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    Chapter 15   

 Analysis of Genotyping-by-Sequencing (GBS) Data       

     Sateesh     Kagale    ,     Chushin     Koh    ,     Wayne     E.     Clarke    ,     Venkatesh     Bollina    , 
    Isobel     A.  P.     Parkin    , and     Andrew     G.     Sharpe      

  Abstract 

   The development of genotyping-by-sequencing (GBS) to rapidly detect nucleotide variation at the whole 
genome level, in many individuals simultaneously, has provided a transformative genetic profiling 
technique. GBS can be carried out in species with or without reference genome sequences yields huge 
amounts of potentially informative data. One limitation with the approach is the paucity of tools to trans-
form the raw data into a format that can be easily interrogated at the genetic level. In this chapter we 
describe bioinformatics tools developed to address this shortfall together with experimental design consid-
erations to fully leverage the power of GBS for genetic analysis.  
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1       Introduction 

 It was a signifi cant achievement when the fi rst plant genome 
sequence of  Arabidopsis thaliana  was published in 2000 [ 1 ] and 
heralded the application of genomics tools to plant research. The 
choice of this fi rst species, with one of the smallest plant genomes 
and limited dispersed repetitive DNA, was partly driven by the cost 
and effi ciency of available sequencing technologies. Today the 
transformative advances in sequencing platforms and chemistries, 
which have led to dramatic reductions in cost per base, have played 
a major role in deciphering multiple complex genomes. To date as 
many as 55 plant genomes have been sequenced and made publicly 
available [ 2 ] (  http://www.phytozome.net/    ). Combined with 
such reference genome sequences next generation sequencing 
(NGS) has allowed a multitude of new approaches to be applied to 
the identifi cation, analyses, and visualization of fundamental 
genetic variation. Identifying and utilizing natural and induced 
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genetic variation remains a prime objective in plant research with 
important implications in population genetics, evolution, and crop 
breeding. The most abundant and perhaps most informative varia-
tion that can be exploited are single nucleotide polymorphisms 
( SNPs  ) that have proven ideal markers for the study of plant 
genomes [ 3 ]. 

 A number of approaches have been described to capture 
genome wide natural and induced genetic variation by NGS. The 
majority of these approaches rely on the use of reduced representa-
tion, which delimits the portion of large and complex genomes to 
be assessed to a manageable size. Initially proposed by Altshuler 
et al. [ 4 ] reduced representation allowed a high density  SNP   map 
to be generated for a genome previously thought to be too large 
for such analyses. However, it has been the combination of reduced 
representation, NGS and multiple indexing of samples that has 
provided the ability to study extremely large genomes at reason-
able cost. The relative simplicity and cost-effectiveness of the 
genotype- by-sequencing (GBS) approach has encouraged its appli-
cation in multiple species, including both model and non-model 
plants [ 5 – 8 ]. Also the increased marker density that is offered has 
led to its growing use in the anchoring of genome sequence assem-
blies, effectively removing the necessity to generate expensive and 
error prone physical maps [ 9 – 11 ]. The only current limitation is 
the bioinformatic and computational burden that is generated, 
with regard to both data processing and storage. 

 GBS now takes many forms, the fi rst GBS data was generated 
using restriction site associated DNA sequencing (RAD-seq) [ 12 ] 
which utilized a single restriction enzyme combined with shearing 
of the digested DNA to capture a suitable portion of the genome. 
By optimizing enzyme choice and eliminating the necessity for 
DNA shearing the Cornell group simplifi ed the approach and 
allowed more extensive multiplexing, which reduced costs further 
[ 13 ]. There have been several modifi cations to the basic protocols, 
predominantly incorporating the use of two enzyme digestion, 
including 2b-RAD [ 14 ], ddRAD-seq [ 15 ], and a variant to the 
Cornell GBS approach by Poland et al. [ 6 ] that utilizes methyla-
tion sensitive enzymes to further reduce the representation of the 
target genome. There have been several reviews describing the dif-
ferent approaches to GBS in plants [ 16 – 19 ]. 

