A Prime Analogue of Roth’s Theorem
in Function Fields

Yu-Ru Liu and Craig V. Spencer

Abstract Let F,[f] denote the polynomial ring over the finite field F,, and let %%
denote the subset of F,[f] containing all monic irreducible polynomials of degree
R. For non-zero elements r = (ry,rp, r3) of F, satisfying r; + r + r3 = 0, let
D(Zr) = Dy(Hr) denote the maximal cardinality of a set Ax € “r which
contains no non-trivial solution of rix; 4+ rx; + r3x3 = 0 with x; € Ag (1 <
i < 3). By applying the polynomial Hardy-Littlewood circle method, we prove that
D(Pr) <4 |Zk|/(loglogloglog | Fg|).

1 Introduction

Forn ¢ N = {1,2,---}, let D3([1,n]) denote the maximal cardinality of an
integer subset of [1, ] containing no non-trivial 3-term arithmetic progressions. In a
fundamental paper, Roth [20] proved that D3([1, n]) < n/loglogn. His result was
later improved by Heath-Brown [8], Szemerédi [24], Bourgain [3, 4] and Sanders
[21, 22]. In 2014, Bloom [2] showed that D3([1,n]) < n(loglogn)*/logn, which
gives the best upper bound up to date. Szemerédi [23] proved that subsets of the
natural numbers with positive upper density contain arbitrarily long arithmetic
progressions, and in 2001, Gowers [5] proved a quantitative version of Szemerédi’s
theorem.

One can consider analogous questions with [1, n] replaced by P[1, n], the set of
positive primes up to n. Let D3(P[1, n]) denote the maximal cardinality of an integer
subset of P[1,n] containing no non-trivial 3-term arithmetic progression, and let
7 (n) denote the cardinality of P[1, n]. In [6], Green proved that
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1/2
Da(PlLn]) < n(n)(lOg loglogloglog n(n)) .
loglog log log 7 (n)

In [7], Green and Tao proved that subsets of the primes with positive upper density

contain arbitrarily long arithmetic progressions.

Let F,[f] denote the ring of polynomials over the finite field F,. For R €
N = {1,2,...}, let P be the subset of F,[f] containing all monic irreducible
polynomials of degree R. Let r = (ry, 2, r3) be non-zero elements of F, satisfying
ri+r +r;=0.Let (X],Xz,x:;) S Fq[tP be a solution of rix; + roxy + r3x3 = 0.
We say that (xi,xp,x3) is a trivial solution if x; = x, = x3. Otherwise, we
say that (x1,xz,x3) is a non-trivial solution. Let D(Zg) = Dy(Zg) denote the
maximal cardinality of a set Ax € ZPg for which there is no non-trivial solution of
rix1 4 rxp + r3x; = 0 with x; € Ag (1 < i < 3), and let | Zg| denote the cardinality
of Pg. In this paper, we prove the following theorem.

Theorem 1. ForR € N,

| Zk|
loglog | Zk|’

D(Zr) <4 log log

Here the implicit constant depends only on q.

In the special case that r = (1,—2,1) and gecd(2,q) = 1, the number D(Z)
denotes the maximal cardinality of a set Ax € Z?g which contains no non-trivial
3-term arithmetic progression. In large part, this paper will follow the approach of
Green. Our improvement over the analogous bound for Z stems from nice properties
of Bohr sets in F,[f] and the availability of a stronger bound for Roth’s theorem in
F,[t] (see [14]) than in Z. It is worth noting that when studying equations of the form
rixy + -+ rx; = 0where r; +---+ r; = 0 and s > 4, in [14], the authors proved
that

| Pk
P o Gog | 2a

which provides a strong bound compared to Theorem 1. Also, Lé has proved a
function field analogue of Green and Tao’s theorem on arithmetic progressions
of primes (see [11]). While his method provides results about more general
configurations in the irreducible polynomials of F,[z], the approach of this paper
produces stronger quantitative bounds on D(Z%). In addition, several estimates
of exponential sums in this paper are essential to various additive combinatorial
problems in function fields, including the results in [12].

In 2011, the above mentioned bound of Green was improved by Helfgott and de
Roton [9] to

logloglog | P

Ap| € | Pp| —=—C S KL
Arl < 1ZR] ogtog |13
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Recently, Naslund [16] showed that for any € > 0,

B B 1 1—e
|Ag| < |<@R|(—~ ) .
log log | Zg|

In future work, we will show how their methods can be implemented over F,[¢] to
improve Theorem 1.

2 Basic Setup

We start this section by introducing the Fourier analysis of F,[f]. Let K = F,(¢)
be the field of fractions of F,[f], and let Koo = F,((1/7)) be the completion of K
at co. We may write each element & € Ko in the shape @ = ), ;i for some
r € Zand a; = a;(@) € F, (i < r).If a, # 0, we define ord o = r and we write
(o) for ¢°4%. We adopt the conventions that ord0 = —oco and (0) = 0. Also, it is
often convenient to refer to a_; (o) as being the residue of «, an element of F, that
we denote by res «. For a real number R, we let R denote g®. Hence, for x € F,[1],
(x) < N if and only if ordx < N. Furthermore, we let T denote the compact additive
subgroup of Ko defined by T = {a € Koo: (@) < 1}. Given any Haar measure do
on K4, we normalize it in such a manner that fT 1do = 1. Thus if 9t is the subset
of Koo defined by %t = {or € Koo:orda < —N}, then the measure of 9, mes(N), is
equal to N7,

We are now equipped to define the exponential function on F,[f]. Suppose that
the characteristic of F, is p. Let e(z) denote ¢*™* and let tr : F, — F, denote
the familiar trace map. There is a non-trivial additive character ¢, : F, — C*
defined for each a € F, by taking ¢,(a) = e(tr(a)/p). This character induces a
map e : Koo — C* by defining, for each element ¢ € Ky, the value of e(«)
to be ¢, (res ). The orthogonality relation underlying the Fourier analysis of F,[f],
established in [10, Lemma 1], takes the shape

1 h =
/e(ha) do ="’ when 2 =0,
T 0, when h € F,[f] \ {0}.

For N € N, let .#y denote the subset of F,[f] containing all monic polynomials
of degree N. For b, m € F,[t] with m monic, (b) < (m) < N and (b, m) = 1, define
aset

X =Apun = {n € Sy|lmn+bis irreducible} (D)

= {n’ € Sytoram |1 is irreducible and n’ = b (modm)}.
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Thus by the prime number theorem in arithmetic progression in F,[7] [19, Theo-
rem 4.8],

2

y Arl/2 1/2
1X| Nim) +0(N fm) )

- (N + ord m)¢ (m) N + ordm

where ¢ (m) = |{n € Fyf]|ordn < ordm and (n,m) = 1)}| Define a function
Abmn ¢ <N — C supported on X by setting

(N+ord m)¢p (m)
N{m) ’
0, otherwise.

when n € X,
Apmn(n) =

In the following, we will abuse our notation and view A,y as a measure on X.
By (2), we have

Ao (X) =Y Apmn(n) =1+ o(1).

nex

For functions hy, h, : ./ — C, we define an inner product

(hi, ha)x = Z Ry () (1) Ay v (7).
neSn

We will use the wedge symbol to denote the Fourier transforms on both T and .%y.
More precisely, for f : T — C and & : .y — C, the functions " : .y — C and
h" . T — C are defined by

) = fT f®)e(-n6)do  and  RNO) = > h(n)e(nd).

ne.SFy

Also, we define the convolution of two functions f : T — Cand g : T — Cto be

(%) (p) = /T @) — 6) de.

For any measure space Y, let B(Y) denote the space of continuous functions on Y
and define an operator T : B(X) — B(T) by

T:h— (hApmn)".
A dual operator T* : B(T) — B(X) of T is defined by

T* If l—)fA|X.
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We have

(Th.f)r = (b, T"f)x.
Also, the map 77* : B(T) — B(T) is given by

TT* :f — f % A} v

Furthermore, for an operator 7 and positive numbers a and b, we define

17l
IT)|a—b = sup :
;o
where || - ||, denotes the L* norm and f ranges over continuous functions that map

to C. A main step in proving Theorem 1 will be deriving a restriction theorem for
monic irreducible polynomials. Namely, we will prove the following theorem.

