa.z/j1=2

X
hzi<h$i

jQa.z/j5=2 � &1=2:

(32)

The lemma now follows by combining (30)–(32).

Lemma 33. Suppose that k � logq logq N: Then there exists a positive constant
C5 D C5.q/ such that

ON�1 X
hzi<h$i

Qa1.r1z/Qa1.r2z/Qa1.r3z/ 
 �4 ON�1q�C5=�:

Proof. Let

A 0 D
n
x 2 FqŒt�=$FqŒt�

ˇ̌
a1.x/ � �

2 ON
o
:

By Lemma 31, there exists a constant C2 D C2.q/ > 1 such that ka1k1 � C2 ON�1:
Thus by Lemma 28,

jA 0jC2
ON C . ON � jA 0j/ �

2 ON �
X

hxi<h$i
a1.x/

D
X

hxi<h$i
.a 	 ˇ 	 ˇ/.x/

D
X

hyi<h$i
ˇ.y/

X
hzi<h$i

ˇ.z � y/
X

hxi<h$i
a.x � z/

� �
X

hyi<h$i
ˇ.y/

X
hzi<h$i

ˇ.z � y/ D �:

Hence, we have

jA 0j � � ON=.2C2 � �/ � C3� ON;
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where C3 D 1=.2C2/ 2 .0; 1/. Let S denote the number of non-trivial solutions to
r1x1 C r2x2 C r3x3 D 0 with xi 2 A 0 (1 � i � 3). Then one has

ON�1 X
hzi<h$i

Qa1.r1z/Qa1.r2z/Qa1.r3z/ � C3
3�
3S

ON3
: (33)

Let M 2 N. By [14, Theorem 1], there exists a positive constant C4 D C4.q/ such
that if M � C4=�; then any subset of SM of density at least C3�=2 contains a non-
trivial solution to r1x1 C r2x2 C r3x2 D 0. Furthermore, since ri 2 Fq (1 � i � 3),
the same is true for any space isomorphic to SM as a vector space over Fq. Now, let
M < N. There are ON. ON � 1/ choices of .u; v/ where u 2 SN and 0 < hvi < ON.
Consider arithmetic progressions of the form Wu;v D fu C vl j hli < OMg �
FqŒt�=$FqŒt�. Let U D f.u; v/ ˇ̌ jWu;v\A 0j > C3� OM=2g. Note that jWu;v\A 0j � OM
for all u and v. Upon noting that every element x 2 A 0 lies inside exactly . ON � 1/ OM
sets Wu;v , we have

jU j OM C � ON. ON � 1/ � jU j�C3� OM=2 � . ON � 1/ OMjA 0j � C3� ON. ON � 1/ OM:

It follows that

jU j � C3� ON. ON � 1/=.2 � C3�/ � C3� ON. ON � 1/=2:

Thus there are at least C3� ON. ON � 1/=2 sets Wu;v for which A 0 \ Wu;v has density at
least C3�=2. Provided that C4=� � M < N, each set Wu;v with .u; v/ 2 U contains
a non-trivial solution to r1x1Cr2x2Cr3x3 D 0. Note that for any non-trivial solution
r1x1 C r2x2 C r3x3 D 0 with xi 2 A 0 (1 � i � 3), there are at most OM2 choices of
.u; v/ so that .x1; x2; x3/ 2 W3

u;v . Therefore, provided that dC4=�e < N, by setting
M D dC4=�e, we have

S � C3� ON. ON � 1/
2 OM2


 � ON2q�2C4=�: (34)

The lemma follows by combining (33) and (34) and setting C5 D 2C4.

We are now in a position to prove Theorem 1.

Proof (of Theorem 1). Let �, AR, A , N and R be defined as in Lemma 28, where R
is sufficiently large in terms of q. Suppose that there is no non-trivial solutions to
r1x1 C r2x2 C r3x3 D 0 with xi 2 A .1 � i � 3/: Recall that k D jZ j D ˇ̌fhzi <
h$i ˇ̌ jQa.z/j � &gˇ̌. By Lemma 30,

k&5=2 �
X

hxi<h$i
jQa.x/j5=2 � 1:
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Since k � &�5=2; there exists a positive constant C6 D C6.q/ such that, upon setting
& D C6.logq logq N/�2=5, we have k � logq logq N: By Lemmas 32 and 33,

�4 ON�1q�C5=� � ON�1 X
hzi<h$i

Qa1.r1z/Qa1.r2z/Qa1.r3z/

� ON�2N2 C ON�1&1=2

� ON�2N2 C ON�1.logq logq N/�1=5

� ON�1.logq logq N/�1=5:

Thus �4q�C5=� � .logq logq N/�1=5; which implies that

logq logq logq N � � logq �C 1

�
� 1

�
:

From the above inequality, we can deduce that � � .logq logq logq N/�1. Therefore,
we have

jARj
jPRj � 1

logq logq logq N
� 1

logq logq logq R
� 1

logq logq logq logq jPRj :

Theorem 1 now follows.