 The common feature of all the approaches is the type and vol-
ume of data that is produced, since all have exploited the  Illumina   
sequencing platforms, generating millions of sequence reads usu-
ally of 100 bp or less for each indexed sample. Thus the bioinfor-
matics pipeline described in the following chapter would be 
applicable to any of the published protocols in either single-end or 
paired-end read format. All the methods can be used in the absence 
of a reference genome; however, the use of a reference genome is 
generally far more effective in ensuring the robust identifi cation of 
genome wide  SNPs  . The following chapter will focus on the 
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analyses of GBS data where there is access to a complete or draft 
genome; although tools ( see   Publicly Available Software and 
Tools for GBS ) that have been developed to analyze GBS in the 
absence of a reference genome are listed.  

2     Materials 

 In this chapter, we discuss a  Bioinformatics   pipeline (Fig.  1 ) that is 
designed to identify genetic variants such as  SNPs   and insertions/
deletions (InDels) from NGS data generated by most major RAD 
and GBS approaches. This pipeline uses a suite of publicly available 
software and custom Perl scripts. There are alternative pipelines 
that have been developed and are listed in  Publicly Available 
Software and Tools for GBS .

         1.     Trimmomatic  (  http://www.usadellab.org/cms/?page=
trimmomatic    ) is a multithreaded command line tool that can 
be used for trimming adapter sequences and low quality regions 
from  Illumina   sequencing reads [ 20 ].   

   2.     Bowtie2  (  http://bowtie-bio.sourceforge.net/bowtie2/index.
shtml    ) is an ultrafast short read alignment tool that can be used 
for aligning sequencing reads against a reference genome [ 21 ]. 
It should be noted that other alignment tools are available for 
this application, most commonly BWA [ 22 ].   

   3.     SAMtools  (  http://samtools.sourceforge.net/    ) is a package of 
utilities designed for manipulating alignments in the  SAM   
(Sequence alignment/Map) or  BAM   (Binary alignment/Map) 
format, including sorting, merging, indexing, and generating 
alignments in a per-position format [ 23 ].   

   4.     BCFtools  (  http://samtools.github.io/bcftools/    ) is a set of 
utilities that manipulate variant calls in the  Variant   Call Format 
( VCF  ) and its binary counterpart (BCF).   

   5.     GATK (   Genome    Analysis Toolkit) genotyper  (  http://www.
broadinstitute.org/gatk/    ) provides a wide variety of tools for 
variant discovery and genotyping [ 24 – 26 ].   

   6.     STACKS  (  http://creskolab.uoregon.edu/stacks/    ) allows de 
novo assembly of short read GBS data and the identifi cation of 
genetic variation in the absence of a reference genome [ 27 ].   

   7.     TASSEL-GBS  (  http://www.maizegenetics.net/    ) is an imple-
mentation of a GBS analysis pipeline in the TASSEL software 
package [ 28 ].      

   A set of utility Perl scripts (listed in Table  1 ) were written to per-
form various tasks associated with data processing, read alignment, 
and  SNP   discovery  . These scripts are open source and freely avail-
able upon request.

2.1  Publicly 
Available Software 
and Tools for GBS

2.2   In House Tools
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      Table 1  

  List of utility Perl scripts designed to perform various tasks associated with genetic variant discovery 
using RAD-Seq and GBS data sets   

 Perl script  Utility 

  util_barcode_splitter.pl   Demultiplexes paired-end RADseq or GBS reads based on a 
perfect match to barcodes 

  util_fi nd_uniq_reads.pl   Compares read sequences and removes duplicate reads 

  bowtie2_extract_best_global_hit.pl   Goes through the  SAM   fi les and identifi es the best hit 
from multi-mapped reads as having the top most hit 
with at least  X  = 6 (or a user defi ned cutoff) penalty 
score better than the runner up 

  bowtie2_extract_best_local_hit.pl   Goes through the  SAM   fi les and identifi es the best hit 
from multi-mapped reads as having the top most hit 
with at least  X  = 12 (or a user defi ned cutoff) penalty 
score better than the runner up 

  fi lter_vcf.pl   Performs fi ltering based on missing genotype and minor 
allele frequency 

3         Methods 

 The basic workfl ow for variant discovery using NGS data gener-
ated by RAD-seq and GBS approaches can be divided into three 
sequential steps: (1) raw data processing, (2) read alignment to a 
reference genome or de novo assembly of the sequence tags, and 
(3) variant discovery and annotation. In general, these three steps 
are shared by most of the currently availably genotyping pipelines. 
In the following subsections, each of these steps are reviewed to 
provide background information for the available bioinformatics 
tools that are customized to perform various tasks associated with 
these steps. 