Theorem 2. Suppose that § > 2 is a real number. Then there exists a constant
C(q, d), depending only on q and 8, such that
1Tl < Cg. N,

As an application of Theorem 2, we are able to derive the Hardy-Littlewood
majorant property for function fields. Namely, we will establish the following
theorem.

Theorem 3. Let (ay)rec o, be any sequence of complex numbers with |a,| < 1 for
all x € Pg. For a real number § > 2, we have

H D axef) H8 =Cq. S)H 3 e(xh)
xE Pp xePp

.,

where C'(q, 8) is a constant depending only on q and 4.

Note that in the special case when § is an even integer, by considering the under-
lying Diophantine equation, one can show that Theorem 3 holds with C’(¢,8) = 1.

For a real number § > 1, let 8’ denote the unique real number satisfying 1/5 +
1/8 = 1. Since

I7flls = sup (Tf.g) = sup (f.T"g) < |fll2 sup [T"gl>
lgllyr=1 lgllyr=1 lgllyr=1

3)
1/2
= Ifll2 sup (6. TT*8)"> < IfILITT* 132,
llglly =1
to prove Theorem 2, it suffices to bound the quantity
ITT*ly—5 = sup |If * A5, ylls- )

IFllsr =1
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In this paper, w will be used to denote a monic irreducible polynomial. For
a polynomial x € F,[f], we say that x is Q-rough if for all monic irreducible
polynomials @ with @ |x, we have (w) > Q. For Q € N, define

N7! 1_[ (1- 1/(w))_1, if n € Sy and mn + b is O-rough,
A2\ (n) = (w)<0

»mn wim

0, otherwise.

By a sieve argument, one can show that

> MO () =1+ o(1).

neSy

Also, we define )kg.),)n.N(n) = O0foralln € Sy.Let A = 4/(6 — 2). For a positive
integer K = [Alog, N]and 1 < Q0 <K, let

Yo=A2 — AL (1=0<K) and  Yki1 = Apmn — Ao xe

Since Zf:l Y = Apmn, Dy the triangle inequality, to bound ||7T* |5 —s, it suffices
to consider

sup If xyMls (1<j<K+1).
IFlly=1

To obtain the above bound, we will apply the Riesz-Thorin interpolation theorem
[17, 25] with the following bounds which we will prove in the next two sections:

I * ¥hlloo g5 O7MIFL and  |If % Y512 g5 NN7UIf]o-

Notation For k € N, let f(k) and g(k) be functions of k. If g(k) is positive and
there exists a constant ¢ > 0 such that |f(k)| < cg(k), we write f(k) < g(k). In
the following, all implicit constants depend at most on ¢ and §. In Sect. 6, while
d is fixed, all implicit constant depends at most on ¢. Throughout, the letter € will
denote a sufficiently small positive number. We adopt the convention that whenever
€ appears in a statement, then we are implicitly asserting that for each ¢ > 0, the
statement holds for sufficiently large values of the main parameter. Note that the
“value” of € may consequently change from statement.

3 An L?-L? Estimate

We first state Merten’s theorem for F,[z].
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Lemma 4 ([13, Lemma 2]). For Q € N, we have

[T (-1/(=) " <o

(w)=<0
Lemma 5. For a functionf : T — Cand1 < Q <K,
If * w5l < ON7' [z

Also, one has

f * Yepilo < NN7"f]la.

Proof. Note thatfor1 < Q <K + 1,

If = vgll2 = 1" ¥oll2 = Wollsolf*ll2 = 1¥ollollf l2-

For 1 < Q <K, by Lemma 4,

Q) (@-1)
[¥olloo < 1A mnlloo + A4 n lloo

=8 T -1/@) " +8 ] (-1/t@)”

(w)=<0 (w)<0—1

wim wim

K ON'"+(©Q-1D)N!' < ONL.
Similarly,

K

¢ (m)(N + ordm)
1Wk+1lloo < IApmnlloo + 1A ylloo € ——r——

N{m)

+ KN < NN,

Thus the lemma follows.

4 An L'-L°° Estimate

For a functionf : T — Cand 1 < Q < K + 1, we have

I * Y5 lloo = 1¥5 oo lf -

The goal of this section is to apply the Hardy-Littlewood circle method to establish
the following proposition.
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Proposition 6. For 1 < Q < K, we have
A o
1A n = A lloo < 07"

Note that

0)
1A = Ao illoo = 1A lloo < 1.

Thus by combining Proposition 6 with the triangle inequality, we obtain the
following lemma.

Lemma 7. Fora functionf :T— Cand1 <Q <K+ 1,
If * ¥4 lloo < O™ If -

Let B = 2A + 12. Note that for all « € T, by Dirichlet’s theorem for F,[¢] [10,
Lemma 3], there exist a, g € F,[f] with g monic, (a,g) = 1, (e —a/g) < NB/((g)N)
and (g) < N/NB. We define the major arcs 9t and the minor arcs m as follow:

M= () My and m=T\M,

() <N
(a.9)=1
g monic

where
My, = {o € T|{a—a/g) <NP/(g)N}.

In order to prove Proposition 6, we will separate our analysis into major arc
contributions and minor arc contributions.

4.1 Major Arc Estimates

In the following, we consider a function % : .y — C which satisfies the following
condition:

* Condition* Let r,g € F,[7] with g monic, (r) < (g) and (g) < N®. Let L =
— [Blog, N|. For ' € Zy with 7’ = r (mod g), let

Y={r+Ig|(l) <L} C Hy.
Then

Y h(n) = m(h) + O(E(h))),

ney

where y,,(h) is a constant depending on /& and E(h) is an error term of size o(1).
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Let
o(B) =N e(pn).

neSn

Lemma 8. Suppose that (B) < NB/(g)N and that r, g € F,[#] with g monic, (r) <
(g) and (g) < NB. For h : Sy — C satisfying Condition*, we have

> h(me(Bn) = (2) ' yre(Wa(B) + O((g) T E(h)).
neSnN
n=r(mod g)

Proof. Forn € Sy withn = r (mod g), we can write n = = gytt + 1) + r with y
monic, (y) = N/(g)L and (l) < L. Moreover, for (I) < L, we have

NE N 1
(Bgl+n) < N {g)- g B0z, N1 = q’
which implies that e(8(gl + r)) = 1. Thus by applying Condition* with
¥ =gyt +r,
> hmeny = > > h(sort+ 1D +r)e(Bleit + 1) + 1))
ey =R/l ()<L
n=r(mod g) y monic
= Z e(Bgyt™) Z h(gyt" +1g +r)
0 =N/l (<L

y monic

N

— S Y eBert) + 0((e) E)
=R/(s)L

y monic

In addition, for (z) < (gr*) = (g)L, we have

NE N v 1
(Bz) < (g)N<Z) = (g)N ql+[BlogqN] ~q

which implies that e(8z) = 1. Thus

> elBoyit) = Z > e(Bleyt +2)
0=N/(e)L (@<(et") (n)=R/()L
y monic y mOI’IIC
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By combining the above estimates, we have

> h(m)e(Bn) = () yrg(Wo(B) + O((g) ' Eh)).
neAy
n=r(mod g)

This completes the proof of the lemma.

Lemma9. Let h : Yy — C satisfy Condition*. For a,g € F,t] with g monic,
(a,g) = 1 and (g) < N®, define

Ua.g(h) = Z e (%) Vr.g(h)-

(r)<{e)
Then for a € M, g,

a

1@ = (o) ousthe (a— 2 ) + 0E).
Proof. Write @ = a/g + B with () < N8(g)~'N~'. Then by Lemma 8,

WNa) = ) h(n)e(ne)

neSN
ra
= Z e(—) Z h(n)e(Bn)
<t &7 ez
n=r(mod g)

— (0B Y (—) e + O(() () E(M)
n<le 8

= (8)"'0(B)oug(h) + O(E(h)).

Thus the lemma follows.