Acknowledgements The research of the first author is supported in part by an NSERC discovery
grant. The research of the second author is supported in part by NSA Young Investigator Grants
#H98230-10-1-0155, #H98230-12-1-0220, and #H98230-14-1-0164.

The authors are grateful to Trevor Wooley for many valuable discussions during the completion
of this work and to Frank Thorne for providing a reference to [18]. They also would like to thank
the referee for many valuable comments. This work was completed when the second author visited
the University of Waterloo in 2007 and 2008, and he would like to thank the Department of Pure
Mathematics for their hospitality.

References

1. A. Balog, A. Perelli, Exponential sums over primes in an arithmetic progression. Proc. Am.
Math. Soc. 93, 578–582 (1985)

2. T.F. Bloom, Translation invariant equations and the method of Sanders. Bull. Lond. Math. Soc.
44, 1050–1067 (2012)

3. J. Bourgain, On triples in arithmetic progression. Geom. Funct. Anal. 9, 968–984 (1999)
4. J. Bourgain, Roth’s theorem on progressions revisited. J. Anal. Math. 104, 155–206 (2008)
5. W.T. Gowers, A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11, 465–588 (2001)
6. B.J. Green, Roth’s theorem in the primes. Ann. Math. 161, 1609–1636 (2005)
7. B.J. Green, T.C. Tao, The primes contain arbitrarily long arithmetic progressions. Ann. Math.

167, 481–547 (2008)



A Prime Analogue of Roth’s Theorem in Function Fields 147

8. D.R. Heath-Brown, Integer sets containing no arithmetic progressions. J. Lond. Math. Soc. 35,
385–394 (1987)

9. H.A. Helfgott, A. de Roton, Improving Roth’s theorem in the primes. Int. Math. Res. Not.
2011, 767–783 (2011)

10. R.M. Kubota, Waring’s problem for FqŒx�. Diss. Math. (Rozpr. Mat.) 117, 60pp (1974)
11. T.H. Lê, Green-Tao theorem in function fields. Acta Arith. 147, 129–152 (2011)
12. T.H. Lê, C.V. Spencer, Difference sets and the irreducibles in function fields. B. Lond. Math.

Soc. 43, 347–358 (2011)
13. Y.-R. Liu, A generalization of the Turán and Erdös-Kac theorem. Ph.D. thesis, Harvard

University, 2003
14. Y.-R. Liu, C.V. Spencer, A generalization of Roth’s theorem in function fields. Int. J. Number

Theory 5, 1149–1154 (2009)
15. Y.-R. Liu, T.D. Wooley, Waring’s problem in function fields. J. Reine Angew. Math. 638, 1–67

(2010)
16. E. Naslund, On improving Roth’s theorem in the primes. Mathematika 61, 49–62 (2015)
17. M. Riesz, Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires. Acta Math.

49, 465–497 (1927)
18. G. Rhin, Répartition modulo 1 dans un corps de séries formelles sur un corps fini. Diss. Math.

(Rozpr. Mat.) 95, 75pp (1972)
19. M. Rosen, Number Theory in Function Fields (Springer, New York, 2002)
20. K.F. Roth, On certain sets of integers. J. Lond. Math. Soc. 28, 104–109 (1953)
21. T. Sanders, On Roth’s theorem on progressions. Ann. Math. 174, 619–636 (2011)
22. T. Sanders, On certain other sets of integers. J. Anal. Math. 116, 53–82 (2012)
23. E. Szemerédi, On sets of integers containing no k elements in arithmetic progression. Acta

Arith. 27, 199–245 (1975)
24. E. Szemerédi, Integer sets containing no arithmetic progressions. Acta Math. Hungar. 56,

155–158 (1990)
25. G.O. Thorin, Convexity theorems generalizing those of M. Riesz and Hadamard with some

applications. Comm. Sem. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 9, 1–58 (1948)
26. R.C. Vaughan, The Hardy-Littlewood Method, 2nd edn. (Cambridge University Press,

Cambridge, 1997)


	A Prime Analogue of Roth's Theorem in Function Fields
	1 Introduction
	2 Basic Setup
	3 An L2-L2 Estimate
	4 An L1-L∞ Estimate
	4.1 Major Arc Estimates
	4.2 Minor Arc Estimates

	5 Proofs of Theorems 2 and 3
	6 Proof of Theorem 1
	References