   RAD-seq and GBS employ a highly multiplexed sequencing strat-
egy for constructing reduced representation libraries for the 
 Illumina   NGS platform ( see   Note 1 ). Demultiplexing is the fi rst 
key step of processing raw sequencing data, which separates reads 
into their corresponding samples based on barcode matching. 
Demultiplexing of Illumina reads is generally carried out using 
Illumina CASAVA or MiSeq reporter software; however, CASAVA 
cannot demultiplex RAD-seq and GBS reads which contain cus-
tomized inline barcodes in only one of the adapter sequences. We 
have developed a Perl script  util_barcode_splitter.pl  (Table  1 ) to 
demultiplex RAD-seq and GBS reads. 

3.1  Raw Data 
Processing
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 Raw sequencing data often contain various types of errors and 
artifacts, such as base calling errors, low quality bases, adaptor con-
tamination and duplicate reads [ 29 ]. Thus it is necessary to per-
form quality assessment and correction of reads by fi ltering or 
trimming of low quality reads or regions. There are numerous 
publicly available software that can be used for pre-processing of 
sequencing reads, such as Trimmomatic (  http://www.usadellab.
org/cms/?page=trimmomatic    ), PRINSEQ (  http://prinseq.
sourceforge.net/    ), FastqMcf  (  http://code.google.com/p/ea- 
utils/wiki/FastqMcf    ), FASTX-Toolkit (  http://hannonlab.cshl.
edu/fastx_toolkit/    ), and cutadapt (  http://code.google.com/p/
cutadapt/    ). In our pipeline (Fig.  1 ), we have adopted Trimmomatic, 
which is a fast, multithreaded command line tool that can be used 
to (1) remove adapter sequences, (2) trim leading and trailing low 
quality regions (below a user defi ned quality threshold), (3) scan 
the read with a user defi ned base-pair size sliding window and cut 
when the average quality per base has dropped below a threshold, 
and (4) keeping only those read-pairs where both reads were lon-
ger than the specifi ed minimal length. Trimmomatic is also 
designed to handle “read-through” for paired-end data. A “read- 
through” is when a fragment size smaller than the read length is 
sequenced and hence results in overlapping read-pairs that include 
both the target fragment and adapter sequence. It is essential to 
remove one of the reads in this case in order to avoid over-stating 
read-depth for variant calling. 

 Amplifi cation by polymerase chain reaction (PCR) is often 
used for target enrichment during the preparation of libraries for 
next-generation sequencing. PCR duplicates resulting from the 
original DNA templates being sequenced many times can have a 
detrimental effect on the quality of variant calls especially when the 
coverage is low ( see   Note 2 ). Computational methods for the 
detection and removal of PCR duplicates have become available 
that generally rely on the observation of identical alignment posi-
tions of reads to the reference genome.   Read map   ping    being a 
computationally intensive process ( see   Note 3 ), the development 
of an alternate method for detection of PCR duplicates based on 
direct comparison of read sequences is essential, especially when 
the proportion of PCR duplicates is very high. To this end, we 
have developed a Perl script  util_fi nd_uniq_reads.pl  (Table  1 ) that 
compares read sequences and removes duplicate reads.  

   After read cleanup, alignment of short reads to a reference genome 
is the fi rst step in a high-throughput genotyping workfl ow. In the 
absence of a reference genome, paired-end sequencing data gener-
ated by RAD-seq or GBS approaches can be assembled de novo 
using software packages such as STACKS [ 27 ], UNEAK [ 30 ], or 
RApiD [ 31 ] to produce mini-contigs that can be used as a refer-
ence for read mapping and genotyping ( see   Note 4 ). In the last few 