In the following, we will show that the functions A, y and )k,(,_’Qn)@N (1<Q<K)
satisfy Condition*. We first recall a result of Rhin.

Lemma 10 (Rhin [18, Theorem 4]). Let c,d € F,[t] with ¢ monic and (c,d) =
1. For D,M € N, we denote by N(c,d; M, D) the number of monic irreducible
polynomials @ of order M satisfying w = c (modd) and ord (w ¢ — co4") <
—D + ord w + ordc. Then

A

M .
N(c,d;M,D) = ———— + O((ordd + D + 1)M'/?).
M¢(d)D
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Lemma 11. Let r,g € F,[f] with g monic, (r) < (g) and (g) < NB. Then Ay
satisfies Condition™* with

¢ (m){g) if (mr + b,mg) =
m E) E) g) - 1’
Vr.g(/\b.m,N) = $(me) .
0, otherwise,

and
E(Ame) — NB+l+e(m>l/2+eN—l/2.

Proof. Recall the def}nition of X in (1). Let ¥ € Sy with ¥ = r (mod g) and
Y={/+1g|(l) <L} € Fy.Forn=1r +1g €Y, Apun(n) = 0if and only if
mn+b¢X.

(1) Suppose that (mr + b,mg) # 1. We assume that N¥ < N. Then there exists
a monic irreducible polynomial @ such that @ |(mr + b, mg). Write n = r +
I'g + Ig for some ' € F,[t]. Then the polynomial

mn+b=m(r+1Ig+Ilg)+b= mr+b)+mgl+1)
has a factor w. If mn + b € X, then w = mn + b. Since
(@) < (mg) < (M)N® < (m)N = (mn +b),

we have @ # mn + b. Thus we have mn + b ¢ X. It follows that

> Apm(n) = 0.

ney

Thus the lemma follows in this case.
(2) Suppose that (mr 4+ b, mg) = 1. Consider

Ny = Ny(m,g.L) =#{n="r"+1g|(l) <iandmn+beX},

which is equal to the number of monic irreducible polynomials @ with
ordw = N + ordm, w = mr’ + b (mod mg) and (w — (mr’ + b)) < L{mg).
We now apply Lemma 10 with ¢ = mr’ + b,d = mg, M = N + ordm = ordc
andD =N —L—ordg.Since L=N — flogqNB], we have

L Rimife)
" (N + ord m)¢ (mg)N

_ Limg)
(N + ord m)¢ (mg)

+ 0(((0rdg +ordm)+ (N—L—ordg) + I)Nl/z(m)l/z)

+ O((ordm + [Blog, N))N'/*(m)'/?).
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It follows that

Z Abmn (1)

n€y
_ ¢(m)(N+ordm)( 1{mg) S )
A {m) T ordmgimg + Ollordm & [Blog, NDR!2(m)' )
Ligmis) _ (Nopm® +ordm) A
= 5 (% ol i (crdm+ Blog, WA ) )
_ L¢tms) (NB+1+e(m)1/z+e))
B N( ¢ (mg) +o N2 .

Thus the lemma also follows in this case.

Lemma 12. Suppose that a, g € F,[t] with g monic, (a,g) = 1 and (g) < N®. For
o defined as in Lemma 9, one has

(g)p(g) ,( —abim . _

Srel=), if(mg) =1,
O'a.g(/xb.m,N) = { @ ( & ) .

, otherwise.

Here, we write m for the multiplicative inverse of m modulo g and ju(-) the Mobius
Sunction on F,[t].

Proof. By Lemma 11, we have

OugApmn) = Z e (%) VreAbmn) = ¢¢(’ZZS> Z e (ﬂ)

() <te) () <te) §
(mr+b,mg)=1
T e N8
(mr+b,g)=1

For z € Z with z > 0, if w?|g and w*™! } g, we write that w?||g. Let
2= [] =
w
wl|g, wim
and g, = g/go. If w|m, then w } (mr+ b). Thus (mr + b, mg) = (mr+b, gy), and
ar ar

el— )= el — ).

> (i) F)

(N<(g (n<(g
(mr+b,g)=1 (mr+b,go)=1
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By writing r = ugo + v with (1) < (g;) and (v) < (go), we have

Z Z 1) Z

(N =(g) & v} =(g0) 8/ <tgy 8!
(mr+b,g0)=1 (mv+b,go)=1

Since

Z e(ﬂ) — {(1) if (g1) =1,

(W =e1) 81 otherwise,

it follows that

v
> (%) ita-
Z e(ﬂ) e(ﬂ) = ( (vJZ;(g;) . g
muv ,8)=
(v)=(g0) §/ <teny N8 ¢

(mv+b.g0)=1 0, otherwise.

p(m)ig) _
¢ (mg)

One has that (g, m) = 1 if and only if g; = 1. When (g, m) = 1, we have

av —abm
Yo el =) =n®e :
(0)<(e) & &
(mv+b,g)=1

Suppose that (g, m) = 1. Let w = mv +b. Then (w—b)m = v (mod g). By checking

awm . S Lo .
that Z e —) is a multiplicative function in g, one can verify that

<) &
(ng)=1

awm
T e (—) = ().
p<te) N 8

(r.g)=1

Thus

B (o) X ) () 5 ()

(v)=e) g ) <te) & § i<t N 8
(mo-+b.g)=1 (n.g)=1 (n.g)=1

n(g)e (_abfn) .
g

This completes the proof of the lemma.
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Lemma 13. Letr, g € F,[t] with g monic, (r) < (g) and (g) < N®. For1 <Q <K,
the function A(Q) . Satisfies Condition™ with

[T t—=1/¢@)™" ] (1 —1/(@)). if (mr+b.mg) is O-rough,
(w)=<0 (w)=0

wim w tmg

Vr,g(’lg,Qn)LN) =

0, otherwise,

and
E(/\;.QW)LN) — N~V@+e {172+

where A = 4/(8 — 2) is defined as in Sect. 2.

Proof. Let ' € Sy with 7/ = r (mod g) and ¥ = { +Ig| () < L} € .
Since (b,m) = 1, if w € F,[f] is a monic irreducible polynomial with 7o |m, then
@ { (mn + b). Thus it suffices to consider w with @ { m. Let wy, ..., wg € F,[{]
denote the monic irreducible polynomials with (w;) < Q and w; } m (1 <i < R).
Forn=r'+lge?Y, )L,(,%),,N(n) = Oif and only if w;|(mn+b) forsome 1 <i <R.
(1) Suppose that (mr + b, mg) is not Q—rough. Then there exists some ; such that
@;i|(mr+b, mg). Write n = r+1'g+Ig for some ' € F,[t]. Thus the polynomial
mn + b = (mr + b) + mg(l + ') has a factor w;. Hence, )L(Q) (M) = 0and the
lemma follows in this case.
(2) Suppose that (mr + b, mg) is Q-rough, ie., w; § (mr+b,mg) (1 <i<R).Let
X; denote the event that @;|(mn + b) for n € Y, and let P(X;) = |X;|/L be the
probability of X; occurring. We denote by X; the complement of X;. Note that

ZA;%N(ﬂ):% [T (-1/(= ﬂxc —% [T (-1/(@) 7.
ney (w)<0 s
wtm tm

where
R
= P( N X)
i=1

(2.1) If wy|g, then mn + b = mr + b # 0 (mod @;), i.e., w; + (mn + b). Thus
P(X;) = 0.

(2.2) Suppose that w; } g. Since w; + m, we have (w;,mg) = 1. If L > (@),
as [ varies with (I) < L, then mn + b = (mr’ + b) + Img runs through all

It remains to estimate 7.



A Prime Analogue of Roth’s Theorem in Function Fields 119

residue classes modulo @;. Thus we have P(X;) = 1/(w;). On the other
hand, if L < (@), then either O or 1 choices of [ will give @;|(mn + b). Thus
P(X;) = O(L™"). From the above estimates, we have

P(X) = —— + o(L™).
(wi)

where

O, lf w,-|g,

1, otherwise.
By the inclusion-exclusion formula, we have
R € onn |
_ s €€l _

Note that for any K’ € N, by considering the even terms of the above
alternating sum, we have

2K’ € e 2K’
reYer ¥ sl (1)
s=0 ll

1<ij<-<is<R j=1

(-G S X Mei)

s=2K’+1 1<ij<+<iz<R j=1

Similarly, by considering the odd terms of the alternating sum, we have

2K'—1 € R 2K’ —1 R
Yoy psie oY ()

s=0 1<ij<-<is<R j=1 s=1

(-m) (X 2 Mei)
. 2K'—1
+O(L ! ; (I:))
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Thus for any J € N, we have

¥ = 1—1/(w)) + 0( L)
(l})_ié ( ZJ 1<11<2£l§<R jl_! wll T (wix)
w tmg

+0(LZ(R))

To estimate the error terms, note that

Also, forJ < s <R,

Y ety =a(Xm) =6 = &)

1<ij<-<iz<R j=1

1
< —(an—i—c)‘Y.
s!

The last inequality follows from Lemma 4 with ¢ some fixed constant. It follows
that for J > 3(InQ + ¢),

> ¥ Hwi”"'"‘x)

s=J 1<ij<-<is<R j=1

R

1
=) Wo+oy

s=J

- (InQ + ¢)’ InQ+c (InQ + ¢)?
T ( J+1 T U+ +2) )

(InQ + ¢y’ a
J!

eln(e€Q) !
< (T) .

The last inequality follows from Stirling’s formula, namely that J! =

V2mJ(J/e)’ (1 + O(1/J)). Thus we have
e
Y = ]_[ (1—1/(w))+0((“I‘(J—eQ)) +i—1Rf+1).

(w)<0

w fmg

IA

+1/34+1/324--1)
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Since R < Q < N*, by choosing J = N/(2A log, N), we have

. J
(eln(e Q)) < NV ang IR o Rt
J

Thus

YV = l_[ (1 — 1/(@')) + O(N—l/(ZAH-e +]’\‘]_1/2+€).
(w)<0

w fmg
By Lemma 4, we have

[T (-1/@) " = [] (1-1/(@)"" <0< log,N.

(w)=<0 (w)<0

wim

It follows that

ZAZ.QZ.N(H)
ney
L B a o
=< TT 0=1t@n™ T (=1/t@) +o(F et gz )).
(w)<0 (w)=<0
wim wtmg

This completes the proof of the lemma.

For a polynomial x € F,[t], we say that x is Q-smooth if for all monic irreducible
polynomials @ with @ |x, we have () < Q.

Lemma 14. Suppose that a, g € F,[t] with g monic, (a,g) = 1 and (g) < N®. Also,
suppose that 1 < Q < K. For o defined as in Lemma 9, one has

(ngl(;()g)e(%}”;’), if (m,g) = 1 and g is Q-smooth,

0, otherwise,

Ua,g()tg,gn):,zv) =

where m is the multiplicative inverse of m modulo g.

Proof. By Lemma 13, we have

ar
O’a.g(/\&zn)l,N) = Z e (;) yr,g(kl(g?n)z,N
)

(<lg
=[] a-1/@)" [] (1-1/(w) > e(ﬂ).
()< (w)<0 (N<(g) &

wim wtmg (mr4b,mg) is O-rough
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Note that if (m,g) = 1 and g is Q-smooth, then

[T (-1@)™" T (1-1/() = (8)/ (9.

(w)<0 (w)=<0

wim wtmg

Thus to prove the lemma, it is enough to show that

(ar) n(ge (l’”h> , if(m,g) =1andgis O-smooth,
y (e prer®

8 0, otherwise.

(rh<(s).
(mr+b,mg) is Q-rough

Let

=[] @
(w)<0

wilg. wtm

and g3 = g/g». If @w|m, then w } (mr + b). Thus (mr + b,mg) = (mr + b, g), and

Z . (ar) _ Z . (ar) .
8 8

(r)<{s) (r)<(g)

(mr+b,mg) is Q-rough (mr+b,g2)=1

Note that (m,g) = 1 and that g is Q-smooth if and only if g3 = 1. Then using a
similar argument as the one in the proof of Lemma 12 (with g, replaced by g, and
g1 replaced by g3), we can show that

ar n(ge (_“b';’) , if (m,g) = 1 and g is O-smooth,
s )

8 0, otherwise.

(r<(g)
(mr+b.,g2)=1

This completes the proof of the lemma.
We now summarize the major arc contribution to Proposition 6.

Lemma 15. For1 < Q < K, we have

A A_
sup |Apw(@) — A2 (@) < 07
a €M

Proof. Let a € M. Then there exists a, g € F,[f] with ¢ monic, (a,g) = 1, (@ —
a/g) < N?/((g)N) and (g) < N/N®. By combining Lemmas 9, 11, 12, 13 and 14,
if gis Q-smooth, we have

A (@) = A (@) & NEHIF () /2172 g f1/@Ake  fm1/2de o o1,
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A

If g is not Q-smooth, then there exists an irreducible polynomial @w with (@) > Q
and w|g. It follows that ¢ (g) > ¢(w) = (w) — 1 > Q. Thus we have

A

A

AR (@) = A2 (@) < Ay (@] + 42y (@)]
<K 1/d(g) + NBFIF 1/ 2He y=1/2 | {=1/QA) e | {=1/2+e
<ol

This completes the proof of the lemma.

4.2 Minor Arc Estimates

We will now turn our attention to obtaining a minor arc estimate for A, y(c). We
will obtain the following result.

Lemma 16. Suppose that (m) < N. One has

sup [Ap, v (@) < NO5/2 = N4,

aEm
where A = 4 /(8 — 2) and B = 2A + 12 are defined as in Sects. 2 and 3.

In order to prove this lemma, we need to establish more notation. Whenever a
sum has a superscript +, which will look like Z+, the sum will be restricted to
monic polynomials. Let R € N, and let U be a parameter with 1 < U < R/2.
Define t, by

+
=), ud. )
d|x
(d)<U
Let
AQ) ordw, wheny = w! for some monic, irreducible polynomial @ and [ € N,
y =

0, otherwise.

We now will present a sequence of lemmas concerning the weighted exponential
sum

S AG)e@y);

()=<R
y=b (mod m)

from these lemmas, we will be able to extract Lemma 16. Due to the underlying
shape of Dirichlet series in [F,[f], we are unable to take an approach similar to that
in [1]. Instead, we will follow the ideas of [26, Chap. 3].
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Lemma 17. Let v(x,y) denote a function on F,[t]*>. Then we have

ST uip+ YT Y wen=Y" YT YT w@vzy.

U<(y)<R U<(x)<R U<(y)<R/(x) (d)<U U<(y)<R/(d) () <R/ (yd)

Proof. By writing x = dz, we have

YT @y =Y Y ven Y w@

(d)<U U<(y)<R/(d) (:)=<R/(yd) =)<k < () <k/(x) a
(d)<U

+ + +
Y v Y m@),

()<U U<(y)<R/(x) dlx_

(dy<U
; (6)

For (x) < U, we have

+ 1, whenx =1,
E wu(d) = .
p 0, otherwise.

X

(a)<U
Thus

+ + + +
Yo vyl w@d= Y v(ly). (7
W) =0 U< <R/ () dlx U<(<Rk
(a)=U
The lemma now follows from (5), (6) and (7).

Let

si@= 3" Ape@).  S@= Y pEordyexy),

()< () <R
y=b (mod m) (<0
xy=b (mod m)

s@= Y 3 uwAwe).

NP X=uv
EE <o
xy=b (Tnodm)

and

Sy = 3 nAG)e(n).

(<R
(x).(>U
xy=b (mod m)
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Lemma 18. One has

ST Ae@y) = Si(@) + $2(@) — (@) — Si(@).
yEi(Jy()rfolflm)

Proof. Let

v(x.y) A(y)e(axy), whenxy = b (modm),
X,y) =
0, otherwise.

We first notice that

+ +
D A@e(@y) =Si@ + Y u(l.y).
(<R U<(y)<R

y=b (mod m)

Thus we are left to show that

S (L) + Si(@) = Si(@) - Si(@).