3.2  Read Alignment 
to a Reference 
 Genome  
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years, a myriad of effi cient short-read alignment programs, such as 
MAQ [ 32 ], mrsFast [ 33 ], STAMPY [ 34 ] Bowtie2 [ 35 ], BWA 
[ 22 ], and SOAP2 [ 36 ], have been developed. Most of these widely 
used aligners utilize hashing algorithms (MAQ, mrsFast, STAMPY) 
or Burrows–Wheeler transform ( BWT  ) [ 37 ] based indexing 
(Bowtie2, BWA, and SOAP2) for short read mapping. The hash- 
based aligners use hash tables to store the information of either the 
reference genome or short reads. A major drawback of the hash- 
based aligners is that they require prohibitive amount of memory 
( see   Note 3 ). The second generation BWT-based aligners are pre-
ferred as they consume only a limited amount of memory [ 38 ,  39 ]. 

 In our genotyping workfl ow (Fig.  1 ), we have adopted Bowtie2 
which is faster, more sensitive, and more accurate than BWA and 
SOAP2 across a wide range of parameter settings [ 35 ]. Bowtie2 
supports both local and global (end-to-end) modes of alignment 
of short reads [ 35 ]. A local alignment considers only a short seg-
ment of the read and clips unaligned characters from one or both 
ends of the read to maximize the alignment score. Conversely, 
global alignment involves alignment of all characters in the read. In 
our experience, local mode of alignment of the reads is faster and 
useful for mapping reads generated by GBS, although less accurate 
(due to increased multi-mapping) than global alignment. GBS 
does not involve size fractionation of the sequencing library and 
hence sometimes results in the generation of fragments that are 
either too short to be useful or result in paired-end sequencing 
reads that overlap completely. On the other hand, the RAD-seq 
protocol includes a size fractionation step and most reads gener-
ated by this nonoverlapping approach can be aligned in an end-to- 
end manner. An example of the variation in the distribution of 
predicted enzyme sites for both RAD-seq ( Eco RI) and GBS ( Pst I 
and  Msp I), together with a representation of relative genome cov-
erage of each method, has been demonstrated for the  Brassica 
oleracea  genome [ 11 ]. RAD captured a greater portion of the 
genome with a high percentage of the potential sites being tagged 
and sequenced, while GBS coverage was impacted by the degree of 
cytosine methylation. 

 Multi-mapped reads are those that align to multiple locations 
within the reference genome sequence [ 40 ]. Most eukaryotic 

  Fig. 1     Bioinformatics   workfl ow for genetic variant discovery using next generation sequencing based genotyping 
approaches such as RADseq and GBS. The genetic variant calling pipeline comprises three major steps, includ-
ing raw data processing, read mapping to a reference genome, and variant discovery. Each of these steps is 
further divided into multiple sub-steps. The bioinformatics tools (shown in  purple ), input and output fi le formats 
( green ), and the purpose, methodology, or general outcome of each sub-step ( bullet points ) in the workfl ow are 
presented       
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organisms, especially plants with polyploid genomes, carry 
orthologous and paralogous gene families that contain multiple 
isoforms of the same gene with nearly identical or similar sequences. 
Shorter reads being less specifi c tend to have more multi-mapping 
events. In polyploid plant species, the proportion of multi-mapped 
reads ranges from 20 to 60 %. Discarding such a high proportion 
of multi-mapping reads will result in a signifi cant loss of valuable 
information. Bowtie2 searches and reports all valid alignments that 
score better than a given cutoff. We use Perl utility scripts  bow-
tie2_extract_best_global_hit.pl  or  bowtie2_extract_best_local_hit.pl  
to go through the  SAM   fi les and identify the best hit from multi- 
mapped reads as having the top most hit with at least  X  = 6 (end-
to- end) or  X  = 12 (local) penalty score better than the runner up. 
The larger the  X  score, the more confi dent a read is uniquely 
mapped but more alignments get discarded as a consequence. 

 Bowtie2 outputs alignments in  SAM   format which contains 
alignment data in human readable tab-delimited text. SAM fi les 
generally tend to be very large.  BAM  , a compressed binary version 
of SAM format, is a preferred format for the downstream variant 
detection analyses due to its relatively smaller size. We use the 
“ view ” command of SAMtools to convert mapped reads from 
SAM to BAM format. For downstream analysis the alignments in 
BAM fi les must be sorted and indexed according to the chromo-
somal positions. To achieve this, we use the sort and index utilities 
of SAMtools.  