U<(y)<k
Applying Lemma 17, we have
+ + + +
Z v(l,y) + S4(a) = Z Z Z u(dyv(dz, y).
U<()<k (d)<U U<()=<R/(d) (2)<R/(vd)

Since

S5@=Y"3" 3" wdvy.

(d)<U (y)<U ()<R/(yd)

by combining this with (8), we find that

ST +s@=Y" 37 7 u@vezy -S@

U=<(y)<k (=T () <R/(d) (2) <R/ ()

125

®)

=YY YT w@AGe(ady?) - Sy(@)

(d)=U ()<R/(d)  (2)<R/(yd)
lyz=b (mod m)

= Z+ Z+ w(d)e(adw) Z+ A(v) — S3(@)

(d)<U  (w)<R/(d) vl
dw=b (mod m)



126 Y.-R. Liu and C.V. Spencer

= Z+ Z+ u(d)(ordw)e(adw) — Sz ()

(@)= (w)<R/(d)
dw=b (mod m)

= S2(a) — S3(a).

The lemma now follows.
We will now obtain upper bounds for the sums S («), S («), S3(v) and Sy(e).

Lemma 19. One has
Si(a) < UU.

Proof. By applying the triangle inequality and the trivial bound, we have

Si(a) < Z+ A(y) < UU.

=
y=b (mod m)

Lemma 20. Suppose that (@ —a/g) < (g)~? with (a,g) = 1. Assume that S,R € N
with S < R. Then for any real number T with T < R/S, we have

Z+‘ Z+ e(axy)

<8 ' T<(y)<R/(x)

&K RS(g)™" + SR + (g)(RS + ord g).

Proof. By the triangle inequality, we have

R—ord x
+ + +
D> Y| e o
W<8 1<) <R/(x) W=s W=0 " ()=w

Also, it was proved in [10, Lemma 7] that

'Z KW)‘ ?W when ([lax]) < W',

,  otherwise.

Thus we have

R—ordx

ST |5 et

W=s W=0 " ()=w

min(R—ord x, —ord ||eex||—1)

-y Y W

(0<§ w=0
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< 3" min (R/ (). (laxl) )

{

(x)<§
5 +
< 3 ey + D2 S min (R/4), (lexl) )
() <(g) W=ordg (xy)=W
= E| + E, (10)
where
N s
Er=Y (lax)™  and = Z Z mm(R/ (lex]) ™)
(x)<(g) W=ordg (=¥
We first bound E|. For (x) < (g), since (@ —a/g) < {g)~2, we have
ooy L
(e (g

we deduce that
)||>—(H§|| (a—-)> <||—H>

Since (Jax/gl) > (&),
() = {5 + (e

> {I21)

Since (a, g) = 1, we have
ax
B Y ()™= Y (15)
(x)<(g) (x)<(g) O<(g)
ordg—1
(g)(ordg).

) <

<<Z(

We are now left to bound E,. Note that

(x)<qW

W=ordg V=0
(lloexlly<g¥ !

(1)
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By [10, Lemma 7], we deduce that

E, K XS: Rivzv Z ‘ Z e(otxy)‘.

W=ordg V=0 (x)<qW (y)<\7q_]
We now apply [15, Lemma 11.1] to get
S| Y eaw)| < Wh((@7 W T 4 (W),
(X)<gW ()<Vg~!

Using this bound, we see that
E < Z Z WV( LWl 4 (g)W—‘V—l)

12
< Z ( L RW! +WR+(g)R) (12

W=ord g
< RS(g)™" + SR + (g)RS.
The lemma now follows by combining (9)—(12).

Lemma 21. Suppose that (o —a/g) < (g)~2 with (a,g) = 1 and ordm < U. Then
one has

Sy(e) < U(m)R* + RR*(g) ™" + (g)R(R® + ord g).
Proof. Note that

S@= Y p@lordyew)
() <R

(=<0
xy=b (mod m)

+ +
=3 () fl “qu

(=<0 (>)<R/
xy=b (mod m)

R/ (x)
-y u(x)/ ( S e y))ﬂogq

()< r<{y)<R/(x)
xy=b (mod m)

By two applications of the triangle inequality, we get

R/(x)
S (o) K Z+/ ‘ Z+ e(axy) %

(=<0 r<{y)<R/(x)
xy=b (mod m)
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Switching the leftmost sum with the integral in the last expression, we obtain

R R
S () <</1 Z+ Z+ e(axy) % <</1 Z+ Z+ e(axy) %

(x)<min(T.R/1) " t<(y)<R/(x) W=<U " 1<()<k/(x)
xy=b (mod m) (x,m)=1 y=xb (modm)

where x is the multiplicative inverse of x modulo m. We now split the sum over y
into two sums depending on whether or not {y) < (m). Write y = xb + my’ and
x' = mx. Then by the triangle inequality, we have

R R
S> () <</1 lA](m)% +[1 Z+ ' Z+ e(axy)‘d?t

W=<U max(r,{m) <) <R/ {x)

(x.m)=1 y=Xxb (mod m)
; B + dt
KL U{m)R / b=
(m)R + | ZA Z ) e(amxy’) |€(Ol )| .
((X))fif max(t/ (m),1)<(y') <R/ {mx)
<« U(m)R + : Z+ Z+ (ax'y) dt
m e(ax'y’)|—.
. N Y t
('Y=U(m) ~ max(r/(m).1)<{y') <R/ {x')

Since ordm < U < R, by Lemma 20, we deduce that

R
Sy(a) < U(m)R + f (ie(u + ordm)(g)~' + U(m)R
1
+{g)((U + ordm)R + ord g)) ?
&« U(m)R* + RR*(g) ™" + (g)R(R* + ord g).

This completes the proof of the lemma.
Lemma 22. Suppose that (o« —a/g) < (g)~% with (a,g) = 1 and ordm < U. Then
one has

S3(a) < RR*(g)™" + U*(m)R* + (g)R(R® + ord g).

Proof. For any (x) < U2, we have

S wwA) « 3T A@) = ordx < R.

X=Uv

{u)-(0) <0 vl
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Write y = xb+my’ and X' = mx, where X is the multiplicative inverse of x modulo m.
Then from the above inequality, we deduce that

s@= Y 37 nwawen)

(xy)<R x=uv
<tp ()=
xy=b (mod m)
+ + )
<) ) 2 M(u)A(v)‘ ‘ 3 e(axy)‘
(xy<U? (u)z))ffj xy(é)bf(ﬁl/o(gzn)
<« Z ‘ Z e(()lxy)‘
<0 ()<R/()

(x;m)=1 y=Xxb (mod m)

=R Z+ ‘ Z+ e(amxy’)‘

W=<0? O )<R/(mx)
(x,m)=1

W)= m) ()<R/X)
Since ordm < U < R, by Lemma 20, we obtain that
S3(@) < R(RQU + ordm)(g)™" + U*(m)R + (g)((2U + ordm)R + ord g))
&K RR*(g)™' + U*(m)R? + (g)R(R> + ord g).
This completes the proof of the lemma.

Lemma 23. Suppose that (o« —a/g) < (g)~% with (a,g) = 1 and ordm < U. Then
one has

S4((X) < RR9/2<m>1/2<g>—1/2 +IA3R9/2(m)(A]_1/2+i31/2R9/2(m)1/2(g)1/2.
Proof. By writing x = y;z, z = rs and y; = uv, we have
+ 2 ot
> |fx|2<Z 2= (X)) =Xy Ty

=V (x)= W= ok 1=V (=0 »nl
x=X (mod m) yilx

MDD

D)=V (@=V/(n1) v2lnz

(13)
=D DI SEED 3 Z Z
)<V dibr (=V/(n) @l )<V diln
()= 1)
L Vv Z+ ZJr(yl)—1 =Vv Z+ ()" < VV3.
)<V dily v
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Note that

s = Y nAmelan)

(xy)<R

(x).()>0
xy=b (mod m)
+ +
- ¥ Yo w Y Ap)elaxy).
U <Vv-i-vl‘//V<§RR_ U Xy x)=V =w

Xy=b(modm) y=% (modm)  y=y (modm)

Applying the Cauchy-Schwarz inequality and (13), we obtain that

s« Y Y (X |rx|2)1/2

U<V.W<R-U iy W)=V

VH+W=R  3y=b(modm) x=X (mod m)

x( Z+ ‘ Z+ A/l(y)e(oe)cy)‘z)l/2

()=V )=
x=Xx(modm) y=Yy(modm)

61/21/3/2 + + 2\
< Z Z Viev Z ‘ A(y)e(oexy)‘ .

U<V ,W<R-U Xy (x)=‘A/ v =W

I )
V+W=R  j=b(modm) x=Xx(modm) y=Yy(modm)

(14)
One has
+ + 2
ST YT A
=V =W
x=X(modm) y=Yy (modm)
+ +
= Y > AGDAGe(@x(yi — y2))
W=V )=()=W
x=X (mod m) y; =y2=y (mod m)
+ +
= Y Yo AMAG+R) D e(axh). (15)
=W (n)<w (x)=V
y=y (mod m) h=0 (mod m) x=X (mod m)

For (x,m) = (3,m) = 1,V + W < R and (m) < min(V, W), since |A(z)| < ordz,
by writing 7 = mh’, x = X + mx’ and b’ = m*l’, we have
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ST Y Amae+h Y eaxh)

(=W (hy<W (~x)=\7
y=y (mod m) h=0 (mod m) x=X (mod m)
5 + +
W T T | T o)
=W (ny<W =V
y=y (mod m) h=0 (modm) x=Xx (modm) (16)

A

:V[(TV‘;Z Z ‘ Z e(am?x'h)

(W)y<W/(m) (Xy=V/(m)

Ww? + oy
< W Z ‘ Z e(ax'h”)|.

(W) <W{m) ()=V/(m)

When V + W < Rand U < min(V, W), it follows from [15, Lemma 11.1] that
+
SR ez XY e
(") <Wim) ()=V/(m) (") <Wim) (x')<qV/(m)
< WV () W m) T VT m) +(g) (W) )
L R(@)™" + Rm)U™" + (g).

Upon combining (14)—(17), we have

S@< Y PR kg

U<V,W<R-U Xy
V+W=R  35=b (modm)

+ RO~ + ())"?
<« Z &1/2R5/2<m)1/2('\(g)—1 +1’é(m>i]—l + <g>)1/2
U<V ,W<R-U
V+W<R

<« RRQ/Z(m)1/2<g>—l/2+kR9/2<m>0—1/2 +k1/2R9/2(m)1/2(g)1/2.

Lemma 24. Suppose that (m) < RY5R, (g) < R(m) and {0 —a/g) < (g)~2 with
(a,g) = 1. Then one has

S AG)e(@y) < RYS R + (R + RRY )2 (g) 112

(=R
y=b (mod m)

+R1/2R9/2<m>1/2(g>1/2.
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Proof. We deduce from Lemmas 18, 19, 21, 22 and 23 that when ordm < U, we
have

S AGelry) < DR + (R + ord g) + RRY2(m)1/2(g) 112

o)<k
y=b (mod m)

+I'\€R9/2<m)f]71/2 +k1/2R9/2(m)1/2(g)1/2.

The lemma now follows by setting U = R%/°R.
We will now derive Lemma 16 from Lemma 24.

Proof (of Lemma 16). Note that

(N + ord m)¢ (m) +
Apmn(@) = T R D> elan)
(n)=N
mn—+birred
P(m) —~+
= < A(mn + b)e(an)
Nim) %:=N
N + ordm + 1 + 1
P YT 5 X gee)
()= {m))'/? (@)= {m)"/>
w irred w irred
+ N
_ o) > A(mn + bye(an) + O(N~"(m)'/?).
N{m) (n)=N

By writing x = mn + b, we have

¢ (m)f(—ab/ m)

N(m) Z+ Ax)e(ax/m) + 0(&—1/2(1,”)1/2).

(x)=N(m)
x=b (mod m)

Al?.m.N (O[) =

By the triangle inequality, we deduce that

S A(x)e(otx/m)'—l—‘ )l A(x)e(ax/m)D

(x) <N (m) () <g~'N(m)
x=b (mod m) x=b (mod m)

Apn(@) < fv‘(

+ N2 ()2,
(18)
Let @ € m. By Dirichlet’s approximation theorem, there exist a, g € F,[f] with g
monic, (g) < N(m)/N8, (a.g) = 1 and (a/m — a/g) < NB/((mg)N) < (g)~2. Let
d = (g,m). Then
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am/d NB NB
o < 2
g/d 1 (N~ (g/d)N
Since & € m, we must have (g/d) > N®, which implies that (g) > N3(d) > N%. By
Lemma 24 and (18), we have
Ag,m,N(a)
< ]V_I(N4/5(m)9/5N4 + (g)N3 +NN9/2(m)3/2(g)_1/2 +N1/2N9/2(m)(g)1/2)
+1’v—1/2(m>l/2
« N7VSND/5 4 N4B 4 N6—B/2 L N—1/2N1/2 o N6—B/2 — N—A.

This completes the proof of the lemma.

A(Q)

We will next prove a minor arc estimate for A7, ().

Lemma 25. Let 1 < Q < K and (m) < N. Suppose that (o« — a/g) < (g)~? with
(a,g) = 1. Then one has

M2 (@) < logqN<N(g)_1 + N Yg)(N? + ordg) + N7V ‘M)N).

Proof. Iiet {wi, ..., wg} denote the set of monic, irreducible polynomials z with
() < Q and @ } m. By the inclusion-exclusion principle, we have
R
MA@ = Y M2 me(an) = N[0 - 1/(m) h@), (19)
nesSN i=1
where

R
| .\ @iy —b
W) =) (=1 ) 2 e(OC(#))‘ =
s=0 1=iy < <is<R (\\=N(m)/(w)-wy)
i, Wi y=b (mod m)

By Lemma 4, we have

R
[T(1=1/(m) '« o« log, N. (1)
i=1

LetJ = N/(2Alog, N).If 0 < s < J, since (w;) < <0< we have

N

[[(m) < NAV/@Aloe, M) = NN/ Clog, N — {112,

j=1
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Therefore, by writing y = xb+my’, where X is the multiplicative inverse of x modulo
m, it follow from Lemma 20 that

OICIEED DD M CTCes )

0s</ 1Sit<<iSR () =)/ (w1 )

i, - wi,y=b (mod m)
22
- (22)
(x)

Z+ axy Z Z+
) <RY2 () =R (m)/(x) (<8172 (=R ()
(x;m)=1  xy=b (modm)

K NN(g)™" + N'2N + (g)(N? + ord g).

For s > J, we have

+ w; - wiy—b
i (I—A)
)RS DD DU (e
J<s<R 1=ij<<is=<R (\\=N(m) /{w) )

@i, - wisy=b (mod m)

<Y > Mm@y

J<s<R 1<ij<-+<iz<R (23)

< N(m Z 7 () e+ (wr) Y

J<s<R

&« N{m) Z sH~l(c log, log, N)’,

J<s<R

where the last inequality follows from Lemma 4. By Stirling’s formula, we have
st = v275(2) (1+ O(Y)). Thus for s > J = N/2A log, N, we have

Cielog log N\*
> (sH7'(CrloglogNy* < Y sl/z(ﬂ)

J<s<R J<s<R §
< Z 2Alogq )1/2(2C1AelogquogqlogqN)S
N
J<s<R

log, N'\1/2 s(=140()
(5" 5

J<s<R

log N\ 1/2
< ( og, ) 12 (210N /A tog, M)
N
< (IO%N> PRrventon o friven, 24)
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By combining (19)—(24), we deduce that
M2 (@) < N log, N(NN(g) ™" + N'2N + (g) (N> + ord g) + N'1/CY 1))
< log, N(N{g) ™" + N~ (g)(N? + ord g) + N~'/CVN).
Lemma 26. Let 1 < Q < K and (m) < N. One has

sup |A2?,z;v(a)| K N*Plog, N < N,

aeEm

Proof. Let a € m. By Dirichlet’s approximation theorem, there exist a, g € F,[f]
with g monic, (g) < N/N®, (a,g) = 1 and (¢ —a/g) < NB/((g)N) < (g)~2. Since
a € m, we have (g) > N5. By Lemma 25,

M2 (@) < log, N(N(g)™" + N~ (g)(N? + ord g) + N~'/CVN)
K N*Plog, N <« N™*,

We now summarize the minor arc contribution in Proposition 6.