   The next step after mapping reads to a reference genome is to call 
sequence variants ( SNPs   and InDels) from the processed  BAM   fi le. 
Multiple software tools for variant-calling are available, including 
SAMtools:mpileup/BCFtools [ 23 ], GATK [ 24 – 26 ],  SOAP   [ 41 ], 
SNVer [ 42 ], and GNUMAP [ 43 ]. A recent study performed 
systematic evaluation of these commonly used variant-calling bio-
informatics pipelines and found a very poor concordance between 
variants called by each of these methods [ 44 ]. Each of the   SNP 
   call   ing    methods is designed based on different sets of assumptions 
about the reference genome and reads, and their suitability in dif-
ferent situations depends upon various factors, including the nature 
of genotypes, presence or absence of multi-allelic SNPs, and sensi-
tivity and specifi city of detecting SNPs. In our variant-calling 
workfl ow, we have implemented two of the most commonly used 
SNP callers; SAMtools:mpileup/BCFtools [ 23 ] and GATK [ 24 , 
 25 ]. Both of these pipelines also call InDels. 

 SAMtools:mpileup computes the likelihood of each possible 
genotype by generating a consensus sequence using the MAQ 
( Mapping   and  Assembly   with Quality) model framework, which 
uses a general Bayesian framework for picking the base that maxi-
mizes the posterior probability with the highest Phred quality 
score, and outputs the information in the BCF format (binary 

3.3   Variant   
Discovery
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variant call format). However, it does not call the variants. BCFtools 
does the actual calling and estimating allele frequency by applying 
the genotype likelihood information in BCF fi les. It generates out-
put in the  VCF   (variant call format) format, which is the emerging 
standard for storing variant data. Identifi cation of InDels from 
paired-end reads is relatively more challenging than that of  SNPs   as 
incorrect placement of insertions or deletions during read align-
ment to a reference genome may lead to false positive SNPs. 
SAMtools:mpileup deploys a concept called Base Alignment 
Quality (BAQ; [ 45 ]) to provide an effi cient and effective way to 
rule out false positive SNPs caused by alignment artifacts. With the 
BAQ strategy which is invoked by default in mpileup, the probabil-
ity of a base being misaligned can be accurately measured. Although 
the combination of SAMtools:mpileup and BCFtools offers a 
straightforward way of calling SNPs and InDels, this approach is 
limited to only diploid calling as SAMtools:mpileup is designed to 
compute and handle only biallelic variants [ 45 ]. We have success-
fully used SAMtools:mpileup for variant-calling and genetic link-
age mapping of populations produced from biparental crosses 
(Bollina et al., In preparation; [ 10 ,  11 ]). 

 GATK is similar to SAMtools but utilizes additional processing 
steps, such as local realignment around InDel loci in order to clean 
up alignment artifacts, marking non-informative duplicate reads, 
and quality recalibration of both base quality and variant quality to 
improve overall accuracy of variant-calling [ 24 – 26 ,  44 ]. GATK 
includes two variant calling tools, Unifi edGenotyper and 
HaplotypeCaller. The Unifi edGenotyper uses a Bayesian genotype 
likelihood model to estimate posterior probability of allele fre-
quency at each locus. Additionally it utilizes information from 
multiple samples and supports   SNP    call   ing    from non-diploid sam-
ples. The HaplotypeCaller, which combines a local de novo assem-
bler with a more advanced hidden Markov model (HMM) 
likelihood function, outperforms the Unifi edGenotyper in discovering 
sequence variants. However, it currently supports only diploid 
calling and lacks multithreading support. 

 Filtering raw  SNP   candidates is an essential step in the geno-
typing workfl ow as its helps in reducing false positive calls made 
from biases in the sequencing data and removing those calls that 
do not fulfi l specifi c thresholds for SNP and genotype properties. 
Filtering of false positive calls based on read depth and quality 
threshold is embedded within some of the currently available vari-
ant calling pipelines such as SAMtools and GATK. We perform 
additional fi ltering based on missing genotyping calls and minor 
allele frequency (MAF). The level of missing data depends upon 
sequencing coverage which is infl uenced by the multiplexing level 
and the output from sequencing platform [ 18 ,  46 ]. Missing data 
can be reduced by sequencing at higher depth and reducing the 
multiplexing level. An alternative method for replacing missing 
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data is to impute missing values with plausible substitutes ( see   Note 5 ). 
In recent years, algorithms [ 47 – 49 ] have been developed for impu-
tation of missing genotype data with great accuracy. MAF refers to 
the frequency at which the least common allele occurs in a given 
population [ 50 ]. We use the Perl utility script  fi lter_vcf.pl  (Table  1 ) 
to perform fi ltering based on missing genotype and MAF generally 
ignoring  SNPs   with a MAF less than 5 %. The fi nal output from the 
majority of the variant calling pipelines is generally in the  VCF   
format which can be viewed using genomic viewers such as Tablet 
[ 51 ] or IGV [ 52 ] (Fig.  2 ). We have also developed Perl scripts to 
generate genotype scores in tab delimited fi le formats for ease of 
downstream processing and analysis. The last step of our genotyp-
ing workfl ow involves merging SNPs based on identical segrega-
tion patterns. The cartoon in Fig.  3  depicts the logic as well as our 
approach for creating haplotypes blocks by merging closely linked 
SNP markers with identical segregation patterns to provide a 
recombination bin framework that can be easily incorporated into 
genetic mapping analysis.

       The advent of very high throughput NGS platforms together 
with new technical methodologies to take advantage of these gains 
provided an opportunity for establishing high resolution genetic 
analysis in any species. The ability to profi le large numbers of tar-
geted loci for sequence variation in highly multiplexed sets of dis-
crete individuals provided a platform for a range of applications. 
An initial limitation for the full deployment of these approaches 
have been the dearth of readily available bioinformatics tools to 
process the raw data to yield output that can be readily incorpo-
rated into classical genetic analyses. This chapter has outlined some 
of the recently available bioinformatics resources to enable 
researchers to establish GBS applications for genetic analysis in 
their laboratories, provided an example pipeline that could be 
utilized for this purpose, and also a description of key factors that 
need to be considered in experimental design.   

4     Notes 

     1.    Assessing sequencing data requirements: In many instances 
both RAD and GBS have been attempted with a number of 
restriction enzymes. However, the choice of a particular 
enzyme and the volume of sequencing data required depends 
on several factors such as, the genome size, sample multiplex-
ing needs, GC content, frequency of the cut site (frequent to 
rare) and desired frequency of the sites throughout the 
genome. In silico analysis of a genome with a choice of an 
enzyme cut site would provide a glimpse prior to a selection. 
The RAD Counter tool provided on the RAD wiki website 
(  https://www.wiki.ed.ac.uk/display/RADSequencing/Hom

3.4   Conclusion
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  Fig. 2    Genomeviewer (IGV; Thorvaldsdottir et al. [ 52 ]) images illustrating alignment to the reference genome of 
short paired-end reads generated by RAD-seq ( a ) and GBS ( b ) approaches. The  top  two/three tracks represent the 
reference contig and positions of restrictions site(s):  Eco RI (RAD-seq) or  Pst I and  Msp I (GBS). The following tracks 
show reads from each individual library aligned back to the reference using Bowtie2. Read bases that match the 
reference are displayed in  gray  and those that do not match (sequence variants) are shown in  yellow        
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e;jsessionid=14E3C4ECD753766FC8E4EA41274A9BF1    ) 
provides the user with a simple Excel format to input relevant 
information with respect to the above parameters to establish 
the optimal experimental design to ensure appropriate read 
depth is reached.   