Lemma 27. For1 < Q < K, we have

sup |A’}/)\,m,N(O{) — )&1(7%)1.1\,(&)\ <N A< O

aem

Proof. The lemma follows by combining Lemmas 16 and 26 and noting that
NA< k<0

Note that by combining Lemmas 15 and 27, we obtain Proposition 6.

5 Proofs of Theorems 2 and 3

We will first prove Theorem 2.

Proof (of Theorem 2). By Lemmas 5 and 7, for 1 < Q < K, we have

If * ¥5llo < Q' IFIL and  |If % Y51l < QN7 If]l2.

By the Riesz-Thorin interpolation theorem [17, 25], we interpolate between these
two bounds to find that for § > 2, we have

If = wills < Q7 QN f s
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Similarly, since

I % ¥e oo < K+ DA < N4 and (I %90yl < NNV I[f ],
for § > 2, we have
F * Yy ls < NACTH2/OF2BR=208) )1,
Upon recalling that A = 4 /(8 — 2), we have
If * Vs lls < NENT210)f s,

By the triangle inequality,

K+1
I * Alls < S IF % whlls < B2 gl
0=1
Therefore, by (3) and (4), we have
A 1/2 —1/8
ITll2»s < sup [If * Ay, nlls™ < NTV°
Il =1

This completes the proof of the theorem.
We will now deduce Theorem 3 from Theorem 2.

Proof (of Theorem 3). When § = 2, the theorem follows from Parseval’s inequality.
Hence, we assume that § > 2. Let (a,)ec 2, be a sequence of complex numbers with
lax| < 1forx € Pg. Let

FO) = {ax, if x € Py,

0, otherwise.

Then, by setting Ay, n = Ao.1.8, it follows from Theorem 2 that

R 5 Ve ~—1/8 ~—1/8 2R 12
> axﬁe(ax)\ da) =17l < RPUL = R( Y Tl
T

x€EPp x€Pyp
LK RV,
Thus
P 1/8 .
H Z axe(xG)H = (/) Z axe((xx)‘ doz) L RTVIRTY (25)
XEPR 8 T x€Pp
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Also, for (8) < ¢~'R™" and x € P, we have (Bx) < ¢!, implying that

| ol = ([] 5 cofae)
(/ﬁ)<q_‘R— ) Z e(ﬂx)) dﬁ) (26)

1/8
> (/ R‘sR—‘sd,B) > RITVRTY,
(BY<q~1R™!

The theorem now follows by combining (25) and (26).

IV

6 Proof of Theorem 1

To prove Theorem 1, we will employ the W-trick (see [7] for a discussion of the
method). Namely, we will pass to an arithmetic progression with common difference
equal to a product of small irreducible polynomials and this will allow us to avoid
some obstacles modulo small irreducible polynomials. It is worth noting that if
one is able to avoid using the W-trick, the resulting bound in Theorem 1 could
be improved to Dy (Fg) K |Prl|/ log, | Zk|.

Lemma 28. Let ri, 1y, r3 € B, withri + rp + r3 = 0. Suppose that A P and
that there is no non-trivial folution to rixy + raxy + r3xs = 0 with x1, x3,x3 € Ag.
Suppose also that |Ag| > nR/R for some n € R with n > 0. Let

W= [logq (IOEZIR)] and l_[ w.

(w)<W

Set N = k/ (m). Then for N sufficiently large, there exists o/ C %y such that

o There is no non-trivial solution to rix; + rax + r3xz = 0 with x1,x2,x3 € <,
* There exists some b € F[t] with (b,m) = 1 and Ay un(27) > 1.

Proof. Let 14, denote the characteristic function of the set Agz. We have

YooY L@ = R/R.

(b)<(m) XESR
(b,m)=1 x=b (mod m)

By the pigeonhole principle, there exists b € F,[¢] with (b) < (m) and (b,m) = 1
such that
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R
2 = g
XESR m
x=b (mod m)

Let &/ = {n e y|mn+ b € Ag}. Thus

(N + ord m)¢ (m)

Ab.m.N(vQ{) = N(m)

Z Loz (mn + b) > 1.

neSn

Since r| + r, + r3 = 0 and there is no non-trivial solution to rjx; + ryx; + r3x3 = 0
with x1, xp, x3 € Ag, it follows that there is no non-trivial solutions to rix; + rx, +
r3x3 = 0 with x1, x2, x3 € 7. This completes the proof of the lemma.

In order to apply Lemma 28 with the earlier work in this paper, we need to bound
(m) in terms of N. Note that

w
ordm = Z ordw = ZK(k/K+ O(f(l/z/[()) = g(g— 1)_1W+ O(Wl/z),

(m)=W K=l

log, R
4

Since W = [logq ( )], for R sufficiently large in terms of g, we have

3

log, R loqu]

ordm € [ ,
4.1g 1.9

from which we derive that
R = Ry {m) € [RR™12, RR-/419)],

In addition, we have (m) < R/ < Nand W « log, log, N.

For aset o/ C .%y and a monic irreducible polynomial @ of degree N, we embed
&/ into F,[f]/wF,[t] via the bijection x — x(mod @w). Also, we define Fourier
analysis for F,[f]/wF,[f]: if f,g : F,ltf]/wF,[f] — Cand r € F,[t]/wF,[t], we
write

fy = Y fWe(x/m) and  (Fxg)() = D fx)glr—x).
) <{w) (x)<(w)

We define functions k, A : F,[1]/wF,[t] — Cby

) 1, if there exists y € 7 such that x = y (mod w),
K(x) =
0, otherwise,
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and A(x) = Ay (), where y is the unique element of .y with x = y (mod @ ).
We also define a function a : F,[f]/wF,[tf] — C by a(x) = «x(x)A(x). First, we
estimate the function A.

In what follows, we will fix § = 5/2. Thus all implicit constants below depend
at most on q.

Lemma 29. We have

sup  [A()| < (log, N)™".
750 (mod @)

Proof. Note that i(z) = Ay .n(@/®@). For z/mw € m, by Lemma 16, we have

A(z) € N™* <« (log,N)™".

Thus we are left to prove the lemma for the case that z/w € M,, € M. By
Lemmas 9, 11 and 12, we have

( ) —abin NB+l+e( )l/2+e . _
i = | ol 2)a(5 = 5) + O(FHHEET). it = 1
(0] (W) , otherwise.
N1/2
Because

NB+1+e( )1/2+e

m

—1
N < (log,N)™",

it is enough to show that when (g, m) = 1, we have
_ z a _
@ 'o(= ~ %) <« (log, N,
w g
For (g) = 1, since z # 0 (mod @),

¢(g)_19( a) = 0(z/w) =N" Z e(zx/w) = 0.

L 4
@ § XESN
For (g) > 1, note that |o(«)| < 1 for all « € T. When (g) > 1 and (g,m) = 1, by
the definition of m, there exists a monic irreducible polynomial w’ with w’|g and
(w') > W. Thus

$(9) < (@) « W « (log, )"

This completes the proof of the lemma.
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We now prove a discrete version of the majorant property with § = 5/2. Note
that the proof below can be adapted to give a discrete majorant property for any
5> 2.

Lemma 30. There exists an absolute constant C' (q) such that

> la@)I* < C'(g).
(2)<(w@)

Proof. For (w) =N > 1,x € Sy and (f) < 1, we have e("(ZTH)) = e(%)e(&).

w

Thus for all («) < N, by writing @ = z 4 6 with z € Sy_; and 6 € T, we have

> o= Y | Y cwrwec/m)|

(2)<(w@) (2)<(w) xe€Hy

(27
_ /(a)dv(ngx(x)x(x)e(ax/w)‘ da.