   2.    Removal of duplicate reads: advantages and limitations: 
Duplicate reads arising from PCR amplifi cation during library 
preparation can result in perfect copies of the DNA template 
being sequenced multiple times. The proportion of duplicate 
reads can vary enormously and duplicate reads can artifi cially 
infl ate read coverage which may have detrimental effect on the 
quality of variant calls. Hence the dataset used for variant call-
ing should include only one copy per duplicate set of reads. 
Duplicate reads can be detected and removed by comparison 
of either the read sequences or their alignment coordinates. 
However, the risk of removal of identical or almost identical 
reads arising from duplicated genomic regions, especially in 
organisms carrying polyploid genomes, poses a serious chal-
lenge. Additionally, it is impossible to differentiate duplicate 
reads arising due to amplifi cation bias and identical GBS tags 
originating from the same restriction site(s) at a particular 
genomic location. This is not an issue in the case of paired-end 

ABH--A--B 100 SNP#1
A-HA-AA-B 200 SNP#2
-BH--HA-B 300 SNP#3
AB-A-HA-B 400 SNP#4
ABH--HA-B 500 SNP#5

Scaffold1234 SNP_position

OUTPUT

ABHA-AA-B Scaffold1234_1_100_200_2
ABHA-HA-B Scaffold1234_2_300_500_3

  Fig. 3    Overview of the approach used for generating haplotypes by merging 
 SNPs   with identical segregation patterns. As per the example shown in this car-
toon, 5 RAD SNPs (at positions 100, 200, 300, 400, and 500 bp) were identifi ed 
on scaffold1234.  SNP  #1 and SNP#2 have identical segregation pattern, except 
for the missing data points, so as SNP#3 to SNP#5. Instead of using all 5 SNPs 
for genetic mapping, we combine SNPs with identical scores. The locus name of 
each merged RAD SNP (haplotype) provides additional information: the fi rst part 
of the name includes the scaffold name, the next number indicates the order of 
the SNP pattern identifi ed in the scaffold, the next two numbers indicate the base 
pair positions between which this haplotype pattern was found, and the fi nal 
number indicates the count of independent SNPs that had this pattern       
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RAD tags as the additional DNA fragmentation combined 
with size fractionation step in RAD- sequencing protocol leads 
to the production of paired-end tags with at least one variable 
end. Thus we advise against removal of duplicate GBS tags, 
whereas the decision on removal of duplicate RAD tags should 
depend upon the ploidy status or the level of segmental dupli-
cation in the organism under consideration.   

   3.    Computational resources: The analysis of GBS and RAD data 
requires nontrivial computational resources. In order to reduce 
analysis time, the use of multiple CPU cores is recommended. 
Many desktop computers will be limited in the number of sam-
ples they can process by the available RAM. Additionally, the 
output of the analysis steps requires signifi cantly more hard 
disk space than that of the raw sequencing data. As an example 
of computational requirements, 96 GBS samples were pro-
cessed using 16 CPU cores for Trimmomatic, Bowtie2, and 
GATK. The total time required to process the samples was 
approximately 13 h and required at most 21GB of RAM. The 
samples were demultiplexed from 9.7GB of compressed fastq 
data and resulted in approximately 68 GB of uncompressed 
output using a pipeline optimized to reduce production of 
intermediary output fi les.   

   4.    Single-end or paired-end mapping:  Variant   calling can be done 
using either single or paired-end data with resulting benefi ts in 
increased coverage with paired-end data. It is also diffi cult to 
accurately map single reads originating from regions with sig-
nifi cantly higher sequence homology, such as repeat rich or 
duplicated genomic regions. Sequencing reads from both ends 
can partly overcome this diffi culty. Filtering of paired-end 
sequencing data based on adapter contamination and quality as 
well as length thresholds results in the generation of a small 
proportion of single end reads. In such case both single-end 
and paired-end mapping followed by merging of separately 
generated  SAM   fi les before the variant discovery step is 
possible.   

   5.    Data imputation: One issue with both RAD and GBS is the 
amount of missing data that can result from the sequencing, 
especially when this is carried out at a low level of coverage/
depth. Hopefully such an outcome can be avoided in the fi rst 
place by ensuring optimal levels of depth are reached by adopt-
ing an appropriate experimental design ( see   Note 1 ). However, 
when high levels of missing data result it is possible to adopt 
imputation approaches that are currently available for different 
experimental approaches with various population structures 
[ 49 ,  53 ]. As well, it is possible to limit the amount of missing 
data in some types of populations; for example biparental 
genetic mapping populations as described in the main text. 
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In this case the merging of  SNP   loci based on identical 
segregation patterns can be carried out to create haplotypes 
blocks with minimal missing data and a resultant recombination 
bin framework for genetic mapping analysis.         
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