By writing « = @y, we deduce that

[ | X cwnetensml o =i [ | 32 ctsmatoetro]ar

XESN XESN
(28)
By Theorem 2,
2/5
([] X cwismnoetra] " ar)
XESN
= || Tklls;» < N7*|xc||2 (29)
A 1/2 .
= N2 % W@ Paan () T < 2
xXEFN

By combining (27)-(29), we find that

> a1 <« 1.

() <(w)

This completes the proof of the lemma.

Let ¢ be a real parameter satisfying 0 < ¢ < 1 and define

Z = 2(c) = {z e F [/ wF,[ | la@)| = ¢}.
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Let k = | 2| and write 2 = {z1, ..., zx}. We now are able to define a Bohr set
B = B(L) = {x € F,[1/wF, 1 ‘ (Hxi > <q'(<i< k)}.
w
Define a function 8 : F,[f]/wF,[f] — Cby
|27, ifx e %,
Bx) = ,
0, otherwise.

We define a function a; : F,[f]/wF,[f] = Cby ai(x) = (a * B * B)(x).

Lemma 31. There exists a positive constant Cy(q) such that whenever k <
log, log, N, we have ||a)|loo < C2(g)N™".

Proof. From the definition of a; and Lemma 29, we have

a(x) = (axBxp)x) < (AxB*B)@)=N" > 2B e(—xy/m)

() <(z)

S NAOFO + 87 30 AP0 e(—xy/m)

M <(w)
y#0

<KNTHNTT swp A YD IBOIP

y5£0 (mod @) ) <(w)
< N7+ (logqN)71|B|71.

Recall that & = {zy,...,z/}. Consider the mapping I" : F,[{]/wF,[]] — T*
defined by

re = (la/@l..... lxw/=|).
Let
G ={(ar,....o0) €T () <qg ' (1 <i <k}
By the pigeonhole principle, there exists an element (vy,...,v) € ]F’; where

H ={x(modw) | I'(x) — (vy,...,%) €Y}

contains at least Nq_k elements. Let y € . Then for any y € ., we have
I'(y—Y') € 4. Hence, |B| > Ng~*, implying that

la1(x)] < N7' + (log, N)'N~'¢" <« N7".
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We will now prove upper and lower bounds for the sum
NTU YT @ (n2)an(ma)a (),
() <(w)
and we will then deduce Theorem 1 by comparing these upper and lower bounds.

Lemma 32. Suppose that there is no non-trivial solution to rix; + rxy + r3x3 = 0
withx; € o (1 <i<3).Then

N7Y Y ainan(rnaa(rsz) < NN+ N2
@) <(w)

Proof. Since there is no non-trivial solution to rix; + rmxy + r3x3 = 0 with
xi € & (1 <i<3), wehave

NTU YT angatndatng = Y Y aam)a(—riy 'y — g ')

() <(w) (1) <(@) (n)<(w)

= Z a(x)® < Z Apmn ()’

(x)<(w) YESN

< (N + ord m)?¢ (m)?

&« N?N7?
Nz (m)2 :

Since a; = af?, it follows that

N7 Z ai(rz)ay(rz)a (rz)

(&) <(w)
N Z (51("1Z)l~11(V2Z)51(V3z) - &(rlz)&(rzz)a(mz))
() <(w)
+ O(N*N7?)
=N Y anoa(nalre) (5(r1)25(r2)2,§(r3)2 _ 1)
() <(w)
+ O(N*N72).

(30)

Note that when z € Z and r € F,, since (||rzx/ @ ||) < ¢! for all x € B, we have

B(ro) = | B > e(rzx/m) = 1.
xXERB
Thus
Y a(n)a(raa(r?) (5 (r12)*B(r22)*B(r32)* — 1) =0. (31)

€X
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Note that for all z (mod @),
|B(ri2)’B(r2)B(rs2)” — 1] = 2.

By combining Holder’s inequality with Lemma 30, we have

Y an2a(ra)ar) (BB lriz) — 1)

() <(w)
it (32)
< sup la@)|'"* Y la@P”? < ¢
i) (@) <(m)

The lemma now follows by combining (30)—(32).

Lemma 33. Suppose that k < log, log, N. Then there exists a positive constant
Cs = Cs(q) such that

N7 Z a1(r12)a1 (r2)a (rsz) > n*N~1g= /.
(z)<(m)

Proof. Let

o = {x € B[/ B[] | a1 (x) > %}

By Lemma 31, there exists a constant C; = C»(g) > 1 such that [|a;]lec < CoN7".
Thus by Lemma 28,

1L+ @ - L 2 X aw)
28 )

Z (a* B x B)(x)

() <(@)

= > BO» D Bez—y Y alx—2)
M <(=) (2)<(@) (x)<(=m)

>n Y. BG) Y. Bz-y =n
M <(=) (2)<(=m)

Hence, we have

|7'| > nN/(2C5 — 1) > C3yN,
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where C; = 1/(2C;) € (0, 1). Let S denote the number of non-trivial solutions to
r1x1 + rxy + r3x3 = 0 with x; € &’ (1 <i < 3). Then one has
“_ . _ _ Cinp’s
N ( )X(: )a1(V1Z)al(V22)6l1(V31) > %}3 :
Z)<\w

(33)

Let M € N. By [14, Theorem 1], there exists a positive constant C; = Cy4(g) such
that if M > C4/n, then any subset of Sy, of density at least C37/2 contains a non-
trivial solution to r1x; + 72X, + r3x = 0. Furthermore, since r; € F, (1 < i < 3),
the same is true for any space isomorphic to Sy as a vector space over F,. Now, let
M < N. There are N(N — 1) choices of (1, v) where u € %y and 0 < (v) < N.
Consider arithmetic progressions of the form W,, = {u + vl|{l) < M } C
F 1/ @F,[]. Let % = {(u,v) ||W,uNe/’| > C3nM/2}. Note that |W, ,Ne/'| < M
for all u and v. Upon noting that every element x € .2/’ lies inside exactly (N - I)M
sets W, we have

%M + (N(N — 1) — |%])C3nM /2 > (N — )M |</'] > C3nN(N — 1)M.
It follows that
|%| = CsnN(N —1)/(2 = Csn) = CsnN(N — 1)/2.

Thus there are at least C; nﬁ (N —1)/2 sets W,, for which &7’ N W, ,, has density at
least C3n/2. Provided that C4/n < M < N, each set W,,,, with (u, v) € % contains
a non-trivial solution to rjx; + x4+ r3x3 = 0. Note that for any non-trivial solution
X1 + rxy + r3x3 = 0 withx; € &7’ (1 < i < 3), there are at most M? choices of
(u,v) so that (x1,x,x3) € W3 . Therefore, provided that [C4/n] < N, by setting
M = [C4/n], we have

C377N(N - 1)

> nNz _2C4/'7 (34)
M2

The lemma follows by combining (33) and (34) and setting C5 = 2Cs.
We are now in a position to prove Theorem 1.

Proof (of Theorem 1). Let n, Ag, <7, N and R be defined as in Lemma 28, where R
is sufficiently large in terms of g. Suppose that there is no non-trivial solutions to
r1x1 4+ rax; + r3x3 = O with x; € o7 (1 <i < 3). Recall that k = |.Z°| = |{

| la(z)| = g}| By Lemma 30,

k2 < 3 jaw? « 1.
(x)<(@)
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Since k < ¢ /2, there exists a positive constant Cs = Cg(g) such that, upon setting
¢ = Ce(log, log, N)7?/°, we have k < log,log, N. By Lemmas 32 and 33,

NNl <N Y @(n2)a (rn2)a (1)
(2)<(w)
LK N7IN? 4+ N71c1?
< N72N? + N_l(logq log, N)~'/?

< ﬁ’_l(logq log, N)~'/5.
Thus n*q~ /" « (log, log, N)~'/3, which implies that

1 1
log, log,log, N < —log, n + E < 5

From the above inequality, we can deduce that n < (log, log, log, N)~!. Therefore,
we have

A 1 1 1
| > | < < ot
| Zg| log, log, log, N log, log,log, R  log,log, log,log, | 7|

Theorem 1 now follows.
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